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Preface

The purpose of this book is to introduce the reader to some of the main abstract tools
of nonlinear functional analysis and their applications to semilinear elliptic Dirichlet
boundary value problems.

In the first chapter we outline some general results on Fréchet differentiability,
Nemitski operators, weak and strong solutions of the linear Laplace equation, lin-
ear compact operators and their eigenvalues and Sobolev spaces. This last topic is
discussed in greater generality in Appendix A.

Chapter 2 deals with the Banach contraction principle and with a fixed point the-
orem for increasing operators. In Chap. 3 we study the local inversion theorem, the
Hadamard–Caccioppoli global inversion theorem and the case in which the map to
be inverted has fold singularities. Chapter 4 is concerned with the Leray–Schauder
topological degree. Variational methods are discussed in Chap. 5. Minima, the moun-
tain pass theorem and the linking theorem are stated and proved. Chapter 6 deals
with local and global bifurcation theory.

The abstract results collected in first part of the book are applied in the second part
to prove existence and multiplicity results for semilinear elliptic Dirichlet boundary
value problems on bounded domains in R

N . We emphasize that the choice of the
appropriate abstract tool depends on the behavior of the nonlinearity f as well as on
the kind of results one expects.

First, in Chap. 7, we outline how a semilinear elliptic boundary value problem
can be transformed into an operator equation in an appropriate Banach or Hilbert
function space. In Chap. 8 we consider the case in which, roughly, f is sublinear at
infinity and one can prove a priori estimates for possible solutions. In this case one can
use degree theory or variational methods or the global inversion theorem. Chapter
9 deals with asymptotically linear problems, for which one can also use several
different approaches such as global bifurcation or variational methods. In Chap.
10 we study problems with asymmetric nonlinearities, when the behaviors at +∞
and −∞ are different. If one aims to find the precise number of multiple solutions,
the most appropriate approach turns out to be the global inversion theorem in the
presence of fold singularities. But one can also use sub- and super-solutions jointly
with degree theoretical arguments. Nonlinearities that are superlinear at infinity are
considered in Chap. 11 by means of the mountain pass or linking theorems.

v



vi Preface

In all of the preceding chapters we do not consider more general sophisticated
versions of problems, but prefer to study model cases containing the main features
of the arguments without unnecessary technical details.

The last two chapters of the book are concerned with slightly more advanced
topics of current research. In Chap. 12 a class of quasilinear elliptic problems is
discussed using critical point theory. Here the corresponding Euler functional is not
C1, and hence a new form of the mountain pass theorem has to be proved. Chapter
13 deals with nonlinear Schrödinger equations on RN . We prove the existence of
ground and bound states as well as semiclassical states.

The book is addressed to senior undergraduate and graduate students of math-
ematics as well as to students of applied sciences, who wish to utilize a modern
approach to the fascinating topic of nonlinear elliptic partial differential equations.
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Notation

• For every s ∈ R we consider the positive and negative parts given by s+ =
max{s, 0} and s− = min{s, 0}. C,C1,C2, . . . denote possibly different positive
constants.

• If � is a measurable set in R
N , we denote by |�| the Lebesgue measure of � and

by
∫

u the integral of a function u in �. Hence, unless it is explicitly stated, the
integrals are always understood to be on �.

• ω ⊂⊂ � denotes that ω is compactly embedded in �, that is, the closure ω of ω
is a compact subset of �.

• If� is an open set in R
N andα is a multi-index, namelyα = (α1,α2, . . . ,αN ), with

αi a non-negative integer, we denote by Dαu the partial derivative ∂ |α|u
∂x

α1
1 ∂x

α2
2 ...∂x

αN
N

,

where |α| = ∑N
i=1 αi is the order of α. The set of all infinitely-differentiable

functions of compact support in � is represented by C∞0 (�).
• For a non-negative integer k and 0 < α ≤ 1, we denote by Ck,α(�) the space of

the functions whose derivatives up to order k are α-Hölder continuous in �. In
particular, we write Ck(�) if α = 0. Moreover, C1

0 (�) is the space of all functions
of class C1 in an open neighborhood of � such that they vanish at the boundary
∂� of �.

• For 1 ≤ p ≤ +∞, ‖u‖p is the usual norm of a function u ∈ Lp(�).
• We have equipped the standard Sobolev space H 1

0 (�) with the norm ‖u‖ =
(∫
|∇u|2

)1/2

.

• We also denote by

2∗ =
⎧
⎨

⎩

2N
N−2 , if N ≥ 3

+∞, if N ≤ 2

the critical Sobolev exponent and by S = sup{‖u‖2∗ : ‖u‖ = 1} the Sobolev
embedding constant.

• 2 = 2N/(N + 2) is the Hölder conjugate exponent of 2∗.
• The truncature functions Tk and Gk are given by

Tk(s) = max{min{s, k},−k} and Gk(s) = s − Tk(s),

for every s ∈ R.

xi



xii Notation

• We denote a Banach (resp. Hilbert) space with the letter X (resp. E). The identity
operator is denoted by I . The functionals, i.e., (nonlinear) operators from a Banach
spaceX to R, are denoted by letters J , H, I, . . . In general, the operators between
different Banach spaces X and Y are denoted by letters F ,G, . . . , while letters
T , S, . . . are used for operators from a Banach space into itself.

• The weak convergence of a sequence wn in a Banach space to w will be denoted
wn ⇀ w.

• If F : X −→ Y is an operator between Banach spaces, we denote KerF = {u ∈
X : F (u) = 0} and RangeF = {F (x) : x ∈ X}.

• 0 < λ1 < λ2 ≤ λ3, . . . denote the eigenvalues of −�u = λu, u ∈ E and ϕi

satisfies −�ϕi = λiϕi with ‖ϕi‖ = 1 and (ϕi | ϕj ) = 0 for i �= j . We take
ϕ1 > 0.



Chapter 1
Preliminaries

In this chapter we collect some preliminary results that we will use throughout
the rest of the book, such as Fréchet derivatives, superposition operators and weak
and classical solutions of linear elliptic equations and their eigenvalues. Sobolev
function spaces are also outlined, although a more complete treatment is postponed
until Appendix A.

1.1 Sobolev Spaces

In the classical study of boundary value problems associated to a differential equation
it is usual to add to the “local” space (in �) in which we are searching its solution,
for instance, Ck(�), some “global” condition. For instance, it may be required that
u ∈ C(�) or, in some cases, u ∈ Ck(�). Similarly to the construction of Ck(�) from
the local space Ck(�) by imposing the global condition (in �) of continuity in �

of the function and its derivatives up to the order k, the construction of the Sobolev
spaces Wk,p(�) is a combination of local properties (weak derivatives in L1

loc(�))
together with a suitable “global” condition in � (the weak derivatives belong to
Lp(�)).

Definition 1.1.1 If � ⊂ R
N is an open subset, p ∈ [1,+∞] and k ∈ N, then the

Sobolev space Wk,p(�) is defined as the space of the functions u ∈ Lp(�) such that
for every multi-index α = (α1,α2, . . . ,αN ) with order |α| ≤ k there exists a function
vα ∈ Lp(�) satisfying

∫
ϕ(x)vα(x)dx = (−1)|α|

∫
u(x)Dαϕ(x)dx, ∀ϕ ∈ C∞0 (�).

Here and in the sequel, unless it is explicitly stated, the integrals are always under-
stood to be on �. The function vα is called the weak derivative of u of order α and

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 1
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2 1 Preliminaries

is denoted by Dαu. Wk,p(�) can be equipped with two equivalent norms:

‖u‖k,p ≡
⎧
⎨

⎩

[∑
|α|≤k ‖Dαu‖pp

]1/p
if p ∈ [1,+∞)

max|α|≤k‖Dαu‖∞ if p = +∞.

|||u|||k,p ≡
∑

|α|≤k
‖Dαu‖p.

A particular case is the space
(
Hk(�) ≡ Wk,2(�), ‖·‖k,2

)
because the norm ‖·‖k,2 is

the one associated to the inner product

(u, v)k,2 =
∑

|α|≤k
(Dαu,Dαv)L2(�) .

Since the product space of copies of Lp(�) is complete, one deduces (see Exercise 1)
that Wk,p(�) is a Banach space for 1 ≤ p ≤ +∞, it is reflexive for 1 < p < +∞
and it is separable for 1 ≤ p < +∞. In particular, Hk(�) is a separable Hilbert
space.

It is clear that every function in Ck(�), such that its partial derivatives up to
order k are also in Lp(�), belongs to Wk,p(�). Meyers and Serrin proved that this
class of functions is a dense subspace of Wk,p(�) provided that 1 ≤ p < +∞ (see
Theorem A.2.5).

In the study of the classical Dirichlet problem associated to the Laplace equation in
an open � ⊂ R

N , the value of the solution on ∂� is prescribed. Thus, to give a weak
formulation of the Dirichlet problem, we need to define the value of u ∈ Wk,p(�)
on ∂�. This is not trivial at all because u ∈ Lp(�) is the equivalence class of the
functions which are equal almost everywhere in �. We first discuss the simplest case:
What is the weak space similar to the space of Ck(�)-functions satisfying u = 0 on
∂�? To answer this question we introduce a new space.

Definition 1.1.2 If � ⊂ R
N is open, 1 ≤ p ≤ +∞ and k ∈ N, we denote by

W
k,p
0 (�) the closure of C∞0 (�) in the space Wk,p(�). In the particular case p = 2,

we also write W
k,p
0 (�) = Hk

0 (�).

Observe that W
k,p
0 (�) with the induced norm of Wk,p(�) is a Banach space for

1 ≤ p ≤ +∞, it is reflexive provided that 1 < p < +∞ and it is separable if
1 ≤ p < +∞. In particular, Hk

0 (�) is a separable Hilbert space.
In general, the strict inclusion W

k,p
0 (�) ⊂ Wk,p(�) holds. Roughly, the smaller

R
N \� is, the smaller Wk,p(�) \Wk,p

0 (�) is (see [1, Theorem 3.31]). In particular,
if � = R

N then W
k,p
0 (RN ) = Wk,p(RN ) (see Proposition A.3.10).

One of the main properties of Wk,p
0 (�) is the well-known Poincaré inequality: If

p ∈ [1,+∞) and � ⊂ R
N is open and bounded in one direction, then there exists a

positive constant C depending uniquely on � such that

C

∫
|u|p ≤

∫
|∇u|p, ∀u ∈ W

1,p
0 (�). (1.1)
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As a consequence, under the hypotheses of the Poincaré inequality, ‖∇u‖p defines
a norm W

1,p
0 (�) which is equivalent to ‖·‖1,p. In addition, if p = 2, this new norm

‖∇u‖2 in H 1
0 (�) is associated to the inner product

∫ ∇u · ∇v for u, v ∈ H 1(�).
We introduced the space W

k,p
0 (�) to obtain the weak formulation of the functions

that vanish on the boundary ∂�. Using this space, it is easy to state what we un-
derstand by an ordering between values on the boundary of functions in Wk,p(�).
Specifically, if 1 ≤ p < +∞, k ∈ R and u, v ∈ W 1,p(�), we say that

• u ≤ k on ∂�⇐⇒ (u− k)+ = max {u− k, 0} ∈ W
1,p
0 (�).

• u ≥ k on ∂�⇐⇒ −u ≤ −k on ∂�.
• u ≤ v on ∂�⇐⇒ u− v ≤ 0 on ∂�.
• u ≥ v on ∂�⇐⇒ v ≤ u on ∂�.

• u = v on ∂�⇐⇒
{

u ≤ v on ∂�

v ≤ u on ∂�.

1.1.1 Embedding Theorems

We state below the well-known Sobolev and Rellich–Kondrachov embedding the-
orems. We say that the normed space (X, ‖ · ‖X) is embedded in the normed space
(Y , ‖ · ‖Y ), and we denote it by X ↪→ Y , if there exists an injective linear and con-
tinuous operator I from X into Y . In this case, the operator is called an embedding.
We say that the space X is compactly embedded in the space Y , if there exists an
embedding of X in Y which is compact. An operator T : X→ X is said to be com-
pact if it is continuous and T (A) is relatively compact for all bounded sets A ⊂ X

(see Definition 1.3.1 below). We state in a unique theorem a unified version of the
Sobolev and Rellich–Kondrachov theorems (see Theorems A.4.3 and A.4.9 for more
general results).

Theorem 1.1.3 If � ⊆ R
N is an open subset with boundary ∂� of class C1, k ∈ N

and 1 ≤ p <∞, then

1. If k < N
p

then Wk,p(�) ↪→ Lq (�) for every q ∈
[
p, Np

N−kp
]
.

2. If k = N
p

then Wk,p(�) ↪→ Lq (�) for every p ≤ q <∞.

3. If k > N
p

then Wk,p(�) ↪→ C0,α(�), where

α =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k − N
p

, if k − N
p

< 1,

every α ∈ [0, 1), if k − N
p
= 1,

1, if k − N
p

> 1.

If in addition � is bounded, all the above embeddings are compact except for q =
Np

N−kp in case 1.
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Furthermore, if we replace the space Wk,p(�) by W
k,p
0 (�), all the embeddings

(also the compact ones) hold without necessity of assuming the regularity of the
boundary ∂� of �. ��

1.2 Linear Elliptic Equations

Many applications lead to the study of minimization problems like

min
∫

H (x, v,∇v) dx

where � is an open subset of R
N and H is a function in �× R

N+1.
It is more convenient to solve this problem in the weak formulation than in the

classical one. In order to do this in a more clear way, we consider the Dirichlet
principle, i.e., the problem which consists in looking for the function u such that
∇u has minimal L2-norm in the manifold of all functions with prescribed value u0

on ∂�:

min

{∫
|∇v|2 dx : v = u0 on ∂�

}

. (1.2)

Now, thinking that the simpler similar minimization problem

min
{|v|2 : v ∈ Q, v2 ≥ 2

}

has no solution because Q is not complete or equivalently because the set{
v ∈ Q : v2 ≥ 2

}
is not closed in the Banach space R, we understand that

it is a good idea to set out minimization in the completion (with respect to the
L2(�)-norm of the gradient) of the functions with value u0 on ∂�. This means that
we study the Dirichlet principle as

min
v∈A J (v)

with the functional J : X = H 1(�) −→ R given by J (v) = ∫ |∇v|2 dx and
A = {v ∈ H 1(�) : v − u0 ∈ H 1

0 (�)}, for some u0 ∈ H 1(�).

1.2.1 Fréchet Differentiability

Let X,Y be Banach spaces, u ∈ X and consider a map F : X �→ Y . In the particular
case that Y = R, F is called a functional. We say that F is differentiable at u ∈ X

along the direction v ∈ X if there exists

Lu[v] := lim
t→0

F (u+ tv)− F (u)

t
.

Elementary examples on X = R
2 show that F can be differentiable along every

direction without being continuous.
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We say thatF is (Fréchet) differentiable at u ∈ X if there exists a linear continuous
map Lu : X −→ Y such that

F (u+ v)− F (u) = Lu[v]+ o(‖v‖), as ‖v‖ → 0.

The map Lu is uniquely determined by F and u and will be denoted by dF (u) or else
F ′(u). It is easy to see that if F is Fréchet differentiable, then it is also differentiable
along any direction. Conversely, if F is differentiable along any directions, Lu ∈
L(X,Y ) and the map u �→ Lu is continuous from X to L(X,Y ), then F is Fréchet
differentiable.

The Fréchet derivative has the same properties as the usual differential in
Euclidean spaces. For example, if X,Y ,Z are Banach spaces, F : X �→ Y ,
G : Y �→ Z and F is differentiable at u ∈ X, resp. G is differentiable at F (u) ∈ Y ,
then the composite map G ◦ F is differentiable at u and the following chain rule
holds:

D(G ◦ F )(u)[v] = dG(F (u))[dF (u)[v]].

One can also define higher derivatives, partial derivatives and so on. In particular, the
second derivative will be denoted by d2F (u). For more details, the reader is referred,
e.g., to Chaps. 1 and 2 of [17].

1.2.2 Nemitski Operators

Let f : � × R −→ R. The Nemitski operator associated to f (x, u) is the
superposition operator

f : u(x) �→ f (x, u(x))

defined on the class of measurable functions u : � −→ R. If there is no possible
misunderstanding, we will use the same symbol f to denote the Nemitski operator
associated to f (x, u). Here and below � denotes a bounded domain in R

N .
Suppose that f (x, u) is Carathéodory, namely:

1. f (x, .) is continuous in R for a.e. x ∈ �,
2. f (., u) is measurable in � for all u ∈ R.

Let us point out that if f (x, u) is Carathéodory then the Nemitski operator f maps any
measurable function u(x) to a measurable function f (u). The continuity and Fréchet
differentiability of Nemitski operators are collected in the following theorems. We
omit the proof, referring the reader to Sect. 1.2 of [17].

Theorem 1.2.1 Suppose that f (x, u) is Carathéodory and that there exist a, b ∈ R

such that
|f (x, u)| ≤ a + b|u|p/q , p, q ≥ 1.

Then the Nemitski operator f is continuous from Lp(�) to Lq(�). ��
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Theorem 1.2.2 Suppose that f (x, u) is Carathéodory and that f (x, .) is differen-
tiable with respect to u with derivative fu(x, u) which is Carathéodory. Moreover,
let p > 2 and suppose that there exist c, d ∈ R such that

|fu(x, u)| ≤ c + d|u|p−2.

Then the Nemitski operator f is differentiable on Lp(�) with differential df (u) :
v �→ fu(u)v. ��
Remark 1.2.3 (i) It is possible to prove that if the Nemitski operator f maps Lp(�)
into Lq(�) then f ∈ C(Lp(�),Lq(�)).

(ii) Let f (x, u) and fu(x, u) be Carathéodory functions and |fu(x, u)| ≤ const.
Then one can show that f : L2(�) −→ L2(�) is differentiable along every direction.
On the other hand, if f is Fréchet differentiable at some u∗ ∈ L2(�) then there exist
measurable functions a(x), b(x) such that f (x, u) = a(x)+ b(x)u.

1.2.3 Dirichlet Principle

Problem (1.2) is solved by using the Weierstrass theorem.

Theorem 1.2.4 Let J : A → R ∪ {+∞} be a lower semicontinuous functional
defined on a compact topological space A. Then J is bounded from below and it
attains its minimum.

Proof We only give here the proof for the case in which J is sequentially lower
semicontinuous1 and A is sequentially compact. Define

α =
⎧
⎨

⎩

inf{J (v) : v ∈ A}, if this infimum exists

−∞, if the above infimum does not exist.

In any case, we can choose a sequence {vn} in A such that

lim
n→+∞J (vn) = α.

Since A is sequentially compact, there exists a converging subsequence, still denoted
{vn}, to some point v ∈ A. Thus the sequentially lower semicontinuity of J implies
that

J (v) ≤ lim inf
n→+∞ J (vn) = lim

n→+∞J (vn) = α.

By the definition of α we get
J (v) = α,

which, in particular, means that α is finite, i.e., J is bounded from below. In addition,
the infimum α of J is attained at v. ��
1 Let us remark that every sequentially lower semicontinuous functional J is also lower semicontin-
uous and that, in addition, the converse holds provided thatA satisfies the first axiom of countability.
See [48] for the proofs of these facts and also for a complete proof of the theorem of Weierstrass.
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If the dimension of X is infinite, the hypothesis on the compactness of A is
very restrictive provided that we consider the topology induced by the norm. To
overcome this difficulty we assume that X is reflexive and J is coercive, i.e.
limu∈A, ‖u‖→+∞ J (u) = +∞. Indeed, the coerciveness allows us to reduce the min-
imization in A to A ∩ B(0,R) for some R > 0 large enough. Since the closed ball
B(0,R) in a reflexive space is weakly compact, it is easy to deduce the following
result.

Corollary 1.2.5 If X is a reflexive Banach space, A is a weakly closed subset in X

and J : A −→ R is a w.l.s.c.2 coercive functional in A, then there exists u ∈ A such
that

J (u) = min{J (v) : v ∈ A}. ��
Now, we are ready to prove the Dirichlet principle.

Corollary 1.2.6 (Dirichlet principle) Let� be an open bounded set in R
N . For every

fixed u0 ∈ H 1(�), there exists a unique function u ∈ H 1(�) satisfying that u− u0 ∈
H 1

0 (�) and

(i) If A = {v ∈ H 1(�) : v − u0 ∈ H 1
0 (�)}, then

∫
|∇u|2 = min

v∈A

∫
|∇v|2

(ii) u satisfies ∫
∇u · ∇v = 0, ∀v ∈ H 1

0 (�),

u = u0 on ∂�.

Remark 1.2.7 A function u ∈ H 1(�) satisfying (ii) of the above corollary is called
a weak solution for the boundary value problem (in the sequel, b.v.p.)

−�u= 0, x ∈ �

u= u0, x ∈ ∂�.

In general, we have the following definition.

Definition 1.2.8 Given h ∈ L2(�), we say that u ∈ H 1(�) is a weak solution of the
problem

−�u=h, x ∈ �

u= u0, x ∈ ∂�

if it satisfies ∫
∇u · ∇v =

∫
h v, ∀v ∈ H 1

0 (�),

and u = u0 on ∂�.

2 Although the notion of semicontinuity had been previously used in other fields, e.g., the Lebesgue
integral, it was L. Tonelli who introduced this notion for the first time in the calculus of variations.
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If N ≥ 3, by the Sobolev embedding (see Theorem 1.1.3), every function h ∈
L2N/(N+2)(�) belongs to the dual space H−1(�) of H 1

0 (�). Then one can substitute
the space L2(�) by L2N/(N+2)(�) in the previous definition.

Proof of Corollary 1.2.6 Consider X := H 1(�) and define the Dirichlet functional
J : X −→ R by taking

J (v) =
∫
|∇v|2, v ∈ X.

We begin by observing that J is coercive in the weakly3 closed set A. Indeed, from
the Poincaré inequality (see Proposition A.3.12), for any v ∈ A we have

∫
v2 =

∫
[(v− u0)+ u0]2 ≤ 2

∫
(v − u0)2 + 2

∫
u2

0

≤ 2C1

∫
|∇(v− u0)|2 + 2

∫
u2

0

≤ 4C1

∫
|∇v|2 + 4C1

∫
|∇u0|2 + 2

∫
u2

0,

i.e. ∫
|∇v|2 ≥ C2

∫
v2 − C3,

where C1,C2, . . . denote different positive constants. From the above inequality one
can easily deduce the coerciveness of J in A.

The proof of the semicontinuity of J is based on the convexity of the square
function |ξ |2, ξ ∈ R

N . Indeed, this means that

|ξ |2 ≥ |ξ0|2 + 2ξ0 · (ξ − ξ0), ∀ξ , ξ0 ∈ R
N.

Taking ξ = ∇w and ξ0 = ∇u, with v, w ∈ H 1(�), it follows that

J (w) ≥ J (v)+ 2
∫
∇v · (∇w− ∇v) , (1.3)

for every v, w ∈ H 1(�) and thus J is convex. In particular, if w = vn is weakly
convergent to v in H 1(�), we have

lim
n→+∞

∫
∇v · (∇vn − ∇v) = 0

and therefore
lim inf
n→+∞ J (vn) ≥ J (v).

The uniqueness is due to the strict convexity4 of J (which is also due to the strict
convexity of |ξ |2).

3 Note that A is clearly convex, thus it is sufficient to observe that A is closed in the topology of the
norm.
4 That is, the strict inequality in (1.3) is satisfied for every v �= w ∈ H 1(�).



1.2 Linear Elliptic Equations 9

To prove (ii), it suffices to note that, for every fixed v ∈ H 1
0 (�), the function

u+ tv ∈ A, for every t ∈ R, and the real function

ϕ(t) = J (u+ tv), t ∈ R

has a minimum at t = 0. Therefore,

0 = ϕ′(0) = lim
t→0

J (u+ tv)− J (u)

t

= lim
t→0

2t
∫ ∇u · ∇v+ t2

∫ |∇v|2
t

= 2
∫
∇u · ∇v.

��
The next application will be about the b.v.p.

−�u = h, x ∈ �

u = 0, x ∈ ∂�,
(1.4)

with h ∈ L2(�). In this case the Euler functional is J : H 1
0 (�) −→ R given by

J (v) = 1

2

∫
|∇v|2 −

∫
h v, v ∈ H 1

0 (�). (1.5)

Corollary 1.2.9 For every fixed h ∈ L2(�), consider the functional J defined in
H 1

0 (�) by (1.5). Then there exists a unique u ∈ H 1
0 (�) satisfying

J (u) = min
v∈H 1

0 (�)
J (v).

In particular, u is a weak solution for the b.v.p. (1.4).

Proof Similar arguments to the ones for the Dirichlet principle can be used to show
the corollary. The details are left to the reader. ��
Remark 1.2.10 Above we have dealt with the Laplace operator for the sake of sim-
plicity, only. It can be substituted by any second order uniformly elliptic operator
like

−
∑ ∂

∂xi

(

aij (x)
∂u

∂xj

)

+ c(x)u,

where aij (x) and c(x) are bounded and measurable on �, c(x) ≥ 0 in � and aij (x) =
aji(x) is uniformly elliptic, namely

∃α > 0 :
∑

aij (x)ξiξj ≥ α|ξ |2, ∀ x ∈ �, ∀ξ ∈ R
N .
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1.2.4 Regularity of the Solutions

The regularity of weak solutions of (1.4) are stated in the following theorem.

Theorem 1.2.11 1. If ∂� is of class C1,1 and h ∈ Lp(�) for some p ∈ [2,+∞)
then the unique weak solution u ∈ H 1

0 (�) of (1.4) belongs to W 2,p(�) and

‖u‖W 2,p ≤ C ‖h‖Lp ,

for some C > 0. In particular, if h ∈ C(�) then u ∈ C1(�).
2. If ∂� is of class C2,ν , 0 < ν < 1, and h ∈ C0,ν(�), then u ∈ C2,ν(�) is a classical

solution of (1.4) and
‖u‖C2,ν ≤ C ‖h‖C0,ν ,

for some C > 0. ��
The former inequalities are known as Agmon–Douglis–Nirenberg estimates or
Lp-theory. The latter ones are the Schauder estimates.

1.2.5 The Inverse of the Laplace Operator

For an open bounded set � in R
N , we can define a linear operator K : L2(�) −→

H 1
0 (�) by setting K(h) = u, the solution of (1.4). By the compact embedding

Theorem 1.1.3, K is compact as a map from L2(�) into itself. In addition, the
restriction of K to H 1

0 (�) into itself is also compact (see Exercise 5).
Similarly, we can use the Schauder estimate given in Theorem 1.2.11 to consider,

for instance, K as a map from C0,ν(�) into itself. The Ascoli compactness theorem
implies that K is also compact (see Exercise 6). Moreover, using the last statement
in Theorem 1.2.11-1, it can be verified that K is compact as a map from C(�) into
itself.

1.3 Linear Elliptic Eigenvalue Problems

Let � ⊂ R
N be an open and bounded subset, r ∈ (N2 ,∞) ∩ (1,∞) and m ∈ Lr(�)

a function (weight). We consider the weighted eigenvalue problem

−�u = λm(x)u, x ∈ �

u = 0, x ∈ ∂�.
(1.6)

That is, we look for pairs (λ, u) ∈ R × (H 1
0 (�) \ {0}) such that (1.6) holds in the

weak sense, i.e.,
∫
∇u · ∇v dx = λ

∫
muv dx, ∀v ∈ H 1

0 (�). (1.7)
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In this case, we say that λ is an eigenvalue and u an associated eigenfunction.
By the Sobolev embedding theorem (see Theorem A.4.3), we have

H 1
0 (�) ↪→

⎧
⎨

⎩

L2N/(N−2)(�), if N ≥ 3

Lt (�) (∀t ≥ 1), if N ≤ 2.

Since m ∈ Lr (�) we observe then that

mu ∈
⎧
⎨

⎩

L2N/(N+2)(�), if N ≥ 3

Lt (�) (∀t ∈ (1, r)) if N ≤ 2,

and thus the right-hand side of (1.7) is well defined.
Clearly, λ = 0 is not an eigenvalue of (1.6). Hence, we devote our attention to look

for nonzero eigenvalues of this problem. In order to do so, we consider H ≡ H 1
0 (�)

and for a fixed number t0 in (1, r) we pick

p =
⎧
⎨

⎩

2N
N−2 , if N ≥ 3

t0, if N ≤ 2.

Given f ∈ Lp(�), let w = Kf be the unique (weak) solution of the problem

−�w = f , x ∈ �

w = 0, x ∈ ∂�.

Note that, in this way, the operator K : Lp(�) → H is linear and continuous. We
define also the operator T : H → H by T u = K(mu) for every u ∈ H , i.e., T u is
the unique point in H satisfying

∫
∇T u · ∇v =

∫
muv, ∀v ∈ H. (1.8)

It is easy to verify that T is linear and symmetric (i.e., (T u, v) = (u, T v), for every
u, v ∈ H ).

1.3.1 Linear Compact Operators

In this subsection we give a short survey on linear compact operators, which will
play a fundamental role in dealing with elliptic boundary value problems. For more
details and proofs we refer to [36]. The following definition has already been given
Section 1.1.1.

Definition 1.3.1 If X and Y are Banach spaces, an operator T : X −→ Y is compact
if it is continuous and T (A) is relatively compact for all bounded sets A ⊂ X.
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Let us remark that the composition of a continuous operator with a compact operator
is also a compact operator (see Exercise 4). For example, the operator T given by
(1.8) is compact. Indeed, if {un} ⊂ H is weakly converging to a u ∈ H , by using the
compact embedding of H into Lt (�) for t ∈ [1, 2∗), we deduce that this sequence is
strongly converging in Lt (�) and, hence, applying the Hölder inequality, we obtain

{mun} −→ muinLp(�)

from which, the continuity of K implies that {T un} is strongly converging in H to T u
and T is compact. For compact operators, the Fredholm alternative applies yielding
the following.

Theorem 1.3.2 Let X be a Banach space and let T : X −→ X be linear and
compact. Then:

1. Ker [I − T ] is finite dimensional;
2. Range [I − T ] is closed, has finite codimension and Range [I − T ] = Ker [I −

T ∗]⊥, where T ∗ denotes the adjoint of T ;
3. Ker [I − T ] = {0} ⇔ Range [I − T ] = X. ��
Remark 1.3.3 A linear operator L : X → X is called a Fredholm operator if
dim KerL < ∞ and RangeL is closed and has finite codimension. In this case,
the index of L is dim KerL − codim RangeL. In particular, the preceding theorem
states that I − T is a Fredholm operator of zero index.

Let T be compact and set Aγ (u) = T (u)− γ u.

Definition 1.3.4 The resolvent of T is the set

ρ(T ) = {γ ∈ R : Aγ is bijective from X to itself}
The spectrum σ (T ) of T is defined as σ (T ) = R \ ρ(T ). A γ ∈ R such that
Ker [Aγ ] �= {0} is called an eigenvalue of T and Ker [Aγ ] is called eigenspace
associated to the eigenvalue γ . We also say that μ ∈ R is a characteristic value of T
if the kernel of the operator u �→ μT (u)− u is different from {0}.
Remark 1.3.5 Ifγ �∈ σ (T ) then the closed graph theorem implies thatAγ is invertible
and has a continuous inverse [36, Corollary 2.7].

Concerning the spectrum of T , the Riesz–Fredholm theory provides the following
result.

Theorem 1.3.6 Let T be linear and compact. Then σ (T ) is compact and σ (T ) ⊂
[− ‖T ‖, ‖T ‖]. Furthermore, if X is infinite dimensional, one has:

1. 0 ∈ σ (T );
2. Every γ ∈ σ (T ) \ {0} is an eigenvalue of T ;
3. Either σ (T ) = {0}, or σ (T ) is finite, or σ (T ) \ {0} is a sequence which tends to 0.

Moreover, for every γ ∈ σ (T ) \ {0}, there exists m ≥ 1 such that

Ker [Ak
γ ] = Ker [Ak+1

γ ], ∀ k ≥ m, (1.9)
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and there holds

Range[Ak
γ ] = Range[Ak+1

γ ], X = Ker [Am
γ ]⊕ Range[Am

γ ]. ��
Definition 1.3.7 The multiplicity of an eigenvalue γ of T is, by definition, the least
integer m such that (1.9) holds. When m = 1 we say that the eigenvalue is simple.

1.3.2 Variational Characterization of The Eigenvalues

Let T be defined by (1.8). Then λ ∈ R \ {0} is an eigenvalue of (1.6) if and only if
λ is a characteristic value of T . Applying Theorem 1.3.6, we deduce the following
result (see also [47]).

Theorem 1.3.8 Assume that � ⊂ R
N is bounded and open, r ∈ (N2 ,∞) ∩ (1,∞),

and m ∈ Lr(�). Consider the sets �+ = {x ∈ � : m(x) > 0} and �− =
{x ∈ � : m(x) < 0}. The following assertions hold.

(i) 0 is not an eigenvalue of (1.6).
(ii) (a) If the Lebesgue measure |�+| of �+ is zero, then (1.6) has no positive

eigenvalue.
(b) If |�+| > 0, then the positive eigenvalues of (1.6) define a nondecreasing

unbounded sequence {λn}n∈N ⊂ (0,+∞). In addition, λn is characterized
by

1

λn

= sup
F∈Fn

inf

{∫
m(x)u2(x)dx :

∫
|∇u(x)|2 dx = 1, u ∈ F

}

where Fn = {F ⊂ H : F is a subspace with dim F = n}.
(iii) (a) If |�−| = 0, then (1.6) has no negative eigenvalue.

(b) If |�−| > 0, then the negative eigenvalues of (1.6) define a nonincreasing
unbounded sequence {λ−n}n∈N ⊂ (−∞, 0). In addition, λ−n is characterized
by

1

λ−n
= inf

F∈Fn

sup

{∫
m(x)u2(x)dx :

∫
|∇u(x)|2 dx = 1, u ∈ F

}

. ��
Remark that the eigenvalues λn have associated eigenfunctions un ∈ H 1

0 (�). How-
ever, by the regularity results, if ∂� and m are smooth, then un ∈ C2(�) and, hence,
they are eigenfunctions in a classical sense.

If m ≡ 1, then � = �+ and 1/λ1 = sup{∫ u2 :
∫ |∇u|2 = 1}, and consequently

λ1 is the best constant in the Poincaré inequality (1.1) for p = 2.

Corollary 1.3.9 (Best constant for the Poincaré inequality) If � ⊂ R
N is open and

bounded, then

λ1 = min

{∫
|∇u|2 : u ∈ H 1

0 (�),
∫

u2 = 1

}

.
��
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Remark 1.3.10 Every minimizer ϕ is an eigenfunction.

It is possible to prove that the eigenvalues of (1.6) are continuously depending on
the weight m. For simplicity, we assume that m > 0.

Proposition 1.3.11 Assume that � ⊂ R
N is open and bounded, r ∈ (N2 ,∞) ∩

(1,∞) and m ∈ Lr(�).

(i) If m ∈ Lr (�) satisfies m(x) ≤ m(x) a.e. x ∈ �, then for all j ≥ 1 there holds

λj (m) ≥ λj (m)

with strict inequality provided that, in addition, |{x ∈ � : m(x) < m(x)}| > 0.
(ii) If mn ∈ Lr (�), mn > 0, is converging in Lt1 (�) to m with

t1 =
⎧
⎨

⎩

N/2, if N ≥ 3

∈ (max{N2 , 1}, r] , if N = 2,

then for all j ≥ 1 there holds

lim
n→+∞ λj (mn) = λj (m). ��

One of the main properties of the first positive and negative eigenvalues λ1, λ−1 of
(1.6) is that they are simple and the associated eigenfunctions have a sign.

Theorem 1.3.12 (Simplicity of the first eigenvalues) Assume that � ⊂ R
N is open

and bounded, r ∈ (N2 ,∞) ∩ (1,∞) and m ∈ Lr (�).

(i) If |�+| > 0 then the first positive eigenvalue λ1 of (1.6) is simple (with one
algebraic and geometric multiplicity) and its associated eigenspace is spanned
by an eigenfunction φ1 ∈ H 1

0 (�) such that φ1(x) > 0 a.e. x ∈ �. In addition,
λ1 is the unique positive eigenvalue having an associated eigenfunction which
does not change sign.

(ii) If |�−| > 0 then the first negative eigenvalue λ−1 of (1.6) is simple and its
associated eigenspace is spanned by an eigenfunction φ−1 ∈ H 1

0 (�) such that
φ−1(x) > 0 a.e. x ∈ �. In addition, λ−1 is the unique negative eigenvalue
having an associated eigenfunction which does not change sign. ��

Corollary 1.3.9, Proposition 1.3.11 and Theorem 1.3.12 are closely related to the
maximum principle. First, we give the result for the classical formulation.

Theorem 1.3.13 (Maximum principle) Let � be a bounded domain in R
N with

smooth boundary and let u ∈ C2(�) ∩ C(�) satisfy
{−�u≥ λu, in �

u= 0, on ∂�.

If λ < λ1 then u ≥ 0 in �. Moreover, either u > 0 in � or u ≡ 0 in �. ��
Similarly, we have the following result for the weak formulation of the problem.
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Theorem 1.3.14 Assume that m ∈ L∞(�) with m+ := max{m, 0} �≡ 0, 0 ≤ h ∈
L2N/(N+2)(�) and u ∈ H 1

0 (�) is a solution of the problem

{−�u= λmu+ h, in �

u= 0, on ∂�.

If λ < λ1 then u ≥ 0 (a.e.) in �. Moreover, if h > 0 in a set of positive measure,
then u > 0 in �. ��





Chapter 2
Some Fixed Point Theorems

In this chapter we discuss the classical Banach contraction principle and a fixed
point theorem for increasing operators that will be used in connection to sub- and
super-solutions of elliptic boundary value problems.

2.1 The Banach Contraction Principle

Let X be a complete metric space. An operator T : X→ X is a contraction if there
exists α ∈ (0, 1) such that

dX(T (u), T (v)) ≤ α dX(u, v), ∀ u, v ∈ X, (2.1)

where dX(u, v) denotes the distance from u to v in X.

Remark 2.1.1 From (2.1) it immediately follows that T is continuous.

Theorem 2.1.2 If X is a complete metric space and T is a contraction on X which
maps X into itself, then there exists a unique z ∈ X such that T (z) = z.

Proof Existence. For any fixed u0 ∈ X let us define the sequence uk by setting

uk+1 = T (uk), k ∈ N.

One has that for every j ≥ 1

dX(uj+1, uj ) = dX(T (uj ), T (uj−1)) ≤ αdX(uj , uj−1)

and this, by induction, implies

dX(uj+1, uj ) ≤ αjdX(u1, u0).

Then, it follows that

dX(uk+1, uh) ≤
k∑

j=h
dX(uj+1, uj ) ≤

⎡

⎣
k∑

j=h
αj

⎤

⎦ dX(u1, u0).

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 17
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_2, © Springer Science+Business Media, LLC 2011



18 2 Some Fixed Point Theorems

Since 0 < α < 1, uk is a Cauchy sequence. Let z ∈ X be such that uk → z. Passing
to the limit into uk+1 = T (uk) and using the fact that T is continuous, it follows that
z = T (z).

Uniqueness. Let z1, z2 ∈ X be fixed points of T . From this and (2.1) we infer

dX(z1, z2) = dX(T (z1), T (z2)) ≤ αdX(z1, z2).

Since α < 1, it follows that z1 = z2. ��
As a typical application of the Banach contraction principle we can prove the exis-
tence and uniqueness of solutions of the Cauchy problem for a first order differential
equation. This will be achieved by transforming the differential problem into an
equivalent integral equation.

Let (x0, y0) be a point in a domain � ⊂ R
2. For a continuous function f : � −→

R, we consider the Cauchy problem

{
y′ = f (x, y)

y(x0)= y0.
(2.2)

By a (local) solution of (2.2) we mean a C1 function y(x) defined in some interval
(a, b) ⊂ R such that (x, y(x)) ∈ � and y′(x) = f (x, y(x)) for every x ∈ (a, b) which
passes by the point (x0, y0), i.e. y(x0) = y0.

Lemma 2.1.3 The Cauchy problem (2.2) is equivalent to the integral equation

y(x) = y0 +
∫ x

x0

f (t , y(t))dt. (2.3)

Proof If y(x) satisfies (2.3) then, clearly, y(x0) = y0. Moreover, differentiating one
finds

y′(x) = f (x, y(x)).

Hence y(x) is a solution of (2.2). Conversely, let y(x) be a solution of (2.2).
Integrating from x0 to x the identity y ′(x) ≡ f (x, y(x)) we get

∫ x

x0

y ′(t)dt =
∫ x

x0

f (t , y(t))dt.

Using the initial condition y(x0) = y0 we deduce (2.3). ��

Definition 2.1.4 We say that f (x, y) is locally Lipschitzian with respect to y at
(x0, y0) if there exist a neighborhood U of (x0, y0) and L > 0 such that

|f (x, y)− f (x, y1)| ≤ L |y − y1|, ∀ (x, y), (x, y1) ∈ U. (2.4)

If the preceding relationship is valid in all the domain � of f we say that f is
(globally) Lipschitzian on � with respect to y.
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Obviously, any functionf which isC1 with respect toy in� is locally Lipschitzian
on � with respect to y. On the other hand, any Lipschitzian function with respect
to y is continuous in the variable y. But the converse is not true. For example,
f (x, y) = √|y| is not Lipschitzian at (0, 0).

Theorem 2.1.5 Suppose that f (x, y) is continuous and locally Lipschitzian with
respect to y at (x0, y0). Then the Cauchy problem (2.2) has a unique solution y(x)
defined in a neighborhood of x0.

Proof Let I = [x0 − δ, x0 + δ] with

0 < δ < min

{
1

L
,

a

M

}

,

where a,L > 0 are chosen in such a way that (2.4) holds in U = [x0 − a, x0 + a]×
[y0 − a, y0 + a] and M = sup(x,y)∈U |f (x, y)|. We will use the Banach contraction
principle to show that the equivalent integral Eq. (2.3) has a unique solution in I .
Let also denote by X the Banach space C(I ) endowed with the sup norm

||y|| = sup
x∈I
|y(x)|

and consider the ball B in X of radius a centered at y0, that is,

B = {y ∈ X : ||y − y0|| ≤ a}.
Define the operator T : X �→ X by setting

T [y](x) = y0 +
∫ x

x0

f (t , y(t))dt. (2.5)

First of all, let us show that T (B) ⊂ B. Actually,

|T [y](x)− y0| ≤ M δ < a.

Taking the supremum in I , we find ||T [y] − y0|| < a and hence T [y] ∈ B. Next,
we show that T is a contraction on B. Actually, using the fact that f is locally
Lipschitzian we get

|T [y](x)− T [y1](x)| ≤
∫ x

x0

|f (t , y(t))− f (t , y1(t))|dt

≤
∫ x

x0

L |y(t)− y1(t))|dt ≤ δL ||y − y1||.

Taking again the supremum in I ,

||T [y]− T [y1]|| ≤ δL ||y − y1||.
Since δL < 1, T is a contraction. Using the Banach contraction principle, we infer
that T has a unique fixed point y∗ on B. From T [y∗] = y∗ we deduce

y∗(x) = T [y∗](x) = y0 +
∫ x

x0

f (t , y∗(t))dt.

Therefore y∗ is the (unique) solution of (2.3) we were looking for. ��
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Remark 2.1.6 Observe that the existence result proved above is local. Indeed, the
interval of existence I = [x0 − δ, x0 + δ] depends on L, M , and on the initial
condition. The following example shows that the local result is the only one we can
hope for. Consider the Cauchy problem

{
y ′ = y2,

y(0)=p > 0.

One checks that
y(x) = p

1− px

satisfies the Cauchy problem. The maximal interval of definition of this solution is
(0,p−1) and depends on the initial condition. Let us point out that f (y) = y2 is not
globally Lipschitzian.

Remark 2.1.7 If � is a strip � = {(x, y) : a < x < b, y ∈ R} and f is globally
Lipschitzian on this strip, then (2.2) has a unique solution defined on all (a, b) (a can
be −∞ and/or b can be +∞).

Remark 2.1.8 Iff is not Lipschitzian, but is merely continuous, it is possible to prove
that (2.2) has a solution, defined locally near x0 (Peano’s theorem, see Exercise 18),
though the uniqueness can fail. For example, the problem

{
y′ =√|y|,

y(0)= 0,

has infinitely many solutions: one is y ≡ 0; in addition for any a > 0 any function

y(x) =
{

0, for |x| < a,
1
4 (x − a)|x − a|, for |x| ≥ a,

is also a solution.

In the next chapter, as a second application of the Banach contraction principle,
we will prove the local inversion theorem (see Theorem 3.1.1).

2.2 Increasing Operators

In this section we will discuss another iteration scheme on ordered Banach spaces.
Let X be a Banach space endowed with an ordering≤ such that (linear ordering)

v ≤ w⇒ αv+ z ≤ αw+ z, ∀ v, w, z ∈ X, ∀α ≥ 0.

We write w ≥ v if and only if v ≤ w. We will also suppose that the norm in X is
related to the ordering by the fact that there exists C > 0 such that

0 ≤ v ≤ w⇒ ‖v‖ ≤ C‖w‖. (2.6)
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We say that an operator T : X→ X is increasing if

v ≤ w⇒ T (v) ≤ T (w), ∀ v, w ∈ X.

If v ∈ X satisfies v ≤ T (v), it is called a sub-solution of the fixed point equation of
T , T (u) = u. Similarly, w ∈ X is a super-solution if T (w) ≤ w.

Given a sub-solution v ∈ X, we define an iteration scheme by setting
{

u0 = v
uk+1 = T (uk), k = 1, 2, . . .

(2.7)

Lemma 2.2.1 Let T : X → X be an increasing operator and suppose that there
exist a sub-solution v ∈ X and a super-solution w ∈ X of the fixed point equation of
T such that v ≤ w. Then the sequence uk given by (2.7) satisfies v ≤ uk ≤ uk+1 ≤ w,
for all k = 0, 1, . . . .

Proof We argue by induction. By the definition of sub-solution, for k = 0 one has
u1 = T (u0) = T (v) ≥ v. Moreover, from uk ≥ uk−1 and the fact that T is increasing
we infer that T (uk) ≥ T (uk−1) and hence

uk+1 = T (uk) ≥ T (uk−1) = uk.

Similarly, one has that u0 = v ≤ w and, if uk ≤ w, the fact that T is increasing and
the definition of super-solution yield uk+1 = T (uk) ≤ T (w) ≤ w. ��
Theorem 2.2.2 Let T ∈ C(X,X) be compact and increasing and assume that there
exist a sub-solution v ∈ X and a super-solution w ∈ X of the fixed point equation of
T satisfying v ≤ w. Then the sequence uk given by (2.7) converges to some u ∈ X

such that T (u) = u. Moreover, v ≤ u ≤ w.

Proof Since, by Lemma 2.2.1, 0 ≤ uk − v ≤ w− v, the property (2.6) implies that

‖uk‖ ≤ ‖uk − v‖ + ‖v‖ ≤ C‖w− v‖ + ‖v‖ ≤ C1.

Since T is a compact operator, the sequence T (uk) is relatively compact and, up
to a subsequence, it converges to some u ∈ X (actually by the monotonicity property
of uk , the whole sequence converges). From uk+1 = T (uk) and the continuity of
T , we infer that u = T (u). Moreover, again using Lemma 2.2.1, it follows that
v ≤ u ≤ w. ��
Remark 2.2.3 By the definition of uk , u = limk→∞ uk is the minimal fixed point of
T in {z ∈ X : v ≤ z ≤ w}.
Later on, Theorem 2.2.2 will be applied to the study of the existence of solutions
of nonlinear elliptic boundary value problems via sub- and super-solutions (see
Sect. 7.2).





Chapter 3
Local and Global Inversion Theorems

This chapter deals with the local inversion theorem and the implicit function theorem
in Banach spaces. The Lyapunov–Schmidt reduction is discussed in Sect. 3.3. In
Sect. 3.4 we prove the global inversion theorem, which goes back to Hadamard and
Caccioppoli. Section 3.5 deals with a global inversion theorem in the presence of
fold singularities.

3.1 The Local Inversion Theorem

Let X,Y be Banach spaces and let F : X→ Y . In the study of the existence of pairs
(u,h) satisfying the equation F (u) = h, it may occur that a “trivial” solution (u0,h0)
(i.e., F (u0) = h0) is known. The local inversion theorem is a classical result that
allows us to solve an equation F (u) = h in a neighborhood of (u0,h0).

Theorem 3.1.1 Let u0 ∈ X and h0 ∈ Y be such that F (u0) = h0 and suppose that
there exists a neighborhood U0 ⊂ X of u0 such that

(i) F ∈ C1(U0,Y );
(ii) dF (u0) is invertible (as a linear map from X to Y ).

Then there exists a neighborhood U ⊂ U0 of u0 and a neighborhood V ⊂ Y of
h0 such that the equation F (u) = h has a unique solution in U , for all h ∈ V .
Furthermore, denoting by F−1 : V → U the inverse of F |U , one has that F−1 is of
class C1 and there holds for every u ∈ U

dF−1(h) = [dF (u)]−1, where F (u) = h.

Proof Up to translations, we can assume that u0 = 0 and h0 = 0. In order to
apply the Banach contraction principle (see Theorem 2.1.2), we let L = dF (0) and
consider the map F̃ : U0 → U0 defined by setting

F̃ (u) = u− L−1F (u).

With this notation, u solves F (u) = h if and only if u satisfies

F̃ (u)+ L−1h = u,

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 23
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that is, u is a fixed point of Fh(u) := F̃ (u) + L−1h. Let r > 0 be such that the
closed ball Br = {u ∈ X : ‖u‖ ≤ r} is contained in U0. Since F is C1 in U0, then
dF (w)→ dF (0) = L as w→ 0. Therefore, given α ∈ (0, 1), there exists δ ∈ (0, r)
such that

sup
‖w‖≤δ

‖I − L−1 ◦ dF (w)‖ ≤ α,

(I denotes the identity map in X). From the mean value theorem we infer

‖F̃ (u)− F̃ (v)‖ ≤ sup
‖w‖≤δ

‖I − L−1 ◦ dF (w)‖ ‖u− v‖ ≤ α‖u− v‖. (3.1)

for every u, v ∈ Bδ . From this and using F̃ (0) = 0, we also infer

‖Fh(u)‖ = ‖F̃ (u)+ L−1h‖ ≤ α‖u‖ + ‖L−1h‖, ∀ u ∈ Bδ.

Choosing ε > 0 such that ‖L−1h‖ < (1− α)δ provided ‖h‖ < ε, we obtain

‖Fh(u)‖ ≤ δ, ∀ u ∈ Bδ , ∀ ‖h‖ < ε.

In conclusion, if ‖h‖ < ε, then Fh maps Bδ into itself and is a contraction in Bδ . By
the Banach contraction principle, it follows that Fh has a unique fixed point zh ∈ Bδ

such that F (zh) = h.
To show that F−1 is continuous, we set u = F−1(h), v = F−1(k), namely

F̃ (u)+ L−1h = u and F̃ (v)+ L−1k = v. Therefore,

‖u− v‖ ≤ ‖F̃ (u)− F̃ (v)‖ + ‖L−1‖ ‖h− k‖ ,

and using (3.1) we infer

‖u− v‖ ≤ α‖u− v‖ + ‖L−1‖ ‖h− k‖.
This implies that

‖u− v‖ ≤ ‖L
−1‖

1− α
‖h− k‖ (3.2)

and proves that F−1 is continuous (in fact, Lipschitzian). To complete the proof, we
have to show that

F−1(k)− F−1(h)− [dF (u)]−1[k − h] = o(‖k − h‖). (3.3)

From the differentiability of F we infer F (v)− F (u)− dF (u)[v− u] = o(‖v− u‖),
namely k − h = dF (u)[v− u]+ o(‖v− u‖). This implies that [dF (u)]−1[k − h] =
v− u+ o(‖v− u‖). Substituting into (3.3) and taking into account that v = F−1(k)
and u = F−1(h), we get

F−1(k)− F−1(h)− [dF (u)]−1[k − h] = o(‖v− u‖).
Finally we use (3.2) to infer that o(‖v − u‖) = o(‖k − h‖), and this completes the
proof. ��
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Remark 3.1.2 If F is of class Ck , k ≥ 1, it is possible to show that F−1 is also of
class Ck .

Remark 3.1.3 If F is not C1 but merely differentiable at u, then the assertion of
Theorem 3.1.1 is not satisfied. Indeed, elementary examples with X = Y = R show
that F can fail to be locally injective (see Exercise 14). In addition if X = Y has
infinite dimension, one can exhibit cases in which F is neither locally injective nor
surjective (see Exercise 15).

3.2 The Implicit Function Theorem

The implicit function theorem deals with the solvability of an equation asF (λ, u) = 0,
whereλ is a parameter. To simplify the notation, we will suppose thatλ ∈ R, although
the more general case in which λ ∈ R

n is quite similar.

Theorem 3.2.1 Let X,Y be Banach spaces and fix (λ0, u0) ∈ R×X. Assume that F
is a C1 map from a neighborhood of (λ0, u0) in R×X into Y such that F (λ0, u0) = 0
and suppose that duF (λ0, u0) is invertible. Then there exist a neighborhood � of
λ0 and a neighborhood U of u0, such that the equation F (λ, u) = 0 has a unique
solution u = u(λ) ∈ U for all λ ∈ �. The function u(λ) is of class C1, and the
following holds:

u′(λ0) = −[duF (λ0, u0)]−1dλF (λ0, u0). (3.4)

Proof Let �0 ⊂ R denote a neighborhood of λ0 and U0 ⊂ X a neighborhood of u0

such that F ∈ C1(�0×U0,Y ). Let us consider the auxiliary function S : �0×U0 →
�0 × Y defined by setting

S(λ, u) = (λ,F (λ, u)).

We want to apply the local inversion theorem (Theorem 3.1.1) to S at (λ0, u0). The
derivative dS(λ0, u0) is the map

(α, v) �→ (α, dλF (λ0, u0)α + duF (λ0, u0)[v]).

Let us consider the equation dS(λ0, u0)[α, v] = (β,h). It is immediate to check that
this equation has a unique solution given by

α = β, v = [duF (λ0, u0)]−1(h− dλF (λ0, u0)β) ,

and this implies that dS(λ0, u0) is invertible. A straight application of the local in-
version theorem to S(λ, u) = (λ, 0) yields a C1 map R, defined in a neighborhood
�×U of (λ0, 0), such that S ◦R(λ,h) = (λ,h) for all (λ0,h) ∈ �×U . This means
that the components (R1(λ,h),R2(λ,h)) of R satisfy

R1(λ,h) = λ, F (λ,R2(λ,h)) = h,

and hence u(λ) := R2(λ, 0) is the function we are looking for. In order to find u′(λ), it
suffices to remark that F (λ, u(λ)) = 0 for all λ ∈ �. Taking the derivative at (λ0, u0)
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we get
dλF (λ0, u0)+ [duF (λ0, u0)]u′(λ0) = 0,

and hence (3.4) holds. This completes the proof. ��

3.3 The Lyapunov–Schmidt Reduction

In the sequel we will frequently deal with an equation like

Lu+H (u) = λu, u ∈ E, (3.5)

where for simplicity E is a Hilbert space, L : E → E is linear continuous and
H ∈ C1(E,E) is such that H (0) = 0, H ′(0) = 0. Setting F (λ, u) = Lu+H (u)−λu,
one has thatF (λ, 0) ≡ 0 for allλ ∈ R. In order to apply the implicit function theorem,
we calculate

duF (λ, 0)[v] = Lv+H ′(0)[v]− λv = Lv− λv.

Therefore, the implicit function theorem applies provided λ �∈ σ (L), where σ (L)
denotes the spectrum of L (see Definition 1.3.4). In this case, the trivial solution
u = 0 is the unique solution of (3.5) in a neighborhood of zero. Otherwise, we are in
the presence of a singularity and we can use a procedure that goes back to Lyapunov
and Schmidt (see [66, 67, 81]). Roughly, one splits the equation Lu+H (u) = λu in
a system of two equations, into which one equation can be uniquely solved, while
the other one inherits the effects of the singularity.

Let us suppose that λ∗ is an eigenvalue of L and let Z = Ker (L− λI ), where I

denotes the identity map in E. Z is closed and there exists a closed subset W ⊂ E

such that E = Z ⊕ W . Let P : E → Z denote the projection onto Z and set
P u = z and w = u − Pu. Let us point out that Lu = Lw. With this notation, (3.5)
is equivalent to the system

Lw+ PH (z + w) = λw, (3.6)

(I − P )H (z + w) = λz. (3.7)

The former is called the auxiliary equation and the latter the bifurcation equation.

Lemma 3.3.1 For all (λ, z) ∈ R × Z, the auxiliary equation (3.6) has a unique
solution w = w(λ, z) which is of class C1. Moreover there holds: w(λ, 0) = 0,
wz(λ, 0) = 0, and the derivative wλ := dλw(λ, 0) of w with respect to λ is also zero.

Proof Consider F̃ : R×Z×W → W , defined by F̃ (λ, z, w) = Lw+PH (z+w)−
λw. One finds that F̃w(λ, 0, 0) is the restriction of L− λI to W , which is invertible.
Therefore the implicit function theorem applies and yields w(λ, z) with the stated
properties. As for wλ, it suffices to take the derivative with respect to λ of (3.6). One
finds that wλ satisfies Lwλ−λwλ = 0 and hence wλ = 0. The derivative wz(λ, 0) can
be found by differentiating Lw+PH (z+w)− λw = 0. Since H ′(0) = 0, one finds
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Lwz(λ, 0)− λwz(λ, 0) = 0, and this, taking into account that wz(λ, 0) ∈ W , implies
wz(λ, 0) = 0. ��
Remark 3.3.2 If H ∈ Ck(E,E) then w is of class Ck too, and the derivatives
di

z w(λ, z), i = 1, . . . , k, can be evaluated by differentiatingLw+PH (z+w)−λw = 0
with respect to z.

Remark 3.3.3 The Lyapunov–Schmidt reduction procedure can be carried out if
F ∈ Ck(R×X,Y ), where X and Y are Banach spaces.

3.4 The Global Inversion Theorem

Let F be a map between two metric spaces X,Y .

Definition 3.4.1 We say that F : X → Y is proper if F−1(C) := {u ∈ X : F (u) ∈
C} is compact for all compact sets C ⊂ Y .

Remark 3.4.2 Any proper F maps closed sets into closed sets.

Proposition 3.4.3 Let F ∈ C(X,Y ) be proper and locally invertible in X. Then for
every v ∈ Y the set F−1({v}) is finite and its cardinality is locally constant.

Proof Since F is proper, F−1({v}) is compact. Moreover, since F is locally invert-
ible on X, F−1({v}) is discrete and therefore F−1({v}) is finite. Let ui , i = 1, ..., k,
be such that F (ui) = v. Since F is locally invertible, there exist neighborhoods
Ui ⊂ X of ui and V ⊂ Y of v such that F is a homeomorphism between Ui and V .
We want to show that there is a neighborhood W ⊂ V such that the cardinality of
F−1({w}) is k, for every w ∈ W . If not, there exists a sequence vn ∈ V with vn → v
and zn �∈ ⋃i=1,...,k Ui such that F (zn) = vn. From the properness of F we infer that
zn converges, up to a subsequence, to some z ∈ X and, by continuity, F (z) = v.
Therefore z ∈⋃i=1,...,k Ui , a contradiction. ��
The singular points of F , denoted by � = �(F ), make up the set of u ∈ X where
F is not locally invertible. We also define

�0 = F−1(F (�)), X0 = X \�0, Y0 = Y \ F (�). (3.8)

The following proposition extends Proposition 3.4.3 to maps with singularities.

Proposition 3.4.4 If F ∈ C(X,Y ) is proper, then the cardinality of F−1({v}) is
locally constant on every connected component of Y0.

Proof It suffices to consider the restriction of F to X0 which is locally invertible on
X0 and is proper as a map from X0 to Y0. ��
We are now in position to prove the following global inversion theorem.

Theorem 3.4.5 Suppose that F ∈ C(X,Y ) is proper and let us also assume that
X0 is arcwise connected and Y0 is simply connected, where X0 and Y0 are given by
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(3.8). Then F is a homeomorphism from X0 onto Y0. In particular, if � = ∅ then F

is a global homeomorphism from X onto Y .

Proof The fact that F (X0) = Y0 follows immediately from Proposition 3.4.4. Let us
prove the injectiveness. We will be brief, referring to [17, pp. 48–52] for a complete
proof.

First, consider the square Q = [0, 1] × [0, 1] and take any u ∈ X0. Let S ∈
C(Q,Y0) be a continuous surface such that S(0, 0) = v := F (u). It is possible to
show that for every such u and S there exists a unique R ∈ C(Q,X0) such that
F ◦ R = S.

Next, suppose by contradiction that there exist u0, u1 ∈ X0 and v ∈ Y0 such that
F (ui) = v, i = 0, 1. By assumption X0 is arcwise connected and hence there is a
path p ∈ C([0, 1],X0) such that p(0) = u0 and p(1) = u1. The image q = F ◦ p
is a closed curve in Y0 which is simply connected. Thus there exists a homotopy
h ∈ C(Q,Y0) such that for all (s, t) ∈ Q there holds

h(s, 0) = q(s), h(s, 1) = v, h(0, t) = h(1, t) = v.

From the previous step we can find a unique surface R ∈ C(Q,X0) such that
R(0, 0) = u0 and F ◦ R = h on Q. It is easy to check that the following facts
hold:

1. R(1, 0) = u1;
2. F (R(0, t)) = h(0, t) = v;
3. F (R(s, t)) = h(s, 1) = v;
4. F (R(1, t)) = h(1, t) = v.

It follows that R is constant on the set

({0} × [0, 1]) ∪ ([0, 1]× {1}) ∪ ({1} × [0, 1]) .

Then R(1, 0) = R(0, 0) = u0, a contradiction with point 1. ��

3.5 A Global Inversion Theorem with Singularities

In this section we will deal with a case in which the previous global inversion theorem
does not apply. The first result in this direction has been given in [16].

Let X,Y be Banach spaces and let F ∈ C2(X,Y ). We set

�′ = {u ∈ X : dF (u) is not invertible}.
We shall suppose that u ∈ �′ is an ordinary singular point, namely it satisfies

(i) ∃ φ = φu ∈ X, φ �= 0, such that Ker [dF (u)]) = Rφ:
(ii) Range [dF (u)]) is closed and has codimension 1;
(iii) d2F (u)[φ,φ] �∈ Range [dF (u)]).
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The following theorem gives a precise geometric description of the range of F .

Theorem 3.5.1 Let F ∈ C2(X,Y ) be proper and suppose that the singular set �′ is
nonempty and connected and every u ∈ �′ is an ordinary singular point. Then � is
a connected C1 manifold of codimension 1 in X.

Moreover, assume that F (u) = v has a unique solution for every v ∈ F (�′).
Then F (� ′) is also a connected C1 manifold of codimension 1 in Y and there exist
Y0,Y2 ⊂ Y , which are nonempty, open and connected, with the properties

1. Y = Y0 ∪ Y2 ∪ F (�′);
2. the equation F (u) = v has no solution if v ∈ Y0, a unique solution if v ∈ F (�′)

and precisely two solutions if v ∈ Y2.

Above, by a manifold of codimension 1 in X we mean that, locally, � = G−1(0) for
some G ∈ C1(X, R) such that dG(u) �= 0 for all u ∈ �.

The proof of this theorem will be carried out through several lemmas. In the sequel
v = F (u). First of all, since any u ∈ �′ is an ordinary singular point, there exist
W ⊂ X and Z ⊂ Y such that X = Rφ⊕W and Y = Z⊕Range [dF (u)]. Moreover,
we can choose ψ ∈ Y ∗ \ {0} such that Range [dF (u)] = Ker [ψ]. Let z ∈ Z be such
that 〈ψ , z〉 = 1 and let P (v) = 〈ψ , v〉z denote the projection onto Z.

Next, given v̂ ∈ Y we look for û ∈ X such that dF (̂u)[tφ + w] = v̂. Using the
Lyapunov–Schmidt reduction, this equation is equivalent to the system

{
P dF (̂u)[tφ + w]=P v̂.

(I − P ) dF (̂u)[tφ + w]= (I − P )̂v.
(3.9)

Lemma 3.5.2 �′ is a C1 manifold of codimension 1 in X.

Proof The map (I −P ) dF (u) is invertible as a map from W to Range [dF (u)] and
there exists ε > 0 such that (I − P ) dF (̂u) is also invertible provided ‖̂u− u‖ < ε.
Set A = [(I − P ) dF (̂u)]−1(I − P ) in such a way that

w = Âv− tA dF (̂u)[φ].

Then (3.9) becomes

{
(i) tP dF (̂u)[φ]+ P dF (̂u)[Âv− tA dF (̂u)[φ]] = P v̂.
(ii) w = Âv− tA dF (̂u)[φ].

(3.10)

If P dF (̂u)[φ]− AdF (̂u)[φ] �= 0 system (3.10) has the unique solution given by

t̂ = P v̂− P dF (̂u)[Âv]

P dF (̂u)[φ]− AdF (̂u)[φ]

ŵ = Âv− t̂A dF (̂u)[φ].
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Therefore, û ∈ �′ ∩ Bε(u) whenever

G(̂u) := P dF (̂u)[φ]− AdF (̂u)[φ] = 0.

Since
dG(u)[φ] = Pd2F (u)[φ,φ] = 〈ψ , d2F (u)[φ,φ]〉,

and u is an ordinary singular point (cf. condition (iii)), then dG(u)[φ] �= 0 and �′ is
a manifold of codimension 1 in X. ��
Lemma 3.5.3 F (�′) is a connected C1 manifold of codimension 1 in Y .

Proof Let u ∈ �′. Consider the map, defined for û ∈ X with ‖̂u − u‖  1, by
setting � (̂u) = F (̂u)+G(̂u)z. It is easy to check that d�(u) is invertible and hence
� is locally a diffeomorphism. Since G(u) = 0 for all u ∈ �′ it follows that, locally,
F (�′) = G̃−1(0), where G̃ = G◦�−1. In addition, dG̃ �= 0 and the lemma follows.

��
In the next lemma we suppose that 〈ψ , d2F (u)[φ,φ]〉 > 0. The case in which
〈ψ , d2F (u)[φ,φ]〉 < 0 requires obvious changes.

Lemma 3.5.4 Suppose that 〈ψ , d2F (u)[φ,φ]〉 > 0. Then there exist ε, δ > 0 such
that the equationF (tφ+w) = v+sz, with tφ+w ∈ Bε(u) := {̂u ∈ X : ‖̂u−u‖ < ε},
has two solutions for all 0 < s < δ and no solution for all −δ < s < 0.

Proof To simplify notation, we take u = v = 0 and consider the equation F (tφ +
w) = sz. Setting L = dF (0) we get

Lw+ ω((tφ + w) = sz, where ω(0) = 0, dω(0) = 0.

Using again the Lyapunov–Schmidt reduction, we find the system
{
Lw+ Pω((tφ + w) = 0,
(I − P )ω((tφ + w) = sz.

The first of the preceding equations can be handled by the implicit function theorem
yielding a w = w(t) of class C1 such that w(0) = 0 and dw(0) = 0. Inserting w in
the second equation of the system we find

χ (t) := 〈ψ ,ω(tφ + w(t))〉 = s.

A straight calculation yields

χ ′(0) = 0, χ ′′(0) = 〈ψ , d2F (0)[φ,φ]〉 > 0

and the result follows. ��
The local result stated in the previous lemma is completed by the following one.

Lemma 3.5.5 For any neighborhood U of u ∈ �′ there exists a neighborhood V of
v = F (u) such that F−1(V ) ⊂ U .
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Proof By contradiction, there exists a neighborhoodU∗ of u and a sequence un �∈ U ∗
such that F (un) → F (u). Using the properness of F , we find that, up to a subse-
quence, un converges to some u∗ �∈ U ∗. Moreover, F (u∗) = F (u), a contradiction
with respect to the assumption that the equation F (u) = v has a unique solution for
all v ∈ F (�′). ��
Proof of Theorem 3.5.1 The properties of �′ and F (�′) are proved in Lemmas 3.5.2
and 3.5.3. Since F (� ′) is a (connected) manifold of codimension 1, it is possible
to show that Y \ F (�′) has at most two connected components; see [17, p. 60].
Lemma 3.5.4 jointly with Lemma 3.5.5 imply that the equation F (u) = v has zero
or two solutions for v �∈ F (�′). Therefore Y \ F (�′) has precisely two components
proving statement 1. As for statement 2, it follows from the preceding discussion
and the fact that the cardinality of F−1(v) is constant on every connected component
of Y \ F (�′). ��





Chapter 4
Leray–Schauder Topological Degree

To study the number of solutions of equations like

�(u) = b,

where � is an open set in a Banach space X, � : � −→ X and b ∈ X, and based
on a similar idea of Brouwer for continuous maps defined in finite-dimensional
spaces, Leray and Schauder [64] introduced a topological tool, called the degree. It
consists in assigning an integer number d(�,�, b) with the property that the equation
has at least one solution provided that d(�,�, b) �= 0 (the existence property). In
addition, it is desired to have an additivity of the degree, namely if the equation
has only solutions in two disjoint open subsets �1,�2 of �, then deg (�,�, b) =
deg (�,�1, b)+ deg (�,�2, b).

The topological character of the degree is due to the fact that, roughly speaking,
it is possible to deduce the existence of a solution of �(u) = b by showing that
the map can be continuously deformed (by a homotopy) on a map �0 for which
the existence of a solution of the equation �0(u) = b is known. We point out that
this homotopy property is in general not satisfied for the function #(�,�, b), the
number of solutions of �(u) = b in �. Indeed, it suffices to think of the example
� = ( − 3, 3) ⊂ X = R, b = 0 and �λ(x) = (x − λ)3 − λ2(x − λ). In this case,
for λ ∈ (0, 1] the equation �λ(x) = 0 has exactly three solutions 0, λ, 2λ, while for
λ = 0 there is just one solution, x = 0. This example shows that the definition of
d(�,�, b) requires some care.

In this chapter we discuss in detail the Leray–Schauder topological degree, which
will be a fundamental tool for the applications to nonlinear problems in infinite-
dimensional spaces. It is based on the the finite-dimensional Brouwer degree which,
for the sake of brevity, is only sketched in an initial section.

4.1 The Brouwer Degree

The Brouwer degree is now a well known tool, discussed in several books, like [2, 15,
44, 71]. For this reason we will limit ourselves to give the definition of the Brouwer
degree and to outline its main properties without proofs.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 33
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_4, © Springer Science+Business Media, LLC 2011
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Let � be a bounded open subset of R
N and consider a map f ∈ C(�, RN ) and

a point b ∈ R
N \ f (∂�). The above assumptions will always be understood in the

sequel.
To define the Brouwer degree first we fix some notation. Let f ∈ C(�, RN )

⋂

C1(�, RN ). If the components of f (x) are fi(x), we denote by f ′(x) the Jacobian of
f at x, namely the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f1

∂x1
(x),

∂f1

∂x2
(x), . . .

∂f1

∂xN
(x)

∂f2

∂x1
(x),

∂f2

∂x2
(x), . . .

∂f2

∂xN
(x)

. . .
∂fN

∂x1
(x),

∂fN

∂x2
(x), . . .

∂fN

∂xN
(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and by Jf (x) the determinant off ′(x). We denote by R the class of all triples (f ,�, b)
such that f ∈ C(�, RN )

⋂
C1(�, RN ) with � a bounded open set in R

N , b �∈ f (∂�)
and where b is a regular value of f in �, namely f ′(x) is invertible for every x ∈ �

satisfying f (x) = b.
The definition of the Brouwer degree is given through several steps.

Step 1. Definition of the Brouwer degree in the class R. Assume that (f ,�, b) ∈ R.
The set {u ∈ � : f (u) = b} is finite because b is a regular value of f and � is
bounded. In this case one defines the degree by setting

deg (f ,�, b) :=
∑

f (x)=b
sign (Jf (x)). (4.1)

Example 4.1.1 Consider a linear, invertible1 continuous map L : R
N → R

N . Let
λj (j = 1, . . . , k) denote the characteristic values of L (see Definition 1.3.4). If I

denotes the identity map in R
N , we claim that

deg (I − L,Br , 0) = (− 1)β , r > 0, (4.2)

where β is the sum of the algebraic multiplicities mj of λj ∈ (0, 1).

First let us remark that 0 is a regular value of f = I − L because λ = 1 is not a
characteristic value of L. For the same reason the only solution of f (x) = 0 is x = 0
and (4.1) becomes

deg (I − L,Br , 0) = sign (JI−L(0)). (4.3)

1 Or, equivalently, that λ = 1 is not a characteristic value of L.
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In order to evaluate sign (JI−L(0)), let us begin by pointing out that the eigenvalues
αj of I − L are given by

αj = λj − 1

λj

.

Moreover, the algebraic multiplicity of αj is equal to mj , namely to that of λj . If we
write I − L in its Jordan normal form, then its determinant is given by

JI−L(0) =
∏

j

αj =
∏

j

λj − 1

λj

. (4.4)

Here it is understood that each αj (or λj ) is repeated mj times. Now, remark that
none of αj is zero because λj �= 1 by assumption. In addition, the only αj which
contribute to the sign [JI−L(0)] are the real αj < 0, namely the λj ∈ (0, 1). This is
clear if αj > 0. Moreover, if one αj is complex, its complex conjugate α∗j is also an
eigenvalue of I −L. Hence their product is positive and does not change the sign of
JI−L(0). Therefore, (4.3) yields

deg (I − L,Br , 0) = sign [JI−L(0)] = (− 1)β , where β =
∑

0<λj<1

mj .

This immediately implies (4.2). ��

Step 2. Extension to continuous maps. To extend the definition of degree to singular
values b of f , one uses the Sard lemma.

Sard Lemma Let f ∈ C1(�, RN ) and consider the set S(f ) of singular points of
f , i.e., S(f ) = {x ∈ � : Jf (x) = 0}. Then the set of singular values, f (S(f )),
has zero Lebesgue measure.

As a direct consequence, the class of functions f ∈ C∞(�, RN ) for which b is a
regular value is dense in the space C(�, RN ), and therefore the degree defined for
R is uniquely extended to a continuous map in the class of triples (f ,�, b) with
f ∈ C(�, RN ), � a bounded open set in R

N and b �∈ f (∂�).
The main properties of the Brouwer degree are the following.

(P1) Normalization property: deg (I ,�, b) = 1, for b ∈ �, where I is the identity
map.
(P2) Additivity property: If �1 and �2 are open, bounded disjoint subsets in � and
b �∈ f (� \ (�1 ∩�2)), then deg (f ,�, b) = deg (f ,�1, b)+ deg (f ,�2, b).
(P3) Homotopy property: Let H ∈ C([0, 1] × �, RN ) be a homotopy. If b ∈
C([0, 1], RN ) satisfies b(t) �∈ H (t , ∂�), for every t ∈ [0, 1], then deg (H (t , .),�, b)
is constant. In particular, deg (H (0, .),�, b(0)) = deg (H (1, .),�, b(1)).

Actually, it has been proved in [5] that the degree is uniquely determined by the
additivity, homotopy and normalization properties. In addition, we list below other
properties of the Brouwer degree that can be deduced from (P1)–(P3). We prove the
first three properties and leave as an exercise to the reader the remaining ones.
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(P4) Solution property: If deg (f ,�, b) �= 0, then b ∈ f (�), namely there exists
x ∈ � such that f (x) = b.

Proof If b �∈ f (�), applying (P2) with �1 = �2 = ∅, we have deg (f ,�, b) =
2 deg (f , ∅, b) = 0, where the latter equality is also a consequence of (P1) with
�1 = � and �2 = ∅. ��

(P5) Excision property: Let K ⊂ � be any compact set such that b �∈ f (K). Then
deg (f ,�, b) = deg (f ,� \K , b).

Proof Apply (P2) with �1 = � \K and �2 = ∅. ��

(P6) Dependence on the boundary values: deg (f ,�, b) depends only on the values
of f on ∂�, namely if f ∈ C(�, RN ) and g ∈ C(�, RN ) are such that f|∂� = g|∂�,
then deg (f ,�, b) = deg (g,�, b).

Proof Apply (P3) with H (t , x) = tf (x)+ (1− t)g(x) and b(t) = b. ��

(P7) If � ⊂ R
N and f ∈ C(�, Rn), with N ≥ n, then deg (f ,�, b) =

deg (f |�∩Rn ,�∩R
n, b). Here we identify R

n with the subset R
n×{0}× (N−n). . . ×{0}

of R
N .

(P8) Continuity with respect to b: The degree is constant for b on each connected
component of R

N − f (∂�).
(P9) Continuity with respect to f : There exists a neighborhood U of f in C(�, RN )
such that

deg (f ,�, b) = deg (g,�, b) ∀g ∈ U.

Let us remark that the neighborhood U can be chosen in such a way that b �∈ g(∂�)
for any g ∈ U . Hence the deg (g,�, b) is well defined.

4.2 The Leray–Schauder Topological Degree

The Brouwer degree has been extended by Leray and Schauder to spaces of infinite
dimension for compact perturbations of the identity.

Let X be a Banach space, and let � be an open subset of X. Consider a compact
map T ∈ C(�,X) and let � = I − T where I denotes the identity in X. Let b ∈ �

be such that b �∈ �(∂�). The Leray–Schauder topological degree (for short, LS
degree) is defined on any triple (�,�, b) with the above properties. The class of such
(�,�, b) is denoted by D.

Remark 4.2.1 If X = R
N we recover the Brouwer degree defined in the previous

section. As a consequence, the results (and the proofs) given below can be translated
to results for the Brouwer degree.



4.2 The Leray–Schauder Topological Degree 37

Since T is compact, the set �(∂�) is closed and thus

δ := dist (b,�(∂�)) > 0. (4.5)

Moreover, still using the fact that T is compact, we infer that there exists a sequence
of continuous operators Tn with finite-dimensional range, namely Tn(�) ⊂ R

n, such
that Tn → T , uniformly, (cf. [36, Sect. 6.1]).

Setting �n = I − Tn and using (4.5) we deduce that

dist (b,�n(∂�)) > δ/2 > 0,

provided n is sufficiently large and hence deg ( (I − Tn)|�∩Rn ,� ∩ R
n, b) makes

sense.
Moreover, using property (P7) of the Brouwer degree, there exists n0 ≥ 1 such

that

deg ((I − Tn)|�∩Rn ,� ∩ R
n, b) = const. ∀ n ≥ n0. (4.6)

In addition, this constant is independent of the considered approximation Tn of T ,
as is shown in the following result.

Lemma 4.2.2 If Sn ∈ C(�, Rn) is such that Sn → T uniformly, then

deg ( (I − Sn)|�∩Rn ,� ∩ R
n, b) = deg ( (I − Tn)|�∩Rn ,� ∩ R

n, b), ∀ n! 1.

Proof Since both Sn and Tn converge to T , then ‖Sn − Tn‖ → 0 as n→∞. Using
property (P9) of the Brouwer degree the lemma follows. ��
According to these remarks, the following definition is in order.

Definition 4.2.3 If (�,�, b) ∈ D, then we set

deg (�,�, b) = lim
n→∞ deg ( (I − Tn)|�∩Rn ,� ∩ R

n, b).

All the properties of the Brouwer degree hold for the LS degree provided that
(�,�, b) ∈ D. The reader can check this claim as an exercise. Without changing
notation, we will still refer to these properties as (P1)–(P9).

It is convenient to state explicitly the form that takes the homotopy property.

Proposition 4.2.4 (Homotopy property) Let T ∈ C([0, 1] × �,X) be such that
T (t , .) is a compact map for all t ∈ [0, 1]. Define �t (u) = u − T (t , u). If b :
[0, 1] −→ X is continuous and �t (u) �= b(t) for every t ∈ [0, 1] and u ∈ ∂�, then

deg (�t ,�, b(t)) = const. ∀t ∈ [0, 1]. ��
Example An interesting homotopy which we will consider is T (t , u) = t T (u) with
T compact and b(t) ≡ b �∈ �t (∂�) for every t ∈ [0, 1]. In this case,

deg (I − T ,�, b) = deg (I ,�, b) = 1.

A more general version of the homotopy property is stated below without proof.
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Proposition 4.2.5. (General homotopy property) Let � be a bounded, open subset
of R × X and let T : �→ X be a compact map. For every t ∈ R we consider the
t-slice

�t = {u ∈ X : (t , u) ∈ �}
and the map �t : �t → X given by

�t (u) = u− T (t , u).

If

�t (u) �= b, ∀u ∈ ∂�t ,

then the topological degree deg (�t ,�t , b) is well defined and independent of t . ��
An application of the homotopy property of the LS degree is the fixed point theorem
proved by Juliusz Schauder [80].

Theorem 4.2.6 (Schauder fixed point theorem) IfB is a closed ball of a real Banach
space X and T : B −→ B is compact, then T has a fixed point.

Proof Without loss of generality we can assume that B is the closed ball Br of
center 0 and radius r . Observe that the thesis of the theorem is clearly verified if
0 ∈ (I − T )(∂B). On the other hand, if for each u ∈ ∂B, T u �= u, then, using in
addition that

t‖T u‖ < r = ‖u‖, ∀t ∈ [0, 1), ∀u ∈ ∂B,

we deduce for �t = I − tT that 0 �∈ �t (∂B), for every t ∈ [0, 1]. By applying the
homotopy property of the degree to the family of compact operators �t we get

deg (�1,B, 0) = deg (I ,B, 0) = 1.

By the existence property, this implies that �1 has a zero, i.e., T has a fixed point
in B. ��
Remark 4.2.7 The key issue in the above proof has been to establish that

{u : u− tT (u) = 0 for some t ∈ [0, 1]} ⊂ Br (4.7)

to apply the homotopy property. The condition (4.7) means that r is an a priori bound
of the solutions of the equation u− tT (u) = 0.

Remark 4.2.8 As a consequence of the Dugundji extension theorem, every closed
convex set D of a normed linear space X is a retract (i.e., there exists a map R :
X −→ X such that Rx = x for every x ∈ D), and the Schauder theorem is also
true if we substitute the closed ball B by any closed bounded convex set D. Indeed,
it suffices to consider a closed ball B containing D and to apply the above theorem
to the composition operator T ◦ R : B −→ D ⊂ B.
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4.2.1 Index of an Isolated Zero and Computation
by Linearization

Assume that, for � ∈ C(�, RN ), u0 ∈ � is an isolated solution of the equation
�(u) = 0, i.e., a unique solution of this equation in a neighborhood (say Br0 (u0) =
{u ∈ R

N : ‖u− u0‖ < r0} ⊂ �) of u0. We deduce then that (�,Br(u0), 0) ∈ D and
from the excision property that

deg (�,Br (u0), 0) = deg (�,Br0 (u0), 0), ∀r ∈ (0, r0).

This allows us to define the index of � relative to u0 by setting

i (�, u0) = lim
r→0

deg (�,Br (u0), 0).

Below, if � = I − T is C1, we show how to evaluate the index of � relative to
u0 through the index of its derivative at zero. Up to a translation, we can assume,
without loss of generality, that u0 = 0. As it has been mentioned, in the sequel it is
always understood that the triples considered are (�,Bε , 0) ∈ D.

We begin with some preliminary remarks. First of all it is well known that if T

is compact, then the linear map T ′(0) is also compact (see, e.g., [15, Lemma 3.17]).
If, in addition, �′(0) = I − T ′(0) is invertible (λ = 1 is not a characteristic value of
T ′(0)), then zero is the unique zero of �′(0) and, consequently, deg (�′(0),Bε , 0) is
well defined.

Lemma 4.2.9 Suppose that � is of class C1 such that det [�′(0)] �= 0. Then

deg (�,Bε, 0) = deg (�′(0),Bε, 0),

for every sufficiently small ε > 0.

Remark 4.2.10 Under the hypothesis of the previous lemma, there exists a small
ε > 0 such that the equation �(u) = 0 has a unique solution u = 0 in the ball Bε

centered at u = 0 with radius ε.

Proof Consider the family of maps

H (t , u) =

⎧
⎪⎨

⎪⎩

1

t
�(tu), if t ∈ (0, 1],

�′(0)u, if t = 0.

Clearly H (t , u) is an admissible continuous homotopy. Otherwise, there exists
(t∗, u∗) ∈ [0, 1] × ∂� such that H (t∗, u∗) = 0. From the definition of H and since
0 �∈ ∂� it follows that t∗ ∈ (0, 1). Hence we have �(t∗u∗) = 0, a contradiction.
Then the result follows by applying the homotopy property. ��
Let χ (0, 1, T ′(0)) denote the set of all characteristic values λ ∈ (0, 1) of T ′(0). Since
T ′(0) is compact, the set χ (0, 1, T ′(0)) is finite (see Theorem 1.3.6). Moreover, let
mult(λ) be the algebraic multiplicity of λ.
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Theorem 4.2.11 Let T be of class C1(�,X) and compact. Moreover we suppose
that T ′(0) is invertible. Then there holds

i (�, 0) = i (�′(0), 0) = (− 1)β ,

where2

β =
∑

λ∈χ (0,1,T ′(0))

mult (λ).

Proof Let V ⊂ X be the space spanned by the eigenfunctions corresponding to the
λ’s in χ (0, 1, T ′(0)). Then V has dimension β and there exists W ⊂ X such that
X = V ⊕W . Let P ,Q be the projections onto V ,W , respectively.

We claim that the homotopy H (t , u) = (1 − t)(u − T ′(0)u) + t( − Pu + Qu)
(which is a linear map of the type Identity—Compact since −P + Q = I − 2P
where the range of P is finite dimensional) is admissible on Bε (actually, on any ball
Br ). Indeed, arguing by contradiction, suppose there exists (t∗, u∗) ∈ [0, 1] × ∂Bε

such that H (t∗, u∗) = 0. Writing v = Pu∗ ∈ V and w = Qu∗ ∈ W and using that V
and W are invariant by T ′(0), this means that

(1− 2t∗)v = (1− t∗)T ′(0)v

w = (1− t∗)T ′(0)w.

Observe that (1 − 2t∗)(1 − t∗)−1 < 1 < (1 − t∗)−1 for t ∈ (0, 1) and thus, since
T ′(0)|V has only eigenvalues greater than one, v = 0. Similarly, since T ′(0)|W does
not have eigenvalues greater than one, w = 0; i.e., u∗ = 0, a contradiction. As a
consequence, by the homotopy invariance, Definition 4.2.3 and (4.3), we obtain

deg (I − T ′(0),Bε, 0) = deg (− P +Q,Bε, 0) = deg (I − 2P ,Bε, 0) = (− 1)β.

��

4.3 Continuation Theorem of Leray–Schauder

4.3.1 A Topological Lemma

The following separation lemma (see [44, 87]) will be useful.

Lemma 4.3.1 Let (M , d) be a compact metric space, letAbe a connected component
of M and let B be a closed subset of M such that A∩B = ∅. Then there exist compact
sets MA and MB satisfying

• A ⊂MA, B ⊂MB .
• M=MA ∪MB and MA ∩MB = ∅.

2 If χ (0, 1, T ′(0)) = ∅ we set β = 0.
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The proof of Lemma 4.3.1 is based on the notion of ε-chainable points.

Definition 4.3.2 Given ε > 0, we say that two points a, b in a compact metric space
M are ε-chainable if there exists a finite number of points x1, . . . , xn ∈ M such that
x1 = a, xn = b and d(x1, xi+1) < ε for every i = 1, ..., n− 1.

Clearly the relation “to be ε-chainable” is an equivalence relation. Using this it is
easily proved that the set Aε(a) of all points x in M which are ε-chainable is open
and closed in M . As a consequence, if A is a connected set in M , then A ⊂ Aε(a)
for every a ∈ A and, by the transitivity of the relation, the set Aε(a) does not depend
on the choice of the point a ∈ A. We denote this set as Aε in this case and we prove
the following result.

Proposition 4.3.3 Let A be a connected set in M and let ε > 0. If Aε denotes the
set of points in M which are ε-chainable with some point in A (thus, with all points
in A), then M0 :=

⋂

ε>0

Aε is connected.

Proof We begin by proving that every two points in M0 are δ-chainable for every
δ > 0. Indeed, let b1, b2 ∈ M0 and δ > 0. By the definition of M0, each one of
the points bi (i = 1, 2) is δ-chainable with every point in A. The transitive property
implies then that b1 and b2 are δ-chainable.

Now, assume, by contradiction, that M0 is not connected, i.e., that there exist
closed sets C1,C2 in M0 such that

M0 = C1 ∪ C2, C1 ∩ C2 = ∅.
Since M0 is closed (by intersection of closed sets) in the compact M , we deduce
that C1 and C2 are also disjoint compact. Let δ = dist (C1,C2) > 0. Clearly, ev-
ery two points c1 ∈ C1 and c2 ∈ C2 are not δ-chainable, contradicting our first
assertion at the beginning of the proof. Therefore, M0 is connected and the proof is
concluded. ��
Now we are ready to prove the separation Lemma 4.3.1.

Proof of Lemma 4.3.1 It suffices to show that there exists ε > 0 such that

B ∩ Aε = ∅. (4.8)

Indeed, if the existence of this ε has been stated, then we can take MA = Aε,
MB = M \ Aε.

To prove (4.8), we argue by contradiction: assume that B ∩ Aε �= ∅, for every
ε > 0. This means that fixing a ∈ A and taking, for n ∈ N, εn = 1

n
, there exists

bn ∈ B such that a and bn are εn-chainable.
By the compactness ofB, there exists a subsequence

{
bnk
}

of {bn}which converges
to some b ∈ B. We claim that b ∈ Aεk , for every k ∈ N. Indeed, given k ∈ N, we
can choose nk > k such that d(bnk , b) < εk = 1

k
and hence b is εk-chainable with

bnk . Using also that nk > k, we have bnk ∈ Aεnk
⊂ Aεk and bnk is εk-chainable
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with every point in A. The claim is proved then by applying the transitive property.
Consequently, b ∈ ∩

k∈N

Aεk = M0, where the set M0 is connected by Proposition 4.3.3

and containsA. Taking into account thatA is a connected component, we getM0 = A

and therefore b0 ∈ M0 = A which implies that A ∩ B �= ∅, a contradiction proving
(4.8) and the lemma. ��

4.3.2 A Theorem by Leray and Schauder

Let X be a real Banach space, let � be a bounded and open subset of X, let a < b

and let T : [a, b]×�→ X be a compact map. For λ ∈ [a, b], consider the equation

�(λ, u) = u− T (λ, u) = 0, u ∈ X. (4.9λ)

Observe that T can be seen as a family of compact operators

Tλ(u) := T (λ, u), u ∈ X.

Similarly, we denote �λ = I − Tλ. Define

� = {(λ, u) ∈ [a, b]×� : �(λ, u) = 0}.

We use the notation �λ for the λ-slice of �, i.e., �λ = {u ∈ � : (λ, u) ∈ �}.
Theorem 4.3.4 (Leray–Schauder [64], (see also [50])) Assume that X is a real
Banach space, � is a bounded, open subset of X and � : [a, b]×� −→ X is given
by �(λ, u) = u− T (λ, u) with T a compact map. Suppose also that

�(λ, u) = u− T (λ, u) �= 0, ∀(λ, u) ∈ [a, b]× ∂�.

If

deg (�a ,�, 0) �= 0, (4.10)

then

1. (4.9)λ has a solution in � for every a ≤ λ ≤ b.
2. Furthermore, there exists a compact connected set C ⊂ � such that

C ∩ ({a} ×�a) �= ∅ and C ∩ ({b} ×�b) �= ∅, (see Fig. 4.1).

Proof 1. First, observe that the homotopy property of the degree implies that

deg (�λ,�, 0) = const., ∀λ ∈ [a, b].
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Fig. 4.1 Leray–Schauder
theorem

C

ba
λ

X

Therefore, by (4.10), the constant is not zero. Thus, if λ ∈ [a, b] then deg (�λ,�,
0) �= 0 and, in particular, from the existence property, (4.9)λ has a solution uλ.

2. We argue by contradiction, supposing that every connected component set
C ⊂ � containing points of {a} × �a does not intersect {b} × �b, (see Fig. 4.2).
Applying Lemma 4.3.1 we deduce that there exist two disjoint compact sets Ma ⊃
C ⊃ {a} × �a and Mb ⊃ {b} × �b such that � = Ma ∪Mb. It follows that there
exists a bounded open set O in [a, b] × X such that {a} × �a ⊂ C ⊂ Ma ⊂ O,
Mb ∩O = ∅ and T (λ, u) �= u for u ∈ ∂Oλ, with λ ∈ [a, b]. (We are denoting by Oλ

the λ-slice of O, i.e., Oλ = {u : (λ, u) ∈ O}.)
The general homotopy property of the degree implies that

deg (�λ, Oλ, 0) = deg (�a , Oa , 0)

for a ≤ λ ≤ b. By (4.10) we deduce that deg (�b, Ob, 0) = 0 for every λ ∈ [a, b].
However, since �b has no zeros in Ob, we get a contradiction, proving case 2. ��

Fig. 4.2 Proof of
Leray–Schauder theorem
by contradiction

b

O

a
λ

X
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4.4 Other Continuation Theorems

Let X be a real Banach space and consider a compact map T : R × X → X. We
denote again by � the closed set of the pairs (λ, u) ∈ R × X with u a solution of
(4.9)λ. We prove the existence of continua of solutions in �.

Theorem 4.4.1 For λ0 ∈ R, let u0 ∈ X be an isolated solution of the problem (4.9)λ0

such that
i(�λ0 , u0) �= 0.

Then the connected component of � that contains (λ0, u0) is not bounded in R×X.

Proof We argue by contradiction and assume that the connected component, C, of
� that contains (λ0, u0) is bounded. Since u0 is isolated, there exists δ1 > 0 such that

({λ0} × Bδ1 (u0)) ∩� = {(λ0, u0)}. (4.11)

For 0 < δ < δ1, let Uδ be a δ-neighborhood of C, that is

Uδ = {(λ, u) ∈ R×X : dist((λ, u),C) < δ}.
As in the proof of the previous theorem, we can take O ⊂ R × X with ∂O ∩ � =
∅, (λ0, u0) ∈ O. Indeed, in the case � ∩ ∂Uδ = ∅, it suffices to choose O = Uδ. In
the other case, since the set K = Uδ ∩ � is a compact metric space, we can apply
Lemma 4.3.1 to the closed sets C and �∩∂Uδ to deduce the existence of two disjoint
compact sets A,B of K such that

K = A ∪ B, C ⊂ A.

Taking a neighborhood of A as O we conclude the claim. Hence, the topological
degree deg (I − Tλ, Oλ, 0) is well defined. Further, using the general homotopy
property we derive that deg (I − Tλ, Oλ, 0) is constant for values of λ in a compact
interval. On the other hand, since O is bounded in R×X, there exists ε1 ∈ R

+ such
that

Oλ = ∅ if λ �∈ (λ0 − ε1, λ0 + ε1),

which, using that the degree relative to the empty set is zero, implies that

deg (I − Tλ, Oλ, 0) = 0, ∀λ ∈ R,

and hence that deg (I − Tλ0 , Oλ0 , 0) = 0. But, by the excision property of the degree
and (4.11), 0 = deg (I − Tλ0 , θλ0 , 0) = i(�λ0 , u0), contradicting the hypothesis
i(�λ0 , u0) �= 0. ��
The next result is useful to prove existence of a continuum with a specific shape (see
Fig. 4.3).

Theorem 4.4.2 LetU ⊂ X be bounded, open and let a, b ∈ R be such that (4.9)λ has
no solution in ∂U , for every λ ∈ [a, b], and that (4.9)b has no solution inU . Let U1 ⊂
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Fig. 4.3 Theorem 4.4.2

ba
λ

X
{a} × U1

{a} × U

C

U be open such that (4.9)a has no solution in ∂U1 and deg (I −Ta ,U1, 0) �= 0. Then
there exists a continuum C in � = {(λ, u) ∈ [a, b] × X : u is a solution of (4.9)λ},
such that

C ∩ ({a} × U1) �= ∅, C ∩ ({a} × (U \ U1)) �= ∅.
Proof We use the following notation:

K = ([a, b]× U ) ∩�,

A = ({a} × U 1) ∩K ,

B = ({a} × (U \ U1)) ∩K.

Since (4.9)b has no solution in U and K is compact, we can consider K ⊂ [a, s]×U

for some s ∈ (a, b).
We argue by contradiction and assume that the theorem is false. By Lemma 4.3.1,

there exist disjoint, compact subsets KA,KB containing respectively A and B, such
that K = KA ∪ KB . Let O be a δ-neighborhood of KA such that dist(O,KB) > 0.
Hence the Leray–Schauder degree is well defined in Oλ = {u ∈ U : (λ, u) ∈ O} for
every λ ∈ [a, b]. Furthermore, by the general homotopy property, we have

deg (I − Tλ, Oλ, 0) = constant,

and consequently

deg (I − Ta , Oa , 0) = deg (I − Tb, Ob, 0). (4.12)

On the other hand, since O∩KB = ∅, there are no solutions of Eq. (4.9)a in Oa \U1

and hence, by the excision property, we deduce that

deg (I − Ta , Oa , 0) = deg (I − Ta ,U1, 0) �= 0.

However, by hypothesis we know that Ob = ∅, and thus we conclude that deg (I −
Tb,Ob, 0) = 0. This is a contradiction with (4.12), proving the theorem. ��





Chapter 5
An Outline of Critical Points

This chapter deals with variational methods. In addition to the existence of minima of
a functional, we discuss the mountain pass theorem, and the linking theorem which
are used to find saddle points. A perturbation method, variational in nature, is studied
in the last section.

5.1 Definitions

Let E be a Hilbert space and J ∈ C1(E, R). Then the Fréchet derivative dJ (u) is a
linear continuous map from E to R and hence we can define, by the Riesz theorem,
the gradient J ′(u) ∈ E of J at u by setting

(J ′(u) | v) = dJ (u)[v], ∀ v ∈ E.

Example 5.1.1 (i) If E = R
N and F ∈ C1(RN , R), the gradient F ′(x) is nothing but

the vector in R
N with components Fxi (x), i = 1, . . . ,N .

(ii) If E is a Hilbert space with norm ‖ · ‖ and scalar product (· | ·), for the functional
J (u) = 1

2‖u‖2 one has dJ (u)[v] = (u | v) and hence J ′(u) = u.
(iii) More in general, if A is a linear symmetric operator on E and J (u) = 1

2 (Au | u),
one has dJ (u)[v] = (Au | v) and hence J ′(u) = Au.

An operator T : E → E is called variational if there exists a differentiable func-
tional J : E→ R such that T = J ′.

A critical point of J is a u ∈ E such that J ′(u) = 0. A critical value c is a number
c ∈ R for which there exists a critical point u ∈ E with level J (u) = c. We will see
that, in our applications, critical points are (weak) solutions of differential equations.
Therefore, if T is a variational operator, in order to find the solutions of T (u) = 0 it
suffices to look for the critical points of J , where J ′ = T .

Below, we will limit ourselves to consider two classical results dealing with the
existence of minima and of saddle points of the mountain pass type.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 47
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_5, © Springer Science+Business Media, LLC 2011
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5.2 Minima

Usually the existence of minima of a functional is deduced as a consequence of the
Weierstrass theorem (see Theorem 1.2.4). For instance, by Corollary 1.2.5, every
functional J ∈ C1(E, R) which is coercive (lim‖u‖→∞ J (u) = +∞) and weakly
lower semicontinuous (w.l.s.c.) (J (u) ≤ lim inf J (un) if un ⇀ u) is bounded from
below and has a global minimum, so that we have the following example.

Example 5.2.1 Consider the functional

J (u) = 1
2‖u‖2 −H(u),

where H ∈ C1(E, R) is weakly continuous (namely un ⇀ u ⇒ H(un) → H(u))
and satisfies

|H(u)| ≤ a1 + a2‖u‖α,

with a1, a2 > 0 and α < 2. Then

J (u) ≥ 1
2‖u‖2 − a1 − a2‖u‖α

and since α < 2, it follows that J is coercive. It is well known that the norm ‖u‖
is w.l.s.c. This and the fact that H is weakly continuous implies that J is w.l.s.c.
Therefore Corollary 1.2.5 applies and yields a global minimum z ∈ E of J such that
J ′(z) = 0, i.e., z = H′(z).

Dealing with nonlinear eigenvalue problems, we shall also consider minima con-
strained on a submanifold M of E. We will focus on the specific situation for
M = G−1(0), where G ∈ C1,1(E, R). If G ′(u) �= 0 on M , then M is a smooth
manifold in E.

We say that u ∈ M is a local minimum constrained on M for the functional
J ∈ C1(E, R) if there exists a neighborhood U of u such that

J (u) ≤ J (v), ∀ v ∈ U ∩M.

If u is a local minimum of J on M , then there exists λ ∈ R such that J ′(u) = λG ′(u).
The proof is quite similar to the elementary finite-dimensional case (see Exercise 24).
The value λ is called the Lagrange multiplier.

Example 5.2.2 If G(u) = 1
2 (‖u‖2 − R2), then M is a sphere of radius R and a local

minimum of J on M satisfies J ′(u) = λu.

5.3 The Mountain Pass Theorem

The mountain pass theorem deals with the existence of critical points of a functional
J ∈ C1(E, R) which has a strict local minimum at, say, u = 0. Specifically, we
assume that it satisfies the following two “geometric” assumptions.
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(J1) There exist r , ρ > 0 such that J (u) ≥ ρ for all u ∈ E with ‖u‖ = r .
(J2) ∃ v ∈ E, ‖v‖ > r , such that J (v) ≤ 0 = J (0).

Example 5.3.1 Let J ∈ C1(E, R) be a functional of the form

J (u) = 1
2‖u‖2 − 1

2 (Au | u)−H(u),

where A is a compact linear bounded symmetric operator in E and H ∈ C2(E, R) is
homogeneous of degree α > 2, namely H(tu) = tαH(u) for all t ≥ 0 and all u ∈ E.
This implies that H(0) = 0 and H′(0) = 0 as well as d2H(0)[v, v] = 0 for all v ∈ E.
Therefore one has that J ′(0) = 0 and

d2J (0)[v, v] = ‖v‖2 − (Av | v)− d2H(0)[v, v] = ‖v‖2 − (Av | v).

From this we infer that d2J (0) is positive definite provided (Av | v) < ‖v‖2 for all
v ∈ E, i.e., if ‖A‖ < 1 (since ‖A‖ = sup‖v‖=1 (Av | v) because A is symmetric).
Consequently, by Theorem 1.3.6, d2J (0) is positive definite iff all the eigenvalues
of A are smaller than 1. If this holds, u = 0 is a strict local minimum for J , i.e., (J1)
is satisfied. Moreover, suppose that H �≡ 0 and let v �= 0 be such that H(v) �= 0. The
following holds:

J (tv) = 1
2 t

2 ‖v‖2 − 1
2 t

2 (Av | v)− tα H(v). (5.1)

If H(v) > 0, resp. H(v) < 0, (5.1) and the fact that α > 2 implies that there exists
t∗ > 0, resp. t∗ < 0, such that J (t∗v) < 0 and (J2) holds.

Let J ∈ C1(E, R) be a functional satisfying the assumptions (J1)–(J2). Without
loss of generality, we can also assume (to simplify notation) that J (0) = 0. Consider
the class of all paths joining u = 0 and u = v,

� = {γ ∈ C([0, 1],E) : γ (0) = 0, γ (1) = v}
and set

c = inf
γ∈� max

t∈[0,1]
J (γ (t)). (5.2)

Clearly, the class � is not empty and, by (J1)–(J2), c ≥ ρ > 0. We expect that there
exists at least a critical point of J at the min–max level c. However, even in finite
dimension, this is in general false without the assumption of additional hypotheses.
Indeed, for E = R

2 we have the following example due to Brezis and Nirenberg.
The functional J (x, y) = x2 + (1 − x)3y2 has a unique critical point, which is the
origin (0, 0). Since J (x, y) = x2 + y2 + o(x2 + y2) as (x, y) → (0, 0), it follows
that (0, 0) is a strict local minimum for J , namely (J1) holds. Moreover

J (t , t) = t2 + (1− t)3t2 →−∞, as t →+∞
and hence (J2) holds, too.
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The additional hypothesis that we need in order to show that c is a critical value
is the following “compactness” condition:

(PS)c Every sequence {un} such that
(i) J (un)→ c,
(ii) J ′(un)→ 0,

has a converging subsequence.
This condition is usually called the (local) Palais–Smale condition at level c and

the sequences {un} satisfying (i)–(ii) are called (PS)c sequences.
Notice that (PS)c is equivalent to the following two conditions:

(a) If the sequence {un} satisfies {J (un)} −→ c and ‖un‖ −→ +∞, then there
exists c > 0 such that ‖J ′(un)‖ ≥ c for n sufficiently large.

(b) Every bounded sequence {un}with {J (un)} −→ c and {J ′(un)} −→ 0 possesses
a convergent subsequence.

The second one is a compactness condition which is satisfied in many cases (see
Lemma 7.1.1), while the first condition means that every sequence of points {un}with
level near c ({J (un)} −→ c) and that are almost critical points ({J ′(un)} −→ 0) are
a priori bounded, i.e., there exists M > 0 such that ‖un‖ ≤ M .

The reader should observe that (a) is more general than the standard a priori
estimate for the solutions of the variational equation J ′(u) = 0 (see Remark 4.2.7).
Actually, there are examples in which a functional J has an unbounded sequence of
critical points but satisfies the (PS)c condition for every c ∈ R (see [15, 18, 77]).

Given a ∈ R, let us consider the sublevel J a = {u ∈ E : J (u) ≤ a} of J .
The Palais–Smale condition allows us to deform sublevels J a of the functional J .
Specifically, we have the following deformation lemma.

Lemma 5.3.2 Suppose that b ∈ R is not a critical value of J ∈ C1,1(E, R) and that
(PS)b holds. Then there exist δ > 0 and a map η ∈ C(E,E) such that η(J b+δ) ⊂
J b−δ . Moreover, η(u) = u for all u ∈ J b−2δ .

Proof The (PS)b condition and the assumption that b is not a critical value of J
mean that there exists δ > 0 satisfying

‖J ′(u)‖ ≥ δ, ∀ u ∈ J −1([b − δ, b + δ]).

Thus, we can construct ([76]) a vector field W ∈ C0,1(E,E) in such a way that

W (u) =
{−J ′(u)‖J ′(u)‖−2, if b + δ ≥ J (u) ≥ b − δ,

0, if J (u) ≤ b − 2 δ,

and consider the Cauchy problem

φ ′ = W (φ), φ(0) = u.

Since W is bounded, it is easy to check that the flow φt (u) is defined for all t ≥ 0.
Let us point out that for any u ∈ J b+δ the following holds (the dependence on u is
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understood):

dJ (φt )

dt
= (J ′(φt ), (φt )′) = (J ′(φt ),W (φt )) ≤ 0. (5.3)

In particular, J (φt (u)) is decreasing with respect to t ≥ 0. Take T = 2δ. We
claim that η(u) = φT (u) is the map we are looking for. Otherwise, for some u ∈
J b+δ − J b−δ , we have J (φT (u)) > b − δ and W (φs(u)) = −J ′(u)‖J ′(u)‖−2 for
all 0 ≤ s ≤ T . Hence (5.3) yields (J ′(φs),W (φs)) = −1, and

J (φT (u)) = J (φ0(u))− T = J (u)− T ≤ b + δ − T = b − δ,

which is a contradiction, proving the claim. The last statement follows immediately
from the fact that W ≡ 0 on J b−2δ . ��
Remark 5.3.3 The preceding proof highlights that

b is not a critical value
and (PS)b holds

}

⇔ ∃δ > 0 : ‖J ′(u)‖ ≥ δ, ∀u ∈ J −1([b − δ, b + δ]).

Remark 5.3.4 Using the notion of pseudo-gradient vector field, the hypothesis that
J is of class C1,1 can be weakened by assuming that J is C1. For details we refer
to [15, pp. 120–123].

Remark 5.3.5 A deformation lemma for a functional J constrained on a smooth
manifold M = G−1(0) ⊂ E can also be proved. It suffices to substitute J ′ with the
constrained gradient

∇MJ (u) = J ′(u)− (J ′(u), G′(u))

‖G′(u)‖2
G ′(u), (5.4)

which is nothing but the projection of J ′(u) on the tangent space TuM = {v ∈ E :
(G ′(u) | v) = 0}.
We are now in position to prove the mountain pass theorem

Theorem 5.3.6 (Mountain pass) If J ∈ C1(E, R) satisfies (J1)–(J2) and (PS)c
holds, then c ≥ ρ > 0 is a positive critical value for J . Precisely, there exists z ∈ E

such that J (z) = c > 0 and J ′(z) = 0. In particular, z �= 0 and z �= v.

Proof If, by contradiction, there is no critical point at level c, then Lemma 5.3.2
and Remark 5.3.4 allow us to find ε ∈ (0, c

2 ) and a continuous map η : E→ E such
that J (η(u)) ≤ c − ε, for all u ∈ E such that J (u) ≤ c + ε. Moreover, η is such
that η(u) = u provided J (u) ≤ c − 2ε. In particular, η(0) = 0 and η(v) = v. By
the definition of c, there exists γ ∈ � such that maxt∈[0,1]J (γ (t)) < c + ε. As a
consequence, the path η◦γ belongs to �. On the other hand, maxt∈[0,1]J (η◦γ (t)) ≤
c − ε < c, which contradicts the definition of c. ��
Remark 5.3.7 (i) J can be unbounded from above and from below.
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(ii) The mountain pass critical point is, in general, a saddle point: if it is non-
degenerate, then its Morse index is 1. By definition, a critical point u of J is non-
degenerate if J ′′(u) is invertible. In such a case, its Morse index is, by definition, the
number of eigenvalues of J ′′(u) smaller than 0.
(iii) Observe that the proof is based on the fact that every continuous curve in E

joining u = 0 with v has to cross the sphere ‖u‖ = r .

Expanding the preceding remark (iii), we say that a closed subset S of E links the
relative boundary ∂Q of a submanifold Q of E if S ∩ ∂Q = ∅ and for every map
h ∈ C(Q,E), such that h(u) = u for every u ∈ ∂Q, there holds h(Q) ∩ S �= ∅.

There are other situations in which it is possible to find a min–max critical value
of a functional J with properties similar to the mountain pass. Let us focus on
the following case, which will be used in the sequel to find solutions of an elliptic
equation. Fixing u ∈ E \ {0}, suppose that

lim|t |→∞J (tu) = −∞. (5.5)

Let W denote the subspace orthogonal to Ru and assume that

inf{J (w) : w ∈ W } > −∞. (5.6)

Consider the class of paths

�̃ = {γ ∈ C([0, 1],E) : γ (0) = −tu, γ (1) = tu},
where t ! 1 is taken in such a way that J (± tu) < inf{J (w) : w ∈ W } and define

c̃ := inf
γ∈�̃

max
s∈[0,1]

J (γ (s)),

Theorem 5.3.8 If (5.5) and (5.6) hold and the Palais–Smale condition holds at the
level c̃, then c̃ is a critical value of J .

Proof Each γ ∈ �̃ crosses W and hence c̃ is a finite number greater than inf{J (w) :
w ∈ W }. Repeating the arguments carried out to prove the mountain pass theorem,
it follows that c̃ is a critical value for J provided the Palais–Smale condition holds
at the level c̃. ��
Observe that the hypotheses (5.5) and (5.6) imply that W and a large sphere of Ru
link. More generally, it was proved by P.H. Rabinowitz that the result is also true if
the sphere is taken in a finite-dimensional subspace.

Theorem 5.3.9 (Saddle point theorem) Let E = V ⊕W with V finite dimensional.
Assume also that J ∈ C1(E, R) satisfies for some R > 0 that

ρ := inf{J (w) : w ∈ W } > max
v∈V , ‖v‖=R J (v),

and (PS )̃c holds. If � is the set of all continuous maps h from the ball in V of radius R
and center 0 into E such that its restriction to the boundary of the ball is the identity,
then c̃ = infh∈� max‖v‖=RJ (h(v)) ≥ ρ is a critical value for J .
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Proof It suffices to observe that W and the sphere in V of radius R are linked (see
Exercise 20) and to use similar arguments to the previous ones. The details are left
to the reader. ��

5.4 The Ekeland Variational Principle

As another application of the deformation Lemma 5.3.2 we will prove a version of
the Ekeland variational principle [46]. For simplicity, we will consider a specific
case dealing with a Hilbert space and a C1 functional.

Theorem 5.4.1 Let E be a Hilbert space and let J ∈ C1(E, R) be bounded from
below. Then:

1. For every δ > 0, there exists u ∈ E such that J (u) ≤ infE J+δ and ‖J ′(u)‖ ≤ δ.
2. In particular, if (PS)c holds for the level c = infE J , then J attains its infimum.

Proof Set b := infE J . If the assertion in case 1 does not hold, then an application
of Lemma 5.3.2 and Remark 5.3.3 allows the construction of η ∈ C(E,E) which
maps the sublevel J b+δ into J b−δ, contradicting the definition of b. With respect to
the proof of case 2, it is sufficient to observe that by choosing δn = 1/n, n ∈ N, we
find a minimizing Palais–Smale sequence at level infE J . ��
The complete assertion of the general Ekeland principle [46] is the following one.

Theorem 5.4.2 Assume that (X, d) is a complete metric space and that J : X →
R ∪ {+∞} is a l.s.c. functional bounded from below with J �≡ +∞. If, for some
ε > 0, a point uε ∈ X satisfies J (uε) < infX J + ε, then there exists vε ∈ X such
that

J (vε) ≤ J (uε),

d(uε , vε) ≤ 1,

J (z) > J (vε)− εd(vε, z), ∀z �= vε.

��
Remark 5.4.3 1. Notice that in general the functional J does not have to attain its

infimum. However, the above theorem states that the pertubed functional J (z)+
εd(vε, z) does attains its infimum (at vε).

2. It is also possible to use the general Ekeland principle to give an alternative proof
of the mountain pass Theorem 5.3.6. Indeed, we will follow this approach in
Chap. 12 to extend this theorem to functionals which are differentiable along
some particular directions.

Similar arguments to those used in Theorem 5.4.1 can be applied to prove the
existence of minima constrained on a submanifold M = G−1(0) ⊂ E such that
G ∈ C1,1(E, R). In this case, we say that the functional J constrained on M satisfies
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the Palais–Smale condition (PS)c at level c if every sequence {un} in M such that
J (un)→ c and ∇MJ (un)→ 0 has a converging subsequence.

Theorem 5.4.4 Let J ∈ C1(E, R) be bounded from below on M = G−1(0) where
G ′(u) �= 0 on M . Let m := infM J (u) > −∞ and suppose that (PS)m holds. Then
any minimizing sequence has a converging subsequence. In particular, there exists
u ∈ M and λ ∈ R such that J (u) = m and J ′(u) = λG ′(u).

Proof Let wn be a minimizing sequence for J constrained on M . Then by
Lemma 5.3.2 and Remark 5.3.5, there exists un ∈ M such that ‖un − wn‖ → 0,
J (un)→ m and ∇MJ ′(un)→ 0. Using the (PS)m condition it follows that un (and
so wn) converges (up to a subsequence) to some u ∈ M . Obviously J (u) = m and
∇MJ (u) = 0, i.e., by (5.4), J ′(u) = λG ′(u) with λ = (J ′(u), G′(u))/‖G′(u)‖2. ��

5.5 Another Min–Max Theorem

The mountain pass theorem can be extended to cover the case in which u = 0 is not
a local minimum but a saddle point. As before, we assume without loss of generality
that J (0) = 0.

Let E = V ⊕W , where V is a closed subspace with dim(V ) = k < +∞ and
W = V ⊥. We denote by SW (r) the sphere in W of radius r , i.e., SW (r) = {w ∈ W :
‖w‖ = r}. We consider the following hypotheses (see Fig. 5.1).

(J3) There exist r , ρ > 0 such that

J (w) ≥ ρ, ∀w ∈ SW (r).

Fig. 5.1 Linking hypotheses
(J3) and (J4)

V

W

r

ω*

∂N

SW (r )
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(J4) There exist R > 0 and w∗ ∈ W , with ‖w∗‖ > r such that, letting N = {u =
v+ sw∗ : v ∈ V , ‖v‖ ≤ R, s ∈ [0, 1]}, one has that

J (u) ≤ 0, ∀ u ∈ ∂N.

Example 5.5.1 Completing Example 5.3.1, consider again the functional J given
by J (u) = 1

2‖u‖2− 1
2 (Au | u)−H(u), with H α-homogeneous for some α > 2. Let

μ1 > μ2 ≥ μ3 ≥ · · · denote the characteristic values of A. If ei �= 0 is such that
μiAei = ei , it follows that (J ′′(0)ei | ei) = ‖ei‖2 − (Aei | ei) = (1 − μ−1

i )‖ei‖2.
Hence, letting V = span{e1, . . . , ek}, we deduce that J ′′(0) is positive definite on
W = V ⊥, provided μk+1 < 1, and this suffices to find r , ρ > 0 such that

J (w) ≥ ρ, ∀w ∈ SW (r),

and thus (J3) holds.
On the other hand, assuming in addition that 1 ≤ μk and H ≥ 0, we can also see

that (J4) holds as well. Indeed, let us fix ŵ ∈ W with ‖ŵ‖ = 1 and set V̂ = V ⊕Rŵ.
Then, for all v̂ ∈ Ŝ = {̂v ∈ V̂ : ‖̂v‖ = 1}, one has

J (t̂v) =
[

1

2
− 1

2
(Âv | v̂)

]

t2 − tαH(̂v), ∀t ≥ 0.

Since V̂ is finite dimensional, there exists t̂ > 0, depending only on the dimension
k + 1 of V̂ , such that J (t̂v) ≤ 0 for all t ≥ t̂ and all v̂ ∈ Ŝ. Let R = max{r , t̂}. Take
w∗ = Rŵ and consider the set N defined in (J4). The preceding argument shows
that J (u) ≤ 0 for all u = v + sw∗ on the part of ∂N with s > 0. Moreover, J
is also smaller than or equal to zero on the part of the boundary of N with s = 0.
Actually, since 1 ≤ μk , J ′′(0) = I − A is semi-negative defined on V , and then
J (v) = 1

2 [‖v‖2 − (Av | v)]−H(v) ≤ 0. This proves that (J4) holds.

The set N can be identified with {u = (v, s) ∈ V × [0, 1] : ‖v‖ ≤ R}. Extending the
class �, we consider the class of maps

�k = {g ∈ C(N ,E) : g(v, s) = (v, s), ∀ (v, s) ∈ ∂N}.
Lemma 5.5.2 For any g ∈ �k , there exists ug ∈ N such that g(ug) ∈ SW (r).

Proof If g ∈ �k we set g(v, s) = (v′, s ′). Define the auxiliary map g∗ ∈ C(N ,V ×R)
by setting

g∗(v, s) = (v′, s ′‖w∗‖ − r).

By the definition of �k , we have that g(v, s) = (v, s) for all (v, s) ∈ ∂N . Then

g∗(v, s) = (v, s‖w∗‖ − r), ∀ (v, s) ∈ ∂N. (5.7)

This and ‖w∗‖ > r imply that

g∗(v, s) �= (0, 0), ∀ (v, s) ∈ ∂N. (5.8)
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Actually, if the first component of g∗(v, s) is zero for some (v, s) ∈ ∂N , then (5.7)
yields v = 0. Hence s = 1 and, still using (5.7), we find that the second component
of g∗(v, s) is ‖w∗‖−r > 0. From (5.8) it follows that we can evaluate the topological
degree deg (h∗,N0, (0, 0)), where N0 = int(N ) is the interior of N . Consider the map
ĝ(v, s) = (v, s‖w∗‖ − r) and note that deg (ĝ,N0, (0, 0)) = 1, because ‖w∗‖ > r .
Since g(v, s) = ĝ(v, s) on ∂N , one infers from property (P6) of the degree (see
Chap. 4) that

deg (g∗,N0, (0, 0)) = deg (̂g,N0, (0, 0)) = 1,

and there exists (vg , sg) ∈ N such that g∗(vg , sg) = (0, 0). By the definition of g∗ this
means that ug = (vg , sg) verifies: g(ug) ∈ W and ‖g(ug)‖ = r . ��
Theorem 5.5.3 Let J ∈ C1(E, R) satisfy (J3)−(J4) and, setting

c = inf
g∈�k

max
u∈N

J (g(u)),

suppose that (PS)c holds. Then there exists z ∈ E such that J (z) = c > 0 and
J ′(z) = 0.

Proof By Lemma 5.5.2, for anyg ∈ �k , there exists ug ∈ N such thatg(ug) ∈ SW (r).
Therefore, by (J3),

max
u∈N

J (g(u)) ≥ J (g(ug)) ≥ ρ > 0, ∀ g ∈ �k ,

and this implies that c ≥ ρ > 0. The rest of the proof is similar to that of the mountain
pass theorem. ��
Remark 5.5.4 If V = {0}, then Theorem 5.5.3 becomes the mountain pass theorem.
Actually, if V = {0}, the class �k is nothing but � and c coincides with the mountain
pass critical value.

Theorem 5.5.3 is a specific case of more general results which are referred to
as linking theorems. A linking theorem in which V has infinite dimension has been
proven in [30].

5.6 Some Perturbation Results

Let E be a Hilbert space, I ∈ C2(E, R) and let G ∈ C2(R × E, R) be a family of
functionals depending on a real parameter ε. We are interested in the critical points of

Iε(u) = I(u)+ Gε(u),

where Gε(u) = G(ε, u). The functional I plays the role of the unperturbed functional
and G is the perturbation. The specific situation we are interested in is the case in
which the unperturbed functional has a finite-dimensional manifold Z of critical
points and we look for these z ∈ Z from which emanate solutions of I ′ε = 0.
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The fact that G plays the role of a perturbation term is formulated in the following
assumption:

(A1) ‖G ′ε(z)‖ → 0, as ε→ 0, uniformly in z ∈ Z.

Let TzZ denote the tangent space to Z at z, let W = (TzZ)⊥ and let P denote the
projection from E onto W . Writing u = z + w, with z ∈ Z and w ∈ W , and using a
Lyapunov–Schmidt reduction, the equation I ′ε(u) = 0 is equivalent to the system

{
PI ′ε(z + w) = 0,

(I − P )I ′ε(z + w) = 0.
(5.9)

The former equations are nothing but forms of the auxiliary equation.
We further assume that there exists c > 0 such that, for ε small enough,

(A2) ‖[PI ′′ε (z)]−1‖ ≤ c, uniformly in z ∈ Z.

For any z ∈ Z fixed, assumption (A2) allows us to define the map Sε : Bε,c −→ W

by setting

Sε(w) = w− [PI ′′ε (z)]−1(PI ′ε(z + w)), (5.10)

where Bε,c denotes the ball

Bε,c = {w ∈ W : ‖w‖ ≤ 2c‖G ′ε(z)‖}.
Remark 5.6.1 (A1) implies that the ball Bε,c shrinks to w as ε→ 0.

Let us point out that if w is such that Sε(w) = w then u = z + w is a solution of
the auxiliary equation.

In order to find a fixed point of Sε a last assumption is in order:

(A3) ‖I ′′ε (z + w)− I ′′ε (z)‖ ≤ 1

2c
, uniformly in z ∈ Z and w ∈ Bε,c.

Remark 5.6.2 (i) If Iε(u) = I(u)+ εG(u), assumptions (A1) and (A2) are trivially
verified (see also Remark 5.6.1). As for (A2), it can be substituted by requiring that
PI ′′(z) be invertible. As we will see in the sequel, the invertibility of PI ′′(z) is
closely related to a suitable non-degeneracy of the manifold Z.
(ii) If G(ε, u) = εG(u), the auxiliary equation becomes

PI ′(z + w)+ εG ′(z + w) = 0

and can be solved near Z directly by means of the implicit function theorem, pro-
vided PI ′′(z) is invertible. On the other hand, in some applications, like the one
discussed in Sect. 13.2, we need to work with perturbations in the general form
G(ε, u) for which the implicit function theorem cannot be applied.

Let us show that Sε has a fixed point in Bε,c.
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Lemma 5.6.3 For ε small enough, Sε(Bε,c) ⊂ Bε,c and Sε is a contraction. There-
fore, Sε has a unique fixed point wε,z ∈ Bε,c. In particular, ‖wε,z‖ ≤ 2c‖I ′ε(z)‖ and
thus ‖wε,z‖ → 0 as ε→ 0.

Proof For v, w ∈ Bε,c there exists v̂ belonging to the segment joining v and w such
that

Sε(v)− Sε(w) = S ′ε (̂v)[v − w],

for some v̂ ∈ Bε,c. One has

S ′ε (̂v)[v− w] = v− w− [PI ′′ε (z)]−1(PI ′′ε (z + v̂)[v− w])

= [PI ′′ε (z)]−1(PI ′′ε (z)[v − w]− PI ′′ε (z + v̂)[v− w]).

Using (A3) we infer

‖S ′ε (̂v)[v− w]‖ ≤ ‖[PI ′′ε (z)]−1‖ · ‖PI ′′ε (z)[v − w]− PI ′′ε (z + v̂)[v− w]‖
≤ 1

2‖v− w‖ (5.11)

and this suffices to show that Sε is a contraction on Bε,c. Furthermore, the following
holds:

‖Sε(0)‖ = ‖[PI ′′ε (z)]−1‖ · ‖PI ′ε(z)‖ ≤ c‖G′ε(z)‖.
Using this equation and (5.11) it follows that

‖Sε(w)‖ ≤ ‖Sε(0)‖ + ‖Sε(w)− Sε(0)‖ ≤ c‖G′ε(z)‖ + 1
2‖w‖.

For w ∈ Bε,c one has that ‖w‖ ≤ 2c‖G′ε(z)‖ and hence we deduce

‖Sε(w)‖ ≤ 2c‖G ′ε(z)‖.
This shows that Sε(Bε,c) ⊂ Bε,c and completes the proof. ��

It is now convenient to restrict ourselves to a manifold Z with coordinates ξ ∈ R
n.

To simplify the exposition, we will carry out the proof in the case that ξ = s ∈ R.
The general case requires minor changes.

We will write zε(s) to denote the solution of the auxiliary equation found in
Lemma 5.6.3 and define the function w : Z→ W by setting wε(s) = wε,zε (s). Some
properties of wε(s) are stated in the following lemma.

Lemma 5.6.4 The function wε(s) is of class C1 and the derivative w′ε(s) satisfies
|w′ε(s)| → 0 as ε→ 0, uniformly with respect to s ∈ Z.

Proof Since wε(s) has been found by using the Banach contraction principle, it
easily follows that w is C1. To compute the derivative w′ε let us remark that wε

satisfies PI ′ε(z + wε) = 0, namely (we understand the dependence upon s)

I ′ε(z + wε) = I ′ε(z + wε)(z′ + w′ε)
z′

|z′|2 .
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Taking the derivative we get

I ′′ε (z + wve)(z′ + w′ve) = I ′′ε (z + wε)(z′ + w′ε)
z′

|z′|2

+ I ′ε(z + wε)(z′ + w′ε)z′′
z′

|z′|2

+ I ′ε(z + wε)(z′ + w′ve)z′
d

ds

(
z′

|z′|2
)

.

Let us evaluate separately each term on the right-hand side. Since w′ε is orthogonal
to z′ and wε → 0, we find

I ′′ε (z + wε)(z′ + w′ε)
z′

|z′|2 = I ′′ε (z + wε) = I ′′ε (z)+O(ε).

Furthermore, using (A1) and again the fact that wε → 0, we infer

I ′ε(z + wε) = I ′ε(z)+ I ′ε(z + θwε) = O(ε), (θ ∈ [0, 1]).

From the preceding estimates we deduce that

PI ′′ε (z + wε)w′ε = o(1).

Finally, (A2) yields that w′ε → 0 as ε→ 0. ��
Using Lemma 5.6.3 we can define the reduced functional by setting

Ĩε(z) = Iε(z + wε,z), z ∈ Z.

Theorem 5.6.4 Suppose that (A1)–(A3) hold. If zε ∈ Z is a critical point of Ĩε,
then uε := zε + wε,zε is a critical point of Iε , provided ε is small enough.

Proof As before we will consider again the case in which ξ = s ∈ R. With this
notation, the reduced functional becomes

Ĩε(s) = Iε(z(s)+ wε,s), s ∈ R,

and sε is a critical point of Ĩε, provided

Ĩ ′ε(sε) = I ′ε(z(sε)+ wε,sε ) · (z′(sε)+ w′ε,sε ) = 0. (5.12)

Using the auxiliary equation PI ′ε(z(sε)+ wε,sε ) = 0 we infer that

I ′ε(z(sε)+ wε,sε ) = aεz′(sε)

where
aε = I ′ε(z(sε)+ wε,sε )z

′(sε).

Therefore (5.12) becomes

aεz
′2(sε)+ aεz

′(sε)w′ε,sε = 0.

Since w′ε,sε → 0 as ε → 0, it follows that, for ε small enough, aε = 0, namely
I ′ε(z(sε)+ wε,sε ) = 0. ��
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Remark 5.6.6 If Iε(u) = I(u)+ εG(u) one finds that

Ĩε(s) = I(z(s)+ wε,s)+ εG(z + wε,s)

= I(z(s))+ (I ′(z(s)), wε,s)+ εG(z(s))+ ε(G ′(z(s)), wε,s)+ o(‖wε,s‖).
Since I ′(z) = 0 we can use Lemma 5.6.3 to infer

Ĩε(s) = I(z(s))+ εG(z(s))+ o(ε).

Since I(z) = const., to find the stationary points of Ĩε it suffices to look for the stable
stationary points, e.g. maxima or minima, of G(z(s)).

Applications of the previous theorem will be given in Chap. 13 to find semiclas-
sical states of nonlinear Schrödinger (NLS) equations with potentials and to prove
the existence of standing waves for some nonautonomous systems of coupled NLS
equations.



Chapter 6
Bifurcation Theory

In this chapter we are concerned with bifurcation theory. We discuss the local bifur-
cation from a simple eigenvalue found by analytical methods, the bifurcation from
an odd eigenvalue by using the topological degree and the Krasnoselskii result on
variational operators. The Rabinowitz global bifurcation theorem is also proved.

6.1 Local Results

Let X and Y be Banach spaces and consider the equation

F (λ, u) = 0, u ∈ X,

where F : R×X −→ Y satisfies F (λ, 0) ≡ 0. We say that λ∗ is a bifurcation point
of F (λ, u) = 0 if there exists a sequence (λn, un) ∈ R × X, with un �= 0, such that
λn −→ λ∗ and F (λn, un) = 0.

A particular case is that when X = Y = E is a Hilbert space and the equation is
given by

Lu+H (u) = λu, u ∈ E, (6.1)

where L : E −→ E is linear and compact and H ∈ C1(E,E) is such that H (0) = 0,
H ′(0) = 0.

Denoting by �0 the set of nontrivial solutions of (6.1), namely

�0 = {(λ, u) ∈ R×X : Lu+H (u) = λu, u �= 0},
and taking the closure � of �0, we see that λ∗ ∈ R is a bifurcation point of (6.1) if
and only if (λ∗, 0) ∈ �.

Lemma 6.1.1 If λ∗ is a bifurcation point of (6.1) then λ∗ belongs to the spectrum
of L.

Proof The equation F (λ, u) := Lu+H (u)− λu = 0 has the trivial solution u = 0
for all λ ∈ R. Since H ′(0) = 0, one has that duF (λ, 0)[v] = Lv +H ′(0)[v]− λv =

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 61
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_6, © Springer Science+Business Media, LLC 2011
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Lv− λv. If λ �∈ σ (L), then duF (λ, 0) is invertible and the implicit function theorem
yields a neighborhood of (λ, 0) such that the unique solution of (6.1) is u = 0. This
proves that λ is not a bifurcation point. ��
We will give below conditions under which an eigenvalue of L is a bifurcation point.

6.1.1 Bifurcation from a Simple Eigenvalue

Let us suppose that there exist λ∗ ∈ R and ϕ ∈ E \ {0} such that

(L1) Z := Ker (L− λ∗I ) = Rϕ;
(L2) the codimension of W = Range (L− λ∗I ) is one and W = Z⊥.

Usually, this case is referred as the simple eigenvalue case. If (L1)–(L2) hold then
E = Z ⊕W and any u ∈ E can be written in a unique way as u = αϕ + w, with
α ∈ R and w ∈ W . Moreover, we can use the Lyapunov–Schmidt reduction (see
Sect. 3.3) to write (6.1) as the system

{
Lw+H (αϕ + w) = λw, (auxiliary equation);
(I − P )H (αϕ + w) = λαϕ, (bifurcation equation).

According to Lemma 3.3.1, the auxiliary equation has a unique solution w(λ,α) ∈ W ,
defined in a neighborhood �×U ⊂ R×R of (λ∗, 0) ∈ R×R. Substituting into the
bifurcation equation, we have to look for solutions of

(I − P )H (αϕ + w(λ,α))− λαϕ = 0,

which is equivalent to

S(λ,α) := (H (αϕ + w(λ,α)) | ϕ)− λα = 0. (6.2)

Suppose that H ∈ C2(E,E). Then the function S : �× U → R is of class C2 and,
according to the properties stated in Lemma 3.3.1, S(λ, 0) = 0 holds, for all λ ∈ �

and Sα(λ∗, 0) = 0. In order to de-singularize S, we introduce the function

σ (λ,α) =

⎧
⎪⎨

⎪⎩

S(λ,α)

α
if α �= 0;

Sα(λ, 0) if α = 0.

The function σ is of class C1 in � × U and σ (λ∗, 0) = Sα(λ∗, 0) = 0. Moreover,
one has

σλ(λ∗, 0) = lim
α→0

Sλ(λ∗,α)

α
.

Since H ′(0) = 0, a straight calculation shows:

Sλ(λ∗,α) = (H ′(0)[wλ(λ∗, 0)] | ϕ)− α = −α,

and hence σλ(λ∗, 0) = −1. Then we can apply the implicit function Theorem 3.2.1 to
σ (λ,α) = 0, yielding λ = λ(α) such that σ (λ(α),α) = 0 for all α in a neighborhood
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of α = 0. It is clear that the family (λα , uα) := (λ(α),αϕ + w(λ(α),α)) is a solution
set of (6.1). Moreover, from (uα | ϕ) = α it follows that uα �= 0 provided α �= 0. In
conclusion, we have proved the following.

Theorem 6.1.2 Let L : E → E be a linear compact operator and suppose that λ∗
is a simple eigenvalue of L. Moreover, let H ∈ C2(E,E) be such that H (0) = 0,
H ′(0) = 0. Then λ∗ is a bifurcation point of (6.1). More precisely, the bifurcation
set � is, near (λ∗, 0), a continuous curve. ��
The preceding result is a particular case of a more general one, dealing with the
bifurcation for an equation as F (λ, u) = 0, where F : R × X → Y , and X,Y are
Banach spaces. Here we will limit ourselves to state a result, referring for more
details to, e.g., [16, Chap. 5] or [15, Chap. 2].

Let F ∈ C2(R × X,Y ) be such that F (λ, 0) ≡ 0. We suppose that there exists
λ∗ ∈ R, ϕ ∈ X such that

(F.1) Ker [duF (λ∗, 0)] = span{ϕ}.
Moreover, let Y0 ⊂ Y denote the range of duF (λ∗, 0) ∈ L(X,Y ) and assume

(F.2) Y0 is closed and its codimension is 1,
(F.3) dλ,uF (λ∗, 0)[ϕ] �∈ Y0.

Let us point out that, in the case in whichX = Y = E andF (λ, u) = Lu−λu+H (u),
(L1) is nothing but (F.1). Moreover, Y0 = (Ker [duF (λ∗, 0)])⊥ and dλ,uF (λ∗, 0)[ϕ] =
−ϕ, and hence (L2) is nothing but (F.2)–(F.3).

Theorem 6.1.3 Let F ∈ C2(X,Y ) be such that F (λ, 0) ≡ 0 and assume that (F.1)–
(F.3) hold. Then λ = λ∗ is a bifurcation point for F (λ, u) = 0. Precisely, from (λ∗, 0)
branches off a curve of nontrivial solutions of F (λ, u) = 0. ��

6.1.2 Bifurcation from an Odd Eigenvalue

In this subsection we will give a theorem due to Krasnoselskii which deals with the
case that L and H are compact. We use the same notation as in Theorem 6.1.2. It is
also understood that H (0) = 0 and H ′(0) = 0.

Theorem 6.1.4 Suppose that L and H are compact C1 operators in a Banach space
X with H (0) = 0 and H ′(0) = 0 and let λ∗ be an eigenvalue of L with odd finite
(algebraic) multiplicity. Then λ∗ is a bifurcation point for Lu+H (u) = λu.

Proof Let us remark that λ∗ �= 0 is an isolated eigenvalue of L. Setting

�(λ, u) = Lu+H (u)− λu,

one has that �u(λ, 0) = L − λI . Then there exists ε0 > 0 such that the unique
eigenvalue of L contained in the interval [λ∗−ε0, λ∗+ε0] is λ∗. In particular, we can
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evaluate the Leray–Schauder index of u = 0 by linearization (see Theorem 4.2.11)
yielding

i(�(λ∗ − ε, 0), 0) = i(L− (λ∗ − ε)I , 0) = (− 1)β1 , ∀ 0 < ε ≤ ε0,

where β1 is the sum of the algebraic multiplicity mult(λ) of all eigenvalues λ with
λ ≤ λ∗ − ε.

Similarly,

i(�(λ∗ + ε, 0), 0) = i(L− (λ∗ + ε)I , 0) = (− 1)β2 , ∀ 0 < ε ≤ ε0,

where β2 = ∑
λ≤λ∗+ε mult(λ). Then β2 = β1 + mult(λ∗) and, since λ∗ has odd

algebraic multiplicity, it follows that

i(�(λ∗ + ε, 0), 0) = −i(�(λ∗ − ε, 0), 0). (6.3)

On the other hand, if by contradiction λ∗ is not a bifurcation point, then there exists
ε1 ∈ (0, ε0) such that for all ε ∈ (0, ε1) there holds

�(λ, u) �= 0, ∀ λ ∈ [λ∗ − ε, λ∗ + ε], ∀ ‖u‖ = ε. (6.4)

This immediately implies that

i(�(λ∗ + ε, 0), 0) = i(�(λ∗ − ε, 0), 0),

a contradiction with (6.3), proving the theorem. ��
Remark 6.1.5 The above proof highlights that, even if L and H are only continuous
and compact operators, λ∗ is a bifurcation point of the equation �(λ, u) = 0 provided
that there exists a change of the index of i(�(λ, 0), 0) as λ crosses λ = λ∗.

6.2 Bifurcation for Variational Operators

In this section we will suppose that L and H are variational operators in a Hilbert
space E, namely:

(A1) L ∈ L(E,E) is a symmetric Fredholm operator with index zero and there
exists a functional H ∈ Ck(E, R), for some k ≥ 3, such that H (u) = H′(u).
Moreover, H(0) = H′(0) = H′′(0) = 0.

Let us define J ∈ Ck(E, R) by setting

Jλ(u) = 1

2
λ‖u‖2 − 1

2
(Lu | u)−H(u). (6.5)

It follows that J ′λ(u) = λu− Lu−H (u). Let � be the closure of {(λ, u) ∈ R×X :
Lu+H (u) = λu, u �= 0}. Then, in this case, � is the closure of the set of the critical
points u of Jλ on E such that u �= 0.
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6.2.1 A Krasnoselskii Theorem for Variational Operators

Theorem 6.2.1 (Krasnoselskii [60]) Suppose that (A1) holds and let λ∗ be an iso-
lated eigenvalue of L with finite multiplicity. Then λ∗ is a bifurcation point of
(6.1).

Proof The proof will be divided into several steps. ��
Step 1. Lyapunov–Schmidt reduction. Setting Z = Ker [λ∗I − L], E = Z ⊕ W ,
u = z + w, z ∈ Z, w ∈ W and letting P denote the orthogonal projection on W ,
parallel to Z, the equation J ′λ(u) = 0 splits into the system given by the auxiliary
equationPJ ′λ(z+w) = 0 and the bifurcation equation (I−P )J ′λ(z+w) = 0. Lemma
3.3.1 yields the existence of w = w(λ, z) defined in a neighborhood O of (λ∗, 0) in
R×Z such that w(λ, 0) ≡ 0 andPJ ′λ(z+w(λ, z)) = 0. Moreover (see Remark 3.3.2),
w ∈ Ck−1(O,W ) and d

j
z w(λ∗, 0) = 0 ∀ j = 1, . . . , k − 2. In particular,

‖w(λ, z)‖ ≤ ‖z‖, ∀ (λ, z) ∈ O, (6.6)

uniformly with respect to λ.

Step 2. Study of the bifurcation equation. Substituting w(λ, z) into the bifurcation
equation, we are led to find z ∈ Z such that

(I − P )J ′λ(z + w(λ, z)) = 0. (6.7)

To solve Eq. (6.7) we will take advantage of the fact that we are in the variational
case. Let us define Jλ : Z→ R by setting

Jλ(z) = Jλ(z + w(λ, z)).

Lemma 6.2.2 If zλ ∈ Z is a critical point of Jλ then uλ = zλ+w(λ, zλ) is a solution
of (6.1). Furthermore, if zλ �= 0 and ‖zλ‖ → 0 as |λ| → λ∗, then uλ �= 0 and
‖uλ‖ → 0.

Proof If zλ ∈ Z is a critical point of Jλ there results

(J ′λ(uλ) | ζ + dzw(λ, zλ)[ζ ]) = 0, ∀ ζ ∈ Z.

Le us remark that PJ ′λ(z + w(λ, z)) = 0 for all z ∈ Z. In particular, PJ ′λ(uλ) = 0,
namely J ′λ(uλ) ∈ Z. Since dzw(λ, zλ)[ζ ] ∈ W we infer

(J ′λ(uλ) | dzw(λ, zλ)[ζ ]) = 0, ∀ ζ ∈ Z.

Thus (J ′λ(uλ) | ζ ) = 0, for all ζ ∈ Z. Using again the fact that PJ ′λ(uλ) = 0 we
conclude that J ′λ(uλ) = 0. The second part of the lemma is deduced by using the
fact that dzw(λ, 0) = 0. ��
Step 3. Finding nontrivial critical points of Jλ on Z. In order to find a nontrivial
critical point of Jλ on Z, we will make, for the reader’s convenience, some additional
assumptions that will simplify the arguments. Specifically, we will suppose
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(A2) there is an integer k ≥ 3 such that djH(0) = 0, ∀j = 1, . . . , k − 1, and
dkH(0) �= 0. Let

αk(v) = 1

k!d
kH(0)[v]k , v ∈ E.

(A3) The maximum M and the minimum m of αk in the boundary of the unit ball in
Z have the same sign: either M ≥ m > 0 or m ≤ M < 0.

Let us point out that the function αk is homogeneous of degree k and hence (A3) is
always satisfied if k is even. Furthermore, there results

H(u) = αk(u)+ o(‖u‖k) as ‖u‖ → 0.

Let us evaluate Jλ(z). For brevity we write w instead of w(λ, z). One has that

(L(z + w) | z + w) = (Lz | z)+ (Lw | w) = λ∗‖z‖2 + (Lw | w)

and hence

Jλ(z) = λ− λ∗

2
‖z‖2 + λ

2
‖w‖2 − 1

2
(Lw | w)−H(z + w).

Let us remark that w satisfies PJ ′λ(z + w) = 0. Using the specific form of Jλ, one
has that PJ ′λ(u) = λPu−LP u−PH (u) and the equation PJ ′λ(z+w) = 0 becomes
λw− Lw = PH (z + w). This implies

λ‖w‖2 − (Lw | w) = (H (z + w) | w),

and therefore

Jλ(z) = λ− λ∗

2
‖z‖2 + 1

2
(H (z + w) | w)−H(z + w).

Moreover, for some s ∈ (0, 1),

H(z + w) = H(z)+ (H (z + sw) | w).

Hence we find

Jλ(z) = λ− λ∗

2
‖z‖2 −H(z)+ 1

2
(H (z + w) | w)− (H (z + sw) | w). (6.8)

We now estimate the last three terms in (6.8). Let M ≥ m > 0 (if m ≤ M < 0, we
simply consider−Jλ) and letλ∗ < m/(1+2k). Since H′(u) = H (u) anddjH(0) = 0,
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for all j ≤ k − 1, there exists ρ > 0, depending on λ, such that

‖H (u)‖ ≤ λ∗‖u‖k−1, ∀‖u‖ < ρ,

and hence
H(z) = αk(z)+ β(z), |β(z)| ≤ λ∗‖z‖k , ∀‖z‖ < ρ.

The estimate (6.6) implies that for all r < ρ/2 there exists ε0 > 0 such that

‖z + w(λ, z)‖ ≤ ‖z‖ + ‖w(λ, z)‖ ≤ 2‖z‖ < 2r < ρ

and this yields

‖H (z + w(λ, z))‖ ≤ λ∗2k−1 ‖z‖k−1, ∀ ‖z‖ < r , ∀ |λ− λ∗| < ε0.

This implies

|(H (z+w) | w)| ≤ ‖H (z+w)‖ ‖w‖ ≤ λ∗2k−1 ‖z‖k , ∀ ‖z‖ < r , ∀ |λ− λ∗| < ε0,

and
H(z) = αk(z)+ β(z), |β(z)| ≤ λ∗‖z‖k , ∀ ‖z‖ < ρ.

In conclusion, we can state the following lemma.

Lemma 6.2.3 Given λ∗ < m/(1+ 2k) there exist r > 0 and ε0 > 0 such that

Jλ(z) = λ− λ∗

2
‖z‖2 − αk(z)+ R(λ, z), (6.9)

where

R(λ, z) = 1

2
(H (z + w) | w)− (H (z + sw) | w)+ β(z)

satisfies

|R(λ, z)| ≤ λ∗2k ‖z‖k + λ∗ ‖z‖k , ∀ ‖z‖ < r , ∀ |λ− λ∗| < ε0. (6.10)

Step 4. We are finally in position to prove that Jλ has a mountain pass critical point
provided |λ−λ∗| is small. We will assume that λ−λ∗ > 0; if λ−λ∗ < 0 we consider
−Jλ and argue in the same way. First, some further preliminaries are in order.

Let z ∈ Z be such that ‖z‖ < r and let 0 < λ − λ∗ < ε0. Using (6.9), the
inequality Jλ(z) > 0 implies

λ− λ∗

2
‖z‖2 > αk(z)− R(λ, z).

Then (6.10) and αk(z) ≥ m‖z‖k yield

λ− λ∗

2
‖z‖2 < m‖z‖k − λ∗(1+ 2k)‖z‖k = [m− λ∗(1+ 2k)]‖z‖k.

Since m > λ∗(1+ 2k) and k ≥ 3 it follows that there exists 0 < ε′ < ε0 such that

‖z‖ < rλ :=
[

λ− λ∗

2(m− λ∗(1+ 2k))

]1/(k−2)

< r. (6.11)
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It follows that for 0 < λ− λ∗ < ε′ the following holds:

max‖z‖=r
Jλ(z) < 0.

This allows us to define J̃λ : Z→ R in such a way that

(1) J̃λ(z) = Jλ(z) for all ‖z‖ ≤ r;
(2) J̃λ ∈ C1(Z, R);
(3) J̃λ(z) < 0 for all ‖z‖ ≥ r .

Since J̃λ(z) = Jλ(z) for all ‖z‖ ≤ r , it immediately follows from (6.9) and (6.10) that
Jλ has a local strict minimum at z = 0, namely that (J1) of Chap. 5 holds. Obviously
J̃λ satisfies (J2). Furthermore, from 3) above, it follows that any sequence zn ∈ Z,
such that J̃λ(zn)→ c > 0, is bounded. Since Z is finite dimensional, it follows that
J̃λ satisfies the (PS)c. Applying the mountain pass theorem to J̃λ, we find zλ ∈ Z

such that J̃ ′λ(zλ) = 0 and J̃λ(zλ) = c > 0. From the latter we infer that ‖zλ‖ < r

therefore J̃λ(zλ) = Jλ(zλ). More precisely, it follows from (6.11) that ‖zλ‖ < rλ
and hence ‖zλ‖ �= 0 is such that ‖zλ‖ → 0 as λ → λ∗. Using Lemma 6.2.2,
Theorem 6.2.1 follows. ��
Remark 6.2.4 An elegant proof of Theorem 6.2.1 has been given by Marino and
Prodi [68] by using the Morse theory.

6.2.2 Branching Points

In applications it is important to know whether a branch of solutions emanates from
a bifurcation point. Precisely, we say that λ∗ is a branching point of (6.1) if the
solution set � contains a connected set S such that (λ∗, 0) ∈ S and S \ {(λ∗, 0)} �= ∅.
For example, as we will see in Theorem 6.3.1, λ∗ is a branching point provided λ∗ is
an eigenvalue of L with finite odd multiplicity. Actually, if λ∗ is a simple eigenvalue
of L, by Theorem 6.1.2, the set S in � is, in a neighborhood of (λ∗, 0), a curve. On
the other hand, in the general case of non-necessarily odd multiplicity, λ∗ might not
be a branching point. Bhöme [31] has given an example of a variational problem in
R

2 where H �≡ 0 is C∞ with all the derivatives at u = 0 equal to zero and λ∗ is
not a branching point. It is worth pointing out explicitly that in the Bhöme example
condition (A2) is not satisfied. The interested reader may see [15].

In order to prove the existence of a branching point, we will assume, in addition
to (A1) and (A2), the following condition.

(A4) Let ξ ∈ ∂BZ , resp. η ∈ ∂BZ , be such that αk(ξ ) = M , resp. αk(η) = m.
We assume that kM and km are not eigenvalues of the matrix D2αk(ξ ), resp.
D2αk(η).

The following theorem is proved in [6], to which we refer for more details and further
results dealing with the existence of branching points for (6.1).
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Theorem 6.2.5 Suppose that (A1,A2) and (A4) hold and let λ∗ be an isolated
eigenvalue of finite multiplicity of L. Then λ∗ is a branching point of (6.1). ��
Remark 6.2.6 (A4) rules out the functions αk such that αk(z) ≡ c‖z‖k on Z. If this
is violated, there are examples showing that λ∗ can be a bifurcation point but not a
branching point (see [6]).

We will not give the proof of Theorem 6.2.5 here, but we will merely highlight the
role of assumption (A4).

Setting ε = λ− λ∗ and

�ε(z) = 1

2
ε ‖z‖2 − αk(z), z ∈ Z,

the auxiliary functional Jε can be written in the form

Jε(z) = �ε(z)+ R(ε, z).

The functional �ε has the mountain pass geometry. However, in this case it is con-
venient to find the mountain pass critical point in a more direct way. Since αk �≡ 0,
if T = {z ∈ Z : ‖z‖ = 1}, then either M := maxT αk > 0 or minT αk < 0.
Assume the former: in the other case it suffices to consider −ε instead of ε. Let
ξ ∈ T be a point where M is achieved. By homogeneity it immediately follows that
α′k(ξ ) = kα(ξ )ξ = kMξ . Moreover, pε = tεξ is a critical point of �ε whenever tε
satisfies

tk−2
ε = ε

kM
(ε > 0). (6.12)

It is easy to check that pε is the mountain pass critical point of �ε we were seeking.
Next, using (A4) one can show that pε is a non-degenerate mountain pass critical
point of �ε and there results

i(�′ε,pε) = −1. (6.13)

Roughly, let IZ denote the identity in Z and let Ak = D2αk . Then

D2�ε(pε) = εIZ − Ak(pε).

Since pε = tεξ and using (6.12), one finds that

D2�ε(pε) = εIZ − tk−2
ε Ak(ξ ) = εIZ − ε

kM
Ak(ξ ).

By (A4), kM is not an eigenvalue of Ak(ξ ). Hence D2�ε(pε) is invertible and pε is a
non-degenerate critical point of �ε. As pε is a non-degenerate mountain pass critical
point, it is well known that (6.13) holds; see Remark 5.3.7-(ii). Since R satisfies
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(6.10), the properties of the topological degree imply that for ε > 0 sufficiently
small one also has

deg (J ′ε ,B(pε , δ), 0) = −1, δ > 0 small,

where B(pε, δ) denote a ball in Z centered in pε with radius δ. At this point, the
properties of the degree and an appropriate limiting procedure allow us to prove that
the bifurcation set � contains a connected set S and hence λ∗ is a branching point.

It is also possible to give a more precise description of S. We set �(S) = {λ ∈
R : (λ, u) ∈ S}. Under the same assumptions of Theorem 6.2.1 one can show:

(i) If k is odd then �(S) contains an interval [a, b] such that a < λ∗ < b.
(ii) If k is even then �(S) contains a one-sided neighborhood � of λ∗ such that

for all λ ∈ � \ {λ∗} (6.1) has at least two distinct nontrivial solutions on S.
Furthermore, if d = dim(Z) ≥ 2 and αk(z) > 0 (resp. < 0) for all z ∈ Z \ {0},
then for every λ = λ∗ + ε, with ε > 0 (resp. ε < 0) sufficiently small, (6.1)
possesses at least two pairs of distinct solutions on S.

6.3 Global Bifurcation

P. Rabinowitz [74] improved Theorem 6.1.4 by showing that, under the same hy-
potheses, the continuumS of� which contains (λ∗, 0) is either unbounded or contains
another bifurcation point λ �= λ∗. By Remark 6.1.5, we explicitly state the result
under the hypothesis that there is a change of index of

�λ(u) := �(λ, u)

when we cross λ = λ∗, instead of assuming that λ∗ is an eigenvalue of the linear part
of �λ with odd finite multiplicity.

Theorem 6.3.1 Let λ∗ ∈ R and ε0 > 0 be such that the set (λ∗ − ε0, λ∗ + ε0) \ {λ∗}
does not contain bifurcation points of (4.9λ). Assume also that for every λ ∈ (λ∗ −
ε0, λ∗) and λ ∈ (λ∗, λ∗ + ε0) the following holds:

i(�λ, 0) �= i(�λ, 0). (6.14)

Then the connected component, S, of � that contains (λ∗, 0) satisfies at least one of
the following conditions:

(i) S is unbounded in R×X,
(ii) there exists a bifurcation point λ ∈ R \ {λ∗} such that (λ , 0) ∈ S.

Proof By Theorem 6.1.4 (see also Remark 6.1.5), λ∗ is a bifurcation point from
zero of �λ(u) = 0. Let S be the connected component of � which contains (λ∗, 0).
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We argue by contradiction and assume that S verifies neither (i) nor (ii). This means
that S is bounded and that for every λ �= λ∗ there exists ρ(λ) > 0 such that

Sλ ∩ Bρ(λ)(0) = ∅.
We claim that there exists a bounded set O ⊂ R×X and ε0 > 0 satisfying

∂O ∩� = ∅, (6.15)

(λ∗, 0) ∈ O (6.16)

and

O ∩ (R× {0}) ⊂ (λ∗ − ε0, λ∗ + ε0)×X. (6.17)

Indeed, if Uδ denotes the neighborhood of S consisting in all points with distance
to S less than δ, then in the case � ∩ ∂Uδ = ∅ it suffices to take O = Uδ . In the
other case, since the set M = Uδ ∩ � is a compact metric space, we can apply
Lemma 4.3.1 to the closed sets S and � ∩ ∂Uδ to conclude the existence of two
compact, disjoint subsets A,B of M , with

M = A ∪ B, S ⊂ A.

By taking as O a neighborhood of A of all points with distance to A less than the
distance between A and B, we obtain (6.15)–(6.16).

The general homotopy property allows to deduce then that

deg (�λ, Oλ, 0) = const., ∀λ ∈ R. (6.18)

Now, we are going to compute this degree. To do it, fix λ ∈ (λ∗, λ∗ + ε0) such that
(λ, 0) ∈ O. We can choose ρ > 0 such that:

(a) For every λ ∈ [λ, λ∗ + ε0], the problem (4.9)λ has no nontrivial solutions in
Bρ(0), i.e.,

�λ ∩ Bρ(0) = ∅.
(b) For every λ ≥ λ∗ + ε0, the λ-slice Oλ of O does not contain points of the closed

ball Bρ(0), i.e.,
Oλ ∩ Bρ(0) = ∅.

Take
U = O ∩ [[λ,+∞)× (X \ Bρ(0))

]
.

Observe that the λ-slice Uλ of U is given by

Uλ = Oλ \ Bρ (0),

for every λ ≥ λ.
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By (a) and (b), the general homotopy property of the degree implies that

deg (�λ, Uλ, 0) = constant, ∀λ ≥ λ.

But, since O is bounded, Uλ = Oλ\Bρ (0) = Oλ = ∅ provided thatλ! λ. We obtain
as a consequence that the above degree is zero. In particular, deg (�λ, Uλ, 0) = 0,
that is,

deg (�λ, Oλ \ Bρ(0), 0) = 0.

By the additivity property we conclude that

deg (�λ, Oλ, 0) = deg (�λ, Oλ \ Bρ(0), 0)+ deg (�λ,Bρ(0), 0)

= i (�λ, 0).

Similarly, if we fix λ ∈ (λ∗ − ε0, λ∗) such that (λ, 0) ∈ O, we can prove that

deg (�λ, Oλ, 0) = i (�λ, 0).

Consequently, taking into account (6.18) we conclude that

i(�λ, 0) = i(�λ, 0),

which contradicts (6.14). ��
Now, as a direct consequence of the above theorem, we have the classical improve-
ment by Rabinowitz of the theorem of Krasnoselskii.

Corollary 6.3.2 Under the hypotheses of Theorem 6.1.4, there exists a continuum
S of � that either is unbounded, or (λ , 0) ∈ S for another eigenvalue λ �= λ∗
of L. ��



Chapter 7
Elliptic Problems and Functional Analysis

The purpose of this chapter is to show how a nonlinear elliptic problem can be
transformed into an operator equation that can be treated with the abstract tools
discussed in the previous chapters.

7.1 Nonlinear Elliptic Problems

The abstract results proved in the preceding chapters will be applied to elliptic
problems such as

{−�u = λf (x, u), in �

u = 0, on ∂�,
(7.1)

where � ⊂ R
N is a bounded domain with smooth boundary ∂�, f : � × R → R

and λ ∈ R. In the sequel we will assume that f is sufficiently smooth. This will
simplify the exposition, though in many cases weaker regularity assumptions could
be made.

It turns out that weak solutions are classical solutions provided f (x, u) is Hölder
continuous and for some p ∈ [1,+∞) it satisfies the growth condition

|f (x, u)| ≤ c1 + c2|u|p, p < 2∗ − 1, (7.2)

where (see Notation) 2∗ denotes the critical Sobolev exponent of H 1
0 (�) in

Theorem A.4.3, i.e.,

2∗ =

⎧
⎪⎨

⎪⎩

2N

N − 2
, if N ≥ 3;

+∞, if N = 1, 2.

(7.3)

To prove this fact one uses what is called bootstrap argument. It is based on the
following property: if a weak solution u ∈ H 1

0 (�) of (7.1) belongs to Lr(�) for
some r > 1, then, by (7.2), f (x, u(x)) ∈ Lr/p(�) and the Agmon–Douglis–Nirenberg
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Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
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estimates (Theorem 1.2.11-1) imply that u ∈ W
2, r

p (�). By the Sobolev embedding

(see Theorem 1.1.3-1, we can begin by taking r0 = 2∗ to deduce that u ∈ W
2, 2∗

p (�).
Using again Theorem 1.1.3-1 we have three possible cases:

1. u ∈ L
N2∗

pN−2 2∗ (�) (if Np < 2∗ 2).
2. u ∈ Lt (�) for every t > 2 (if Np = 2∗ 2), and applying again Theorem 1.2.11-

1, we derive that u ∈ W 2,t (�). In this case, choosing t > N/2, we infer (by
Theorem 1.1.3-1) that u ∈ Cα(�) for some α ∈ (0, 1).

3. u ∈ Cα(�) for some α ∈ (0, 1) (provided Np > 2∗ 2).

Observe that in the first case N2∗
pN−2 2∗ > r0 and we can iterate the process by taking

now r1 = N2∗
pN−2 2∗ . It is easy to prove that in a finite number of iterations we get

u ∈ W
2,

rk
p (�) with rk

p
> N

2 . Thus, also in this case we have u ∈ Cα(�) for some
α ∈ (0, 1). Finally, since f is Hölder, f (x, u(x)) is also Hölder and, by the Schauder
estimates (Theorem 1.2.11-2), we conclude that u ∈ C2(�).

Problem (7.1) can be transformed into an operator equation in several ways,
depending on the abstract tools we are going to use.

7.1.1 Classical Formulation

If we are working with the classical formulation of the problem, then, for example,
we can let X = {u ∈ C2(�) : u(x) = 0, ∀ x ∈ ∂�}, Y = C(�) and Tλ(u) =
�u + λf (x, u). Then any solution u ∈ X of the equation Tλ(u) = 0 is a solution of
(7.1). This framework is well suited for the use of the local inversion theorem or the
implicit function theorem.

In order to use topological degree theoretic arguments, we could take for instance
either X = {u ∈ C0,ν(�) : u(x) = 0, ∀x ∈ ∂�}, 0 ≤ ν < 1, or X = C1

0 (�) and
consider the operator K introduced in Sect. 1.2.5, i.e., w = Ku is the unique solution
of −�w = u in � satisfying w|∂� = 0. Let us point out that the Nemitski operator
f , i.e., the operator which maps every function u ∈ X into the function f ◦ u, is
continuous on X. Setting T (u) = Kf (u) and �λ(u) = u − λT (u), the solutions of
�λ(u) = 0 correspond to solutions of (7.1). Moreover, for any u ∈ X one has that
w = Ku ∈ C2,ν(�), and Ascoli’s theorem implies that K maps bounded sets in
relatively compact sets in X. As a consequence, the nonlinear operator T : X −→ X

is compact. Hence � is a compact perturbation of the identity and we can employ
the Schauder fixed point theorem or else the homotopy invariance of the degree. The
reader has to observe that the application of these tools requires us to prove a priori
bounds. By this one means that there exists M > 0 such that ‖u‖ ≤ M for any
possible solution of (7.1).

7.1.2 Weak Formulation

On the other hand, if we are working with the weak formulation of the problem
(7.5) and we want to employ critical point theory, it is convenient to work on a
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Hilbert space. Usually, one chooses the Sobolev space E = H 1
0 (�) endowed with

the scalar product and norm

(u | v) =
∫
∇u · ∇v , ‖u‖ =

(∫
|∇u|2

)1/2

.

Let F (x, u) = ∫ u
0 f (x, s)ds with f satisfying (7.2) and define the functional Jλ :

E→ R by setting

Jλ(u) = 1
2‖u‖2 − λ

∫
F (x, u(x)) .

Observe that F (x, u(x)) is integrable by (7.2). In addition,

dJλ(u)[v] = (u | v)− λ

∫
f (x, u)v =

∫
∇u · ∇v− λ

∫
f (x, u)v.

Then any critical point u ∈ E of Jλ verifies
∫
∇u · ∇v − λ

∫
f (x, u)v = 0, ∀ v ∈ E,

and hence is a weak solution of (7.1). Since f is smooth, by elliptic regularity, u
is a classical solution. It is instructive to evaluate the gradient J ′λ(u). By definition,
J ′λ(u) ∈ E is such that dJλ(u)[v] = (J ′λ(u) | v), for all v ∈ E, namely

∫
∇u · ∇v − λ

∫
f (x, u)v =

∫
∇z · ∇v , ∀ v ∈ E,

where z = J ′λ(u). Setting w = u− z, then w is such that
∫
∇w · ∇v = λ

∫
f (x, u)v , ∀ v ∈ E.

Therefore w is a solution of −�w = λf (x, u), with w|∂� = 0. In other words,
w = λK ◦ f (u) where K denotes the inverse of the operator −� on H 1

0 (�). In
conclusion we have found that

J ′λ(u) = u− λK ◦ f (u).

Lemma 7.1.1 The functional Jλ satisfies the compactness part (b) the (PS) condition
(see Section 5.3).

Proof Indeed, let {un} be a bounded sequence in H 1
0 (�) such that Jλ(un) is bounded

and Jλ
′(un) −→ 0. Taking un−u as a test function, we obtain Jλ

′(un)(un−u) −→ 0,
i.e.,

(un | un − u)− λ(K(f (un)) | un − u) −→ 0.

By (7.2) and the compactness of K , we infer that K(f (un)) strongly converges to
K(f (u)) up to a subsequence. Then (K(f (un)) | un−u) converges to zero and hence
(un | un − u) tends to zero. This immediately implies that un is strongly convergent.

��
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In some cases one can look for pairs (λ, u) in R×E satisfying (7.1) with prescribed
norm of u, i.e., such that ‖u‖ = R, for some fixedR > 0. We will refer to this problem
as a nonlinear eigenvalue problem. The difference with respect to the boundary value
problem (7.1) is that here λ is not a given number, but is unknown and appears as
a Lagrange multiplier. In order to find solutions of such an eigenvalue problem,
it is natural to use variational methods, in particular, Theorem 5.4.4 minimizing
F(u) = ∫ F (x, u(x))dx on the sphere ‖u‖ = R. According to Example 5.2.2, a local
minimum of such an F on the sphere satisfies F ′(u) = λu for a suitable Lagrange
multiplier λ ∈ R. As we have seen before, u is a solution of (7.1) such that ‖u‖ = R.

On the other hand, if we want to apply bifurcation theory to study the existence
of weak solutions of the boundary value problem

{−�u = λu+ f (x, u), in �

u = 0, on ∂�,
(7.4)

we setE = L2(�) and letK be the inverse of the Laplacian operator (see Sect. 1.2.5),
so that (7.4) is equivalent to u = λKu+Kf (u), u ∈ E. Setting L = K and H = Kf ,
we get H (0) = 0 and H ′(0) = 0 provided f (x, 0) = 0 and ∂f

∂u (x, 0) = 0. Hence, we
are in the abstract setting discussed in Chap. 6 dealing with bifurcation theory.

In this case the possible bifurcation points are the characteristic values λ of K ,
i.e., the λ such that Ker (λK − I ) �= {0} or, equivalently, the eigenvalues of−� (see
Lemma 6.1.1).

Let us remark that from elliptic regularity and the Rellich theorem (see Sect. 1.2.5)
it follows that K is a compact operator.

Remark 7.1.2 It is worth pointing out that one can use other ways to frame the
boundary value problems (7.4) or (7.1). For example, we can find bifurcation results
by means of degree theory (or of analytical tools) by working in the Banach space
X considered in Sect. 7.1.1.

7.2 Sub- and Super-Solutions and Increasing Operators

A separate discussion is in order when we want to use the topics studied in Sect. 2.2
dealing with increasing operators.

In this case, by definiteness we fix λ = 1 in (7.1), i.e., let us consider the Dirichlet
boundary value problem

{−�u = f (x, u), in �

u = 0, on ∂�,
(7.5)

where f ∈ C0,ν(�× R), 0 < ν < 1, and there exists m > 0 such that

(f 0) For every fixed x ∈ �, the function fm(x, u) := f (x, u) + mu is increasing
with respect to u.
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Problem (7.5) is equivalent to

{−�u+mu= fm(x, u), in �

u= 0, on ∂�.
(7.6)

According to the previous arguments, (7.6) can be translated into the operator equa-
tion u = T (u), with u ∈ X = C0,ν(�), 0 ≤ ν < 1, and T = Km ◦ fm, where
Kmu = z iff −�z + mz = u, z|∂� = 0. Let us remark that T is compact since Km

is. In the space X we consider the natural ordering: v ≤ w iff v(x) ≤ w(x) for all
x ∈ �.

We claim that T is an increasing operator. Let u ≤ v; then z = T (u) = Km(fm(u))
(respectively, w = T (v) = Km(fm(v)) is a solution of the equation −�z + mz =
fm(x, u) (resp. −�w + mw = fm(x, v)), satisfying z|∂� = w|∂� = 0. By (f 0),
u ≤ v implies that fm(x, u) ≤ fm(x, v) and hence, by the maximum principle (see
Theorem 1.3.14), it follows that z ≤ w in �, proving the claim.

A function v ∈ C2(�) ∩ C(�) such that

{−�v ≤ f (x, v), in �

v ≤ 0, on ∂�,

is called a sub-solution of (7.5). Similarly, a super-solution w ∈ C2(�) ∩ C(�) is
defined by requiring

{−�w ≥ f (x, w), in �

w ≥ 0, on ∂�.

Thus a sub-solution, resp. super-solution, is a v ∈ X, resp. w ∈ X, such that v ≤ T (v),
resp. w ≥ T (w).

After these preliminaries, a straight application of Theorem 2.2.2 yields the
following.

Theorem 7.2.1 Let f ∈ C0,ν(� × R), 0 < ν < 1 satisfy (f 0) and suppose that v,
resp. w, is a sub-solution, resp. super-solution, of (7.5) such that v ≤ w. Then (7.5)
has a solution u such that v ≤ u ≤ w. Moreover, (7.5) has a minimal solution u1

and a maximal solution u2, in the sense that any other solution u of (7.5), such that
v ≤ u ≤ w, satisfies u1 ≤ u ≤ u2.

Remark 7.2.2 The proof of the previous theorem is also obtained by imposing only
a more general hypothesis than (f 0). Indeed, it instead suffices to assume that the
following condition holds:

(f̃ 0) For every fixed x ∈ �, the function fm(x, u) := f (x, u) + mu is increasing
with respect to u ∈ [min�v, max�w].

Notice that every locally Lipschitzian function f satisfies the hypothesis (f̃ 0).

As a trivial application of Theorem 7.2.1 let us show that (7.5) possesses a solution
provided f ∈ C0,ν(� × R), 0 < ν < 1 and there exist a < b such that f (x, a) ≥
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0 ≥ f (x, b) for all x ∈ �. It suffices to remark that v ≡ a is a sub-solution, and
w ≡ b is a super-solution of (7.5), because

0 = −�v ≤ f (x, a), 0 = −�w ≥ f (x, b).

Moreover v < w and Theorem 7.2.1 yields a solution u of (7.5).
It will be useful to know different proofs of Theorem 7.2.1. Using topological or

variational methods we will find additional information about the solution. This will
provide the existence of multiple solutions. We begin by computing the degree of
the operator I − T .

Lemma 7.2.3 In addition to the hypotheses of Theorem 7.2.1, assume that f ∈
C1(� × R) and that v, w ∈ C1

0 (�) ∩ C2(�) are not solutions, v < w in � and
∂w
∂n

< ∂v
∂n

on ∂�. For R > 0 we set

U (R) = {u ∈ C1
0 (�) : v < u < w in �,

∂w

∂n
<

∂u

∂n
<

∂v

∂n
on ∂�} ∩ BR(0),

where BR(0) denotes the ball centered at zero and with radius R in the space C1
0 (�)

of the functions of class C1 which vanish on ∂�. Then there is R > 0 such that
deg (I − T ,U (R), 0) = 1.

Proof Observe that the setU (R) is open, bounded and convex inC1
0(�). We consider

the truncated problem

{−�u+mu = f̃m(x, u), in �

u = 0, on ∂�,

where

m = max

{∣∣
∣
∣
∂f

∂s
(x, s)

∣
∣
∣
∣ : x ∈ �, s ∈

[

min
�

v, max
�

w

]}

and

f̃m(x, s) =
⎧
⎨

⎩

f (x, v(x))+mv(x), if s < v(x)
f (x, s)+ms, if v(x) ≤ s ≤ w(x)
f (x, w(x))+mw(x), if w(x) < s.

Following the notation used in Theorem 7.2.1, we set T̃ = Km ◦ f̃m, which is a
compact operator (by the compactness of Km). In addition, the boundedness of f̃m

and the Lp-estimates imply that T (C1
0 (�)) is bounded in C1

0 (�). Let R be a positive
number such that T (C1

0 (�)) ⊂ B(R). Using the strong comparison principle and the
Hopf lemma (see [58, Lemma 3.4]) for the operator −�+mI it is easily seen that
v < T̃ (u) < w in � and ∂w

∂n
< ∂T̃ (u)

∂n
< ∂v

∂n
on ∂� for every u ∈ C1

0 (�). In other
words, we have seen that T̃ (C1

0(�)) ⊂ U (R). Fixing z ∈ U (R), let us consider the
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homotopy
H (λ, u) = λT̃ (u)+ (1− λ)z.

The convexity of U (R) implies that λT̃ (u) + (1 − λ)z ∈ U (R) for every λ ∈ [0, 1]
and u ∈ C1

0 (�). Hence,

u �= H (λ, u), ∀u ∈ ∂U (R), ∀λ ∈ [0, 1]

and deg (H (λ, ·),U (R), 0) is well defined. The invariance by homotopy gives

deg (I − T̃ ,U (R), 0) = deg (H (1, ·),U (R), 0) = deg (H (0, ·),U (R), 0) = 1

since H (0, ·) is a constant map. ��
Now, we show that in general the solution obtained between sub- and super-

solution is a local minimum of the corresponding Euler functional:

J (u) = 1

2

∫
|∇u|2 −

∫
F (x, u), u ∈ H 1

0 (�),

where, as usual, F (x, s) = ∫ s

0 f (x, t)dt . In order to do his, we have to prove the
following result due to Brezis and Nirenberg [38].

Theorem 7.2.4 Assume that

|f (x, u)| ≤ c1 + c2|u|p, a.e. x ∈ �, ∀u ∈ R

with p < 2∗ − 1. If, for some r > 0, u0 ∈ H 1
0 (�) satisfies

J (u0) ≤ J (u0 + v), ∀v ∈ C1
0 (�) with ‖v‖C1 ≤ r , (7.7)

then there exists ε > 0 such that

J (u0) ≤ J (u0 + v), ∀v ∈ H 1
0 (�) with ‖v‖ ≤ ε.

Remark 7.2.5 1. In other words, if u0 ∈ H 1
0 (�) is a local minimizer of J in the

C1-topology, then u0 is also a local minimizer of J in the H 1
0 -topology.

2. As can be seen in the original paper by Brezis and Nirenberg, the theorem is also
true for p = 2∗ − 1.

Proof By Lp-theory it is possible to show that u0 ∈ C1(�) and thus we may assume
without loss of generality that u0 = 0. We argue by contradiction assuming that for
every ε > 0 there exists vε ∈ H 1

0 (�) such that ‖vε‖ ≤ ε and

J (vε) = min‖v‖≤ε J (v) < J (0).

(Observe that the existence of minimizer vε is a consequence of the weak lower
semicontinuity of J ). By the Lagrange multiplier theorem, there exists a Lagrange
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multiplier με ≥ 0 such that the minimizer vε satisfies −�vε − f (x, vε) = −με�vε,
i.e.,

−�vε = f (x, vε)

1+ με

.

Since p < 2∗ −1, the Agmong–Douglis–Nirenberg regularity result implies that the
norm ‖vε‖C1 may be estimated by the norm ‖vε‖ which is smaller than or equal to
ε. Therefore, ‖vε‖C1 converges to zero as ε goes to zero and we may choose ε such
that ‖vε‖C1 ≤ r and then, by (7.7), J (0) ≤ J (vε), contradicting the definition of vε.

��
Lemma 7.2.6 If, in addition to the assumptions of Theorem 7.2.1, v and w are not
solutions of (7.5), then there is solution u of (7.5) with v < u < w in � and which
is a local minimizer of J in H 1

0 (�).

Proof For the convenience of the reader, here we prove the lemma in the case that
v, w ∈ C1

0 (�), which allows us to use the Hopf lemma (see [58, Lemma 3.4]). We
refer to [38] for the general case (even if v and w are only continuous (not C2) sub-
and super- solutions in the sense of distributions). We consider now the truncated
problem

{−�u = f̃ (x, u), in �

u = 0, on ∂�,

where

f̃ (x, s) =
⎧
⎨

⎩

f (x, v(x)), if s < v(x)
f (x, s), if v(x) ≤ s ≤ w(x)
f (x, w(x)), if w(x) < s.

Since f̃ is bounded, a solution u0 ∈ H 1
0 (�) ∩ C1

0 (�) of the preceding Dirichlet
problem can be obtained by minimization of the coercive functional

J̃ (u) = 1

2

∫
|∇u|2 −

∫
F̃ (x, u), u ∈ H 1

0 (�),

with F̃ (x, s) = ∫ s

0 f̃ (x, t) dt (see Example 5.2.1). Using that v is a sub-solution,

−�(v− u0) ≤ f (x, v)− f̃ (x, u0) (7.8)

and consequently, if the set A = {x ∈ � : u0(x) < v(x)} were not empty, then
−�(v− u0) ≤ 0 in A and v− u0 ≤ 0 on ∂A. By the maximum principle we deduce
that v ≤ u0 in A, contradicting the definition of A and proving that A = ∅, i.e.,
v ≤ u0.

Using again (7.8) and hypothesis (f 0) we also obtain−�(v− u0)+ k(v− u0) ≤
[f (x, v)+ k(v− u0)]− [f̃ (x, u0)+ k(v− u0)] ≤ 0. Taking into account that v is not
a solution, v − u0 �≡ 0, the strong maximum principle and Hopf lemma show that
u0 − v belongs to the interior of the cone of positive functions in C1

0 (�).
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A similar argument using the super-solution w (instead of v) implies that w − u0

is also in the interior of this cone. Therefore, u0 is in the interior of the set {u ∈
C1

0 (�) : v ≤ u ≤ w in �}, i.e., there exists ε > 0 such that

u ∈ C1
0(�)

‖u− u0‖C1 ≤ ε

}

$⇒ v ≤ u ≤ w in �.

To conclude the proof, it suffices to observe that J (u) − J̃ (u) is constant in the
ball ‖u−u0‖C1 ≤ ε (since F̃ (x, u)−F (x, u) depends only on x for u ∈ [v(x), w(x)])
and to use that u0 is a global minimizer of J̃ . This implies that u0 is a local minimizer
of J in the C1-topology and, by Theorem 7.2.4, in the H 1

0 (�)-topology. ��
The following example shows that, in general, the existence of a sub-solution v and
a super-solution w, without assuming that they are ordered v ≤ w, does not imply
the existence of a solution. Indeed, let λ1 < λ2 denote the first two eigenvalues of
the linear Dirichlet problem

{−�u = λu, in �

u = 0, on ∂�,

and let ϕ1 > 0, and ϕ2 �≡ 0 denote two eigenfunctions corresponding to λ1, λ2, resp.
Fixing 0 < α < β, choose a smooth function h such that (i) α(λ2 − λ1)ϕ1 < h <

β(λ2 − λ1)ϕ1 and (ii)
∫
hϕ2 �= 0. Using ϕ2 as a test function, the latter condition

implies that the problem
{−�u = λ2u− h(x), in �

u = 0, on ∂�
(7.9)

has no solution. On the other hand,

v = βϕ1, w = αϕ1,

are, respectively, a sub-solution and a super-solution of (7.9). Actually, v(x) =
w(x) = 0 for x ∈ ∂� and, using (i), we find that

−�v = βλ1ϕ1 < λ2βϕ1 − h = λ2v− h,

as well as
−�w = αλ1ϕ1 < λ2αϕ1 − h = λ2w− h.

Despite the above example, we see now a result in which the existence of a sub-
and a super-solution is sufficient to find a solution of a boundary value problem.
Specifically, we follow [3] to prove the following theorem.

Theorem 7.2.7 Let g be a bounded continuous function. If there exist a sub-solution
v and a super-solution w of the problem

{−�u = λ1u+ g(u), in �

u = 0, on ∂�,

then there exists a solution of it.
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Proof Consider X = C(�) and take a positive eigenfunction ϕ associated to the
first eigenvalue λ1. Then Ker (−�− λ1I ) = Rϕ. We split the space X = Rϕ⊕W ,
i.e. u = tϕ + w, where t ∈ R and w ∈ W . By the Lyapunov–Schmidt reduction we
see that our problem is equivalent to the system

w = AQg(tϕ + w)∫
g(tϕ + w)ϕ = 0,

where A is the inverse of the operator−�−λ1I in W (since zero is not an eigenvalue
of it).

We study now the solution set � = {(t , w) ∈ R×W : w = AQb(tϕ+w)} of the
first equation in the system. By the boundedness of g, there exists R > 0 such that

‖AQg(tϕ + w)‖ < r , ∀t ∈ R, ∀w ∈ W

and hence � ⊂ R × Br , where Br denotes the open ball in W of radius r and
centered at zero. This implies also that �λ(w) = w− λAQg(tϕ + w), for λ ∈ [0, 1]
and w ∈ W , defines a homotopy and thus

deg (�λ,Br , 0) = deg (�0,Br , 0) = 1.

Given α > 0, by using Theorem 4.3.4 we obtain the existence of a connected set
�α ⊂ � such that �α crosses {−α}×W as well as {α}×W . Taking into account that
�α is connected and the continuity on R×W of the function γ (t , w) = ∫ g(tϕ+w)ϕ
we deduce that γ (�α) is an interval. Three cases may occur: 0 ∈ γ (�α), γ (�α) ⊂
(0,+∞) or γ (�α) ⊂ (−∞, 0).

In the first case, we have already solved the system and so our problem.
With respect to the second case, i.e., γ (�α) ⊂ (0,+∞), we deduce that for every

pair (t , z) ∈ R× Z the function u = tϕ + w satisfies

−�u = −t�ϕ −�w = λ1tϕ + λ1w+ g(tϕ + w)− γ (t , w)ϕ < λ1u+ g(u), in �,

namely, it is a sub-solution of our problem. Clearly it is possible to take a very
negative number t in order to have u be smaller than or equal to the super-solution
w given by hypothesis. Consequently, Theorem 7.2.1 applies and we also obtain a
solution of our problem in this case.

The proof in the third case is similar: it suffices to observe now that u = tϕ + w
is a super-solution. ��



Chapter 8
Problems with A Priori Bounds

In this chapter we discuss problems in which one can obtain a priori bounds for the
solutions. Roughly, this happens if the nonlinearity is sublinear at infinity. It will be
shown that, according to the properties of the nonlinearity, we can use the global
inversion theorem (to get existence and uniqueness) or topological degree or else
critical point theory.

8.1 An Elementary Nonexistence Result

Consider the Dirichlet boundary value problem

{−�u = f (u)+ h(x), in �,
u = 0, on ∂�.

(8.1)

In this case, the existence of a priori bounds for (8.1) is strongly related to the fact that
the limits at infinity of f (u)/u do not intersect the spectrum of the Laplace operator,
in a sense made precise in the sequel.

To put more in evidence the necessity of interaction with spectrum, observe that
if (8.1) has one solution, using a positive eigenfunction ϕ1 associated to the first
eigenvalue λ1 of the Laplace operator as a test function, we conclude that

∫
[f (u)+ h(x)− λ1u]ϕ1 = 0.

Consequently we deduce the following trivial nonexistence result.

Proposition 8.1.1 Assume that � is an open subset in R
N , f is continuous and

h ∈ L2(�). If either

• f (u)+ h(x) < λ1u for every u ∈ R and a.e. x ∈ �, or
• f (u)+ h(x) > λ1u for every u ∈ R and a.e. x ∈ �,

then problem (8.1) has no weak solution. ��
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8.2 Existence of A Priori Bounds

Let f ∈ C1(R, R) and assume that the following limits exist:

lim
u→−∞

f (u)

u
:= γ− ∈ R, lim

u→+∞
f (u)

u
:= γ+ ∈ R. (8.2)

We denote by � the closed interval of extrema γ− and γ+.
For fixed 0 < ν < 1, let X = {u ∈ C2,ν(�) : u(x) = 0 on ∂�}, Y = C0,ν(�) and

F (u) = −�u− f (u). For any h ∈ Y , the classical solutions of (8.1) are u ∈ X such
that F (u) = h.

Proposition 8.2.1 Suppose that (8.2) holds and that the interval � does not contain
any eigenvalue λk . Let un ∈ X and set hn = F (un). Then un is bounded in X provided
that hn ∈ Y is.

Proof We start by proving that ‖un‖Y is bounded. Otherwise, up to a subsequence,
we can assume that ‖un‖Y converges to infinity. Setting zn = un‖un‖−1

Y and using
(8.2) to write

f (s) = γ+s+ + γ−s− + g(s), with lim|s|→+∞ g(s)s−1 = 0,

we immediately check that zn satisfies

−�zn = γ+z+n + γ−z−n +
g(un)

‖un‖Y +
hn

‖un‖Y . (8.3)

The right-hand side is bounded in C(�) and hence by Schauder estimates, zn is
bounded in C1,ν(�). Then, up to a subsequence, zn converges strongly to some z in
C1(�) with ‖z‖Y = 1. Using a test function φ we get

∫
∇zn · ∇φ =

∫
γ+z+n φ +

∫
γ−z−n φ +

∫
g(un)znφ +

∫
hn

‖un‖Y φ.

By using the dominated convergence theorem we have

lim
n→+∞

∫
g(un(x))

‖un‖Y φ = 0,

and hence ∫
∇z · ∇φ =

∫
[
γ+z+ + γ−z−

]
φ.

This means that z �= 0 satisfies
{−�z = a(x)z, in �,

z = 0, on ∂�,
(8.4)

where

a(x) :=
{
γ+, if z(x) ≥ 0;
γ−, if z(x) < 0.

(8.5)
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Then λk[a] = 1 for some integer k ≥ 1. We assume now that γ+ ≤ γ− (the
verification for the reversed case γ− ≤ γ+ is left to the reader). Observe that if z
does not change sign then either −�z = γ+z+ or −�z = γ−z−. Both cases are not
possible because � = [γ+, γ−] does not contain any eigenvalue λk . Hence u changes
sign and the following holds:

|{x ∈ � : a(x) > γ+}| > 0 and |{x ∈ � : a(x) < γ−}| > 0.

Using the comparison property of eigenvalues (see Proposition 1.3.11-i)), we obtain

λk

γ+
= λk[γ+] > λk[a] = 1 > λk[γ−] = λk

γ−
,

i.e.,
γ+ < λk < γ− ,

a contradiction because � = [γ+, γ−] does not contain any eigenvalue λk . Therefore,
‖un‖Y is bounded and Schauder estimates (see Theorem 1.2.11) imply that ‖un‖X is
also bounded. ��

8.3 Existence of Solutions

In this section we will see how the different abstract techniques developed in the
previous chapters can be used in conjunction with the a priori bounds of the previous
section to prove existence of solutions of the problem (8.1). We will keep the notation
introduced before.

8.3.1 Using the Global Inversion Theorem

Our first result deals with a case in which the global inversion Theorem 3.4.5 applies.
We start by proving the following lemma.

Lemma 8.3.1 Suppose that f ∈ C1(R, R) satisfies (8.2). If the interval � does not
contain any eigenvalue λk , then F is proper.

Proof Let hn ∈ Y , hn → h ∈ Y and let un ∈ X be such that F (un) = hn, namely

{−�un = f (un)+ hn(x), in �,
un = 0, on ∂�.

By Proposition 8.2.1, un is bounded in X. In particular, f (un)+ hn is also bounded
in Y . By the compactness of K : Y −→ Y we deduce that, up to a subsequence,
un converges in Y to some u ∈ X satisfying −�u = f (u) + h(x), in �. Finally,
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using that−�(un− u) = f (un)− f (u)+ hn(x)− h(x) and Schauder estimates (see
Theorem 1.2.11), we readily conclude that un converges in X to u. ��
Theorem 8.3.2 Let f ∈ C1(R, R) be such that

1. condition (8.2) is satisfied and the interval � does not contain any eigenvalue λk;
2. for all u ∈ R, either f ′(u) < λ1, or λk < f ′(u) < λk+1 for some k ≥ 1.

Then (8.1) has a unique solution for all h ∈ Y .

Proof Let us show that F has no singular points. One has

dF (u)[v] = �v+ f ′(u)v.

Using assumption 2 and the comparison property of the eigenvalues, it readily follows
that Ker dF (u) = {0} and this implies that the singular set is empty. By hypothesis
1 (see Lemma 8.3.1), F is proper and the global inversion theorem applies, proving
the result. ��

8.3.2 Using Degree Theory

We apply the Schauder fixed point Theorem 4.2.6 to prove the existence part of
Theorem 8.3.2.

Theorem 8.3.3 Suppose that f ∈ C(R, R) satisfies (8.2) and the interval � does
not contain any eigenvalue λk . Then (8.1) has at least one solution.

Proof We will carry out the proof in the case λk < γ−, γ+ < λk+1. If γ−, γ+ < λ1

the arguments require trivial changes. We let γ = λk+λk+1
2 and denote by Kγ :

L2(�) −→ L2(�) the inverse of the operator −� − γ I (which is well defined
because γ is not an eigenvalue of the Laplacian operator). We write (8.1) as

u = Kγ [N (u)], u ∈ L2(�),

where N : L2(�) −→ L2(�) is defined by

Nu(x) = f (u(x))+ h(x)− γ u(x), ∀x ∈ �.

Hence, we just have to prove the existence of a fixed point of T = Kγ ◦ N . This
is done by using the Schauder fixed point theorem. In order to do this, observe that
from the hypotheses on f , the continuous function g defined in �× R by

g(x, s) = f (x, s)− γ+s+ − γ−s−, ∀s ∈ R

(with s+ = max{s, 0} and s− = min{s, 0}) satisfies lim|s|→+∞ g(x, s)/s = 0 (i.e., it
is sublinear). Hence, there exists μ ∈ (0, (λk+1 − λk)/2) such that

|f (x, s)− γ s| ≤ μ|s|, ∀s ∈ R
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and thus

‖T u‖2 ≤ ‖Kγ ‖‖N (u)‖2

≤ 2

λk+1 − λk

[‖f (x, u)− γ u‖2 + ‖h‖2
]

≤ 2

λk+1 − λk

[μ‖u‖2 + ‖h‖2]

≤ μ‖u‖2 + C,

where μ = 2μ
λk+1−λk ∈ (0, 1). So choosing r > 0 such that μr + C < r , we

deduce that ‖T u‖L2 ≤ r , provided ‖u‖L2 ≤ r , i.e., T (B(0, r)) ⊂ B(0, r). Finally the
compactness ofKγ and the continuity of the Nemitski operatorN (see Theorem 1.2.1)
imply the compactness of T , and we can so use the Schauder Theorem 4.2.6 to
conclude the proof. ��
Remark 8.3.4 From the proof of Schauder Theorem 4.2.6 by using the degree, we
deduce that there exists r > 0 such that deg (T ,B(0, r), 0) = 1.

Remark 8.3.5 If, in addition, item 2 of Theorem 8.3.2 is satisfied, then it is possible
to prove the uniqueness of the solution as well. Indeed, the meaning of this condition
is that the operator T is a contraction and thus the Banach contraction principle can
be applied to obtain (existence and) uniqueness.

8.3.3 Using Critical Point Theory

According to the discussion of Sect. 7.1.2, solutions of (8.1) could also be found by
looking for critical points of the Euler functional

J (u) = 1
2

∫
|∇u|2 −

∫
F (u)−

∫
h(x)u, u ∈ E = H 1

0 (�),

where F (u) = ∫ u
0 f (s)ds. Let us remark that for every ε > 0 there exists Cε > 0

such that

|F (u)| ≤ Cε + 1
2 (max{γ−, γ+} + ε) |u|2. (8.6)

In particular, F (u) ∈ L1(�) for all u ∈ E and J ∈ C1(E, R). Moreover, setting

F(u) =
∫

F (u),

one has the following.
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Lemma 8.3.6 F is weakly continuous.

Proof Let un ⇀ u weakly inE. By the Rellich–KondrachovTheoremA.4.9, un → u
strongly in L2, up to a subsequence. From (8.6) and the dominated convergence
theorem, we deduce that F(un)→ F(u). ��
In order to prove Theorem 8.3.3 by applying the results on critical point theory to
the functional J , we state the following lemma on the Palais–Smale condition.

Lemma 8.3.7 If � does not contain any eigenvalue λk , then J satisfies the Palais–
Smale condition.

Remark 8.3.8 The reader should observe the similarity between the proof of this
lemma and the corresponding proof of Proposition 8.2.1.

Proof Let {un} ⊂ H 1
0 (�) be a sequence such that {J (un)} is bounded and {J ′(un)}

tends to zero in H 1
0 (�). To prove that {un} has a convergent subsequence, it suffices

to show that it is bounded in H 1
0 (�) (see Lemma 7.1.1). Assume, by contradiction,

that ‖un‖ → +∞. Using that

lim
n→+∞

J ′(un)(ϕ)

‖un‖ = 0

and taking zn ≡ un/‖un‖, we obtain

lim
n→+∞

∫
∇zn · ∇ϕ −

∫
f (un)

‖un‖ ϕ −
∫

hϕ

‖un‖ = 0,

for every ϕ ∈ H 1
0 (�). Passing to a subsequence if necessary, we may assume without

loss of generality that zn ⇀ z in H 1
0 (�), zn → z in L2(�), zn(x)→ z(x) a.e. x ∈ �.

Thus, by the Lebesgue dominated convergence theorem we yield

lim
n→+∞

∫
f (un)

‖un‖ ϕ =
∫
(
γ+z+ + γ−z−

)
ϕ

and hence ∫
∇z · ∇ϕ =

∫
(
γ+z+ + γ−z−

)
ϕ,

i.e., v is a solution of the problem (8.4). This implies that z = 0 and this is a
contradiction because we deduce that

0 = lim
n→+∞ (J ′(un) | zn) = 1− lim

n→+∞

∫
f (x, un)zn −

∫
hzn = 1.

Therefore, {un} is bounded and the Palais–Smale condition has been verified. ��
Variational proof of Theorem 8.3.3 By Lemma 8.3.7, it suffices to study the geometry
of J . It is convenient to consider three cases:

Case 1. max{γ−, γ+} < λ1

Case 2. λ1 < γ−, γ+ < λ2

Case 3. λk < γ−, γ+ < λk + 1, with k ≥ 2.
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Case 1 We begin proving that if max{γ−, γ+} < λ1, then J has a minimum on E

which gives rise to a solution (8.9). Indeed, if we fix γ ∈ (max{γ−, γ+}, λ1), from
(8.6) one has

J (u) ≥ 1
2‖u‖2 − c1 − 1

2 γ

∫
|u|2 − ‖h‖2‖u‖L2 .

Using the Poincaré inequality (Corollary 1.3.9) we deduce

J (u) ≥ 1
2

(

1− γ

λ1

)

‖u‖2 − c1 − c2‖u‖.

Since γ < λ1, it follows that J is coercive and then, by Theorem 5.4.1-2, J has a
minimum on E. (It is also possible to show that J is w.l.s.c. and therefore to apply
Corollary 1.2.5 instead of Theorem 5.4.1-2, to prove the existence of a minimum of
J on E.)

Case 2 We prove that if λ1 < γ−, γ+ < λ2 the functional J has a mountain pass
critical point. Indeed, choosing λ1 < μ < γ−, γ+ < μ < λ2, it is easy to verify that

1

2
μu2 − C1 ≤ F (u) ≤ 1

2
μu2 + C2, ∀u ∈ R,

and thus

J (u) ≤ 1

2
‖u‖2 − μ

2
‖u‖2

2 + C1|�| + ‖h‖L2‖u‖2, (8.7)

J (u) ≥ 1

2
‖u‖2 − μ

2
‖u‖2

L2 − C2|�| − ‖h‖L2‖u‖L2 . (8.8)

From (8.7) it follows that

lim|t |→+∞J (tϕ1) = −∞.

From (8.8) it follows that
inf
〈ϕ1〉⊥

J > −∞.

Moreover, the Palais–Smale condition holds (see Lemma 8.3.7). Then we can use
the variant of the mountain pass theorem given in Theorem 5.3.8 to infer that J has
a critical point.

Case 3 We show that if λk < γ−, γ+ < λk+1, with k ≥ 2, then the saddle point
theorem applies.

Indeed, choosing λk < μ < γ−, γ+ < μ < λk+1, and repeating the arguments
carried out in case 2, it is easy to verify that J satisfies (8.7) and (8.8).
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Splitting H 1
0 (�) into H 1

0 (�) = V ⊕ V ⊥ with V = 〈ϕ1,ϕ2, . . . ,ϕk〉, we deduce
from the variational characterization of the eigenvalues λ1, λk and λk+1 that

J (u) ≤ 1

2

(

1− μ

λk

)

‖u‖2 + C1|�| + ‖h‖L2

λ1
‖u‖, ∀u ∈ V

and

J (u) ≥ 1

2

(

1− μ

λk+1

)

‖u‖2 − C2|�| − ‖h‖L2

λ1
‖u‖, ∀u ∈ V ⊥.

So, it is possible to choose R > 0 such that

max
u∈V ,‖u‖=R J (u) < inf

u∈V⊥
J (u).

All the hypotheses of the Rabinowitz saddle point Theorem 5.3.9 are satisfied, and
the variational proof of Theorem 8.3.3 is also concluded in Case 3. ��

8.4 Positive Solutions

Here we will be interested in applying Theorem 8.3.3 to find positive solutions of
{−�u = f (x, u), in �,

u = 0, on ∂�,
(8.9)

under the assumption that f (x, 0) ≥ 0. In such a case we will define f for u < 0 by
setting

f (x, u) ≡ f (x, 0), ∀ u ≤ 0. (8.10)

Since the modified f satisfies f (x, u) ≥ 0 for every u ≤ 0, then by the maximum
principle, any solution of (8.9), with the modified f , is greater than or equal to zero
so that the value of f for u ≤ 0 does not play any role. In the sequel we will always
understand that f denotes the given nonlinearity extended to negative u by (8.10).

If γ+ := lims→+∞ f (x, s)/s < λ1, then Theorem 8.3.3 gives us the existence of
a (non-negative) solution of (8.9) obtained as a global minimum of the associated
Euler functional. In order to prove that this is not zero we need some additional
hypotheses on the behavior of f at zero. Notice that the role played by −∞ in the
study of the existence of solutions in the previous sections will be now replaced
by u = 0. In this way, the following result is the counterpart of Theorem 8.3.3 for
positive solutions in the case max{γ−, γ+} < λ1.

Theorem 8.4.1 Assume that γ+ < λ1 and let us suppose that

γ0 := lim
u→0+

f (x, u)

u
> λ1. (8.11)

Then (8.9) has a strictly positive solution.

Proof Let z be the minimum found in Theorem 8.3.3. By the maximum principle,
z ≥ 0. If (8.11) holds, let us show that z �= 0. Actually, let ϕ1 > 0 denote the positive
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eigenfunction corresponding to λ1, such that ‖ϕ1‖ = 1, and evaluate J (tϕ1) for
t ∼ 0. Fixing ε > 0 such that γ0 − ε > λ1, by (8.11) there exists δ > 0 such that
f (u) ≥ (γ0 − ε)u provided 0 < u < δ. Then F (x, u) ≥ 1

2 (γ0 − ε)|u|2 for 0 < u < δ

and if t < δ‖ϕ1‖−1∞ we find

J (tϕ1) = 1
2 t2 −

∫
F (x, tϕ1)dx ≤ 1

2 t2 − 1
2 t2(γ0 − ε)

∫
ϕ2

1dx.

Since −�ϕ1 = λ1ϕ1, then
∫
ϕ2

1dx = λ−1
1 and

J (tϕ1) ≤ 1
2 t2

(

1− γ0 − ε

λ1

)

,

which together with γ0 − ε > λ1 implies that

lim
t→0+

J (tϕ1)

t2
< 0,

and hence J (tϕ1) < 0 provided t > 0 is sufficiently small. As a consequence
J (z) = minEJ < 0, proving that z �= 0. ��
Next we give a new proof of the preceding theorem by using sub- and super-solutions.
As usual, ϕ1 > 0 denotes a positive eigenfunction corresponding to λ1. In addition,
let e > 0 satisfy {−�e = 1, in �

e = 1, on ∂�.

Another proof of Theorem 8.4.1 In order to apply Theorem 7.2.1 we have to prove
the existence of an ordered pair of sub- and super-solutions of (8.9). This is done in
two steps.

• Step 1. v = εϕ1 is a sub-solution of (8.9), provided ε > 0 is sufficiently small.
• Step 2. w = Me is a super-solution of (8.9), provided M is sufficiently large.

Step 1. Using the assumption γ0 > λ1, there exists δ > 0 such that f (t) > λ1t for all
t ∈ (0, δ). Then, if ε > 0 is such that ε|ϕ1|∞ < δ, we get f (εϕ1) > λ1εϕ1 and thus

−�v = −ε�ϕ1 = λ1 ε ϕ1 ≤ f (x, εϕ1) = f (x, v), v|∂� = 0,

proving that v is a sub-solution of (8.9).

Step 2. Fixing δ > 0 such that δ|e|∞ < 1, γ+ < λ1 implies that f (x,Me) ≤ δMe

provided M > 0 is sufficiently large. Then w = Me satisfies

−�w = M ≥ Mδ|e|∞ ≥ δMe ≥ f (x,Me), w|∂� = M ,

proving that w is a super-solution.
Moreover, by the Hopf lemma (see [58, Lemma 3.4]), there exists M > 0 such

that v = εϕ1 < w = Me in �. Therefore, Theorem 7.2.1 applies and (8.9) has a
solution u such that 0 < εϕ1 ≤ u ≤ Me. ��
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Remark 8.4.2 If f assumes negative values, e.g., if limu→+∞ f (x, u) < 0, then,
according to the discussion at the proof of Theorem 8.4.1 based on sub- super-
solutions, any w ≡ b > 0 such that f (b) ≤ 0 can be taken as a super-solution
instead of Me. For ε > 0 sufficiently small, one has that εϕ1 < b and (8.9) has a
solution u such that 0 < εϕ1 ≤ u ≤ b.

Remark 8.4.3 Let us point out that, taking into account Lemma 7.2.6, the two proofs
of Theorem 8.4.1 are similar.

Theorem 8.4.4 If, in addition to the hypotheses of the preceding theorem, f (x, u) =
f (u) and g(u) := u−1f (u) is decreasing for u > 0, then (8.9) has a unique positive
solution.

Proof The uniqueness result is based upon the following lemma which is interesting
in itself.

Lemma 8.4.5 Suppose that g(u) is decreasing for u > 0 and let v, w be a positive
sub-solution, resp. super-solution, of (8.9), satisfying v = w = 0 on ∂�. Then v ≤ w
in �.

Proof From the definition of sub- and super-solution we deduce

−v�w+ w�v ≥ vf (w)− wf (v)

= vwg(w)− wvg(v) = vw[g(w)− g(v)]. (8.12)

Let χ (t) be smooth, nondecreasing and such that

{
χ (t) ≡ 0, if t ≤ 0,
χ (t) ≡ 1, if t ≥ 1,

and set, for ε > 0,

χε(t) = χ

(
t

ε

)

.

Then (8.12) yields

∫
[− v�w+ w�v]χε(v− w) =

∫
vw(g(w)− g(v))χε(v− w). (8.13)

Let us evaluate the integral Iv,w,ε on the left-hand side of (8.13). Integrating by parts
(remember that v = w = 0 on ∂�) we find

Iv,w,ε =
∫

vχ ′ε(v− w)∇w · (∇v− ∇w)−
∫

wχ ′ε(v− w)∇v · (∇v− ∇w)

=
∫

vχ ′ε(v− w)(∇w− ∇v) · (∇v− ∇w)

+
∫

(v− w)χ ′ε(v− w)∇v · (∇v− ∇w).
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Since v > 0 and χ ′ε ≥ 0 we get

Iv,w,ε ≤
∫

(v− w)χ ′ε(v− w)∇v · (∇v− ∇w).

Consider the last integral and set

γε(t) =
∫ t

0
sχ ′ε(s)ds.

With this notation, one has
∫

(v− w)χ ′ε(v− w)∇v · (∇v− ∇w) =
∫
∇v · ∇(γε(v− w)).

Moreover, an integration by parts yields
∫
∇v · ∇(γε(v− w)) = −

∫
γε(v− w)�v.

Since 0 ≤ γε(t) ≤ ε for all t ∈ R, we infer that

−
∫

γε(v− w)�v ≤
∫

f (v)γε(v− w) ≤ c ε,

for some c > 0. In conclusion, putting together the previous inequalities we get

Iv,w,ε ≤ c ε.

Inserting this bound in (8.13) we find
∫

vw(g(w)− g(v))χε(v− w) ≤ c ε.

Passing to the limit as ε→ 0 and taking into account the definition of χ , we deduce
∫

{x∈�:v(x)>w(x)}
vw(g(w)− g(v)) ≤ 0.

On the other hand, since g(u) = u−1f (u) is decreasing, then

g(w) > g(v), ∀ x ∈ � : v(x) > w(x).

Since v and w are positive, it follows that
∫

{x∈�:v(x)>w(x)}
vw(g(w)− g(v)) ≥ 0.

Then ∫

{x∈�:v(x)>w(x)}
vw(g(w)− g(v)) = 0,

and we conclude that the set {x ∈ � : v(x) > w(x)} has zero Lebesgue measure.
This means that v ≤ w in �, completing the proof. ��
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Proof of Theorem 8.4.4 completed Let u1, u2 be any pair of positive solutions to
(8.9). Applying Lemma 8.4.5 with v = u1 and w = u2 we get that u1 ≤ u2. On
the other hand, we can also take v = u2 and w = u1 yielding u1 ≥ u2. Therefore,
u1 = u2, proving the theorem. ��
Example 8.4.6 (i) For 0 < q < 1, consider the problem

{−�u = λuq , in �

u = 0, on ∂�.
(8.14)

In this case, g(u) = λuq−1,

γ0 = lim
u→0+

g(u) = +∞, γ+ = lim
u→+∞ g(u) = 0,

and thus Theorems 8.4.1 and 8.4.4 yield the existence of a unique positive solution
of (8.14) for all λ > 0.
(ii) As a second application we can consider the problem

{−�u = αu− up, in �

u = 0, on ∂�,
(8.15)

with p > 1. Here g(u) = α − up−1 and

γ0 = lim
u→0+

g(u) = α, γ+ = lim
u→+∞ g(u) = −∞.

Hence Theorem 8.4.4 applies provided α > λ1 and yields a unique positive solution
uα of (8.15). Using Proposition 8.1.1, (8.15) has a trivial solution only provided that
0 ≤ α ≤ λ1. Furthermore, in the present case bα = (α)1/(p−1) is a super-solution of
(8.15) becausef (bα) = 0. Then (8.15) has a solution uα such that εϕ1 ≤ uα < bα, see
Remark 8.4.2. Since bα → 0 as α→ 0, from uα(x) < bα it follows that |uα|∞ → 0
as α→ 0. This means that λ1 is a bifurcation point from the trivial solution. ��
Following with the last remark, we wish to see that from λ1 there branches off a
curve of positive solutions of (8.15). Actually, if we consider the problem

{−�u = λf (u), in �

u = 0, on ∂�,
(8.16)

for a function f ∈ C1(R+) such that

γ+ ≤ 0 and lim
u→0+

g(u) = γ0 (8.17)

where g(u) = f (u)/u, Theorem 8.4.1 yields a positive solution uλ of (8.16) provided

λ > ν :=
{

0, if γ0 = +∞;
λ1γ

−1
0 , if 0 < γ0 < +∞.
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Lemma 8.4.7 Suppose that f ∈ C1(R+) is such that

f ′(u) < g(u), ∀u > 0 (8.18)

and let uλ be a positive solution of (8.16). Then λ1[f ′(uλ)] > 1, where λ1[m] denotes
the first positive eigenvalue of

{−�u = λm(x)u, in �

u = 0, on ∂�.

Proof The function uλ satisfies −�uλ = λg(uλ)uλ, which implies that λ =
λk[g(uλ)] for some k ∈ N. Since uλ > 0, it follows that k = 1, namelyλ = λ1[g(uλ)].
By assumption, f ′(uλ) < g(uλ) and hence the properties of the eigenvalues of (8.14)
(see Proposition 1.3.11) imply that λ1[f ′(uλ)] > λ1[g(uλ)] = 1. ��
Theorem 8.4.8 Suppose that f ∈ C1(R+) satisfies (8.17) and (8.18). Then the
family {uλ : λ > ν} is a curve.

Proof Let X = {u ∈ C2(�)∩C(�) : u(x) = 0, ∀ x ∈ ∂�}, Y = C(�) and consider
the map F (λ, u) = �u + λf (u). One has that F (λ, uλ) = 0 for all λ > λ0 and the
linearized equation duF (λ, uλ)[φ] = 0 is the problem

{−�φ = λf ′(uλ)φ, in �

φ = 0, on ∂�.
(8.19)

According to Lemma 8.4.7, λ1[f ′(uλ)] > 1 and therefore (8.19) has only the trivial
solution φ = 0. This allows us to apply the implicit function theorem to F (λ, u) = 0,
showing that the family {uλ : λ > ν} is a curve. ��
Remark 8.4.9 Theorem 8.4.8 applies to the Examples 8.4.6 (Eq. (8.15) is not in the
form (8.16), but in such a case the proof of Theorem 8.4.8 can be carried out with
uninfluential changes), proving that the family {uλ : λ > 0}, resp. {uλ : λ > λ1}
is a curve of solutions of (8.14), resp. (8.15). In the latter case, taking also into
account that |uλ|∞ → 0 as λ→ 0 (see Example 8.4.6-(i)), we can draw a diagram
representing the family {uλ : λ > 0} (see Fig. 8.1).

Our last result deals with the case f (x, 0) > 0. Since we use the abstract results in
Sect. 4.4, like in the preceding examples, it is convenient to introduce a real parameter
λ. Hence, instead of (8.9) , we consider the problem

{−�u = λf (x, u), in �

u = 0, on ∂�.
(8.20)

Theorem 8.4.10 Let us suppose that

f ∈ C(�× R
+), f (x, 0) > 0 ∀x ∈ �, (8.21)
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Fig. 8.1 Bifurcation diagram
for Remark 8.4.9

and limu→+∞ f (x, u)/u = γ+ ∈ R. Then (8.20) has a global branch S of positive
solutions emanating from (0, 0). Furthermore, the projection Proj λS of S in the
λ-axis contains [0,�), where

� =
{
γ+ · λ1, if γ+ > 0;
is arbitrary, if γ+ ≤ 0.

In particular, if γ+ ≤ 0, for all λ > 0 (8.20) has a positive solution uλ such that
(λ, uλ) ∈ S.

Proof Consider �(λ, u) = u − λKf (u). Since Kf (0) �= 0, then Theorem 4.4.1
applies and yields a global branch S of positive solutions emanating from (0, 0).

If (8.21) holds, then Proposition 8.2.1 can be used to deduce that S∩[0,�−ε]×X

is bounded for every ε > 0. ��
Remark 8.4.11 Following the ideas of the previous theorem, an additional proof of
Theorem 8.4.1 can be given using the Global bifurcation Theorem 6.3.1 instead of
Theorem 4.4.1.



Chapter 9
Asymptotically Linear Problems

From now on we consider problems which do not possess a priori estimates of their
solutions. Specifically, this chapter deals with asymptotically linear problems. For
this class of equations it is quite natural to use the bifurcation from infinity. The
classical Landesman–Lazer existence result is found by this method as well as by
using a variational approach. The bifurcation from infinity also leads to proving the
anti-maximum principle.

9.1 Existence of Positive Solutions

We give here some of the existence results in the work [14]. Specifically, we study
the existence of positive solutions of the boundary value problem

−�u = λf (u), x ∈ �

u = 0, x ∈ ∂�,
(9.1)

where � is a bounded open subset of R
N , λ > 0 and f ∈ C1([0,+∞)), with

f (0) = 0 and with positive right derivative f ′+(0) = m0 > 0.
First, as in Sect. 8.4, we reduce the study of the existence of positive solutions to

the existence of solutions of an extended problem. Indeed, we extend f to (−∞, 0)
by defining f (s) = f (0) for s < 0. With this extension, the maximum principle
implies that every nontrivial solution of (9.1) is positive.

Now, take X = C(�), K : X −→ X the inverse of the Laplacian operator and
consider the operator � : [0,∞)×X −→ X given by �(λ, u) = u− λK[f (u)], for
every λ ≥ 0 and u ∈ X. As in Sect. 7.1, we can rewrite the extended problem (9.1)
as the zeros of �, i.e.

�(λ, u) = 0.

Theorem 9.1.1 If f (0) = 0 and f ′+(0) = m0 > 0, then λ0 = λ1/m0 is the unique
bifurcation point from zero of positive solutions of (9.1). In addition, the continuum
emanating from (λ0, 0) is unbounded.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 97
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_9, © Springer Science+Business Media, LLC 2011
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Proof To apply Theorem 6.3.1 we just have to prove the change of index of �(λ, ·)
as λ crosses λ = λ0. The proof is based on the following claims.

• Claim 1. There exists λ0 > 0 such that for every interval � ⊂ [0,+∞) \ {λ0}
there is ε > 0 satisfying

�(λ, u) �= 0, ∀λ ∈ �, ∀0 < ‖u‖ < ε.

• Claim 2. For every λ > λ0 there exists δ > 0 such that

�(λ, u) �= τϕ1, ∀0 < ‖u‖ < δ, ∀τ ≥ 0.

To prove Claim 1, we argue by contradiction assuming that there exists a sequence
(λn, un) ∈ �×X satisfying

λn −→ λ �= λ0, ‖un‖ −→ 0,

�(λn, un) = 0, un ≥ 0.

Since K is compact, dividing the equation un = λnK [f (un)] by ‖un‖, we deduce
that, up to a subsequence, un‖un‖−1 strongly converges to some v ∈ X. Necessarily,
v is an eigenfunction of norm one associated to λ, i.e., it satisfies

v = λK[m0v], ‖v‖ = 1.

In particular, v > 0. Using ϕ1 as a test function in this eigenvalue problem we obtain

λ1

∫
vϕ1 = λm0

∫
vϕ1,

and we conclude that λ1 = λm0, which is a contradiction and the proof of Claim 1
is finished.
As a consequence of Claim 1 we obtain

(a) The unique possible bifurcation point of positive solutions is λ = λ0.
(b) If λ < λ0 and we take � = [0, λ] then

i (�λ, 0) = i (�0, 0) = i (I , 0) = 1.

With respect to the proof of Claim 2, we fix λ > λ0 and we assume, by contradiction,
that there exist sequences un ∈ X and τn ≥ 0 satisfying un > 0 in �, ‖un‖ −→ 0
and

�(λ, un) = τnϕ1,

or, equivalently,
un = λK[f (un)]+ τnϕ1.

Dividing this equation by ‖un‖ and using the compactness of K , we deduce that,
up to a subsequence, K[f (un)/‖un‖] is convergent and hence τn/‖un‖ is bounded.
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Passing again to a subsequence, if necessary, we can assume that τn/‖un‖ −→ τ ≥ 0
and un/‖un‖ −→ v with v ∈ X satisfying

−�v = λf ′(0)v+ τλ1ϕ1, x ∈ �

v = 0, x ∈ ∂�

‖v‖ = 1.

As in Claim 1, we deduce then that λf ′(0) = λ1, a contradiction.
As a by-product of Claim 2, if λ > λ0, we derive that

i (�λ, 0) = i (�λ − τϕ1, 0), ∀τ > 0.

But, again using Claim 2, the problem

−�w = λf (w)+ τϕ1, x ∈ �

w = 0, x ∈ ∂�

has no nontrivial solution. Since, w = 0 is not a solution provided that τ > 0, we
deduce that the last index is zero, i.e.,

i (�λ, 0) = 0, ∀λ > λ0,

and we have proved the change of index. ��

9.2 Bifurcation from Infinity

Definition 9.2.1 λ∞ is a bifurcation point from infinity of �(λ, u) = 0 if there exists
a sequence (λn, un) ∈ R×X satisfying

λn −→ λ∞, ‖un‖ −→ +∞, �(λn, un) = 0.

Assume that
�(λ, u) = u− T (λ, u),

with T a compact operator. Following [75], if we make the Kelvin transform

z = u

‖u‖2
, u �= 0,

we derive that

�(λ, u) = 0
u �= 0

}

⇐⇒
⎧
⎨

⎩
z − ‖z‖2T

(

λ,
z

‖z‖2

)

= 0,

z �= 0.

Therefore, if we define

�̃(λ, z) =
⎧
⎨

⎩
z − ‖z‖2T

(

λ,
z

‖z‖2

)

, if z �= 0,

0, if z = 0,

we deduce that λ∞ is a bifurcation point from infinity for �(λ, u) = 0 if and only if
λ∞ is a bifurcation point from zero for �̃(λ, z) = 0.
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Theorem 9.2.2 Let � ⊂ R
N be bounded and open and let f be a C1 function in

[0,+∞) such that

f (s) = m∞s + g(s)

where g satisfies

lim
s→+∞ g(s)/s = 0.

Then λ∞ = λ1/m∞ is the unique bifurcation point from infinity of positive solutions
of (9.1). Moreover, there exists a subset �∞ in R × C(�) of positive solutions of
(9.1) such that �̃∞ = {(λ, z) : (λ, z/‖z‖2) ∈ �∞} ∪ {(λ∞, 0)} is connected and
unbounded.

Proof The result follows using the same arguments in the proof of Theorem 9.1.1.
��

Remark 9.2.3 Assume that the hypotheses of Theorems 9.1.1 and 9.2.2 are satisfied.

1. Let α be a positive number. If f (s) > αs for every s > 0 then it is easy to show
(applying Proposition 8.1.1) that the problem (9.1) has no solution for λ ! 0.
Then in this case, the continuum bifurcating from (λ0, 0) is the same that emanates
from infinity at λ∞. See Fig. 9.1.

2. In the case that there exist 0 < θ1 < θ2 such that f (s) ≤ 0, for every s ∈ (θ1, θ2),
the reader can use the Maximum principle to verify that problem (9.1) has no
solution (λ, u) in the strip of R× C(�) given by θ1 ≤ ‖u‖∞ ≤ θ2. Therefore, in
this case �∞ ∩�0 = ∅. See Fig. 9.2.

Fig. 9.1 Bifurcation diagram
for Remark 9.2.3-1
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Fig. 9.2 Bifurcation diagram
for Remark 9.2.3-2

9.3 On the Behavior of the Bifurcations from Infinity

Let � ⊂ R
N be bounded and open and let g be a C1 function in [0,+∞) satisfying

lim
s→+∞ g(s)/s = 0.

Consider the boundary value problem

−�u = λu+ g(u), x ∈ �,
u = 0, x ∈ ∂�.

(9.2)

In a similar way to the preceding results, it is possible to prove the following result.

Theorem 9.3.1 The value λ0 = λ1 is the unique bifurcation point from infinity of
positive solutions of (9.2). Moreover, if g(0) = 0, then λ = λ1 − g′(0) is the unique
bifurcation point from zero of positive solutions of (9.2). In addition, there exists a
continuum “connecting” (λ1 − g′(0), 0) with (λ1,∞).

Proof The bifurcation from zero at λ1 − g′(0) and the bifurcation from infinity at
λ1 are deduced as in the preceding theorems. On the other hand, since g is C1, there
exists α > 0 such that αu > g(u) > −αu for u > 0. Then the problem (9.2) has no
solution provided that |λ| ! 0 and, therefore, the continuum emanating from zero
at λ1 − g′(0) is also bifurcating from infinity at λ1. ��
Remark 9.3.2 In particular, there exists a solution of (9.2) for every λ in the interval
of extrema λ1 and λ1 − g′(0). However, in the cases that we are able to establish the
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Fig. 9.3 Bifurcation to the
left

side of the bifurcations from infinity and from zero, we will improve this existence
result.

The side of the bifurcation from zero is completely described by the following
theorem. Without loss of generality, we assume that g′(0) = 0.

Theorem 9.3.3 If g′(0) = 0 and there exists ε > 0 such that

g(u) ≥ 0, ∀u ∈ (0, ε), (9.3)

then the bifurcation from zero of Theorem 9.3.1 is to the left (see Fig. 9.3). Similarly,
if the inequality in (9.3) is reversed, then the bifurcation from zero is to the right.

Proof If (λn, un) ∈ R × X are solutions of (9.2) with λn → λ1 and ‖un‖ → 0,
then, as we have seen in the proof of Claim 1 of Theorem 9.1.1, up to a subsequence
un/‖un‖ converges to ϕ1. Using this eigenfunction as a test function in the equation
satisfied by un, we obtain

(λ1 − λn)
∫

�

unϕ1 =
∫

�

g(un)ϕ1.

Since 0 < un is uniformly convergent to zero, we deduce by (9.3) that g(un(x)) ≥ 0,
for every x ∈ � and hence that λn ≤ λ1.

The result for the reversed inequalities is proved similarly. ��
With respect to the bifurcation from infinity we can prove the following result.

Theorem 9.3.4 [24] If there exists ε > 0 such that

g(u)u2 ≥ ε, ∀u! 0, (9.4)

then the bifurcation from infinity of the preceding theorem is to the left (see Fig. 9.4).
Similarly, if the inequality in (9.4) is reversed, then the bifurcation from infinity is to
the right.
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Fig. 9.4 Bifurcation diagram
if (9.4) is satisfied

Proof We give here the proof in the case that a more restrictive hypothesis than (9.4)
is satisfied, namely we assume that there exists α < 2 such that

g(u)uα ≥ ε, ∀u! 0. (9.5)

For the general case we refer to [24].
If (λn, un) ∈ R × X are solutions of (9.2) with λn → λ1 and ‖un‖ → ∞, then,

up to a subsequence, un/‖un‖ converges to ϕ1. Using this eigenfunction as a test
function in the equation satisfied by un and dividing by ‖un‖, we obtain

(λ1 − λn)
∫

un

‖un‖ϕ1 = 1

‖un‖
∫

g(un)ϕ1.

Hence, taking into account that
∫ un

‖un‖ϕ1 converges to
∫
ϕ2

1 > 0, we deduce

sgn [λ1 − λn] = sgn

[∫
g(un)ϕ1

]

.

To conclude the proof, we just have to show that the sign of the right-hand side is
positive. This is deduced from the Fatou lemma. Indeed, using the fact that un/‖un‖
converges to ϕ1, we deduce that un(x) converges to +∞ and, by (9.5), we have

lim inf
n→+∞ ‖un‖α

∫
g(un)ϕ1 = lim inf

n→+∞

∫
g(un)uα

n

(
un

‖un‖
)−α

ϕ1

≥ ε

∫
ϕ1

1−α > 0.

��
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Remark 9.3.5 In [24], some counterexamples show that, in general, if the nonlin-
earity g is below any quadratic hyperbola c/s2, then the side of the bifurcation from
infinity cannot be decided. The case of quasilinear operators in divergence form (in-
stead of the Laplacian operator) is studied in [23]. More recent results can be found
in [55, 56].

9.4 The Local Anti-Maximum Principle

As a consequence of the preceding results, we point out the bifurcation nature of some
classical results like the (local) anti-maximum principle of Clement and Peletier and
the Landesman–Lazer theorem for resonant problems.

Theorem 9.4.1 Let r > N . For every h ∈ Lr (�), there exists ε = ε(h) > 0 such
that

1. If
∫

�

hϕ1 < 0, then every solution (λ, uλ) of

−�u = λu+ h(x), x ∈ �,
u(x) = 0, x ∈ ∂�,

(9.6)

satisfies
(a) (local anti-minimum principle) uλ > 0 in � provided that λ1 < λ < λ1+ ε,
(b) (local minimum principle) uλ < 0 in � provided that λ1 − ε < λ < λ1.

2. If
∫

�

hϕ1 > 0, then every solution (λ, u) of (9.6) satisfies

(a) (local anti-maximum principle) uλ < 0 in � provided that λ1 < λ < λ1+ ε,
(b) (local maximum principle) uλ > 0 in � provided that λ1 − ε < λ < λ1.

3. If
∫

�

hϕ1 = 0, then every solution (λ, uλ) of (9.6) with λ �= λ1 changes sign in �.

Remark 9.4.2 In [41, Theorem 2] Clement and Peletier proved a slightly less general
version of the cases 1(a) and 2(a) of this theorem. Indeed, these authors substituted
the condition of the sign of the integral of uϕ1 by a condition on the sign of h in
all �.

Proof We start with case 1. Note that by the Fredholm alternative, the linear problem
(9.6) has no solution forλ = λ1, and there is a unique solution ifλ is not an eigenvalue
of the Laplacian operator. In addition, for X = W 2,r (�), the value λ = λ1 is a
bifurcation point “from +∞” in the sense that there are solutions (λ, uλ) emanating
from λ1 at infinity such that uλ/‖uλ‖ is converging in W 2,r (�) ⊂ C1(�) to ϕ1 as λ

tends to λ1. Also, there is a bifurcation “from−∞”, i.e., solutions (λ, uλ) emanating
from λ1 at infinity such that uλ/‖uλ‖ is converging to −ϕ1 as λ tends to λ1. (See
Fig. 9.5 for the bifurcation diagram.) Now it is immediate to conclude from the
preceding section that the bifurcation from+∞ is to the right, while the bifurcation
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Fig. 9.5 Bifurcation diagram
for case 1 of Theorem 9.4.1

from −∞ is to the left. The proof of 1 is thus concluded. The argument for 2 is
similar.

Finally, to prove 3, it suffices to take ϕ1 as a test function in (9.6) to conclude

that every solution (λ, u) of this problem satisfies (λ1−λ)
∫

�

uϕ1 = 0 and u changes

sign. ��

Remark 9.4.3 1. The choice of r > N allows us to apply our bifurcation results
which involve the space X = W 2,r (�), continuously embedded in C1(�). This
fact allows us to ensure that the normalized solutions converge to ϕ1 (or to −ϕ1)
in the C1-topology. Since ϕ1 lies in the interior of the cone of positive functions
of C1(�), then the positivity (or negativity) of the solutions near the bifurcation
point easily follows. On the contrary, if we consider r ≤ N , such an argument
does not work, and in fact the result is not true, as is proved in [85].

2. A related result for elliptic problems with nonlinear boundary conditions is given
in [25].

9.5 The Landesman–Lazer Condition

The case of (9.2) with λ = λ1 is particularly interesting. Thus in this section we
study the problem

−�u = λ1u+ g(x, u), x ∈ �,
u(x) = 0, x ∈ ∂�,

(9.7)
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where g is a bounded Carathéodory function for which

∃g+∞(x) = lim
s→+∞ g(x, s) (9.8)

∃g−∞(x) = lim
s→−∞ g(x, s). (9.9)

The classical result by Landesman and Lazer [62] related to resonance at the principal
eigenvalue λ1 states the following.

Theorem 9.5.1 Assume, in addition to (9.8) and (9.9), one of the following two
conditions:

∫

�

g+∞ϕ1 < 0 <

∫

�

g−∞ϕ1, (9.10)

or
∫

�

g+∞ϕ1 > 0 >

∫

�

g−∞ϕ1. (9.11)

Then (9.7) admits at least one solution.

Proof We approach the problem (9.7) by embedding it into a one parameter family
of problems as follows:

−�u = λu+ g(x, u), x ∈ �,
u(x) = 0, x ∈ ∂�,

(9.12)

with λ ∈ R. Observe that the boundedness of the function g ensures that bifurcation
from infinity for problem (9.12) occurs at λ1. In addition, by taking ϕ1 as a test
function in (9.12), it is easily deduced that if the condition (9.10) holds then the
bifurcation from infinity is to the right. Similarly, if (9.11) holds, the bifurcation
from infinity is to the left.

As we will see, the behavior of the bifurcations from infinity at λ1 for problem
(9.12) determines the existence of solution for the resonant problem (9.7). The key
to relate these two problems is to interpret the concepts of bifurcations to the left
and to the right in the sense of a priori bounds for the norms of the solutions. From
this point of view, observe that every possible bifurcation from∞ at λ1 is to the left
(resp. to the right) if and only if there exist ε > 0 and M > 0 such that every solution
(λ, u) of (9.12) with λ ∈ [λ1, λ1 + ε] (resp. λ ∈ [λ1 − ε, λ1]) satisfies ‖u‖ ≤ M .

Here we just complete the proof in the case that condition (9.11) holds, when the
bifurcation from∞ is to the left. In other words, there exists ε > 0 and M > 0 such
that

‖u‖ ≤ M

for every solution (λ, u) of (9.12) with λ1 ≤ λ ≤ λ1 + ε.
Taking into account for every λwhich is not an eigenvalue, that there exists at least

a solution (λ, u) of (9.12) (see Theorem 8.3.3), we can choose a sequence (λn, un)
of solutions with λn → λ1, λn > λ1, ∀n ∈ N. Then ‖un‖ ≤ M for n large and the
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compactness of K proves that a subsequence of un must converge to a solution of
the resonant problem (9.7). ��
Remark 9.5.2 The previous general results of the side of bifurcations from infinity
can be applied to obtain an improvement of the above classical existence result
(see [24]).

9.5.1 A Variational Proof of the Landesman–Lazer Result

In this section we complete the study of problem (9.7) by giving another proof of
Theorem 9.5.1. This is based on variational techniques and shows that the solutions
found are essentially of different variational nature according to the fact that either
(9.10) or (9.11) is satisfied.

Variational proof of Theorem 9.5.1 Consider the functional J : H 1
0 (�) −→ R

defined for every u ∈ H 1
0 (�) by

J (u) = 1

2

∫
|∇u|2 − λ1

2

∫
|u|2 −

∫
G(x, u) ,

where, as usual G(x, s) = ∫ s

0 g(x, t) dt .

Lemma 9.5.3 Assume that either (9.10) or (9.11) is satisfied. Then the functional
J satisfies the Palais–Smale condition.

Proof Assume that {un} satisfies

J (un) ≤ C, ∀n ∈ N, (9.13)

and

|〈J ′(un), v〉| ≤ εn ‖v‖ ∀n ∈ N , ∀v ∈ H 1
0 (�) (9.14)

with C > 0 and εn tending to zero.
The proof will be finished if we prove that {un} is bounded in H 1

0 (�) (see
Lemma 7.1.1). Suppose, by contradiction, that ‖un‖ converges to +∞ (up to a
subsequence), and define zn = un/‖un‖. Thus {zn} is bounded in H 1

0 (�) and hence,
up to subsequences, converges to a function z weakly in H 1

0 (�) and strongly in
L2(�). Dividing (9.13) by ‖un‖2, we get (using only the fact that J (un) is bounded
from above)

lim sup
n→∞

1

2

∫
|∇zn|2 − 1

2
λ1

∫
|zn|2 −

∫
G(x, un)

‖un‖2
≤ 0.

Since, by the hypotheses on g and {un},

lim
n→∞

∫
G(x, un)

‖un‖2
= 0,



108 9 Asymptotically Linear Problems

while

lim
n→∞

∫
|zn|2 =

∫
|z|2,

we have

lim sup
n→∞

∫
|∇zn|2 ≤ λ1

∫
|z|2.

Using the weak lower semicontinuity of the norm, and the Poincaré inequality, we
get

λ1

∫
|z|2 ≤

∫
|∇z|2 ≤ lim inf

n→+∞

∫
|∇zn|2 ≤ lim sup

n→+∞

∫
|∇zn|2 ≤ λ1

∫
|z|2.

Thus, the inequalities are indeed equalities, so that (by the uniform convexity of
H 1

0 (�)) {zn} converges strongly to z in H 1
0 (�) and

∫
|∇z|2 = λ1

∫
|z|2.

This implies, by the definition of λ1, that z = ±ϕ1 (observe that the norm of z in
H 1

0 (�) is 1 by the strong convergence of {zn} to z).
Let us write (9.13), and (9.14) with v = un. We have

−c ≤
∫
|∇un|2 − λ1

∫
|un|2 − 2

∫
G(x, un) ≤ c,

−εn ‖un‖ ≤ −
∫
|∇un|2 + λ1

∫
|un|2 +

∫
g(x, un) un ≤ εn‖un‖.

Summing up, and dividing by ‖un‖,
∣
∣
∣
∣

∫
[g(x, un) zn − 2 h(x, un) zn]

∣
∣
∣
∣ ≤

c

‖un‖ + εn,

where

h(x, s) =

⎧
⎪⎨

⎪⎩

G(x, s)

s
if s �= 0,

g(x, 0) if s = 0.

(9.15)
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Letting n tend to infinity, we get

lim
n→+∞

∫
[g(x, un) zn − 2 h(x, un) zn] = 0.

Suppose that, for example, zn converges to+ϕ1. Then un(x) tends to+∞ for almost
every x ∈ �, and so, by (9.8)

g(x, un(x))→ g+∞(x) for almost every x ∈ �,

h(x, un(x))→ g+∞(x) for almost every x ∈ �.

Consequently, the properties of g and G, and the Lebesgue theorem imply

lim
n→+∞

∫
[g(x, un) zn − 2 h(x, un) zn] = −

∫
g+∞ ϕ1,

and so,

0 =
∫

g+∞ ϕ1,

which contradicts both (9.10) and (9.11). Thus {un} is bounded and the lemma
follows. ��
Remark 9.5.4 We explicitly remark that in the above proof it is shown that “for every
sequence un such that J (un) is bounded from above and ‖un‖ converges to+∞, we
have, up to a subsequence, the strong convergence of un/‖un‖ to ±ϕ1.”

Variational proof of Theorem 9.5.1 completed Once we have proved that J satisfies
the Palais–Smale condition, we study the geometry of J which depends strongly on
the conditions (9.10) and (9.11). The proof is divided into two steps.

Step 1. If (9.11) holds, we will see that J is coercive and hence (see Theorem 5.4.1)
it has a global minimizer, which concludes the proof in this case. Indeed, suppose by
contradiction that J is not coercive, that is, that there exists a sequence un such that
J (un) is bounded from above and ‖un‖ converges to +∞. Applying Remark 9.5.4,
we can assume that un/‖un‖ is strongly convergent to ±ϕ1 and thus

0 = lim
n→∞

J (un)

‖un‖2
= − lim

n→∞

∫
G(x, un)

‖un‖2
.

However, using (9.8) (resp. (9.9)), by the L’Hôpital rule we have

lim
n→∞

∫
G(x, un)

‖un‖2
=
∫

g+∞ϕ1,

(resp.

lim
n→∞

∫
G(x, un)

‖un‖2
=
∫

g−∞ϕ1),

provided un/‖un‖ converges to ϕ1 (resp.−ϕ1). In any case we obtain a contradiction
with the hypothesis (9.11), which proves that J is coercive and thus the theorem.
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Step 2. If (9.10) holds, we follow an argument close to that one used in Case 2 of the
variational proof of Theorem 8.3.3 given in Sect. 8.3.3, namely we obtain a solution
by applying the Theorem 5.3.8 to J . Indeed, again by the L’Hôpital rule, using (9.8)
and (9.10), we deduce that

lim
t→+∞

J (tϕ1)

t2‖ϕ1‖2
= lim

t→+∞

∫
G(x, tϕ1)

t2‖ϕ1‖2
=
∫

g+∞ϕ1 < 0.

Similarly,

lim
t→−∞

J (tϕ1)

t2‖ϕ1‖2
= lim

t→−∞

∫
G(x, tϕ1)

t2‖ϕ1‖2
= −

∫
g−∞ϕ1 < 0.

These two facts imply that

lim|t |→+∞J (tϕ1) = −∞.

In addition, the variational characterization ofλ2 gives us (see Case 2 in the variational
proof of Theorem 8.3.3)

inf
〈ϕ1〉⊥

J > −∞.

Then we have verified the geometrical hypotheses, and we conclude the existence of
a mountain pass critical point of J , concluding the proof. ��



Chapter 10
Asymmetric Nonlinearities

This chapter deals with nonlinear problems with nonlinearities whose behavior at
+∞ and −∞ jumps through an eigenvalue of the linear part. Specifically, we come
back to the problem

{−�u = f (u)+ h(x), x ∈ �,
u = 0, x ∈ ∂�,

(10.1)

where � is a bounded open set in R
N and h ∈ C(�). On f ∈ C1(R) we assume:

(i) Setting f (u) = g(u)u for u �= 0, ∃γ± = limu→±∞ g(u).

(ii) 0 < γ− < λ1 < γ+ < λ2.

⎫
⎬

⎭
(10.2)

We first discuss the case in which the precise solutions number can be found by
using the global inversion theorem with singularities stated in Sect. 3.5. Moreover,
we show how some multiplicity results can be obtained by using sub- and super-
solutions jointly with degree arguments or with variational arguments. In Sect. 10.4
we employ the topological degree to find continua of solutions.

10.1 The Approach by Ambrosetti and Prodi

We begin the study of our problem by following the ideas of [16] which use the
global inversion theorem with singularities.

Theorem 10.1.1 Let f ∈ C2(R, R) and suppose that (10.2) holds and that f ′′(u) >
0, for every u ∈ R. Then Y := C0,ν(�) = Y0 ∪ Y1 ∪ Y2, where

1. Y1 is a C1 submanifold of codimension 1 in Y and (10.1) has a unique solution
in X := C2,ν(�), for every h ∈ Y1;

2. (10.1) has no solution in X, for every h ∈ Y0;
3. (10.1) has exactly two solutions in X, for every h ∈ Y2.

The proof will be deduced by the following lemma. We keep the notation introduced
in Sect. 8.3.1. In particular, we let F (u) = −�u− f (u), u ∈ X.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 111
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_10, © Springer Science+Business Media, LLC 2011
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Lemma 10.1.2 (i) F is proper.
(ii) The singular set �′ of F is not empty, closed, connected and every u ∈ �′ is an

ordinary singular point.
(iii) For every h ∈ �′, F (u) = h has a unique solution.

Proof (i) To prove the properness of F we argue in a similar way to the proof of
Lemma 8.3.1. We limit ourselves to indicating the changes. As before, if uk ∈ X

satisfies F (uk) = hk ∈ Y and hk is bounded, then we claim that uk is bounded
in C0,ν(�). Otherwise, up to a subsequence, zk := uk‖uk‖−1 converges to some
z ∈ C1(�), with ‖z‖ = 1, which solves (8.4), where a is given by (8.5). Since z �= 0,
it follows that λj (a) = 1 for some integer j ≥ 1. Since a < λ2 the comparison of the
eigenvalues (Proposition 1.3.11-(i)) implies that λ1(a) = 1. Then the eigenfunction
z is either positive or negative in � and hence a equals either γ+ or γ−. Since both
γ± are not eigenvalues of the Laplace operator, we get a contradiction. The rest is as
in Lemma 8.3.1.

(ii) Fix z ∈ X with z > 0 and write u = tz + w, with t ∈ R and w ∈ (Rz)⊥.
Remember that u ∈ �′ whenever

−�v = f ′(tz + w)v, v ∈ X

has a nontrivial solution, namely if λ1[f ′(tz+w)] = 1. Since f ′′ ≥ 0, f ′(tz+w) >
f ′(sz+w) provided t > s and thus, by (Proposition 1.3.11-(i)), t �→ λ1[f ′(tz+w)] is
decreasing. Moreover, by case ii) of the same proposition and from f ′(tz+w)→ γ−
as t →−∞, resp. f ′(tz + w)→ γ+ as t →+∞, it follows that λ1[f ′(tz + w)]→
λ1/γ− as t → −∞, resp. λ1[f ′(tz + w)] → λ1/γ+ as t → +∞. Then there exists
a unique t∗ such that λ1[f ′(tz + w)] = 1. This shows that �′ is not empty and
has a Cartesian representation on (Rz)⊥, proving the first part of (ii). Since u ∈ �′
whenever λ1[f ′(u)] = 1, there exists ϕ ∈ X, which does not change sign in �,
such that Ker dF (u) = Rϕ and Range dF (u) = Kerψ where 〈ψ ,h〉 = ∫ hϕ. Since
d2F (u)[ϕ,ϕ] = f ′′(u)ϕ2 we get

〈ψ , d2F (u)[ϕ,ϕ]〉 =
∫

f ′′(u)ϕ3 �= 0

because f ′′(u) > 0, proving that u is an ordinary singular point.
(iii) By contradiction, let u �= v be singular points such that F (u) = F (v). Setting

a(x) =

⎧
⎪⎨

⎪⎩

f (u)− f (v)

u− v
, if u(x) �= v(x),

f ′(u(x)), if u(x) = v(x),

we find that z = u − v satisfies −�z = a(x)z. As before we infer that λ1[a] = 1
and z is, say, positive, namely u > v. Since f ′′ > 0 and a < f ′(v) we deduce that
λ1[f ′(v)] < 1 = λ1[a], a contradiction with the fact that v ∈ �′. ��
Proof of Theorem 10.1.1 It suffices to use the previous lemma and apply
Theorem 3.5.1. ��
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Remark 10.1.3 In the preceding proof or, more specifically, in the verification of case
(i) of Lemma 10.1.2, it is essential that zero is the unique solution of the problem
(10.3),

−�v = αv+ + βv−, x ∈ �

v = 0, x ∈ ∂�,

}

(10.3)

provided that α and β lie between two consecutive eigenvalues. The set � of the
pairs (α,β) such that (10.3) has nontrivial solutions is called the Fučik spectrum.
It was Fučik [53] who gave a complete description of it in the case N = 1. With
respect to the case N ≥ 2, in Dancer [43], it is shown that the two lines {λ1}×R and
R × {λ1} are isolated in �, and in Gallouët and Kavian [54], it is proved that from
each pair (λk , λk) emanates a curve Sk−1 in �. A variational characterization of the
curve S1 emanating from (λ2, λ2) is given in De Figueiredo and Gossez [49], where,
in addition, it is proved that S1 is asymptotic to the lines {λ1} × R and R× {λ1}. In
[28] the description of the spectrum in the radial case is given.

10.2 The Approach by Amann–Hess

In the following sections, we study different approaches to (10.1). We anticipate that
we will not assume f ′′ ≥ 0 but we will only obtain estimates from below of the
number of solutions. Specifically, this section is devoted to studying the approach
due to Amann and Hess [4]. It combines the method of the sub-super-solutions with
degree arguments to prove the existence of solutions for the problem

−�u = f (u)+ tϕ(x)+ h(x), x ∈ �,
u = 0, x ∈ ∂�,

(10.4t)

where ϕ,h ∈ C(�), ϕ(x) > 0 for x ∈ �, f ∈ C1(R) and there exist the limits
γ± = limu→±∞ g(u) with g(u) = f (u)/u, for u �= 0.

First, we need to prove the following lemmas.

Lemma 10.2.1 If (10.2) is satisfied, then the solutions of (10.4t ) are uniformly
bounded on compact sets of t , i.e., for every compact interval � ⊂ R, there exists
R > 0 such that every solution u of (10.4t ) with t ∈ � satisfies

‖u‖C1 ≤ R.

Proof Suppose on the contrary that un is a solution of (10.4tn ) with tn bounded
and ‖un‖C1 → ∞. Using that tn/‖un‖C1 converges to zero we deduce that zn =
un/‖un‖C1 strongly converges to a nonzero solution z of (8.4). As has been seen in
Lemma 10.1.2, this problem has only the zero solution and we obtain a contradiction,
proving the lemma. ��

Following McKenna–Walter [70] we also prove the following nonexistence result.
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Lemma 10.2.2 If hypothesis (10.2) holds, then there exists ε0 > 0 such that for each
0 < ε < ε0 there is tε ∈ R such that for every t < tε and λ ∈ [0, 1], the problem

−�u = λf (u)+ tϕ + h, x ∈ �,
u = 0 x ∈ ∂�,

has no solution in ∂B|t |ε(tφ) = {u ∈ C1
0 (�) : ‖u− tφ‖C1 = |t |ε}, where φ denotes

the unique solution in C1
0 (�) of −�φ = ϕ in �.

Proof Let ε0 > 0 be such that ‖φ‖C1 > ε0, ‖φ‖2
2 − ε0‖ϕ‖1 > 0 and λ2ε0‖ϕ‖1 <

λ2
1

[‖φ‖2
2 − ε0‖ϕ‖1

]
.We argue by contradiction and suppose that for some ε ∈ (0, ε0)

there exist sequences tn ∈ R, λn ∈ [0, 1] and un ∈ C1
0 (�) with tn → −∞, λn →

λ ∈ [0, 1] and ‖ un

tn
− φ‖C1 = ε, satisfying

−�un = λnf (un)+ tnϕ + h, x ∈ �.

Since ‖ un

tn
− φ‖C1 = ε, the sequence zn := un/tn is bounded. Moreover, ‖un‖C1 →

∞, because otherwise zn→ 0 in C1
0(�) and thus 0 ∈ Bε(φ), which is impossible by

the choice of ε0.
On the other hand, there exists z ∈ H 1

0 (�) such that (up to a subsequence) zn → z
weakly in H 1

0 (�), strongly in L2(�) and zn(x)→ z(x) a.e. x ∈ �. Arguing as before,
we deduce the strong convergence of zn to z. Consequently, ‖z − φ‖C1 = ε.

Dividing by tn the equation satisfied by un and taking limits as n tends to infinity,
we deduce from (10.2) that z satisfies the following equation:

−�z = λa(x)z + ϕ, x ∈ �

where a(x) is given by (8.5). Since z �= φ, we have λ �= 0. We claim that z is
non-negative. Indeed, by taking z− := min{z, 0} as a test function in the equation
satisfied by z and using that γ− < λ1, we obtain from Corollary 1.3.9

λ1‖z−‖2
2 ≤

∫
∇z · ∇z− = λ

∫
a(x)(z−)2 +

∫
ϕz−

= λ

∫
γ−(z−)2 +

∫
ϕz− < λλ1‖z−‖2

2.

Since λ ∈ [0, 1], then z− ≡ 0, proving the claim.
We now take φ as a test function in the equation satisfied by z and z in the equation

satisfied by φ to get

∫
zϕ =

∫
∇z · ∇φ = λγ+

∫
zφ +

∫
ϕφ.

We have

‖ϕ‖1‖z − φ‖C1 ≥
∫

ϕ(z − φ) = λγ+
∫

zφ ≥ λλ1

∫
zφ,
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because γ+ > λ1. Taking into account that ‖z−φ‖C1 = ε, we can write z = φ+ εz1

with ‖z1‖C1 = 1. Thus,

ε‖ϕ‖1 ≥ λλ1

∫
zφ = λλ1

[

‖φ‖2
2 + ε

∫
z1φ

]

≥ λλ1
[‖φ‖2

2 − ε‖ϕ‖1
]
.

Since ‖φ‖2
2−ε‖φ‖1 > 0, if ε < ε0, this implies that λ ≤ ε‖ϕ‖1

λ1
[‖φ‖2

2 − ε‖ϕ‖1
] <

λ1

λ2
.

On the other hand, z is a positive super-solution of the problem

−�u = λγ+u x ∈ �,
u = 0 x ∈ ∂�.

If δ < 1/λ1, w = δλϕ1 is a sub-solution of this problem. We can choose δ

small enough to conclude that w ≤ z. The method of sub- and super-solution
(Theorem 7.2.1) allows us to deduce the existence of a non-negative, nontriv-
ial solution. As a consequence, because we have previously shown that λ < λ1

λ2
,

λ = λ1
γ+ > λ1

λ2
, which is a contradiction. ��

Theorem 10.2.3 If condition (10.2) holds, then there exists a number t∗ ∈ R such
that the problem (10.4t ) has

• no solution if t > t∗,
• at least one solution if t = t∗
• and at least two solutions if t < t∗.

Proof We begin by observing that hypothesis (10.2) means that there exist δ <λ1 <δ

and C > 0 such that

f (s) ≥ δs − C (10.5)

and

f (s) ≥ δs − C, (10.6)

for s ∈ R.
We show first that problem (10.4t ) has no solution provided that t is large enough.

Indeed, this is deduced by taking a first eigenfunction ϕ1 > 0 as a test function to
obtain

λ1

∫
uϕ1 =

∫
f (u)ϕ1 + t

∫
ϕϕ1 +

∫
hϕ1.

Hence, if u is a solution of (10.4t ) with
∫

uϕ1 ≥ 0, then, by (10.6),

t

∫
ϕϕ1 ≤ (λ1 − δ)

∫
uϕ1 − C

∫
ϕ1 −

∫
hϕ1 ≤ −C

∫
ϕ1 −

∫
hϕ1

and the positiveness of ϕ (and of ϕ1) implies that t is bounded from above. A similar
argument using (10.5) (instead of (10.6)) shows the same if

∫
uϕ1 < 0.
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Consequently, the set S := {t ∈ R : (10.4t ) admits a solution} is bounded from
above. The rest of the proof is divided into two steps:

Step 1 S is a nonempty closed interval, i.e., there exists t∗ such that S = (−∞, t∗].
Step 2 Problem (10.4t ) has at least two solutions for t < t∗.

Proof of Step 1 First we apply Lemma 10.2.2 to prove that S is not the empty
set. In order to do that we use the Leray–Schauder degree. Let t < tε (where tε
is given by Lemma 10.2.2) and �t (u) = u − K(f (u) + tϕ + h) where, as usual,
K : C1

0 (�) −→ C1
0 (�) is the inverse operator of the Laplacian operator in the space

C1
0 (�). By the invariance of the Leray–Schauder degree, Lemma 10.2.2 implies that

deg (�t ,B|t |ε(tφ), 0) = deg (I −K(tϕ),B|t |ε(tφ), 0) = 1.

Then there exists a solution of (10.4t ) in B|t |ε(tϕ) and the set S is not empty.
Now, we observe that S is an interval unbounded from below. Indeed, if t0 ∈ S

then there exists a solution u0 of (10.4t0 ). Clearly, it is a super-solution for (10.4t )
for every t < t0. Moreover, if ut is the unique solution of the linear problem

{−�u = δu− C + tϕ(x)+ h(x), x ∈ �,
u = 0, x ∈ ∂�,

then condition (10.5) implies that ut is a sub-solution of (10.4t ) with−�ut ≤ −�u0

(already we have just proved that ut is less than or equal to every super-solution of
(10.4t )) and thus, by the maximum principle, ut ≤ u0. Therefore, the sub-super-
solution method1 (Theorem 7.2.1) applies, and we conclude that (−∞, t0] ⊂ S and
S is an interval unbounded from below.

Let t∗ = sup S. To conclude the proof of Step 1, it suffices to show that t∗ ∈ S. To
this end let {tn} be a sequence in S converging to t∗. For every tn, let un be a solution
of (10.4tn), i.e., un = K(f (un) + tnϕ + h). By Lemma 10.2.1, ‖un‖C1 is bounded
and from the compactness of K we deduce that—up to a subsequence— un strongly
converges to a solution of (10.4∗t ) and t∗ ∈ S.

Proof of Step 2 Fix t < t∗ and let u∗ be a solution of (10.4t∗ ). Then, as we have
seen in the first step, u∗ (resp. ut ) is a super-solution (resp. a sub- solution) of (10.4t )
with ut ≤ u∗. Further, by the strong maximum principle and the Hopf lemma (see
[58, Lemma 3.4]) we have ut < u∗ in � and ∂u∗

∂ν
< ∂u

∂ν
on ∂�. Thus, we can define

the set

Ut (R) = {u ∈ C1
0 (�) : ut < u < u∗ in �,

∂u∗

∂n
<

∂u

∂n
<

∂ut

∂n
on ∂�} ∩ BR(0).

Let �t (u) = I − K(f (u) + tϕ + h). By Lemma 7.2.3, there is R > 0 such that
deg (�t ,Ut (R), 0) = 1 which, by the existence property of the degree, implies the
existence of a first solution of (10.4t ) in Ut (R). The key idea to find the second
solution of (10.4t ) is to compute the degree of �t in BR(0) and to use the excision

1 Indeed, by Remark 2.2.3, we deduce the existence of a minimal solution of (10.4t ).
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property. Indeed, by Lemma 10.2.1, if t1 > t∗, R may be chosen such that ‖u‖C1 < R

for each solution u of (10.4s) with s ∈ [t , t1]. Using the homotopy invariance of the
Leray–Schauder degree and the fact that problem (Pt1 ) has no solution, we get

deg (�t ,BR(0), 0) = deg (�t1 ,BR(0), 0) = 0.

Therefore, the excision property of the degree implies that

deg (�t ,BR(0) \ Ut (R), 0) = deg (�t ,BR(0), 0)− deg (�t ,Ut (R), 0) = −1

which means that, in addition to the solution of (10.4t ) in Ut (R), there exists a
second solution in BR(0) \ Ut (R). Therefore, Step 2 has been proved and thus the
theorem. ��

10.3 Variational Approach by Mountain Pass and Sub- and
Super-Solutions

We devote this section to discuss a different proof [51] of the existence of the second
solution in Theorem 10.2.3. This is based on variational arguments. Specifically, in
the proof given in the previous section we have seen that the set S = {t ∈ R :
(10.4t ) admits a solution} = (−∞, t∗] and that for every t ∈ (−∞, t∗] there exist
a sub-solution and a super-solution of (10.4t ) which are well ordered. By applying
Lemma 6 there exists a solution u1 of (10.4t ) which is (between the sub-solution and
the super-solution and) a local minimizer of the functional

J (u) = 1

2

∫
|∇u|2 −

∫
F (u)− t

∫
ϕu−

∫
hu, u ∈ H 1

0 (�),

where F (u) = ∫ u
0 f .

In addition, we have

lim
s→+∞

J (sϕ1)

s2
= lim

s→+∞

[
1

2

∫
|∇ϕ1|2 −

∫
F (sϕ1)

s2
− t

s

∫
ϕϕ1 − 1

s2

∫
hϕ1

]

= 1

2

∫
|∇ϕ1|2 − γ+

2

∫
ϕ2

1 ≤
1

2

(

1− γ+
λ1

)∫
|∇ϕ1|2.

Since γ+ > λ1 the above estimate implies that

lim
s→+∞J (sϕ1) = −∞ (10.7)

and it is possible to choose an arbitrarily large s such that J (sϕ1) < J (u1). In
conclusion, the geometry of the mountain pass (Theorem 5.3.6) is satisfied. It re-
mains to show that the Palais–Smale condition holds. For this, it suffices to prove
that every sequence {un} ⊂ H 1

0 (�) such that {J (un)} is bounded and {J ′(un)}
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tends to zero in H 1
0 (�) is bounded in H 1

0 (�) (see Lemma 7.1.1). Assume, by con-
tradiction, that ‖un‖ → +∞ (up to a subsequence) and observe that using that
limn→+∞ J ′(un)(φ)/‖un‖ = 0 and taking vn ≡ un/‖un‖, we obtain

lim
n→+∞

[∫
∇vn · ∇ϕ −

∫
f (un)

‖un‖ φ −
∫

tϕφ

‖un‖ −
∫

h
φ

‖un‖
]

= 0,

for every φ ∈ H 1
0 (�). Passing to a subsequence if necessary, we may assume without

loss of generality that vn ⇀ v in H 1
0 (�), vn→ v in L2(�), vn(x)→ v(x) a.e. x ∈ �.

Thus, by the Lebesgue dominated convergence theorem and (10.2) we obtain

lim
n→+∞

∫
f (un)

‖un‖ φ = lim
n→+∞

∫
g(un)vnφ =

∫
(
γ+v+ + γ−v−

)
φ.

Hence ∫
∇v · ∇φ =

∫
(
γ+v+ + γ−v−

)
φ,

i.e., v is a solution of the problem (8.4). As has been seen in Lemma 10.1.2, this
implies that v = 0, a contradiction because

0 = lim
n→+∞J ′(un)(vn) = 1− lim

n→+∞

[∫
f (un)vn − t

∫
ϕvn −

∫
hvn

]

= 1.

Hence, un is bounded and the Palais–Smale condition has been verified. Applying
Theorem 5.3.6, we obtain the existence of a critical point (and thus a solution of
(10.4t )) u2 �= u1 of J . The variational proof of the existence of a second solution in
Theorem 10.2.3 is thus concluded. ��
Remark 10.3.1 Since we devoted this section to apply variational methods, it is
really worthwhile to see that, if ϕ = ϕ1, then the mountain pass theorem may also
be applied to prove that the set S of all t for which problem (10.4t ) can be solved is
not empty (i.e., a variational proof of Step 1 of the proof of Theorem 10.2.3). Indeed,
we are going to show that (10.4t ) is solvable if t  0. To this end, consider the
subspace W = {u ∈ H 1

0 (�) :
∫

uϕ1 = 0} (which is orthogonal to Rϕ1). Roughly
speaking, since the first eigenvalue in W of the Laplacian operator is λ2 (remember
the variational characterization of λ2 given in Theorem 1.3.8) and condition (10.2)
holds, we deduce that

inf
w∈W

J (w) > −∞.

Since ϕ = ϕ1, we observe that J (w) = 1
2

∫ |∇w|2−∫ F (w)−∫ hw does not depend
on t and thus, there is t0  0 such that J (−ϕ1) = 1

2

∫ |∇ϕ1|2−
∫
F (−ϕ1)+ t

∫
ϕ2

1+∫
hϕ1 < infw∈W J (w) for every t ≤ t0.
In addition, by (10.7), for every t ≤ t0 there is s ! 0 (depending on t) such

that J (sϕ1) < infw∈W J (w). Theorem 5.3.8 applies and proves that J has a critical
point which is a solution of (10.4t ) for t ≤ t0.
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10.4 Approach by Degree Giving a Continuum of Solutions

In this section, we follow the ideas of [20, 21] and apply Theorem 4.4.2 to give an
alternative proof of Theorem 10.2.3. Specifically, we prove the following result.

Theorem 10.4.1 Let ϕ ∈ L∞(�) be a positive function and let f : R −→ R be
a C1 function satisfying (10.2). Let t∗ be the supremum of all t ∈ R such that
problem (10.4t ) admits a solution. Then t∗ is finite and there exists a continuum C in
� ≡ {(t , u) ∈ R× C1

0 (�) : u solution of (10.4t )} satisfying that

1. (−∞, t∗] ⊂ ProjR C.
2. For every t ∈ (−∞, t∗), the t-slice Ct = {u ∈ C1

0 (�) : (t , u) ∈ C} contains two
distinct solutions of (10.4t ).

Remark 10.4.2 As a consequence, we recover the assertion of Theorem 10.2.3:
(10.4t ) has, at least, two (resp. one, zero) solutions for t < t∗ (resp. t ≤ t∗, t > t∗).

Proof As we have seen in the proof of Theorem 10.2.3 in Sect. 10.2, S = {t ∈ R :
(10.4t ) admits a solution} = (−∞, t∗]. Observe that the family �t∗ of the solutions
of (10.4t∗ ) is clearly a compact set in C1

0 (�). Let u∗ be the minimal solution of
(10.4t∗ ) and choose t0 < t∗. We have seen in Step 1 of the proof of Theorem 10.2.3
that it is possible to pick a sub-solution ut0 < u∗ of (10.4t0 ) which is not a solution.
Clearly ut0 is also a sub-solution and not a solution for (10.4t ) if t ∈ [t0, t∗]. As in the
proof of Theorem 10.2.3, there is R > 0 such that, if �t (u) = I −K(f (u)+ tϕ+h)
and

Ut0 (R) = {u ∈ C1
0 (�) : ut0

< u < u∗ in �,
∂u∗

∂n
<

∂u

∂n
<

∂ut0

∂n
on ∂�} ∩ BR(0),

then deg (�t ,Ut0 (R), 0) = 1, for every t ∈ [t0, t∗).
Applying Theorem 4.4.2 with X = C1

0 (�), [a, b] = [t0, t∗], U = BR(0) and
U1 = Ut0 (R), we deduce the existence of a continuum St0 in � such that

St0 ∩ ({t0} × Ut0 (R)) �= ∅,
and

St0 ∩ ({t0} × [BR(0) \ Ut0 (R)]) �= ∅.
In particular, the continuum St0 crosses {t} × ∂Ut0 (R), for some t ∈ (t0, t∗]. It has
been observed that, by the strong comparison principle, this is possible if and only if
t = t∗. Consequently, the choice of u∗ implies that St0 crosses {t∗}×∂Ut0 (R) exactly
in (t∗, u∗). This proof is concluded by taking C = ∪t0<t∗St0 . ��
Remark 10.4.3 We will see in the next chapter that the above proof can cover the
case of a nonlinearity f such that γ+ = +∞ (superlinear at +∞).





Chapter 11
Superlinear Problems

This chapter deals with superlinear problems, i.e., nonlinear Dirichlet boundary value
problems whose nonlinearity f (u) is superlinear at∞, namely

lim
u→+∞

f (u)

u
= +∞.

In this case an appropriate approach seems to be critical point theory. Actually, the
mountain pass theorem or the linking theorem can be used to find solutions. We also
show how to study superlinear problems by using the topological degree.

11.1 Using Min–Max Theorems

We will find solutions of problems with a superlinear nonlinearity by means of the
min-max theorems proved in Sects. 5.3 and 5.5. For the reader’s convenience we
will first consider the model case

{−�u = λu+ |u|p−1u, x ∈ �

u = 0, x ∈ ∂�,
(11.1)

where λ ≥ 0 is a parameter and 1 < p < 2∗ − 1. Let us remark that 2∗ is given by
(7.3). The solutions of (11.1) are the critical points of

Jλ(u) = 1
2‖u‖2 − 1

2 λ‖u‖2
2 −H(u), u ∈ E = H 1

0 (�),

where

H(u) = 1
p+1

∫
|u|p+1.

Lemma 11.1.1 If 1 < p < 2∗ − 1, then Jλ satisfies the (PS)c for all c > 0.

Proof Let un ∈ E be such that Jλ(un) → c and J ′λ(un) → 0. From the former,
resp. the latter multiplied by un, we get

1
2‖un‖2 − 1

2 λ‖un‖2
2 −H(un) = c + o(1),

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 121
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‖un‖2 − λ‖un‖2
2 − (H′(un) | un) = o(1).

From the first identity we infer ‖un‖2−λ‖un‖2
2 = 2H(un)+2c+o(1) and, inserting

this into the second one, we deduce that

(H′(un) | un) = 2H(un)+ 2c + o(1). (11.2)

Using the homogeneity of H (H′(u)(u) = (p + 1)H(u)), we have

(p − 1)H(un) = 2c + o(1).

Then p > 1 and the definition of H imply that un is bounded in Lp(�) and this
shows that ‖un‖2

2 +H(un) is bounded. Therefore ‖un‖ is also bounded. The rest of
the proof follows from Lemma 7.1.1. ��
Remark 11.1.2 The homogeneity of H can be substituted by the condition

H(u) ≤ θ (H′(u) | u), θ ∈ (0, 1
2 ). (11.3)

Actually, using (11.3) in (11.2) we get

H(un) ≤ θ (H′(un) | un) = 2θH(un)+ 2θc + o(1),

namely,
(1− 2θ )H(un) ≤ 2θc + o(1),

and the conclusion follows in the same way.

The geometrical properties of the functional Jλ depend on the value λ. Indeed, since
the characteristic values of the operator λA are the decreasing sequence μj = 1

λλj

(j = 1, 2 . . . ), applying Examples 5.3.1 and 5.5.1, we have the following result on
the verification of the conditions (J1)–(J4) introduced in Sects. 5.3 and 5.5.

Lemma 11.1.3 (i) If λ < λ1, then Jλ satisfies (J1) and (J2).
(ii) If λk ≤ λ < λk+1, k ≥ 1, then Jλ satisfies (J3) and (J4), with V =
span {ϕ1, . . . ,ϕk}. ��
The preceding lemmas allow us to apply the mountain pass theorem 5.3.6, resp.
the min–max theorem 5.5.3, provided λ < λ1, resp. λk ≤ λ < λk+1, yielding a
nontrivial critical point of Jλ and hence a nontrivial solution of (11.1). Furthermore,
if λ < λ1, we can assert that the solution is positive in �. Indeed, the same previous
arguments work to prove the existence of a solution if we substitute the nonlinearity
|u|p−1u with its positive part. In addition, we deduce by the maximum principle that
the solution we find is positive.

Similar arguments apply to the problem

−�u = λu+ f (x, u), x ∈ �,
u = 0, x ∈ ∂�,

(11.4)

where f ∈ C1(�× R, R) satisfies
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(i) f (x, 0) = fu(x, 0) = 0,
(ii) |f (x, u)| ≤ a1 + a2|u|p with 1 < p < 2∗ − 1,
(iii) ∃ θ ∈ (0, 1

2 ) such that, letting F (x, u) = ∫ u
0 f (x, s)ds,

0 < F (x, u) ≤ θuf (x, u), ∀ x ∈ �, ∀u > 0. (11.5)

In this more general case the preceding arguments require some modifications that
we are going to outline.

As for the (PS) condition, it suffices to point out that now one has that H(u) =∫
F (x, u) dx as well as (H′(u) | u) = ∫

uf (x, u) dx and hence assumption (iii)
implies that (11.3) holds.

The verifications of (J1) or (J3) in Lemma 11.1.3 (see Example 5.3.1) do not
depend on the homogeneity of the nonlinearity. On the other hand, from (11.5) it
follows that f (x, u)F−1(x, u) ≥ θ−1u−1 and hence, integrating,

|F (x, u)| ≥ a|u|1/θ , a > 0. (11.6)

Using again (11.5), we deduce that f is superlinear at infinity and allows us to repeat
the arguments carried out in Example 5.5.1 proving that (J2) or (J4) holds.

In conclusion, we can state the following result.

Theorem 11.1.4 If f satisfies (i), (ii) and (iii), then (11.4) has a nontrivial solution.
Moreover, if λ < λ1, (11.4) has a positive solution. ��
Remark 11.1.5 Condition (iii) can be further weakened by requiring that it hold
only for all |u| ! 1. The proof requires some minor changes that are left to the
reader.

Remark 11.1.6 Exercises 40 and 41 show that, in general, positive solutions given
by the preceding theorem cannot be obtained by sub- and super-solutions.

Remark 11.1.7 In general, (11.4) has no nontrivial solution u ∈ H 2(�) ∩H 1
0 (�) if

λ ≤ 0, p ≥ 2∗ − 1 and N > 2. This can be derived as a consequence of an integral
identity for the case f (x, u) = f (u), due to Pohozaev, which states that any solution
of (11.4) verifies

N

∫
F (u)− N − 2

2

∫
uf (u)+ λ

∫
u2 = 1

2

∫

∂�

u2
ν(x · ν)dσ , (11.7)

where ν is the unit outer normal on ∂� and uν = ∂u
∂ν

. Roughly, (11.7) follows by
multiplying (11.4) by x · ∇u to deduce that

f (u) x · ∇u = −�u (x · ∇u)

= −div ((x · ∇u)∇u)+ 1

2
div (x|∇u|2)− N − 2

2
|∇u|2 ,
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which, integrating in � and using the divergence theorem, implies

N

∫
F (u) = −

∫

∂�

(x · ∇u) uν + 1

2

∫

∂�

|∇u|2(x · ∇u)− N − 2

2

∫
|∇u|2.

Finally, (11.7) is obtained by observing that ∇u = uν ν (since u = 0 on ∂�) and
taking into account that, by choosing u as a test function in (11.4),

∫
|∇u|2 =

∫
f (u)u.

When f (u) = |u|p−1u, the left-hand side of (11.7) becomes
(

N

p + 1
− N − 2

2

)∫
|u|p+1 + λ

∫
u2.

If, in addition, λ ≤ 0 and the set � is star-shaped, i.e., such that x · ν > 0 on ∂�,
we infer from (11.7) that

N

p + 1

∫
|u|p+1 >

N − 2

2

∫
|u|p+1.

Therefore, if (11.4) has a nontrivial solution, then p + 1 < 2N/(N − 2) = 2∗.

Remark 11.1.8 In contrast to the previous discussion, if we consider the following
linear perturbation of problem (11.4):

−�u = λu+ |u|2∗−2u, x ∈ �

u = 0, x ∈ ∂�,
(11.8)

and N ≥ 4, then (11.8) has a positive solution whenever 0 < λ < λ1. In the
case N = 3 there exists λ∗ ≥ 0 such that (11.8) has a positive solution whenever
λ∗ < λ < λ1. Moreover, if � is a ball, necessarily λ∗ > 0.

These and other results dealing with (11.8), including existence of solutions for
λ > λ1, are out of the scope of this book. For an exposition, we refer, e.g., to [37].

11.2 Superlinear Ambrosetti–Prodi Problem

In this section we study a superlinear version of the Ambrosetti and Prodi problem.
Specifically, we consider the boundary value problem

−�u = f (x, u)+ tϕ, x ∈ �,
u = 0, x ∈ ∂�,

(11.9t )

where ϕ ∈ L∞(�) is a positive function, and f is a continuous function such that

lim
s→−∞

f (x, s)

s
= γ−(x) ≤ λ1 − ε, uniformly in x ∈ �, (11.10)
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for some ε > 0. In addition, we suppose that there exists h(x) ∈ L∞(�) and
1 < p < 2∗ − 1 such that

lim
s→+∞

f (x, s)

sp
= h(x) > c > 0, uniformly in x ∈ �. (11.11)

Notice that this hypothesis implies that f is superlinear at +∞ and satisfies the
subcritical condition (ii) of the previous section.

Theorem 11.2.1 Let ϕ ∈ L∞(�) be a positive function and let f be a continuous
function satisfying (11.10) and (11.11). Then t∗, the supremum of all t ∈ R such
that problem (11.9t ) admits a solution, is finite and there exists a continuum C in
� ≡ {(t , u) ∈ R× C1

0 (�) : u solution of (11.9t )} satisfying that

1. (−∞, t∗] ⊂ ProjR C.
2. For every t ∈ (−∞, t∗), the t-slice Ct = {u ∈ C1

0 (�) : (t , u) ∈ C} contains two
distinct solutions of (11.9t ). ��

Remark 11.2.2 Similarly to Remark 10.4.2, we obtain as a corollary that problem
(11.9t ) has, at least, two (respectively, one, zero) solutions for t < t∗ (respectively,
t ≤ t∗, t > t∗.).

The proof is essentially equal to the one of Theorem 10.4.1. The only change is the
estimate given by Lemma 10.2.1. In this case, an easy extension of the result by
Gidas and Spruck in [57] gives the following result.

Lemma 11.2.3 Let ϕ ∈ L∞(�) be a positive function. Suppose that f satisfies
(11.10) and (11.11). Then the solutions of (11.9t ) are uniformly bounded in compact
sets of t , i.e., for every compact interval � ⊂ R, there exists c ∈ R such that every
solution u of (11.9t ) with t ∈ � satisfies

‖u‖C1 ≤ c.

Proof By bootstrap arguments, it is sufficient to prove the existence of an a priori
estimate for the norm in L∞(�) of the solutions of (11.9t ) with t in a given compact
interval �. The proof is divided into two steps:

Step 1. There exists a positive constant c such that

u(x) > −c, x ∈ �,

for every solution u of (Pt ) with t ∈ �.

Step 2. There exists a positive constant C such that

u(x) ≤ C, x ∈ �,

for every solution u of (Pt ) with t ∈ �.

Proof of Step 1 In order to prove this a priori bound, we observe that, taking u− ≡
min{u, 0} as a test function in the equation satisfied by u, and by using hypothesis
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(11.10), we get a uniform bound in the H 1
0 (�)-norm of u−. For each k ∈ R, the

function Gk is given by

Gk(s) =
⎧
⎨

⎩

s + k, if s ≤ −k,
0, if − k < s ≤ k,
s − k, if k < s.

Taking v = Gk(u−) as a test function in the equation satisfied by u, we obtain that
∫
|∇Gk(u−)|2 =

∫

�k

[f (x, u−)+ tϕ]Gk(u−),

where �k ≡ {x ∈ � : u(x) < −k}. From (11.10), there exists a positive constant C
such that

f (x, s)+ tϕ ≥ Cs, ∀s ≤ −k, ∀t ∈ �.

We deduce from above that
∫
|∇Gk(u−)|2 ≤ C

∫

�k

|u−||Gk(u−)|.

Using now the Sobolev inequality, we get

‖Gk(u−)‖2
2∗ ≤ C1

∫
|∇Gk(u−)|2 ≤ C2

∫

�k

|u−||Gk(u−)|.

Moreover, if r > 2N/(N + 2), by the Hölder inequality, we infer
∫

�k

|u−||Gk(u−)| ≤ ‖u−‖r‖Gk(u−)‖2∗ |�k|(1−1/r−1/2∗).

Hence,
‖Gk(u−)‖2

2∗ ≤ C2‖u−‖r‖Gk(u−)‖2∗ |�k|(1−1/r−1/2∗).

Notice now that for every h ≥ k, |Gk(u−)| ≥ h− k in �h, which implies that

(h− k)|�h|1/2∗ ≤ C2‖u−‖r |�k|(1−1/r−1/2∗),

or equivalently that

|�h| ≤ C2‖u−‖2∗
r |�k|(2∗−1−2∗/r)

(h− k)2∗ .

The following lemma of real analysis can be found in [83, Lemme 4.1, p. 19].

Lemma 11.2.4 Assume that k1 ≥ 0, C,α,β > 0 and that �(h) is a non-increasing
and non-negative function satisfying

�(h) ≤ C

(h− k)α
�(k)β , ∀h > k ≥ k1.

If β > 1, then �(h0) = 0, with h0 = k1 + (C�(k1)β−12αβ/(β−1))1/α . ��
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Applying the previous lemma with �(h) := |�h|, we deduce the existence of a
positive constant h0 such that |�h0 | = 0 and hence that ‖u−‖∞ ≤ const., for every
solution u of (Pt ) with t ∈ �. Therefore, Step 1 has been proved.

Proof of Step 2 Consider the constant c obtained in the first step. It suffices to show
the existence of c̃ ∈ R

+ such that v(x) := u(x) + c ≤ c̃, for every x ∈ �. Since
v = u+ c > 0 satisfies

−�v = f̃ (x, v)+ tϕ, x ∈ �,
v = c, x ∈ ∂�,

with f̃ (x, s) := f (x, s − c), we follow the outline of [57] where the case c = 0 is
studied. Arguing by contradiction, assume that there exist positive solutions vn ∈
C1(�) of the above problem with λn ∈ � and points Pn ∈ � such that:

c < Mn = max
�

vn = vn(Pn)→+∞.

Then, up to a subsequence, we may assume

λn→ λ, Pn → P ∈ �.

Two cases can occur: either P ∈ � or P ∈ ∂�. In both cases, we will obtain a
contradiction.

Indeed, in the first case, i.e., P ∈ �, let d = dist(P , ∂�)/2 > 0, μn = M
1−p

2
n and

wn(y) = μ
2

p−1
n vn(Pn + μny), (11.12)

for every y in the ball B d
μn

(0) of center 0 and radius d
μn

. Observe that μn → 0,

sup
B d

μn

(0)
wn = wn(0) = 1,

and wn satisfies

−�wn(y) = gn(y), y ∈ B d
μn

(0), (11.13)

where

gn(y) = μ
2p
p−1
n f

(

λn,μny + Pn,μ
−2
p−1
n vn(y)

)

.

By Lp-theory, we get that vn ∈ W 2,s(B d
μn

(0)), for every s > 1. In addition, if we fix

R > 0 and let n0 be a positive integer such that R < d/μn for every n ≥ n0, we
obtain for every R′ ∈ (R, d/μn) that

‖wn‖W 2,s (BR (0)) ≤ C
(‖wn‖Ls (BR′ (0)) + ‖gn‖Ls (BR′ (0))

)
,

where C is a positive constant depending only on N , p, α, β and R′.
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By (11.11), the right-hand side of this equation satisfies

lim
n→∞

∣
∣
∣
∣μ

2p
p−1
n f

(

λn,μny + Pn,μ
−2
p−1
n vn(y)

)

− h(μny + Pn)vn(y)p
∣
∣
∣
∣ = 0. (11.14)

Taking into account that

‖wn‖Ls (BR′ (0)) + ‖gn‖Ls (BR′ (0)) ≤ C1 = C1(R′, λn), ∀n ≥ n0,

we deduce a uniform bound for ‖wn‖W 2,s (BR(0)) for every n ≥ n0. Choosing s large
enough, we obtain from Morrey’s theorem (see TheoremA.4.3) that ‖wn‖C1,β (BR(0)) is
uniformly bounded. Therefore we can apply the Ascoli–Arzelà theorem and deduce
the existence of a function w ∈ C(BR(0)) such that, up to a subsequence, wn → w
in C(BR(0)) and h(μny + Pn) → ν, for some ν > 0. Necessarily, we have that
w(0) = 1 and, using again (11.14),

−�w = νwp, y ∈ BR(0).

Then, by regularity, for τ ∈ (0, 1), w ∈ C1,τ (BR(0)). From the arbitrariness of R > 0
we deduce that w is defined in R

N and it is a solution of

−�w(y) = wp(y), y ∈ R
N.

By Theorem 1.2 in [57], w ≡ 0, contradicting that w(0) = 1.

In the second case, P ∈ ∂� and since ∂� is smooth, we can suppose that near P the
boundary of � is contained in the hyperplane xN = 0 and that a neighborhood of P
in � is contained in the set {x ∈ R

N : xN > 0}. We set dn = dist(Pn, ∂�) = Pn · en,
(en = (0, . . . , 0, 1)), and we observe that the function wn given by (11.12) is well
defined in �n ≡ B δ

μn

(0) ∩ {yN > −dn/μn}, for some δ > 0. Moreover, it satisfies

(11.13) in�n. ByLp-theory up to the boundary (see Theorem 1.2.11-1) and Morrey’s
theorem, we deduce again that |∇wn| is uniformly bounded in �n. Consequently,

1 =
∣
∣
∣
∣wn(0)− wn

(

− dn

μn

en

)∣∣
∣
∣ ≤ C

dn

μn

,

i.e., dn/μn is away from zero. If, for a subsequence, dn/μn → ∞, we can apply
similar arguments to those of the first case to reach again a contradiction. On the
other hand, if dn/μn is bounded from above, we assume, passing to a subsequence if
necessary, that dn/μn → s > 0. Since wn satisfies (11.13) in�n, again byLp-theory,
for every R, ε > 0, we get a uniform bound of wn in C1,τ (BR(0) ∩ {yN > −s + ε})
for n large enough. Therefore, we obtain that, up to a subsequence, wn → w in
C1(BR(0) ∩ {yN > −s + ε}), h(μny + Pn)→ ν, for some ν > 0, and using that R
and ε are arbitrary, w is a solution of

⎧
⎨

⎩

−�w = νwp, {yN > −s},

w(y) = 0, {yN = −s}.
Theorem 1.3 in [57] implies then that w ≡ 0, a contradiction with w(0) = 1. ��
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It is worthwhile to observe that the above theorem implies also the existence of
positive solution of (11.4) provided that λ < λ1.

Corollary 11.2.5 If f is a continuous function in �× [0,+∞) satisfying (i) of the
previous section and (11.11), then problem (11.4) has a positive solution provided
that λ < λ1.

Remark 11.2.6 Compare this result with the assertion proved in Theorem 11.1.4 for
λ < λ1.

Proof To prove the corollary, we extend, as usual when we look for positive so-
lutions, the nonlinearity to all � × R by setting f (x, u) = 0 for u < 0. Choosing
ϕ = ϕ1, we embed the problem (11.4) into the one-parameter family of problems
(11.9t ). Applying Theorem 11.2.1, we deduce the existence of, at least, two solutions
of (11.9t ) for t ≤ t∗. The proof will be concluded if we show that t∗ > 0 because
this implies that (11.90), i.e. (11.4) has two solutions: one is the zero one and the
other the positive solution that we are looking for. To prove that t∗ > 0, it suffices
to observe that, by condition (i) and for t > 0, δϕ1 is a super-solution of (11.9t )
provided that δ > 0 is sufficient small. ��





Chapter 12
Quasilinear Problems

In this chapter we consider a class of quasilinear elliptic problems. In order to handle
this case an improvement of the mountain pass theorem is needed because the Euler
functional fails to be C1. This critical point result is discussed in Sect. 12.2 and
is applied to boundary value problems in Sect. 12.3. A nonvariational equation is
also considered in Sect. 12.4, where we apply the global bifurcation theorem (see
Theorem 4.4.1).

12.1 First Results

We study quasilinear Dirichlet problems in a bounded open set � ⊂ R
N , where

N ≥ 3 (the case N = 2 is left to the reader (see Exercise 49)). Specifically, we
replace the linear operator � by a quasilinear operator, namely we consider here
operators like Qu = −div (a(x, u)∇u)+ g(x, u)|∇u|2, where a(x, s) and g(x, s) are
continuous functions in �× R satisfying

α ≤ a(x, s) ≤ β, ∀x ∈ �, ∀s ∈ R, (12.1)

for positive constants α, β, and

g(x, s)s ≥ 0, ∀x ∈ �, ∀s ∈ R. (12.2)

Observe that Q contains a lower order term with quadratic growth with respect to the
gradient. From the works of Boccardo et al. [33–35] this kind of quasilinear operator
has been extensively studied, especially if the right-hand side is linear. In particular,
among other results, these authors have proved the following one.

Theorem 12.1.1 Assume that a(x, s) and g(x, s) are continuous functions in �×R

satisfying (12.1) and (12.2). If h(x) ∈ Lq (�) with q > N
2 , then the problem

−div (a(x, u)∇u)+ g(x, u)|∇u|2 = h(x), x ∈ �

u = 0, x ∈ ∂�

has a solution u ∈ H 1
0 (�) ∩ C(�). ��

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 131
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
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When a and g are independent of x ∈ �, i.e., a(x, s) = α(s) and g(x, s) = g(s), the
uniqueness of solution is a consequence of the following principle [27].

Theorem 12.1.2 Given a continuous function g : [0,+∞) −→ [0,+∞) and q >
N
2 , let 0 ≤ h1,h2 ∈ Lq (�) be functions such that

h1(x) ≥ h2(x), ∀x ∈ �.

If 0 ≤ u, v ∈ H 1
0 (�) ∩ L∞(�) verify

−div (α(u)∇u)+ g(u)|∇u|2 = h1, x ∈ �

and
−div (α(v)∇v)+ g(v)|∇v|2 = h2, x ∈ �,

then u ≤ v.

Proof Define γ (s) =
s∫

0
g(t) dt and P (s) =

s∫

0
α(t)e−γ (t) dt , for every s > 0. Taking

e−γ (u) [P (u)− P (v)]+ ∈ H 1
0 (�) ∩ L∞(�)

as a test function in the equation satisfied by u, we obtain
∫
∇u · ∇ [e−γ (u) [P (u)− P (v)]+

]+
∫

g(u)|∇u|2e−γ (u) [P (u)− P (v)]+

=
∫

h1e
−γ (u) [P (u)− P (v)]+ . (12.3)

Using that γ ′ = g, we have

∇ [e−γ (u) [P (u)− P (v)]+
] = e−γ (u)∇ [P (u)− P (v)]+

− g(u)∇u e−γ (u) [P (u)− P (v)]+ .

Hence (12.3) means
∫

e−γ (u)∇u · ∇ [P (u)− P (v)]+ =
∫

h1e
−γ (u) [P (u)− P (v)]+ .

Since ∇P (u) = P ′(u)∇u = e−γ (u)∇u, we can rewrite the above equality as
∫
∇P (u) · ∇ [P (u)− P (v)]+ =

∫
h1e

−γ (u) [P (u)− P (v)]+ . (12.4)

Similarly, taking now e−γ (v) [P (u)− P (v)]+ as a test function in the equation of v,
we deduce that

∫
∇P (v) · ∇ [P (u)− P (v)]+ =

∫
h2e

−γ (v) [P (u)− P (v)]+ .

Subtracting this from (12.4) we get from the non-negativeness of h1 − h2
∫
|∇ [P (u)− P (v)]+ |2 ≤

∫
(h1e

−γ (u) − h2e
−γ (v)) [P (u)− P (v)]+ ≤ 0,

i.e., P (u) ≤ P (v) or equivalently u ≤ v. ��
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By Theorems 12.1.1 and 12.1.2, if 2∗ is given by (7.3), given p ∈ (1, 2∗ −1), we can
consider the operator Kg : R×H 1

0 (�)→ H 1
0 (�) by defining, for every λ ∈ R and

for every w ∈ H 1
0 (�), Kg(λ, w) as the unique solution u in H 1

0 (�) of the problem

−�u+ g(u)|∇u|2 = λ+w+(x)p + h(x), x ∈ �,

u = 0, x ∈ ∂�.

In the following result we state without proof the compactness property of Kg(λ, w).
For details see [22].

Proposition 12.1.3 If the sequences tn ∈ [0, 1] and λn > 0 are convergent, respec-
tively, to t∗ and λ, and wn is H 1

0 (�)-weakly convergent to w, then the sequence of
the unique solution un ∈ H 1

0 (�) of

−�un + tng(un)|∇un|2 = λn w+n (x)p + h(x), x ∈ �,

un = 0, x ∈ ∂�,

is strongly convergent in H 1
0 (�) to the solution u of

−�u+ t∗g(u)|∇u|2 = λw+(x)p + h(x), x ∈ �,

u = 0, x ∈ ∂�. ��

12.2 Mountain Pass Theorem for Nondifferentiable Functionals
and Applications

The study of quasilinear problems associated to the operator Q of the preceding
section with a superlinear right-hand side requires the extension of the mountain
pass Theorem 11.1.4 to cover the case of functionals which are not differentiable in
all directions.

The proof of the classical mountain pass theorem given in Sect. 5.3 was based on
the deformation lemma (Lemma 5.3.2). A different approach based on the Ekeland
variational principle (Theorem 5.4.2) can be found in [29, 48, 69]. In this section,
we prove the required extension by following the latter strategy. All the ideas used
here are close to those in [19].

Theorem 12.2.1 LetX be a Banach space with a norm ‖·‖X and Y ⊂ X a subspace,
which is itself a Banach space endowed with a different norm ‖ · ‖Y . Assume that
J : X −→ R is a functional on X such that J|Y is continuous in (Y , ‖ · ‖X +‖ · ‖Y )
and satisfies the following hypotheses:

(a) J has a directional derivative 〈J ′(u), v〉 at each u ∈ X through any direction
v ∈ Y .

(b) For fixed u ∈ X, the function 〈J ′(u), v〉 is linear in v ∈ Y , and, for fixed v ∈ Y ,
the function 〈J ′(u), v〉 is continuous in u ∈ X.
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Assume that for e ∈ Y ,

c = inf
γ∈�

max
t∈[0,1]

J (γ (t)) > c1 = max {J (0), J (e)} (12.5)

with � the set of the continuous paths γ : [0, 1] −→ (Y , ‖ · ‖X + ‖ · ‖Y ) such that
γ (0) = 0 and γ (1) = e. Suppose, in addition, that J satisfies the condition

(C) Any sequence {un} in Y satisfying for some {Kn} ⊂ (0, +∞) and {εn} −→ 0 the
conditions

{J (un)} is bounded, (12.6)

‖un‖Y ≤ 2Kn ∀n ∈ N, (12.7)

|〈J ′(un), v〉| ≤ εn

[‖v‖Y

Kn

+ ‖v‖X

]

∀v ∈ Y , (12.8)

possesses a convergent subsequence in X.

Then c is a critical value of J , i.e., there exists a (nonzero) point u ∈ Y such that
J (u) = c and which is a critical point of J : 〈J ′(u), v〉 = 0, ∀v ∈ Y .

Proof Consider the functional G defined on � by setting

G(γ ) = max
t∈[0,1]

J (γ (t)), ∀γ ∈ �.

By (12.5) we observe that G is bounded from below with infimum c. Let us consider
εn := c−c1

n
and a sequence {γn} of minimizing paths in � satisfying

c ≤ G(γn) ≤ c + εn

2
.

Let us denote Mn := maxt∈[0,1]‖γn(t)‖Y ≥ ‖e‖Y . For each fixed n ∈ N, we consider
the distance dn in � given by dn(γ , γ̃ ) = maxt∈[0,1]

‖γ (t)−γ̃ (t)‖Y

Mn
+ ‖γ (t) − γ̃ (t)‖X, for

γ , γ̃ ∈ �. Equipped with this, � is a complete metric space and G is also a lower
semicontinuous functional. Hence, applying the Ekeland variational principle (see
Theorem 5.4.2), we deduce that there exists γ n ∈ � satisfying

c ≤ G(γ n) ≤ G(γn) ≤ c + εn

2
,

dn(γ n, γn) = max
t∈[0,1]

‖γn(t) − γ n(t)‖Y

Mn

+ ‖γn(t) − γ n(t)‖X ≤ √
εn, (12.9)

and

G(γ n) < G(ϑ) + √
εndn(γ ε, ϑ), ∀ϑ ∈ � \ {γ n}. (12.10)
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Now we show that there exists tn ∈ T := {t ∈ [0, 1] : c −√εn ≤ J (γ n(t))} such
that un := γ n(tn) satisfies

|〈J ′(un), v〉| ≤ √εn

[‖v‖Y
Mn

+ ‖v‖X
]

, ∀v ∈ Y. (12.11)

Indeed, if by contradiction we assume that for every t ∈ T there exists vt ∈ Y such
that ‖vt‖Y

Mn
+ ‖vt‖X = 1 and 〈J ′(γ n(t)), vt 〉 < −√εn, then, by hypothesis b), there

exist δt > 0 and an open neighborhood Bt of t in [0, 1] such that

〈J ′(γ n(s)+ u), vt 〉 < −√εn (12.12)

for every s ∈ Bt and u ∈ X such that ‖u‖X < δt . Since T is compact, there exists
a finite family of neighborhoods Bt1 , Bt2 , . . . ,Btk such that T ⊂ ∪k

j=1Btj . Take
δ = min{δt1 , δt2 , . . . , δtk } and choose functions ψ ,ψj ∈ C([0, 1], [0, 1]) satisfying

ψ(s) =
{

1, if c ≤ J (γ n(s)),

0, if J (γ n(s)) ≤ c − εn

and

ψj (s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dist (s, [0, 1]− Btj )
k∑

i=1

dist(s, [0, 1]− Bti )

, if s ∈ ∪k
i=1Bti ,

0, if s ∈ [0, 1]− ∪k
i=1Bti .

It is easy to check that γ ∗ := γ n + δψ
∑k

j=1 ψjvtj ∈ �. Note also that for every
s ∈ [0, 1] − T , we have γ ∗(s) = γ n(s) and thus J (γ ∗(s)) = J (γ n(s)) < c − εn.
On the other hand, if s ∈ T , hypothesis (a) and the mean value theorem imply the
existence of τ ∈ (0, 1) such that

J (γ ∗(s))− J (γ n(s)) = 〈J ′(γ n(s)+ τδψ(s)
k∑

j=1

ψj (s)vtj ), δψ(s)
k∑

j=1

ψj (s)vtj 〉

(by (b)) = δψ(s)
k∑

j=1

ψj (s)〈J ′(γ n(s)+ τδψ(s)
k∑

j=1

ψj (s)vtj ), vtj 〉

(by (12.12)) ≤ −δψ(s)
√
εn

k∑

j=1

ψj (s)

= −δ√εnψ(s).

Consequently, if s is the point in [0, 1] in which J ◦ γ ∗ attains its maximum, i.e.,
J (γ ∗(s)) = G(γ ∗) ≥ c, we deduce necessarily that ψ(s) = 1, s ∈ T , and

G(γ ∗) = J (γ ∗(s)) ≤ J (γ n(s))− δ
√
εn ≤ G(γ n)− δ

√
εn

≤ G(γ n)−√εdn(γ ∗, γ n).
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This contradicts (12.10) and proves the existence of un ∈ γ n(T ) such that c−√εn ≤
J (un) ≤ c + εn

2 and (12.11) holds.
In addition, by (12.9),

‖un‖Y = ‖γ n(tn)‖Y ≤ ‖γ n(tn)− γn(tn)‖Y + ‖γn(tn)‖Y ≤ (1+Mn)
√
εn.

This means that the sequence {un} satisfies (12.6)–(12.8) and therefore we conclude
the proof by using the compactness condition (C). ��
Remark 12.2.2 A similar result was proved in [39] using a nonsmooth critical point
theorem for continuous functionals due to Corvellec et al. [42] together with a result
of Boccardo et al. [35]. Moreover, the existence of nontrivial critical points for
one-dimensional general functionals is proved in [63].

12.3 Application to Quasilinear Variational Problems

We apply the previous theorem to study the critical points of the functional

J (u) = 1

2

∫
a(x, u)|∇u|2 −

∫
F (x, u), u ∈ X := H 1

0 (�),

where � is an open set in R
N and, for positive constants α, β and γ , a(x, s) is a

Carathéodory function satisfying (12.1) and with Carathéodory derivative a′s(x, s)
with respect to the variable s such that, for some γ > 0,

|a′s(x, s)| ≤ γ , (12.13)

for every s ∈ R and a.e. x ∈ �. We also assume that F (x, u) = ∫ u
0 f (x, s)ds where

f ∈ C1(�× R, R) satisfies the conditions (like in Theorem 11.1.4)

(i) f (x, 0) = fu(x, 0) = 0,
(ii) |f (x, u)| ≤ C1 + C2|u|p with 1 < p < 2∗ − 1.

Notice that in this case the functional J is differentiable at every u ∈ X only along
directions v ∈ Y := H 1

0 (�) ∩ L∞(�) with the derivative given by

〈J ′(u), v〉 =
∫

a(x, u)∇u · ∇v+ 1

2

∫
a′s(x, u)|∇u|2v−

∫
f (x, u)v.

In other words, the Euler–Lagrange problem associated to J is the following:

−div (a(x, u)∇u)+ 1
2a
′
s(x, u)|∇u|2 = f (x, u), x ∈ �

u = 0, x ∈ ∂�.
(12.14)

Hence J satisfies the assumptions (a) and (b) of Theorem 12.2.1. In addition, we
give sufficient conditions for the condition (C).
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Lemma 12.3.1 If there exists s0 ≥ 0 such that

a′s(x, s)s ≥ 0, a.e. x ∈ �, ∀s ≥ s0, (12.15)

and there exist θ ∈ (0, 1
2

)
and α0 > 0 such that the inequalities (11.5) and

(p

2
− 1
)
a(x, s)+ 1

2
a′s(x, s)s ≥ α0, a.e. x ∈ �, (12.16)

hold, then the functional J satisfies the compactness condition (C).

Remark 12.3.2 As in the proof of the (PS)c condition for the semilinear case studied
in Chap. 11 (see Lemma 11.1.1), the outline of the proof consists of two steps. First,
we prove that {un} is bounded and, second, that it possesses a strongly convergent
subsequence in X. We point out that the second step is more tricky in the quasilinear
case (compare it with Lemma 7.1.1).

Proof Let {un}be a sequence inY satisfying (12.6)–(12.8) for some {Kn} ⊂ (0,+∞)
and {εn} −→ 0. We begin by proving that the sequence {un} is bounded. In order to
do this, following the ideas of Lemma 11.1.1, we choose v = un as a test function in
(12.8) to deduce from (12.7) that

|〈J ′(un), un〉| ≤ εn [2+ ‖un‖X] .

Moreover, by using (12.6), we infer that

pJ (un)− 〈J ′(un), un〉 ≤ C + εn [2+ ‖un‖X] .

Hence, the hypothesis (12.16) means that

α0

∫
|∇un|2 ≤

∫ [(
1

2
− θ

)

a(x, un)+ θ

2
a′s(x, un)un

]

|∇un|2

≤ C + εn [2+ ‖un‖X]+
∫

[F (x, un)− θunf (x, un)] .

Now, the boundedness of {un} follows from (11.5) as in the proof for the problem
(11.4).

In particular, passing to a subsequence if necessary, we can assume that {un} is
weakly converging to some u in H 1

0 (�), and, by Theorem A.4.9, strongly converging
in L2(�) and dominated by a function h ∈ L2(�), i.e., |un| ≤ h almost everywhere
in �.

We are going to prove that the sequence un is strongly convergent in H 1
0 (�)

to u. Let us introduce the truncature function Tk and Gk given by Tk(s) =
max{min{s, k},−k} and Gk(s) = s − Tk(s), for every s ∈ R, and then we proceed
via the following steps.

Step 1. For every fixed k > s0, the sequence Tk(un) converges to Tk(u) in H 1
0 (�).

Step 2. For each δ > 0 , there exist k0 ≥ s0 and n0 ∈ N such that ‖Gk(un)‖ < δ for
every k ≥ k0 and n ≥ n0.
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Indeed, using that un = Tk(un)+Gk(un), we have

‖un − u‖ ≤ ‖un − Tk(u)‖ + ‖Tk(u)− u‖
≤ ‖Tk(un)− Tk(u)‖ + ‖Gk(un)‖ + ‖Tk(u)− u‖

and Steps 1 and 2 show that the last three terms are arbitrarily small provided that k
is sufficiently large, i.e., un converges in H 1

0 (�) to u.
To prove the first step, we follow [32]. We fix k > s0 and take ϕ ∈ C1(R, R) such

that ϕ(0) = 0. We denote wk
n := Tk(un)−Tk(u). It is easy to verify that the sequence

{ϕ(wk
n)} is

• weakly converging to zero in H 1
0 (�),

• converging to zero almost everywhere in � and
• strongly converging to zero in Lq (�) for every q ∈ [1,+∞).

Using (12.1) and (12.15), we deduce that if k > s0, then

α

∫
|∇wk

n|2ϕ′(wk
n) ≤

∫
a(x, un)|∇wk

n|2ϕ′(wk
n)

+
∫

k<un

a′s(x, un)

2
|∇un|2ϕ(k − Tk(u))

+
∫

un<−k
a′s(x, un)

2
|∇un|2ϕ(− k − Tk(u))

and thus

α

∫
|∇wk

n|2ϕ′(wk
n) ≤

∫
a(x, un)∇un · ∇(wk

n)ϕ′(wk
n)

−
∫

|un|>k

a(x, un)∇un · ∇(wk
n)ϕ′(wk

n)

−
∫

a(x, un)∇Tk(u) · ∇(wk
n)ϕ′(wk

n)

+
∫

a′s(x, un)

2
|∇un|2ϕ(wk

n)

−
∫

|un|≤k
a′s(x, un)

2
|∇un|2ϕ(wk

n).

Now, taking vn = ϕ(wk
n) as a test function in (12.8), we obtain

∣
∣
∣
∣

∫
a(x, un)∇un · ∇(ϕ(wk

n))+ a′s(x, un)

2
|∇un|2ϕ(wk

n)− f (x, un)ϕ(wk
n)

∣
∣
∣
∣ ≤ εn,
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where εn > 0, εn → 0 and hence, by (12.13), we deduce that

α

∫
|∇wk

n|2ϕ′(wk
n) ≤ εn +

∣
∣
∣
∣

∫

|un|>k

a(x, un)∇un · ∇(wk
n)ϕ′(wk

n)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫
a(x, un)∇Tk(u) · ∇wk

nϕ
′(wk

n)

∣
∣
∣
∣

+ γ

∫
|∇wk

n|2ϕ(wk
n)+ γ

∫
|∇Tk(u)|2ϕ(wk

n)

+
∣
∣
∣
∣

∫
f (x, un)ϕ(wk

n)

∣
∣
∣
∣ .

By Corollary A.1.13 and the definition of wk
n,

∫

|un|>k

a(x, un)∇un · ∇wk
nϕ
′(wk

n) = −
∫

|un|>k

a(x, un)∇un · ∇Tk(u)ϕ′(wk
n).

The weak convergence of ∇un to u and the strong one of a(x, un)∇Tk(u)ϕ′(wk
n) to

zero in L2(�) imply then that

lim
n→∞

∫

|un|>k

a(x, un)∇un · ∇wk
nϕ
′(wk

n) = 0.

Similarly,

lim
n→∞

∫
a(x, un)∇Tk(u) · ∇wk

nϕ
′(wk

n) = 0

and

lim
n→∞

∫
|∇Tk(u)|2ϕ(wk

n) = lim
n→∞

∫
f (x, un)ϕ(wk

n) = 0,

and consequently, we have

lim
n→∞

∫
|∇wk

n|2
[
αϕ′(wk

n)− γ ϕ(wk
n)
] = 0.

Choosing ϕ(s) = seηs
2

with η > 0 large enough, it is easy to verify that αϕ′(s) −
γ ϕ(s) ≥ α

2 for every s ∈ R and, therefore, we deduce that

lim
n→∞

∫
|∇wk

n|2 = 0,

i.e., we prove the strong convergence in H 1
0 (�) of Tk(un) to Tk(u), and Step 1 is

concluded.
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With respect to the proof of Step 2, observe that taking v = Gk(un) as a test
function in (12.8) and using (12.7), we have that

δn :=
∫

a(x, un)|∇Gk(un)|2+ 1

2

∫
a′(x, un)Gk(un)|∇Gk(un)|2−

∫
f (x, un)Gk(un)

is a sequence of numbers which converges to zero. By using (12.1), (12.15) and
k ≥ s0 we get

α

∫
|∇Gk(un)|2 ≤

∫
a(x, un)|∇Gk(un)|2 + 1

2

∫
a′(x, un)Gk(un)|∇Gk(un)|2

≤ δn +
∫

f (x, un)Gk(un).

Moreover, by the subcritical growth condition (ii) and the Sobolev embedding
theorem (see Corollary A.4.10) we also get

∫
f (x, un)Gk(un) ≤ C2

∫
|Gk(un)| + C2

∫
|un|p |Gk(un)|

≤ C1|�n,k| 12 ‖Gk(un)‖2

+ C2‖Gk(un)‖2∗

(∫

�n,k

|un|2p
) 1

2

≤ C3‖Gk(un)‖|�n,k| 12

+ C4‖Gk(un)‖ ‖un‖p/2∗ (|�n,k|
)( 1

2
− p

2∗
)

where 2 = 2N/(N + 2) is the Hölder conjugate exponent of 2∗ (see Notation). By
the boundedness of un in H 1

0 (�) and by the Young inequality, we obtain
∫

f (x, un)Gk(un) ≤ C5

[
|�n,k| 12 + |�n,k|(1− p

2∗ )
1
2

]
‖Gk(un)‖

≤ C5

[
|�n,k| 12 + |�n,k|(1− p

2∗ )
1
2

](‖Gk(un)‖2

2
+ 1

2

)

.

Since �n,k ⊂ {x ∈ � : h(x) > k}, then lim
k→∞ |�n,k| = 0, uniformly in n ∈ N.

Therefore, for each δ > 0, there exists k0 ≥ s0 such that for every k ≥ k0 and n ∈ N,

C5

2

[
|�n,k| 12 + |�n,k|(1− p

2∗ )
1
2

]
<

α

2
.

Consequently,

α

2
‖Gk(un)‖2 ≤ δn + C5

2

[
|�n,k| 12 + |�n,k|(1− p

2∗ )
1
2

]
,

and there exists n0 ∈ N such that

‖Gk(un)‖ < δ, ∀k ≥ k0, ∀n ≥ n0.

This concludes Step 2 and the proof of the lemma. ��
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Theorem 12.3.3 Assume that the preceding conditions (i) and (ii) are satisfied. If,
in addition, there exist s0 > 0, θ ∈ (0, 1

2

)
and α0 > 0 such that the inequalities

(11.5), (12.15) and (12.16) hold, then problem (12.14) has at least one nontrivial
solution.

Proof We begin by proving that if E = X = H 1
0 (�) , then the functional J satisfies

the conditions (J1) and (J2) introduced in Sect. 5.3. The verification is divided into
two steps:

Step 1. First we show that u = 0 is a strict local minimum of J . Indeed, by hypotheses
(i) and (ii), we deduce that for fixed ε > 0 there exists Cε > 0 such that

F (x, s) ≤ α1εs
2 + Cεs

p+1, ∀s ≥ 0.

Then F(u) := ∫ F (x, u) = o
(‖u‖2

)
at u = 0 and, by (12.1), we obtain

J (u) ≥ α‖u‖2 − o
(‖u‖2

)

from which one easily deduce the existence of positive constants ρ, R such that

J (u) ≥ ρ > 0 for ‖u‖ = R > 0 (12.17)

and (J1) is verified.

Step 2. To verify (J2), observe that, by (12.1) and (11.5) (which implies (11.6)), we
have for t > 0

J (tϕ1) ≤ β

2
t2‖ϕ1‖2 − C4t

1/θ‖ϕ1‖1/θ + C5.

Thus, there exists t0 > R
‖ϕ1‖ such that J (t0ϕ1) < 0 and condition (J2) is satisfied.

Now, in order to apply Theorem 12.2.1, take X = H 1
0 (�) and Y = H 1

0 (�) ∩
L∞(�) endowed with the norm ‖ · ‖Y = ‖ · ‖∞ + ‖ · ‖, and e = t0ϕ1. Moreover, let

� = {γ : [0, 1] −→ (Y , ‖ · ‖Y ) : γ is continuous and γ (0) = 0, γ (1) = e} .

Observe that every γ ∈ � is continuous from [0, 1] to H 1
0 (�), so that, since ‖t0ϕ1‖ ≥

2R, there exists t̄ ∈ [0, 1] such that ‖γ (t̄)‖ = R. Thus, by (12.17),

c ≡ inf
γ∈� max

t∈[0,1]
J (γ (t)) ≥ ρ > max{J (0), J (t0ϕ1)} = 0,

and hypothesis (12.5) holds.
In addition, Lemma 12.3.1 implies that (C) is verified, and Theorem 12.2.1 implies

that there exists u ∈ H 1
0 (�) ∩ L∞(�) such that J (u) = c > 0 and 〈J ′(u), v〉 = 0

for every v ∈ H 1
0 (�) ∩ L∞(�). ��
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12.4 Some Nonvariational Quasilinear Problems

We will see now how the topological methods developed in Chaps. 4 and 6 can also
be applied to study quasilinear problems. Specifically, let � be an open and bounded
subset of R

N (N ≥ 3), λ ≥ 0, 1 < p < N+2
N−2 and 0 ≤ h ∈ L

2N
N+2 (�). Consider the

(nonvariational) boundary value problem

−�u+ g(u)|∇u|2 = λ|u|p−1u+ h(x), x ∈ �,
u = 0, x ∈ ∂�,

(12.18λ)

for a suitable non-negative continuous function g : [0,+∞) −→ [0,+∞). We look
for positive solutions of (12.18λ), i.e., u ∈ H 1

0 (�) such that u > 0 a.e. x ∈ �,
g(u)|∇u|2 ∈ L1(�) and

∫
∇u · ∇ϕ +

∫
g(u)|∇u|2ϕ = λ

∫
upϕ +

∫
hϕ, (12.19)

for every ϕ ∈ H 1
0 (�) ∩ L∞(�).

The following lemma concerning the regularity of the solutions will be useful in
the sequel. It can be easily deduced by using the Stampacchia technique [82], as in
the proof of Lemma 11.2.3. The details are left to the reader (see Exercise 50).

Lemma 12.4.1 Assume that h ∈ Lq (�) with q > N
2 . If u ∈ H 1

0 (�) is a solution for
(12.18λ), then u belongs to L∞(�).

Now we give sufficient conditions to ensure that problem (12.18λ) satisfies the
uniform strong maximum principle in compactly embedded domains; that is, for
every ω ⊂⊂ � there exists a positive constant (independent from λ) which is a
lower bound in ω of any solution of (12.18λ).

Proposition 12.4.2 Suppose that 0 � h ∈ Lq(�), q > N/2. Then for every ω ⊂⊂
� there exists Lω > 0 such that

u(x) ≥ Lω, a.e. x ∈ ω,

for every super-solution u ∈ H 1
0 (�) of (12.18λ) (with λ any positive constant).

Proof For every s ∈ R, T1(s) = max{min{s, 1},−1}. Taking into account that
λsp + h(x) ≥ T1(h(x)), for all s ≥ 0, every solution u ∈ H 1

0 (�) is a super-solution
for the problem

−�v + g(v)|∇v|2 = T1(h(x)), x ∈ �,
v = 0, x ∈ ∂�.

By Theorems 12.1.1 and 12.1.2, this problem has a unique continuous solution
v ∈ H 1

0 (�) ∩ C(�). Using that v ∈ C(�) and v > 0 in �, if ω ⊂⊂ � we in-
fer the existence of Lω > 0 such that v(x) ≥ minωv = Lω. By the comparison
principle given in Theorem 12.1.2, we deduce that u ≥ v ≥ Lω, and the proof is
concluded. ��
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Observe that with the notation of Sect. 12.1, (12.18λ) can be rewritten1 as a fixed
point problem, namely,

u = K
g

λ (u),

with K
g

λ (u) = Kg(λ, u). The compactness of Kg(λ, w) (see Proposition 12.1.3)
allows us to apply the Leray–Schauder degree techniques to study the existence of
“continua of solutions” of (12.18λ).

Consider the solution set, i.e.,

� = {(λ, u) ∈ R×H 1
0 (�) : u = K

g

λ (u)}.
We state the existence of solutions by proving the existence of a global continuum
in � which emanates from the unique solution of (12.180) and by establishing its
asymptotic behavior. We point out that in the semilinear case (g ≡ 0), given h � 0
and p > 1, there exists λ∗ > 0 such that (12.18λ) has no positive solution for
every λ > λ∗, i.e., Proj[0,+∞)� is bounded. On the contrary, the quasilinear case is
quite different. Indeed, we give sufficient conditions (see (12.20) below) to ensure
that Proj[0,+∞)� is unbounded. The role of these conditions is to provide for every
compact set � of λ’s the existence of suitable a priori bounds of the H 1

0 (�)-norm
of solutions of (12.18λ) with λ ∈ �, i.e., to establish that the λ-slice �λ = {u ∈
H 1

0 (�) : (λ, u) ∈ �} is bounded.

Theorem 12.4.3 Consider p ∈ (1, 2∗ − 1), 0 � h ∈ Lq (�), q > N/2 and assume
that g ≥ 0 is continuous in the interval [0,+∞).

(i) If 1 < p < 2 and, for some constants s1, c > 0 and 0 ≤ γ < 2− p, g satisfies

g(s) ≥ c

sγ
, ∀s ≥ s1, (12.20)

then problem (12.18λ) admits a positive solution for every λ ∈ [0,+∞).
(ii) If there are s0, δ0 > 0 such that

sp

∫ s

0 e
∫ s
r g(t)dtdr

≥ δ0, ∀s > s0, (12.21)

then there exist λ∗, λ∗ > 0 such that (12.18λ) admits a positive solution for every
λ ∈ [0, λ∗) and admits no positive solution for λ > λ∗.

Proof First, we prove that there exists an unbounded continuum S ⊂ � which
contains (0, u0), where u0 is the unique solution of (12.180). In order to do this,
we compute the index of the solution u0 ∈ H 1

0 (�) for (12.180) by showing that
i(Kg

0 , u0) = 1. Indeed, by Theorems 12.1.1 and 12.1.2 let U (t) be the unique solu-
tion of

−�u+ tg(u)|∇u|2 = h(x), x ∈ �,

u = 0, x ∈ ∂�,
(12.22)

1 Compare this approach with the one in the work by Ruiz and Suárez [79], for g ≡ 1 and a logistic
nonlinearity, where the authors combine regularity in C1(�) with the properties of the inverse K

of the Laplacian operator in C(�) in order to use bifurcation techniques.
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and define H : [0, 1] × H 1
0 (�) → H 1

0 (�) by setting H (t , w) = U (t) for every
(t , w) ∈ [0, 1] × H 1

0 (�). Observe that H (1, w) = U (1) = K
g

0 (w) = u0, while
H (0, w) = U (0) = K(h(x)) and it is well known that i(K(h(x)),U (0)) = 1. By
Proposition 12.1.3 we deduce that H is compact. In addition, using that g ≥ 0, and
taking u as a test function in (12.22), we have

∫ |∇u|2 ≤ ∫ h u. The Hölder and
Sobolev inequalities with S = sup{‖u‖2∗ : ‖u‖ = 1} the Sobolev constant (see
Notation) imply ‖U (t)‖ ≤ S‖h‖2N/(N+2), for every t ∈ [0, 1]. Hence, choosing
R > S‖h‖2N/(N+2), we obtain u �= H (t , u) for every t ∈ [0, 1] and u ∈ H 1

0 (�) with
‖u‖ ≥ R, and we can apply the homotopy invariance of the degree to conclude that

i(Kg

0 , u0) = i(H (1, ·),U (1)) = i(H (0, ·),U (0))

= i(K(h(x)),U (0)) = 1,

and the claim has been proved. The existence of an unbounded continuum S ⊂ �

follows now from Theorem 4.4.1.
The unboundedness of the continuum S implies that one of the projections of S,

either its projection Proj [0,+∞)S on the λ-axis or its projection Proj H 1
0 (�)S on the

H 1
0 (�)-axis, is an unbounded set. We will see that in case i) the former projection

is unbounded. More precisely, for every compact set � of λ’s, we will show the
existence of suitable a priori bounds of the H 1

0 (�)-norm of solutions of (12.18λ)
with λ ∈ �. This will imply that the λ-slice Sλ = {u ∈ H 1

0 (�) : (λ, u) ∈ S} is
bounded. On the other hand, in case ii) it is the later projection which is unbounded
since, as we will see below, there exists λ∗ > 0 such that (12.18λ) has no positive
solutions for λ > λ∗. Clearly, this will conclude the proof of the theorem.

(i) Since 1 < p < 2 and (12.20) holds with γ < 2 − p, we may construct a
continuous and non-negative function g0(s) such that g0(s) = 0 for every s < s0

2 ,
g0(s) = c

sγ
for every s > s0 and g(s) ≥ g0(s) for every s > 0. We also define the

function ϕ(s) given by

ϕ(s) =
∫ s

0
exp

(

−
∫ s

v
g0(t)dt

)

dv, ∀s ≥ 0.

It is elementary to prove that

1. 0 ≤ ϕ(s) ≤ s for every s ∈ (0,+∞).
2. ϕ′(s)+ g0(s)ϕ(s) = 1 for every s ∈ (0,+∞).
3. There exists σ > 0 with g0(s)ϕ(s) ≤ σ for every s > 0.

Let u ∈ H 1
0 (�) be a positive solution of (12.18λ) for some λ > 0. Observe that,

using 3., g0(u)ϕ(u) ∈ L∞(�), which, by 2., implies that ∇ϕ(u) ∈ L2(�). Taking
into account that, by 1., we have ϕ(u) ≤ u we deduce that ϕ(u) ∈ H 1

0 (�). Hence we
can take ϕ(u) as a test function and using that g0(s) ≤ g(s) we obtain

‖u‖2 (2)=
∫
|∇u|2 (ϕ′(u)+ g0(u)ϕ(u)

)

≤
∫
(∇u · ∇ϕ(u)+ g(u)|∇u|2ϕ(u)

)

=
∫

(λup + h)ϕ(u).
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Since ϕ(s)s−γ is bounded from above near infinity (by 3 and by the construction of
g0) and near zero (by the definition of ϕ and γ < 2 − p < 1), there exists C > 0
such that ϕ(s) ≤ Csγ for every s > 0. Therefore, dividing the previous inequality
by ‖u‖p+γ , setting z = u/‖u‖ and using the Hölder and Sobolev inequalities we get

‖u‖2−p−γ ≤ Cλ

∫
zp+γ +

∫
hz

‖u‖p+γ−1

≤ C1λ+ C2

‖u‖p+γ−1
‖h‖2N/(N+2),

for some C1,C2 > 0. Consequently, we deduce that if λ is bounded, then the norm
‖u‖ is also bounded. Therefore the proof of case i) is done.

(ii) For ω ⊂⊂ � we denote by χω(x) the characteristic function of ω and consider
the first eigenvalue (resp. eigenfunction) μω (resp, φω) associated to the eigenvalue
problem

{−�u = λχω(x)u, x ∈ �,

u = 0, x ∈ ∂�.

We show that a necessary condition for the existence of solution u ∈ H 1
0 (�) of

(12.18λ) is μω ≥ λc, for a suitable positive constant c. To do that, consider a
sequence of functions 0 ≤ φn ∈ C∞c (�) converging in H 1

0 (�) to φω. Taking ϕ(u) =
e−

∫ Tk (u)
1 g(t)dtφn ∈ H 1

0 (�) ∩ L∞(�) as a test function in (12.18λ) and using the fact
that h ≥ 0, we get

∫
∇u · ∇φne

− ∫ Tk (u)
1 g(t)dt +

∫

{u≥k}
g(u)|∇u|2e−

∫ k
1 g(t)dtφn

≥ λ

∫
upe−

∫ Tk (u)
1 g(t)dtφn.

Taking limits, firstly as k tends to ∞ (using the Fatou lemma) and secondly as n

goes to∞ (using the H 1
0 (�)-convergence of φn to φω and the Lebesgue theorem),

we have
∫
∇u · ∇φωe

− ∫ u
1 g(t)dt ≥ λ

∫
upe−

∫ u
1 g(t)dtφω.

On the other hand, taking

ψ(u) = upe−
∫ u

1 g(t)dt

∫ u
0 e−

∫ s
1 g(t)dtds

for u > 0 and choosing w =
∫ u

0
e−

∫ s
1 g(t)dtds ∈ H 1

0 (�) as a test function in the

equation satisfied by φω, we find

μω

∫
χω(x)wφω =

∫
∇w · ∇φω ≥ λ

∫
wφωψ(u)

≥ λ

∫
χω(x)wφωψ(u).
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Using Proposition 12.4.2, there exists Lω > 0 such that u(x) > Lω a.e. x ∈ ω.
Moreover, by condition (12.21), c := inf s∈[Lω ,∞) ψ(s) > 0 and we conclude that

μω

∫
wφω ≥ λc

∫
wφω,

that is, μω ≥ λc, as desired. Choosing λ∗ = μω/c we conclude the proof of
case (ii). ��
Remark 12.4.4 Moreover, if in addition to the hypotheses (i) of the above theorem,
g satisfies that there exists q ≤ p such that

g(s) ≤ C

(

sq + 1

s

)

, ∀s > 0, (12.23)

then ‖un‖ → +∞ for every sequence (λn, un) in � with λn → +∞. Indeed, if

(λn, un) ∈ � and for 0 ≤ ϕ ∈ C∞0 (�) we take
ϕ

uq
n

as a test function (it is an

admissible test function due to Proposition 12.4.2), we have

∫
∇un · ∇ϕ

uq
n

− q

∫ |∇un|2
uq+1
n

ϕ +
∫

g(un)

uq
n

|∇un|2ϕ −
∫

h
ϕ

uq
n

= λn

∫
up−q
n ϕ,

and thus
∫
∇un · ∇ϕ

uq
n

+
∫

g(un)

uq
n

|∇un|2ϕ ≥ λn

∫
up−q
n ϕ.

By Proposition 12.4.2, un is uniformly away from zero in supp ϕ and, therefore, using

(12.23) we deduce that
g(un)

uq
n

is bounded from above in supp ϕ and the sequence
∫

up−q
n ϕ is also away from zero. Therefore, if un is bounded in H 1

0 (�), the left-hand
side of the above equality is bounded from above, and thus λn has to also be bounded.
In this way, the remark follows.

The last part of the section is devoted to studying the case h ≡ 0.

Theorem 12.4.5 Assume h ≡ 0 and suppose that g ≥ 0 is continuous in the interval
[0,+∞). If p > 1 and there is a continuous non-positive function g ∈ L1(0,+∞)
such that

g(s) ≥ g(s)+ p

s
, ∀s ≥ 1, (12.24)

then there exists λ∗ > 0 such that (12.18λ) has no solution for λ < λ∗.

Remark 12.4.6 It is shown by Orsina and Puel [73] (for the caseh ≡ 0) that a suitable
change of variables reduces the quasilinear equation to a semilinear one. In this way
the authors prove that if g ∈ L1(0,+∞), then there exists a positive solution for
every λ > 0, while if g(t)t ≥ q > p for t ! 1, then there exists a positive solution
for λ > 0 large enough and no positive solution if λ > 0 is sufficiently small. The
above improvement as well as Theorem 12.4.3 are contained in [22] and show that the
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topological methods help us to understand the true role of the different hypotheses
imposed on the behavior of the nonlinearity g, revealing the different effects that
take place in the solution set S.

Proof We consider the function

ϕ(s) =
∫ T1(s)

0
exp

(∫ t

s

g(r)dr

)

dt , ∀s > 0.

which satisfies the following.

1. ϕ′(s)+ g(s)ϕ(s) = [T ′1(s)]2 for every 0 < s �= 1.
2. There exists a positive constant C such that spϕ(s) ≤ C[T1(s)]2 for all s > 0.

Indeed, this is trivial for s ≤ 1, while for s > 1, taking into account that g ≤ 0
and (12.24), we have

spϕ(s) =
∫ 1

0
sp exp

(∫ 1

s

g(r)dr +
∫ t

1
g(r)dr

)

dt

= ϕ(1) exp

(∫ 1

s

(
g(r)− p

r

)
dr

)

(12.24) ≤ ϕ(1) exp

(

−
∫ +∞

1
g(r)dr

)

≡ C ≤ C[T1(s)]2.

If u ∈ H 1
0 (�) is a positive solution of (12.18λ) and we take ϕ(u) ∈ H 1

0 (�) as a test
function we deduce from the above items that

μ1

∫
[T1(u)]2 ≤

∫
|∇T1(u)|2 =

∫
|∇u|2(ϕ′(u)+ g(u)ϕ(u))

≤ λ

∫
upϕ(u) ≤ Cλ

∫
[T1(u)]2,

and the proof is concluded by taking λ∗ = μ1
C

. ��





Chapter 13
Stationary States of Evolution Equations

This final chapter deals with the existence of ground and bound states of nonlin-
ear Schrödinger (NLS) equations. Semiclassical states are discussed in Sect. 13.2.
Systems of coupled NLS equations are handled in Sects. 13.3 and 13.4.

When dealing with elliptic equations on unbounded domains the main problem
is the (PS) condition. We show how one can bypass this difficulty in a few specific
cases.

However, the study of problems on unbounded domains is out of the scope of
this book. The interested reader is referred, e.g., to [15], which contains several
references.

13.1 Soliton States to Stationary NLS Equations

Elliptic equations on all R
N arise as stationary states of evolution equations such as

the time-independent solution of the nonlinear wave equation

ut t −�u+ λu = up.

As a second example, we can consider the NLS equation

−i ψt = �ψ + aψ + |ψ |p−1ψ , (13.1)

where i denotes the imaginary unit and ψ = ψ(t , x) is complex valued. In (13.1),
the ansatz ψ(t , x) = e−iωtu(x), with u(x) ∈ R, yields for u the equation

−�u+ λu = |u|p−1u, x ∈ R
N , (13.2)

where λ = a−ω. We will assume that λ > 0 and 1 < p < 2∗ −1, where 2∗ is given
by (7.3). We look for solutions u > 0 of (13.2) such that u ∈ E := H 1(RN ). These
solutions verify ∫

u2 <∞,
∫
|∇u|2 <∞,

and are called bound states of (13.2). Among the bound states, solutions with minimal
energy have a particular interest. They are called ground states.
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150 13 Stationary States of Evolution Equations

Let u ∈ E be a solution of

−�u+ u = |u|p−1u. (13.3)

A straight calculation shows that

uλ(x) = λ1/(p−1)u(λ1/(p−1)x) (13.4)

solves (13.2). Therefore in the sequel we will look for solutions of (13.3), which can
be found as critical points of

J (u) = 1
2‖u‖2 − 1

p+1

∫
|u|p+1, u ∈ E,

where ‖u‖2 = ∫ [|∇u|2 + u2
]
. With this notation, a ground state of (13.3) is a

solution z > 0 such that

J (z) = min{J (u) : u ∈ E, J ′(u) = 0}.
There are several methods that can be used to find a ground state. We will employ
the Nehari natural constraint. Let us introduce the functional

G(u) = (J ′(u) | u) = ‖u‖2 −
∫
|u|p+1,

and consider the set
N = {u ∈ E \ {0} : G(u) = 0}.

Since, obviously, any positive solution of (13.3) belongs to N , then any z such that

J (z) = min{J (u) : u ∈ N }
is a ground state (see also Lemma 13.1.1). Some of the main features of N are
collected below.

(N.1) ∃ r > 0 such that ‖u‖ ≥ r for all u ∈ N .

Proof From G′′(0)[v, v] = 2‖v‖2 it follows that ∃ r > 0 such that G(u) > 0 for all
u with 0 < ‖v‖ ≤ r , yielding (N.1). ��
(N.2) infN J (u) ≥ ( 1

2 − 1
p+1 )r2.

Proof For all u ∈ N there holds

J (u) = 1
2‖u‖2 − 1

p+1

∫
|u|p+1 = ( 1

2 − 1
p+1 )‖u‖2, (13.5)

and (N.1) implies J (u) ≥ ( 1
2 − 1

p+1 )r2. ��
(N.3) For all u ∈ N it holds that (G′(u) | u) ≤ (1− p)r2 < 0.
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Proof One has that

(G ′(u) | u) = 2‖u‖2 − (p + 1)
∫
|u|p+1.

Since on N , u �= 0 and
∫ |u|p+1 = ‖u‖2, we infer that (G ′(u) | u) = (1 − p)‖u‖2,

and (N.3) follows from (N.1). ��
(N.4) N is a smooth manifold diffeomorphic to the unit sphere S of E.

Proof From (N.3) it follows, in particular, that G ′(u) �= 0 for all u ∈ N and this
proves that G−1(0) \ {0} is a smooth manifold (of codimension 1) in E. This and
(N.1) imply that N is also a smooth manifold. Moreover, for all v ∈ E, v �= 0,
G(tv) = 0 if and only if t2‖v‖2 − tp+1

∫ |v|p+1. This means that

tv ∈ N ⇐⇒ tp−1 = ‖v‖2
∫ |v|p+1

, (13.6)

proving that N & S. ��
We are now in position to prove the following lemma.

Lemma 13.1.1 Any critical point of J constrained on N is a critical point of J
on E.

Proof Let z ∈ N be a critical point of J constrained on N , i.e., satisfying
∇N J (z) = 0. By the Lagrange multiplier rule (see also Remark 5.3.5) there exists
μ ∈ R such that J ′(z) = μG ′(z). Taking the scalar product with z, we find

(J ′(z) | z) = μ(G ′(z) | z). (13.7)

From (N.3) it follows that (G ′(z) | z) �= 0. On the other hand (J ′(z) | z) = G(z) = 0
and therefore (13.7) implies that μ = 0, whence J ′(z) = μG′(z) = 0. ��
After these preliminaries, we can prove the existence of a ground state of (13.3).

Theorem 13.1.2 If 1 < p < 2∗ − 1, then (13.3) has a positive ground state U ,
which is radially symmetric.

Proof If N = 1 an elementary phase plane analysis shows that (13.3) has a unique
radially symmetric, radially decreasing ground state U . For example, if p = 3 then

U (x) =
√

2

cosh (x)
.

In the case N ≥ 2 we need to use the functional framework outlined before. From
(N.2), J is bounded from below on N . By the Ekeland variational principle, there
exist sequences uk ∈ N , μk ∈ R such that

J (uk)→ c := inf{J (u) : u ∈ N } > 0, J ′(uk)− μkG ′(uk)→ 0. (13.8)
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Since we can substitute uk with |uk|, we can assume that uk ≥ 0. Moreover, if u∗k
denotes the Schwarz symmetric function associated to uk ,1 let t∗k > 0 be such that
t∗k u∗k ∈ N . It is well known that ‖u∗k‖2 ≤ ‖uk‖2, while

∫ |u∗k |p+1 = ∫ |uk|p+1. Then
(13.6) yields

t∗k =
‖u∗k‖2
∫ |u∗k |p+1

≤ ‖uk‖2
∫ |uk|p+1

= 1.

Moreover,

J (t∗k u∗k ) = ( 1
2 − 1

p+1 )(t∗k )2‖u∗k‖2 ≤ ( 1
2 − 1

p+1 )(‖uk‖2 = J (uk).

Therefore, we can also suppose that uk is radial.
From the first expression of (13.8) and (13.5) it follows that ( 1

2 − 1
p+1 )‖uk‖2 → c

and hence there exists c′ > 0 such that ‖uk‖ ≤ c′. Without relabeling, we can assume
that uk ⇀ u, weakly in E. Since uk are radially symmetric, and the subspace of the
radially symmetric functions in E is compactly embedded in Lp+1(RN ), N ≥ 2, we
deduce that there exists U ∈ E such that uk → U strongly in Lp+1(RN ). From the
second expression of (13.8) we get

(J ′(uk) | uk)− μk(G ′(uk) | uk)→ 0.

Since (J ′(uk) | uk) = G(uk) = 0 and (G′(uk) | uk) ≤ (1 − p)r2 < 0, see (N.3), it
follows that μk → 0. Setting h(u) = 1

p+1

∫ |u|p+1, one has J ′(uk) = uk − h′(uk)
and therefore the second expression of (13.8) yields uk = h′(uk)−μkG ′(uk)+ o(1).
Then we find uk → U ( = h′(U )) strongly in E. It follows immediately that U ∈ N ,
J (U ) = c and J ′(U ) ⊥ N . Using Lemma 13.1.1, we deduce that U is a nontrivial
solution of (13.3). Since uk are radially symmetric and non-negative, it follows that
U is radially symmetric and U ≥ 0. Finally, from the equation −�U + U = Up,
the fact that U �≡ 0 and the maximum principle, we deduce that U > 0. ��

Our next result deals with the nonautonomous equation

−�u+ q(x)u = |u|p−1u, u ∈ H 1(RN ), (13.9)

where N > 2, 1 < p < 2∗ − 1. We assume that the potential q ∈ C(RN ) satisfies

(q1) ∃q0 > 0 such that q(x) > q0, for every x ∈ R
N ,

(q2) lim|x|→+∞
q(x) = +∞.

1 For the definition and properties of the Schwarz symmetrization, see [59].
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We follow [78]. Solutions of (13.9) are the stationary points of the functional

J (u) = 1

2

∫
[|∇u|2 + q u2

]− 1

p + 1

∫
|u|p+1

on H 1(RN ). Actually we will work on

E = {u ∈ H 1(RN ) :
∫
[|∇u|2 + q u2

]
< +∞}.

By (q1), the space E is endowed with the norm

‖u‖2
E =

∫
[|∇u|2 + q u2

]
.

With this notation we can write

J (u) = 1

2
‖u‖2

E −
1

p + 1

∫
|u|p+1

It is easy to check that E ⊂ H 1(RN ) ⊂ Lp+1(RN ) with continuous embedding (see
Exercise 9).

Theorem 13.1.3 If (q1)–(q2) hold then (13.9) has a positive (and a negative)
solution.

Proof It is clear that J has the mountain pass geometry. As usual, we let

c = inf
γ∈� max

t∈[0,1]
J (γ (t))

denote the mountain pass value. One has that c > 0. To apply the mountain pass
theorem we should check the (PS) condition. Unfortunately, we cannot carry out the
procedure used in the case of problems on a bounded domain, because the embedding
E ⊂ Lp fails to be compact. In the previous theorem this difficulty has been bypassed
using the fact that the problem was autonomous and this allowed us to work with
radial functions. Here we will use the fact that the potential q satisfies (q2).

First of all, the Ekeland variational principle (Theorem 5.4.2) yields a sequence
un ∈ E such that

J (un)→ c, J ′(un)→ 0. (13.10)

Standard arguments imply that ‖u‖E ≤ M . Hence, up to a subsequence, un converges
weakly in E , and strongly in L

p+1
loc (RN ), to some u ∈ E . Moreover, from (13.10) it

follows that

(J ′(un)|v)E −→ (J ′(u)|v)E . (13.11)

Then u is a weak (and by regularity, strong) solution of (13.9). Let us show that
u �= 0.
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From (13.11) we infer that, for n! 1,

1

2
c ≤ J (un)− 1

2
J ′(un) =

∫ [
1

2
− 1

p + 1

]

|un|p+1. (13.12)

Inserting into (13.12) the Gagliardo–Nirenberg interpolation inequality (see [36,
p. 23])

‖un‖p+1 ≤ C1‖∇un‖θ2‖un‖1−θ
2 , with θ = N

[
1

2
− 1

p + 1

]

we find that
1

2
c ≤ C2

(
‖∇un‖(p+1)(θ )

2 ‖un‖(p+1)(1−θ )
2

)
,

where C2 = C1

[
1
2 − 1

p+1

]
. This inequality and the fact that ‖un‖E is bounded

implies that there exists c′ > 0 such that

c′ ≤ ‖un‖2
2 . (13.13)

Letting BR = {x ∈ R
N : |x| < R}, we can write, for any R > 0,
∫
|un|2 =

∫

BR

|un|2 +
∫

RN \BR

|un|2. (13.14)

The last integral can be estimated as follows:
∫

RN\BR

|un|2 ≤ 1

infRN \BR
q2

∫

RN\BR

|q un|2

≤ 1

infRN \BR
q2
‖un‖2

E

≤ 1

infRN \BR
q2

M2.

From (13.13) and (13.14) we get

c′ ≤
∫

BR

|un|2 + 1

infRN\BR
q2

M2.

Using (q2) we find

lim
R→∞

1

infRN \BR
q2
= 0,

and thus there exists R0 > 0 such that for all R > R0 and n! 1 one has

1

2
c′ ≤

∫

BR

|un|2.

With fixed R > R0, since un converges strongly to u in L2(BR), we obtain that
∫

BR

|u|2 = lim
n→∞

∫

BR

|un|2 ≥ 1

2
c′ > 0.

This implies that u �≡ 0. Finally, substituting the nonlinearity |u|p−1u with its positive
part, we find that u > 0. ��
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13.2 Semiclassical States of NLS Equations with Potentials

In order to study the relationship between classical and quantum mechanics, one
introduces a small parameter ε ∈ R and considers the problem

−ε2�u+ V (x)u = up, (13.15)

where from this point on 2 < p + 1 < 2∗. We want to see if (13.15) has a positive
solution for ε ∼ 0, uε which concentrates at some point x∗, in the sense that

∀ δ > 0, ∃ ε∗ > 0, R > 0 : uε(x) ≤ δ, ∀ |x − x∗| ≤ εR, ε < ε∗.

These solutions look like a soliton whose energy concentrates at x∗ and are called
semiclassical states of (13.15). We anticipate that the concentration point x∗ is a
stationary point of V .

There is a broad literature on the existence of semiclassical states, starting with
the paper by Floer and Weinstein [52]. In addition to solutions concentrating at
a single point, the existence of semiclassical states with many (possibly infinitely
many) peaks has been proved, in dependence of suitable properties of the potential
V and of the nature of its stationary points.

Here we will limit ourselves to discussing a basic result, following [8].
We will suppose that V satisfies

(V 1) 0 < infRN V (x) < sup
RN V (x) < +∞,

(V 2) V has a non-degenerate stationary point at x∗: there exists α > 0 such that
V (x)− V (x∗) = ±α|x − x∗|2 + o(|x − x∗|2).

Up to a translation we can assume that

x∗ = 0, and V (0) = 1.

To highlight that (13.15) is perturbation in nature it is convenient to perform the
change of variable x �→ εx. Then (13.15) becomes

−�u+ V (εx)u = up,

or else

−�u+ u+ (V (εx)− 1)u = up. (13.16)

Clearly, if u is a solution of (13.16) then u(x/ε) is a semiclassical state of (13.15)
concentrating at x∗ = 0.
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We will seek solutions of (13.16) as critical points of the functional

Iε(u) = I(u)+ Gε(u), u ∈ E := H 1(RN ),

where

I(u) = 1
2‖u‖2 − 1

p+1

∫
|u|p+1

and

Gε(u) = 1
2

∫
(V (εx)− 1)u2.

We will find critical points of Iε by means of the perturbation results discussed in
Sect. 5.6. We will keep the notation introduced therein. In particular, we will continue
to consider the case in which Z is one dimensional, with parameter s ∈ R.

Lemma 13.2.1 Assumptions (A1), (A2) and (A3) of Sect. 5.6 are verified.

Proof One has

G′ε(z)[v] =
∫

(V (εx)− 1)zv ≤
[∫

(V (εx)− 1)2z2

]1/2

‖v‖L2 .

Moreover, (V 2) yields V (εx) − 1 = α2ε2x2 + o(ε2x2). On the other hand, since z
has an exponential decay at infinity, one finds that

∫
x2z2 ≤ c1. As a consequence,

[∫
(V (εx)− 1)2z2

] 1
2 ≤ c2α

2 ε2 + o(ε2), (13.17)

and (A1) follows.
To prove (A2) let W be the space 〈z′〉⊥ and write W = 〈z〉⊕W ′. It is well known

that, for ε = 0,
PI ′′(z)[z, z] > 0, ∀ s ∈ R.

It follows that there exists c > 0 such that

PI ′′ε (z)[z, z] ≥ c, ε ∼ 0.

Moreover, it is easy to see that, taking c possibly different,

PI ′′ε (z)[v, v] ≤ −c, ∀ v ∈ W ′, ε ∼ 0.

Then PI ′′ε (z) is invertible, provided ε is sufficiently small and (A2) holds.
Finally the proof of (A3) is trivial. ��

Remark 13.2.2 Since ‖wε‖ ≤ c1‖G ′ε(z)‖, (13.17) implies that ‖wε‖ = O(ε2).

We are now in position to state the following result, which follows immediately from
the preceding lemmas and from the perturbation Theorem 5.6.5.

Theorem 13.2.3 Let (V 1)–(V 2) hold. Then for ε small, (13.15) has a semiclassical
state which concentrates at x∗.
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Proof In order to apply the perturbation Theorem 5.6.5, it remains to show that the
reduced functional

Ĩε(s) = Iε(z(s)+ wε(s)), s ∈ R

has a stationary point s∗ε . One has

Iε(z(s)+ wε(s)) = I(z(s)+ wε(s))+ Gε(z(s)+ wε(s))

= I(z(s))+O(‖wε(s)‖2)+ 1
2

∫
(V (εx)− 1)(z(s)+ wε(s))2.

Let us remark that z(s) = U ( · −s) and then I(z(s)) = c0. Moreover, using
Remark 13.2.2, we infer

Iε(z(s)+ wε(s)) = c0 + 1
2

∫
(V (εx)− 1)z2(s)+ o(ε2).

Finally, (V 2) implies

∫
(V (εx)− 1)z2(s) = ±αε2

∫
x2U2(x − s) = ±αε2

∫
(y + s)2U 2(y)dy.

Since U is an even function,
∫
ysU (y)dy = 0 and thus

∫
(V (εx)− 1)z2(s) = ±α c1ε

2s2 + c2,

where

c1 = 1
2

∫
U 2(y)dy, c2 = 1

2

∫
y2U2(y)dy.

In conclusion we find that

Ĩε(s) = Iε(z(s)+ wε(s)) = c3 ± α c1ε
2s2 + o(ε2).

Hence the reduced functional Ĩε has a stationary point s∗ε such that s∗ε → 0 as ε→ 0.
The result now follows from Theorem 5.6.5. ��
Remark 13.2.4 In the case discussed above the presence of a perturbation like Gε(u)
does not allow us to use the implicit function theorem to solve the auxiliary equation
as in the case εG(u). Actually, PI ′ε could fail to be C1, because G ′′ε (u) might not
tend to zero as ε → 0. The difficulty is overcome by using (A1)–(A3). A specific
example is reported in Exercise 51.

Remark 13.2.5 There is a great deal of work on problems like (13.15) under several
different assumptions on the potential V . For instance, different approaches to find
semiclassical states can be found in [45] or [86].



158 13 Stationary States of Evolution Equations

13.3 Systems of NLS Equations

In this section we will study a system of linearly coupled NLS equations, such as

{−u′′ + u = u3 + λv, x ∈ R,
−v′′ + v = v3 + λu, x ∈ R.

(13.18)

These systems typically arise in nonlinear optics. We follow [7].
First of all, in addition to the trivial solution (0, 0), there are two families of

nontrivial solution pairs. First, if we look for solutions such that u = v, we find the
equation

−u′′ + (1− λ)u = u3,

whose solution is

U1−λ(x) =
√

2(1− λ)

cosh (
√

(1− λ)x)
, 0 ≤ λ ≤ 1. (13.19)

On the other hand, if we look for solutions such that u = −v, we find

−u′′ + (1+ λ)u = u3,

whose solution is

U1+λ(x) =
√

2(1+ λ)

cosh (
√

(1+ λ)x)
, λ ≥ 0.

Hence (13.18) has the following two families of nontrivial solutions:

• (U1−λ,U1−λ), 0 ≤ λ ≤ 1 (symmetric states);
• (U1+λ,−U1+λ), λ ≥ 0 (anti-symmetric states).

We now look for solutions of (13.18) different from the symmetric and anti-
symmetric states. Let us start with the case in which the parameter λ > 0 is small.
We set

• X = {u ∈ C2(R) : u(x) = u(−x), lim|x|→∞ u(x) = 0},
• X = X ×X,
• Y = {u ∈ C(R) : u(x) = u(−x)},
• Y = Y × Y .

Let us point out that for λ = 0, (13.18) has the following nontrivial solutions: (U , 0),
(0,U ), (U ,±U ).

Theorem 13.3.1 From each (U , 0), (0,U ), (U ,±U ) there branches off, for λ > 0
small enough, a unique curve (uλ, vλ) ∈ X of solutions of (13.18), such that uλ �≡ 0,
vλ �≡ 0.
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Proof Consider the map F : R× X→ Y

F (λ; u, v) = (−u′′ + u− u3 − λv,−v′′ + v− v3 − λu).

In order to apply the implicit function theorem at λ = 0, (u, v) = (U , 0), let us
consider the partial derivative d(u,v)F (0;U , 0),

d(u,v)F (0;U , 0)[u, v] = (−u′′ + u− 3U 2u,−v′′ + v)

and the equation d(u,v)F (0;U , 0)[u, v] = (h, k) ∈ Y, namely the decoupled system
{−u′′ + u− 3U 2u = h,

−v′′ + v = k.

We claim that it has a unique solution. This is trivially true for the latter equation. As
for the former, we first remark that u = U ′ is a nontrivial solution of the linearized
equation

−u′′ + u− 3U 2u = 0,

and the only one satisfying lim|x|→∞ u(x) = 0 (see Appendix 13.5 at the end of this
chapter). Since U ′ is an odd function, the equation −u′′ + u − 3U2u = 0, u ∈ X,
has only the trivial solution, and the claim follows.

The same arguments hold for the derivative

d(u,v)F (0;U ,±U )[u, v] = (−u′′ + u− 3U2u,−v′′ + v− 3U 2v).

These arguments allow us to apply the implicit function Theorem 3.2.1 toF (λ; u, v) =
0, and the existence of the families (uλ, vλ) follows. Of course, none of the compo-
nents can be identically zero because if λ > 0, (13.18) has no solution of the form
(u, 0) or (0, v). ��
Next, we look for secondary bifurcations from the family of symmetric states
(U1−λ,U1−λ). We will use Theorem 6.1.3, concerned with the bifurcation from the
simple eigenvalue. For this, we change the variable, setting

w = (w1, w2), w1 = u− U1−λ, w2 = v− U1−λ,

and consider the map

F(λ; w) = F (λ, w1 + U1−λ, w2 + U1−λ),

in such a way that (we set 0 = (0, 0))

F(λ; 0) = F (λ,U1−λ,U1−λ) ≡ 0.

We need to study the operator

Tλ := dwF(λ; 0) = d(u,v)F (λ;U1−λ,U1−λ) ∈ L(X, Y).
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Let us start with Ker [Tλ] and consider the linearized system Tλ[u, v] = (0, 0):

{−u′′ + u− 3U2
1−λu− λv = 0,

−v′′ + v− 3U 2
1−λv− λu = 0,

(13.20)

with (u, v) ∈ X. Setting {
φ = u+ v,
ψ = u− v,

system (13.20) becomes

{−φ′′ + (1− λ)φ − 3U 2
1−λφ = 0,

−ψ ′′ + (1+ λ)ψ − 3U 2
1−λψ = 0.

(13.21)

Since (13.21) is decoupled, we can study the two equations separately. As before,
the unique nontrivial solution of the first equation is U ′1−λ, which does not belong to
X, whence φ = 0. Let us now consider the second equation in (13.21). It is of the
type (13.30) discussed in the first item of Appendix 13.5, namely

−ψ ′′ +Qλ(x)ψ = 0,

with
Qλ(x) = 1+ λ− 3U 2

1−λ,

and
bλ = lim|x|→∞Qλ(x) = 1+ λ.

Let us denote by Aλ the operator

Aλ(ψ) := −ψ ′′ +Qλ(x)ψ , ψ ∈ H 1(R).

Lemma 13.3.2 For λ ∈ [0, 1) the first two eigenvalues ν1(λ) < ν2(λ) of Aλ are
given by:

(a) ν1(λ) = 5λ− 3,
(b) ν2(λ) = 2λ.

Proof Let us compute Aλ(fλ) with

fλ(x) := 1

cosh2 (
√

1− λ x)

With this notation, one has Qλ(x) = 1+ λ− 6(1− λ)fλ. Since

f ′′λ = −2(1− λ)fλ + 6(1− λ) sinh2 (
√

1− λ x)f 2
λ ,
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andQλfλ = (1+λ)fλ−6(1−λ)f 2
λ , we find (the dependence of f on λ is understood)

Aλ(f ) = (3− λ)f − 6(1− λ) sinh2 (
√

1− λ x)f 2 − 6(1− λ)f 2

= (3− λ)f − 6(1− λ)( sinh2 (
√

1− λ x)+ 1)f 2

= (3− λ)f − 6(1− λ) cosh2 (
√

1− λ x)f 2

= (3− λ)f − 6(1− λ)f = (5λ− 3)f.

Since fλ > 0, it follows (see Appendix 13.5-(1)) that 5λ − 3 is the first eigenvalue
of Aλ, proving (a).

Next, let us set gλ = U ′1−λ and remark that

−g′′λ + (1− λ)gλ − 3U 2
1−λgλ = 0.

Then one finds:

Aλ(gλ) = −g′′λ + (1+ λ)gλ − 3U 2
1−λgλ = 2λgλ .

Since gλ has a single zero, it follows that 2λ is the second eigenvalue of Aλ, proving
(b). Let us point out that ν1(λ) < ν2(λ) < bλ provided λ < 1. ��
From the previous lemma we deduce the following.

Lemma 13.3.3 (i) For all λ ∈ [0, 1), λ �= 3/5, the operator Tλ is invertible.
(ii) For λ = 3/5, Ker [Tλ] is one dimensional and spanned by ϕ∗ = (f ∗, f ∗), where

f ∗ = f3/5. Moreover, the Range[Tλ] equals the subspace Y0 ⊂ Y,

Y0 = {(h, k) ∈ Y :
∫

hf ∗ =
∫

kf ∗ = 0}.

Proof (i-1) For 0 ≤ λ < 3/5, resp. 3/5 < λ < 1, one has that ν1(λ) < 0 < ν2(λ),
resp. ν1(λ) > 0, and therefore Ker [Aλ] = {0}. Then the solution of (13.21) is given
by φ = 0,ψ = 0. Since

u = 1
2 (φ + ψ),

v = 1
2 (φ − ψ),

(13.22)

it follows that (13.20) has only the trivial solution (0, 0), proving that Ker [Tλ] =
{(0, 0)} for λ ∈ [0, 3/5) ∪ (3/5, 1).

(i-2) To show that the system Tλ[u, v] = (h, k) has a unique solution for any
(h, k) ∈ Y and for λ ∈ [0, 3/5)∪ (3/5, 1), it suffices to pass to the decoupled system

−φ′′ + (1− λ)φ − 3U 2
1−λφ = h+ k,

−ψ ′′ + (1+ λ)ψ − 3U 2
1−λψ = h− k,

(13.23)

which has a unique solution. From (i-1)–(i-2) it follows that (i) holds.
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(ii) For λ = 3/5, Lemma 13.3.2 implies that Ker [Aλ] is spanned by f ∗. Using
again (13.22), it follows that Ker [Tλ], λ = 3/5, is spanned by ϕ∗ = (f ∗, f ∗).
Moreover, arguing as before, the system Tλ[u, v] = (h, k) is equivalent to (13.23),
which has, for λ = 3/5, a unique solution, provided

∫
(h− k)f ∗ = 0. (13.24)

Furthermore, multiplying the system Tλ[u, v] = (h, k) by f ∗ and integrating by parts,
it follows that

∫
u
[−(f ∗)′′ + f ∗ − 3U 2

1−λf
∗]− λ

∫
vf ∗ = ∫ hf ∗,

∫
v
[−(f ∗)′′ + f ∗ − 3U 2

1−λf
∗]− λ

∫
uf ∗ = ∫ kf ∗.

From Aλ(f ∗) = 0, λ = 3/5, we infer −(f ∗)′′ + f ∗ − 3U 2
1−3/5f

∗ = 3
5f
∗ and hence

3
5

∫
uf ∗ − 3

5

∫
vf ∗ =

∫
hf ∗,

3
5

∫
vf ∗ − 3

5

∫
uf ∗ =

∫
kf ∗.

This and (13.24) imply
∫
hf ∗ = ∫

kf ∗ = 0. This shows that for λ = 3/5,
Range[Tλ] = Y0, and completes the proof of the lemma. ��
Theorem 13.3.4 For λ∗ = 3/5 there is a branching of solutions (uλ, vλ) ∈ X of
(13.18) from the family of symmetric states (U1−λ,U1−λ), and it is the only one (see
Fig. 13.1).

Fig. 13.1 Bifurcation
diagram for Theorem 13.3.4

λ
13/5

(U1−λ, U1−λ)

(U,U )
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Proof As anticipated before, we will use Theorem 6.1.3. Lemma 13.3.3-(ii) shows
that assumptions (F.1) and (F.2) of Sect. 6.1 hold, with μ = λ∗ and ϕ = ϕ∗. As for
condition (F.3), let us evaluate the mixed derivative

dλ,wF(λ, 0)[u, v] = (−3dλU
2
1−λu− v,−3dλU

2
1−λv− u). (13.25)

In the Appendix 13.5-(2) it is proved that

dλ,wF(λ∗, 0)[u, v] = (h∗,h∗),

for some h∗ ∈ Y such that
∫

h∗f ∗ < 0. (13.26)

It follows that dλ,wF(λ∗, 0)[ϕ∗] �∈ Y0, namely that (F.3) holds. Then an application
of Theorem 6.1.3 implies that λ = λ∗ is a bifurcation point.

Moreover, Lemma 13.3.3-(i) implies that any λ ∈ (0, 1), λ �= 3/5, cannot be a
bifurcation point. ��
Remark 13.3.5 System (13.18) has other solutions, different in nature from the ones
found before. For example, the authors have proved in [12] the existence, for λ = ε

small, of solutions (uε , vε) such that, as ε→ 0,

uε(x) ∼ U (x + ξε)+ U (x − ξε), vε(x) ∼ −U (x),

where ξε ∼ log (1/ε). The authors suspect that these solutions can be continued for
λ ∈ [0, 1) and will converge, as λ → 1 to the anti-symmetric pair (U2,−U2). Let
us mention that [12] also deals with the PDE counterpart of (13.18) in dimension
n = 2, 3. In such a case it is proved that there exist solutions whose first component
has many bumps located near the vertices of any regular polygon with less than six
sides, resp. any regular polyhedra but the dodecahedron, in dimension n = 2, resp.
n = 3.

Remark 13.3.6 There is a numerical evidence that a secondary bifurcation branches
off at λ = 1 from the anti-symmetric states (U1+λ,−U1+λ). However, we do not
know a rigorous proof of this result.

Remark 13.3.7 For other results dealing with nonlinearly coupled NLS equations
we refer to [11].

13.4 Nonautonomous Systems

Here we discuss the results of [7] dealing with the nonautonomous system

−u′′ + u = (1+ εb1(x))u3 + λv , x ∈ R,

−v′′ + v = (1+ εb2(x))v3 + λu , x ∈ R,
(13.27)
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where bi , i = 1, 2 satisfy

bi ∈ L∞(R), lim|x|→∞ bi(x) = 0, i = 1, 2. (13.28)

Solutions of (13.27) will be searched as critical points of

Iε,λ(u, v) = Iλ(u)+ Iλ(v)− εG(u, v), (u, v) ∈ E

where E = H 1(R)×H 1(R),

Iλ(u) = 1
2‖u‖2 − 1

4

∫
u4 − λ

2

∫
u2

and

G(u, v) = 1
4

∫
(
b1(x))u4 + b2(x)v4

)
.

For ε = 0 the unperturbed functional Iε,λ has the following manifold of critical
points:

Zλ = {zξ = (U1−λ(x + ξ ),U1−λ(x + ξ )), ξ ∈ R, 0 < λ < 1}.
In order to use the perturbation methods studied in Sect. 5.6, we will check that the
assumptions (A1)–(A3) hold.

Set w = (w1, w2). From

(G ′(zξ )|w) =
∫

(b1(x)w1 + b2(x)w2)U 3
1−λ(x + ξ ),

and using (13.28), an argument already used before shows that ‖G′(zξ )‖ ≤ c, for
some c > 0, proving (A1).

Condition (A3) is also easily verified. To prove that (A2) holds we will show that
Zλ is non-degenerate, in the sense that TzZλ = Ker [I ′′λ (z)] for all z ∈ Z. Up to
translation, it suffices to take ξ = 0. Let

� =
{

λ ∈ R : 0 < λ < 1, λ �= 3

5

}

.

Lemma 13.4.1 If λ ∈ �, then the kernel of I ′′λ [(U1−λ,U1−λ)] is spanned by
(U ′1−λ,U ′1−λ).

Proof We have to prove that any w = (w1, w2) solving the linear system

−w′′1 + w1 − 3U 2
1−λw1 − λw2 = 0,

−w′′2 + w2 − 3U 2
1−λw2 − λw1 = 0,

(13.29)

has the form w = (U ′1−λ,U ′1−λ). Setting

ψ = w1 − w2,

the function ψ solves

Aλ(ψ) = −ψ ′′ +Qλ(x)ψ = λψ , ψ ∈ H 1(R), (13.30)
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where

Qλ(x) = 1+ λ− 3U 2
1−λ(x) = 1+ λ− 6 (1− λ)

cosh2 (
√

1− λ x)
.

Let us show that if λ ∈ � then ψ = 0. By Lemma 13.3.2-(a), the first eigenvalue of
(13.30) is

�λ = inf

{∫
[(u′)2 +Qλ(x)u2] :

∫
u2 = 1

}

= 5λ− 3.

Since for λ > 3
5 one has that �λ > 0, it follows that λ = 0 is not an eigenvalue of

(13.30). Therefore ψ = 0 provided 3
5 < λ < 1.

We next deal with the case 0 < λ < 3
5 . In this case, by Lemma 13.3.2, it holds

that 5λ− 3 < 0 < 2λ with 2λ is the second eigenvalue (and 5λ− 3 the first one) of
(13.30). Thus λ = 0 is not an eigenvalue of (13.30), proving that ψ = 0.

From w1 = w2, we find that w2 satisfies

−w′′2 + (1− λ)w2 − 3U 2
1−λw2 = 0,

and hence w2 = U ′1−λ, completing the proof. ��
Lemma 13.4.2 If λ ∈ �, then PI ′′λ (zξ ) is invertible and (A2) holds.

Proof From the preceding lemma it follows that Tzξ Zλ = Ker (I ′′λ [zξ ]) and hence
PI ′′λ (zξ ) is injective. It remains to prove that PI ′′λ (zξ ) is also surjective. We take
ξ = 0 and let W ⊂ H 1(R) be such that E = TzZλ ⊕W . For h = (h1,h2) ∈ W ×W

we search u = (u1, u2), v = (v1, v2) ∈ W ×W such that I ′′λ (z)[u, v] = (h|v) for all
v ∈ W ×W . Therefore, u satisfies the system

−u′′1 + u1 − 3U 2
1−λu1 − λu2 = h̃1,

−u′′2 + u2 − 3U 2
1−λu2 − λu1 = h̃2,

(13.31)

where h̃i = −h′′i + hi , i = 1, 2. Setting ψ = u1 − u2, and φ = u1 + u2, we find the
decoupled linear system

−ψ ′′ + (1+ λ)ψ − 3U 2
1−λψ = h̃1 − h̃2,

−φ ′′ + (1− λ)φ − 3U 2
1−λφ = h̃1 + h̃2.

(13.32)

The first equation can be written as

(A′1(ψ)|v1) = (̃h1 − h̃2|v1), ∀ v1 ∈ W , (13.33)

where

A1(ψ) = 1
2

∫
[
(ψ ′)2 + (1+ λ)ψ2 − 3U 2

1−λψ
2
]
.

Since 0 is not an eigenvalue ofA′1, the Fredholm alternative yields a unique ψ solving
(13.33).
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Similarly, setting

A2(φ) = 1
2

∫
[
(π ′)2 + (1− λ)ψ2 − 3U 2

1−λφ
2
]

,

the second equation of (13.32) becomes (A′2(φ)|v2) = (h1+h2|v2), for every v2 ∈ W .
Since

∫
[(φ′)2 + (1 − λ)φ2] is a norm equivalent to ‖ · ‖ and Ker [A′2] is spanned

by U ′1−λ, then h1 + h2 ∈ W = Ker [A′2]⊥, and the Fredholm alternative yields that
A′2(φ) = h̃1 + h̃2 has a unique solution in W . This shows that PI ′′λ (zξ ) is invertible
for all ξ ∈ R.

From the preceding arguments it readily follows that there exists δ > 0 such that
‖PI ′′λ (zξ )‖ ≥ δ for all ξ ∈ R.

Setting w̃ = (w̃1, w̃2) and using that

G ′′(zξ )[(w, w̃)] = 3 ε

∫
(b1(x)w2(x)+ b2(x)w̃2(x))U 2

1−λ(x + ξ ),

we get
‖G ′′(zξ )‖ ≤ ε C, ∀ ξ ∈ R,

and (A2) follows. ��
In order to apply Theorem 5.6.5 it remains to show that the reduced functional
Ĩε,λ(zξ ) = I(zξ + wε,s) + εG(zξ + wε,ξ ) has a stationary point. According to
Remark 5.6.6 we can look for the stationary points of G(ξ ) := G(zξ ). One has

G(ξ ) = 1

4

∫
(b1(x)+b2(x))U 4

1−λ(x+ξ )dx = 1

4

∫
(b1(x−ξ )+b2(x−ξ ))U 4

1−λ(x)dx.

Taking into account that b1, b2 satisfy (13.22) and using arguments already carried
out before, one readily verifies that

lim|ξ |→∞G(ξ ) = 0.

Thus G(ξ ) has at least one maximum or minimum.
The preceding arguments allow us to apply the perturbation result.

Theorem 13.4.3 Suppose that (13.28) holds and let λ ∈ �. Then for ε > 0
small enough, the system (13.27) has a solution (uλ, vλ) near the symmetric state
(U1−λ ,U1−λ). ��
Remark 13.4.4 If λ = 0 the system (13.27) becomes a single NLS equation and we
recover the result proved in [13].

Remark 13.4.5 Linearly coupled systems of nonautonomous NLS equations are
discussed in [10].
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13.5 Appendix

(1) Consider the linear eigenvalue problem (13.30), i.e.

A(ψ) := −ψ ′′ +Q(x)ψ = νψ , ψ ∈ H 1(R),

where Q(x) is a bounded function such that

lim|x|→∞Q(x) = b.

It is well known, see e.g. [84, Sect. 3], that the essential spectrum σe(A) of A is given
by

σe(A) = [b,+∞). (13.34)

Moreover, set

� = inf

{∫
[(u′)2 +Q(x)u2] :

∫
u2 = 1

}

,

and suppose that � < b. Then � is the smallest eigenvalue of A. The corresponding
eigenspace is spanned by a positive function and � is the unique eigenvalue with
this property.

(2) Here we carry out in detail the calculation to evaluate (13.25) and prove (13.26).
Since U2

1−λ = 2(1− λ)fλ, one finds that

dλU
2
1−λ = 6λfλ − 6

√
1− λ x tanh (

√
1− λ x)fλ.

Therefore,
dλ,wF(λ∗, 0)[u, v] = (h∗,h∗),

where

h∗ = (6λ∗ − 1)f ∗ − 6
√

1− λ∗ x tanh (
√

1− λ∗ x)f ∗

= 13
5 f ∗ − 6

√
2/5 x tanh (

√
2/5 x)f ∗.

One has that h∗ ∈ Y and
∫

h∗f ∗ = 13
5

∫
cosh−4 (

√
2
5 x) dx

− 6
√

2
5

∫
x sinh (

√
2
5 x) cosh−5 (

√
2
5 x) dx

= 13

5
√

2
5

∫
cosh−4 (y)dy − 6

√
2
5

∫
y sinh (y) cosh−5 (y)dy.
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Integrating by parts, one has
∫

y sinh (y) cosh−5 (y)dy = 4
∫

cosh−4 (y)dy.

Hence
∫

h∗f ∗ = 13

5
√

2
5

∫
cosh−4 (y)dy − 24√

2
5

∫
cosh−4 (y)dy

= − 107√
10

∫
cosh−4 (y)dy < 0,

proving (13.26).



Appendix A
Sobolev Spaces

We devote this appendix to the definition and study of the main properties of the
Sobolev spaces. The reader can found the details of the proofs in [1, 36, 58, 61,
88]. We assume throughout the appendix that � is an open set in R

N , k is a positive
integer and 1 ≤ p ≤ +∞.

A.1 Weak Derivative

In this section we introduce the notion of the weak derivative and its main properties.
As a motivation of the weak differentiation, we suggest applying integration by parts
(or the divergence theorem) to deduce the following characterization.

Proposition A.1.1 If u ∈ C1(�) and vi ∈ C(�), for i = 1, 2, . . . ,N , then the
following assertions are equivalent:

1. vi = ∂u
∂xi

.

2.
∫

ϕ(x)vi(x)dx = −
∫

u(x)
∂ϕ

∂xi

(x)dx, ∀ϕ ∈ C∞0 (�). ��

Definition A.1.2 If u ∈ L1
loc(�) and α = (α1,α2, ...,αN ) is a multi-index, we say

that u is weakly α-derivable if there exists a function vα ∈ L1
loc(�) such that

∫
ϕ(x)vα(x)dx = (−1)|α|

∫
u(x)Dαϕ(x)dx, ∀ϕ ∈ C∞0 (�).

Clearly, if such a function vα exists, then it is unique (up to subsets of � with zero
measure). This unique function vα is called the weak α-derivative of u, and it will be
denoted by vα = Dαu.

Taking into account thatCk(�) is the subspace ofC(�) which contains all continuous
functions u ∈ C(�) whose (classical) α-derivatives with order |α| ≤ k also belong to
C(�), we can construct a similar space Wk(�) for the weak derivative. Specifically,
we denote by Wk(�) the set of all functions u ∈ L1

loc(�) which are weakly α-
derivable for every multi-index α with order |α| ≤ k. Clearly, by Proposition A.1.1,
Ck(�) ⊂ Wk(�).

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 169
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2, © Springer Science+Business Media, LLC 2011
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Since the weak derivative is linear, i.e.,

Dα(u+ v) = Dαu+Dαv, Dα(λu) = λDαu

for every weakly α-derivable functions u and v, and λ ∈ R, Wk(�) is a linear
subspace of L1

loc(�).
We recommend that the reader practice the above definition by verifying the next

examples.

Example A.1.3 1. If � = (−1, 1) ⊂ R and u : � → R is the modulus function in
�, i.e., u(x) = |x|, for every x ∈ �, then u ∈ W 1(�)− C1(�).

2. Let � = (−1, 1) ⊂ R and u : �→ R be the sign function in �, i.e.,

u(x) =
⎧
⎨

⎩

1, 0 < x < 1
0, x = 0
−1, −1 < x < 0,

then u �∈ W 1(�).
3. Take � = B(0,R), the ball centered at zero with radius R, and u : � → R a

function satisfying u(x) = f ( |x| ), ∀x ∈ � \ {0} with f ∈ C1((0,R)). If we have

lim
r→0+

rN−1f (r) = 0,

then

u ∈ W 1(�)⇐⇒ Dαu ∈ L1
loc(�), ∀ | α |≤ 1.

Using this result, we can prove that the following functions:

u(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

|x|α , if 0 < |x| < R,

0, if x = 0;

(A.1)

v(x) =

⎧
⎪⎨

⎪⎩

log
(

log
(

4R
|x|
))

, if 0 < |x| < R,

0, if x = 0;

(A.2)

w(x) =

⎧
⎪⎨

⎪⎩

|x| log
(

log
(

4R
|x|
))

, if 0 < |x| < R,

0, if x = 0;

(A.3)

verify

u ∈ Wk(�)⇐⇒ k + α < N

and v ∈ WN−1(�), w ∈ WN (�).
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4. Consider � = (0, 1)× (− 1, 1), �1 = (0, 1)× (0, 1), �2 = (0, 1)× (− 1, 0) and
the function u : �→ R defined by

u(x, y) =
⎧
⎨

⎩

0, y ≤ 0,

1, y > 0.

Then u �∈ W 1(�), but u|�1∪�2 ∈ W 1(�1 ∪�2).

Note also that if α and β are multi-indices and u ∈ L1
loc(�) is a weakly β-derivable

function withβ-derivativeDβu which isα-derivable in turn, then u is weakly (α+β)-
derivable with Dα+βu = Dα(Dβu)).1 This implies that one of the main properties of
the spaces Wk(�) is their inductive character; i.e., we can obtain Wk(�) (k ∈ N\{1})
as the functions of Wk−1(�) whose derivatives of order m−1 belong to W 1(�).

Another remarkable property is that the weak derivative is a local concept.

Proposition A.1.4 If u ∈ L1
loc(�), then the following assertions are equivalent:

(i) u ∈ Wk(�).
(ii) For every x ∈ � there exists an open neighborhood V = V (x) of x in � such

that u|V ∈ Wk(V ).

The functions of Wk(�) can be approximated by functions C∞0 (RN ). To do this, we
consider 0 ≤ ρ ∈ C∞0 (RN ) such that its support verifies

supp ρ ⊂ B(0, 1)

and ∫

RN

ρ(x)dx = 1.

We define for h > 0 and u ∈ L1
loc(�) the set �(h) = {x ∈ � : h < dist (x, ∂�)}

and the function uh ∈ C∞(�(h)) by setting

uh(x) = 1

hN

∫
ρ

(
x − y

h

)

u(y)dy,

for every x ∈ �(h). For u ∈ L1
loc(�), it holds that

{uh} (h→0+)−→ u in L1
loc(�).

If, in addition, u is weakly α-derivable (with α a multi-index), then we have Dαu ∈
L1

loc(�) and we can consider (Dαu)h ∈ C∞(�(h)). On the other hand, since uh ∈
C∞(�(h)) we can compute its derivative Dα(u)h in �(h). The theorem of derivation
under the integral sign shows that both functions are the same, i.e.,

Dαuh(x) = (Dαu)h(x), ∀x ∈ �(h).

As a consequence we deduce the following characterization of the weak derivative.

1 In general, Dα+βu may exists without Dβu existing. Indeed, consider the function in Example 4
with α = (1, 0) and β = (0, 1).
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Theorem A.1.5 If u, v ∈ L1
loc(�) andα is a multi-index, then the following assertions

are equivalent:

(i) v = Dαu.
(ii) There exists a sequence {φn} ⊂ C∞0 (RN ) such that

{φn} −→ u in L1
loc(�),

{Dαφn} −→ v in L1
loc(�).

It is worthwhile to observe that if u ∈ Lp(�) for 1 ≤ p < +∞, then it is possible to
define uh in all R

N as being uh ∈ C∞(RN ) and

{uh} (h→0+)−→ u in Lp(�).

Using this in conjunction with the previous theorem, we obtain the following.

Corollary A.1.6 If u ∈ Lp(�), v ∈ L
p
loc(�) with 1 ≤ p < +∞ and α a multi-index,

then the following assertions are equivalent:

(i) v = Dαu.
(ii) There exists a sequence {φn} ⊂ C∞0 (RN ) such that

{φn} −→ u in Lp(�),

{Dαφn} −→ v in L
p
loc(�).

Theorem A.1.5 also gives a necessary and sufficient condition for the classical deriv-
ability of a weakly derivable function. (Remember that every (classically) derivable
function is also weakly derivable, i.e., C1(�) ⊂ W 1(�)).

Corollary A.1.7 If u ∈ W 1(�) satisfies

∂u

∂xi
∈ C(�) ∀i ∈ {1, 2, . . . ,N},

then u ∈ C1(�).

Of course, by ∂u
∂xi
∈ C(�) we mean that there exists a continuous function in the

equivalence class of ∂u
∂xi
∈ L1

loc(�). Similarly, the condition u ∈ C1(�) means also

that in the equivalence class of u ∈ L1
loc(�) there exists a function of class C1 in �.

In turn, a consequence of the previous corollary is the following one.

Corollary A.1.8 If � ⊂ R
N is open and connected and u ∈ W 1(�) satisfies∇u = 0

(a.e. x ∈ �), then u is constant.

The weak derivative can also be characterized using absolutely continuous functions.
Observe that for the local character of the weak derivative it suffices to suppose that
� ⊂ R

N is a rectangle � = (a1, b1)× (a2, b2)×· · ·× (aN , bN ). If i ∈ {1, 2, . . . ,N},
we take �̂i := (a1, b1) × (a2, b2) × . . . (ai−1, bi−1) × (ai+1, bi+1) × · · · × (aN , bN ).
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We denote by ACi(�) the set of all measurable functions u : �→ R such that the
set B of all points x̂ = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ �̂i for which the function
t �→ u(x1, . . . , xi−1, t , xi+1, . . . , xN ) is absolutely continuous in (ai , bi) has zero
(N − 1)-dimensional Lebesgue measure.

Theorem A.1.9 If � = (a1, b1) × (a2, b2) × · · · × (aN , bN ) and u ∈ L1
loc(�), then

the following assertions are equivalent:

(i) u ∈ W 1(�).
(ii) For every i ∈ {1, 2, . . . ,N} there exist a constant αi ∈ R, a function hi ∈

L1
loc(�) and a subset Ai ⊂ �̂i such that

(a) The (N − 1)-dimensional Lebesgue measure of Ai is zero.
(b) For every x̂ = (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ �̂i − Ai we have

u(x1, . . . , xi−1, xi , xi+1, . . . , xN )

=
∫ xi

αi

hi(x1, . . . , xi−1, s, xi+1, . . . , xN )ds + kx̂

almost everywhere in xi ∈ (ai , bi) and where kx̂ ∈ R denotes a constant
which depends on x̂ ∈ �̂i − Ai .

(iii) For every i ∈ {1, 2, . . . ,N} there exists a function ũi ∈ ACi(�) such that
(a) u(x) = ũi(x) a.e. x ∈ �,

(b) The classical derivative2 ∂ ũi

∂xi
satisfies

∂ ũi

∂xi

∈ L1
loc(�).

In addition, if one of the above assertions holds, then

∂u

∂xi

(x) = ∂ ũi

∂xi
(x) = hi(x) a.e. x ∈ �.

Roughly the implication (i)⇒(iii) is that a function u ∈ W 1(�) if and only if for
every coordinate axis, e.g. xi , it is possible to find a function ũi in the equivalence
class of u ∈ L1

loc(�) such that ũi is absolutely continuous for almost everywhere
all line segments in � parallel to the coordinate axis and whose partial derivative
with respect to xi is locally integrable in �. Functions satisfying this property were
already studied by Beppo Levi and, subsequently, by Leonida Tonelli.

Some consequences of the above characterization are the following.

Corollary A.1.10 If u : � → R is a locally Lipschitzian function in �, then u ∈
W 1(�).

Example 3 above shows that the converse is not true.

2 which exists almost everywhere in �.
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Next we study whether the product of two weakly derivable functions is weakly
derivable. Clearly, the answer is no in general. Indeed, if we consider � = B(0, 1) ⊂
R

N , α,β ∈ R satisfying

max{1+ α, 1+ β} < N ≤ 1+ α + β

and u(x) = 1
|x|α , v(x) = 1

|x|β , then u, v ∈ W 1(�), but uv �∈ W 1(�).
However, taking into account that the product of absolutely continuous functions

is absolutely continuous, it is possible to prove the following result.

Corollary A.1.11 If u, v ∈ W 1(�), then the following assertions are equivalent:

(i) u · v ∈ W 1(�) with ∂
∂xi

(uv) = u ∂v
∂xi
+ v ∂u

∂xi
for every i ∈ {1, 2, . . . ,N}.

(ii) u · v ∈ L1
loc(�) and for every i ∈ {1, 2, . . . ,N},

u
∂v

∂xi
+ v

∂u

∂xi

∈ L1
loc(�).

A particular case in which (ii) (and thus (i)) holds is u, v ∈ W 1(�) ∩ L∞(�).
In the sequel we also study the chain rule for the weak derivative. As before for

the product, we first see an example proving that it is not true in general. Indeed, if
� = B(0, 1) ⊂ R

N , u(x) = 1
|x|α with 1+ α < N ≤ 1+ 2α and f (t) = t2, ∀t ∈ R,

then f ∈ C1(R) ⊂ W 1(R) and u ∈ W 1(�) but f ◦ u �∈ W 1(�).
Since the composition of a Lipschitz function with an absolutely continuous

function is absolutely continuous, the following consequence can be proved.

Corollary A.1.12 Let f : R→ R be a Lipschitz function and u ∈ W 1(�). Consider
A = {t ∈ R : ∃f ′(t)}3 and define the function g : R→ R by

g(t) =
⎧
⎨

⎩

f ′(t), t ∈ A,

0, t ∈ R \ A.

(A.4)

Then, the composition f ◦ u ∈ W 1(�) with

∂

∂xi
(f ◦ u)(x) = g(u(x))

∂u

∂xi
(x), a.e. x ∈ �

for every i ∈ {1, 2, . . . ,N}.
We remark that all the hypotheses of the above result are satisfied provided that
f ∈ C1(R) with bounded derivative.

As an application we obtain the weak derivative of the functions u+ = max{u, 0},
u− = min{u, 0} and |u| provided that u ∈ W 1(�).

3 The fundamental theorem of the calculus implies that the measure of R \ A is zero.
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Corollary A.1.13 If u ∈ W 1(�), then u+, u−, |u| ∈ W 1(�) with

∇u+(x) =
⎧
⎨

⎩

∇u(x), if u(x) > 0,

0, if u(x) < 0,
a.e. x ∈ �,

∇u−(x) =
⎧
⎨

⎩

0, if u(x) > 0,

∇u(x), if u(x) < 0,
a.e. x ∈ �,

∇|u|(x) =
⎧
⎨

⎩

∇u(x), if u(x) > 0,
0, if u(x) = 0,

−∇u(x), if u(x) < 0,
a.e. x ∈ �.

In particular,
∇u(x) = 0 a.e. x ∈ �a := {x ∈ � : u(x) = a},

for every a ∈ R.

The second part of the previous corollary is usually attributed to G. Stampacchia (83)
(see also [72, Theorem 3.2.2, p. 69]).

A.2 Sobolev Spaces

In addition to considering an open set � in R
N and k ∈ N, we take p ∈ [1,+∞].

Definition A.2.1 The Sobolev space Wk,p(�) is defined as

Wk,p(�) = {u ∈ Wk(�) : Dαu ∈ Lp(�), ∀ |α| ≤ k
}
.

Clearly, Wk,p(�) is a linear subspace of
(
Lp(�), ‖·‖p

)
. We can consider two

equivalent norms in Wk,p(�):

‖u‖k,p ≡
⎧
⎨

⎩

[∑
|α|≤k ‖Dαu‖pp

]1/p
if p ∈ [1,+∞),

max|α|≤k‖Dαu‖∞ if p = +∞,

and
|||u|||k,p ≡

∑

|α|≤k
‖Dαu‖p.

In particular, if p = 2 the norm ‖·‖k,2 of the space Hk(�) ≡ Wk,2(�) is the one
associated to the inner product

(u, v)k,2 =
∑

|α|≤k
(Dαu,Dαv)L2(�) .

We have to note that from a historical point of view, the introduction of these spaces
was not motivated by the similarity with Ck(�) that we have used in Sect. 1.1.
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J. Schauder had already studied the Cauchy problem associated to quasilinear equa-
tions of hyperbolic type by applying the theory of fixed points. In order to do this,
he considered the space E of the functions u of class Ck in an open � ⊂ R

N such
that all of its partial derivatives Dαu up to order k belong to L2(�), and he equipped
this space with the norm ‖·‖k,2. Unfortunately, this space E is not complete with this
norm. Just after, Sobolev considered the functions u ∈ L2(�) with weak derivatives
Dαu in L2(�) for |α| ≤ k. This space with the norm ‖·‖k,2 is already complete.

Theorem A.2.2 The Sobolev space Wk,p(�) is a Banach space for 1 ≤ p ≤ +∞.
In addition,

(i) Wk,p(�) is reflexive for 1 < p < +∞,
(ii) Wk,p(�) is separable for 1 ≤ p < +∞.

In particular, Hk(�) is a separable Hilbert space.

Now it is easy to deduce from Corollaries A.1.11 and A.1.12 the following versions
for the product and chain rule in the Sobolev space Wk,p(�).

Proposition A.2.3 Let p, q, r ∈ [1,+∞] be such that4

1

p
+ 1

q
= 1

r
.

If u ∈ Wk,p(�) and v ∈ Wk,q (�), then uv ∈ Wk,r (�) with

∂(uv)

∂xi
(x) = v(x)

∂u

∂xi

(x)+ u(x)
∂v

∂xi

(x) a. e. x ∈ �,

for every i ∈ {1, 2, . . . ,N}.
Proposition A.2.4 Assume that u ∈ W 1,p(�) andf : R→ R is a Lipschitz function.
Consider the set A = {t ∈ R : ∃f ′(t)} and the function g : R→ R given by (A.4).
If f ◦ u ∈ Lp(�), then f ◦ u ∈ W 1,p(�) with

∂(f ◦ u)

∂xi
(x) = g(u(x))

∂u

∂xi
(x) a. e. x ∈ �

for every i ∈ {1, 2, . . . ,N}. ��
A sufficient condition to obtain that f ◦ u ∈ Lp(�) is that either f (0) = 0 or � is
bounded.

It is clear that every function in Ck(�) such that its partial derivatives up to order
k are also in Lp(�) belongs to Wk,p(�). The next result shows that this class of
functions is dense in Wk,p(�) provided that 1 ≤ p < +∞.

Theorem A.2.5 (N.G. Meyers–J. Serrin) If 1 ≤ p < +∞, then the subspace
C∞(�) ∩Wk,p(�) is dense in Wk,p(�). ��

4 We adopt the agreement 1
∞ = 0.
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The above result is not true for p = +∞. Indeed, the modulus function u(x) = |x|
in (− 1, 1) belongs to W 1,∞ (−1, 1) with

u′(x) =
⎧
⎨

⎩

1, x ≥ 0;

−1, x < 0.

Since the derivative cannot be approximated in the norm ‖·‖∞ by continuous
functions, we deduce that u does not belong to the closure of the subspace
W 1,∞(− 1, 1) ∩ C1(− 1, 1) in W 1,∞ (−1, 1).

A.3 Boundary Values in Sobolev Spaces

Definition A.3.1 We denote byW
k,p
0 (�) the closure ofC∞0 (�) in the spaceWk,p(�).

In the particular case p = 2, we also write W
k,p
0 (�) = Hk

0 (�).

Clearly, if we consider in W
k,p
0 (�) the induced norm of Wk,p(�), we deduce by

Theorem A.2.2 the following result.

Theorem A.3.2 W
k,p
0 (�) is a Banach space provided that 1 ≤ p ≤ +∞. In

addition,

(i) W
k,p
0 (�) is reflexive provided that 1 < p < +∞.

(ii) W
k,p
0 (�) is separable provided that 1 ≤ p < +∞.

In particular, Hk
0 (�) is a separable Hilbert space.

Remark A.3.3 The reader can verify the following assertions.

1. If 1 ≤ p ≤ +∞ and u ∈ Wk,p(�) has compact support in �, then u ∈ W
k,p
0 (�).

2. If 1 ≤ p < +∞ and, for u ∈ W
1,p
0 (�), we consider its zero extension ũ, i.e.,

ũ(x) =
⎧
⎨

⎩

u(x), x ∈ �,

0, x ∈ R
N \�,

then ũ ∈ W 1,p(RN ) with

∂ ũ

∂xi
(x) =

⎧
⎪⎨

⎪⎩

∂u

∂xi
(x), x ∈ �,

0, x ∈ R
N \�,

for every i ∈ {1, 2, . . . ,N}.
If we analyze carefully the properties of Sobolev space W

k,p
0 (�) we see that all of

them are similar to the ones satisfied by the space of the functions in C1(�) which
vanish on the boundary ∂�. The next result strengthens this idea.
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Theorem A.3.4 Consider a function u ∈ W 1,p(�) ∩ C(�).

(i) If u(x) = 0 for every x ∈ ∂� then u ∈ W
1,p
0 (�).

(ii) If ∂� is piecewise of class C1 and u ∈ W
1,p
0 (�) then u(x) = 0 for every x ∈ ∂�.

We also have the following version of the chain rule.

Theorem A.3.5 If p ∈ [1,+∞) and f : R → R is Lipschitz with f (0) = 0, then
f ◦ u ∈ W

1,p
0 (�) for every u ∈ W

1,p
0 (�). ��

Using the space W
k,p
0 (�), we can define an ordering between values on the boundary

of functions in Wk,p(�).

Definition A.3.6 If 1 ≤ p < +∞ and u, v ∈ W 1,p(�), we say

(i) u ≤ k on ∂�⇐⇒ (u− k)+ = max {u− k, 0} ∈ W
1,p
0 (�).

(ii) u ≥ k on ∂�⇐⇒ −u ≤ −k on ∂�.
(iii) u ≤ v on ∂�⇐⇒ u− v ≤ 0 on ∂�.
(iv) u ≥ v on ∂�⇐⇒ v ≤ u on ∂�.

(v) u = v on ∂�⇐⇒
⎧
⎨

⎩

u ≤ v on ∂�

v ≤ u on ∂�.

Remark A.3.7 1. If � has infinite measure, then every nonzero constant does not
belong to W 1,p(�) and hence the definition given in case (iii) does not cover to
the one given in (i).

2. The relation defined in (iii) is an order relation in W 1,p(�) (if we understand by
equality on ∂� that given in (v)).

By using the chain rule a characterization of W
1,p
0 (�) as the functions in W 1,p(�)

which vanish on ∂� can be deduced.

Proposition A.3.8 If 1 ≤ p < +∞ and u ∈ W 1,p(�), then

u ∈ W
1,p
0 (�)⇐⇒ u = 0 on ∂�.

Applying Theorem A.3.4, we obtain the next connection between weak inequality
on ∂� and the classical one.

Proposition A.3.9 If � ⊂ R
N is open, p ∈ [1,+∞) and u ∈ W 1,p(�) ∩ C(�), we

have:

(i) If u(x) ≤ 0, ∀x ∈ ∂�, then u ≤ 0 on ∂�.
(ii) Conversely, if ∂� is piecewise of class C1 and u ≤ 0 on ∂�, then u(x) ≤ 0 for

every x ∈ ∂�.

The case (ii) of the above proposition is false if the boundary ∂� of � is not smooth.
Indeed, it suffices to have in mind that W 1,p

0 (B(0, 1)\{0}) = W
1,p
0 (B(0, 1)), provided

that N ≥ 2 and 1 ≤ p < N .
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The proposition also fails if we replace the constant 0 by a nonzero constant.
Indeed, taking N ≥ 5, � = {x ∈ R

N : |x| > 1
}

and

u(x) = −1

| x |N−2
, ∀x ∈ �,

we have u ∈ C2(�) ∩H 1(�) and

u(x) = −1, ∀x ∈ ∂�,

but it is not true that u ≤ −1 on ∂�.

Proposition A.3.10 If p ∈ [1,+∞), then W
k,p
0 (RN ) = Wk,p(RN ).

Remark A.3.11 1. The above result is false for the case p = ∞. For example, if �
is unbounded in R

N , then every nonzero constant belongs to Wk,∞(�) and it is
not in W

k,∞
0 (�). Thus, Wk,∞

0 (�) � Wk,∞(�) in this case.
2. As a consequence of the proposition, we have u ≤ v on ∂R

N , for every u, v ∈
W 1,p(RN ).

To conclude the summary of properties of Wk,p
0 (�) we give the Poincaré inequality.

Proposition A.3.12 If p ∈ [1,+∞) and � ⊂ R
N is open and bounded in one

direction, then there exists a positive constant C depending uniquely on � such that

C‖u‖p ≤ ‖∇u‖p, ∀u ∈ W
1,p
0 (�).

One of the main consequences of the Poincaré inequality is that, under its hypotheses,
‖∇u‖p defines a norm W

1,p
0 (�) which is equivalent to ‖·‖1,p . In addition, in the case

p = 2, this new norm ‖∇u‖2 in H 1
0 (�) is associated to the inner product

∫ ∇u · ∇v
for u, v ∈ H 1(�).

A.4 Embedding Theorems

We now study the well-known Sobolev and Rellich–Kondrachov embedding theo-
rems. Some words are in order to precisely state the meaning of embedding and
compact embedding.

Definition A.4.1 Let (X, ‖ · ‖X) and (Y , ‖ · ‖Y ) be normed spaces.

(i) We say that the spaceX is embedded in the space Y , and we denote it byX ↪→ Y ,
if there exists an injective linear and continuous operator from X into Y . In this
case, the operator is called an embedding.

(ii) We say that the space X is compactly embedded in the space Y , and we denote
it by X⊂↪→Y , if there exists an embedding of X in Y which is compact.

Here, we shall consider embeddings of Wk,p(�) into three classes of spaces:
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(i) Wj ,q(�) with 0 ≤ j ≤ k (W 0,q(�) ≡ Lq (�)) and q denotes the conjugate

exponent of p, i.e.,
(

1
q
+ 1

p
= 1
)

.

(ii) C
j

B(�), for j ∈ N∪{0}, i.e., the space of functions with continuous and bounded
partial derivatives up to order j . This is a Banach space with the following norm:

‖u‖
C

j
B

(�) = max
0≤|α|≤j

sup
x∈�
|Dαu(x)|

for every u ∈ C
j

B(�).
(iii) C

j ,ν
B,u(�), i.e., the space of functions with bounded and uniformly continuous

partial derivatives up to order j in � and such that the partial derivatives of
order j satisfy a Hölder condition with exponent ν ∈ (0, 1). It is also a Banach
space with the norm

‖u‖
C

j ,ν
B,u(�) = ‖u‖Cj

B
(�) +

∑

|α|=j
sup

x, y ∈ �

x �= y

|Dαu(x)−Dα(y)|
|x − y|ν ,

for every u ∈ C
j ,ν
B,u(�). Clearly, Cj ,ν

B,u(�) ⊂ C
j

B(�).

The embedding of Wk,p(�) into a space of the type (i), that is, in Wj ,q (�), is given by
the inclusion I of Wk,p(�) in Wj ,q (�). Indeed, if the inclusion Wk,p(�) ⊂ Wj ,q (�)
holds, then, by the closed graph theorem, the map I is continuous and hence an
embedding.

Taking into account that the elements of Wk,p(�) are not functions defined in �, but
are equivalence classes of functions which coincide up to a subset of � with zero
measure, we have to make precise the meaning of the embeddings of type (ii) and
(iii). It is that the equivalence class u ∈ Wk,p(�) contains a function in the space
of the continuous functions which will be the image Iu of the embedding. Thus,
for instance, the embedding Wk,p(�) ↪→ C

j

B,u(�) means that every u ∈ Wk,p(�),
considered as a function instead of an equivalence class, can be redefined in a subset
in � with zero measure in such a way that the modified function ũ (which is equal
to u in Wk,p(�)) belongs to C

j

B,u(�) and, for some constant k > 0 independent of
u ∈ Wk,p(�), satisfies the inequality

‖̃u‖
C

j
B,u(�) ≤ k‖u‖k,p.

The embedding theorems need some hypotheses on the regularity of the boundary
∂� of �. If x ∈ R

N is a point and B ⊂ R
N is an open ball such that x �∈ B, we call

the cone of vertex x and height r > 0 to the set

Cx = B(x, r) ∩ {x + λ(y − x) : y ∈ B, λ > 0} .
Definition A.4.2 We say that � satisfies the cone condition if there exists a cone C

such that every x ∈ � is the vertex of a cone Cx contained in � and congruent (by a
rigid motion) to C.
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Every bounded domain � ⊂ R
N with boundary ∂� of class C1 satisfies the cone

condition. In general the converse assertion is not true (it suffices to consider a square
in R

2).
An example of an open set � ⊂ R² which does not satisfy the cone condition is

the set of points of the unit ball in R² with distance to (1/2, 0) greater than or equal
to 1/2, i.e.,

� = BR2 ((0, 0), 1)− BR2

((
1

2
, 0

)

,
1

2

)

.

We gather in a unique theorem the main embedding results (without taking into
account their compactness) of the Sobolev spaces. Usually, it is attributed to S. L.
Sobolev, but it also includes improvements due to C.B. Morrey, E. Gagliardo and L.
Nirenberg.

Theorem A.4.3 Let � ⊆ R
N be an open subset satisfying the cone condition. Con-

sider also k ∈ N ∪ {0}, 1 ≤ p < ∞ and j ∈ N ∪ {0}. We have the following
embeddings.

1. If k < N
p

, then Wj+k,p(�) ↪→ Wj ,q (�) for every q ∈
[
p, Np

N−kp
]
.

2. If k = N
p

, then Wj+k,p(�) ↪→ Wj ,q (�) for every p ≤ q <∞. In addition, in the

particular case p = 1 and k = N , we also have Wj+N ,1(�) ↪→ C
j

B(�).
3. If k > N

p
, then Wj+k,p(�) ↪→ C

j

B (�).

Furthermore, if ∂� is of class C1, then

4. If k − 1 < N
p

, then Wj+k,p(�) ↪→ C
j ,ν
B,u(�) for every ν ∈

(
0, k − N

p

]
.

5. If k − 1 = N
p

, then Wj+k,p(�) ↪→ C
j ,ν
B,u(�) for every5 ν ∈ (0, 1).

The following examples show that this theorem is optimal.

Example A.4.4 Let � = B(0,R) be the ball of center 0 and radius R > 0 and fix
k ∈ N. If 1 ≤ p, q <∞ and α > 0 are such that N

q
< α <

N−kp
p

, then the function

u : �→ R given by (A.1) satisfies u ∈ Wk,p(�) \ Lq (�). Indeed, since

(α + k)p < N ,

ExampleA.1.3-3 shows that u ∈ Wk,p(�). Moreover, N < αq and hence u �∈ Lq(�).
This example shows that the embedding of Wk,p(�) in Lq (�) does not hold for

q >
Np

N−kp . It also proves that if kp < N then the embedding of Wk,p(�) in C(�) is
not true.

Example A.4.5 Let k ∈ N and p > 1 such that kp = N . Consider � = B(0,R),
the ball of radius R > 0 centered at zero, and u : � → R given by (A.2). Clearly,

5 If p = 1 and N = k − 1, then it can be ν ∈ (0, 1].
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u �∈ L∞(�). On the other hand, by Example A.1.3-3, we also have

u ∈ W

[
N
p

]
,p

(�) = Wk,p(�).

This example proves that, for p > 1 and kp = N , even if the embeddings

Wk,p(�) ↪→ Lq (�), ∀q ∈ [p,+∞)

hold, in general, Wk,N/k(�) is not embedded in L∞(�). The best space in which to
embed this space is the Orlicz space of the measurable functions in � satisfying

∫

�

(
e|u(x)|N/(N−k)

)
dx <∞.

Example A.4.6 Consider k ∈ N, 1 ≤ p < ∞ and ν ∈ (0, 1). If (k − 1) < N
p

< k,

then the embedding ofWk,p(�) inCν
B,u(�) is not true for ν > k− N

p
. Indeed, consider

R > 0, � = B(0,R) and the function u : �→ R defined by (A.1) with α ∈ R such

that α ∈
(
−ν, N

p
− k
)

. Then (α + k)p < N and thus u ∈ Wk,p(�).

In addition, since α + ν > 0,

|u(x)− u(0)|
|x − 0|ν =| x |−α−ν , ∀x �= 0

and we see that it is not possible to redefine the function u in a set of zero measure
in such a way that the new function belongs to Cν(�).

Example A.4.7 Let k ∈ N and p > 1 be such that (k − 1)p = N . We prove that
the embedding of case 5 fails for ν = 1 by showing a function u ∈ Wk,p(�) which
cannot be redefined in a zero measure set to belong to C1(�). Indeed, for R > 0,
consider the function u : � = B(0,R) → R given by (A.3). It is not difficult (see
Example A.1.3-3) to verify that

u ∈ W

[
N
p

]
+1,p

(�) = Wk,p(�).

On the other hand, observing that for x �= 0,

|u(x)− u(0)|
|x − 0| = log

(

log
4R

|x|
)

converges to+∞ as x goes to zero, we see that there is no function in the equivalence
class of the functions almost everywhere equal to u which belongs to the spaceC1(�)
(furthermore, this equivalence class does not contain a locally Lipschitzian function
in �).

Our last example is devoted to show that TheoremA.4.3 is not true in general provided
that � is not smooth.
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Example A.4.8 Consider � = {
(x, y) ∈ R

2 : 0 < |x| < 1, 0 < y < 1
}

and the
function u defined in it by

u(x, y) =
⎧
⎨

⎩

1, if 0 < x < 1, 0 < y < 1,

0, if −1 < x < 0, 0 < y < 1.

Observe that u ∈ W 1,p(�) for every p ≥ 1 and that the associated equivalence class
does not contain any uniformly continuous function. This proves that the embedding
of W 1,p(�) in C

j

B,u(�) in case 4 fails for this open � even if we assume that 0 <
N
p

< 1.

F. Rellich had already proved the compactness of some of the previous embeddings
in the case p = 2. The general case (p ≥ 1) was studied by V.I. Kondrachov.

Theorem A.4.9 (Compact embedding of Rellich–Kondrachov) Let � be a bounded
and open subset in R

N satisfying the cone condition, k ∈ N and p ∈ [1,+∞). The
following embeddings are compact for every j ∈ N ∪ {0}.
1. If k < N

p
, then Wj+k,p(�)⊂↪→Wj ,p(�) for every q ∈

[
1, Np

N−kp
)

.

2. If k = N
p

, then Wj+k,p(�)⊂↪→Wj ,p(�) for every q ∈ [1,+∞).

3. If k > N
p

, then Wj+k,p(�)⊂↪→C
j

B (�) and Wj+k,p(�)⊂↪→Wj ,p(�) for every q ∈
[1,∞).

Furthermore, assuming that ∂� is of class C1, we also have the following assertions.

4. If k > N
p

, then Wj+k,p(�)⊂↪→C
j

B,u(�).

5. If k > N
p

> k − 1, then Wj+m,p(�)⊂↪→C
j ,ν
B,u(�) for every 0 < ν < k − N

p
. ��

Since the zero extension of a function u ∈ W
k,p
0 (�) is an element ofWk,p(RN ), we can

consider Wk,p
0 (�) as a subset of Wk,p(RN ). Therefore, observing that Theorem A.4.3

is satisfied in the case � = R
N , we deduce that it is also true if we replace the spaces

Wk,p(�) in that theorem by W
k,p
0 (�) (even if � does not satisfy the cone condition).

Similarly, if � ⊂ R
N is a bounded domain, taking an open ball B(0,R) (which

satisfies the cone condition) such that � ⊂ B(0,R), the inclusion W
k,p
0 (�) ⊂

Wk,p(B(0,R)) holds and, by applying Theorem A.4.9 of Rellich–Kondrachov to
Wk,p(B(0,R)), we deduce that the assertions of that theorem are also true if we
replace Wk,p(�) by W

k,p
0 (�). Consequently, we have proved the following corollary.

Corollary A.4.10 If � is an open subset in R
N , then all embeddings of Theo-

rem A.4.3 hold provided that we replace the space Wj+k,p(�) by W
j+k,p
0 (�).

If, in addition � is bounded, then all the compact embeddings in Theorem A.4.9
are also true if we replace the space Wj+k,p(�) by W

j+k,p
0 (�).
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Exercises related to Chapter 1

1. If p ∈ [1,∞] and k is an integer greater than or equal to 1, let κ be the number of
multi-indicesα with order |α| less than or equal to k. If� is an open subset of R

N ,
prove that the set {(Dαu)|α|≤k : u ∈ Wk,p(�)} is a closed subset of the product
space Lp(�)× (κ). . .×Lp(�). As a consequence, show that Wk,p(�) is a Banach
space which is separable if 1 ≤ p < +∞ and reflexive for 1 < p < +∞. (See
[36, Proposition 9.1].)

2. Verify the Examples A.1.3.
3. If X and Y are Banach spaces, prove that every linear operator T : X −→ Y

such that T (A) is relatively compact for all bounded set A ⊂ X is continuous.
4. Prove that the composition of a continuous operator with a compact operator is

also a compact operator.
5. Prove that the restriction to H 1

0 (�) of the inverse K of the Laplacian operator
given in Sect. 1.2.5 is compact from H 1

0 (�) into itself.
6. Let � be a bounded subset of R

N . Prove:
(a) For every two Hölder exponents 0 < μ < ν ≤ 1, the inclusion C0,ν(�) ⊂

C0,μ(�) is compact.
(b) Deduce that the restriction to C0,ν(�) of the inverse K of the Laplacian

operator given in Sect. 1.2.5 is also compact from C0,ν(�) into itself.
7. If X = Y = C(�) and f ∈ C1(R), show that the Nemitski operator associated

to f , i.e., F : X −→ Y given by F (u) = f ◦ u, u ∈ X, is differentiable and
F ′(u)[v] = f ′(u)v, for every u, v ∈ X.

8. Let a ∈ Lr(�), b ∈ Ls(�), r , s ≥ 1, be such that

|f (x, u)| ≤ a(x)+ b(x)|u|p/q.

Find r , s in such a way that the Nemitski operator f maps Lp(�) into Lq (�).
9. Let q0 > 0 and q ∈ C(RN ) be such that q(x) > q0 for every x ∈ R

N . Prove that
the space

E = {u ∈ H 1(RN ) :
∫
[|∇u|2 + q u2

]
< +∞}.
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endowed with the norm

‖u‖2
E =

∫
[|∇u|2 + q u2

]

is a Banach space such that E ⊂ H 1(RN ) with continuous embedding.
10. If A ∈ L(X,Y ) is invertible, show that the map F : A −→ A−1 is differentiable

and dF (A) : B −→ −A−1BA−1. Hint. Use the fact that if T ∈ L(X,X) with
‖T ‖ < 1, then (I − T ) is invertible and

(I − T )−1 =
∑

(− 1)kT k.

Exercises related to Chapter 2

11. Let h ∈ C([0, 1]), k ∈ C([0, 1]×[0, 1]) be continuous functions. If f : R −→ R

is a Lipschitz function with constant L, prove the following assertions.
(a) The operator K : C([0, 1]) −→ C([0, 1]) defined by

Ku(x) =
∫ 1

0
k(x, y)f (u(y)) dy , 0 ≤ x ≤ 1 ,

is linear and bounded.
(b) The Hammerstein integral equation

u(x)−
∫ 1

0
k(x, y)f (u(y)) dy = h(x) , 0 ≤ x ≤ 1 ,

has a unique solution u ∈ C([0, 1]) provided that L ‖K‖ < 1.
12. Let f : [a, b] × R −→ R be a continuous function which is increasing in the

second variable, i.e., for every fixed x ∈ [a, b], the function f (x, y) is increasing
in y ∈ R. Prove that if v, w ∈ C([a, b]) satisfy v(x) ≤ w(x) for every x ∈ [a, b]
and

v(x) ≤
∫ b

a

f (x, v(x)) dx and
∫ b

a

f (x, w(x)) dx ≤ w(x),

for every x ∈ [a, b], then there exists u ∈ C([a, b]) such that v(x) ≤ u(x) ≤ w(x)
and

u(x) =
∫ b

a

f (x, u(x)) dx,

for every x ∈ [a, b].
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Exercises related to Chapter 3

13. Let k ∈ C([0, 1] × [0, 1]) be a continuous function and consider the operator
K : C([0, 1]) −→ C([0, 1]) defined by

Ku(x) =
∫ 1

0
k(x, y)u(y) dy , 0 ≤ x ≤ 1 .

Prove that if λ belongs to the resolvent ρ(K) of K , then there exists δ > 0 such
that the integral equation

λu(x) =
∫ 1

0
k(x, y)[u(y)+ u(y)2] dy + h(x) , 0 ≤ x ≤ 1 ,

possesses a solution u ∈ C([0, 1]) for every h ∈ C([0, 1]) satisfying ‖h‖∞ ≤ δ.
14. Let ϕ : R −→ R be an increasing function of class C1 in R \ {0} satisfying

ϕ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

n
, if

1

n
− 1

4n2
≤ x ≤ 1

n
+ 1

4n2
,

0, if x = 0,

−1

n
, if −1

n
− 1

4n2
≤ x ≤ −1

n
+ 1

4n2
.

Prove that ϕ is differentiable at zero with ϕ′(0) = 1, but it is not injective in any
neighborhood of zero.

15. Let ϕ be the function defined in Exercise 14 and consider the Nemitski operator
associated to it, F : C([− 1, 1]) −→ C([− 1, 1]), F (u) = ϕ ◦ u. Prove that F is
differentiable at u = 0 with dF (0) equal to the identity, but F is not surjective
in any neighborhood of zero.

Exercises related to Chapter 4

16. Let X = c0 be the Banach space of the real sequences x = {xn} converging to
zero with the norm ‖x‖ = max

n
|xn|. Consider the operator T : X −→ X defined

by

(T x)1 = 1+ ‖x‖
2

and (T x)n+1 = xn , if n ≥ 1.

Prove that

(a) T is continuous and maps the unit ball of X into itself,
(b) T is not compact,
(c) T has no fixed point.

Use (c) to deduce that it is not possible to define a topological degree (satisfying
all the degree properties) for such a T .
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17. Let � be a convex bounded set in a Banach space X. Suppose that T : � −→ X

is compact and T (∂�) ⊂ �. Prove that T has a fixed point.
18. (Peano’s theorem). Let f be a continuous function in a domain � ⊂ R

2. Prove
that for every (x0, y0) ∈ �, there exists at least one solution of (2.2). (Hint. Use
Lemma 2.1.3 and apply the Schauder fixed point Theorem 4.2.6 to the operator
T given by (2.5).)

19. (Improvement of Theorem 4.4.1 under more restrictive conditions) Let T : R×
X→ X be a compact map withX a Banach space. Consider the set� of the pairs
(λ, u) ∈ R×X which solves the equation u = T (λ, u). Assume that (λ0, u0) ∈ �

and let C be the connected component � that contains (λ0, u0). Prove that if each
solution in some neighborhood of (λ0, u0) is isolated with nonzero index, then
all the connected components of C \ {(λ0, u0)} are unbounded.

20. Let E = V ⊕ W with V finite dimensional. For R > 0 we denote by BV (R)
(resp. SV (R)) the closed ball (resp. the sphere) in V of radius R and center 0 and
consider

� = {h : BV (r) −→ R : h|SV (R) is the identity map}.
By using the Brouwer degree, prove that

h(BV (R)) ∩W �= ∅.

Exercises related to Chapter 5

21. Let J : X −→ R be a convex functional in a Banach space X. Prove:

(a) Every critical point of J is a global minimum.
(b) If, in addition, J is strictly convex, then it has at most a global minimum.

22. (Weierstrass counterexample) Prove that the infimum

inf

{∫ 1

−1
(tu′(t))2 : u ∈ C1([− 1, 1]), u(− 1) = −1, u(1) = 1

}

is not attained.
23. Let X = C[0, 1],

A = {u ∈ C[0, 1] :
∫ 1/2

0
u−

∫ 1

1/2
u = 1}

and � : X −→ R, �(v) = ‖v‖∞. Prove that

inf
v∈A�(v) = 1

and the above infimum is not attained in A. What can be said about the reflexivity
of X?



Exercises 189

24. Let E be a Hilbert space and M = G−1(0), with G ∈ C1,1(E, R) such that
G′(u) �= 0 on M . Prove that if u ∈ M is a local minimum constrained on M for
a functional J ∈ C1(E, R), then there exists λ ∈ R such that J ′(u) = λG′(u).

25. Let X be a Banach space and J ∈ C1(X, R). Prove that if J satisfies (PS)c,
then Kc = {u ∈ X : J (u) = c, J ′(u) = 0} is a compact set.

26. Prove that if X is a Banach space, then every functional J ∈ C1(X, R) which
is bounded from below and satisfies (PS)m at m = inf J , attains its infimum.
Compare with Corollary 1.2.5.

27. Let X be a Banach space. Prove that every functional J ∈ C1(X, R) bounded
from below and satisfying (PS)c for every c ∈ R, is coercive. (Hint. See [65].)

28. Let E be a Hilbert space and J ∈ C1(X, R) a functional satisfying the Palais–
Smale condition (PS)c at every c ≥ 0. Assume that J (0) = 0 and that u = 0
is a local minimum of J , i.e., J (0) ≤ J (u) for every u ∈ E with ‖u‖ ≤ r , for
some r > 0. Use the Ekeland variational principle to prove that if 0 < ρ < r ,
then either

inf‖u‖=ρ
J (u) > 0

or there is uρ ∈ E such that ‖uρ‖ = ρ and J (uρ) = 0. (Hint. See [51].)
29. Prove that if the mountain pass critical point is non-degenerate, then its Morse

index is 1.

Exercises related to Chapter 6

30. If X is a Banach space and L : X −→ X is a linear operator, prove that λ∗ is a
bifurcation point of the equation

Lu = λu, u ∈ X

if and only if it is an accumulation point of eigenvalues of L.
31. For F : R

2 −→ R we consider the equation

F (λ, u) = 0, u ∈ R.

(a) Prove that if F (λ, u) = λu + u3, then λ = 0 is the unique bifurcation point
of the equation.

(b) Prove that there is no bifurcation point if F (λ, u) = λ2u+ u3.

32. The following example shows that Theorem 6.1.2 fails if it is only imposed that
the geometrical multiplicity of the eigenvalue λ∗ is one. Consider E = R

2 and
F : R× E −→ R given by

F (λ, x, y) =
(
λx − y

λy

)

, (x, y) ∈ E.
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Prove:

(a) λ∗ = 0 is an eigenvalue of L(x, y) =
(−y

0

)

with algebraic multiplicity two

and geometrical multiplicity one.
(b) The equation F (λ, x, y) = 0, (x, y) ∈ E has no bifurcation points.

Exercises related to Chapters 7–13

33. Prove that if f satisfies (7.2), then the functional Jλ considered in Sect. 7.1.2 is
of class C1.

34. Give a detailed proof of Proposition 8.1.1.
35. Prove that zero is the unique solution of (11.8) for λ ≥ λ1.
36. Let f ∈ C1(R) satisfy f (0) = 0, λ1 < f ′(0) < λ2 and suppose that

limu→±∞ f (u)
u := γ± < λ1. Prove that (8.9) has exactly one positive solution

and one negative solution.
37. By using Banach contraction Theorem 2.1.2 (see Remark 8.3.5), prove the

uniqueness of solution in Theorem 8.3.3 provided that item 2 of Theorem 8.3.2
holds.

38. (A variational proof of the uniqueness of solution in Theorem 8.3.2) By applying
Exercise 21 to the functional considered in Sect. 8.3.3, prove that if the C1

function f satisfies f ′(u) < λ1, for every u ∈ R, then (8.1) has a unique
solution in H 1

0 (�) for all h ∈ L2(�).
39. Prove the claim of Remark 8.4.11.
40. Let f : R −→ R be a convex function with f (0) = 0 and u a solution of

−�u = f (u), x ∈ �

u = 0, x ∈ ∂�.
(13.2)

Prove:

(a) λu is a sub-solution for every λ > 1.
(b) λu is a super-solution if 0 < λ < 1.

41. Let f : R −→ R be such that f (t)
t

is increasing. Prove that every sub-solution
u1 > 0 and super-solution u2 > 0 of (13.2) satisfy

u1 �< u2, in �.

42. Let g ∈ C2(�) be a function such that

(a) The sets �+ := {x ∈ � : g(x) > 0} and �− := {x ∈ � : g(x) < 0} are
not empty.

(b) � := �+ ∩�− ⊂ �, and ∇g(x) �= 0 on �.

Assume also that 1 < p < 2∗ − 1, � is a bounded regular domain in R
N with

N ≥ 3, and that m ∈ L∞(�) changes sign in �+. Prove that the closure of the
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set of nontrivial weak solutions of problem

−�u = λm(x)u+ g(x)|u|p−1u, x ∈ �,
u = 0, x ∈ ∂�,

contains a bounded continuum of positive solutions bifurcating from the point
(λ1(m), 0) and also from (λ−1(m), 0). In particular, there is at least one positive
solution of the problem for every λ ∈ (λ−1(m), λ1(m)). (Hint. See [40].)

43. (Semi-positon problem) Consider the problem (9.1) where � is a bounded open
subset of R

N , λ > 0 and f ∈ C1([0,+∞)) such that f (0) < 0 and f (s) =
m∞s+g(s) with lims→+∞ g(s)/s = 0. Prove that if (9.4) holds, then there exists
δ > 0 such that (9.1) has at least one positive solution for λ ∈ ( λ1

m∞ − δ, λ1
m∞ ).

Prove similarly the existence of solution to the right of λ1
m∞ when the inequality

(9.4) is reversed.
44. Let f : R −→ R be a continuous function satisfying

∫ +∞

−∞
f (s) <∞ and lim|u|→±∞ f (u) = 0.

Consider the functional J defined in H 1
0 (�) by

J (u) = 1

2

∫
|∇u|2 − λ1

2

∫
u2 −

∫
F (u), u ∈ H 1

0 (�),

where F (u) = ∫ u
0 f . Prove:

(a) J is bounded from below.
(b) By applying Theorem 5.3.8, it has either a global minimum or a mountain

pass critical point.

45. Prove Remark 11.1.5.
46. Assume that 1 < p < 2∗ − 1 and consider the Nehari manifold N = {u ∈

H 1
0 (�) :

∫ |∇u|2 = ∫ |u|p+1}. Prove that
(a) The infimum m of J (u) = 1

2

∫ |∇u|2 − 1
p+1

∫ |u|p+1 on N is attained at a
nonzero solution of the problem

−�u = |u|p−1u, x ∈ �

u = 0, x ∈ ∂�.

(b) Verify that m is the mountain pass value of J :

m = inf
γ∈� max

t∈[0,1]
J (γ (t)),

where � = {γ ∈ C([0, 1],H 1
0 (�)) : h(0) = 0, J (γ (1)) ≤ 0}.

47. Use the Pohozaev identity to prove that every eigenfunction ϕ �≡ 0 of the Laplace
operator satisfies

∂ϕ

∂n
�≡ 0, in ∂�.
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48. Let λ > 0 and 0 < q < 1 < p < 2∗ − 1, where 2∗ is given by (7.3). Prove that
there exists λ0 > 0 such that the problem

−�u = λ|u|q−1u+ |u|p−1u, x ∈ �,
u = 0, x ∈ ∂�,

has no solution for λ > λ0, at least one solution for λ = λ0 and at least two
positive solutions for λ < λ0. (Hint. See [9].)

49. Prove that, with obvious changes, the results of Chap. 12 are also true for the
case that the dimension N = 2.

50. Prove Lemma 12.4.1.
51. Assume that the potential V satisfies (V 1)–(V 2) of Sect. 13.2 and V (x) − 1 ≡

c > 0 for every |x| ≥ 1. Verify that the abstract method in Sect. 5.6 can be
applied. (Hint. Write the auxiliary equation PI ′ε(zξ + w) = 0 as

w = −(PI ′′ε (zξ ))−1[PI ′ε(zξ )+ R(zξ , w)] := Nε,ξ (w)

and apply Theorem 2.1.2.)
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[53] Fučik, S., Remarks on a result by A. Ambrosetti and G. Prodi, Boll. U.M.I. 11 (1975), 259–267.
[54] Gallouët, T and Kavian, O., Resultats d’existence et de non-existence pour certain problemes

demi-lineaires a l’infini, Ann. Fac. Sci. Toulouse, 3 (1981), 201–246.
[55] Gámez, J.L. and Ruiz, J.F., Bifurcation of solutions of elliptic problems: Local and global

behaviour, Topol. Meth. in Nonl. Anal. 23 (2004), 203–212.
[56] Gámez, J.L. and Ruiz, J.F., Sharp estimates for the Ambrosetti-Hess problem and conse-

quences, J. Eur. Math. Soc. 8(2) (2006), 287–294.
[57] Gidas, B. and Spruck, J., A priori bounds for positive solutions of nonlinear elliptic equations,

Comm. PDE 6 (8) (1981), 883–901.
[58] Gilbarg, D. and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order,

Springer-Verlag, Berlin, 2001.
[59] Kesavan, S., Symmetrization & Applications, Series in Analysis, Vol. 3, World Scientific,

2006.
[60] Krasnoselskii, M., Topological Methods in the Theory of Nonlinear Integral Equations,

Macmillan, New York, 1964.
[61] Kufner, A., John, O. and Fucik, S., Function Spaces, Noordhoff International Publishing,

Leyden, 1977.
[62] Landesman, E. and Lazer, A., Nonlinear perturbations of linear elliptic boundary value

problems at resonance, J. Math. Mech. 19 (609) (1970), 609–623.
[63] Leoni, G., Existence of solutions for holonomic dynamical systems with homogeneous

boundary conditions. Nonlinear Anal. 23 4, (1994), 427–445.
[64] Leray, J. and Schauder, J., Topologie et équations fonctionelles, Ann. Scient. Éc. Norm. Sup.

51 (1934), 45–78.
[65] Li, S., An existence theorem on multiple critical points and its applications, Acta Math. Sci.

4 (1984).
[66] Lyapunov, A.M., Sur les figures d’équilibre peu différents des ellipsoides d’une masse liquide

homogène douée d’un mouvement de rotation, Zap. Akad. Nauk St. Petersburg (1906), 1–225.
[67] Lyapunov, A.M., Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse 2

(1907), 203–474.
[68] Marino, A. and Prodi, G., Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4)

11 (1975), 1–32.
[69] Mawhin, J. and Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag,

Berlin, 1989.
[70] McKenna, P.J. and Walter, W.,On the multiplicity of the solution set of some nonlinear

boundary value problems, Nonlinear Analysis, T.M.A. 8 (1984), 893–907.
[71] Milnor, J.W., Topology from the Differentiable Viewpoint, Princeton University Press,

Princeton, NJ, 1997.
[72] Morrey, C.B. Jr. Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York,

1966.
[73] Orsina, L. and Puel, J.-P., Positive solutions for a class of nonlinear elliptic problems involving

quasilinear and semilinear terms, Commun. PDE 26, 1665–1689 (2001).
[74] Rabinowitz, P.H., Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7

(1971), 487–513.



196 Bibliography

[75] Rabinowitz, P.H., On bifurcation from infinity, J. Diff. Equations 14 (1973), 462–475.
[76] Rabinowitz, P.H., The mountain pass theorem: theme and variations, Differential equations

(Sao Paulo, 1981), pp. 237–271, Lecture Notes in Math., 957, Springer, Berlin-New York,
1982.

[77] Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential
equations, CBMS Regional Conference Series in Mathematics, 65. Published for the Confer-
ence Board of the Mathematical Sciences, Washington, DC; by the American Mathematical
Society, Providence, RI, 1986.

[78] Rabinowitz, P.H., On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43
(1992), 270–291.

[79] Ruiz, D. and Suárez, A. Existence and uniqueness of positive solution of a logistic equation
with nonlinear gradient term, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 555–566.

[80] Schauder, J., Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171–180
[81] Schmidt, E., Zur Theory der linearen und nichtlinearen Integralgleichungen, 3 Teil, Math.

Annalen 65 (1908), 370–399.
[82] Stampacchia, G., Le Problème de Dirichlet pour les équations elliptiques du second ordre à

coefficients discontinuous, Ann. Inst. Fourier Grenoble. 117 (1965), 138–152.
[83] Stampacchia, G., Equations elliptiques du second ordre à coefficients discontinuous, Presses

Univ. Montreal, 1966.
[84] Stuart, C.A., An introduction to elliptic equations on RN , Nonlinear functional analysis and

applications to differential equations (Trieste, 1997), pp. 237–285, World Sci. Publ., River
Edge, NJ, 1998.

[85] Sweers, G., LN is sharp for the antimaximum principle, J. Diff. Equations 134 (1997),
148–153.

[86] Wang, X., On concentration of positive bound states of nonlinear Schrödinger equations,
Comm. Math. Phys., 153 (1993), 229–244.

[87] Whyburn, G.T., Topological Analysis, Princeton Univ. Press, Princeton, N.J. 1958.
[88] Ziemer, W.P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded

Variation, Springer, Berlin, 1989.



Index

Lp-theory, 10, 79, 127, 128

A
a priori bound, 38, 74, 83–85, 97, 106, 125,

143, 144
Agmon–Douglis–Nirenberg estimates, 10, 74,

80
anti-maximum principle, 97, 104
anti-minimum principle, 104

B
Banach contraction principle, 17, 19, 20, 23,

24, 58, 87, 190
bifurcation point, 61–64, 69, 70, 76, 94, 97–99,

101, 104, 105, 163, 189, 190
bootstrap argument, 73, 125
branch, 68, 94, 96, 158, 162, 163
branching point, 68–70

C
Carathéodory function, 5, 6, 106, 136
Cauchy problem, 18–20, 50, 176
chain rule, 5, 174, 176, 178
chainable point, 41
characteristic value, 12, 55, 76, 122
cone condition, 180, 181, 183
continuation theorem of Leray–Schauder, 40,

42
contraction, 17, 19, 24, 58, 87
critical point, 47–52, 56, 59, 64, 65, 69, 75,

87, 89, 118, 121, 122, 131, 134, 136,
150, 151, 156, 164, 188

constrained, 151
minimization, 48, 53, 189

constraint, 151
minimum, 6, 9, 48, 49, 54, 68, 76, 79, 89,

90, 141, 188, 189, 191
mountain pass, 52, 67, 69, 89, 110,

189, 191

non-degenerate, 52, 69, 155, 189
saddle point, 47, 52, 54, 89, 90

critical value, 47, 50–52, 134
mountain pass, 56, 153, 191

D
deformation lemma, 50, 51, 53
differentiability, 47

along directions, 4, 5, 53, 136
Fréchet, 5

Dirichlet principle, 4, 7, 9

E
eigenfunction, 11, 13, 14, 40, 81–83, 91, 98,

102, 103, 112, 115, 145, 191
eigenspace, 12, 14, 167
eigenvalue, 1, 11–14, 26, 35, 40, 49, 52, 62–65,

68–70, 72, 76, 81–86, 88, 90, 95,
104, 106, 111–113, 118, 145, 160,
161, 165, 167, 189, 190

eigenvalue problem, 10, 48, 98, 145, 167
multiplicity, 13, 68–70, 189, 190
nonlinear eigenvalue problem, 76
simple, 13, 14, 61–63, 68, 159

Ekeland variational principle, 53, 133, 134,
151, 153, 189

embedding, 3, 105, 153, 179–183
compact, 3, 4, 10–12, 152, 153, 179, 183
Rellich–Kondrachov theorem, 3, 179, 183
Sobolev theorem, 3, 8, 11, 74, 140, 179,

181
critical exponent, 73, 126, 144, 145

F
Fredholm alternative, 12, 104, 165, 166
functional, 4, 6, 9, 47–53, 55, 56, 59, 64, 69,

75, 79, 87–90, 107, 117, 122, 131,
133, 134, 136, 137, 141, 150, 153,
156, 157, 164, 166, 189–191

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 197
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2, © Springer Science+Business Media, LLC 2011



198 Index

coercive, 7, 8, 48, 80, 89, 109, 189
convex, 8, 188

strict convex, 8, 188
Dirichlet, 8
l.s.c., 6, 53, 134
nondifferentiable, 133, 136
perturbed, 53
w.l.s.c., 7, 48, 89, 108

G
global bifurcation theorem, 61, 70, 96, 131
global inversion theorem, 23, 27, 28, 83,

85, 86
fold singularities, 23, 28, 111

gradient, 4, 47, 75, 131
constrained, 51

I
implicit function theorem, 23, 25, 26, 30, 57,

62, 74, 95, 157, 159

L
Lagrange multiplier, 48, 76, 79, 80, 151, 188
Lipschitzian, 18–20, 24, 174, 176, 178, 186

locally, 18, 19, 77, 173, 182
local inversion theorem, 23
Lyapunov–Schmidt reduction, 23, 26, 27, 29,

30, 57, 62, 65, 82
auxiliary equation, 26, 57–59, 62, 65, 157,

192
bifurcation equation, 26, 62, 65

M
manifold of codimension 1, 29–31, 111, 151
maximum principle, 14, 77, 80, 90, 97, 100,

104, 116, 122, 152
minimum principle, 104
Morse index, 52, 189
mountain pass theorem, 47, 48, 51–54, 56,

68, 89, 117, 118, 121, 122, 131,
133, 153

N
Nehari manifold, 191
Nehari natural constraint, 150

O
operator

compact, 3, 10–12, 21, 36–40, 42, 44, 49,
61, 63, 64, 74, 76–78, 85, 87, 98, 99,
107, 116, 133, 143, 144, 179, 185,
187, 188

Fredholm, 12, 64
index, 12, 64

homogeneous, 49, 55
increasing, 17, 21, 76, 77
inverse of the Laplace, 10, 75, 76, 82, 86,

97, 116, 143, 185
Nemitski, 5, 6, 74, 87, 185, 187
proper, 27, 29, 31, 85, 86, 112
resolvent, 12, 187
spectrum, 12, 26, 61, 83, 113, 167
symmetric, 47, 49, 64
variational, 47, 61, 64, 65

ordering, 3, 20, 77, 178
Orlicz space, 182

P
Palais–Smale condition, 50, 52, 54, 88, 89,

107, 109, 117, 118, 189
Peano’s theorem, 20
Pohozaev identity, 123, 191
Poincaré inequality, 2, 3, 8, 13, 89,

108, 179
product rule, 174, 176

R
Riesz theorem, 47
Riesz–Fredholm theory, 12

S
saddle point theorem, 52, 89, 90
Schauder estimates, 10, 74, 84–86
Schauder fixed point theorem, 38, 74,

86, 87
separation lemma, 40, 41
singular point, 27, 35, 86, 112

ordinary, 28–30, 112
Sobolev Space, 1
Sobolev space, 1, 75, 169, 175–177, 181
spectrum

essential, 167
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