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Abstract. The early days of finite model theory saw a variety of results
establishing that the model theory of the class of finite structures is not
well-behaved. Recent work has shown that considering subclasses of the
class of finite structures allows us to recover some good model-theoretic
behaviour. This appears to be especially true of some classes that are
known to be algorithmically well-behaved. We review some results in
this area and explore the connection between logic and algorithms.

1 Introduction

Finite model theory is the study of the expressive power of various logics—such
as first-order logic, second-order logic, various intermediate logics and extensions
and restrictions of these—on the class of finite structures. Just as model theory
is the branch of classical mathematical logic that deals with questions of the
expressive power of languages, so one can see finite model theory as the same
study but carried out on finite interpretations. However, finite model theory is
not simply that as it has evolved its own specific methods and techniques, its
own significant questions and a core of results specific to the subject that all
make it quite distinct from model theory. These methods, questions and results
began to coalesce into a coherent research community in the 1980s, when the
term finite model theory came into common use. The core of the subject is now
well established and can be found in books such as [T7I3323]. Much of the mo-
tivation for the development of finite model theory came from questions in com-
puter science and in particular questions from complexity theory and database
theory. It turns out that many important questions arising in these fields can
be naturally phrased as questions about the expressive power of suitable logics
(see [1I29]). Moreover, the requirement that the structures considered are avail-
able to algorithmic processing leads to the study of such logics on specifically
finite structures. Such considerations have provided a steady stream of problems
for study in finite model theory.

In his tutorial on finite model theory delivered at LICS in 1993, Phokion
Kolaitis [3T] classified the research directions in finite model theory into three
categories that he called negative, conservative and positive. In the first category
are those results showing that theorems and methods of classical model theory
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fail when only finite structures are considered. These include the compactness
theorem, the completeness theorem and various interpolation and preservation
theorems. In the second category are results showing that certain classical theo-
rems and methods do survive when we restrict ourselves to finite structures. One
worth mentioning is the result of Gaifman [22] showing that any first-order sen-
tence is equivalent to a Boolean combination of local sentences. This has proved
to be an extremely useful tool in the study of finite model theory. A more recent
example in the vein of conservative finite model theory is Rossman’s result [3§]
that the homomorphism preservation theorem holds in the finite (a topic we will
return to later). Finally, the third category identified by Kolaitis is of results
exploring concepts that are meaningful only in the context of finite structures.
Among these are work in descriptive complexity theory as well as 0-1 laws.

Much early work in finite model theory focussed on the negative results, as
researchers attempted to show how the model theory of finite structures differed
from that of infinite structures. The failure of compactness and its various con-
sequences led to the conclusion that the class of finite structures is not model-
theoretically well behaved. Indeed, Jon Barwise once stated that the class of
finite structures is not a natural class, in the sense that it is difficult to define
(in a formal logic) and does not contain limit points of sequences of its structures.
However, recent work in finite model theory has begun to investigate whether
there are subclasses of the class of finite structures that may be better behaved.
We call such classes tame. It is impossible to recover compactness in any rea-
sonable sense in that any class that contains arbitrarily large finite structures
but excludes all infinite ones will not have reasonable compactness properties.
Thus, interesting subclasses of the class of finite structures will not be natural
in the sense of Barwise, but as we shall see, they may still show interesting
model-theoretic behaviour. The subclasses we are interested in are motivated
by the applications in computer science. It is often the case in a computational
application where we are interested in the expressive power of a logic that the
structures on which we interpret the logic are not only finite but satisfy other
structural restrictions. Our aim is to understand how such restrictions may affect
the model-theoretic tools available.

Preservation Theorems. Consider classical preservation theorems, which relate
syntactic restrictions on first-order formulas with semantic counterparts. A key
example is the extension preservation theorem of Lo$ and Tarski which asserts
that a first-order formula is preserved under extensions on all structures if, and
only if, it is logically equivalent to an existential formula (see [27]). One direc-
tion of this result is easy, namely that any formula that is purely existential is
preserved under extensions, and this holds on any class of structures. The other
direction, going from the semantic restriction to the syntactic restriction makes
key use of the compactness of first-order logic and hence of infinite structures.
Indeed, this direction is known to fail in the case of finite structures as it was
shown by Tait [41] that there is a first-order sentence whose finite models are
closed under extensions but that is not equivalent on finite structures to an
existential sentence. Thus, we can consider the extension preservation question
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relativised to a class of structures C as: if a first-order sentence ¢ is preserved
under extensions on C, is it equivalent on C to an existential sentence? If we
replace C by a class C’ that is contained in C, we are weakening both the hypoth-
esis and the consequent of the question. Thus, one cannot deduce the truth or
otherwise of the preservation theorem on C’ from that on C. The question arises
anew for every class C. The extension preservation theorem for various classes
of finite structures C is explored in [3].

A related preservation result of classical model theory is the homomorphism
preservation theorem which states that a first-order formula is preserved under
homomorphisms on all structures if, and only if, it is logically equivalent to an
existential positive formula. For many years it was an open question whether this
preservation theorem was true in restriction to the class of finite structures. The
question was finally settled by Rossman [38] who showed that it is indeed true
in this case. This provides a rare example of a preservation theorem that sits in
the conservative rather than the negative category in Kolaitis’ classification of
results. Once again, for every class C of finite structures, the question of whether
the homomorphism preservation theorem holds on C is a new question. The
preservation property is established for a large variety of classes in [4].

Descriptive Complexity. In the positive research direction, the most prominent
results are those of descriptive complexity theory. The paradigmatic result in
this vein is the theorem of Fagin [I9] which states that a class of finite struc-
tures is definable in existential second-order logic if, and only if, it is decidable
in NP. Similar, descriptive, characterisations were subsequently obtained for a
large number of complexity classes (see [29]). In particular, Immerman [28] and
Vardi [42] showed that LFP—the extension of first-order logic with a least fixed
point operator—expresses exactly those classes of finite ordered structures that
are decidable in P (a similar result is shown by Livchak [35]). Whether or not
there is a logic that expresses exactly the polynomial time properties of finite
structures, without the assumption of order, remains the most important open
question in descriptive complexity. It was shown by Cai, Fiirer and Immerman [J]
that LFP + C, the extension of LFP with a counting mechanism, does not suffice.
However, it turns out that on certain restricted classes of structures, LFP + C is
sufficient to express all properties in P. We will see examples of this below.

2 Tame Classes of Structures

We consider classes of finite structures defined in terms of restrictions on their
underlying adjacency (or Gaifman) graphs. The adjacency graph of a structure
A is the graph GA whose vertices are the elements of A and where there is an
edge between vertices a and b if, and only if, @ and b appear together in some
tuple of some relation in A. The restrictions we consider on these graphs are
obtained from graph structure theory and algorithmic graph theory. They are
restrictions which have, in general, yielded interesting classes from the point of
view of algorithms. Our aim is to explore to what extent the classes are also
well-behaved in terms of their model-theoretic properties. From now on, when
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we say that a class of structures C satisfies some restriction, we mean that the
collection of graphs GA for A € C satisfy the restriction.

The restrictions we consider and their interrelationships are depicted in
Figure [

acyclic graphs

[bounded treewidth} P grap
bounded genus |
|

[excmdewcm treewidth |
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bounded degree

Fig. 1. Relationships between tame classes

Among the restrictions given in Figure[I], that of acyclicity and planarity are
of a different character to the others in that they apply to single graphs. We can
say of graph G that it is acyclic or planar. When we apply this restriction to a
class C, we mean that all structures in the class satisfy it. The other conditions
in the figure only make sense in relation to classes of graphs. Thus, it makes little
sense to say of a single finite graph that it is of bounded degree (it is necessarily
$0). When we say of a class C that it is of bounded degree, we mean that there
is a uniform bound on the degree of all structures in C.

The arrows in Figure [[l should be read as implications. Thus, any graph that
is acyclic is necessarily planar. Similarly, any class of acyclic graphs has bounded
treewidth. The arrows given in the figure are complete in the sense that when
two restrictions are not connected by an arrow (or sequence of arrows) then the
first does not imply the second and separating examples are known in all such
cases.

The restrictions of acyclicity, planarity and bounded degree are self-
explanatory. We say that a class of graphs C has bounded genus if there is
a fixed orientable surface S such that all graphs in C can be embedded in S
(see [37]). In particular, as planar graphs are embeddable in a sphere, any class
of planar graphs has bounded genus. The treewidth of a graph is a measure of
how tree-like it is (see [I6]). In particular, trees have treewidth 1, and so any
class of acyclic graphs has treewidth bounded by 1. The measure plays a cru-
cial role in the graph structure theory developed by Robertson and Seymour in
their proof of the graph minor theorem. We say that a graph G is a minor of
H (written G < H) if G can be obtained from a subgraph of H by a series of
edge contractions (see [I6] for details). We say that a class of graphs C excludes
a minor if there is some G such that for all H € C we have G 4 H. In particular,
this includes all classes C which are closed under taking minors and which do not
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include all graphs. If G is embeddable in a surface S then so are all its minors.
Since, for any fixed integer k, there are graphs that are not of genus k, it follows
that any class of bounded genus excludes some minor.

The notion of bounded local treewidth was introduced as a common generali-
sation of classes of bounded treewidth and bounded genus. A variant, called the
diameter width property was introduced in [I§] while bounded local treewidth
is from [2I]. Recall that the r-neighbourhood of an element @ in a structure
A, denoted Nj(a), is the substructure of A induced by the set of elements at
distance at most r from a in the graph GA. We say that a class of structures
C has bounded local treewidth if there is a nondecreasing function f : N — N
such that for any structure A € C, any a in A and any r, the treewidth of N} (a)
is at most f(r). It is clear that any class of graphs of bounded treewidth has
bounded local treewidth (indeed, bounded by a constant function f). Similarly,
any class of graphs of degree bounded by d has local treewidth bounded by the
function d”, since the number of elements in N} (a) is at most d”. The fact that
classes of bounded genus also have bounded local treewidth follows from a result
of Eppstein [18].

We say that a class of structures C locally excludes minors if there is a nonde-
creasing function f : N — N such that for any structure A € C, any a in A and
any r, the clique Ky(, is not a minor of the graph GNj (a). This notion is intro-
duced in [IT] as a natural common generalisation of bounded local treewidth and
classes with excluded minors. Classes of graphs with bounded expansion were
introduced by Negetfil and Ossona de Mendez [40] as a common generalisation
of classes of bounded degree and proper minor-closed classes. A class of graphs
C has bounded expansion if there is a function f : N — N such that for any
graph G € C, any subgraph H of G and any minor H' of H obtained from H
by contracting neighbourhoods of radius at most r, the average degree in H’
is bounded by f(r). In particular, classes that exclude a minor have bounded
expansion witnessed by a constant function f.

3 Logic and Algorithms on Tame Classes

The interest in tame classes of structures from the point of view of algorithms
is that it is often the case that problems that are intractable in general become
tractable when a suitable restriction on the structures is imposed. For instance,
for any class of graphs of bounded treewidth, there are linear time algorithms
for deciding Hamiltonicity and 3-colourability and on planar graphs there is a
polynomial time algorithm for the MAX-CUT problem. On the other hand, many
problems remain hard as, for instance, 3-colourability is NP-complete even on
planar graphs.

What is of interest to us here is that in many cases the good algorithmic
behaviour of a class of structures can be explained or is linked to the expressive
power of logics. This is especially the case with so-called meta-theorems that link
definability in logic with tractability. Examples of such meta-theorems are Cour-
celle’s theorem [I0] which shows that any property definable in monadic second-
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order logic is decidable in linear time on classes of bounded tree-width and the
result of Dawar et al. [I3] that first-order definable optimization problems admit
polynomial-time approximation schemes on classes of structures that exclude a
minor. Also among results that tie together logical expressiveness and algorith-
mic complexity on restricted classes, one can mention the theorem of Grohe and
Maritio [26] to the effect that LFP + C captures exactly the polynomial-time de-
cidable properties of classes of structures of bounded treewidth. In this section,
we take a brief tour of some highlights of such results.

Acyclic Structures. To say that the adjacency graph GA of a structure A is
acyclic is to say that all relations in A are essentially unary or binary and the
union of the symmetric closures of the binary relations is a forest. One interest-
ing recent result on such classes of structures is that of Benedikt and Segoufin [6]
that any first-order sentence that is order-invariant on trees is equivalent to one
without order. This contrasts with a construction of Gurevich (see [I Exer-
cise 17.27]) that shows that there is a first-order sentence that is order-invariant
on the class of finite structures but is not equivalent to any first-order sentence
without order. The theorem of Benedikt and Segoufin can be seen as a spe-
cial case of interpolation. The general version of Craig’s interpolation theorem
(see [27]) is known to fail on the class of finite structures and even on the class
of finite acyclic structures.

Another important respect in which acyclic structures are well-behaved is
that while the validities of first-order logic on finite structures are not recur-
sively enumerable, the validities on acyclic structures are decidable. Indeed, it
is well-known that even monadic second-order logic (MSO) is decidable on trees
(see [1] for a treatment). Moreover, by Courcelle’s theorem mentioned above, we
know that the problem of deciding, given a formula ¢ of MSO and an acyclic
structure A, whether or not A = ¢ is decidable by an algorithm running in time
O(f(Je])|A]) for some computable function f. We express this by saying that the
satisfiability problem for the logic (also often called the model-checking problem)
is fized-parameter tractable. It has also been known, since results of Immerman
and Lander and Lindell that LFP 4 C captures polynomial time on trees [30/34].

Finally, it has been proved that the homomorphism and extension preservation
theorems hold on the class of acyclic structures (see [4] and [3] respectively).
Indeed these preservation properties hold of any class of finite acyclic structures
which is closed under substructures and disjoint unions, but may fail for other
subclasses.

Bounded Treewidth. Let 7, denote the class of all structures of treewidth at
most k. It is known that many of the properties of acyclic structures that make
it a well-behaved class also extend to 7 for values of k larger than 1. However,
it is not known if the order-invariance result of Benedikt and Segoufin is one of
these properties. This remains an open question. Monadic second-order logic is
as tame on 7 as it is on 77 since it is known that the satisfiability problem is
decidable [9] and the satisfaction problem is fixed-parameter tractable [10].

It has been shown that 7; has the homomorphism preservation property [4]
as well as the extension preservation property [3]. The former holds, in fact, for
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all subclasses of 7 that are closed under substructures and disjoint unions, but
this is not true of extension preservation. Indeed, it is shown in [3] that extension
preservation fails for the class of all planar graphs of treewidth at most 4, which
is a subclass of 74.

We have mentioned above that Grohe and Marifio [26] proved that LFP + C
captures polynomial time computation on 7;, for any k. Recently, this has been
shown to be optimal, in the following sense. For any nondecreasing function
f N = N, let 7y denote the class of structures where any structure A of at
most n elements has treewidth at most f(n). Then, we can show [I5] that as long
as [ is not bounded by a constant, there are polynomial time properties in 7
that are not expressible in LFP + C. Note, this does not preclude the possibility
that LFP + C capture P on subclasses of 7; of unbounded treewidth. Indeed, just
such a possibility is realised by the result of Grohe that LFP + C captures P on
planar graphs [24] and more generally on graphs of bounded genus [25].

Bounded Degree Structures. Bounding the maximum degree of a structure is a
restriction quite orthogonal to bounding its treewidth and yields quite different
behaviour. While graphs of maximum degree bounded by 2 are very simple,
consisting of disjoint unions of paths and cycles, structures of maximum degree
3 already form a rather rich class. That is, if Dy is the class of structures with
maximum degree k, then the MSO theory of D3 is undecidable as is its first-order
theory. Indeed, the first-order theory of planar graphs of degree at most 3 is also
undecidable [T2]. Furthermore, the satisfaction problem for MSO is intractable as
one can construct sentences of MSO which express NP-hard problems on planar
grids. However, it is the case that the satisfaction problem for first-order logic
is fixed-parameter tractable on Dy, for all k. This was shown by Seese [39].

The question of devising a logic in which one can express all and only the
polynomial-time properties of bounded degree structures is an interesting one.
The graph isomorphism problem is known to be solvable in polynomial time on
graphs of bounded degree [36], and indeed, there is a polynomial-time algorithm
for canonical labelling of such graphs [5]. It follows from general considerations
about canonical labelling functions ( see [I7, Chapter 11]) that there is some
logic that captures exactly P on Dy, for each k. However, we also know, by the
construction of Cai, Fiirer and Immerman [§] that LFP+C is too weak a logic for
this purpose. It remains an open question to find a “natural” logic that captures
P on bounded degree classes.

On the question of preservation properties, both the homomorphism and ex-
tension preservation theorems have been shown to hold, not only on Dy, but also
on subclasses closed under substructures and disjoint unions [413].

Excluded Minor Classes. Classes with excluded minors are too general a case for
good algorithmic behaviour of MSO. This logic is already undecidable, and its
satisfaction problem intractable, on planar graphs. Indeed, first-order logic is also
undecidable on planar graphs. However, it has been shown that the satisfaction
problem for first-order logic is fixed-parameter tractable on any class of struc-
tures that excludes a minor [20]. While the extension preservation theorem fails
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in general on such classes, and was even shown to fail on planar graphs [3], the ho-
momorphism preservation property holds of all classes which exclude a minor and
are closed under taking substructures and disjoint unions []. It remains an open
question whether one can construct a logic that captures P on excluded minor
classes. Grohe conjectured [25] that LFP+C is actually sufficient for this purpose.
Indeed, he proved that LFP + C captures P on all classes of bounded genus.

Further Extensions. Frick and Grohe showed that the satisfaction problem for
first-order logic is fixed-parameter tractable, even on classes of structures of
bounded treewidth [21]. This result was recently extended to classes of graphs
that locally exclude a minor [I1] by an algorithmic analysis of the graph structure
theorem of Robertson and Seymour. It is an open question whether or not it can
also be extended to classes of graphs of bounded expansion. The model-theoretic
and algorithmic properties of classes of graphs of bounded expansion and that
locally exclude minors are yet to be studied in detail and a number of open
questions remain.

4 Preservation Theorems

Among the results in the last section, we looked at classes of structures where
the homomorphism and the extension preservation theorems are known to hold.
Indeed, the homomorphism preservation theorem survives all the restrictions we
considered, while the extension preservation is available in some. We now take
a brief look at the methods used to establish the homomorphism and extension
preservation theorems in the tame classes where they have been shown.

The key idea in these proofs is to establish an upper bound on the size of
minimal models of a first-order sentence that has the relevant preservation prop-
erty. For instance, suppose ¢ is a sentence that is preserved under extensions
on a class of structures C. Then, we say that a structure A is a minimal model
of ¢ in C if A = ¢ and no proper induced substructure of A is a model of ¢.
It is then immediate that the models of ¢ in C are exactly the extensions of
minimal models. It is not difficult to show that ¢ is equivalent to an existential
sentence on C if, and only if, it has finitely many minimal models. The same
holds true for sentences preserved under homomorphisms if we take minimal
models, not with respect to induced substructures, but allowing substructures
that are not induced (see [] for details). The preservation properties for tame
classes mentioned above are then proved by showing that from every sentence
i we can extract a bound N such that all minimal models of ¢ have at most
N elements. This bound is obtained by considering structural properties that a
minimal model must satisfy.

It can be shown that if ¢ is preserved under homomorphisms on a class C
(closed under disjoint unions and substructures) then there are positive integers
d and m such that no minimal model of ¢ in C contains a set of m elements
that are pairwise distance d or greater from each other. This result is essentially
obtained from a construction of Ajtai and Gurevich [2] and is a consequence of
Gaifman’s locality theorem for first-order logic. A more involved construction,
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again based on Gaifman’s theorem establishes this density property also for for-
mulas preserved under extensions. An immediate consequence is the preservation
theorem for certain classes we call wide. A class of structures C is wide if for all
d and m, there is an N such that every structure in C with at least N elements
contains a set of m elements that are pairwise distance at least d from each
other. For instance, any class of bounded degree is easily seen to be wide.

The construction of Ajtai and Gurevich shows further that for any sentence
o preserved under homomorphisms on C, and for every positive integer s, there
are d and m such that no minimal model of ¢ in C contains a set of m elements
that are pairwise distance d or greater from each other, even after s elements
are removed from it. This leads to a definition of classes that are almost wide:
C is almost wide if there is an s such that for all d and m there is an N such
that in every structure A in C with at least N elements, one needs to remove at
most s elements to obtain a set of m elements that are pairwise distance at least
d from each other. A combinatorial construction is needed to prove that classes
of graphs that exclude a minor are almost wide (see [4] and also [32]). Almost
wideness is not sufficient in itself to establish the extension preservation property
(as is witnessed by the class of planar graphs). However, we can strengthen
the requirement of closure under disjoint unions to closure under unions over
“bottlenecks” (see [3]) and obtain a sufficient condition. This leads, in particular,
to the proof that the extension preservation theorem holds for the classes 7.

It is not clear if classes of structures of bounded expansion or with locally
excluded minors are almost wide. However, they can be shown to satisfy a weaker
condition. Say a class of structures C is quasi-wide if for all d there is an s such
that for all m, there is an N such that if A € C has N or more elements, then
there is a set B of at most s elements in A such that A\ B contains a set of m
elements that are pairwise at least distance d from each other. It can be shown
that classes of structures of bounded expansion and that locally exclude minors
are quasi-wide. Furthermore, it seems that a strengthening of the Ajtai-Gurevich
lemma can establish the homomorphism preservation theorem for quasi-wide
classes that are closed under disjoint unions and minors [T4].

5 Conclusion

The class of all finite structures is not a model-theoretically well-behaved class.
Recent work has investigated to what extent considering further restricted classes
may enable us to discover interesting model-theoretic properties. The restrictions
that have been found that yield tame classes are also those that yield good al-
gorithmic behaviour. The interaction between logical and algorithmic properties
of these classes remains an active area of investigation. Besides preservation the-
orems, many model-theoretic properties of these classes remain to be explored.
In the absence of the Compactness Theorem, which is the bedrock of the model
theory of infinite structures, the methods used on tame classes of finite struc-
tures are varied and often combinatorial in nature. However, methods based on
locality appear to play a central role.
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