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Abstract. We describe the integration of permutation group algorithms
with proof planning. We consider eight basic questions arising in com-
putational permutation group theory, for which our code provides both
answers and a set of certificates enabling a user, or an intelligent software
system, to provide a full proof of correctness of the answer. To guarantee
correctness we use proof planning techniques, which construct proofs in
a human-oriented reasoning style. This gives the human mathematician
the necessary insight into the computed solution, as well as making it
feasible to check the solution for relatively large groups.

1 Introduction

In this paper, we describe the integration of permutation group algorithms from
computer algebra with proof planning. We consider eight basic questions arising
in computational permutation group theory, for which a computer algebra sys-
tem provides solutions together with sets of certificates. A certificate is data that
enables a human mathematician to easily check the computed result. We employ
the same certificates to formally guarantee correctness with proof planning.

The experiments were carried out by combining the computer algebra system
GAP [6] and the proof planner of the Omega system [4]. We chose GAP, since
it is particularly good in group theory and has a rich collection of permutation
group algorithms (we could equally well have chosen Magma, however). The
choice of Omega was motivated by the fact that it enables the construction of
proofs in a human-oriented reasoning style.

The results of our experiments can be summarised as follows: (i) We provide
GAP functions which handle eight basic queries, ranging from “Is this permu-
tation in that permutation group?” to “What is the order of this permutation
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group?” The functions provide certificates as well as solutions, enabling a user
or an intelligent software system to provide a full proof of correctness of the
solution. (ii) We provide proof planning constructs in Omega to prove that the
answers given by GAP to these eight queries are correct; each query can essen-
tially be modelled as a theorem and the proof planner can verify GAP’s answers
using the additional certificates to guide the planning process. Omega treats
single queries independently from GAP, in a modular and easily extensible ap-
proach, thus showing that the certificates are not only sufficient to construct
a formal verification but also to plan a corresponding proof problem indepen-
dently of the actual computation. As far as possible, we model a human-oriented
reasoning style to give a human mathematician the necessary insights into the
computed solutions.

(iii) To this end we also implemented a collection of functions in GAP for
turning answers and certificates into natural language proofs using simple tem-
plates. Similarly, the proofs produced by Omega can be turned into natural
language by means of the related P.Rex system [5], which employs elaborate lin-
guistic techniques. Notice that the natural language proof from GAP does not
satisfy a correctness criterion, as it is implemented by humans and so a mistake
in the proof could remain unnoticed.

The need to integrate automated proof assistants with computer algebra
systems comes from two sources. On the computer algebra side, the production of
certificates becomes necessary when systems are used via the Internet as ‘oracles.’
In this setting, it is likely that users will not know where the answer is coming
from and so will need to be convinced of its correctness. With a certificate, it
is a relatively easy task to perform a verification. On the proof planning side,
we wish to demonstrate that we meet the challenge of reconstructing a proof
from exactly the same mathematical data that a human would require. It would
be unreasonable to expect more than that from a proof developing system. The
fact that Omega can produce a proof from a certificate also ensures that the
certificates have indeed supplied sufficient information.

We emphasise that this work extends the boundaries of what is feasible
(cf. [J9IT3)2]). Clearly, the eight permutation group queries we are dealing with
can all be handled by simple enumeration. For instance, in order to decide if a
given permutation g belongs to a permutation group G, you could just enumer-
ate all elements of G and check whether g is one of these. However, G can be
exponentially large as a function of n, the number of letters permuted by G, and
so this soon becomes impractical. We use GAP’s sophisticated group-theoretic
algorithms for finding proofs in cases far beyond reach of such enumeration.

The paper is organised as follows: We first introduce the permutation group
queries and their implementation in GAP. We then discuss their formalisation in
the Omega system. Section @ gives a brief introduction to the integration of proof
planning and computer algebra and Sec. 5] highlights some of the planning issues
for the permutation group queries. We then give an overview of experimental
results and conclude with a discussion of some related work.
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2 Eight Queries Regarding Permutation Groups

In computational permutation group theory, a group G is specified by a list
of generating permutations A = [ay,aq,...,ax], where a; is a permutation on
the points © := {1,2,...,n}. In other words, the elements of A belong to the
symmetric group Sym,,. We often write G = (A) to denote that G is generated
by A. Our permutations act on the right.

In this section, which is based on [3], we give efficient solutions of eight basic
queries. GAP already has efficient built-in functions which answer these queries.
We have written functions in the GAP language that provide certificates for
the correctness of these answers. The certificates, taken together with the an-
swers themselves, give enough data to construct an informal proof of correctness.
Naturally, our certificate is not a complete proof in itself. In particular, we leave
things like the computation of the image of a permutation acting on a point (i.e.,
a member of Q) to the user. But apart from such elementary evaluations, the
completion of the proof should be straightforward. In later sections we confirm
this by letting an automated proof planning device find a proof. The following
example is used throughout:

Ezxample 1. The Mathieu group on 11 points, denoted by M, is generated by the
list A = [a1, az], where: a1 = (1,10)(2,8)(3,11)(5,7), a2 = (1,4,7,6)(2,11,10,9).

2.1 Membership

We first address the question of proving that the permutation g belongs to the
group G. A word in A is an expression of the form ajla;?---a;™ where the
indices 7; are in the range 1,...,k and the exponents e; are integers. It is now
easily shown that a permutation g € Sym,, is an element of G if, and only if,
it can be expressed as a word in A. Writing an arbitrary permutation g as a
word in A is a difficult computational problem. We use the existing methods

implemented in GAP.

Query input A permutation g and a list A of permutations generating G. We
are given the fact that g € (A).

GAP certificate A word w in A that evaluates to g.

Query output By definition, G is generated by A and so G consists of those
elements that can be expressed as a word in A. In particular, w is equal to
¢ in Sym,,, and so belongs to G.

n?

Ezample 2. For our group M of Example [[l and g = (1,3,8,9)(4,10,6,5), our
GAP function returns aja3a;. For g = (3,9)(4,5)(6,10)(7,11), a GAP certificate
is agaiajaialaradaiadaiazaadalazaasaiaia;. In fact, the GAP algorithm is
non-deterministic, so the certificate may vary on different calls for the same
query. We have selected a certificate of moderate length for these examples; in
practice, the words can be much longer.
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2.2 Subgroup

Suppose H is a permutation group with generating set B and that we wish to
prove that H is a subgroup of G. Recall that H is a subgroup of G if, and only
if, every element of B is contained in G.

Query input A list A of permutations generating G and a list B of permuta-
tions generating H. We are given the fact that H is a subgroup of G.

GAP certificate A list W of words in A indexed by B.

Query output In order to show that H is a subgroup of G, it suffices to show
that each element of B belongs to G. The list W gives, for each b in B, an
expression for b as a word W, in A. This establishes that each element of B
belongs to G, and so H is a subgroup of G.

Ezample 3. Consider the permutation group H generated by the list B = [by, bs],
where b; = (1,3,8,9)(4,10,6,5) and by = (3,9)(4,5)(6,10)(7,11). A GAP cer-
tificate is [alagal, a2a1agala%alagala%alagalagmagalagalagal].

2.3 Orbit

We wish to determine the orbit of x € {2 under the action of Gj i.e., we wish to

find 2G = {zg : g € G}.

Query Input A list A of permutations generating G and a point .

GAP certificate A set of points X and a list ¢ of words in A indexed by X.
The set X is just the G-orbit G of x. The word ¢(y) in A indexed by y € X
maps = to y.

Query output In order to show that X is the G-orbit of x, we need to show that
(1) each element of A leaves the set X invariant. This is a straightforward
check that the cycles containing points of X do not contain any points not
in X. And (2) each element of X is image of x under an element of G. These
elements are given in the list ¢.

Ezample 4. The M of 1 is {1,...,11}. [ tx) [2[t@)[z] tz) [z [t(2)
A GAP certificate for this orbit is de- |7 Gd) [[4] a2 |7] o2 [10] a;

scribed by the table on the right. The |9 aja? ||5a3a1||8|aia3ar||11|aiad
even columns contain words t(x) for x |3 araday 6] a3 ||9] aras

in the preceding column. These words
are found by first computing the corresponding permutations and then proceed-
ing as in Sec. 211

2.4 Schreier Tree

Tt is inefficient to store all the words t(y) for y in the G-orbit X = G, so instead
we construct a Schreier tree. This is a tree rooted at x whose its nodes are the
elements of X, in which every child z of a node y is connected to it by the label
c€ AUA™L if yc = 2. For every y € X, there is a unique path in the Schreier
tree from z to y. The labels on this path will form a word representing ¢(y). This
is the Schreier word.
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In practice, we store the Schreier tree in a linearised form, using two vec-

tors w : X - XU{0} and v : X — {-m,...,—1,0,1,...,m} defined by:
o ) I ify=w(z)and ya; =z
w(z) = {y %f z is a child of y v(z) =< —lify=w(z) and ya; * = 2
0if z=2 0 ifz=2x
Query Input A list A = [aq, ..., a] of permutations generating G and a point
x of Q.

GAP certificate A triple [X,w,v] of integer sequences consisting of the orbit,
the Schreier vector, and the back-pointers.

Query output Consider the triple [X,w, v]. It has three rows, the first of which
represents the orbit X = xG. In order to show that X is indeed the G-orbit
containing z, see Sec. 23l To show that v and w are a linearised Schreier
tree, consider a column of the table, say x;,w;,v;. It suffices to show that
T; = wja;l)j if v; < 0 and that z; = wja,, if v; > 0. This is a (tedious but)
trivial check.

Example 5. The linearised version of a Schreier tree of M rooted at 1 is given
in the following table.

X1 10 4 6 9 11 7 2 3 5 3
w |0 1 1 1 10 10 4 9 1 7 2
v |0 1 2 -2 2 -2 2 2 1 1 1

The Schreier words t(y) for y in the M-orbit 1M = {1,...,11} are as indicated
in Example 4.

As suggested by the example, the set U of values of ¢ can be used to construct
the table of the proof in Sec. that X is an M-orbit.

2.5 Stabiliser

The stabiliser subgroup in G of x is defined as G, = {g € G : xg = z}. It is not
immediately clear how to compute this subgroup; although the definition gives
us a test for whether ¢ is an element of G, it does not give us a generating set.

The following lemma establishes a one-to-one correspondence between the
orbit of a point and the set of cosets of its stabiliser.

Lemma 1 (Orbit Lemma). If y € zG, then {g € G:xg =y} is a coset of
G. In particular, |G| = |G|/|Gz|.

The Schreier tree enables us to create a set U of coset representatives for
G, in G and a map t : G — U sending an element g of G to the representative
of G,g: given g € G, take t(g) to be the Schreier word t(zg). Then zt(g) = xg
and t(g) = t(hg) whenever h € G,. So, taking U to be the image of the map
t: G — G, we find that U and ¢ are as required.

Now that we have a set of coset representatives for G, we can use it to
compute a generating set for the stabiliser of x in G. This is based upon the
following lemma.
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Lemma 2 (Schreier’s lemma). Suppose that G is a group with generating set
A, and H is a subgroup of G. If U is a set of coset representatives for H in G,
and the function t : G — U maps an element g of G to the representative of Hg,
then a generating set for H is given by {ua t(ua)"t:ueUac A}.
Query Input A list A of permutations generating G and a point x of €.
GAP certificate A set B of generators of a subgroup H of G; a Schreier tree S
for G at x; and a sequence of quadruples (y,, g, h), one for each point y € X
and index i = 1,...,|A|. Here g and h both represent the Schreier generator
t(y)a;t(t(y)a;) ! with a; the i-th element of A, in case of g as a word in the
generators A of GG, and in the case of h as a word in the generators B of H.
Query output As in Sec. the group H is a subgroup of G. We verify that
each element of B, and hence each element of H, fixes x. As before, the triple
S is a Schreier tree for G at z. We find from it the Schreier elements ¢(y) for
y € X. Using the quadruples (y, 4, g, h), we check that each Schreier element
belongs to H. By Lemma 2] we conclude that H is the stabiliser in G of x.

Ezample 6. The stabiliser in M of = 1 is the group H = ((2,9)(3,6)(4,7)(8,11),
(2,3,5,11)(4,7,6,8),(3,8,7,6)(4,9,11,5), (4,5,6,11)(7,9, 10,8)). As in Sec.
it can be checked that H is a subgroup of M. Since 1 does not appear in these
generating cycles, we know that H stabilises 1. The Schreier data for M at x is
as in ExampleBl We list the non-trivial Schreier generators, in the format (i, 5):
word in A for u;a; t(ua;) ™t
(4,1) : azaray* (2,2) : ara3a1 (5,
(6,1) : ay "ayas (3,1) : a1ay 'azay (8,
(9,1) : alagalaglal (3,2) : alaglalagalagal
By Sec. 22 we can verify that each Schreier generator is in H. By Schreier’s
lemma, H is the stabiliser in M of x.

2
) : a3ayasaya’

2
2) : aya2aiazaialay

2.6 Base

We can repeat the process of the previous section to form a chain of stabiliser
subgroups. A base for G is a finite sequence B = [x1,..., ] of distinct points
in Q such that Gy, 4,2, = (id), the trivial group. Hence, the only element
of G which fixes all of the points x1,x2,...,x; is the identity. Clearly every
permutation group has a base, but not all bases for a given group are of the
same length. We have a stabiliser chain G = GO > g > ... > gk-D
G®) = (id), if we write G = Gy oy -

A base can be constructed by starting with B = [1], and recursively choosing

a letter x; in a nontrivial G, ... _,-orbit and appending it to B. The construc-

tion is finished when G, 5, = <1d>.

Query Input A list A of permutations generating G.

GAP certificate A base B = [z1,...,x1] and, for each i = 1,...,k, a set 4;
of generators of the stabiliser of z; in (4;_1).

Query output Since (A;) = 1, we conclude that B is a base with stabiliser
chain the groups (4;) fori =1,... k.

Ezample 7. The Mathieu group on 11 points, M, has a base [1,2,3,4].
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2.7 Nonmembership

Here we deal with the query that is complementary to the first one treated:
Prove that the permutation g does not belong to G. Suppose we have a base
B = [z1,...,xzk]. Take G = Ggy,...w;, and U = ti(G(i)), the set of Schreier
elements corresponding to a Schreier tree for G rooted at x;_;. Then we get a
chain of subgroups G = G > G > ... > g1 > G*) = (id) and sets U
of coset representatives for GO+ in G,

An element ¢ of G is contained in exactly one coset of GV in G, so
g = hyug for some hy € G and ug € U, By induction, we can show that
g = UgUg—_1--- urug where each u; € U@ is uniquely determined by g. This
process, called sifting an element, gives a canonical form for the elements of G
and underpins most of the more advanced applications of stabiliser chains.

On the other hand, if g is not in G, then sifting fails because at some stage
we get that z;h;_1 is not in the orbit z;G*~), and so h;_; is not in G~ . This
gives us our proof of nonmembership. However, multiplying the h; together we
can simplify the result so that we only need to return one additional element

hedq.

Query Input A list A of permutations generating G and a permutation g. The
fact that ¢ is not in G.

GAP certificate A list B = [z1,...,x], the orbit 2,G*Y of z;, under the
stabiliser G¢—1 = Ga,,....zp, Of all elements of B except for xj, and a
permutation h € G such that gh fixes z1,...,25_1 and zrgh & x,G*~1),

Query output As zpgh & x,G*~V, the element gh is not in G*~1 whence
not in G. As h € G, this implies that g does not belong to G.

Ezample 8. Let g = (1,2). We show that g does not belong to M. Take B =
[1,2,3,4,5]. Let h = (1,2)(5,8)(7,10)(9,11). Then h € M (proof as in Sec. [2.]).
By verification, gh = (5, 8)(7,10)(9, 11) fixes each element of B except for 5. By a
proof as in Sec.[26, the stabiliser in M of [1, 2, 3, 4] is the trivial group. Now con-
sider the point « = 5. Its image under gh is the point xgh = 5(5, 8)(7,10)(9,11) =
8. But the stabiliser in M of [1,2,3,4] is the trivial group and so cannot move 5
to 8. Therefore, gh does not belong to M. As h belongs to M, this implies that
g is not in M.

2.8 Order
The order of a permutation group can now be effectively computed.

Lemma 3 (Order lemma). Suppose that G is a permutation group and B =
[x1,...,2k] i a base for G. Then |G| = Hle |2, GO,

Query Input A list A of permutations generating G.

GAP certificate A base B = [z1,...,x], the corresponding stabiliser chain
G and the sizes of the orbits z; G~ 1.

Query output The proof that the base and the stabiliser chain are correct is
given in Sec. By the Order lemma B] the order of G is the product of
the orbit sizes |z;G0~Y| fori=1,... k.
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Ezample 9. From Example [ it immediately follows that M has order
TM[-2MD] - 3MP)| - 4M®)| =11-10-9 -8 = 7920.

3 Formalisation Issues

We briefly discuss some of the issues of formalising the concepts and problems
above in Omega’s simply typed higher-order lambda calculus.

The primary objects of interest are permutations. While there are different
notations in mathematics to express permutations, the cycle notation is usually
preferred and used by GAP. In this notation a permutation consist of duplicate-
free disjoint cycles, i.e. lists (ni,...,nx) of points with & > 1 and n; # n; for
i # j. A cycle maps the point n; to n;yq fori = 1,...,k — 1 and ng to ny. A
permutation is then either a set containing disjoint cycles or the composition
of permutations. Both cycles and permutations are interpreted as mappings by
an application operator @ that takes a permutation and a point in its domain,
and returns the image. We identify cycles and permutations if their application
results in the same mapping.

In order to facilitate the use of concrete permutations in our problem domain,
we have implemented finite sets, cycles and lists as annotated constants, similar
to rational numbers in Omega. Annotated constants are treated as normal logical
constants in a proof, but are annotated with a concrete mathematical object,
such as a set or a number. Special tactics can then directly compute with these
objects. Thus, with annotated constants, trivial properties of concrete objects
are already implemented on the term level. Annotated constants can still be
expanded to their definitions on a more primitive term level. For instance the
declarations {a, b, ¢} and {b, a, ¢} both denote the same object, namely a constant
that has the term Az.(x = aV & = bV x = ¢) as its definition. Similarly the
permutations (1,2)(3,4) and (3,4)(2, 1) are equal terms in Omega.

The definitions of other important concepts are given in the following tabldl:

Orbit(Ga—o, Qa—sp—p,T3) = Aygs3g:Gay = gQx
Stabiliser(G oo, @aﬁgﬁg, 28) = AJarg € GAgQr =2
StabChain(Ga—o; Qa—p—p, (@ 1 1) jjsp) tabzlzser(StabCham(G @,1),Q,a)
StabChain(Gaﬁo, @aqﬁ_;ﬁ, () l’LSt)
Base(Ga_m, @aﬁ/@—)ﬁ7 ll’LSt)

abCham(G @,1) = {id}

While for the above concepts we followed precisely the definitions used in the
queries, we decided not to formalise coset representations as Schreier trees. A
Schreier tree is used in GAP to allow efficient computation with coset represen-
tatives. This efficiency does not carry over when Schreier trees are formalised in
Omega, since additional proof obligations for the data structure of trees appear
and access functions (like ‘return the elements of a path through the tree’) have
to be modeled explicitly. Therefore, we formalised a set of coset representatives
as a discrete function which maps an orbit point y € G to a permutation g € G

! The terms ::, (), and id denote the list constructor, the empty list, and the identity
permutation, respectively.
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with y = xg. This function is sufficient for the application of Schreier’s lemma
and can easily be generated from a Schreier tree computed by GAP.

In the queries of Sec. 2l GAP is asked either to check a property (such as
being element of a group), or to compute an object (such as a stabiliser) and
check the computation. Whereas the problem formalisation for the first type is
straightforward, it is not so obvious for the second type. In our formal system it
is not possible to distinguish concrete from abstract terms on the object level,
so the computation of the stabiliser expressed as dx.x = G, could be proved by
inserting the formula G, and using reflexivity of equality. One way to overcome
this problem is to use syntactic restrictions in the formalisation, e.g., Jz. (x) =
G, to force the instantiation of = in the intended way. However a syntactic
restriction can be seen as a meta-level description for something that is not
expressible in the object language and any restriction can be circumvented?.
Hence we decided to use a formalisation without syntactic restrictions but force
the proof planner to introduce concrete objects to achieve the desired results.

4 Proof Planning and Computer Algebra

Proof planning [T] considers mathematical theorems as planning problems where
an initial partial plan is composed of the assumptions and the theorem as an
open goal. A proof plan is then constructed with the help of abstract planning
steps, called methods, that are essentially partial specifications of tactics known
from tactical theorem proving. In order to ensure correctness, proof plans must
be executed to generate a sound calculus level proof. In the Omega system [4],
control rules provide the possibility of introducing mathematical knowledge on
how to proceed in the proof planning process by influencing the planner’s be-
haviour at choice points (e.g., which goal to tackle next or which method to
prefer) [12].

4.1 Hierarchical Proof Planning

Omega also allows for hierarchical proof planning. The basic idea is to generate
proofs of different granularity by postponing the planning process for certain
subgoals to a later point. In practice this is done by closing subgoals with critical
methods without working out the particular subproof. While ordinary methods
are executed solely via the tactic mechanism of the underlying theorem prover to
generate a calculus level proof, critical methods have to be expanded, which yields
new planning goals. These have to be entirely planned by the proof planner,
which might lead, in case of failure, to backtracking in the overall proof plan.

In our examples, we use hierarchical proof planning to hide proofs of the
more trivial problems listed in Sec. [2l when they occur as subproblems of more
elaborate problems. For instance, the membership problems are immediately
closed with a critical method and are only planned during expansion.

2 Insert for x in Jz. (x) = G. a term gen-of (G.) with a function gen-of that returns
the generators of a group and continue the proof with abstract properties of gen-of.
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4.2 Employing Computer Algebra in Proof Planning

We employ symbolic calculations to guide and simplify the search for proof
plans for the group theory problems. There are several computer algebra systems
(CAS) that can be connected with the Omega system but, in our examples, we
use the GAP package [6]. In this paper, we are not concerned with the technical
side of the integration since we exploit previous work, in particular [9] that
presents the integration of computer algebra into proof planning and [I3] that
exemplifies how the correctness of certain limited computations of a large-scale
CAS can be guaranteed within the proof planning framework. We concentrate
rather on the use of CASs in the context of our examples.

We use symbolic calculations in two ways: (1) To guide the proof planner and
prune the search space by computing hints with control rules. (2) To shorten
and simplify the proofs by calling GAP within the application of a method. As
a side-effect both cases can restrict possible instantiations of meta-variables.

We implemented (1) via the control rule select-instance. This rule is trig-
gered by the introduction of a meta-variable as a substitute for the actual witness
term of an existential variable. Meta-variables are usually introduced via meth-
ods or by decomposition of existentially quantified goals. After a meta-variable
is introduced the control rule computes a hint with respect to the planning
problem that is used as a restriction for this meta-variable. For instance, when
showing the existence of an orbit for a point x the control rule supplies a hint
as to what that orbit might be (this example is concretely explained in Sec. [H).
To obtain suitable hints select-instance sends corresponding queries to GAP.
If hints can be computed, the meta-variables are instantiated before the proof
planning proceeds. However, the instantiations suggested by select-instance
are treated as a hint by the proof planner; that is, they have to be verified
during the subsequent proof planning process. In case the proof attempt fails
for a particular instantiation, Omega backtracks and tries to find an appropri-
ate instantiation by crude search. To avoid unnecessary computations and calls
to GAP during a proof, select-instance keeps a record of already conducted
computations and their results. select-instance is a generic control rule that
has also been used in other contexts and with other CAS (see [I1] for example).

The use of calculations for (2) is realised by three methods: two to simplify
terms, by computing permutation applications or permutation compositions, and
one to solve equations. In the latter case, for instance, if GAP can successfully
solve an equation, the respective method is applied and the equational goal in
question is closed. These computations are then considered correct for the rest
of the proof planning process. However, once the proof plan is executed, GAP’s
computation is replaced by low level logic derivations to check its correctness.
This is done with the help of a small self-tailored CAS that provides detailed
information on its computations in order to construct the proof. The construction
is achieved by executing Omega tactics, which is again a hierarchical process. In
fact, during the execution process tactics can again contain calls to GAP, which

3 Meta-variables are place-holders for terms whose actual form is computed at a later
stage in the proof search. This is an example of middle-out reasoning (see [10]).
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have to be in turn verified by execution of the calling tactics themselves. The
overall process is extensively described in [13].

5 Planning the Subproblems

In this section, we describe how proof planning is used to formally verify correct-
ness of the queries of Sec.[2. We do not use the GAP answers and certificates to
guide the formal proof construction, but instead design the proof plan to work
independently. That is, instead of simply implementing tactics for each query to
construct the formal verifications, we developed a hierarchy of planning methods
to search for a proof plan for each single query and use the constructed certifi-
cates when appropriate to guide the search. This has the advantage that, instead
of a set of specialised tactics, we can design more general methods and leave the
assembly of the proof to the planner. This is a more modular approach and en-
ables the reuse of methods in other domains or when extending our domain to
cover more problems. Indeed, our work shows that the proof planner can cope
with successive expansions of the domain to new classes of theorems by a well
chosen conservative extension of the set of methods.

Specifically, we use the following methods in the proofs:

6 basic methods that correspond to (generalised) natural deduction rules for
quantifiers and connectives, methods for equality, and for definition expansion.
5 methods from set theory, most of them dealing with concrete sets. For
example, In-Set will justify a line of the form x € {x1,...,2,} when z is equal
to one of the elements x; and Foralli-Finite-Sort will reduce a goal of the form
Vo {z1,....,z.} P(x) (i.e. x is quantified over a finite domain) to the conjunction
P(z1) A ... A\ P(xy).

3 methods using GAP for the justification of a step, described in Sec. [£2]
Example: the method Eval-Permutation replaces the application of a permuta-
tion to a point by the result of this application computed with GAP.

5 methods from permutation group theory dealing with simple proper-
ties of permutations, generating sets, etc. Example: the goal that a permutation
ai*ay? ..., alkm is an element of (A) is reduced to the subgoals a; € A for each
i €1,...,n by the method Perm-by-Generators.

6 methods for computational objects containing the introduction of meta-
variables. For example, the application of Schreier’s lemma, where the orbit and
the coset representation are introduced as meta-variables.

6 critical methods, for recurring proof obligations, that implement the hier-
archical proof planning approach described in Sec. E.1l.

For most of the queries the constructed proof plans are similar to the proofs
sketched in Sec.[2. We now describe the actual planning process for the proof of
Example 4 in Sec. concerning the orbit of 1 under the action of the Mathieu
group M=((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9)). A subpart of the result-
ing proof is given in Fig. . As mentioned in Sec. B the problem of computing
the concrete set which is the orbit is formalised via existential quantification
given in line Thm. The first method applied introduces a meta-variable Mo for
the concrete set which is instantiated by select-instance. The hint from GAP
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Las. VY:1,..., 111 (a2@Y)e{1,...,11} (Orbit-Closed)
Lai. VY:u, ..., 11} (a2@QY)e{1,...,11} (Orbit-Closed)
Lag. VYYiq1, ..., 11 (a1 @QY)e{1,..., 11} A (Andi* Loi, La2)
VY1, 11} (a2QY)e{1,...,11}

Lig. VZ:{ay, a0}, Yi{1,..., 1 (ZQY)e{l,...,11} (Foralli-Finite-Sort Loo)
Lis. 1€{1,10,11,2,3,4,5,6,7,8,9} (In-Set)
Liz. VX:orbit({({a1,az}), @, 1 X€{1,2,3,4,5,6,7,8,9,10,11} (Fixpoint L1s, L1g)
Lz.  Orbit(({a1,a2}),@,1)C{1,2,3,4,5,6,7,8,9,10,11} (Defnexp Li7)
Lis. 11€O07bit(({a1,a2}),Q,1) (In-Orbit)
Ls. 1€Orbit(({a1,a2}),@,1) (In-Orbit)
Ls. 1€0rbit({({a1,a2}),Q,1)A...A11€0rbit({{a1,a2}),@,1)  (Andi* Lg,..., Lis)
Li. VXi{1,2,3,4,56,7,8,9,10 11} X €0rbit(({a1,a2}),@,1) (Foralli-Finite-Sort Ls)
L. {1,2,3,4,5,6,7,8,9,10,11}COrbit({{a1,as2}), @,1) (Defnexp L)
Li. Mo = Orbit({{a1,a2}),@,1) (Subset-Equal La, L3)
Thm. 30.0 = Orbit(({a1,a2}),@,1) (Existsi L1)

a1 = {(1,10),(2,8),(11,3),(5,7)}, a2 = {(1,4,7,6),(10,9,2,11)}

Binding for meta-variable: Mo « {1,...,11

Fig. 1. Orbit Proof

Loas. 11 =11 (Reflex)

Las. 11 =(MpQ1l) (Eval-Permutation Lag)
Log. MpE({al,a2}> (In-Group)

Las. 3P:({a1,as}m1l = (PQ1) (Existsi-In-Sort Loa, Los)
Lig. 11€0rbit({({a1,a2}),Q,1) (Defnexp Lo3)

Binding for meta-variable: Mp + {(1,11,3,2,8,9,10,6,7,5,4)}

Fig. 2. Expansions of In-Orbit

is the set {1,2,3,4,5,6,7,8,9,10,11} which is then shown to be equal to the
orbit by double inclusion. The first direction, given in Lo, is to show that all the
points of the computed set are included in the orbit. The reverse inclusion (L)
is closed by a fixed-point argument. It suffices to show that 1 is in the set, and
the set is invariant for the generators of G.

Lines Lg, ..., L1g and Loy, Lo are justified by critical methods. The expan-
sion of the critical method In-Orbit in line Lig is displayed in Fig. 2l The witness
permutation, which maps 1 to 11 is again introduced as meta-variable Mp and
instantiated with (1,11,3,2,8,9,10,6,7,5,4) by a call of GAP. Line Ly4 contains
the critical method In-Group, which justifies proof lines that correspond to the
membership query of Sec. ZZT] The expansion of this method is given in Fig. B]
where the permutation is rewritten as the product as3a; of the generators a; and
az. The method Equal-With-Gap calls GAP to justify equality of permutations.
The proof for our example has 22 lines on the most abstract level, the expansion
of all critical methods leads to a proof with 166 lines.

Further expansion results in a proof of over 10000 lines. This expansion of
methods is achieved by tactic applications which eventually give a calculus level
proof. For example, the equality in line Lo7 is established by checking that two
permutations have the same functional behaviour. Since permutations act on
a infinite set of letters, i.e. the natural numbers, checking equality formally
is not straightforward. The important idea is that a permutation 7 only acts
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L3g. a1 E{a17a2} (In-Set)

Log. ax€{ai,az} (In-Set)

Log. (a23 * a1)6<{a }) (Product-Of-Generators L2g, L3o)

Lor. {(1,11,3,2,8,9, 0 6,7,5,4)} = (a2 xa1)  (Equal-With-GAP)

Loa. {(1,11,3,2,8,9,10,6,7,5,4)}e({a1,a2}) (Re-Represent-With-Generators La7, Lag)

Fig. 3. Expansions of In-Group

nontrivially on a finite support set supp(r), i.e. on all the letters actually oc-
curring in its cycles, and fixes the rest of N. This fact is introduced as a the-
orem. In our example, in order to verify that Vz:n(1,7)(2,10)(4,6)(9,11)x =
((1,4,7,6)(2,11, 10, 9))2 x it suffices to show the equality for allz € {1,2,...,11}.

The formal certificates produced by proof planning are aligned with the ar-
gumentation given in the informal certificates, except for the queries for the
stabiliser, nonmembership and order. In the case of the stabiliser, we do not use
the Schreier trees as coset representation (see Sec. B) and we use a formulation
of Schreier’s lemma for stabilisers, not arbitrary subgroups.

For the nonmembership proof we avoid the explicit introduction and veri-
fication of a concrete base—instead we added the following two methods. The
first method reduces the goal g € G to the new goal that bg is not in the orbit
bG for some point b, if the planner succeeds we have a proof. In the other case,
we try to find a permutation that is not an element of the stabiliser of G for
a point b, but fixes b. This is done by the second method which introduces the
new subgoals Mp € G, bMp = bg and ng,;1 is not in the stabiliser G}, for some
point b where Mp is a meta-variable for a permutation. The stabiliser is also
introduced as meta-variable Mg which has to be instantiated by a generating
set, so the initial nonmembership goal is reduced to a new nonmembership goal
gMp 1€ Mg and the two methods can be applied again. For b the first element
of the stabiliser base is chosen by a call to GAP within the methods. Since the
correctness of the two methods is independent of the choice of b, we avoid addi-
tional proof obligations for the stabiliser base. In fact elements of the base only
have to be introduced until the first method can be applied successfully.

For the order problem (see Sec. [ZJ)), we refrained from implementing the
order lemma as a single, highly specialised, step. The necessary concrete sets of
orbits ; G~ and stabilisers G~ all depend on each other, which cannot be
modelled with independent meta-variables. Instead, we opted for a more modular
interplay of methods and computed hints by adding a method that applies the
lemma |G| = |bG||Gy| for the orbit bG and stabiliser G} of a point b. The
necessary order for the meta-variable instantiations is established by successive
application of this method. The method uses the first base element of G for
b and introduces two meta-variables for the stabiliser and the orbit, that have
to be instantiated by concrete sets via the hint system. The method is applied
successively until the stabiliser has order 1.

6 Evaluation

In order to test the robustness of our approach, we proved 1600 problems with
Omega. We chose randomly a permutation and a generating set consisting of 2 or
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4 permutations from the symmetric groups of 5 and 8 points. Then either proof
obligation of the membership or nonmembership of this permutation was given
to the proof planner. Whereas the proof of membership is relatively simple, the
nonmembership contains the orbit and stabiliser queries as subgoals.

Nonmembership Average
Generating set Membership Unexpanded Expanded Order
Length l Time | Length l Time | Length l Time
2 Perm. of Sym; 49, 44 68.8 127.6 198.9 | 323.6 58.8
4 Perm. of Sym; 6.11 104 88.91 279.1 360.5 1 561.8 112.6
2 Perm. of Symg 5.0 197.0 160.1 ' 282.9 754.6 11347.8 | 25217.2
4 Perm. of Symj 6.9' 2032 | 233.7! 369.1| 1313.0'2274.5 |37389.8

The table contains the average proof length of the constructed proofs and
average runtime given in seconds. In the case of nonmembership we have two
columns: one for unexpanded proofs, in which critical methods are contained
as justification, and for expanded proofs, in which all critical methods were
expanded to subproofs containing only non-critical methods. The last column
shows the average order of the generated groups. The length of the membership
proof depends on the number of different elements of the generating set that
appear in the word for the permutation being tested. The length of nonmem-
bership proofs depends on the applicability of the two additional methods for
nonmembership queries described in Sec. [l In the best case, only one of them
needs to be applied to finish the proof successfully. The shortest proof for “2
Permutations of Symg” contains 18 lines.

The average runtimes include the socket communication between the GAP
and Omega, and are therefore not quite accurate because they depend on the
CPU load and the network traffic. We tried to compensate these effects by the
large number of problems and multiple runs at different times. For the non-
membership proofs there is a correspondence between proof length and runtime.
For membership proofs there is an increase in the runtime between permutations
from Sym; and Symg, whereas the proof length is nearly constant. This is due to
the fact that the witness terms are larger for Symg and have to be communicated
and parsed by GAP and Omega.

For comparison we repeated the test for some well-known groups. The groups
were formalised by generating sets containing two permutations and we chose
randomly 10 permutations that are members of the group, and 10 permutations
which are not. The results are summerised in the following table:

Group generated by Nonmembership
two permutations Membership Unexpanded Expanded Order
Length i Time | Length i Time | Length i Time
Alternating group As 49, 4.6 1254, 268.9 432.1, 657.3 60
Alternating group As 501 39.5 238.91 413.2| 1181.0 12083.2 {20160

Mathieu group M 50' 60.4| 251.6' 477.2| 1641.4'2535.1| 7920
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7 Conclusion

There are various accounts of experiments combining computer algebra and the-
orem proving in the literature (see [§] for just a few). They generally deal with
the technical and architectural aspects of integration, as well as with correctness
issues. In particular, the skeptical approach we follow (i.e., CAS computations
are only trusted if they can be fully justified with calculus level proofs in a
proof checker) was introduced in [7] in the context of interactive tactical the-
orem proving. This skeptical approach has been automated in the context of
proof planning [9] and extended to embed certain complex symbolic computa-
tions from arbitrary CASs into proof planning [13]. The work presented in this
paper draws on experience of previous case studies, in particular [2] and [11].

In order to simply check the correctness of the GAP computations, it would
suffice to provide a set of tactics that construct the corresponding formal proof
for each computation as demonstrated in [9)2], for instance. However, the in-
tention of our proof planning approach is to have an extensible and robust ma-
chinery that can react flexibly to failure by avoiding a tight coupling between
computer algebra algorithms and tactics and that can be reused for other more
complex problems. For example, this work can now serve as the basis for an
approach to computational problems in graph theory, like showing two graphs
are not isomorphic. Moreover, one goal of our work was to demonstrate that
the information that is necessary to convince a human mathematician of the
plausibility of a result is not only sufficient to certify the correctness formally
but also to plan a corresponding proof problem independent of the actual com-
putation. Our experiments show that this is possible and that the technique can
be successfully applied to problems involving large and complex structures, as
we can check mathematical data of a magnitude that is likely beyond the range
of traditional theorem proving systems.

In our experiments Omega could construct proof plans for all examined prob-
lems. This is not surprising, since the design of the methods was aimed at cover-
ing all possible cases. But since there is no formal way of showing completeness
at the method level this property can only be verified experimentally. Thus the
proof planner should only fail if GAP provides an incorrect result. Even then
the planner could theoretically find the correct instantiations by crude search,
although this is not feasible in practice.
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