
Condensed Representations for
Sets of Mining Queries

Arnaud Giacometti1,
Dominique Laurent1, and Cheikh Talibouya Diop1,2

1 LI, Université de Tours, 41000 Blois, FRANCE
{giaco,laurent}@univ-tours.fr

2 Université Gaston Berger, Saint-Louis, SENEGAL
cdiop@ugb.sn

Abstract. In this paper, we propose a general framework for condensed
representations of sets of mining queries. To this end, we adapt the stan-
dard notions of maximal, closed and key patterns introduced in previous
works, including those dealing with condensed representations. Whereas
these previous works concentrate on condensed representations of the
answer to a single mining query, we consider the more general case of
sets of mining queries defined by monotonic and anti-monotonic selection
predicates.

1 Introduction

In the past decades, the problem of discovery of interesting patterns in large
databases has motivated many research efforts. Whereas these works have fo-
cussed mainly on the efficiency of the algorithms [1,6,12,16], some other issues
have been recently considered, among which the problem of efficient storage of
the result of an extraction [4,14,15]. In this paper, we propose a general frame-
work for condensed representations of the answers to a set of mining queries.
More precisely, we assume that we are given:

1. A set ∆ of all data sets ∆ from which the patterns are to be discovered.
2. A partially ordered set of patterns L, where the partial ordering is denoted

by �.
3. A set of selection predicates Q, a selection predicate being a boolean function

defined over L × ∆.
4. A set of measure functions F, a measure function being a real function defined

over L × ∆.

Moreover, given a selection predicate q and a data set ∆ in ∆, we say that
a pattern ϕ in L is interesting in ∆ with respect to q if q(ϕ, ∆) has the value
true. Any selection predicate is also called a simple mining query and the set of
interesting patterns in ∆ with respect to q, denoted by sol(q/∆), is called the
answer of q in ∆.

R. Meo et al. (Eds.): Database Support forData MiningApplications, LNAI 2682, pp. 250–269, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Condensed Representations for Sets of Mining Queries 251

We call extended mining query any pair of the form (q, f) where q is in Q

and f is in F. The answer in ∆ to an extended mining query (q, f), denoted by
ans(q, f/∆), is the set of pairs (ϕ, f(ϕ, ∆)) such that ϕ is in sol(q/∆).

In the following example, that will be used as a running example throughout
the paper, we illustrate these notions in the classical association rule mining
problem of [1].

Running Example 1. Given a set of items Items, the set of patterns L con-
sidered in our approach is the set of all subsets of Items, i.e., L = 2Items.
Moreover, the partial ordering over L that we consider is set inclusion: given
two patterns ϕ and ϕ′ in L, we say that ϕ � ϕ′ if ϕ′ ⊆ ϕ.

In this context, a data set ∆ is defined by a set of transactions Tr and a
function it from Tr to L. Given a transaction x ∈ Tr, it(x) is the set of items
in transaction x. The support of a pattern is an example of measure function
of F. More precisely, for every pattern ϕ, the support of ϕ in ∆, denoted by
sup(ϕ, ∆), is defined by:

sup(ϕ, ∆) = |{x ∈ Tr | it(x) � ϕ}|/|Tr|.
Note that, given a minimal support threshold minsup, we can consider the

selection predicate q defined by: for every pattern ϕ ∈ L, q(ϕ, ∆) = true if
sup(ϕ, ∆) ≥ minsup.

In the rest of the paper, we consider the case where the set of items is Items =
{A, B, C, D, E} and where the set of transactions is Tr = {1, 2, . . . , 10}. For
the sake of simplicity, sets of items are denoted by the concatenation of their
elements, e.g. the set of items {A, B, C} is denoted by ABC. The function it
from Tr to L that defines the data set ∆ is represented in the table of Figure 1.

ABCE
0.4

ABC
0.4

ABE
0.5

BCE
0.4

AB
0.5

BC
0.4

BE
0.5

B
0.5

Set of ItemsTr
A1
DE2
ABCE3
ABE4
ABCDE5
ACD6
ABCE7
AE8
ABCDE9
CD10

ABCD
0.2

ABC
0.4

ABD
0.2

ACD
0.3

AB
0.5

AC
0.5

AD
0.3

A
0.8

Fig. 1. Example of data set and sub-lattices of interesting patterns

Let m1, m2, a1 and a2 be selection predicates defined for every pattern ϕ in L

by:

252 A. Giacometti et al.

– m1(ϕ, ∆) = true if B ⊆ ϕ, m2(ϕ, ∆) = true if A ⊆ ϕ.
– a1(ϕ, ∆) = a1(ϕ, ∆) ∧ ã1(ϕ, ∆), where a1(ϕ, ∆) = true if sup(ϕ, ∆) ≥ 0.4,

and ã1(ϕ, ∆) = true if ϕ ⊆ ABCE.
– a2(ϕ, ∆) = a2(ϕ, ∆) ∧ ã2(ϕ, ∆) where a2(ϕ, ∆) = true if sup(ϕ, ∆) ≥ 0.3,

and ã2(ϕ, ∆) = true if ϕ ⊆ ABCD.

q1 = m1 ∧ a1 and q2 = m2 ∧ a2 are simple mining queries. Moreover, it is easy
to see from the table in Figure 1 that:

sol(m1 ∧ a1/∆) = {B, AB, BC, BE, ABC, ABE, BCE, ABCE}
sol(m2 ∧ a2/∆) = {A, AB, AC, AD, ABC, ACD}
On the other hand, (q1, sup) and (q2, sup) are examples of extended mining

queries, and we have:
ans(q1, sup/∆) = {(B, 0.5), (AB, 0.5), (BC, 0.4), (BE, 0.5), (ABC, 0.4),

(ABE, 0.5), (BCE, 0.4), (ABCE, 0.4)}
ans(q2, sup/∆) = {(A, 0.5), (AB, 0.5), (AC, 0.5), (AD, 0.3), (ABC, 0.4),

(ACD, 0.3)}
The answers in ∆ of (q1, sup) and (q2, sup) are also represented in Figure 1. �

In the case of a simple mining query q, we recall that sol(q/∆) can be com-
puted without any access to ∆ if only the maximal and minimal elements of
sol(q/∆) (with respect to the partial ordering on L) are known [9,12]. Indeed,
denoting these sets by G(q/∆) and S(q/∆), respectively, we know that a pattern
ϕ is in sol(q/∆) if and only if there exist ϕg ∈ G(q/∆) and ϕs ∈ S(q/∆) such that
ϕs � ϕ � ϕg. Since G(q/∆)∪S(q/∆) ⊆ sol(q/∆), we say that {G(q/∆), S(q/∆)}
is a condensed representation of sol(q/∆).

In our Running Example 1, it can be seen that G(q1/∆) = {B} and S(q1/∆) =
{ABCE}. Thus, sol(q1/∆) is the set of all itemsets ϕ such that B ⊆ ϕ ⊆ ABCE,
and this can be computed independently from ∆.

On the other hand, in the case of extended mining queries, we adapt the
notions of closed patterns and of key patterns ([3,4,16]) to our formalism, which
allows us to obtain condensed representations of the set ans(q, f/∆) (see Sec-
tion 3.3). For instance, in our Running Example 1, for q1 and the function sup, it
will be seen that the answer ans(q1, f/∆) can be computed without any access
to ∆, from the three sets {B}, {ABCE}, and {(ABE, 0.5), (ABCE, 0.4)}. In
this case, we say that these three sets constitute an extended condensed repre-
sentation of ans(q1, sup/∆).

As the main contribution of this paper, we consider the case of sets of mining
queries (simple or extended). Noting that the union of condensed representations
of different mining queries is not a condensed representation of the corresponding
set of mining queries ([9]), we extend the notions of maximal, minimal, closed
and key patterns to the case of sets of mining queries. Then, we propose con-
densed representations for such sets, in the sense that, given a set Q of mining
queries, the answers in ∆ of the queries in Q can be computed based only on
the condensed representation, i.e., without any access to the data set ∆.

In the case of our Running Example 1, consider the set of simple mining
queries Q = {q1, q2}. Then, it will be seen in Section 4 that the sets of pairs

Condensed Representations for Sets of Mining Queries 253

{(ABCE, q1), (ACD, q2)} and {(B, q1), (A, q2)} constitute a condensed represen-
tation of sol(q1/∆) and sol(q2/∆). We would like to emphasize that in the first
set above, the maximal element ABC in sol(q2/∆) does not appear in the given
condensed representation. Thus, in condensed representations of sets of mining
queries, some maximal or minimal elements with respect to single mining queries
can be omitted.

Comparing our approach to that of [6,7], we note that in [6,7] the authors
consider conjunctive queries made of monotonic and anti-monotonic primitives,
which correspond to what we call simple mining queries. Moreover, it is shown
in [6,7] that the answer to one such query can be represented by its minimal and
maximal elements only. However, contrary to the present paper, the case of sets
of queries is not considered.

On the other hand, in [4], the authors also consider conjunctive queries.
They use a caching technique to store condensed representations of the answers
to these queries together with their supports. In our terminology, this corre-
sponds to extended mining queries. However, in [4], each answer is condensed
separately and stored in the cache, whereas our approach allows to benefit from
relationships between the queries in order to further condense the answers to the
queries.

Thus, our approach can be seen as an extension of [6,7] and [4]. In this paper,
however, we do not consider computational aspects, such as the computation and
the maintenance of condensed representations.

The paper is organized as follows: In Section 2, we give the formal definitions
of the basic concepts of our approach, and in Section 3, mining queries, condensed
representations as well as maximal, closed and key patterns are introduced.
Section 4 deals with condensed representations of sets of mining queries. In
Section 5, we conclude the paper and we propose further research directions
based on this work.

2 Basic Definitions

In our formalism, we assume that we are given:

1. A set ∆ of all data sets from which the patterns are to be discovered. For
instance, ∆ can be thought of as being the set of all instances of a given
relation schema.

2. A set of patterns L and a partial ordering � over L. Given two patterns
ϕ1, ϕ2 in L, we say that ϕ1 is more specific than ϕ2 (or that ϕ2 is more
general than ϕ1) if we have ϕ1 � ϕ2.

3. A set of selection predicates Q, a selection predicate q ∈ Q being a boolean
function defined over L×∆. Moreover, given a pattern ϕ in L and a data set
∆ in ∆, we say that ϕ is interesting in ∆ with respect to q if q(ϕ, ∆) = true.

4. A set of measure functions F, a measure function being a function defined
from L × ∆ to �.

Now, we define when a selection predicate is independent from ∆.

254 A. Giacometti et al.

Definition 1 - Data Independency. Let q be a selection predicate in Q. q is
data independent (or independent for short) if there exists a function q̃ from L

to {true, false} such that for every data set ∆ in ∆ and every pattern ϕ in L,
q(ϕ, ∆) = q̃(ϕ).

In our Running Example 1, it is easy to see that the selection predicates
m1, m2, ã1 and ã2 are independent. In the following, we denote by ˜Q the set of
all independent selection predicates, and by Q the complement of ˜Q in Q, i.e.,
Q = Q \ ˜Q.

In this paper, we consider only selection predicates that are monotonic or
anti-monotonic, and measure functions that are monotonic increasing.

Definition 2 - Monotonicity. Let q be a selection predicate.

– q is monotonic if for every data set ∆ in ∆ and every pair of patterns
(ϕ1, ϕ2) in L

2, we have:

if ϕ1 � ϕ2 and q(ϕ2, ∆) = true, then q(ϕ1, ∆) = true.

– q is anti-monotonic if for every data set ∆ in ∆ and every pair of patterns
(ϕ1, ϕ2) in L

2, we have:

if ϕ1 � ϕ2 and q(ϕ1, ∆) = true, then q(ϕ2, ∆) = true.

Let f be a measure function. f is a monotonic increasing function if for every
data set ∆ in ∆ and every pair of patterns (ϕ1, ϕ2) in L

2, we have:

if ϕ1 � ϕ2, then f(ϕ1, ∆) ≤ f(ϕ2, ∆).

In our Running Example 1, it is easy to see that the selection predicates mi

(i = 1, 2) are monotonic, whereas the selection predicates ai and ãi (i = 1, 2) are
anti-monotonic. Moreover, the measure function sup is an example of monotonic
increasing measure function.

In the following, we denote by A the set of all anti-monotonic selection predi-
cates and by M the set of all monotonic selection predicates. Moreover, we denote
by ˜A (respectively ˜M) the set of all selection predicates in A (respectively M)
that are independent, and by A (respectively M) the set of all selection predi-
cates in A (respectively M) that are not independent. Finally, we denote by I

the set of all monotonic increasing measure functions.
In our approach, selection predicates are compared according to the following

definition.

Definition 3 - Selectivity. Let q1 and q2 be two selection predicates. q1 is more
selective than q2, denoted by q1 	 q2, if for every data set ∆ in ∆ and every
pattern ϕ in L, we have: if q1(ϕ, ∆) = true, then q2(ϕ, ∆) = true.

In the context of our Running Example 1, let α1 and α2 be two support
thresholds. For i = 1, 2, let ai be the selection predicate defined by: for every
pattern ϕ, qi(ϕ, ∆) = true if sup(ϕ, ∆) ≥ αi. It is easy to see that if α2 ≥ α1,
then q2 	 q1.

Condensed Representations for Sets of Mining Queries 255

In the rest of the paper, we consider a fixed data set ∆ in ∆. Therefore,
for notational convenience, we shall omit ∆ in the subsequent definitions and
propositions. For instance, referring to the previous two definitions, q(ϕ, ∆) and
f(ϕ, ∆) will be simply denoted by q(ϕ) and f(ϕ), respectively.

3 Mining Query and Condensed Representations

3.1 Basic Definitions

In our approach, we define two types of mining query.

Definition 4 - Mining Query. A simple mining query is a selection predicate
q. Given a data set ∆, the answer of q in ∆, denoted by sol(q), is defined by:

sol(q) = {ϕ ∈ L | q(ϕ) = true}.

sol(q) denotes the set of all interesting patterns in L with respect to q.
An extended mining query is a pair (q, f) where q is a selection predicate and

f is a measure function. Given a data set ∆, the answer of (q, f) in ∆, denoted
by ans(q, f), is defined by:

ans(q, f) = {(ϕ, f(ϕ)) | ϕ ∈ sol(q)}.

Note that an algorithm proposed in [5] can compute directly sol(q) and
ans(q, f) if q = m ∧ a with m ∈ M and a ∈ A.

Let Y = {(yi
1, y

i
2, . . . , y

i
n) | i = 1, . . . , p} be a set of tuples whose first elements

are patterns in L. The projection of Y on L, denoted by πL(Y), is defined by:
πL(Y) = {y1

1 , y2
1 , . . . , yp

1}. We note that πL(Y) ⊆ L, and that for every q ∈ Q

and f ∈ F, sol(q) = πL(ans(q, f)).
We now introduce the notion of condensed representation.

Definition 5 - Condensed Representation. Let X1, . . . , XK be sets of pat-
terns, i.e., Xk ⊆ L (k = 1, . . . , K). Given a mining query q ∈ Q and a
data set ∆, {X1, . . . , XK} is a condensed representation of sol(q), denoted by
X1, . . . , XK |= sol(q), if:

– (X1 ∪ . . . ∪ XK) ⊆ sol(q), and
– there exists a function F independent from ∆ such that:

sol(q) = F (X1, . . . , XK).

Let Y be a set of pairs (ϕ, α) where ϕ is a pattern in L and α is a real. Given
an extended mining query (q, f) ∈ Q×F and a data set ∆, {X1, . . . , XK , Y } is an
extended condensed representation of ans(q, f), denoted by X1, . . . , XK , Y |=e

ans(q, f), if:

– (X1 ∪ . . . ∪ XK ∪ πL(Y)) ⊆ πL(ans(q, f)), and
– there exists a function F independent from ∆ such that:

ans(q, f) = F (X1, . . . , XK , Y).

Given a simple mining query q and a measure function f , we now consider
condensed representations of sol(q) and extended condensed representations of
ans(q, f).

256 A. Giacometti et al.

3.2 Maximal Patterns

In this paper, we consider only simple mining queries that are defined by con-
junction of anti-monotonic and monotonic selection predicates. In this case, the
answer of a simple mining query can be represented by its most specific and
most general patterns [9,12].

Definition 6. Let q = m ∧ a be simple mining queries with m ∈ M and a ∈ A.

– The set of most specific patterns in sol(q), denoted by S(q), is defined by:
S(q) = min�(sol(q)) = {ϕ ∈ sol(q) | (
 ∃ϕ′ ∈ sol(q))(ϕ′ ≺ ϕ)}.

– The set of most general patterns in sol(q), denoted by G(q), is defined by:
G(q) = max�(sol(q)) = {ϕ ∈ sol(q) | (
 ∃ϕ′ ∈ sol(q))(ϕ ≺ ϕ′)}.

The following lemma, whose easy proof is omitted, shows that sol(q) can be
computed from S(q) and G(q).

Lemma 1. Let q = m ∧ a be a simple mining query with m ∈ M and a ∈ A.
We have: sol(q) = {ϕ ∈ L | (∃ϕs ∈ S(q))(∃ϕg ∈ G(q))(ϕs � ϕ � ϕg)}.

Therefore, we have the following proposition.

Proposition 1. Let q = m∧a be a simple mining query with m ∈ M and a ∈ A.
The set {G(q), S(q)} is a condensed representation of sol(q), i.e.,
G(q), S(q) |= sol(q).

Proof: Let F be the function defined by: F (X1, X2) = {ϕ ∈ L|(∃ϕ1 ∈ X1)(∃ϕ2 ∈
X2)(ϕ1 � ϕ � ϕ2)}. Using Lemma 1, we have sol(q)=F (S(q), G(q)). Moreover,
F is independent from the data set ∆ since � does not depend on ∆. Finally,
we have S(q) ∪ G(q) ⊆ sol(q), which completes the proof. �

We point out that algorithms for computing S(m ∧ a) and G(m ∧ a) directly
have been proposed recently, e.g. the level-wise version space algorithm in [6].

Example 1. Let q1 and q2 be the simple mining queries as given in our Running
Example 1. We recall that: G(q1) = {B}, S(q1) = {ABCE}, G(q2) = {A}, and
S(q2) = {ABC, ACD}. Applying Proposition 1, we have: G(q1), S(q1) |= sol(q1)
and G(q2), S(q2) |= sol(q2). �

It is important to note that G(m) |= sol(m), S(a) |= sol(a) and sol(m ∧
a) = sol(m) ∩ sol(a). Therefore, sol(q) can be computed from G(m) and S(a).
However, the set {G(m), S(a)} is not always a condensed representation of sol(q),
since we can have sol(q) ⊂ (G(m) ∪ S(a)). This is in particular the case for a
query q = m ∧ a such that sol(q) = ∅, sol(m)
= ∅, and sol(a)
= ∅.

On the other hand, in [12], the authors consider what they call the positive
and the negative borders of the answer to a mining query. In our approach,
given a simple mining query q, the corresponding positive and negative borders,
respectively denoted by Bd+(q) and Bd−(q), can be defined as follows:

Condensed Representations for Sets of Mining Queries 257

– Bd+(q) = {S(q), G(q)}, where S(q) and G(q) have been defined previously
– Bd−(q) = {S−(q), G−(q)}, where S−(q) and G−(q) are the following sets:

S−(q) = max�{ϕ ∈ sol(m) | ϕ
∈ sol(a)} and G−(q)= min�{ϕ∈sol(a) | ϕ
∈
sol(m)}.

Therefore, according to Definition 5, the positive border can be seen as a
condensed representation of sol(q), whereas the negative border can not. Indeed,
although the sets S−(q) and G−(q) allow to recompte sol(q) without any access
to the data set, the first point of Definition 5 is not satisfied, since neither S−(q)
nor G−(q) is a subset of sol(q).

We shall not consider the case of negative borders in the rest of the paper, but
we note in this respect that (i) storing Bd−(q) is not optimal in general (since
its cardinality can be much greater than that of sol(q)), and (ii) Bd−(q) can be
seen in our approach as a condensed representation of the set sol(q) ∪ Bd−(q).

3.3 Closed and Key Patterns

In this section, we give alternative definitions of the notions of closed and key
patterns introduced in [3,4,16]. To this end, given a measure function f , we
consider the partial ordering ≤f defined for every pair of patterns (ϕ, ϕ′) by:

ϕ ≤f ϕ′ if ϕ � ϕ′ and f(ϕ) = f(ϕ′).

Definition 7. Let q be a mining query in Q and f be a measure function in F.
Let ∆ be a data set and ϕ be a pattern in L.

– The set of all interesting closed patterns in ∆ with respect to q and f , denoted
by SC(q, f), is defined by:

SC(q, f) = min≤f
(sol(q)).

– The set of all interesting key patterns in ∆ with respect to q and f , denoted
by GK(q, f), is defined by:

GK(q, f) = max≤f
(sol(q)).

It can be shown that our notions of interesting closed patterns and interesting
key patterns coincide with those of [3,4,16] in the context of classical association
rules mining [1].

Moreover, it is easily seen that for every extended mining query (q, f) with
q ∈ Q and f ∈ I, we have S(q) ⊆ SC(q, f) and G(q) ⊆ GK(q, f). More precisely,
the following lemma holds.

Lemma 2. Let q be a selection predicate in Q and f be a monotonic increasing
measure function in I. We have:

S(q) = min�(SC(q, f)) and G(q) = max�(GK(q, f)).

Proof: We first show that S(q) ⊆ min�(SC(q, f)). Let ϕ ∈ S(q). There does
not exist a pattern ϕ′ ∈ sol(q) such that ϕ′ ≺ ϕ. Therefore, there does not
exist a pattern ϕ′ ∈ sol(q) such that ϕ′ ≺ ϕ and f(ϕ′) = f(ϕ), which shows

258 A. Giacometti et al.

that ϕ ∈ SC(q, f). Assume now that ϕ
∈ min�(SC(q, f)). Then, there exists
ϕ′ ∈ SC(q, f) such that ϕ′ ≺ ϕ, which is in contradiction with the hypothesis
ϕ ∈ S(q). Hence, we have S(q) ⊆ min�(SC(q, f)).

Now, we show that min�(SC(q, f)) ⊆ S(q). Let ϕ ∈ min�(SC(q, f)). As-
sume that ϕ
∈ S(q). Then, there exists ϕ′ ∈ S(q) such that ϕ′ ≺ ϕ. Since it
has been shown above that S(q) ⊆ min�(SC(q, f)), we have that ϕ′ ∈ SC(q, f).
This is in contradiction with the hypothesis ϕ ∈ min�(SC(q, f)). Hence, we
have min�(SC(q, f)) ⊆ S(q).

Thus the proof that S(q) = min�(SC(q, f)) is complete. In the same way, it
can be shown that G(q) = max�(GK(q, f)), which completes the proof. �

The following lemma states that given any pattern ϕ in sol(q), f(ϕ) can be
computed based on SC(q, f) or GK(q, f).

Lemma 3. Let q be a selection predicate in Q and f be a monotonic increasing
measure function in I. For every interesting pattern ϕ in sol(q), we have:

– f(ϕ) = max{f(ϕ′) | ϕ′ ∈ SC(q, f) and ϕ′ � ϕ}, and
– f(ϕ) = min{f(ϕ′) | ϕ′ ∈ GK(q, f) and ϕ � ϕ′}

where min and max denote respectively the minimum and maximum functions
according to the standard ordering of real numbers.

Proof: Let ϕ ∈ sol(q) and X(ϕ) = {ϕ′ ∈ sol(q) | ϕ′ � ϕ and f(ϕ′) = f(ϕ)}.
Since ϕ ∈ X(ϕ), we know that Y (ϕ) = min�(X(ϕ)) is not empty. Given any
ϕ′′ ∈ Y (ϕ), assume that ϕ′′
∈ SC(q, f). Then, there exists ϕ′ ∈ sol(q) such that
ϕ′ ≺ ϕ′′ and f(ϕ′) = f(ϕ′′), which shows that ϕ′ ∈ X(ϕ) and contradicts the
fact that ϕ′′ is minimal in X(ϕ). Hence, there exists ϕc ∈ SC(q, f) such that
ϕc � ϕ and f(ϕc) = f(ϕ).

On the other hand, for every ϕ′ ∈ SC(q, f) such that ϕ′ � ϕ, we have f(ϕ′) ≤
f(ϕ). Therefore, we have f(ϕ) = max{f(ϕ′) | ϕ′ ∈ SC(q, f) and ϕ′ � ϕ}. Since
the fact that f(ϕ) = min{f(ϕ′) | ϕ′ ∈ GK(q, f) and ϕ � ϕ′} can be shown in
the same way, the proof is complete. �

Let (q, f) be an extended mining query. In the following, we denote by
SC∗(q, f) and GK∗(q, f) the sets defined by:

– SC∗(q, f) = {(ϕ, f(ϕ)) | ϕ ∈ SC(q, f)}, and
– GK∗(q, f) = {(ϕ, f(ϕ)) | ϕ ∈ GK(q, f)}.

The following proposition follows from the previous two lemmas.

Proposition 2. Let q = m ∧ a be a simple mining query with m ∈ M, a ∈ A,
and let f be a monotonic increasing measure function in I. The sets {S(q), G(q),
SC∗(q, f)} and {S(q), G(q), GK∗(q, f)} are extended condensed representations
of ans(q, f), i.e.,

S(q), G(q), SC∗(q, f) |=e ans(q, f) and S(q), G(q), GK∗(q, f) |=e ans(q, f).

Condensed Representations for Sets of Mining Queries 259

Proof: Let F be the function defined by: F (X1, X2, Y) = {(ϕ, α) ∈ L×� | (∃ϕ1 ∈
X1)(∃ϕ2 ∈ X2)(ϕ1 � ϕ � ϕ2) and α = max{α′ | (∃ϕ′ ∈ L)((ϕ′, α′) ∈ Y ∧ ϕ′ �
ϕ)}. Using Lemma 1 and Lemma 3, we have ans(q, f)=F (S(q), G(q), SC∗(q, f)).
Moreover, F is independent from the data set ∆ since � does not depend on ∆,
and S(q) ∪ G(q) ∪ SC(q, f) ⊆ sol(q). Therefore, {S(q), G(q), SC∗(q, f)} is an
extended condensed representation of ans(q, f). Since the fact that S(q), G(q),
GK∗(q, f) |=e ans(q, f) can be shown in the same way, the proof is complete. �

Example 2. Let q1 be the simple mining query as defined in our Running Ex-
ample 1. We can see that:

GK∗(q1, sup) = {(B, 0.5), (BC, 0.4)} and
SC∗(q1, sup) = {(ABE, 0.5), (ABCE, 0.4)}.

Recalling that G(q1) = {B} and S(q1) = {ABCE}, and using Propo-
sition 2, we obtain that S(q1), G(q1), SC∗(q1, sup) |=e ans(q1, sup) and that
S(q1), G(q1), GK∗(q1, sup) |=e ans(q1, sup). �

4 Condensed Representations of Sets of Mining Queries

In this section, we extend the notions of condensed representation and of ex-
tended condensed representation to the case of sets of mining queries.

4.1 Definitions

Definition 8 - Set of Mining Queries. Let Q = {q1, . . . , qn} be a set of
mining queries. Given a data set ∆, the answer of Q in ∆, denoted by sol(Q),
is the set defined by:

sol(Q) =
⋃

q∈Q
{(ϕ, q) | ϕ ∈ sol(q)}.

Let f be a measure function in F. The answer of (Q, f) in ∆, denoted by
ans(Q, f), is the set defined by:

ans(Q, f) =
⋃

q∈Q
{(ϕ, q, f(ϕ)) | ϕ ∈ sol(q)}.

Definition 9 - Condensed Representation. Let X1, . . . ,XK be sets of pairs
(ϕ, q) where ϕ ∈ L and q ∈ Q. Given a set of mining queries Q and a data set ∆,
{X1, . . . ,XK} is a condensed representation of sol(Q), denoted by X1, . . . ,XK |=
sol(Q), if:

– πL(X1) ∪ . . . ∪ πL(XK) ⊆ πL(sol(Q)), and
– there exists a function F independent from ∆ such that:

sol(Q) = F (X1, . . . ,XK).

Let Y be a set of pairs (ϕ, α) where ϕ is a pattern in L and α is a real.
Given a set of mining queries Q, a measure function f and a data set ∆,
{X1, . . . ,XK , Y } is an extended condensed representation of ans(Q, f), denoted
by X1, . . . ,XK , Y |=e ans(Q, f), if:

260 A. Giacometti et al.

– πL(X1) ∪ . . . ∪ πL(XK) ∪ πL(Y) ⊆ πL(ans(Q, f)), and
– there exists a function F independent from ∆ such that:

ans(Q, f) = F (X1, . . . ,XK , Y).

Let C = {Z1, . . . ,ZK} and C′ = {Z ′
1, . . . ,Z ′

K} be two condensed representa-
tions (extended or not) having the same cardinality K. We say that C is more
concise than C′ if there exists a permutation θ of {1, . . . , K} such that for every
i = 1, . . . , K, Zi ⊆ Z ′

θ(i).

Given a set of mining queries Q and a measure function f , we study condensed
representations of sol(Q) and extended condensed representations of ans(Q, f).

4.2 Maximal Patterns

Given a set of mining queries Q = {q1, . . . , qn}, it is well known [9] that, although
{S(qi), G(qi)} is a condensed representation of sol(qi), for every i = 1, . . . , n,
the set {S(q1)∪. . .∪S(qn), G(q1)∪. . .∪G(qn)} is not a condensed representation
of sol(q1) ∪ . . . ∪ sol(qn).

However, if for every ϕ in S(q1) ∪ . . . ∪ S(qn) or in G(q1) ∪ . . . ∪ G(qn), we
keep track of the query qi the pattern ϕ comes from, then sol(Q) and ans(Q, f)
can be condensed. For this reason, we define the sets S(Q) and G(Q) as follows:

Definition 10. Let Q = {q1, . . . , qn} be a set of mining queries qi ∈ Q (i =
1, . . . , n). The sets S(Q) and G(Q) are defined by:

S(Q) =
⋃

q∈Q
{(ϕ, q) | ϕ ∈ S(q)} and G(Q) =

⋃

q∈Q
{(ϕ, q) | ϕ ∈ G(q)}.

Given these definitions, we have the following proposition.

Proposition 3. Let Q = {q1, . . . , qn} be a set of mining queries qi = mi ∧ ai

with mi ∈ M and ai ∈ A (i = 1, . . . , n). The set {S(Q), G(Q)} is a condensed
representation of sol(Q), i.e., S(Q), G(Q) |= sol(Q).

Proof: Let F be the function defined by: F (X1, X2) = {(ϕ, q) ∈ L × Q |
(∃(ϕ1, q1) ∈ X1)(∃(ϕ2, q2) ∈ X2)(q1 = q2 = q and ϕ1 � ϕ � ϕ2)}. Based on
Lemma 1, we can easily see that sol(Q) = F (S(Q), G(Q)). Moreover, F is in-
dependent from the data set ∆ since � does not depend on ∆. Finally, we have
S(Q) ⊆ sol(Q) and G(Q) ⊆ sol(Q), which completes the proof. �

Example 3. In the context of our Running Example 1, let q3 = m3 ∧ a3 and
q4 = m4 ∧ a4 where m3, m4, a3 and a4 are selection predicates defined for every
pattern ϕ ∈ L by:

– m3(ϕ, ∆) = true if A ⊆ ϕ, and m4(ϕ, ∆) = true if AC ⊆ ϕ,
– a3(ϕ, ∆) = true if sup(ϕ, ∆) ≥ 0.4 and ϕ ⊆ ABC, and a4(ϕ, ∆) = true if

sup(ϕ, ∆) ≥ 0.3 and ϕ ⊆ ABCD.

Condensed Representations for Sets of Mining Queries 261

We note that m3 and m4 are monotonic selection predicates such that m4 	 m3,
whereas a3 and a4 are anti-monotonic selection predicates such that a3 	 a4.
We can see that S(q3) = {ABC}, S(q4) = {ABC, ACD}, G(q3) = {A} and
G(q4) = {AC}. Considering Q = {q3, q4}, we have:

S(Q) = {(ABC, q3), (ABC, q4), (ACD, q4)} and G(Q) = {(A, q3), (AC, q4)}
Using Proposition 3, we can see that: S(Q), G(Q) |= sol(Q). �

In what follows, we show how to define condensed representations of sol(Q)
that are more concise than {S(Q), G(Q)}.

Let Q = {q1, . . . , qn} be a set of mining queries qi = mi ∧ ai with mi ∈ M

and ai ∈ A (i = 1, . . . , n). We define two partial pre-orderings, denoted by ≤A

and ≤M, as follows: for all (ϕi, qi) and (ϕj , qj) in L × Q:

(ϕi, qi) ≤A (ϕj , qj) if ϕi � ϕj and ai 	 aj

(ϕi, qi) ≤M (ϕj , qj) if ϕi � ϕj and mj 	 mi.

Then, we denote by Σ(Q) the set of all minimal pairs in S(Q) with respect
to ≤A. Similarly, we denote by Γ (Q) the set of all maximal pairs in G(Q) with
respect to ≤M. That is:

Σ(Q) = min≤A
(S(Q)) and Γ (Q) = max≤M

(G(Q)).

The following lemma states that, for every q ∈ Q, sol(q) can be computed
based on Σ(Q) and Γ (Q), only.

Lemma 4. Let Q = {q1, . . . , qn} be a set of mining queries qi = mi ∧ ai with
mi ∈ M and ai ∈ A (i = 1, . . . , n). For every q in Q, we have:

sol(q) = {ϕ ∈ L | (∃(ϕi, qi) ∈ Σ(Q))((ϕi, qi) ≤A (ϕ, q)) and
(∃(ϕj , qj) ∈ Γ (Q))((ϕ, q) ≤M (ϕj , qj))}.

Proof: Let X(q) be the set defined by:

X(q) = {ϕ ∈ L | (∃(ϕi, qi) ∈ Σ(Q))((ϕi, qi) ≤A (ϕ, q)) and
(∃(ϕj , qj) ∈ Γ (Q))((ϕ, q) ≤M (ϕj , qj))}.

We first show that X(q) ⊆ sol(q). Let ϕ ∈ X(q). There exist (ϕi, qi) ∈ Σ(Q)
and (ϕj , qj) ∈ Γ (Q) such that (ϕi, qi) ≤A (ϕ, q) and (ϕ, q) ≤M (ϕj , qj).

On one hand, we know that qi(ϕi) = true. Thus, we have ai(ϕi) = true. It
follows that a(ϕi) = true since ai 	 a, and that a(ϕ) = true since ϕi � ϕ and a
is anti-monotonic.

On the other hand, we know that qj(ϕj) = true. Thus, we have mj(ϕj) =
true. It follows that m(ϕj) = true since mj 	 m, and that m(ϕ) = true since
ϕ � ϕj and m is monotonic. Therefore, we have a(ϕ) = true and m(ϕ) = true,
which shows that ϕ ∈ sol(q). Hence, we have: X(q) ⊆ sol(q).

Now, we show that sol(q) ⊆ X(q). Let ϕ ∈ sol(q). There exist ϕs ∈ S(q)
and ϕg ∈ G(q) such that ϕs � ϕ � ϕg. Thus, we have (ϕs, q) ∈ S(Q) and
(ϕg, q) ∈ G(Q).

262 A. Giacometti et al.

Given the definitions of Σ(Q) and Γ (Q), there exist (ϕi, qi) ∈ Σ(Q) and
(ϕj , qj) ∈ Γ (Q) such that (ϕi, qi) ≤A (ϕs, q) and (ϕg, q) ≤M (ϕj , qj). Moreover,
we have (ϕs, q) ≤A (ϕ, q) since ϕs � ϕ, and (ϕ, q) ≤M (ϕg, q) since ϕ � ϕg.
Thus, (ϕi, qi) ≤A (ϕ, q) and (ϕ, q) ≤M (ϕj , qj), which shows that ϕ ∈ X(q).
Hence, we have sol(q) ⊆ X(q), which completes the proof. �

As a consequence of Lemma 4 above, we have the following theorem:

Theorem 1. Let Q = {q1, . . . , qn} be a set of mining queries qi = mi ∧ ai with
mi ∈ M and ai ∈ A (i = 1, . . . , n). The set {Σ(Q), Γ (Q)} is a condensed
representation of sol(Q), i.e., Σ(Q), Γ (Q) |= sol(Q).

Moreover, {Σ(Q), Γ (Q)} is more concise than {S(Q), G(Q)}.
Proof: Let F be the function defined by: F (X1, X2) = {(ϕ, q) ∈ L × Q |
(∃(ϕ1, q1) ∈ X1)((ϕ1, q1) ≤A (ϕ, q)) and (∃(ϕ2, q2) ∈ X2)((ϕ, q) ≤M (ϕ2, q2))}).
Using Lemma 4, we can easily see that sol(Q) = F (Σ(Q), Γ (Q)). Moreover, F
is independent from the data set ∆ since � and 	 do not depend on ∆.

It is easily seen that we have Σ(Q) ⊆ S(Q) ⊆ sol(Q) and Γ (Q) ⊆ G(Q) ⊆
sol(Q). Therefore, {Σ(Q), Γ (Q)} is more concise than {S(Q), G(Q)} and thus,
the proof is complete. �

Example 4. We recall from Example 3 that we have:
S(Q) = {(ABC, q3), (ABC, q4), (ACD, q4)} and G(Q) = {(A, q3), (AC, q4)}.

Since a3 	 a4, we have (ABC, q3) ≤A (ABC, q4). On the other hand, (A, q3) and
(AC, q4) are not comparable with respect to ≤M. It follows that:

Σ(Q) = {(ABC, q3), (ACD, q4)} and Γ (Q) = {(A, q3), (AC, q4)}
Using Theorem 1, we can see that Σ(Q), Γ (Q) |= S(Q). Moreover, since Σ(Q) ⊂
S(Q) and Γ (Q) ⊆ G(Q), {Σ(Q), Γ (Q)} is more concise than
{S(Q), G(Q)}. �

We end this subsection by showing how to optimize the computation of Σ(Q)
(respectively Γ (Q)) by stating that two pairs (ϕi, qi) and (ϕj , qj) in S(Q) (re-
spectively G(Q)) cannot be comparable with respect to ≤A (respectively ≤M) if
ϕi
= ϕj .

Indeed, based on this result, it turns out that the computation of Σ(S) =
min≤A

(S(Q)) (respectively Γ (S) = max≤M
(G(Q))) only requires to compare the

pairs of S(Q) (respectively G(Q)) that contain the same pattern.

Proposition 4. Let Q = {q1, . . . , qn} be a set of mining queries qi = mi ∧ ai

with mi ∈ M and ai ∈ A (i = 1, . . . , n).
If (ϕi, qi) and (ϕj , qj) are two pairs in S(Q) (respectively G(Q)) such that

(ϕi, qi) ≤A (ϕj , qj) (respectively such that (ϕi, qi) ≤M (ϕj , qj)), then we have
ϕi = ϕj.

Proof: Let (ϕi, qi) and (ϕj , qj) be two pairs in S(Q) such that (ϕi, qi) ≤A

(ϕj , qj). Since qi(ϕi) = true, we have ai(ϕi) = true and aj(ϕi) = true since
ai 	 aj. On the other hand, since qj(ϕj) = true, ϕi � ϕj and mj is monotonic,

Condensed Representations for Sets of Mining Queries 263

we have mj(ϕj) = true and mj(ϕi) = true. Therefore, we have qj(ϕi) = true,
meaning that ϕi ∈ sol(qj). Moreover, since ϕj is minimal in sol(qj) with respect
to � and ϕi � ϕj, we necessarily have ϕi = ϕj. It can be shown in the same way
that if (ϕi, qi) and (ϕj , qj) are two pairs in G(Q) such that (ϕi, qi) ≤M (ϕj , qj),
then ϕi = ϕj. Thus the proof is complete. ��

4.3 Closed and Key Patterns

In this subsection, we consider the case of extended condensed representations
of a set Q = {q1, . . . , qn} of simple mining queries with qi ∈ Q (i = 1, . . . , n)
involving a monotonic increasing measure function f in I. To this end, recalling
that SC(qi, f) is the set of all interesting closed patterns in ∆ with respect to
qi and f (i = 1, . . . , n), we define the sets SC(Q, f) and SC∗(Q, f) as follows:

SC(Q, f) = min≤f
(
⋃

q∈Q
SC(q, f)) and SC∗(Q, f) = {(ϕ, f(ϕ)) | ϕ ∈ SC(Q, f)}

Example 5. Let Q = {q1, q2} be the set of simple mining queries as defined in
our Running Example 1. We have:

– SC(q1, f) = {ABCE, ABE} and SC(q2, f) = {ABC, ACD, AB, AC, A},
– SC(Q, f) = {ABCE, ABE, ACD, AC, A} and
– SC∗(Q, f) = {(ABCE, 0.4), (ABE, 0.5), (ACD, 0.3), (AC, 0.5), (A, 0.8)}. �

Based on Lemma 3, we can state the following proposition:

Proposition 5. Let Q = {q1, . . . , qn} be a set of simple mining queries with
qi ∈ Q (i = 1, . . . , n) and f be a monotonic increasing measure function in I.
For every i = 1, . . . , n and ϕ ∈ sol(qi), we have:

f(ϕ) = max{f(ϕ′) | ϕ′ ∈ SC(Q, f) and ϕ′ � ϕ}.

Proof: Let ϕi in sol(qi). Using Lemma 3, we know that:

f(ϕi) = max{f(ϕ′
i) | ϕ′

i ∈ SC(qi, f) and ϕ′
i � ϕi}

Let ϕ′
i ∈ SC(qi, f) such that ϕ′

i � ϕi and f(ϕ′
i) = f(ϕi). Given the definition

of SC(Q, f), there exists ϕ′
j ∈ SC(Q, f) such that ϕ′

j ≤f ϕ′
i, i.e., ϕ′

j � ϕ′
i and

f(ϕ′
j) = f(ϕ′

i). Thus, there exists ϕ′
j ∈ SC(Q, f) such that ϕ′

j � ϕi and f(ϕ′
j) =

f(ϕi). Finally, for every ϕ′ ∈ SC(Q, f) such that ϕ′ � ϕi, we have f(ϕ′) ≤ f(ϕi)
since f is a monotonic increasing function. It follows that: f(ϕi) = f(ϕ′

j) =
max{f(ϕ′) | ϕ′

i ∈ SC(Q, f) and ϕ′ � ϕi} which completes the proof. �
The same idea applies for key patterns. Recalling that GK(qi, f) is the set

of all interesting key patterns in ∆ with respect to qi and f (i = 1, . . . , n), we
define the sets GK(Q, f) and GK∗(Q, f) by:

GK(Q, f) = max≤f
(
⋃

q∈Q
GK(q, f)) and GK∗(Q, f) = {(ϕ, f(ϕ)) | ϕ ∈ GK(Q, f)}

The following proposition states how to compute f(ϕ) based on the set
GK(Q, f).

264 A. Giacometti et al.

Proposition 6. Let Q = {q1, . . . , qn} be a set of simple mining queries with
qi ∈ Q (i = 1, . . . , n) and f be a monotonic increasing measure function in I.
For every i = 1, . . . , n and ϕ ∈ sol(qi), we have:

f(ϕ) = min{f(ϕ′) | ϕ′ ∈ GK(Q, f) and ϕ � ϕ′}.

Proof: The proof uses similar arguments as that of Proposition 5, and thus is
omitted. ��

Using propositions 5, 6 and Theorem 1, the following theorem holds.
Theorem 2. Let Q = {q1, . . . , qn} be a set of mining queries with qi = mi ∧ ai

where mi ∈ M and ai ∈ A (i = 1, . . . , n). Let f be a monotonic increasing
measure function in I.

The sets {Σ(Q), Γ (Q), SC∗(Q, f)} and {Σ(Q), Γ (Q), GK∗(Q, f)} are ex-
tended condensed representations of ans(Q, f), i.e.,

Σ(Q), Γ (Q), SC∗(Q, f) |=e ans(Q, f), and
Σ(Q), Γ (Q), GK∗(Q, f) |=e ans(Q, f).

Proof: Let F be the function defined as follows: for every triple (ϕ, q, α) ∈
L × Q × �, (ϕ, q, α) ∈ F (X1, X2, Y) if:
– there exists (ϕ1, q1) ∈ X1 such that (ϕ1, q1) ≤A (ϕ, q), and
– there exists (ϕ2, q2) ∈ X2 such that (ϕ, q) ≤M (ϕ2, q2), and
– α = max{α′ | (∃ϕ′ ∈ L)((ϕ′, α′) ∈ Y and ϕ′ � ϕ)}.

Using Theorem 1 and Proposition 5, we can easily see that ans(Q, f) =
F (Σ(Q), Γ (Q), SC∗(Q, f)). Moreover, F is independent from the data set ∆
since � and 	 do not depend on ∆. Finally, we have Σ(Q) ⊆ S(Q) ⊆ sol(Q),
Γ (Q) ⊆ G(Q) ⊆ sol(Q) and πL(SC∗(Q, f)) = SC(Q, f) ⊆ πL(sol(Q)), which
shows that Σ(Q), Γ (Q), SC∗(Q, f) |=e ans(Q, f). Using Theorem 1 and Propo-
sition 6, it can be shown in the same way that Σ(Q), Γ (Q), GK∗(Q, f) |=e

ans(Q, f), thus the proof is complete. �
Example 6. Let Q = {q1, q2} be the set of simple mining queries as defined in
our Running Example 1. We recall from examples 1 and 5 that:

– S(q1) = {ABCE}, S(q2) = {ABC, ACD}, G(q1) = {B} and G(q2) = {A},
– SC(q1, f) = {ABCE, ABE} and SC(q2) = {ABC, ACD, AB, AC, A},
– SC(Q, f) = {ABCE, ABE, ACD, AC, A}, and
– SC∗(Q, f) = {(ABCE, 0.4), (ABE, 0.5), (ACD, 0.3), (AC, 0.5), (A, 0.8)}.

Therefore, S(Q) = {(ABCE, q1), (ABC, q2), (ACD, q2)} and G(Q)={(B, q1),
(A, q2)}. Since S(Q)(respectively G(Q)) contains no pairs comparable with respect
to ≤A (respectively ≤M), we have Σ(Q) = S(Q) (respectively Γ (Q) = G(Q)).

Then using Theorem 2, we know that {Σ(Q), Γ (Q), SC∗(Q, f)} is an ex-
tended condensed representation of ans(Q, f), i.e., Σ(Q), Γ (Q), SC∗(Q, f) |=e

ans(Q, f). Moreover, we note that SC∗(Q, f) ⊂ SC(q1, f) ∪ SC(q2, f). �
The previous example shows a case where the two condensed representations

{S(Q), G(Q)} and {Σ(Q), Γ (Q)} of sol(Q) are equal. In the next subsection,
we show that these condensed representations can be made more concise under
additional hypotheses that are satisfied in the traditional case of association
rules mining [1].

Condensed Representations for Sets of Mining Queries 265

4.4 Further Improvement

We assume now that every query q ∈ Q is of the form q = q ∧ q̃ where q̃
is an independent selection predicate. Intuively, in order to further condense
{Σ(Q), Γ (Q)}, we compare queries based on their ‘non-independent parts,’ since
their ‘independent parts’ can be evaluated without considering the underlying
data set.

To this end, given a set of mining queries Q = {q1, . . . , qn} where qi = qi ∧ q̃i

with qi ∈ Q and q̃i ∈ ˜Q, we define two partial pre-orderings, denoted by ≤
A

and
≤

M
, as follows: for all (ϕi, qi) and (ϕj , qj) in L × Q:

(ϕi, qi) ≤
A

(ϕj , qj) if ϕi � ϕj and ai 	 aj

(ϕi, qi) ≤
M

(ϕj , qj) if ϕi � ϕj and mj 	 mi.

Then, we introduce the following notations:
Σ(Q) = min≤

A
(S(Q)) and Γ (Q) = max≤

M
(G(Q)).

The following lemma states how, for every q in Q, sol(q) can be computed
based on Σ(Q) and Γ (Q), assuming that the independent part q̃ of q is known.

Lemma 5. Let Q = {q1, . . . , qn} be a set of mining queries qi = qi ∧ q̃i where
qi = mi ∧ ai with mi ∈ M, ai ∈ A, and q̃i = m̃i ∧ ãi with m̃i ∈ ˜M, ãi ∈ ˜A

(i = 1, . . . , n). For every q in Q, we have:
sol(q) = {ϕ ∈ sol(q̃) | (∃(ϕi, qi) ∈ Σ(Q))((ϕi, qi) ≤

A
(ϕ, q) and

(∃(ϕj , qj) ∈ Γ (Q))((ϕ, q) ≤
M

(ϕj , qj))}.

Proof: Let X(q) be the set defined by:

X(q) = {ϕ ∈ sol(q̃) | (∃(ϕi, qi) ∈ Σ(Q))((ϕi, qi) ≤
A

(ϕ, q) and
(∃(ϕj , qj) ∈ Γ (Q))((ϕ, q) ≤

M
(ϕj , qj))}.

We first show that X(q) ⊆ sol(q). Let ϕ ∈ X(q). There exist (ϕi, qi) ∈ Σ(Q)
and (ϕj , qj) ∈ Γ (Q) such that (ϕi, qi) ≤

A
(ϕ, q) and (ϕ, q) ≤

M
(ϕj , qj).

On one hand, we know that qi(ϕi) = true. Thus, we have ai(ϕi) = true. It
follows that a(ϕi) = true since ai 	 a, and so, a(ϕ) = true since ϕi � ϕ and a
is anti-monotonic.

On the other hand, we know that qj(ϕj) = true. Thus, we have mj(ϕj) =
true. It follows that m(ϕj) = true since mj 	 m, and so, m(ϕ) = true since
ϕ � ϕj and m is monotonic. Therefore, we have q(ϕ) = true. Since ϕ ∈ sol(q̃),
we have q(ϕ) = q(ϕ) ∧ q̃(ϕ) = true, which shows that X(q) ⊆ sol(q).

Now, we show that sol(q) ⊆ X(q). Let ϕ ∈ sol(q). There exist ϕs ∈ S(q)
and ϕg ∈ G(q) such that ϕs � ϕ � ϕg. Moreover, we have (ϕs, q) ∈ S(Q) and
(ϕg, q) ∈ G(Q).

Given the definitions of Σ(Q) and Γ (Q), there exist (ϕi, qi) ∈ Σ(Q) and
(ϕj , qj) ∈ Γ (Q) such that (ϕi, qi) ≤

A
(ϕs, q) and (ϕg, q) ≤

M
(ϕj , qj). Moreover,

we have (ϕs, q) ≤
A

(ϕ, q) since ϕs � ϕ, and (ϕ, q) ≤
M

(ϕg, q) since ϕ � ϕg.
Thus, (ϕi, qi) ≤

A
(ϕ, q) and (ϕ, q) ≤

M
(ϕj , qj). As ϕ ∈ sol(q) and as sol(q) ⊆

sol(q̃), it follows that ϕ ∈ X(q), which entails that sol(q) ⊆ X(q). Thus, the
proof is complete. �

Based on Lemma 5 above, we can state the following theorem.

266 A. Giacometti et al.

Theorem 3. Let Q = {q1, . . . , qn} be a set of mining queries qi = qi ∧ q̃i where
qi = mi ∧ ai with mi ∈ M, ai ∈ A, and q̃i = m̃i ∧ ãi with m̃i ∈ ˜M, ãi ∈ ˜A

(i = 1, . . . , n). The set {Σ(Q), Γ (Q)} is a condensed representation of sol(Q),
i.e., Σ(Q), Γ (Q) |= sol(Q).

Proof: Let us consider the function F defined by:

F (X1, X2) = { (ϕ, q) ∈ L × Q | ϕ ∈ sol(q̃) and
(∃(ϕ1, q1) ∈ X1)((ϕ1, q1) ≤

A
(ϕ, q)) and

(∃(ϕ2, q2) ∈ X2)((ϕ, q) ≤
M

(ϕ2, q2))})

Using Lemma 5, we can easily see that sol(Q) = F (Σ(Q), Γ (Q)). Moreover,
F is independent from the data set ∆ since � and 	 do not depend on ∆. Finally,
for every pair (ϕ, q) in Σ(Q) or Γ (Q), we know that (ϕ, q) ∈ sol(Q). Thus, we
have πL(Σ(Q) ∪ Γ (Q)) ⊆ πL(sol(Q)), which completes the proof. �

Unfortunately, as shown in the following example, the condensed representa-
tions {Σ(Q), Γ (Q)} and {Σ(Q), Γ (Q)} are not comparable in general. In-
tuitively, this is due to the fact that (ϕ1, q1) ≤A (ϕ2, q2) can hold whereas
(ϕ1, q1) ≤

A
(ϕ2, q2) does not, or conversely.

Example 7. In the context of our Running Example 1, let q5 = m5 ∧ a5 and
q6 = m6 ∧ a6 where m5, m6, a5 and a6 are defined for every ϕ ∈ L by:

– m5(ϕ, ∆) = true if sup(ϕ, ∆) ≤ 0.8 and A ⊆ ϕ,
– m6(ϕ, ∆) = true if sup(ϕ, ∆) ≤ 0.9 and AC ⊆ ϕ,
– a5(ϕ, ∆) = true if sup(ϕ, ∆) ≥ sup(AB, ∆) and ϕ ⊆ AC,
– a6(ϕ, ∆) = true if sup(ϕ, ∆) ≥ sup(AC, ∆) and ϕ ⊆ ABC.

We note that m5 and m6are monotonic,whereas a5and a6areanti-monotonic.
Moreover, we can see that S(q5) = {AC}, S(q6) = {AC}, G(q5) = {A} and
G(q6) = {AC}.

Now, considering Q = {q5, q6}, we have: S(Q) = {(AC, q5), (AC, q6)} and
G(Q) = {(A, q5), (AC, q6)}. Moreover, we have (AC, q5) <A (AC, q6), whereas
(A, q5) and (AC, q6) are not comparable with respect to ≤M. Therefore, we have:

Σ(Q) = {(AC, q5)} and Γ (Q) = {(A, q5), (AC, q6)}.
On the other hand, (AC, q6) <

M
(A, q5), whereas (AC, q5) and (AC, q6) are

not comparable with respect to ≤
A
. Therefore, we have:

Σ(Q) = {(AC, q5), (AC, q6)} and Γ (Q) = {(A, q5)}.
Hence, we have Σ(Q) ⊂ Σ(Q) and Γ (Q) ⊂ Γ (Q), which shows that {Σ(Q),

Γ (Q)} and {Σ(Q), Γ (Q)} are not comparable. �

The following lemma states a sufficient condition when {Σ(Q), Γ (Q)} is more
concise than {Σ(Q), Γ (Q)}. Intuitively, according to this condition, the anti-
monotonic (respectively monotonic) queries to be considered must satisfy the fact
that if two queries are comparable, then their dependent part are comparable as
well.

Condensed Representations for Sets of Mining Queries 267

Lemma 6. Let Q = {q1, . . . , qn} be a set of mining queries qi = qi ∧ q̃i where
qi = mi ∧ ai with mi ∈ M, ai ∈ A, and q̃i = m̃i ∧ ãi with m̃i ∈ ˜M, ãi ∈ ˜A

(i = 1, . . . , n).
If for every (ai, aj) ∈ A

2 such that ai 	 aj, we have ai 	 aj, and for every
(mi, mj) ∈ M

2 such that mi 	 mj, we have mi 	 mj, then {Σ(Q), Γ (Q)} is
more concise than {Σ(Q), Γ (Q)}.
Proof: Assume that for every (ai, aj) ∈ A

2 such that ai 	 aj, we have ai 	 aj.
Then, for all pairs (ϕ1, q1) and (ϕ2, q2) in S(Q) such that (ϕ1, q1) ≤A (ϕ2, q2),
we also have (ϕ1, q1) ≤

A
(ϕ2, q2). Hence, we have Σ(Q) ⊆ Σ(Q). In the same

way, we can see that if for every (mi, mj) ∈ M
2 such that mi 	 mj, we have

mi 	 mj, then Γ (Q) ⊆ Γ (Q). Thus, the proof is complete. �
In what follows, we identify a case where the previous lemma applies. This

case makes use of the notion of dense measure function, defined by:

Definition 11. Let f be a measure function defined over Λ ⊆ �. We say that f
is dense in Λ with respect to L, if for every pair (λ1, λ2) ∈ Λ2 such that λ1 < λ2
and every pattern ϕ ∈ L, there exists a data set ∆ such that λ1 < f(ϕ, ∆) < λ2.

Then, we have the following.

Proposition 7. Let f be a increasing measure function defined from L×∆ over
Λ ⊆ � such that f is dense in Λ with respect to L.

Let Qf = Af ∪ Mf where Af = {aλ | λ ∈ Λ} and Mf = {mλ | λ ∈ Λ} are
two sets of selection predicates defined by: for every data set ∆ and every pattern
ϕ ∈ L, aλ(ϕ, ∆) = true if f(ϕ, ∆) ≥ λ, and mλ(ϕ, ∆) = true if f(ϕ, ∆) ≤ λ.

Let ˜A and ˜M be two sets of independent selection predicates such that for every
ã in ˜A (respectively m̃ ∈ ˜M), ã is anti-monotonic (respectively m̃ is monotonic)
and sol(ã)
= ∅ (respectively sol(m̃)
= ∅).

Let Q = {q1, . . . , qn} be a set of mining queries qi = qi ∧ q̃i where qi = mi ∧ai

with mi ∈ Mf , ai ∈ Af , and q̃i = m̃i ∧ ãi with m̃i ∈ ˜M, ãi ∈ ˜A (i = 1, . . . , n).
Then, {Σ(Q), Γ (Q)} is more concise than {Σ(Q), Γ (Q)}.
Proof: Using the notation of the proposition, based on Lemma 6, we have to
show that for every i, j = {1, . . . , n}, if ai 	 aj, then ai 	 aj and that if
mi 	 mj, then mi 	 mj.

Assuming that ai 	 aj and ai
	 aj implies that there exist two reals λi and
λj such that for every pattern ϕ ∈ L and every data set ∆, ai(ϕ, ∆) = true if
f(ϕ, ∆) ≥ λi and aj(ϕ, ∆) = true if f(ϕ, ∆) ≥ λj. If ai
	 aj, we necessarily
have λi < λj.

Moreover, given a pattern ϕ ∈ sol(ãi), there exists a data set ∆ such that
λi < f(ϕ, ∆) < λj. Then, we have ϕ ∈ sol(ai/∆) and ϕ
∈ sol(aj/∆), which
contradicts the hypothesis ai 	 aj.

Using similar arguments as above, it can shown that if mi 	 mj, then mi 	
mj, which completes the proof. �

Now, we note that the previous proposition applies in the traditional case of
association rules where L = 2Items \ {∅, Items} and the measure function is the

268 A. Giacometti et al.

function sup. Indeed, it is easy to see that the function sup is dense in [0, 1] with
respect to L = 2Items \ {∅, Items}.

The following example shows how Proposition 7 applies in the context of our
Running Example 1.
Example 8. Let Q = {q1, q2} be the set of simple mining queries qi = mi ∧ ai

where mi and ai (i = 1, 2) are defined in our Running Example 1.
We recall from Example 6 that S(Q) = {(ABCE, q1), (ABC, q2), (ACD, q2)}

and G(Q) = {(B, q1), (A, q2)}. Moreover, we also recall that Σ(Q) = S(Q) and
Γ (Q) = G(Q).

Since ABC ⊆ ABCE (ABCE �ABC) and a1 	 a2, we have (ABCE, q1)≤
A

(ABC, q2). Thus, the pair (ABC, q2) does not belong to Σ(Q). Hence, we have

Σ(Q) = {(ABCE, q1), (ACD, q2)}.

Then, since the pairs (B, q1) and (A, q2) are not comparable with respect to
≤

M
, we have Γ (Q) = G(Q). In conclusion, using Theorem 3, we can see that

Σ(Q), Γ (Q) |= sol(Q). Moreover, since Σ(Q) ⊂ Σ(Q) and Γ (Q) ⊆ Γ (Q), it is
easy to see that {Σ(Q), Γ (Q)} is more concise than {Σ(Q), Γ (Q)}. �

Finally, regarding extended condensed representations, we can easily prove
the following theorem, based on propositions 5 and 6 and on Theorem 3.
Theorem 4. Let f be a monotonic increasing measure function in I and Q =
{q1, . . . , qn} be a set of mining queries qi = qi ∧ q̃i where qi = mi ∧ ai with
mi ∈ M, ai ∈ A, and q̃i = m̃i ∧ ãi with m̃i ∈ ˜M, ãi ∈ ˜A (i = 1, . . . , n). The sets
{Σ(Q), Γ (Q), SC∗(Q, f)} and {Σ(Q), Γ (Q), GK∗(Q, f)} are extended con-
densed representations of ans(Q, f), i.e., Σ(Q), Γ (Q), SC∗(Q, f) |=e ans(Q, f)
and Σ(Q), Γ (Q), GK∗(Q, f) |=e ans(Q, f).

5 Conclusion

In this paper, we have considered the problem of defining condensed represen-
tations of sets of mining queries. To this end, we have first studied the case of
a single mining query and we have extended previous works on version spaces
by [9] so as to take into account the presence of measure functions in the query.
This has been done based on the well known notions of closed and key pat-
terns ([3,16]). Then, we have seen how to extend this approach to sets of mining
queries. The main idea in this extension is that, in order to obtain condensed
representations in this case, when storing a pattern, one must keep track of the
query the pattern comes from.

Based on this work, we are currently investigating how condensed representa-
tions can be used to optimize the iterative computation of the answer of mining
queries. This problem has been studied for standard association rules [2,10,13,14]
and multi-dimensional association rules [8,15]. In our framework, this problem
can be stated as follows: given a data set ∆, a set Q = {q1, . . . , qn} of mining
queries and a new extended mining query (q, f):
1. How to optimize the computation of ans(q, f) using the extended condensed

representations of ans(Q, f)?

Condensed Representations for Sets of Mining Queries 269

2. How to efficiently modify the extended condensed representation of ans(Q, f)
so as to obtain an extended condensed representation of ans(Q ∪ {q}, f)?
Moreover, it is clear that some tests are necessary to compare the various con-

densed representations proposed in this paper. To this end, we are implementing
our approach in the context of our previous work [8], where mining queries are
composed through relational operators. We also investigate how our approach
can be used to optimize the iterative computation of iceberg cubes [11].

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I. Verkamo (1996). Fast
Discovery of Association Rules. In Advances in Knowledge Discovery and Data
Mining, pp 309–328, AAAI-MIT Press.

2. E. Baralis and G. Psaila (1999). Incremental Refinement of Mining Queries. In
Proc. of DAWAK’99, pp. 173–182, Florence.

3. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme and L. Lakhal (2000). Mining
Frequent Patterns with Counting Inference. SIGKDD Explorations, 2(2), p. 66–75.

4. J.-F. Boulicaut, A. Bykowski and C. Rigotti (2000). Approximation of Frequency
Queries by Means of Free-Sets. In Proc. of PKDD’00, LNCS vol. 1910, pp. 75–85,
Springer-Verlag.

5. J.-F. Boulicaut (2001). Habilitation thesis (French). INSA-Lyon, France.
6. L. De Raedt and S. Kramer (2001). The Levelwise Version Space Algorithm and

its Application to Molecular Fragment Finding. In Proc. of IJCAI’01, pp. 853–862.
7. L. De Raedt (2002). Query execution and optimization for inductive databases. In

Proc. of International Workshop DTDM’02, In conjunction with EDBT 2002, pp.
19–28 (Extended Abstract), Praha, CZ.

8. C.T. Diop, A. Giacometti, D. Laurent and N. Spyratos (2002). Composition of
Mining Contexts for Efficient Extraction of Association Rules. In Proc. of the
EDBT’02, LNCS vol. 2287, pp. 106–123, Springer-Verlag.

9. H. Hirsh (1994). Generalizing Version Spaces. Machine Learning, Vol. 17(1), pp.
5–46, Kluwer Academic Publishers.

10. B. Jeudy, J-F. Boulicaut (2002). Using condensed representations for interactive
association rule mining. In Proc. of ECML/PKDD 2002, Helsinki, LNAI vol. 2431,
pp. 225–236, Springer-Verlag.

11. M. Laporte, N. Novelli, R. Cicchetti, L. Lakhal (2002). Computing Full and Iceberg
Datacubes Using Partitions. In Proc. of ISMIS’2002, LNAI vol. 2366, pp. 244–254,
Springer-Verlag.

12. H. Mannila, H. Toivonen (1997). Levelwise Search and Borders of Theories in
Knowledge Discovery. Techn. Rep. C-1997-8, University of Helsinki.

13. T. Morzy, M. Wojciechowski and M. Zakrzewicz (2000). Materialized Data Mining
Views. In Proc. of PKDD’2000, LNCS vol. 1910, pp. 65–74, Springer-Verlag.

14. B. Nag, P. Deshpande and D.J. DeWitt (1999). Using a Knowledge Cache for
Interactive Discovery of Association Rules. In Proc. of KDD’99, pp. 244–253, San
Diego, USA.

15. B. Nag, P. Deshpande and D.J. DeWitt (2001). Caching for Multi-dimensional
Data Mining Queries. In Proc. of SCI’2001, Orlando, Florida.

16. N. Pasquier, Y. Bastide, R. Taouil and L. Lakhal (1999). Efficient Mining of Asso-
ciation Rules using Closed Itemsets Lattices. Information Systems, Vol. 24(1), pp.
25–46, Elsevier Publishers.

	Introduction
	Basic Definitions
	Mining Query and Condensed Representations
	Basic Definitions
	Maximal Patterns
	Closed and Key Patterns

	Condensed Representations of Sets of Mining Queries
	Definitions
	Maximal Patterns
	Closed and Key Patterns
	Further Improvement

	Conclusion

