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Preface

The purpose of this book is to introduce the reader to some of the main abstract tools
of nonlinear functional analysis and their applications to semilinear elliptic Dirichlet
boundary value problems.

In the first chapter we outline some general results on Fréchet differentiability,
Nemitski operators, weak and strong solutions of the linear Laplace equation, lin-
ear compact operators and their eigenvalues and Sobolev spaces. This last topic is
discussed in greater generality in Appendix A.

Chapter 2 deals with the Banach contraction principle and with a fixed point the-
orem for increasing operators. In Chap. 3 we study the local inversion theorem, the
Hadamard—Caccioppoli global inversion theorem and the case in which the map to
be inverted has fold singularities. Chapter 4 is concerned with the Leray—Schauder
topological degree. Variational methods are discussed in Chap. 5. Minima, the moun-
tain pass theorem and the linking theorem are stated and proved. Chapter 6 deals
with local and global bifurcation theory.

The abstract results collected in first part of the book are applied in the second part
to prove existence and multiplicity results for semilinear elliptic Dirichlet boundary
value problems on bounded domains in RY. We emphasize that the choice of the
appropriate abstract tool depends on the behavior of the nonlinearity f as well as on
the kind of results one expects.

First, in Chap. 7, we outline how a semilinear elliptic boundary value problem
can be transformed into an operator equation in an appropriate Banach or Hilbert
function space. In Chap. 8 we consider the case in which, roughly, f is sublinear at
infinity and one can prove a priori estimates for possible solutions. In this case one can
use degree theory or variational methods or the global inversion theorem. Chapter
9 deals with asymptotically linear problems, for which one can also use several
different approaches such as global bifurcation or variational methods. In Chap.
10 we study problems with asymmetric nonlinearities, when the behaviors at 400
and —oo are different. If one aims to find the precise number of multiple solutions,
the most appropriate approach turns out to be the global inversion theorem in the
presence of fold singularities. But one can also use sub- and super-solutions jointly
with degree theoretical arguments. Nonlinearities that are superlinear at infinity are
considered in Chap. 11 by means of the mountain pass or linking theorems.
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In all of the preceding chapters we do not consider more general sophisticated
versions of problems, but prefer to study model cases containing the main features
of the arguments without unnecessary technical details.

The last two chapters of the book are concerned with slightly more advanced
topics of current research. In Chap. 12 a class of quasilinear elliptic problems is
discussed using critical point theory. Here the corresponding Euler functional is not
C', and hence a new form of the mountain pass theorem has to be proved. Chapter
13 deals with nonlinear Schrodinger equations on RY. We prove the existence of
ground and bound states as well as semiclassical states.

The book is addressed to senior undergraduate and graduate students of math-
ematics as well as to students of applied sciences, who wish to utilize a modern
approach to the fascinating topic of nonlinear elliptic partial differential equations.
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Notation

* For every s € R we consider the positive and negative parts given by st =
max{s,0} and s~ = min{s,0}. C,Cy, C,,... denote possibly different positive
constants.

» If Qis a measurable set in RY, we denote by |$2| the Lebesgue measure of € and
by [ u the integral of a function u in €2. Hence, unless it is explicitly stated, the
integrals are always understood to be on €.

* ® CC Q2 denotes that w is compactly embedded in €2, that is, the closure @ of @
is a compact subset of 2.

e IfQisanopensetin RY and « is a multi-index, namely o = («g, a2, . ..,0y), with

«; a non-negative integer, we denote by D%u the partial derivative W,
where |o| = ZZNZ , @; is the order of «. The set of all infinitely-differentiable
functions of compact support in €2 is represented by C5°(£2).

+ For a non-negative integer k and 0 < o < 1, we denote by C*%(Q) the space of
the functions whose derivatives up to order k are a-Holder continuous in . In
particular, we write C¥(Q) if « = 0. Moreover, Cé (Q) is the space of all functions
of class C! in an open neighborhood of €2 such that they vanish at the boundary
a2 of Q.

e For1l < p < 400, |lull, is the usual norm of a function u € L”(2).

* We have equipped the standard Sobolev space HOl (2) with the norm |u|| =

1/2
|Vul?
e We also denote by
Po ifN >3
2* =
400, if N <2

the critical Sobolev exponent and by S = sup{|ju|l»+ : |lu|| = 1} the Sobolev
embedding constant.

e 2 =2N/(N +2)is the Holder conjugate exponent of 2*.

* The truncature functions 7; and Gy are given by

Ti(s) = max{min{s, k}, —k} and G;(s) = s — Ti(s),

for every s € R.

xi



Xii

Notation

We denote a Banach (resp. Hilbert) space with the letter X (resp. E). The identity
operator is denoted by /. The functionals, i.e., (nonlinear) operators from a Banach
space X to R, are denoted by letters 7, H,Z, . .. In general, the operators between
different Banach spaces X and Y are denoted by letters F, G, ..., while letters
T,S,... are used for operators from a Banach space into itself.

The weak convergence of a sequence w, in a Banach space to w will be denoted
Wy, — w.

If F: X — Y is an operator between Banach spaces, we denote Ker F' = {u €
X : F(u) =0} and Range F = {F(x) : x € X}.

0 < A < A2 < A3,... denote the eigenvalues of —Au = tu, u € E and ¢;
satisfies —Ag; = A;¢; with ||g;]| = 1 and (¢; | ¢;) = 0 fori # j. We take
¢ > 0.



Chapter 1
Preliminaries

In this chapter we collect some preliminary results that we will use throughout
the rest of the book, such as Fréchet derivatives, superposition operators and weak
and classical solutions of linear elliptic equations and their eigenvalues. Sobolev
function spaces are also outlined, although a more complete treatment is postponed
until Appendix A.

1.1 Sobolev Spaces

In the classical study of boundary value problems associated to a differential equation
it is usual to add to the “local” space (in €2) in which we are searching its solution,
for instance, C¥(R2), some “global” condition. For instance, it may be required that
u € C(Q) or, in some cases, u € CX(Q). Similarly to the construction of C k(Q) from
the local space C¥(€2) by imposing the global condition (in ) of continuity in &
of the function and its derivatives up to the order k, the construction of the Sobolev
spaces WP() is a combination of local properties (weak derivatives in L. (£2))
together with a suitable “global” condition in © (the weak derivatives belong to
LP(2)).

Definition 1.1.1 If Q ¢ R" is an open subset, p € [1,4o00] and k € N, then the
Sobolev space WP (Q) is defined as the space of the functions u € L?(2) such that
for every multi-index o = («y, a2, . . ., ay) with order || < k there exists a function
Ve € LP(L2) satisfying

/go(x)va(x)dx = (—1)‘”‘fu(x)D”go(x)dx, Yo € CO(RQ).

Here and in the sequel, unless it is explicitly stated, the integrals are always under-
stood to be on 2. The function v, is called the weak derivative of u of order o and

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 1
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2 1 Preliminaries
is denoted by D%u. W*P () can be equipped with two equivalent norms:

1 .
[> i<k ID%ull] P if p e [1,+00)

leell,p =
max‘a‘kaDD‘MHoo lfp = +00.
el = Y I1D%ull.
la|<k

A particular case is the space (Hk(Q) = Wk2(Q), ||~||k,2) because the norm ||-||; ; is
the one associated to the inner product

W, V)ro = Z (D%u, D*v)12(q) -

|| <k

Since the product space of copies of L?(£2) is complete, one deduces (see Exercise 1)
that W57 () is a Banach space for 1 < p < 400, it is reflexive for 1 < p < 400
and it is separable for I < p < +o0. In particular, H kQ)is a separable Hilbert
space.

It is clear that every function in C¥(2), such that its partial derivatives up to
order k are also in L?(S2), belongs to W57 (). Meyers and Serrin proved that this
class of functions is a dense subspace of W*?(Q) provided that 1 < p < 400 (see
Theorem A.2.5).

In the study of the classical Dirichlet problem associated to the Laplace equation in
an open Q C RY, the value of the solution on 9S2 is prescribed. Thus, to give a weak
formulation of the Dirichlet problem, we need to define the value of u € WP(Q)
on 9L2. This is not trivial at all because u € LP(S2) is the equivalence class of the
functions which are equal almost everywhere in €2. We first discuss the simplest case:
What is the weak space similar to the space of C¥(2)-functions satisfying u = 0 on
dQ2? To answer this question we introduce a new space.

Definition 1.1.2 If @ ¢ R is open, 1 < p < 400 and k € N, we denote by
W(]; "’(Q) the closure of C3°(2) in the space WhP(Q). In the particular case p = 2,
we also write Wo”(Q) = HA(Q).

Observe that Wg "P(Q) with the induced norm of W*?(Q2) is a Banach space for
1 < p < +o0, it is reflexive provided that 1 < p < 400 and it is separable if
1 < p < +o00. In particular, Hé‘(Q) is a separable Hilbert space.

In general, the strict inclusion W(]; P(Q) ¢ WkP(Q) holds. Roughly, the smaller
RN \ Q is, the smaller W5?() \ Wé‘p(Q) is (see [1, Theorem 3.31]). In particular,
if @ = R¥ then Wg’p(RN) = WkP(RV) (see Proposition A.3.10).

One of the main properties of Wé () is the well-known Poincaré inequality: If
p € [1,400) and Q@ C RY is open and bounded in one direction, then there exists a
positive constant C depending uniquely on Q2 such that

c/|u|1’ §/|Vu|1’, Vu e WP (Q). (1.1)
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As a consequence, under the hypotheses of the Poincaré inequality, | Vu||, defines
a norm Wol‘p(Q) which is equivalent to ||~||1,p. In addition, if p = 2, this new norm
IVull, in HOI(Q) is associated to the inner product f Vu - Vv foru,v e H(Q).

We introduced the space Wg "?(Q) to obtain the weak formulation of the functions
that vanish on the boundary 9€2. Using this space, it is easy to state what we un-
derstand by an ordering between values on the boundary of functions in W*7 ().
Specifically, if 1 < p < 400, k € Rand u,v € W"P(Q), we say that

e u<kondQ < (u— k)" =max{u—k 0} € Wy ().
e u>kondoQ2 << —u < —konof.
e u<vondQ<=u—v<0onoaf2.
e u>vond2 <= v <uondf.
u <vonoS2

* u=vonoi2 <<
v <wuondf2.

1.1.1 Embedding Theorems

We state below the well-known Sobolev and Rellich-Kondrachov embedding the-
orems. We say that the normed space (X, || - ||x) is embedded in the normed space
(Y, |l - lly), and we denote it by X < Y, if there exists an injective linear and con-
tinuous operator / from X into Y. In this case, the operator is called an embedding.
We say that the space X is compactly embedded in the space Y, if there exists an
embedding of X in Y which is compact. An operator 7 : X — X is said to be com-
pact if it is continuous and 7'(A) is relatively compact for all bounded sets A C X
(see Definition 1.3.1 below). We state in a unique theorem a unified version of the
Sobolev and Rellich—Kondrachov theorems (see Theorems A.4.3 and A.4.9 for more
general results).

Theorem 1.1.3 If Q2 C RY is an open subset with boundary 32 of class C', k ¢ N
and 1 < p < oo, then

1. Ifk < % then W5P(Q) — L(Q) for every q € [p, N}\i';(p].
2. Ifk = % then WoP(Q) — L9(Q) for every p < q < 0.
3. Ifk > % then WP () — C%(Q2), where

k-4 ifk—%<1,
a=everya €[0,1), ifk—Y=1,

1, ifk—%>1.

If in addition Q2 is bounded, all the above embeddings are compact except for g =

Np .
N—_ip In case 1.




4 1 Preliminaries

Furthermore, if we replace the space W*P(Q2) by W(lf (), all the embeddings
(also the compact ones) hold without necessity of assuming the regularity of the
boundary 92 of Q2. O

1.2 Linear Elliptic Equations

Many applications lead to the study of minimization problems like
min / H(x,v,Vv)dx

where © is an open subset of RV and H is a function in  x RV+1,

It is more convenient to solve this problem in the weak formulation than in the
classical one. In order to do this in a more clear way, we consider the Dirichlet
principle, i.e., the problem which consists in looking for the function # such that
Vu has minimal L?-norm in the manifold of all functions with prescribed value u
on 9€2:

min{/|Vv|2dx v = onaQ}. (1.2)

Now, thinking that the simpler similar minimization problem
min {[v]* : v e Q, v* > 2}

has no solution because Q is not complete or equivalently because the set
{veQ:v?*>2} is not closed in the Banach space R, we understand that
it is a good idea to set out minimization in the completion (with respect to the
L?(Q)-norm of the gradient) of the functions with value uo on . This means that
we study the Dirichlet principle as

rvréi/? JW)

with the functional 7 : X = H'(Q) — R given by J(v) = f|Vv|2dx and
A={eH Q) :v—uye HI(Q)}, for some uy € H'(Q).

1.2.1 Fréchet Differentiability

Let X, Y be Banach spaces, u € X and consideramap F : X +> Y. In the particular
case that Y = R, F is called a functional. We say that F is differentiable at u € X
along the direction v € X if there exists

F - F
Lu [V] = llH(l) —(U + t‘;) (14) .
t—

Elementary examples on X = R? show that F can be differentiable along every
direction without being continuous.
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We say that F is (Fréchet) differentiable at u € X if there exists a linear continuous
map L, : X —> Y such that

F(u+v)— F) = L,vl+o(lvID, as]v]|— 0.

The map L, is uniquely determined by F and u and will be denoted by d F'(u) or else
F’(u). It is easy to see that if F is Fréchet differentiable, then it is also differentiable
along any direction. Conversely, if F is differentiable along any directions, L, €
L(X,Y) and the map u — L, is continuous from X to L(X,Y), then F is Fréchet
differentiable.

The Fréchet derivative has the same properties as the usual differential in
Euclidean spaces. For example, if X,Y,Z are Banach spaces, F : X +— Y,
G : Y — Z and F is differentiable at u € X, resp. G is differentiable at F'(u) € Y,
then the composite map G o F is differentiable at # and the following chain rule
holds:

D(G o F))[v] = dG(F(w)[d F(u)[v]].

One can also define higher derivatives, partial derivatives and so on. In particular, the
second derivative will be denoted by d ’F (u). For more details, the reader is referred,
e.g., to Chaps. 1 and 2 of [17].

1.2.2 Nemitski Operators

Let f : @ x R — R. The Nemitski operator associated to f(x,u) is the
superposition operator

frux) = fx,ulx))

defined on the class of measurable functions u : & — R. If there is no possible

misunderstanding, we will use the same symbol f to denote the Nemitski operator

associated to f(x, u). Here and below Q denotes a bounded domain in RV,
Suppose that f(x, «) is Carathéodory, namely:

1. f(x,.)is continuous in R for a.e. x € ,
2. f(.,u) is measurable in €2 for all u € R.

Letus point out thatif f(x, u) is Carathéodory then the Nemitski operator f maps any
measurable function u(x) to a measurable function f (). The continuity and Fréchet
differentiability of Nemitski operators are collected in the following theorems. We
omit the proof, referring the reader to Sect. 1.2 of [17].

Theorem 1.2.1 Suppose that f(x,u) is Carathéodory and that there exist a,b € R
such that

|f(x,u)| <a+blulPl, pg=>1.

Then the Nemitski operator f is continuous from LP(S2) to L1(2). |
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Theorem 1.2.2 Suppose that f(x,u) is Carathéodory and that f(x,.) is differen-
tiable with respect to u with derivative f,(x,u) which is Carathéodory. Moreover,
let p > 2 and suppose that there exist c,d € R such that

| fulx,u)] < ¢+ dulP~2.

Then the Nemitski operator f is differentiable on LP(S2) with differential df (u) :
v fu(wv. O

Remark 1.2.3 (i) It is possible to prove that if the Nemitski operator f maps L7(2)
into L9(2) then f € C(LP(2), L1(R2)).

@ii) Let f(x,u) and f,(x,u) be Carathéodory functions and | f,(x,u)| < const.
Then one can show that f : L2(Q) — L*(2)is differentiable along every direction.
On the other hand, if f is Fréchet differentiable at some u* € L?(2) then there exist
measurable functions a(x), b(x) such that f(x,u) = a(x) + b(x)u.

1.2.3 Dirichlet Principle

Problem (1.2) is solved by using the Weierstrass theorem.

Theorem 1.2.4 Let 7 : A — R U {400} be a lower semicontinuous functional
defined on a compact topological space A. Then J is bounded from below and it
attains its minimum.

Proof We only give here the proof for the case in which 7 is sequentially lower
semicontinuous' and A is sequentially compact. Define

inf{7(v) : v € A}, if this infimum exists

—00, if the above infimum does not exist.

In any case, we can choose a sequence {v,} in A such that

lim J(v,) =«a.

n——+00

Since A is sequentially compact, there exists a converging subsequence, still denoted
{v,.}, to some point v € A. Thus the sequentially lower semicontinuity of [J implies
that
JW) <liminf 7(v,) = lim J(v,) = a.
n—+00 n——+oo
By the definition of o we get
Jv) =a,

which, in particular, means that « is finite, i.e., 7 is bounded from below. In addition,
the infimum « of J is attained at v. O

! Let us remark that every sequentially lower semicontinuous functional 7 is also lower semicontin-
uous and that, in addition, the converse holds provided that A satisfies the first axiom of countability.
See [48] for the proofs of these facts and also for a complete proof of the theorem of Weierstrass.
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If the dimension of X is infinite, the hypothesis on the compactness of A is
very restrictive provided that we consider the topology induced by the norm. To
overcome this difficulty we assume that X is reflexive and J is coercive, i.e.
limye4, ju)|—+o0c J () = 400. Indeed, the coerciveness allows us to reduce the min-
imization in A to A N B(0, R) for some R > 0 large enough. Since the closed ball
B(0, R) in a reflexive space is weakly compact, it is easy to deduce the following
result.

Corollary 1.2.5 If X is a reflexive Banach space, A is a weakly closed subset in X
and J A —> Risaw.ls.c.? coercive functional in A, then there exists u € A such
that

Jw) =min{J(v) : v € A}. O
Now, we are ready to prove the Dirichlet principle.

Corollary 1.2.6 (Dirichlet principle) Let 2 be an open bounded setin RN . For every
fixed uy € H'(Q), there exists a unique function u € H'(Q) satisfying that u — uy €
H}(Q) and

(i) [A={ve H(Q) : v—u € HOI(S'Z)}, then
/|w|2 :minf |Vy|?
veA

/Vu-Vv:O, Vv € H) (),

(ii) u satisfies

u = ugon d.

Remark 1.2.7 A function u € H'(S) satisfying (ii) of the above corollary is called
a weak solution for the boundary value problem (in the sequel, b.v.p.)

—Au=0, xeQ
u=uy, x € 0.

In general, we have the following definition.

Definition 1.2.8 Given i € L*(Q2), we say that u € H'(Q) is a weak solution of the
problem
—Au=h, xe&
u=uy, x €I

if it satisfies

/VwVv:/hv, VveHol(Q),

and u = uy on 9S2.

2 Although the notion of semicontinuity had been previously used in other fields, e.g., the Lebesgue
integral, it was L. Tonelli who introduced this notion for the first time in the calculus of variations.
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If N > 3, by the Sobolev embedding (see Theorem 1.1.3), every function h €
L2N/IN+2(Q2) belongs to the dual space H () of Hjj (). Then one can substitute
the space L?(R2) by L*N/™V+2(Q) in the previous definition.

Proof of Corollary 1.2.6 Consider X := H'(2) and define the Dirichlet functional
J : X — R by taking

J(v):/|Vv|2, veX.

We begin by observing that 7 is coercive in the weakly? closed set A. Indeed, from
the Poincaré inequality (see Proposition A.3.12), for any v € A we have

fv2=/[(v—u0)+u0]252/(\)—140)24-2/14(2)

§2C1/|V(V—Mo)|2+2/“5

5401/|Vv|2+4c1/|w0|2+2/u3,
/|w|2 > Cz/v2 e

where C, Cs, ... denote different positive constants. From the above inequality one
can easily deduce the coerciveness of 7 in A.

The proof of the semicontinuity of J is based on the convexity of the square
function |£|%, £ € RV . Indeed, this means that

&% > |&0l* + 2&0 - (€ — &o), VE,& € RY.
Taking £ = Vw and §y = Vu, withv,w € H'(), it follows that

i.e.

J(W)ZJ(V)JrZ/VV-(VW—VV), (1.3)

for every v,w € H'(Q) and thus 7 is convex. In particular, if w = v, is weakly
convergent to vin H 1(Q), we have

lim Vv-(Vv, —=Vy) =0
n——+00
and therefore
liminf J(v,) > J().
n——+00

The uniqueness is due to the strict convexity* of ;7 (which is also due to the strict
convexity of |£]?).

3 Note that A is clearly convex, thus it is sufficient to observe that A is closed in the topology of the
norm.

4 That is, the strict inequality in (1.3) is satisfied for every v # w € H'(Q).
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To prove (ii), it suffices to note that, for every fixed v € HO1 (€2), the function
u+tv € A, forevery t € R, and the real function

o)=Ju+1tv), teR

has a minimum at ¢t = Q. Therefore,

Jw+1tv) — T (u)
t

0=¢/(0) = lim

2t [Vu-Vv+12 [|Vy]?
_ i 2L Ve Vv 2 IV
t—0 t

=2/Vu-Vv.

O
The next application will be about the b.v.p.
—Au=nh, xe
u=0, xeoQ, (1.4
with h € L*(Q). In this case the Euler functional is 7 : H{ () —> R given by
1
JW) = 5/ |Vy|? — /hv, v e Hy(Q). (1.5)

Corollary 1.2.9 For every fixed h € L*(2), consider the functional J defined in
HOI(Q) by (1.5). Then there exists a unique u € HOI(Q) satisfying

Jw) = min J(®).

veH (Q)

In particular, u is a weak solution for the b.v.p. (1.4).

Proof Similar arguments to the ones for the Dirichlet principle can be used to show
the corollary. The details are left to the reader. O

Remark 1.2.10 Above we have dealt with the Laplace operator for the sake of sim-
plicity, only. It can be substituted by any second order uniformly elliptic operator

like
— Z 9 a;i(x) ou + c(x)u
8)Ci Y 8Xj ’

where a;;(x) and c(x) are bounded and measurable on Q, ¢(x) > 0in £ and a;;(x) =
aj;(x) is uniformly elliptic, namely

Jo >0 : ) a(0)EE > algl’, Vx € Q, V& e RV,
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1.2.4 Regularity of the Solutions

The regularity of weak solutions of (1.4) are stated in the following theorem.

Theorem 1.2.11 1. If 3K is of class C"' and h € LP(Q) for some p € [2,+00)
then the unique weak solution u € Hol(Q) of (1.4) belongs to W>P(Q2) and

lullw2r < CllAllLr,

for some C > 0. In particular, if h € C(Q) then u € C'(Q).
2. Ifo2is of class C*™, 0<v<1,andh € C™(Q), thenu € C*"(Q) is a classical
solution of (1.4) and
llullczr < C Aoy,

for some C > 0. m}

The former inequalities are known as Agmon-Douglis—Nirenberg estimates or
LP-theory. The latter ones are the Schauder estimates.

1.2.5 The Inverse of the Laplace Operator

For an open bounded set Q2 in RY, we can define a linear operator K : L*(Q) —
HOI(Q) by setting K(h) = u, the solution of (1.4). By the compact embedding
Theorem 1.1.3, K is compact as a map from L*(S) into itself. In addition, the
restriction of K to HO1 (R2) into itself is also compact (see Exercise 5).

Similarly, we can use the Schauder estimate given in Theorem 1.2.11 to consider,
for instance, K as a map from C 0v(Q) into itself. The Ascoli compactness theorem
implies that K is also compact (see Exercise 6). Moreover, using the last statement
in Theorem 1.2.11-1, it can be verified that K is compact as a map from C(2) into
itself.

1.3 Linear Elliptic Eigenvalue Problems
Let © C RY be an open and bounded subset, r € (§,00) N (1,00) and m € L"(Q)
a function (weight). We consider the weighted eigenvalue problem

—Au = m(x)u, x € Q2

u=0>0, x € 092. (1.6)

That is, we look for pairs (A,u) € R x (Hol(Q) \ {0}) such that (1.6) holds in the
weak sense, i.e.,

/W -Vvdx = ,\/muvdx, Vv € H) (Q). (1.7)
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In this case, we say that A is an eigenvalue and u an associated eigenfunction.
By the Sobolev embedding theorem (see Theorem A.4.3), we have

LAN/(N=2)(Qy), iftN >3
Hy(Q) —
L'(Q) (Vt > 1), ifN <2.

Since m € L"(2) we observe then that

LAN/IN+2)(Q), ifN >3
mu €
LY(Q) (Vt e (1,r)) ifN <2,

and thus the right-hand side of (1.7) is well defined.

Clearly, A = Oisnot an eigenvalue of (1.6). Hence, we devote our attention to look
for nonzero eigenvalues of this problem. In order to do so, we consider H = H} (Q2)
and for a fixed number #; in (1, r) we pick

N, ifN=>3
p:
to, if N <2.

Given f € LP(R2), let w = K f be the unique (weak) solution of the problem

—Aw=f, xeQ
w=0, xe€dQ.

Note that, in this way, the operator K : LP(2) — H is linear and continuous. We
define also the operator T : H — H by Tu = K(mu) for everyu € H, i.e., Tuis
the unique point in H satisfying

/VTWVV:/muv, Vv € H. (1.8)

It is easy to verify that T is linear and symmetric (i.e., (T'u,v) = (u, Tv), for every
u,v € H).

1.3.1 Linear Compact Operators

In this subsection we give a short survey on linear compact operators, which will
play a fundamental role in dealing with elliptic boundary value problems. For more
details and proofs we refer to [36]. The following definition has already been given
Section 1.1.1.

Definition 1.3.1 If X and Y are Banach spaces, an operator 7 : X — Y is compact
if it is continuous and 7 (A) is relatively compact for all bounded sets A C X.
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Let us remark that the composition of a continuous operator with a compact operator
is also a compact operator (see Exercise 4). For example, the operator T given by
(1.8) is compact. Indeed, if {u,} C H is weakly converging to au € H, by using the
compact embedding of H into L'(2) for ¢ € [1,2*), we deduce that this sequence is
strongly converging in L’(£2) and, hence, applying the Holder inequality, we obtain

{mu,} — muinL?(2)

from which, the continuity of K implies that {T'u, } is strongly converging in H to Tu
and T is compact. For compact operators, the Fredholm alternative applies yielding
the following.

Theorem 1.3.2 Let X be a Banach space and let T : X —> X be linear and

compact. Then:

1. Ker[I — T1]is finite dimensional;

2. Range [l — T1] is closed, has finite codimension and Range [l — T] = Ker[I —
T*|%, where T* denotes the adjoint of T;

3. Ker [ —T]={0} & Range[l —T]=X. O

Remark 1.3.3 A linear operator L : X — X is called a Fredholm operator if
dim Ker L < oo and Range L is closed and has finite codimension. In this case,
the index of L is dim Ker L — codim Range L. In particular, the preceding theorem
states that I — T is a Fredholm operator of zero index.

Let T' be compact and set A, (1) = T'(u) — yu.
Definition 1.3.4 The resolvent of T is the set
p(T)={y e R : A, is bijective from X to itself}

The spectrum o(T') of T is defined as o(T) = R\ p(T). A y € R such that
Ker[A,] # {0} is called an eigenvalue of T and Ker[A,] is called eigenspace
associated to the eigenvalue y. We also say that u € R is a characteristic value of T
if the kernel of the operator u +— w7 (1) — u is different from {0}.

Remark 1.3.5 If y ¢ o(T)then the closed graph theorem implies that A,, is invertible
and has a continuous inverse [36, Corollary 2.7].

Concerning the spectrum of 7', the Riesz—Fredholm theory provides the following
result.

Theorem 1.3.6 Let T be linear and compact. Then o(T) is compact and o(T) C
[=NTI, T \]. Furthermore, if X is infinite dimensional, one has:

1. 0ea(T),
2. Everyy € o(T)\ {0} is an eigenvalue of T ;
3. Either o (T) = {0}, or o (T) is finite, or o (T) \ {0} is a sequence which tends to 0.

Moreover, for every y € o(T) \ {0}, there exists m > 1 such that

Ker[A}] = Ker [A*'], V& =m, (1.9)
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and there holds
Range[A’;,] = Range[Ag‘,“], X = Ker[A}/] ® Range[A)]. O

Definition 1.3.7 The multiplicity of an eigenvalue y of T is, by definition, the least
integer m such that (1.9) holds. When m = 1 we say that the eigenvalue is simple.

1.3.2 Variational Characterization of The Eigenvalues

Let T be defined by (1.8). Then A € R\ {0} is an eigenvalue of (1.6) if and only if
A is a characteristic value of T'. Applying Theorem 1.3.6, we deduce the following
result (see also [47]).

Theorem 1.3.8 Assume that Q@ C RY is bounded and open, r € (%, oo) N (1, 00),
and m € L"(Q). Consider the sets Qy = {x € Q : m(x) >0} and Q_ =
{x € Q : m(x) < 0}. The following assertions hold.

(i) 0 is not an eigenvalue of (1.6).
(ii) (a) If the Lebesgue measure |2, | of Q24 is zero, then (1.6) has no positive
eigenvalue.
(b) If |24| > O, then the positive eigenvalues of (1.6) define a nondecreasing
unbounded sequence {A,},en C (0,+00). In addition, A, is characterized
by

1
— = sup inf {/m(x)bﬁ(x)dx : / Vu(x)|> dx = 1,u € F}
)‘-n FeF,
where F, = {F C H : F is a subspace with dim F = n}.
(iii) (a) If |2_| = O, then (1.6) has no negative eigenvalue.
(b) If |Q2_| > O, then the negative eigenvalues of (1.6) define a nonincreasing

unbounded sequence {A_, },en C (—00,0). Inaddition, A_, is characterized
by

O

= inf sup {fm(x)uz(x)dx : / |Vu(x)|2 dx =1,u e F}
Ap FeF,

Remark that the eigenvalues ), have associated eigenfunctions u, € H()'(Q). How-
ever, by the regularity results, if d€2 and m are smooth, then u, € C 2(ﬁ) and, hence,
they are eigenfunctions in a classical sense.

If m =1, then @ = Q4 and 1/A; = sup{ u? : [ |Vu|* = 1}, and consequently
A1 is the best constant in the Poincaré inequality (1.1) for p = 2.

Corollary 1.3.9 (Best constant for the Poincaré inequality) If Q2 C RY is open and

bounded, then
by =min{/|Vu|2 Cue Hy (), fu2= 1}.
O
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Remark 1.3.10 Every minimizer ¢ is an eigenfunction.

It is possible to prove that the eigenvalues of (1.6) are continuously depending on
the weight m. For simplicity, we assume that m > 0.

Proposition 1.3.11 Assume that @ C R is open and bounded, r € (5,00) N
(1,00) andm € L'(S).

(i) If m € L"(2) satisfies m(x) < m(x) a.e. x € Q, then for all j > 1 there holds
Aj(m) = X ;(m)

with strict inequality provided that, in addition, |{x € Q : m(x) < m(x)}| > 0.
(ii) If m, € L"(2), m, > 0, is converging in L" () to m with

N/2, ifN >3
Hh =
€ (max{%,l},r], if N =2,

then for all j > 1 there holds

nEr-kr—loo Aj(my) = A j(m). O
One of the main properties of the first positive and negative eigenvalues A, A_; of
(1.6) is that they are simple and the associated eigenfunctions have a sign.

Theorem 1.3.12 (Simplicity of the first eigenvalues) Assume that Q@ C RN is open
and bounded, r € (%, oo) N(1,00)and m € L" ().

(i) If |S24| > O then the first positive eigenvalue Ay of (1.6) is simple (with one
algebraic and geometric multiplicity) and its associated eigenspace is spanned
by an eigenfunction ¢ € Hy () such that ¢1(x) > 0 a.e. x € Q. In addition,
A1 is the unique positive eigenvalue having an associated eigenfunction which
does not change sign.

(ii) If |2_] > O then the first negative eigenvalue _; of (1.6) is simple and its
associated eigenspace is spanned by an eigenfunction ¢_, € H0' (2) such that
¢_1(x) > 0 ae x € Q. In addition, A_, is the unique negative eigenvalue
having an associated eigenfunction which does not change sign. m}

Corollary 1.3.9, Proposition 1.3.11 and Theorem 1.3.12 are closely related to the
maximum principle. First, we give the result for the classical formulation.

Theorem 1.3.13 (Maximum principle) Let Q be a bounded domain in RN with
smooth boundary and let u € C*(2) N C(Q) satisfy

—Au>Au, inS
u=0, ondS.

If A < Ay then u > 0 in Q2. Moreover, either u > 0in Q2 oru =0 in Q2. a

Similarly, we have the following result for the weak formulation of the problem.
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Theorem 1.3.14 Assume that m € L®(Q2) with m™ := max{m,0} # 0,0 < h €
L*N/WNED(Q) and u € HJ () is a solution of the problem

—Au=imu-+h, inS
u=20, on 082.

If » < Ay thenu > 0 (a.e.) in Q. Moreover, if h > 0 in a set of positive measure,
then u > 0 in Q. O






Chapter 2
Some Fixed Point Theorems

In this chapter we discuss the classical Banach contraction principle and a fixed
point theorem for increasing operators that will be used in connection to sub- and
super-solutions of elliptic boundary value problems.

2.1 The Banach Contraction Principle

Let X be a complete metric space. An operator T : X — X is a contraction if there
exists o € (0, 1) such that

dx(T(w), T(v)) < adx(u,v), Vu,velX, (2.1)
where dx (1, v) denotes the distance from u to v in X.

Remark 2.1.1 From (2.1) it immediately follows that T is continuous.

Theorem 2.1.2 If X is a complete metric space and T is a contraction on X which
maps X into itself, then there exists a unique z € X such that T(z) = z.

Proof Existence. For any fixed uy € X let us define the sequence u; by setting
wy1 = T(uy), keN.
One has that for every j > 1
dxjpr,uj) =dx(T;), T(uj—1)) < adx(uj,uj_)
and this, by induction, implies
dx(uji1,u;) < ol dy(uy, up).

Then, it follows that

k k
dx (Uiq1,up) < de(uj-&—huj) < Z(Xj dx (uy, up).
j=h j=h

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 17
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_2, © Springer Science+Business Media, LLC 2011
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Since 0 < @ < 1, u; is a Cauchy sequence. Let z € X be such that uy — z. Passing
to the limit into u;+; = T (u;) and using the fact that T is continuous, it follows that
7=T(2).

Uniqueness. Let 71,7, € X be fixed points of T. From this and (2.1) we infer

dx(z1,22) = dx(T(z1), T(z2)) < adx(z1,22).

Since @ < 1, it follows that z; = z,. |

As a typical application of the Banach contraction principle we can prove the exis-
tence and uniqueness of solutions of the Cauchy problem for a first order differential
equation. This will be achieved by transforming the differential problem into an
equivalent integral equation.

Let (xg, yo) be a point in a domain 2 C R2. For a continuous function f : @ —>
R, we consider the Cauchy problem

v =rfx,y)
{)’(Xo) = Yo. 22

By a (local) solution of (2.2) we mean a C! function y(x) defined in some interval
(a,b) C Rsuchthat (x, y(x)) € Qand y'(x) = f(x, y(x)) forevery x € (a, b) which
passes by the point (xg, yo), i.e. y(x0) = yo.

Lemma 2.1.3 The Cauchy problem (2.2) is equivalent to the integral equation
y(x) = o +/ [, y(@)dt. (2.3)
X0

Proof 1f y(x) satisfies (2.3) then, clearly, y(x9) = yo. Moreover, differentiating one
finds

Y'(x) = fx, y(x).

Hence y(x) is a solution of (2.2). Conversely, let y(x) be a solution of (2.2).
Integrating from xg to x the identity y'(x) = f(x, y(x)) we get

f y'(t)dt = / f(t, y(1))dt.

0

Using the initial condition y(xp) = yo we deduce (2.3). O

Definition 2.1.4 We say that f(x,y) is locally Lipschitzian with respect to y at
(x0, ¥o) if there exist a neighborhood U of (x¢, yo) and L > 0 such that

[fG, )= fO,yDl < Lly—wl, Y&y, y)el. (2.4)

If the preceding relationship is valid in all the domain 2 of f we say that f is
(globally) Lipschitzian on €2 with respect to y.
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Obviously, any function f whichis C! withrespectto y in Q is locally Lipschitzian
on 2 with respect to y. On the other hand, any Lipschitzian function with respect
to y is continuous in the variable y. But the converse is not true. For example,
f(x,y) = +/Ty] is not Lipschitzian at (0, 0).

Theorem 2.1.5 Suppose that f(x,y) is continuous and locally Lipschitzian with
respect to 'y at (xo, ¥o). Then the Cauchy problem (2.2) has a unique solution y(x)
defined in a neighborhood of x.

Proof Letl =[xy — §,x9 + 8] with

. [1 a
0<d<mni{—,—¢,
L M
where a, L > 0 are chosen in such a way that (2.4) holds in U = [x¢g — a,x¢ + a] X
[yo —a,yo +al and M = sup, i, | f(x, y)|. We will use the Banach contraction
principle to show that the equivalent integral Eq. (2.3) has a unique solution in /.
Let also denote by X the Banach space C (/) endowed with the sup norm

[IyIl = sup |y(x)]
xel
and consider the ball B in X of radius a centered at yy, that is,
B={yeX:|ly—yll <al}.
Define the operator T : X +— X by setting

X
Tyl(x) = yo +/ [, y@))dt. (2.5)
X0
First of all, let us show that T(B) C B. Actually,

IT[yl(x) —yol <M < a.

Taking the supremum in /, we find ||T[y] — || < @ and hence T'[y] € B. Next,
we show that 7' is a contraction on B. Actually, using the fact that f is locally
Lipschitzian we get

IT[y](x) = T[y1](x)| < / Lf (2, y(0) = f@, y1(0)|dt

s/ LIy(@) — yi@)ldt < 5L |ly — yill.

0

Taking again the supremum in /,

T [yl =Tyl <L |y — »ll.

Since L < 1, T is a contraction. Using the Banach contraction principle, we infer
that 7" has a unique fixed point y* on B. From T[y*] = y* we deduce

V) = TIy 1) = yo + / £ty ().

Therefore y* is the (unique) solution of (2.3) we were looking for. m]
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Remark 2.1.6 Observe that the existence result proved above is local. Indeed, the
interval of existence I = [xy — 8,x9 + 8] depends on L, M, and on the initial

condition. The following example shows that the local result is the only one we can
hope for. Consider the Cauchy problem

y =y
y@©0)=p > 0.

y(x) =

One checks that

1— px

satisfies the Cauchy problem. The maximal interval of definition of this solution is
(0, p~") and depends on the initial condition. Let us point out that f(y) = y? is not
globally Lipschitzian.

Remark 2.1.7 If Qis astrip Q = {(x,y) : a < x < b, y € R} and f is globally
Lipschitzian on this strip, then (2.2) has a unique solution defined on all (a, b) (a can
be —oo and/or b can be +00).

Remark 2.1.8 If f is not Lipschitzian, butis merely continuous, itis possible to prove
that (2.2) has a solution, defined locally near x, (Peano’s theorem, see Exercise 18),
though the uniqueness can fail. For example, the problem

vy =yl
y(0)=0,

has infinitely many solutions: one is y = 0; in addition for any a > 0 any function

for |x| < a,
(x —a)lx —al, for|x|=a,

yx) = {(1)

4
is also a solution.

In the next chapter, as a second application of the Banach contraction principle,
we will prove the local inversion theorem (see Theorem 3.1.1).

2.2 Increasing Operators

In this section we will discuss another iteration scheme on ordered Banach spaces.
Let X be a Banach space endowed with an ordering < such that (linear ordering)

vw=av+z<aw+z, Vvw,zeX, Va=>0.

We write w > v if and only if v < w. We will also suppose that the norm in X is
related to the ordering by the fact that there exists C > 0 such that

O<v=w= vl = Clwl. (2.6)
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We say that an operator 7 : X — X is increasing if
v<w=TWw)<TWw), Vv,welX.

If v € X satisfies v < T(v), it is called a sub-solution of the fixed point equation of
T, T(u) = u. Similarly, w € X is a super-solution if 7(w) < w.
Given a sub-solution v € X, we define an iteration scheme by setting

Uy =v
{uk+1 = T(uk), k= ],2, N (27)

Lemma 2.2.1 Let T : X — X be an increasing operator and suppose that there
exist a sub-solution v € X and a super-solution w € X of the fixed point equation of
T such thatv < w. Then the sequence uy, given by (2.7) satisfies v < uy < upy1 <w,
forallk =0,1,....

Proof We argue by induction. By the definition of sub-solution, for k = 0 one has
u; = T(up) = T(v) > v. Moreover, from u; > u;_; and the fact that T is increasing
we infer that T (u;) > T (ux—;) and hence

uprr = T () > T(up—1) = .
Similarly, one has that uy = v < w and, if u; < w, the fact that 7T is increasing and
the definition of super-solution yield uz+1 = T(u) < T(w) < w. O

Theorem 2.2.2 Let T € C(X, X) be compact and increasing and assume that there
exist a sub-solution v € X and a super-solution w € X of the fixed point equation of
T satisfying v < w. Then the sequence uy; given by (2.7) converges to some u € X
such that T (u) = u. Moreover, v < u < w.

Proof Since, by Lemma 2.2.1, 0 < uy — v < w — v, the property (2.6) implies that
luell < llux —vIl + vl < Cllw = vl + |Ivll < Cy.

Since T is a compact operator, the sequence 7T () is relatively compact and, up
to a subsequence, it converges to some u € X (actually by the monotonicity property

of u;, the whole sequence converges). From u;; = T (u;) and the continuity of
T, we infer that u = T(u). Moreover, again using Lemma 2.2.1, it follows that
v=u=<w. O

Remark 2.2.3 By the definition of u;, u = limy_, o 1 is the minimal fixed point of
Tin{ze X :v<z<w}l

Later on, Theorem 2.2.2 will be applied to the study of the existence of solutions
of nonlinear elliptic boundary value problems via sub- and super-solutions (see
Sect. 7.2).






Chapter 3
Local and Global Inversion Theorems

This chapter deals with the local inversion theorem and the implicit function theorem
in Banach spaces. The Lyapunov—Schmidt reduction is discussed in Sect. 3.3. In
Sect. 3.4 we prove the global inversion theorem, which goes back to Hadamard and
Caccioppoli. Section 3.5 deals with a global inversion theorem in the presence of
fold singularities.

3.1 The Local Inversion Theorem

Let X, Y be Banach spaces and let F : X — Y. In the study of the existence of pairs
(u, h) satisfying the equation F(u) = h, it may occur that a “trivial” solution (ug, h)
(i.e., F(ug) = ho) is known. The local inversion theorem is a classical result that
allows us to solve an equation F(1) = h in a neighborhood of (ug, k).

Theorem 3.1.1 Let uy € X and hy € Y be such that F(ug) = ho and suppose that
there exists a neighborhood Uy C X of ug such that

(i) F e C'(UpY);
(ii) dF(up) is invertible (as a linear map from X to Y ).

Then there exists a neighborhood U C Uy of ug and a neighborhood V. C Y of
ho such that the equation F(u) = h has a unique solution in U, for all h € V.
Furthermore, denoting by F~' : V. — U the inverse of F|, one has that F~" is of
class C' and there holds for every u € U

dF~'(h) = [dFw)]™", where F(u) = h.

Proof Up to translations, we can assume that uy = 0 and o = 0. In order to
apply the Banach contraction principle (see Theorem 2.1.2), we let L = d F(0) and
consider the map F : Uy — U, defined by setting

F(u)=u— L™ Fu).
With this notation, u solves F(u) = h if and only if u satisfies
F(u) +L7"h=u,

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 23
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that is, u is a fixed point of Fj(u) := F(u) + L7 'h. Let r > 0 be such that the
closed ball B, = {u € X : |lu|| < r} is contained in Uy. Since F is C' in Uy, then
dF(w) — dF(0) = L asw — 0. Therefore, given « € (0, 1), there exists § € (0,r)
such that

sup | = L™ odF(W)| < «,

Iwll<é

(I denotes the identity map in X). From the mean value theorem we infer

IF@) — FO)Il < sup |1 — L™ o dFow)|l llu— vl < arflu—v]. (3.1

lIwll=<s
for every u, v € Bs. From this and using F (0) = 0, we also infer
IEx@ll = IF) + L™kl < aljull + |L"hll, Yue Bs.
Choosing ¢ > 0 such that ||[L™'4| < (1 — «)8 provided ||k|| < &, we obtain
[Fa@ll <8, YueBs, V[hl <e.

In conclusion, if ||| < ¢, then Fj, maps Bs into itself and is a contraction in Bs. By
the Banach contraction principle, it follows that Fj, has a unique fixed point z;, € B;
such that F(z,) = h.

_ To show that F! is continuous, we set u = F~'(h), v = F~'(k), namely
Fw)+ L™ '"h =uand F(v) + L'k = v. Therefore,

lie = vl < [1F) — FO) + 1L~ 1A — Il
and using (3.1) we infer
lu = vl < ellu—vil + IL7" ] 1A = k]
This implies that

[P
lu—v| < m”h—kﬂ (3.2)

and proves that F~! is continuous (in fact, Lipschitzian). To complete the proof, we
have to show that

F~'(k)y — F~'(h) — [dFW)] ™'k — h] = o(llk — hl]). (3.3)

From the differentiability of F' we infer F(v) — F(u) — d F(uw)[v — u] = o(||v — ul]),
namely k — h = d F (u)[v — u] + o(||v — u||). This implies that [d F (u)]"'[k — h] =
v — u 4 o(||v — ul|). Substituting into (3.3) and taking into account that v = F~!(k)
and u = F~(h), we get

F (k) — F~'(h) — [dF )] 'k — h] = o(||v — ul).

Finally we use (3.2) to infer that o(||v — u||) = o(||k — h]|), and this completes the
proof. O
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Remark 3.1.2 If F is of class C*, k > 1, it is possible to show that F~! is also of
class C*.

Remark 3.1.3 If F is not C' but merely differentiable at u, then the assertion of
Theorem 3.1.1 is not satisfied. Indeed, elementary examples with X = Y = R show
that F can fail to be locally injective (see Exercise 14). In addition if X = Y has
infinite dimension, one can exhibit cases in which F is neither locally injective nor
surjective (see Exercise 15).

3.2 The Implicit Function Theorem

The implicit function theorem deals with the solvability of an equation as F (A, u) = 0,
where A is a parameter. To simplify the notation, we will suppose that A € R, although
the more general case in which A € R” is quite similar.

Theorem 3.2.1 Let X, Y be Banach spaces and fix (rg, ug) € R x X. Assume that F
is a C' map from a neighborhood of (g, o) in R x X into Y such that F(\g, up) = 0
and suppose that d, F (L, up) is invertible. Then there exist a neighborhood A of
Mo and a neighborhood U of uy, such that the equation F(A,u) = 0 has a unique
solution u = u(\) € U for all » € A. The function u()) is of class C', and the
following holds:

U (ho) = —[dy F (ro, )]~ ds F (Mo, o). (3.4)

Proof Let Ay C R denote a neighborhood of 1y and Uy C X a neighborhood of 1
suchthat F € C'(Ag x Uy, Y). Let us consider the auxiliary function S : Ag x Uy —
Ag x Y defined by setting

SA,u) = (A, F(A,u).

We want to apply the local inversion theorem (Theorem 3.1.1) to S at (X9, #p). The
derivative d S(Ag, up) is the map

(a,v) = (a,dy F (Ao, ug)oe + d, F (Ao, ug)[v]).

Let us consider the equation d S(Ag, up)[e, v] = (B, k). It is immediate to check that
this equation has a unique solution given by

a=p8, v=I[dFo u)l " (h —dF(ro,uo)B),

and this implies that d S(Ag, ug) is invertible. A straight application of the local in-
version theorem to S(A,u) = (A,0) yields a C 1 map R, defined in a neighborhood
A x U of (A9, 0), such that S o R(A,h) = (A, h) for all (Ag,h) € A x U. This means
that the components (R (X, k), Ry(X, h)) of R satisfy

Ri(Ah) =X, F(A, Ry(A, h)) =h,

and hence u(A) := R, (1, 0) is the function we are looking for. In order to find u'(%), it
suffices to remark that F' (A, u(A)) = O for all A € A. Taking the derivative at (Ag, o)
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we get
dy. F (ho, uo) + [dy F (ho, uo)' (ro) = 0,

and hence (3.4) holds. This completes the proof. O

3.3 The Lyapunov-Schmidt Reduction

In the sequel we will frequently deal with an equation like
Lu+ Hu)=Au, ucekE, 3.5)

where for simplicity E is a Hilbert space, L : E — FE is linear continuous and
H € C'(E, E)is such that H(0) = 0, H'(0) = 0. Setting F(A,u) = Lu+ H(u)— \u,
one has that F'(1,0) = Oforall A € R. In order to apply the implicit function theorem,
we calculate

d,F(A,0)[v] = Lv+ H'(0)[v] — Av = Lv — Av.

Therefore, the implicit function theorem applies provided A ¢ o (L), where o (L)
denotes the spectrum of L (see Definition 1.3.4). In this case, the trivial solution
u = 0 is the unique solution of (3.5) in a neighborhood of zero. Otherwise, we are in
the presence of a singularity and we can use a procedure that goes back to Lyapunov
and Schmidt (see [66, 67, 81]). Roughly, one splits the equation Lu + H (1) = Au in
a system of two equations, into which one equation can be uniquely solved, while
the other one inherits the effects of the singularity.

Let us suppose that A* is an eigenvalue of L and let Z = Ker (L — AI), where 1
denotes the identity map in E. Z is closed and there exists a closed subset W C E
such that E = Z @ W. Let P : E — Z denote the projection onto Z and set
Pu = zand w = u — Pu. Let us point out that Lu = Lw. With this notation, (3.5)
is equivalent to the system

Lw+ PH(z+w) = Aw, (3.6)
(I —P)H(Zz+w)= Az (3.7

The former is called the auxiliary equation and the latter the bifurcation equation.

Lemma 3.3.1 For all (A,z) € R x Z, the auxiliary equation (3.6) has a unique
solution w = w(A, z) which is of class C'. Moreover there holds: w(x,0) = 0,
w,(A,0) = 0, and the derivative w; := dyw(A,0) of w with respect to A is also zero.

Proof Consider F :RxZxW — W, defined by F(A, z,w)=Lw+PH(z+w)—
Aw. One finds that F,,(A, 0, 0) is the restriction of L — A1 to W, which is invertible.
Therefore the implicit function theorem applies and yields w(A, z) with the stated
properties. As for w;, it suffices to take the derivative with respect to A of (3.6). One
finds that wy, satisfies Lw;, — Aw; = 0 and hence w; = 0. The derivative w,(A, 0) can
be found by differentiating Lw + P H(z +w) — Aw = 0. Since H'(0) = 0, one finds
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Lw,(x,0) — Aw,(,0) = 0, and this, taking into account that w,(A,0) € W, implies
w,(A,0) = 0. O

Remark 3.3.2 If H € CK(E,E) then w is of class C* too, and the derivatives
déw(k,z),i = 1,...,k,canbeevaluated by differentiating Lw+ P H (z+w)—Aw = 0
with respect to z.

Remark 3.3.3 The Lyapunov—Schmidt reduction procedure can be carried out if
F € CK(R x X,Y), where X and ¥ are Banach spaces.

3.4 The Global Inversion Theorem

Let F be a map between two metric spaces X, Y.

Definition 3.4.1 We say that F : X — Y is proper if F~'(C) :=={u e X : F(u) €
C} is compact for all compact sets C C Y.

Remark 3.4.2 Any proper F maps closed sets into closed sets.

Proposition 3.4.3 Let F € C(X,Y) be proper and locally invertible in X. Then for
every v € Y the set F~'({v}) is finite and its cardinality is locally constant.

Proof Since F is proper, F~!({v}) is compact. Moreover, since F is locally invert-
ible on X, F~'({v}) is discrete and therefore F~!({v}) is finite. Let u;, i = 1, ..., k,
be such that F(u;) = v. Since F is locally invertible, there exist neighborhoods
U; C X ofu; and V C Y of v such that F is a homeomorphism between U; and V.
We want to show that there is a neighborhood W C V such that the cardinality of
F~({w}) is k, for every w € W. If not, there exists a sequence v, € V with v, — v

.....

Therefore z € | J,_, Ui, a contradiction. O

.....

The singular points of F, denoted by ¥ = ¥ (F), make up the set of u € X where
F is not locally invertible. We also define

So=F Y F(X), Xo=X\ 20, Yo=Y\ F(2). (3.8)

The following proposition extends Proposition 3.4.3 to maps with singularities.

Proposition 3.4.4 If F € C(X,Y) is proper, then the cardinality of F~'({v}) is
locally constant on every connected component of Y.

Proof 1t suffices to consider the restriction of F to Xy which is locally invertible on
Xo and is proper as a map from X to Yp. O

We are now in position to prove the following global inversion theorem.

Theorem 3.4.5 Suppose that F € C(X,Y) is proper and let us also assume that
Xy is arcwise connected and Yy is simply connected, where X and Y are given by
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(3.8). Then F is a homeomorphism from X onto Yy. In particular, if ¥ = () then F
is a global homeomorphism from X onto Y.

Proof The factthat F(X() = Y, follows immediately from Proposition 3.4.4. Let us
prove the injectiveness. We will be brief, referring to [17, pp. 48-52] for a complete
proof.

First, consider the square O = [0, 1] x [0, 1] and take any u € Xy. Let S €
C(0Q,Yy) be a continuous surface such that S(0,0) = v := F(u). It is possible to
show that for every such u and § there exists a unique R € C(Q, Xo) such that
FoR=S.

Next, suppose by contradiction that there exist up, u; € Xo and v € Y; such that
F(u;) = v,i = 0,1. By assumption X is arcwise connected and hence there is a
path p € C([0, 1], Xo) such that p(0) = ug and p(1) = u;. The imageg = Fop
is a closed curve in Y, which is simply connected. Thus there exists a homotopy
h € C(Q,Yy) such that for all (s,¢) € Q there holds

h(s,0) =q(s), h(s,1)=v, h,t)=nh(,t)=nv.

From the previous step we can find a unique surface R € C(Q, Xp) such that
R(0,0) = up and F o R = h on Q. It is easy to check that the following facts
hold:

R(1,0) = uy;

F(R(0,1)) = h(0,t) = v;
F(R(s,1)) = h(s, 1) = v;
F(R(1,t)) = h(1,t) = v.

bl

It follows that R is constant on the set

({0} x [0, 1]) U ([0, 1] x {1}) U ({1} x [0, 1]) .

Then R(1,0) = R(0,0) = uy, a contradiction with point 1. O

3.5 A Global Inversion Theorem with Singularities

In this section we will deal with a case in which the previous global inversion theorem
does not apply. The first result in this direction has been given in [16].
Let X, Y be Banach spaces and let F € C%(X,Y). We set

¥ = {u € X : dF(u) is not invertible}.

We shall suppose that u € ¥’ is an ordinary singular point, namely it satisfies

(i) 3¢ = ¢, € X, ¢ # 0, such that Ker [d F(u)]) = Re¢:
(ii)) Range [d F(u)]) is closed and has codimension 1;
(i) d*F(u)¢,$] & Range [d F(u)]).
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The following theorem gives a precise geometric description of the range of F.

Theorem 3.5.1 Let F € C*(X,Y) be proper and suppose that the singular set ¥’ is
nonempty and connected and every u € X' is an ordinary singular point. Then % is
a connected C' manifold of codimension 1 in X.

Moreover, assume that F(u) = v has a unique solution for every v € F(X').
Then F(X') is also a connected C' manifold of codimension 1 in Y and there exist
Yo, Yo C Y, which are nonempty, open and connected, with the properties

1. Y=YyUY,UF(Z);
2. the equation F(u) = v has no solution if v € Yy, a unique solution if v € F(Z')
and precisely two solutions if v € Y».

Above, by a manifold of codimension 1 in X we mean that, locally, ¥ = G~1(0) for
some G € C'(X,R) such that dG(u) # O forall u € X.

The proof of this theorem will be carried out through several lemmas. In the sequel
v = F(u). First of all, since any u € X’ is an ordinary singular point, there exist
W C Xand Z C Y suchthat X = R¢p@® W and Y = Z dRange [d F(u)]. Moreover,
we can choose ¥ € Y* \ {0} such that Range [d F(«)] = Ker[¢/]. Let z € Z be such
that (¢, z) = 1 and let P(v) = (i, v)z denote the projection onto Z.

Next, given v € Y we look for € X such that d F(u)[t¢ + w] = V. Using the
Lyapunov—Schmidt reduction, this equation is equivalent to the system

{ P dF@[t¢ + w] = P7. 3.9)

(I — P)YdF@It¢ +wl=( — P)V.

Lemma 3.5.2 X' is a C! manifold of codimension 1 in X.

Proof The map (I — P)d F(u) is invertible as a map from W to Range [d F(1)] and
there exists ¢ > 0 such that (I — P)d F(u) is also invertible provided |[u — u|| < e.
Set A =[(I — P)dF@)]~'(1 — P) in such a way that

w= AV —tAdF@)[¢].
Then (3.9) becomes

{(i) tPdF@)[¢] + PdF@[AV — tAdF@)[¢]] = PV. (3.10)

(ii)w= AV —tAdFm)[g].
If PdF)[¢] — AdF@m)[¢] # 0 system (3.10) has the unique solution given by

Py — P dF@[AV]
PdFw)[¢] — AdFw)¢]
W= AV —1AdF@[¢).

0
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Therefore, # € ¥’ N B, (1) whenever

G) := PdFw[¢] — AdFu)[¢] = 0.
Since
dGw)[¢] = Pd*F(w)¢,$] = (¥, d*Fu)¢, $1),

and u is an ordinary singular point (cf. condition (iii)), then dG(u)[¢] # 0 and X’ is
a manifold of codimension 1 in X. O

Lemma 3.5.3 F(X') is a connected C' manifold of codimension 1 in Y.

Proof Letu € X’. Consider the map, defined for 7 € X with |[u — u|| < 1, by
setting W) = F(u) + G(u)z. It is easy to check that dW(u) is invertible and hence
Vs locallf\y a diffeomorleism. Since G(u) = 0 for all ue 3 it follows that, locally,
F(Z') = G710), where G = G o W~!. In addition, dG # 0 and the lemma follows.

O

In the next lemma we suppose that (V,d>F(u)[¢,¢]) > 0. The case in which
(W, d>F(w)[¢,¢]) <0 requires obvious changes.

Lemma 3.5.4 Suppose that (,d*> F(u)[¢, $]) > 0. Then there exist ,8 > 0 such
that the equation F(tp+w) = v+sz, withtp+w € Be(u) :={u € X : |[u—u| < &},
has two solutions for all 0 < s < & and no solution for all —§ < s < 0.

Proof To simplify notation, we take u = v = 0 and consider the equation F(t¢ +
w) = sz. Setting L = d F(0) we get

Lw+ w((t¢p +w) =5z, where w(0) =0, dw(0) = 0.
Using again the Lyapunov—Schmidt reduction, we find the system

Lw+ Pw((tp +w) =0,
(I - P)o((tp +w) = sz.

The first of the preceding equations can be handled by the implicit function theorem
yielding a w = w(t) of class C' such that w(0) = 0 and dw(0) = 0. Inserting w in
the second equation of the system we find

x(@) = (Y, 0(p +w()) =s.
A straight calculation yields
xX'(©0)=0, x"0)=(y,d*FO)¢,¢]) >0
and the result follows. m]

The local result stated in the previous lemma is completed by the following one.

Lemma 3.5.5 For any neighborhood U of u € ¥/ there exists a neighborhood V of
v = F(u) such that F~Y (V) Cc U.
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Proof By contradiction, there exists a neighborhood U* of u and a sequence u, ¢ U™
such that F'(u,) — F(u). Using the properness of F', we find that, up to a subse-
quence, u, converges to some u* ¢ U*. Moreover, F(u*) = F(u), a contradiction
with respect to the assumption that the equation F'(x) = v has a unique solution for
allv € F(X). O

Proof of Theorem 3.5.1 The properties of ¥’ and F(X') are proved in Lemmas 3.5.2
and 3.5.3. Since F(X’) is a (connected) manifold of codimension 1, it is possible
to show that ¥ \ F(X’) has at most two connected components; see [17, p. 60].
Lemma 3.5.4 jointly with Lemma 3.5.5 imply that the equation F(u#) = v has zero
or two solutions for v ¢ F(X'). Therefore Y \ F(X') has precisely two components
proving statement 1. As for statement 2, it follows from the preceding discussion
and the fact that the cardinality of F~!(v) is constant on every connected component
of Y \ F(X). O






Chapter 4
Leray-Schauder Topological Degree

To study the number of solutions of equations like
d(u) = b,

where € is an open set in a Banach space X, ® : @ —> X and b € X, and based
on a similar idea of Brouwer for continuous maps defined in finite-dimensional
spaces, Leray and Schauder [64] introduced a topological tool, called the degree. It
consists in assigning an integer number d(®, €2, b) with the property that the equation
has at least one solution provided that d(®, €2,5) # O (the existence property). In
addition, it is desired to have an additivity of the degree, namely if the equation
has only solutions in two disjoint open subsets 2, 2, of €2, then deg (D, 2,b) =
deg (D, 21, b) + deg (P, 2,,b).

The topological character of the degree is due to the fact that, roughly speaking,
it is possible to deduce the existence of a solution of ®(u) = b by showing that
the map can be continuously deformed (by a homotopy) on a map @, for which
the existence of a solution of the equation ®y(u) = b is known. We point out that
this homotopy property is in general not satisfied for the function #(®, 2, b), the
number of solutions of ®(u) = b in Q. Indeed, it suffices to think of the example
Q=(-33)CcX=R,b=0and &,(x) = (x — 1)* — A2(x — 1). In this case,
for A € (0, 1] the equation ®;(x) = 0 has exactly three solutions 0, A, 2A, while for
A = 0 there is just one solution, x = 0. This example shows that the definition of
d(®, 2, b) requires some care.

In this chapter we discuss in detail the Leray—Schauder topological degree, which
will be a fundamental tool for the applications to nonlinear problems in infinite-
dimensional spaces. It is based on the the finite-dimensional Brouwer degree which,
for the sake of brevity, is only sketched in an initial section.

4.1 The Brouwer Degree

The Brouwer degree is now a well known tool, discussed in several books, like [2, 15,
44, 71]. For this reason we will limit ourselves to give the definition of the Brouwer
degree and to outline its main properties without proofs.
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Let Q be a bounded open subset of RV and consider a map f € C(Q,R") and
apoint b € RN \ f(3S2). The above assumptions will always be understood in the
sequel.

To define the Brouwer degree first we fix some notation. Let f € C(Q,RM) N
C'(,RM). If the components of f(x) are f;(x), we denote by f’(x) the Jacobian of
f at x, namely the matrix

8f] afl afl
a_xl(x)’ a—xz(x), M(x)
af2 0f2 af2
8_x1(x)’ a—xz(x), M(X)
dfv . Afv, ofy
a_xl(x)’ a—xz(x), m(x)

and by J¢(x) the determinant of f’(x). We denote by R the class of all triples ( f, €2, b)
such that f € C(Q,RY)(M C'(Q,RY) with Q abounded opensetinRY, b ¢ f(3Q)
and where b is a regular value of f in Q, namely f'(x) is invertible for every x € Q
satisfying f(x) = b.

The definition of the Brouwer degree is given through several steps.

Step 1. Definition of the Brouwer degree in the class JR. Assume that ( f, 2, D) € R.
The set {u € Q : f(u) = b} is finite because b is a regular value of f and 2 is
bounded. In this case one defines the degree by setting

deg(f.Q.b):= > sign(J(x)). (4.1)
f(x)=b

Example 4.1.1 Consider a linear, invertible! continuous map L : RY — RN Let
Aj (j = 1,...,k) denote the characteristic values of L (see Definition 1.3.4). If 1
denotes the identity map in RY, we claim that

deg(I — L,B,,0)=(—1" r >0, 4.2)

where B is the sum of the algebraic multiplicities m; of A; € (0, 1).

First let us remark that O is a regular value of f = I — L because A = 1 is not a
characteristic value of L. For the same reason the only solution of f(x) =0isx =0
and (4.1) becomes

deg(I — L, B,,0) = sign (J;_1(0)). 4.3)

Lo, equivalently, that A = 1 is not a characteristic value of L.
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In order to evaluate sign (J;—1(0)), let us begin by pointing out that the eigenvalues
a; of I — L are given by

Moreover, the algebraic multiplicity of «; is equal to m ;, namely to that of A;. If we
write / — L in its Jordan normal form, then its determinant is given by

Jr-1(0) = ]_[a, = ]_[ iy (4.4)

J

Here it is understood that each «; (or A;) is repeated m; times. Now, remark that
none of «; is zero because A; # 1 by assumption. In addition, the only «; which
contribute to the sign [J;_(0)] are the real a; < 0, namely the A; € (0, 1). This is
clear if o; > 0. Moreover, if one «; is complex, its complex conjugate o is also an
eigenvalue of / — L. Hence their product is positive and does not change the sign of
J1—1(0). Therefore, (4.3) yields

deg({ — L,B,,0) =sign[J;_(0)] = (— l)ﬁ, where 8 = Z mj.

0<a;<1
This immediately implies (4.2). O

Step 2. Extension to continuous maps. To extend the definition of degree to singular
values b of f, one uses the Sard lemma.

Sard Lemma Let f € C'(Q,RY) and consider the set S(f) of singular points of
frie, 6(f) =1{x € Q : Jp(x) = 0}. Then the set of singular values, f(&(f)),

has zero Lebesgue measure.

As a direct consequence, the class of functions f € C °°(§, RM) for which b is a
regular value is dense in the space C (5, RM), and therefore the degree defined for
R is uniquely extended to a continuous map in the class of triples (f, €2, b) with
f € C(Q,RY), Q abounded open set in RY and b ¢ f(9Q).

The main properties of the Brouwer degree are the following.

(P1) Normalization property: deg (I,2,b) = 1, for b € Q, where [ is the identity
map.

(P2) Additivity property: If Q2| and 2, are open, bounded disjoint subsets in {2 and
b ¢ f(Q\ (€21 NKQ)), thendeg (f,2,b) = deg(f,$21,b) +deg(f,2,b).

(P3) Homotopy property: Let H € C([0,1] x Q,R") be a homotopy. If b €
C([0, 1], RN) satisfies b(z) ¢ H(t,d%), for every ¢ € [0, 1], then deg (H(z,.), 2, b)
is constant. In particular, deg (H (0, .), 2, b(0)) = deg (H(1,.), 2, b(1)).

Actually, it has been proved in [5] that the degree is uniquely determined by the
additivity, homotopy and normalization properties. In addition, we list below other
properties of the Brouwer degree that can be deduced from (P1)—(P3). We prove the
first three properties and leave as an exercise to the reader the remaining ones.
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(P4) Solution property: If deg (f,<2,b) # 0, then b € f(2), namely there exists
x € Q2 such that f(x) = b.

Proof If b ¢ f(R2), applying (P2) with Q; = Q, = @, we have deg(f,2,b) =
2deg (f,9,b) = 0, where the latter equality is also a consequence of (P1) with
Q= Qand 2, = 0. O

(P5) Excision property: Let K C 2 be any compact set such that b ¢ f(K). Then
deg (f,€,b) =deg(f,2\ K, D).

Proof Apply (P2) with Q) = Q\ K and 2, = 0. O

(P6) Dependence on the boundary values: deg (f, €2, b) depends only on the values
of f on a2, namely if f € C(Q,R") and g€ C(Q2,R") are such that floa = gpes
then deg (f, 2,b) = deg (g, 2, D).

Proof Apply (P3) with H(¢t,x) =tf(x) + (1 —t)g(x) and b(z) = b. |

P7HIfQ c RY and f € C(Q,R"), with N > n, then deg(f,2,b) =
deg (flgngn> R NR", b). Here we identify R” with the subset R” x {0} x 77 x {0}
of RV,

(P8) Continuity with respect to b: The degree is constant for b on each connected
component of RY — £(3).

(P9) Continuity with respect to f: There exists a neighborhood U of f in C(Q,R")

such that
deg (f,€2,b) = deg(g,2,b) VgeU.

Let us remark that the neighborhood U can be chosen in such a way that b ¢ g(92)
for any g € U. Hence the deg (g, €2, b) is well defined.

4.2 The Leray-Schauder Topological Degree

The Brouwer degree has been extended by Leray and Schauder to spaces of infinite
dimension for compact perturbations of the identity.

Let X be a Banach space, and let €2 be an open subset of X. Consider a compact
map T € C(Q, X) and let ® = I — T where I denotes the identity in X. Let b € Q
be such that b ¢ ®(9<2). The Leray—Schauder topological degree (for short, LS
degree) is defined on any triple (P, €2, b) with the above properties. The class of such
(D, 2, b) is denoted by D.

Remark 4.2.1 If X = R" we recover the Brouwer degree defined in the previous
section. As a consequence, the results (and the proofs) given below can be translated
to results for the Brouwer degree.
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Since T is compact, the set ®(9€2) is closed and thus
8 :=dist (b, ®(0R2)) > 0. 4.5)

Moreover, still using the fact that T is compact, we infer that there exists a sequence
of continuous operators 7, with finite-dimensional range, namely 7,, () c R”, such
that 7, — T, uniformly, (cf. [36, Sect. 6.1]).

Setting ®, = I — T, and using (4.5) we deduce that

dist (b, ®,(0L2)) > §/2 > 0,

provided n is sufficiently large and hence deg ( (I — T,)|qnr, 2 N R”, b) makes
sense.

Moreover, using property (P7) of the Brouwer degree, there exists no > 1 such
that

deg (I — T)|gnrr » RN R",b) = const. V n > ny. (4.6)

In addition, this constant is independent of the considered approximation 7, of T,
as is shown in the following result.

Lemma 4.2.2 If S, € C(Q,R") is such that S, — T uniformly, then
deg((I — S)lonre > QNRY, D) =deg((I — T)|grr: » QNR™Y, D), Vn> 1.

Proof Since both S, and T, converge to T, then || S, — T,,|| = 0 as n — oo. Using
property (P9) of the Brouwer degree the lemma follows. O

According to these remarks, the following definition is in order.

Definition 4.2.3 If (®, 2,b) € D, then we set

deg (®,2,b) = lim deg((I — T,)|qnr» » 2 NR", b).
n—0oQ

All the properties of the Brouwer degree hold for the LS degree provided that
(D,2,b) € ®. The reader can check this claim as an exercise. Without changing
notation, we will still refer to these properties as (P1)—(P9).

It is convenient to state explicitly the form that takes the homotopy property.

Proposition 4.2.4 (Homotopy property) Let T € C([0, 1] x Q, X) be such that
T(t,.) is a compact map for all t € [0,1]. Define ®;(u) = u — T(t,u). If b :
[0,1] — X is continuous and ®,(u) # b(t) for everyt € [0, 1] and u € 0%2, then

deg (®,, Q, b(t)) = const. Vt € [0,1]. O

Example An interesting homotopy which we will consider is 7'(t,u) = t T (1) with
T compact and b(t) = b ¢ D,(02) for every ¢ € [0, 1]. In this case,

deg(I — T,R2,b) =deg(I,2,b) = 1.

A more general version of the homotopy property is stated below without proof.
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Proposition 4.2.5. (General homotopy property) Let 2 be a bounded, open subset
of Rx XandletT : Q@ — X be a compact map. For every t € R we consider the
t-slice

Q={ueX:(t,u) e}

and the map ®, : Q, — X given by
S, (u) =u—T(t,u).

If
O,(u) #b, Yue 0%,

then the topological degree deg (®,, 2, b) is well defined and independent of t. O

An application of the homotopy property of the LS degree is the fixed point theorem
proved by Juliusz Schauder [80].

Theorem 4.2.6 (Schauder fixed point theorem) If B is a closed ball of a real Banach
space X and T : B —> B is compact, then T has a fixed point.

Proof Without loss of generality we can assume that B is the closed ball B, of
center 0 and radius r. Observe that the thesis of the theorem is clearly verified if
0 € (I — T)(@B). On the other hand, if for each u € 9B, Tu # u, then, using in
addition that

tNTull <r = |lull, V¢el0,1), YucdB,

we deduce for &, = I —¢tT that 0 ¢ ®,(0B), for every ¢t € [0, 1]. By applying the
homotopy property of the degree to the family of compact operators @, we get

deg (®, B,0) =deg(/,B,0)=1.

By the existence property, this implies that ®; has a zero, i.e., T has a fixed point
in B. O

Remark 4.2.7 The key issue in the above proof has been to establish that
{u:u—1tT(w)=0forsomer €[0,1]} C B, 4.7

to apply the homotopy property. The condition (4.7) means that r is an a priori bound
of the solutions of the equation u — tT'(u) = 0.

Remark 4.2.8 As a consequence of the Dugundji extension theorem, every closed
convex set D of a normed linear space X is a retract (i.e., there exists a map R :
X —> X such that Rx = x for every x € D), and the Schauder theorem is also
true if we substitute the closed ball B by any closed bounded convex set D. Indeed,
it suffices to consider a closed ball B containing D and to apply the above theorem
to the composition operator T o R : B —> D C B.
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4.2.1 Index of an Isolated Zero and Computation
by Linearization

Assume that, for ® € C(Q,RM), uy € Q is an isolated solution of the equation
®(u) = 0, i.e., a unique solution of this equation in a neighborhood (say B, (ug) =
(v e RY 1 lu—ugll < ro} C Q) of uy. We deduce then that (&, B,(up),0) € © and
from the excision property that

deg (P, B (up), 0) = deg (P, By (u0),0), Vr € (0,rp).
This allows us to define the index of @ relative to i, by setting

§(®,ug) = lim deg (&, B, (uy). 0).

Below, if ® = I — T is C!, we show how to evaluate the index of ® relative to
ug through the index of its derivative at zero. Up to a translation, we can assume,
without loss of generality, that uy = 0. As it has been mentioned, in the sequel it is
always understood that the triples considered are (®, B,,0) € ©.

We begin with some preliminary remarks. First of all it is well known that if T
is compact, then the linear map 7(0) is also compact (see, e.g., [15, Lemma 3.17]).
If, in addition, ®'(0) = I — T'(0) is invertible (A = 1 is not a characteristic value of
T'(0)), then zero is the unique zero of ®'(0) and, consequently, deg (®'(0), B, 0) is
well defined.

Lemma 4.2.9 Suppose that ® is of class C' such that det [®'(0)] # 0. Then
deg (®, B,,0) = deg (®'(0), B, 0),
for every sufficiently small ¢ > 0.

Remark 4.2.10 Under the hypothesis of the previous lemma, there exists a small
& > 0 such that the equation ®(u) = 0 has a unique solution # = 0 in the ball B,
centered at u = 0 with radius ¢.

Proof Consider the family of maps

lcln(m), ift € (0, 1],
H(t,u) =

'Oy, ifr =0.

Clearly H(t,u) is an admissible continuous homotopy. Otherwise, there exists
(t*,u*) € [0,1] x 02 such that H(¢t*, u*) = 0. From the definition of H and since
0 ¢ 9% it follows that t* € (0, 1). Hence we have ®(t*u*) = 0, a contradiction.
Then the result follows by applying the homotopy property. O

Let x(0, 1, T'(0)) denote the set of all characteristic values A € (0, 1) of 77(0). Since
T'(0) is compact, the set x (0, 1, 7'(0)) is finite (see Theorem 1.3.6). Moreover, let
mult()) be the algebraic multiplicity of A.
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Theorem 4.2.11 Let T be of class C'(2, X) and compact. Moreover we suppose
that T'(0) is invertible. Then there holds

1(®,0) =i(9'(0),0) = (- 1P,

where?

B = Z mult (1).

r€x(0,1,77(0))

Proof LetV C X be the space spanned by the eigenfunctions corresponding to the
A’sin x(0,1,7’(0)). Then V has dimension 8 and there exists W C X such that
X =V @ W.Let P, Q be the projections onto V, W, respectively.

We claim that the homotopy H(¢t,u) = (1 — t)(u — T'(O)u) + t( — Pu + Qu)
(which is a linear map of the type Identity—Compact since —P + Q = I — 2P
where the range of P is finite dimensional) is admissible on B, (actually, on any ball
B,). Indeed, arguing by contradiction, suppose there exists (+*,u*) € [0, 1] x 9B
such that H(t*,u*) = 0. Writing v = Pu* € V and w = Qu* € W and using that V
and W are invariant by 7”(0), this means that

(1 =2t = (1 — t)T"(O)v
w=(1—1T"(O)w.

Observe that (1 — 2t*)(1 —*)"! < 1 < (1 —¢*)~! fort € (0,1) and thus, since
T'(0)|y has only eigenvalues greater than one, v = 0. Similarly, since 7’(0)|y does
not have eigenvalues greater than one, w = 0; i.e., u* = 0, a contradiction. As a
consequence, by the homotopy invariance, Definition 4.2.3 and (4.3), we obtain

deg(l - T’(O), BS’O) = deg( - P + Q9 BS,O) = deg(l - 2P’ BE90) = ( - 1)ﬂ

O

4.3 Continuation Theorem of Leray—-Schauder

4.3.1 A Topological Lemma

The following separation lemma (see [44, 87]) will be useful.

Lemma 4.3.1 Let(M,d) be acompactmetric space, let A be a connected component
of M and let B be a closed subset of M such that AN B = (. Then there exist compact
sets M and Mp satisfying

e AC My BC Mp.
b M:MAUMBandMAﬂMgz(().

2If %(0, 1, T'(0)) = @ we set 8 = 0.
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The proof of Lemma 4.3.1 is based on the notion of e-chainable points.

Definition 4.3.2 Given ¢ > 0, we say that two points a, b in a compact metric space
M are e-chainable if there exists a finite number of points x, ..., x, € M such that
x|y =a, x, =bandd(x;,x;+1) < eforeveryi =1,...,n — 1.

Clearly the relation “to be e-chainable” is an equivalence relation. Using this it is
easily proved that the set A.(a) of all points x in M which are e-chainable is open
and closed in M. As a consequence, if A is a connected set in M, then A C A.(a)
for every a € A and, by the transitivity of the relation, the set A.(a) does not depend
on the choice of the point a € A. We denote this set as A, in this case and we prove
the following result.

Proposition 4.3.3 Let A be a connected set in M and let ¢ > 0. If A, denotes the
set of points in M which are e-chainable with some point in A (thus, with all points
in A), then My = ﬂAE is connected.

>0

Proof We begin by proving that every two points in M, are §-chainable for every
8 > 0. Indeed, let b;,b, € My and § > 0. By the definition of M, each one of
the points b; (i = 1,2) is §-chainable with every point in A. The transitive property
implies then that b; and b, are -chainable.

Now, assume, by contradiction, that M is not connected, i.e., that there exist
closed sets C;, C, in M such that

My=CiUC,, CiNCy=49.

Since M, is closed (by intersection of closed sets) in the compact M, we deduce
that Cy and C, are also disjoint compact. Let § = dist(Cy, C,) > 0. Clearly, ev-
ery two points ¢; € C; and ¢; € C, are not §-chainable, contradicting our first
assertion at the beginning of the proof. Therefore, My is connected and the proof is
concluded. O

Now we are ready to prove the separation Lemma 4.3.1.

Proof of Lemma 4.3.1 1t suffices to show that there exists ¢ > 0 such that
BNA: =0. (4.8)

Indeed, if the existence of this & has been stated, then we can take M, = A,,
Mg =M\ A,.

To prove (4.8), we argue by contradiction: assume that B N A, # @, for every
& > 0. This means that fixing a € A and taking, forn € N, ¢, = %, there exists
b, € B such that a and b, are ¢,-chainable.

By the compactness of B, there exists a subsequence {bn . } of {b, } which converges
to some b € B. We claim that b € A,,, for every k € N. Indeed, given k € N, we
can choose ny > k such that d(b,,,b) < & = % and hence b is g;-chainable with
by,. Using also that n, > k, we have b,, € A,, C A, and b,, is &-chainable

Eny,
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with every point in A. The claim is proved then by applying the transitive property.
Consequently, b € kﬂNAEk = M, where the set M| is connected by Proposition 4.3.3
€

and contains A. Taking into account that A is a connected component, we get My = A
and therefore by € My = A which implies that A N B # (J, a contradiction proving
(4.8) and the lemma. O

4.3.2 A Theorem by Leray and Schauder

Let X be a real BaIEch space, let 2 be a bounded and open subset of X, leta < b
andlet T : [a,b] x Q — X be a compact map. For A € [a, b], consider the equation

P u)=u—THu) =0, uelX. (4.9,
Observe that T can be seen as a family of compact operators
T,(w) =T u), wueclX.
Similarly, we denote ®; = I — T;. Define
S ={(\u) € [a,b] x Q: ®(r,u) = 0}.

We use the notation ¥, for the A-slice of =, ie., &, = {u € Q: (A, u) € T}.

Theorem 4.3.4 (Leray—Schauder [64], (see also [50])) Assume | that X is a real
Banach space, 2 is a bounded, open subset of X and ® : [a,b] x Q2 —> X is given
by ®(A,u) = u — T(A,u) with T a compact map. Suppose also that

SO u)=u—TOu) £0, YO.,u) € [a,b] x IQ.
If
deg (®,,Q,0) # 0, (4.10)

then

1. (4.9), has a solution in 2 for everya < A < b.
2. Furthermore, there exists a compact connected set C C X such that

CN{a} x ;) #@Band CN ({b} x Xp) £ 0, (see Fig. 4.1).
Proof 1. First, observe that the homotopy property of the degree implies that

deg (®,,2,0) = const,, VA € [a,b].



4.3 Continuation Theorem of Leray—Schauder 43

Fig. 4.1 Leray—Schauder

theorem X

Therefore, by (4.10), the constant is not zero. Thus, if A € [a, b] then deg (;, €2,
0) # 0 and, in particular, from the existence property, (4.9), has a solution u;.

2. We argue by contradiction, supposing that every connected component set
C C X containing points of {a} x X, does not intersect {b} x %,, (see Fig. 4.2).
Applying Lemma 4.3.1 we deduce that there exist two disjoint compact sets M, D
C D {a} x X, and M, D {b} x X, such that ¥ = M, U M,,. It follows that there
exists a bounded open set O in [a,b] x X such that {a} x £, c C ¢ M, C O,
M, NO =@ and T(A,u) # uforu € 00,, with A € [a, b]. (We are denoting by O,
the A-slice of O, i.e., O; = {u: (A, u) € O}.)

The general homotopy property of the degree implies that

deg (®;,0;,0) = deg(d,,O,,0)

fora < A < b. By (4.10) we deduce that deg (®,, Op, 0) = 0 for every A € [a, b].
However, since ®;, has no zeros in O, we get a contradiction, proving case 2. O

Fig. 4.2 Proof of I
Leray—Schauder theorem U
by contradiction
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4.4 Other Continuation Theorems

Let X be a real Banach space and consider a compact map 7 : R x X — X. We
denote again by X the closed set of the pairs (A,u) € R x X with u a solution of
(4.9),. We prove the existence of continua of solutions in X.

Theorem 4.4.1 For)y € R, letuy € X be an isolated solution of the problem (4.9),,
such that

i(Py, up) # 0.
Then the connected component of X that contains (Ao, ug) is not bounded in R x X.

Proof We argue by contradiction and assume that the connected component, C, of
3. that contains (Ao, ugp) is bounded. Since uy is isolated, there exists §; > 0 such that

({0} x Bs; (o)) N X = {(ho, up)}. 4.11)
For 0 < § < §y, let Us be a §-neighborhood of C, that is
Us = {(Au) e R x X : dist((A,u),C) < &}

As in the proof of the previous theorem, we can take O C R x X with a0 N X =
#, (Ao, up) € O. Indeed, in the case X N dUs = @, it suffices to choose O = Us. In
the other case, since the set K = U; N X is a compact metric space, we can apply
Lemma 4.3.1 to the closed sets C and X NdUj to deduce the existence of two disjoint
compact sets A, B of K such that

K=AUB,CCA.

Taking a neighborhood of A as O we conclude the claim. Hence, the topological
degree deg (I — T;,0;,0) is well defined. Further, using the general homotopy
property we derive that deg (I — T, O;,0) is constant for values of A in a compact
interval. On the other hand, since O is bounded in R x X, there exists ¢; € RT such
that

O,=0 ifrAx&go—e1,r0+€1),

which, using that the degree relative to the empty set is zero, implies that
deg (I — T)L, O)L,O) = 0, VA e R,

and hence that deg (I — T}, O,,,0) = 0. But, by the excision property of the degree
and (4.11), 0 = deg(I — Ty,,05,,0) = 1(P,,,up), contradicting the hypothesis
i(q))uo’ M()) 7& 0. O
The next result is useful to prove existence of a continuum with a specific shape (see
Fig. 4.3).

Theorem 4.4.2 LetU C X be bounded, openandleta,b € R be such tha_t (4.9); has
no solutionin dU, for every A € [a, b], and that (4.9),, has no solutioninU. Let U; C
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Fig. 4.3 Theorem 4.4.2
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U be open such that (4.9), has no solution in 0U, and deg (I — T,,U;,0) # 0. Then
there exists a continuum C in ¥ = {(,,u) € [a,b] x X : uis a solution of (4.9),},
such that

CN(al x U #0, CN(a} x U \Uy) #0.

Proof We use the following notation:
K =(a,b] xU)N X,
A=({a} xUDNK,
B =({a} x (U\UN)NK.

Since (4.9);, has no solution in U and K is compact, we can consider K C [a,s] x U
for some s € (a, b).

We argue by contradiction and assume that the theorem is false. By Lemma 4.3.1,
there exist disjoint, compact subsets K 4, K g containing respectively A and B, such
that K = K, U K. Let O be a §-neighborhood of K4 such that dist(O, Kp) > 0.
Hence the Leray—Schauder degree is well defined in O;, = {u € U : (A, u) € O} for
every A € [a, b]. Furthermore, by the general homotopy property, we have

deg (I — T, 0;,0) = constant,
and consequently
deg( — T,,0,,0) =deg (I — Ty, 05, 0). (4.12)

On the other hand, since O N K g = @, there are no solutions of Eq. (4.9), in O, \ﬁl
and hence, by the excision property, we deduce that

deg (I — T,, O,,0) = deg (I — T,, Uy, 0) # 0.

However, by hypothesis we know that O, = @, and thus we conclude that deg (I —
Ty, Op,0) = 0. This is a contradiction with (4.12), proving the theorem. O






Chapter 5
An Outline of Critical Points

This chapter deals with variational methods. In addition to the existence of minima of
a functional, we discuss the mountain pass theorem, and the linking theorem which
are used to find saddle points. A perturbation method, variational in nature, is studied
in the last section.

5.1 Definitions

Let E be a Hilbert space and 7 € C'(E, R). Then the Fréchet derivative d 7 (u) is a
linear continuous map from E to R and hence we can define, by the Riesz theorem,
the gradient J'(u) € E of J at u by setting

(T @ | v)=dJwlv], VYveE.

Example 5.1.1 (i)If E =R" and F € C'(R",R), the gradient F'(x) is nothing but
the vector in RY with components Fy, (x),i =1,...,N.

(ii) If E is a Hilbert space with norm || - || and scalar product (- | -), for the functional
Jw) = %||u||2 one has d 7 (u)[v] = (u | v) and hence J' (1) = u.

(iii) More in general, if A is a linear symmetric operator on E and J (1) = %(Au | u),
one has d 7 (u)[v] = (Au | v) and hence J'(u) = Au.

An operator T : E — E is called variational if there exists a differentiable func-
tional 7 : E — Rsuchthat 7T = J'.

A critical point of J isau € E suchthat J'(«) = 0. A critical value c is a number
¢ € R for which there exists a critical point u € E with level 7 (1) = c¢. We will see
that, in our applications, critical points are (weak) solutions of differential equations.
Therefore, if T is a variational operator, in order to find the solutions of 7T(u) = 0 it
suffices to look for the critical points of 7, where 7' = T.

Below, we will limit ourselves to consider two classical results dealing with the
existence of minima and of saddle points of the mountain pass type.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 47
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_5, © Springer Science+Business Media, LLC 2011
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5.2 Minima

Usually the existence of minima of a functional is deduced as a consequence of the
Weierstrass theorem (see Theorem 1.2.4). For instance, by Corollary 1.2.5, every
functional J € C'(E,R) which is coercive (limyyj—o0c J (1) = +00) and weakly
lower semicontinuous (w.Ls.c.) (J(u) < liminf J(u,) if u, — u) is bounded from
below and has a global minimum, so that we have the following example.

Example 5.2.1 Consider the functional
T ) = 5 lull® = Hw),

where H € C'(E,R) is weakly continuous (namely u, — u = H(u,) — Hw))
and satisfies
[Hw)| < a1 + as|lull®,

with a;,a, > 0 and @ < 2. Then
2
Tw) = 3lull? — a) — aplull®

and since o < 2, it follows that 7 is coercive. It is well known that the norm ||u||
is w.Ls.c. This and the fact that H is weakly continuous implies that 7 is w.L.s.c.
Therefore Corollary 1.2.5 applies and yields a global minimum z € E of 7 such that
J (@) =0,1ie.,z=H(®.

Dealing with nonlinear eigenvalue problems, we shall also consider minima con-
strained on a submanifold M of E. We will focus on the specific situation for
M = G7'(0), where G € C(E,R). If G'(u) # 0 on M, then M is a smooth
manifold in E.

We say that # € M is a local minimum constrained on M for the functional
J e C'(E,R) if there exists a neighborhood U of u such that

Juw<JW), YveUNM.

If uis alocal minimum of 7 on M, then there exists A € R such that 7'(«) = AG' ().
The proof is quite similar to the elementary finite-dimensional case (see Exercise 24).
The value X is called the Lagrange multiplier.

Example 5.2.2 1f G(u) = %(||u||2 — R?), then M is a sphere of radius R and a local
minimum of J on M satisfies J'(u) = Au.

5.3 The Mountain Pass Theorem

The mountain pass theorem deals with the existence of critical points of a functional
J € CY(E,R) which has a strict local minimum at, say, u = 0. Specifically, we
assume that it satisfies the following two “geometric”’ assumptions.
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(J1) There exist , p > 0 such that 7 (u«) > p for all u € E with ||u|| =r.
(J2)3dv e E, ||v| > r, such that 7(v) < 0 = J(0).

Example 5.3.1 Let J € C'(E,R) be a functional of the form
Tw) = $ull* = 3(Au | u) — H(w),

where A is a compact linear bounded symmetric operator in E and % € C*(E,R) is
homogeneous of degree & > 2, namely H(tu) = t*H(u) forallt > Oand allu € E.
This implies that 74(0) = 0 and H'(0) = 0 as well as d>H(0)[v,v] = Oforallv € E.
Therefore one has that [7'(0) = 0 and

d*T(O0)[v,v] = [IV[|* = (Av | v) — d*HO)[v,v] = [v]* — (Av | v)

From this we infer that d>7(0) is positive definite provided (Av | v) < ||v||? for all
v € E,ie., if [[A| < I (since ||A]l = supy,=; (Av | v) because A is symmetric).
Consequently, by Theorem 1.3.6, d2.7(0) is positive definite iff all the eigenvalues
of A are smaller than 1. If this holds, # = 0 is a strict local minimum for 7, i.e., (J1)
is satisfied. Moreover, suppose that 7 % 0 and let v 7 0 be such that H(v) # 0. The
following holds:

J(@v) = 32 vIIF — 322 (Av | v) — t“ H(). (5.1
If H(v) > 0, resp. H(v) < 0, (5.1) and the fact that « > 2 implies that there exists
t* > 0, resp. t* < 0, such that 7(¢*v) < 0 and (J2) holds.

Let 7 € C!'(E,R) be a functional satisfying the assumptions (J1)-(J2). Without
loss of generality, we can also assume (to simplify notation) that . 7(0) = 0. Consider
the class of all paths joining u =0 and u = v,

['={y e C(0,1L E): y(0) =0, y(1) =}
and set

c= ;relg Jmax Ty (@)). (5.2)

Clearly, the class I is not empty and, by (J1)-(J2), ¢ > p > 0. We expect that there
exists at least a critical point of J at the min—max level c. However, even in finite
dimension, this is in general false without the assumption of additional hypotheses.
Indeed, for E = R? we have the following example due to Brezis and Nirenberg.
The functional J(x, y) = x> 4+ (1 — x)?y? has a unique critical point, which is the
origin (0,0). Since J(x,y) = x> + y*> 4+ o(x> + y?) as (x,y) — (0,0), it follows
that (0, 0) is a strict local minimum for 7, namely (J 1) holds. Moreover

Je.)=t*+1—1)P> > —o0, ast — 400

and hence (J2) holds, too.
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The additional hypothesis that we need in order to show that c is a critical value
is the following “compactness” condition:

(PS). Every sequence {u,} such that
@) J(up) = ¢,
(i) J'(un) — 0,

has a converging subsequence.

This condition is usually called the (local) Palais—Smale condition at level ¢ and
the sequences {u,} satisfying (i)—(ii) are called (P S). sequences.

Notice that (P S). is equivalent to the following two conditions:

(a) If the sequence {u,} satisfies {J(u,)} —> ¢ and |ju,|| —> 400, then there
exists ¢ > 0 such that || 7'(u,)| > c for n sufficiently large.

(b) Every bounded sequence {u,,} with {7 (u,,)} —> c and {J'(u,)} —> O possesses
a convergent subsequence.

The second one is a compactness condition which is satisfied in many cases (see
Lemma 7.1.1), while the first condition means that every sequence of points {u, } with
level near ¢ ({7 (u,)} —> c¢) and that are almost critical points ({7'(u,)} —> 0) are
a priori bounded, i.e., there exists M > 0 such that ||u,| < M.

The reader should observe that (a) is more general than the standard a priori
estimate for the solutions of the variational equation 7’ (u) = 0 (see Remark 4.2.7).
Actually, there are examples in which a functional 7 has an unbounded sequence of
critical points but satisfies the (P.S), condition for every ¢ € R (see [15, 18, 77]).

Given a € R, let us consider the sublevel 7% = {u € E : Ju) < a} of J.
The Palais—Smale condition allows us to deform sublevels [7¢ of the functional 7.
Specifically, we have the following deformation lemma.

Lemma 5.3.2 Suppose that b € R is not a critical value of 7 € C"“'(E,R) and that
(PS)p holds. Then there exist 8§ > 0 and a map n € C(E, E) such that n(J"*%) c
Jb=3. Moreover, n(u) = u forall u € J*=%.

Proof The (PS), condition and the assumption that b is not a critical value of J
mean that there exists § > 0 satisfying

1T @l =8, YueT '(b—38,b+8).
Thus, we can construct ([76]) a vector field W € C®!(E, E) in such a way that

T WIT I ifb+8 = Tw) = b -3,
W) = { 0, if J(u) < b—28,

and consider the Cauchy problem
' =W(g). ¢0) =u

Since W is bounded, it is easy to check that the flow ¢ () is defined for all ¢ > 0.
Let us point out that for any u € J**° the following holds (the dependence on u is
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understood):

dJ@"
dt

= (J(¢),(¢")) = (T (@), W(g") < 0. (5.3)

In particular, J(¢'(u)) is decreasing with respect to + > 0. Take T = 25. We
claim that n(u) = ¢ (u) is the map we are looking for. Otherwise, for some u €
JP — 7573 we have J(¢7 (u)) > b — & and W(¢*(w)) = —T ' w)|| T (w)|~* for
all0 < s < T. Hence (5.3) yields (J'(¢*), W(¢*)) = —1, and

T@"w) =T @ W) —T=TJw—-T<b+6§—T=>b—3,

which is a contradiction, proving the claim. The last statement follows immediately
from the fact that W = 0 on J%=24, O

Remark 5.3.3 The preceding proof highlights that

b is not a critical value ) , 1

and (P ), holds } &3>0 |TW| =5 Yue T (b—06b+5)).
Remark 5.3.4 Using the notion of pseudo-gradient vector field, the hypothesis that
J is of class C*! can be weakened by assuming that 7 is C'. For details we refer
to [15, pp. 120-123].

Remark 5.3.5 A deformation lemma for a functional [/ constrained on a smooth
manifold M = G~'(0) C E can also be proved. It suffices to substitute 7' with the
constrained gradient

(J' (W), G'(w)

v = J'(u) —
I = J'w) = S e

g'(w), (5.4)

which is nothing but the projection of J'(u) on the tangent space T,M = {v € E :
(G'(w | v)=0}.

We are now in position to prove the mountain pass theorem

Theorem 5.3.6 (Mountain pass) If J € C'(E,R) satisfies (J1)~(J2) and (PS).
holds, then ¢ > p > 0is a positive critical value for [J. Precisely, there exists z € E
such that J(z) = ¢ > 0 and J'(z) = 0. In particular, 7 # 0 and z # v.

Proof 1If, by contradiction, there is no critical point at level ¢, then Lemma 5.3.2
and Remark 5.3.4 allow us to find € € (0, %) and a continuous map n : E — E such
that 7(n(u)) < ¢ — ¢, for all u € E such that J(u) < ¢ + . Moreover, 7 is such
that n(u) = u provided J (1) < ¢ — 2¢. In particular, n(0) = 0 and n(v) = v. By
the definition of ¢, there exists y € I' such that max,cpo,11J(y(t)) < ¢ + €. Asa
consequence, the path o y belongs to I'. On the other hand, max;¢j0,1; 7 (noy (1)) <
¢ — & < ¢, which contradicts the definition of c. |

Remark 5.3.7 (i) J can be unbounded from above and from below.
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(i) The mountain pass critical point is, in general, a saddle point: if it is non-
degenerate, then its Morse index is 1. By definition, a critical point u of 7 is non-
degenerate if 7" (u) is invertible. In such a case, its Morse index is, by definition, the
number of eigenvalues of 7" (x) smaller than 0.

(ii1) Observe that the proof is based on the fact that every continuous curve in E
joining u = 0 with v has to cross the sphere |[u|| = r.

Expanding the preceding remark (iii), we say that a closed subset S of E links the
relative boundary 9 Q of a submanifold Q of E if SN dQ = @ and for every map
h € C(Q, E), such that h(u) = u for every u € 3 Q, there holds 2(Q) N S # @.
There are other situations in which it is possible to find a min—max critical value
of a functional J with properties similar to the mountain pass. Let us focus on
the following case, which will be used in the sequel to find solutions of an elliptic
equation. Fixing u € E \ {0}, suppose that
lim J(tu) = —oo. (5.5)

|t]—>o00
Let W denote the subspace orthogonal to Ru and assume that
inf{7(w):we W} > —oo0. (5.6)

Consider the class of paths

~

['={y e C([0, 1L E) : y(0) = —ru, y(1) = tu},
where ¢ > 1 is taken in such a way that 7 ( & ru) < inf{J(w) : w € W} and define

¢:= inf max J(y(s)),

yel sel01]

Theorem 5.3.8 If (5.5) and (5.6) hold and the Palais—Smale condition holds at the
level ¢, then € is a critical value of J.

Proof Eachy e T crosses W and hence ¢is a finite number greater than inf {7 (w) :
w € W}. Repeating the arguments carried out to prove the mountain pass theorem,
it follows that ¢ is a critical value for 7 provided the Palais—Smale condition holds
at the level ¢. i

Observe that the hypotheses (5.5) and (5.6) imply that W and a large sphere of Ru
link. More generally, it was proved by P.H. Rabinowitz that the result is also true if
the sphere is taken in a finite-dimensional subspace.

Theorem 5.3.9 (Saddle point theorem) Let E =V & W with V finite dimensional.
Assume also that J € C'(E,R) satisfies for some R > 0 that
p:=inf{Jw):we W} > max J(),
veV, |v|[=R
and (P S)z holds. If T is the set of all continuous maps h from the ball in'V of radius R

and center 0 into E such that its restriction to the boundary of the ball is the identity,
then ¢ = infjer max,=r J (h(v)) > p is a critical value for J.
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Proof Tt suffices to observe that W and the sphere in V' of radius R are linked (see
Exercise 20) and to use similar arguments to the previous ones. The details are left
to the reader. O

5.4 The Ekeland Variational Principle

As another application of the deformation Lemma 5.3.2 we will prove a version of
the Ekeland variational principle [46]. For simplicity, we will consider a specific
case dealing with a Hilbert space and a C' functional.

Theorem 5.4.1 Let E be a Hilbert space and let J € C I(E,R) be bounded from
below. Then:

1. Foreveryd > 0, thereexistsu € E suchthat J(u) < infg J+38 and || T (w)| < 4.
2. In particular, if (PS). holds for the level c = infg 7, then [J attains its infimum.

Proof Setb := infg J.If the assertion in case 1 does not hold, then an application
of Lemma 5.3.2 and Remark 5.3.3 allows the construction of n € C(E, E) which
maps the sublevel 7”*® into 7”7, contradicting the definition of b. With respect to
the proof of case 2, it is sufficient to observe that by choosing §, = 1/n,n € N, we
find a minimizing Palais—Smale sequence at level infg 7. O

The complete assertion of the general Ekeland principle [46] is the following one.

Theorem 5.4.2 Assume that (X,d) is a complete metric space and that J : X —
R U {+o00} is a Ls.c. functional bounded from below with J # +oc. If, for some
e > 0, a point u, € X satisfies J(u.) < infyx J + ¢, then there exists v, € X such
that

Te) < T (uy),
d(ug,ve) < 1,

j(Z) > j(va) - Ed(va’ Z)’ VZ 7& Ve
O

Remark 5.4.3 1. Notice that in general the functional 7 does not have to attain its
infimum. However, the above theorem states that the pertubed functional [J(z) +
ed(ve, z) does attains its infimum (at v,).

2. Itis also possible to use the general Ekeland principle to give an alternative proof
of the mountain pass Theorem 5.3.6. Indeed, we will follow this approach in
Chap. 12 to extend this theorem to functionals which are differentiable along
some particular directions.

Similar arguments to those used in Theorem 5.4.1 can be applied to prove the
existence of minima constrained on a submanifold M = G~'(0) C E such that
G € CHI(E,R). In this case, we say that the functional 7 constrained on M satisfies
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the Palais—Smale condition (P S). at level c if every sequence {u,} in M such that
J(u,) — c and Vy J(u,) — 0 has a converging subsequence.

Theorem 5.4.4 Let 7 € C'(E,R) be bounded from below on M = G~'(0) where
G'(u) #0on M. Let m := infy; J(u) > —o0 and suppose that (P S),, holds. Then
any minimizing sequence has a converging subsequence. In particular, there exists
u € M and X € R such that J(u) = m and J'(u) = LG (u).

Proof Let w, be a minimizing sequence for J constrained on M. Then by
Lemma 5.3.2 and Remark 5.3.5, there exists u, € M such that |u, — w,| — O,
J () — m and Vy J'(u,) — 0. Using the (PS),, condition it follows that u, (and
so w,) converges (up to a subsequence) to some u € M. Obviously J(u) = m and

VuJ W) = 0,ie., by (5.4), J'(u) = AG'(u) with A = (J'(w),G'W)/|G' w)||*>. ©

5.5 Another Min—-Max Theorem

The mountain pass theorem can be extended to cover the case in which # = 0 is not
a local minimum but a saddle point. As before, we assume without loss of generality
that 7(0) = 0.

Let E = V @& W, where V is a closed subspace with dim(V) = k < +o0 and
W = V. We denote by Sy (r) the sphere in W of radius 7, i.e., Sw(r) = {w e W :
lw|| = r}. We consider the following hypotheses (see Fig. 5.1).

(J3) There exist r, p > 0 such that

Jw) = p, Ywe Sy().

oN

Swr)

- -

Fig. 5.1 Linking hypotheses
(J3) and (J4)
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(J4) There exist R > 0 and w* € W, with ||w*|| > r such that, letting N = {u =
v+sw* i veV,|v| <R, s €[0,1]}, one has that

Jw) <0, YuedN.

Example 5.5.1 Completing Example 5.3.1, consider again the functional [J given
by J(u) = %||u||2 — %(Au | u) — H(u), with H a-homogeneous for some o > 2. Let

W1 > My > u3 > --- denote the characteristic values of A. If ¢; # 0 is such that
piAe; = e;, it follows that (J"(0)e; | €;) = [le;[* — (Ae; | &) = (1 — p; lles]|*.
Hence, letting V = span{ey, ..., e}, we deduce that 7”(0) is positive definite on

W=V, provided pi4+1 < 1, and this suffices to find r, p > 0 such that
Jw)=p, VYweSw(r),

and thus (J3) holds.

On the other hand, assuming in addition that 1 < p; and H > 0, we can also see
that (J4) holds as well. Indeed, letus fix w € W with [w| = l andsetV = V ®Rw.
Then, forallve S ={v € V : |[v|| = 1}, one has

1

T = [E — %(Aﬁw)} 12— "), Vt=0.

Since V is finite dimensional, there exists >0, depending only on the dimension
k+ 1 of V, such that 7(fv) < Oforallz > 7 and all v € S. Let R = max{r,7}. Take
w* = Rw and consider the set N defined in (J4). The preceding argument shows
that J(u) < O for all u = v + sw* on the part of 9N with s > 0. Moreover, J
is also smaller than or equal to zero on the part of the boundary of N with s = 0.
Actually, since 1 < py, J"(0) = I — A is semi-negative defined on V, and then
JW) = %[||v||2 — (Av | v)] — H(v) < 0. This proves that (J4) holds.

The set N can be identified with {u = (v,s) € V x [0, 1] : ||[v]| < R}. Extending the
class I', we consider the class of maps

I'n={geC(N,E): g(v,s)=(v,s), V(v,s)€dIN}.

Lemma 5.5.2 For any g € I'y, there exists ug € N such that g(u,) € Sw(r).

Proof Ifg € Ty wesetg(v,s) = (V/,s’). Define the auxiliary map g* € C(N, V xR)
by setting
g, s) = (v, s |w*|| = r).

By the definition of I'y, we have that g(v, s) = (v, s) for all (v, s) € dN. Then
g, s) = ,s|w*l =r), V(v,s)€dN. (5.7)
This and ||w*|| > r imply that

g*(v,s) #(0,0), V (v,s) € dN. (5.8)
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Actually, if the first component of g*(v, s) is zero for some (v,s) € dN, then (5.7)
yields v = 0. Hence s = 1 and, still using (5.7), we find that the second component
of g*(v,s)is |[w*|| —r > 0. From (5.8) it follows that we can evaluate the topological
degree deg (h*, Ny, (0, 0)), where Ny = int(N) is the interior of N. Consider the map
g(v,s) = (v,s||w*|| — r) and note that deg (g, Ny, (0,0)) = 1, because |w*| > r.
Since g(v,s) = g(v,s) on 9N, one infers from property (P6) of the degree (see
Chap. 4) that
deg (g", No, (0,0)) = deg (g, No,(0,0)) = 1,

and there exists (vg, sg) € N such that g*(v,, sg) = (0, 0). By the definition of g* this
means that u, = (v,, s,) verifies: g(ug) € W and [ g(ug)|| =r. |

Theorem 5.5.3 Let J € C'(E,R) satisfy (J3)—(J4) and, setting

= inf
¢ = inf max J(gw)),
suppose that (PS). holds. Then there exists z € E such that J(z) = ¢ > 0 and
J'(2)=0.

Proof ByLemma3s.5.2,forany g € I't, thereexistsu, € N suchthatg(u,) € Sw(r).
Therefore, by (J3),

max J(g(u)) = J(glug)) = p >0, Vg ely,

and this implies thatc > p > 0. The rest of the proof is similar to that of the mountain
pass theorem. O

Remark 5.5.4 1f V = {0}, then Theorem 5.5.3 becomes the mountain pass theorem.
Actually, if V = {0}, the class I'; is nothing but I" and ¢ coincides with the mountain
pass critical value.

Theorem 5.5.3 is a specific case of more general results which are referred to
as linking theorems. A linking theorem in which V has infinite dimension has been
proven in [30].

5.6 Some Perturbation Results

Let E be a Hilbert space, Z € C*(E,R) and let G € C*(R x E,R) be a family of
functionals depending on a real parameter €. We are interested in the critical points of

Zo(w) = Z(uw) + G (u),

where G, (1) = G(e, u). The functional Z plays the role of the unperturbed functional
and G is the perturbation. The specific situation we are interested in is the case in
which the unperturbed functional has a finite-dimensional manifold Z of critical
points and we look for these z € Z from which emanate solutions of Z] = 0.
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The fact that G plays the role of a perturbation term is formulated in the following
assumption:

(A1) 1G: (@Il — 0, as &— 0, uniformlyinz e Z.

Let 7. Z denote the tangent space to Z at z, let W = (7.Z)" and let P denote the
projection from E onto W. Writing u = z + w, withz € Z and w € W, and using a
Lyapunov—Schmidt reduction, the equation Z/ (1) = 0 is equivalent to the system

{ PI.(z+w) =0, (5.9

(I — P)L.(z+w) = 0.

The former equations are nothing but forms of the auxiliary equation.
We further assume that there exists ¢ > 0 such that, for & small enough,

(A2) ILPZ/(2)] 'l <c, uniformlyinze Z.

For any z € Z fixed, assumption (A2) allows us to define the map S, : B, — W
by setting

Se(w) =w — [PZ/(2)]""(PZ.(z + w)), (5.10)
where B, . denotes the ball
Bee={weW: |w| <2G (2}

Remark 5.6.1 (Al) implies that the ball B, . shrinks to w as ¢ — 0.

Let us point out that if w is such that S.(w) = w then u = z 4+ w is a solution of
the auxiliary equation.
In order to find a fixed point of S, a last assumption is in order:

1
(A3) IZ/(z +w) —Z/(2)|| < 2 uniformly inz € Z and w € B, .
C

Remark 5.6.2 (i) If Z,(u) = Z(u) + €G(u), assumptions (A1) and (A2) are trivially
verified (see also Remark 5.6.1). As for (A2), it can be substituted by requiring that
PZ"(z) be invertible. As we will see in the sequel, the invertibility of PZ"(z) is
closely related to a suitable non-degeneracy of the manifold Z.

(i) If G(e, u) = €G(u), the auxiliary equation becomes

PTz+w)+eG(z+w)=0

and can be solved near Z directly by means of the implicit function theorem, pro-
vided PZ"(z) is invertible. On the other hand, in some applications, like the one
discussed in Sect. 13.2, we need to work with perturbations in the general form
G(e,u) for which the implicit function theorem cannot be applied.

Let us show that S, has a fixed point in B, ..
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Lemma 5.6.3 For ¢ small enough, S¢(B:.) C B:. and S; is a contraction. There-
fore, S; has a unique fixed point w,, € B, .. In particular, |w, .|| < 2¢c||Z.(z)|| and
thus |we || = 0ase — 0.

Proof Forv,w € B, there exists v belonging to the segment joining v and w such
that
Se(v) = Se(w) = S, My — wl,

for someV € B, .. One has
S: O =wl=v —w—[PZ/@I" (P +D)v — w])
= [PZ/ (D] (PT()lv — w] — PT/(z +V)lv — w)).
Using (A3) we infer
IS = will < I[P/ @17"| - | PZ(2)lv — w]l — PT/(z +D)lv — wl|
Sl —wll (5.11)

IA

and this suffices to show that S; is a contraction on B, .. Furthermore, the following
holds:

IS:0) | = I[P 1" - I P, < el G-
Using this equation and (5.11) it follows that

I1S: (W)l < SOl + 1Se(w) = SO < el G + 3wl
For w € B, one has that ||w|| < 2c||G.(z)|l and hence we deduce

ISeml < 2¢llG @)II-

This shows that S.(B;.) C B, and completes the proof. O

It is now convenient to restrict ourselves to a manifold Z with coordinates £ € R”".
To simplify the exposition, we will carry out the proof in the case that £ = s € R.
The general case requires minor changes.

We will write z.(s) to denote the solution of the auxiliary equation found in
Lemma 5.6.3 and define the function w : Z — W by setting w(s) = We ¢, (5). SOme
properties of w,(s) are stated in the following lemma.

Lemma 5.6.4 The function w.(s) is of class C' and the derivative w'.(s) satisfies
[wi.(s)| = 0as e — 0, uniformly with respect to s € Z.

Proof Since w,(s) has been found by using the Banach contraction principle, it
easily follows that w is C'. To compute the derivative w/, let us remark that w,
satisfies PZ(z + w,) = 0, namely (we understand the dependence upon s)

/

Z
[4En

Tz +we) = Tz + we)(@ +wp)
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Taking the derivative we get
Z/
|z'|2
A Z/
[4E

I;/(Z + er)(Z/ + W;e) = I;/(Z + Ws)(z/ + W;)

+Z(z+w)@ +wo)z

/( )(/ / )/ Z/
+ 7 (z + w, +wez—\|—=].
£ \Z z V€2 ds |Z/|2

Let us evaluate separately each term on the right-hand side. Since w/, is orthogonal
to 7’ and w, — 0, we find

/

Z
|Z/|
Furthermore, using (A1) and again the fact that w, — 0, we infer

Tz +we) = T,(2) + Lz + Owe) = O(e), (0 €[0,1]).

T/ (z 4 we)(@ +w)

=T/(z+we) = I/(2) + O(e).

From the preceding estimates we deduce that
PT!(z + wew, = o(1).
Finally, (A2) yields that w, — O as & — O. O
Using Lemma 5.6.3 we can define the reduced functional by setting
Z(z) =Z(z4+we;), z€Z.

Theorem 5.6.4 Suppose that (A1)—(A3) hold. If z. € Z is a critical point of fg,
then u, := z + w, ., is a critical point of Z,, provided ¢ is small enough.

Proof As before we will consider again the case in which § = s € R. With this
notation, the reduced functional becomes

Zo(s) = Ze(z(s) + wey), s €R,
and s, is a critical point of fg, provided
Ti(se) = TL(a(se) + wey,) - (Z(50) +wl, ) = 0. (5.12)
Using the auxiliary equation PZ(z(s,) + w, ) = 0 we infer that
Ti(2(se) + Wes,) = a2 (se)

where
e = I;(Z(Sa) + WS,SF)Z/(SE)-

Therefore (5.12) becomes
a.7%(se) + a7 (so)wy,, = 0.

Since w;’_vs — 0 as ¢ — 0, it follows that, for & small enough, a, = 0, namely
Ié(Z(SS) + Ws,ss) =0. a
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Remark 5.6.6 1f T,(u) = Z(u) + £G(u) one finds that

To(s) = T(2(s) + We) + £G(z + wess)
= T(2(s)) + (T'@(5))s we.s) + G(2(5)) + (G (2(5)), Wes) + o[ we ).

Since Z'(z) = 0 we can use Lemma 5.6.3 to infer
T.(s) = Z(z(s)) + £G(z()) + 0(e).

Since Z(z) = const., to find the stationary points of Z it suffices to look for the stable
stationary points, e.g. maxima or minima, of G(z(s)).

Applications of the previous theorem will be given in Chap. 13 to find semiclas-
sical states of nonlinear Schrodinger (NLS) equations with potentials and to prove
the existence of standing waves for some nonautonomous systems of coupled NLS
equations.



Chapter 6
Bifurcation Theory

In this chapter we are concerned with bifurcation theory. We discuss the local bifur-
cation from a simple eigenvalue found by analytical methods, the bifurcation from
an odd eigenvalue by using the topological degree and the Krasnoselskii result on
variational operators. The Rabinowitz global bifurcation theorem is also proved.

6.1 Local Results

Let X and Y be Banach spaces and consider the equation
Fo,uy=0, uelX,

where F : R x X — Y satisfies F(A,0) = 0. We say that 1™ is a bifurcation point
of F(A,u) = 0 if there exists a sequence (A,,u,) € R x X, with u,, # 0, such that
An —> Afand F(A,,u,) = 0.

A particular case is that when X = Y = E is a Hilbert space and the equation is
given by

Lu+Hw)=Mu, ueck, (6.1)

where L : E — E is linear and compact and H € C'(E, E)is such that H(0) = 0,
H'(0)=0.
Denoting by X the set of nontrivial solutions of (6.1), namely

Yo={Au) e Rx X: Lu+ H(u) = Au, u # 0},

and taking the closure X of Xy, we see that A* € R is a bifurcation point of (6.1) if
and only if (A*,0) € X.

Lemma 6.1.1 If A* is a bifurcation point of (6.1) then \* belongs to the spectrum
of L.

Proof The equation F(A,u) := Lu + H(u) — Au = 0 has the trivial solution u = 0
for all A € R. Since H'(0) = 0, one has that d,F(A,0)[v] = Lv + H'(0)[v] — Av =

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 61
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Lv — . If A € o(L), then d, F(1,0) is invertible and the implicit function theorem
yields a neighborhood of (X, 0) such that the unique solution of (6.1) is u = 0. This
proves that X is not a bifurcation point. O

We will give below conditions under which an eigenvalue of L is a bifurcation point.

6.1.1 Bifurcation from a Simple Eigenvalue

Let us suppose that there exist A* € R and ¢ € E \ {0} such that
(L1) Z:=Ker(L —A*"I) = Rg;
(L2) the codimension of W = Range (L — A*I)is one and W = Z*.

Usually, this case is referred as the simple eigenvalue case. If (L1)—(L2) hold then
E = Z7Z & W and any u € E can be written in a unique way as u = a¢ + w, with
o € R and w € W. Moreover, we can use the Lyapunov—Schmidt reduction (see
Sect. 3.3) to write (6.1) as the system

Lw+ H(axp +w) = Aw, (auxiliary equation);
(I — P)H(ap +w) = Aag, (bifurcation equation).

According to Lemma 3.3.1, the auxiliary equation has a unique solutionw(i, ) € W,
defined in a neighborhood A x U C R x R of (A*,0) € R x R. Substituting into the
bifurcation equation, we have to look for solutions of

(I — P)H(ap + wh,a)) — Aap = 0,
which is equivalent to
S, o) :=(H(ap +wl,a)) | ¢) —ra = 0. (6.2)

Suppose that H € C*(E, E). Then the function S : A x U — R is of class C? and,
according to the properties stated in Lemma 3.3.1, S(A,0) = 0 holds, for all A € A
and Sy(A1*,0) = 0. In order to de-singularize S, we introduce the function

S\, a)
oA, a)= o

Se(A,0) ifa=0.

if o # 0;

The function o is of class C' in A x U and o(1*,0) = S,(A*,0) = 0. Moreover,

one has
SA ()"*7 (X)

0, (A",0) = lim
a—0 o
Since H'(0) = 0, a straight calculation shows:
S, (A% ) = (H'(0)[wi (A", 0)] | 9) — ¢ = —«,

and hence 0, (1*,0) = —1. Then we can apply the implicit function Theorem 3.2.1 to
o(A, ) = 0, yielding A = A(w) such that o (A(a), @) = O for all & in a neighborhood
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of @ = 0. It is clear that the family (A4, 4y) := (M), xp + w(r(a), )) is a solution
set of (6.1). Moreover, from (i, | ¢) = « it follows that u, # 0 provided « # 0. In
conclusion, we have proved the following.

Theorem 6.1.2 Let L : E — E be a linear compact operator and suppose that \*
is a simple eigenvalue of L. Moreover, let H € C%*(E, E) be such that H(0) = 0,
H’(0) = 0. Then A* is a bifurcation point of (6.1). More precisely, the bifurcation
set X is, near (\*,0), a continuous curve. O

The preceding result is a particular case of a more general one, dealing with the
bifurcation for an equation as F(A,u) = 0, where F : R x X — Y, and X,Y are
Banach spaces. Here we will limit ourselves to state a result, referring for more
details to, e.g., [16, Chap. 5] or [15, Chap. 2].

Let F € C*(R x X,Y) be such that F(1,0) = 0. We suppose that there exists
A" e R, ¢ € X such that

(F.1) Kerl[d,F(A*,0)] = span{e}.
Moreover, let Yy C Y denote the range of d, F(A*,0) € L(X,Y) and assume

(F.2) Yy is closed and its codimension is 1,
(F.3) dyuF (1", 0)[¢] ¢ Yo.

Letus point out that, inthe caseinwhich X = Y = Eand F(A,u) = Lu—Xu+ H (u),
(L1)is nothing but (F.1). Moreover, Yy = (Ker [d, F(A*,0)])* and d,  FOA5,0)[e] =
—@, and hence (L2) is nothing but (F.2)-(F.3).

Theorem 6.1.3 Let F € C*(X,Y) be such that F(,0) = 0 and assume that (F.1)—
(F.3) hold. Then & = \* is a bifurcation point for F (A, u) = 0. Precisely, from (A*,0)
branches off a curve of nontrivial solutions of F(A,u) = 0. O

6.1.2 Bifurcation from an Odd Eigenvalue

In this subsection we will give a theorem due to Krasnoselskii which deals with the
case that L and H are compact. We use the same notation as in Theorem 6.1.2. It is
also understood that H(0) = 0 and H'(0) = 0.

Theorem 6.1.4 Suppose that L and H are compact C' operators in a Banach space
X with H(0) = 0 and H'(0) = 0 and let \* be an eigenvalue of L with odd finite
(algebraic) multiplicity. Then \* is a bifurcation point for Lu + H(u) = Au.

Proof Let us remark that 1* # 0 is an isolated eigenvalue of L. Setting
O(A,u) = Lu+ H(u) — \u,

one has that ®,(A,0) = L — AI. Then there exists &g > 0 such that the unique
eigenvalue of L contained in the interval [A* — &g, A* + €] is A*. In particular, we can
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evaluate the Leray—Schauder index of u = 0 by linearization (see Theorem 4.2.11)
yielding

(PO —£,0),0)=i(L —(\* —e)[,0)=(— 1", V0 <e<e,

where B; is the sum of the algebraic multiplicity mult(A) of all eigenvalues A with
A< Af—e.
Similarly,

i( @O +6,0),0) =i(L — (A +&),00 = (— 1), VO <e < &,

where 8, = ngx* 4o mult(d). Then B, = B; + mult(A*) and, since A* has odd
algebraic multiplicity, it follows that

i(@OF + £,0),0) = —i (D — &,0),0). 6.3)

On the other hand, if by contradiction A* is not a bifurcation point, then there exists
g1 € (0, &) such that for all & € (0, &1) there holds

DA,u)#0, YrAe[A*—e A" +el, Vull=e. (6.4)
This immediately implies that
i(P(1* +¢,0),0) = i(P(A" —¢,0),0),

a contradiction with (6.3), proving the theorem. O

Remark 6.1.5 The above proof highlights that, even if L and H are only continuous
and compact operators, A* is a bifurcation point of the equation (A, #) = 0 provided
that there exists a change of the index of i(®(1,0),0) as A crosses L = A*.

6.2 Bifurcation for Variational Operators

In this section we will suppose that L and H are variational operators in a Hilbert
space E, namely:

(A)) L € L(E,E) is a symmetric Fredholm operator with index zero and there
exists a functional # € C*(E,R), for some k > 3, such that H(x) = H ().
Moreover, H(0) = H'(0) = H"(0) = 0.

Let us define J € C*(E,R) by setting
1 1
To(u) = 5)»||M||2 - E(Lu | u) — Hu). (6.5)

It follows that J) (1) = Au — Lu — H(u). Let X be the closure of {(A,u) € R x X :
Lu—+ H(u) = Au, u # 0}. Then, in this case, X is the closure of the set of the critical
points u of J, on E such that u # 0.
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6.2.1 A Krasnoselskii Theorem for Variational Operators

Theorem 6.2.1 (Krasnoselskii [60]) Suppose that (A1) holds and let A* be an iso-
lated eigenvalue of L with finite multiplicity. Then A* is a bifurcation point of
(6.1).

Proof The proof will be divided into several steps. O

Step 1. Lyapunov—Schmidt reduction. Setting Z = Ker[A*I — L], E = Z & W,
u=z+w,z€ Z, we W and letting P denote the orthogonal projection on W,
parallel to Z, the equation 7, (1) = O splits into the system given by the auxiliary
equation P J;(z+w) = 0 and the bifurcation equation ( — P).J; (z+w) = 0. Lemma
3.3.1 yields the existence of w = w(A, z) defined in a neighborhood O of (A*,0) in
R x Z such that w(A, 0) = Oand P J; (z+w(A, z)) = 0. Moreover (see Remark 3.3.2),
we CH1(O,W)and d/w(r*,0) =0V j =1,... ,k — 2. In particular,

w2l < llzIl, ¥V (&.2) €O, (6.6)

uniformly with respect to A.

Step 2. Study of the bifurcation equation. Substituting w(A, z) into the bifurcation
equation, we are led to find z € Z such that

(I = P)J(z+ w(X,2)) = 0. (6.7)

To solve Eq. (6.7) we will take advantage of the fact that we are in the variational
case. Let us define J, : Z — R by setting

Jo(2) = Tz + w(k, 2)).

Lemma 6.2.2 Ifz, € Z is a critical point of J,, then uy, = 7, +w(X, z) is a solution
of (6.1). Furthermore, if z;, # 0 and ||z;|| — 0 as |A] — A*, then u, # 0 and
lusll = O.

Proof 1If z; € Z is a critical point of J, there results
(Tw) | ¢ +dw,z)[ED) =0, Y¢eZ

Le us remark that P 7, (z + w(X,z)) = 0 for all z € Z. In particular, P 7, (u;) = 0,
namely J, (u,) € Z. Since d,w(A, z,)[¢] € W we infer

(T w) | d:wh,z)[E]) =0, V¢ € Z.

Thus (J,(uy) | ¢) = 0, for all { € Z. Using again the fact that P, (u;) = 0 we
conclude that 7, (u;) = 0. The second part of the lemma is deduced by using the
fact that d,w(),0) = 0. m|

Step 3. Finding nontrivial critical points of J, on Z. In order to find a nontrivial
critical point of 7, on Z, we will make, for the reader’s convenience, some additional
assumptions that will simplify the arguments. Specifically, we will suppose
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(A,) there is an integer k > 3 such that d/H(0) = 0,Vj = 1,... ,k — 1, and
d*H(0) # 0. Let

(V) = %dkH(O)[v]k, veeE.

(A3) The maximum M and the minimum m of &y in the boundary of the unit ball in
Z have the same sign: either M > m > Qorm < M < 0.

Let us point out that the function ¢ is homogeneous of degree k and hence (A3) is
always satisfied if k is even. Furthermore, there results

H(u) = oy (u) + o(||ul*) as [lul — 0.
Let us evaluate 7, (z). For brevity we write w instead of w(A, z). One has that
(Lz+w) [ z+w) = (Lz | 2)+ Lw | w) = A*|z|> + (Lw | w)

and hence

A—AF
2

A 1
J(2) = llzl* + EIIWII2 — 5w w) — H(z +w).

Let us remark that w satisfies P.J,(z + w) = 0. Using the specific form of .7;, one
has that P.7;(u) = A Pu— L Pu— P H(u) and the equation P 7, (z+w) = 0 becomes
Aw — Lw = PH(z + w). This implies

Miwll* = (Lw | w) = (H(z +w) | w),

and therefore

A —AF
2

1
T(z) = MW+§W&+MIM—HQ+M-

Moreover, for some s € (0, 1),
H(z+w)=H() + (H(z+ sw) | w).

Hence we find

A—A*

J.(@2) = )

1
lzlI> — H(z) + E(H(z +w) [ w)—(H@z+sw) |w). (6.8)

We now estimate the last three terms in (6.8). Let M > m > 0 (ifm < M < 0, we
simply consider —7; ) and let A* < m /(14-2%). Since H'(u) = H(u)and d’H(0) = 0,
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for all j < k — 1, there exists p > 0, depending on A, such that
IH@ < A ull*™", Viul < p,

and hence
H(z) = (@) + B@),  1B@I| < A*|zll*, Viz]l < p.

The estimate (6.6) implies that for all » < p/2 there exists g9 > 0 such that
lz+w®, I < llzll + [Iw, DIl = 2|zl <2r < p
and this yields
IH @+ w2l < 22712l Vllzl < vy ¥ 1A= 27| < g
This implies
I(Hz+w) | w) < [HE+w] Iwll < 22" z]5 Vilzll < r. V2 —1*] < e,

and
HE) = @)+ BR), BRI < A*[z]" V izl < p.
In conclusion, we can state the following lemma.

Lemma 6.2.3 Given A* < m/(1 4 2F) there exist r > 0 and gy > 0 such that

_ *k

Ji(@) = = Iz’ = () + RO, 2), (6.9)
where {
RG2) = S(H@+w) | w) = (HE+sw) [ )+ pQ)
satisfies
IRGL D < V252l + 2% llzls, Yzl <7, VA — 2% < & (6.10)

Step 4. We are finally in position to prove that 7, has a mountain pass critical point
provided |A — A*| is small. We will assume that A —1* > 0; if A —A* < 0 we consider
—J,. and argue in the same way. First, some further preliminaries are in order.
Let z € Z be such that ||z]] < randlet 0 < A — A* < gj. Using (6.9), the
inequality 7, (z) > 0 implies
A—AF
2
Then (6.10) and o (z) > m|z||¥ yield

*

lzlI* > ax(z) — R(A, 2).

2
Since m > A*(1 + 2%) and k > 3 it follows that there exists 0 < &’ < gy such that

Y 1/k=2)
2m — (1 +2k))} =7

lzI* < mllzl* = A*(1 4+ 2911zl = [m — 2*(1 + 2911z

llzll <7 = [ 6.1
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It follows that for 0 < A — A* < &’ the following holds:

max J(z) < 0.

lzll=r

This allows us to define j\ : Z — Rin such a way that

(1) J@) = Ji() forall |lz|| < r;
) J, € CH(Z,R);
3) Ji(z) < Oforall |z|]| > r.

Since J5,(2) = J.(z) forall ||z|| < r,it immediately follows from (6.9) and (6.10) that
J, has alocal strict minimum at z = 0, namely that (J 1) of Chap. 5 holds. Obviously
J,. satisfies (J2). Furthermore, from 3) above, it follows that any sequence z, € Z,
such that J,(z,) — ¢ > 0, is bounded. Since Z is finite dimensional, it follows that
J,. satisfies the (P S).. Applying the mountain pass theorem to J;, we find z; € Z
such that J)(z,) = 0 and J,(z;) = ¢ > 0. From the latter we infer that ||z, || < r
therefore 75(zx) = J,.(z5.). More precisely, it follows from (6.11) that ||z,]| < 7,
and hence ||z,|| # O is such that ||z;]] — 0 as A — A*. Using Lemma 6.2.2,
Theorem 6.2.1 follows. O

Remark 6.2.4 An elegant proof of Theorem 6.2.1 has been given by Marino and
Prodi [68] by using the Morse theory.

6.2.2 Branching Points

In applications it is important to know whether a branch of solutions emanates from
a bifurcation point. Precisely, we say that A* is a branching point of (6.1) if the
solution set ¥ contains a connected set S such that (A*,0) € S and S\ {(1*,0)} # 0.
For example, as we will see in Theorem 6.3.1, A* is a branching point provided A* is
an eigenvalue of L with finite odd multiplicity. Actually, if L* is a simple eigenvalue
of L, by Theorem 6.1.2, the set S in X is, in a neighborhood of (1*,0), a curve. On
the other hand, in the general case of non-necessarily odd multiplicity, A* might not
be a branching point. Bhome [31] has given an example of a variational problem in
R? where H # 0 is C™ with all the derivatives at u = 0 equal to zero and A* is
not a branching point. It is worth pointing out explicitly that in the Bhome example
condition (A») is not satisfied. The interested reader may see [15].

In order to prove the existence of a branching point, we will assume, in addition
to (A1) and (A»), the following condition.

(Ay) Let & € 0By, resp. n € 0By, be such that ax(§) = M, resp. oy (n) = m.
We assume that kM and km are not eigenvalues of the matrix Doy (£), resp.
D2a(n).

The following theorem is proved in [6], to which we refer for more details and further
results dealing with the existence of branching points for (6.1).



6.2 Bifurcation for Variational Operators 69

Theorem 6.2.5 Suppose that (Ay, Ay) and (As) hold and let \* be an isolated
eigenvalue of finite multiplicity of L. Then \* is a branching point of (6.1). O

Remark 6.2.6 (A4) rules out the functions oy such that o (z) = ¢||z||* on Z. If this
is violated, there are examples showing that A* can be a bifurcation point but not a
branching point (see [6]).

We will not give the proof of Theorem 6.2.5 here, but we will merely highlight the
role of assumption (Ay).
Setting ¢ = A — A* and

1
V() =S IzlI* — ax(z), z € Z,

the auxiliary functional 7, can be written in the form
Je(2) = We(2) + R(e, 2).

The functional W, has the mountain pass geometry. However, in this case it is con-
venient to find the mountain pass critical point in a more direct way. Since o # 0,
if T = {z € Z : |zl = 1}, then either M := maxro; > 0 or minye; < O.
Assume the former: in the other case it suffices to consider —¢ instead of ¢. Let
& € T be a point where M is achieved. By homogeneity it immediately follows that
o (§) = ka(§)s = kME&. Moreover, p. = t,& is a critical point of W, whenever 7,
satisfies

12 = & > 0). (6.12)

It is easy to check that p, is the mountain pass critical point of W, we were seeking.
Next, using (A4) one can show that p, is a non-degenerate mountain pass critical
point of W, and there results

i(T), pe) = —1. (6.13)
Roughly, let 7, denote the identity in Z and let A; = D?ay. Then

D*W,.(p.) = el; — Ar(pe).

Since p, = t.& and using (6.12), one finds that
_ £
D*W(pe) = elz — 12 Aw§) = elz = - Ax(®).

By (Ay4), kM is not an eigenvalue of A;(£). Hence D>W,(p,) is invertible and p, is a
non-degenerate critical point of W,. As p, is a non-degenerate mountain pass critical
point, it is well known that (6.13) holds; see Remark 5.3.7-(ii). Since R satisfies
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(6.10), the properties of the topological degree imply that for ¢ > 0 sufficiently
small one also has

deg (7., B(pe,8),0) = —1, § > 0 small,

where B(p.,§) denote a ball in Z centered in p, with radius §. At this point, the
properties of the degree and an appropriate limiting procedure allow us to prove that
the bifurcation set X contains a connected set S and hence A* is a branching point.

It is also possible to give a more precise description of S. We set T1(S) = {1 €
R : (A,u) € S}. Under the same assumptions of Theorem 6.2.1 one can show:

(1) If k is odd then IT(S) contains an interval [a, b] such that a < A* < b.

(ii) If k is even then I1(S) contains a one-sided neighborhood A of A* such that
for all A € A\ {A*} (6.1) has at least two distinct nontrivial solutions on S.
Furthermore, if d = dim(Z) > 2 and «(z) > 0 (resp. < 0) for all z € Z \ {0},
then for every A = A* 4 ¢, with ¢ > 0 (resp. ¢ < 0) sufficiently small, (6.1)
possesses at least two pairs of distinct solutions on S.

6.3 Global Bifurcation

P. Rabinowitz [74] improved Theorem 6.1.4 by showing that, under the same hy-
potheses, the continuum & of ¥ which contains (A*, 0) is either unbounded or contains
another bifurcation point A* # A*. By Remark 6.1.5, we explicitly state the result
under the hypothesis that there is a change of index of

D, (u) := (A, u)

when we cross A = A*, instead of assuming that A* is an eigenvalue of the linear part
of &, with odd finite multiplicity.

Theorem 6.3.1 Let A* € R and ¢y > 0 be such that the set (A* — g9, \* + &¢) \ {1*}
does not contain bifurcation points of (4.9). Assume also that for every ) € (A* —
g0, A*) and A € (A*, A" + &) the following holds:

i(P,,0) # i(Py, 0). (6.14)
Then the connected component, S, of X that contains (\.*,0) satisfies at least one of

the following conditions:

(i) S is unboundedin R x X,
(ii) there exists a bifurcation point A* € R\ {A*} such that (\*,0) € S.

Proof By Theorem 6.1.4 (see also Remark 6.1.5), A* is a bifurcation point from
zero of @; (1) = 0. Let S be the connected component of 3 which contains (A*, 0).



6.3 Global Bifurcation 71

We argue by contradiction and assume that S verifies neither (i) nor (ii). This means
that S is bounded and that for every A # A* there exists p(A) > O such that

S, N Bypy(0) = 0.

We claim that there exists a bounded set O C R x X and gy > 0 satisfying

0N =0, (6.15)
A0 €0 (6.16)

and
ONMR x {0}) C (A" — o, A" +&0) x X. (6.17)

Indeed, if Us denotes the neighborhood of S consisting in all points with distance
to S less than &, then in the case X N dUs = ¢ it suffices to take O = Uj. In the
other case, since the set M = Us N ¥ is a compact metric space, we can apply
Lemma 4.3.1 to the closed sets S and X N dUs to conclude the existence of two
compact, disjoint subsets A, B of M, with

M=AUB,S CA.

By taking as O a neighborhood of A of all points with distance to A less than the
distance between A and B, we obtain (6.15)—(6.16).
The general homotopy property allows to deduce then that

deg (®;,0,,0) = const., VA eR. (6.18)
Now, we are going to compute this degree. To do it, fix A € (A", A* + g¢) such that
(A,0) € O. We can choose p > 0 such that:

(a) For every A € [A,A* 4 g], the problem (4.9), has no nontrivial solutions in
B,(0), i.e.,
2, N B(0)=0.

(b) Forevery A > 1* 4 g, the A-slice O;, of O does not contain points of the closed
ball B,(0), i.e.,

0, N'B,(0) = 0.

Take
U=0nN[[x+0o0) x (X \ B,(0))].

Observe that the A-slice U, of U is given by
U, = O, \ By(0),

for every A > A
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By (a) and (b), the general homotopy property of the degree implies that
deg (®,,U,,0) = constant, VA > A.

But, since O is bounded, U, = O;\ B,(0) = O, = @ provided that A >> %. We obtain
as a consequence that the above degree is zero. In particular, deg (P5,U;,0) = 0,
that is,

deg (@, 05 \ B,(0),0) = 0.

By the additivity property we conclude that
deg (@5, 07, 0) = deg (¥5. O3\ B,(0).0) + deg (®y. B,(0).0)
=1(P5,0).
Similarly, if we fix A € (A* — g, A*) such that (1,0) € O, we can prove that
deg (®;, 0,,0) =i(D,,0).
Consequently, taking into account (6.18) we conclude that
i(®;,0) = i(Pg, 0),

which contradicts (6.14). O

Now, as a direct consequence of the above theorem, we have the classical improve-
ment by Rabinowitz of the theorem of Krasnoselskii.

Corollary 6.3.2 Under the hypotheses of Theorem 6.1.4, there exists a continuum
S of T that either is unbounded, or (A\*,0) € S for another eigenvalue \* # A*
of L. O



Chapter 7
Elliptic Problems and Functional Analysis

The purpose of this chapter is to show how a nonlinear elliptic problem can be
transformed into an operator equation that can be treated with the abstract tools
discussed in the previous chapters.

7.1 Nonlinear Elliptic Problems

The abstract results proved in the preceding chapters will be applied to elliptic
problems such as

{—Auzkf(x,u), in Q (7.1)

u=0, on 0%2,

where Q C R" is a bounded domain with smooth boundary 4R, f : @ x R — R
and A € R. In the sequel we will assume that f is sufficiently smooth. This will
simplify the exposition, though in many cases weaker regularity assumptions could
be made.

It turns out that weak solutions are classical solutions provided f(x, «) is Holder
continuous and for some p € [1, 4+00) it satisfies the growth condition

lfr,wl <1 +eolul’, p<2°—1, (1.2)

where (see Notation) 2* denotes the critical Sobolev exponent of H()I(Q) in
Theorem A.4.3, i.e.,
2N .
N7 if N > 3;
= N— (7.3)

00, ifN=1,2.

To prove this fact one uses what is called bootstrap argument. It is based on the
following property: if a weak solution u € HOI(Q) of (7.1) belongs to L"(S2) for
somer > 1, then, by (1.2), f(x,u(x)) € L'/P(Q2) and the Agmon—Douglis—Nirenberg
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estimates (Theorem 1.2.11-1) imply that u € Wz’%(SZ). By the Sobolev embedding

(see Theorem 1.1.3-1, we can begin by taking ry = 2* to deduce that u € w2 (2).
Using again Theorem 1.1.3-1 we have three possible cases:

1. ue LiN27(Q) (if Np < 2*2).

2. u € L'(Q) for every t > 2 (if Np = 2*2), and applying again Theorem 1.2.11-
1, we derive that u € W>/(R). In this case, choosing t > N/2, we infer (by
Theorem 1.1.3-1) that u € C*(Q) for some « € (0, 1).

3. u € C%(R) for some « € (0, 1) (provided Np > 2*2).

Tzz* > rp and we can iterate the process by taking

It is easy to prove that in a finite number of iterations we get

Observe that in the first case - N2

now ry = pNNfzgz*
ue WZ’%(Q) with % > & Thus, also in this case we have u € C*(S) for some
a € (0, 1). Finally, since f is Holder, f(x,u(x)) is also Holder and, by the Schauder
estimates (Theorem 1.2.11-2), we conclude that u € C%(Q).

Problem (7.1) can be transformed into an operator equation in several ways,

depending on the abstract tools we are going to use.

7.1.1 Classical Formulation

If we are working with the classical formulation of the problem, then, for example,
wecanlet X = {u € CX(Q) : u(x) =0, Vx € 9Q}, Y = C(Q) and Ty (u) =
Au + Af(x,u). Then any solution u € X of the equation 7;(u) = 0 is a solution of
(7.1). This framework is well suited for the use of the local inversion theorem or the
implicit function theorem.

In order to use topological degree theoretic arguments, we could take for instance
either X = {u € C™(Q) : u(x) = 0,¥x € 9Q},0 <v < 1, or X = CL(Q) and
consider the operator K introduced in Sect. 1.2.5,i.e., w = Ku is the unique solution
of —Aw = u in 2 satisfying wjsq = 0. Let us point out that the Nemitski operator
f, i.e., the operator which maps every function # € X into the function f o u, is
continuous on X. Setting 7(u) = K f(u) and ®;(u) = u — AT (u), the solutions of
@, (u) = 0 correspond to solutions of (7.1). Moreover, for any # € X one has that
w = Ku € C*>'(Q), and Ascoli’s theorem implies that K maps bounded sets in
relatively compact sets in X. As a consequence, the nonlinear operator 7' : X —> X
is compact. Hence @ is a compact perturbation of the identity and we can employ
the Schauder fixed point theorem or else the homotopy invariance of the degree. The
reader has to observe that the application of these tools requires us to prove a priori
bounds. By this one means that there exists M > 0 such that ||| < M for any
possible solution of (7.1).

7.1.2 Weak Formulation

On the other hand, if we are working with the weak formulation of the problem
(7.5) and we want to employ critical point theory, it is convenient to work on a
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Hilbert space. Usually, one chooses the Sobolev space E = H(} (£2) endowed with
the scalar product and norm

12
(u|v)=/Vu-Vv, ||u||=(/|Vu|2> )

Let F(x,u) = fou f(x,s)ds with f satisfying (7.2) and define the functional 7, :
E — R by setting

To(w) = 3 ull* - x/ F(x,u(x)).

Observe that F(x, u(x)) is integrable by (7.2). In addition,

dJwv] = (u| v)—A/f(x,u)v: /Vu~Vv—A/f(x,u)v.

Then any critical point u € E of J, verifies

/Vu-Vv—k[f(x,u)v:O, VveE,

and hence is a weak solution of (7.1). Since f is smooth, by elliptic regularity, u
is a classical solution. It is instructive to evaluate the gradient .7, (). By definition,
J,(u) € E is such that d 75, (w)[v] = (J{(u) | v), for all v € E, namely

/Vu-Vv—k/f(x,u)v:/Vz~Vv, VveeE,

where z = J, (). Setting w = u — z, then w is such that

/VW-VV =)L/f(x,u)v, VvelE.

Therefore w is a solution of —Aw = Af(x,u), with wjq = 0. In other words,
w = AK o f(u) where K denotes the inverse of the operator —A on HO1 (2). In
conclusion we have found that

Ti(u) =u— 1K o f(u).

Lemma 7.1.1 The functional [J, satisfies the compactness part (b) the (PS) condition
(see Section 5.3).

Proof Indeed, let {u,} be a bounded sequence in HO1 (2) such that 7, (u,,) is bounded
and J,'(u,) —> 0. Taking u,, — u as a test function, we obtain 7, (u,, )(u, —u) —> 0,
ie.,

(uy | uy — ) — MK(f(uy)) | w, —u) — 0.

By (7.2) and the compactness of K, we infer that K( f(u,)) strongly converges to
K (f(u)) up to a subsequence. Then (K (f(u,)) | u, — u) converges to zero and hence
(uy | u, — u) tends to zero. This immediately implies that u,, is strongly convergent.

m]
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In some cases one can look for pairs (A, #) in R x E satisfying (7.1) with prescribed
normof i, i.e., such that || u|| = R, for some fixed R > 0. We will refer to this problem
as a nonlinear eigenvalue problem. The difference with respect to the boundary value
problem (7.1) is that here A is not a given number, but is unknown and appears as
a Lagrange multiplier. In order to find solutions of such an eigenvalue problem,
it is natural to use variational methods, in particular, Theorem 5.4.4 minimizing
Fu) = f F(x,u(x))dx on the sphere | u|| = R. According to Example 5.2.2, alocal
minimum of such an F on the sphere satisfies F'(u) = Au for a suitable Lagrange
multiplier A € R. As we have seen before, u is a solution of (7.1) such that ||u|| = R.

On the other hand, if we want to apply bifurcation theory to study the existence
of weak solutions of the boundary value problem

—Au=Xtu+ f(x,u), inQ
{ u=020, on 0€2, (74)

we set E = L*(2) and let K be the inverse of the Laplacian operator (see Sect. 1.2.5),
sothat (7.4)isequivalenttou = AKu+K f (), u € E.Setting L = K and H = Kf,
we get H(0) = 0 and H’(0) = 0 provided f(x,0) = 0 and %(x, 0) = 0. Hence, we
are in the abstract setting discussed in Chap. 6 dealing with bifurcation theory.

In this case the possible bifurcation points are the characteristic values X of K,
i.e., the A such that Ker (A\K — I) # {0} or, equivalently, the eigenvalues of —A (see
Lemma 6.1.1).

Let us remark that from elliptic regularity and the Rellich theorem (see Sect. 1.2.5)
it follows that K is a compact operator.

Remark 7.1.2 1t is worth pointing out that one can use other ways to frame the
boundary value problems (7.4) or (7.1). For example, we can find bifurcation results
by means of degree theory (or of analytical tools) by working in the Banach space
X considered in Sect. 7.1.1.

7.2 Sub- and Super-Solutions and Increasing Operators

A separate discussion is in order when we want to use the topics studied in Sect. 2.2
dealing with increasing operators.

In this case, by definiteness we fix A = 1in (7.1), i.e., let us consider the Dirichlet
boundary value problem

(7.5)

—Au= f(x,u), inQ
u=20, on 0%2,

where f € C%(2 x R), 0 < v < 1, and there exists m > 0 such that

(f0) For every fixed x € , the function f,(x,u) := f(x,u) + mu is increasing
with respect to u.
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Problem (7.5) is equivalent to
—Au+mu= f,(x,u), inQ
{ u=20, on 0L2. (7.6)

According to the previous arguments, (7.6) can be translated into the operator equa-
tionu = T(u), withu € X = C*(Q),0 <v < I,and T = K,, o f,,, where
Knu = ziff —Az+ mz = u, z]yo = 0. Let us remark that 7' is compact since K,
is. In the space X we consider the natural ordering: v < w iff v(x) < w(x) for all
xeQ.

We claim that T is an increasing operator. Let u < v;thenz = T'(u) = K,,,( f,(v))
(respectively, w = T(v) = K,,(fn(v)) is a solution of the equation —Az + mz =
fm(x,u) (resp. —Aw + mw = f,,(x,v)), satisfying z|so = wlse = 0. By (f0),
u < v implies that f,,(x,u) < f,,(x,v) and hence, by the maximum principle (see
Theorem 1.3.14), it follows that z < w in 2, proving the claim.

A function v € C%(2) N C(R) such that

—Av < f(x,v), inQ
v <0, on 0%2,

is called a sub-solution of (7.5). Similarly, a super-solution w € C2(2) N C(RQ) is
defined by requiring

—Aw > f(x,w), inQ
w >0, on 9%2.

Thus a sub-solution, resp. super-solution,isav € X,resp.w € X, suchthatv < T(v),
resp. w > T (w).

After these preliminaries, a straight application of Theorem 2.2.2 yields the
following.

Theorem 7.2.1 Let f € CO'(Q x R), 0 < v < 1 satisfy (f0) and suppose that v,
resp. w, is a sub-solution, resp. super-solution, of (7.5) such that v < w. Then (7.5)
has a solution u such that v < u < w. Moreover, (7.5) has a minimal solution u;
and a maximal solution u,, in the sense that any other solution u of (7.5), such that
v <u <w, satisfies uy < u < u.

Remark 7.2.2 The proof of the previous theorem is also obtained by imposing only
a more general hypothesis than (f0). Indeed, it instead suffices to assume that the
following condition holds:

(ﬂ)) For every fixed x € €, the function f,,(x,u) := f(x,u) + mu is increasing
with respect to # € [mingv, maxgw].

Notice that every locally Lipschitzian function f satisfies the hypothesis (ﬂ)).

As a trivial application of Theorem 7.2.1 let us show that (7.5) possesses a solution
provided f € C*(Q x R), 0 < v < 1 and there exist @ < b such that f(x,a) >
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0 > f(x,b) for all x € Q. It suffices to remark that v = a is a sub-solution, and
w = b is a super-solution of (7.5), because

0=—-Av < f(x,a), 0=—Aw> f(x,b).

Moreover v < w and Theorem 7.2.1 yields a solution u of (7.5).

It will be useful to know different proofs of Theorem 7.2.1. Using topological or
variational methods we will find additional information about the solution. This will
provide the existence of multiple solutions. We begin by computing the degree of
the operator I — T.

Lemma 7.2.3 In addition to the hypotheses of Theorem 7.2.1, assume that f €
CY(Q x R) and that v,w € Cé(Q) N C2() are not solutions, v < w in Q and
w 9

< 2 on Q2. For R > 0 we set
n an

L= . ow ou av
UR)={ueCyQ:v<u<winQ, — < — < —ond2}N Br(0),
an an on

where Bg(0) denotes the ball centered at zero and with radius R in the space Cé (Q)
of the functions of class C' which vanish on 3S2. Then there is R > 0 such that
deg(I — T,U(R),0) = 1.

Proof Observe that the set U (R) is open, bounded and convex in C, é (2). We consider
the truncated problem

{—Au + mu = fm(x,u), in Q

u=0, on 092,
where
m = max ‘—(x,s) txeQ, se€ [minv,maij”
0s Q Q
and

_ f,v(x) +mv(x), ifs < v(x)
fm(x,8) =1 f(x,s)+ ms, ifv(x) < s < w(x)
flx,wx)) +mw(x), ifwkx)<s.

Following the notation used in Theorem 7.2.1, we set T = K, o f,;,, which is~a
compact operator (by the compactness of K,,). In addition, the boundedness of f,,
and the L”-estimates imply that T (CJ(2)) is bounded in C}(Q). Let R be a positive
number such that T(Cé (R)) C B(R). Using the strong comparison principle and the
Hopf lemma (see [58, Lemma 3.4]) for the operator —A + m1 it is easily seen that
v < T(u) < win Q and o < B 2 on 9Q for every u € CY(S). In other
words, we have seen that %(Cé(ﬁ)) C U(R). Fixing z € U(R), let us consider the
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homotopy _
H,u)=ATwm)+ (1 — M)z

The convexit_y of U(R) implies that )Lf(u) 4+ (1 — X))z € U(R) for every A € [0, 1]
and u € Cd(Q). Hence,

u# H(,u), YuedU(R), Vrel0,1]
and deg (H (A, -), U(R),0) is well defined. The invariance by homotopy gives
deg(I — T,U(R),0) = deg (H(1,-), U(R),0) = deg (H(0,-), U(R),0) = 1

since H(0, -) is a constant map. O

Now, we show that in general the solution obtained between sub- and super-
solution is a local minimum of the corresponding Euler functional:

Tw) = %/|Vu|2 - / F(x,u), u € H)(Q),

where, as usual, F(x,s) = f(; f(x,t)dt. In order to do his, we have to prove the
following result due to Brezis and Nirenberg [38].

Theorem 7.2.4 Assume that
|fx,w)| <ci+calul?, ae.x € Q, YuelR
with p < 2* — 1. If, for some r > 0, uy € Hy () satisfies
T (o) < J(ug +v),  ¥v € Co(Q) with |vllcr <7, (7.7)
then there exists € > 0 such that
T(ug) < T +v), Vv e Hy(Q) with |v| < e.

Remark 7.2.5 1. In other words, if uy € HO1 (2) is a local minimizer of 7 in the
C'-topology, then uy is also a local minimizer of 7 in the H,-topology.

2. As can be seen in the original paper by Brezis and Nirenberg, the theorem is also
true for p = 2* — 1.

Proof By LP-theory it is possible to show that uy € C'(2) and thus we may assume
without loss of generality that ug = 0. We argue by contradiction assuming that for
every € > 0 there exists v, € HOI(SZ) such that ||v¢]| < & and

JWe) = min J(v) < J(0).

Ivii=e

(Observe that the existence of minimizer v, is a consequence of the weak lower
semicontinuity of 7). By the Lagrange multiplier theorem, there exists a Lagrange



80 7 Elliptic Problems and Functional Analysis

multiplier w, > 0 such that the minimizer v, satisfies —Av, — f(x,v:) = —UAv,,
ie.,
X,V
“Av, = S s).
I+ pe

Since p < 2* — 1, the Agmong—Douglis—Nirenberg regularity result implies that the
norm ||v,| o1 may be estimated by the norm ||v.|| which is smaller than or equal to
¢. Therefore, ||v¢||c1 converges to zero as € goes to zero and we may choose ¢ such
that ||ve||c1 < r and then, by (7.7), J(0) < J(v.), contradicting the definition of v,.

O

Lemma 7.2.6 [f, in addition to the assumptions of Theorem 7.2.1, v and w are not
solutions of (7.5), then there is solution u of (7.5) withv < u < w in Q and which
is a local minimizer of J in HO1 ().

Proof For the convenience of the reader, here we prove the lemma in the case that
v, W € Cé (), which allows us to use the Hopf lemma (see [58, Lemma 3.4]). We
refer to [38] for the general case (even if v and w are only continuous (not C 2 sub-
and super- solutions in the sense of distributions). We consider now the truncated
problem
—Au= f(x,u), inQ
{ u=20, on 0%2,

where
N flx,v(x)), ifs <wv(x)
flx,s) =1 f(x,9), ifv(x) <s < wx)
flx,w(x)), ifwkx)<s.

Since )? is bounded, a solution uy € HOI(S'Z) N Cé (Q) of the preceding Dirichlet
problem can be obtained by minimization of the coercive functional

T(u) = %/IWIZ - / F(x,u), u € H(Q),

with f(x, s) = f(; f(x, t)dt (see Example 5.2.1). Using that v is a sub-solution,

— AW —up) < fx,v) — f(x,up) (1.8)

and consequently, if the set A = {x € Q : up(x) < v(x)} were not empty, then
—AW—1up) <0in A and v — up < 0 on dA. By the maximum principle we deduce
that v < ug in A, contradicting the definition of A and proving that A = ¢, i.e.,
v < u.

Using again (7.8) and l})ypothesis (f0) we also obtain —A(V —ug) + k(v — up) <
[fx,v)+ k(v —ug)] — [f(x,up) + k(v —up)] < 0. Taking into account that v is not
a solution, v — uy # 0, the strong maximum principle and Hopf lemma show that
uy — v belongs to the interior of the cone of positive functions in C; (Q).
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A similar argument using the super-solution w (instead of v) implies that w — ug
is also in the interior of this cone. Therefore, 1 is in the interior of the set {u €
Cé(Q) v <u < winQ},i.e., there exists ¢ > 0 such that

ue ClQ)

— v<u<win.
lu—uollcr <&

To conclude the proof, it~ suffices to observe that 7 (1) — j (u) is constant in the
ball [lu —upl|c1 < e (since F(x,u) — F(x,u) depends only on x for u € [v(x), w(x)])
and to use that u is a global minimizer of 7. This implies that u is a local minimizer
of J in the C'-topology and, by Theorem 7.2.4, in the H, (2)-topology. O

The following example shows that, in general, the existence of a sub-solution v and
a super-solution w, without assuming that they are ordered v < w, does not imply
the existence of a solution. Indeed, let A; < X, denote the first two eigenvalues of
the linear Dirichlet problem

—Au=Au, in
u=0, on 0%2,

and let ¢; > 0, and ¢, # 0 denote two eigenfunctions corresponding to A, Ay, resp.
Fixing 0 < a < B, choose a smooth function 4 such that (i) «(A, — A1)p; < h <
B(ha — Mgy and (ii) [ hey # 0. Using ¢, as a test function, the latter condition
implies that the problem

{_Au = Mu—h(x), inQ (7.9)

u=0~0, on 092

has no solution. On the other hand,

v=PF¢, w=ag,

are, respectively, a sub-solution and a super-solution of (7.9). Actually, v(x) =
w(x) = 0 for x € 92 and, using (i), we find that

—Av = Bri@1 < Afer —h =2ty —h,

as well as
—Aw = ol < Ao, —h = Aw — h.

Despite the above example, we see now a result in which the existence of a sub-
and a super-solution is sufficient to find a solution of a boundary value problem.
Specifically, we follow [3] to prove the following theorem.

Theorem 7.2.7 Let g be a bounded continuous function. If there exist a sub-solution
v and a super-solution w of the problem

—Au= X u+gu), in
u=0, on 092,

then there exists a solution of it.
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Proof Consider X = C(Q) and take a positive eigenfunction ¢ associated to the
first eigenvalue A;. Then Ker (— A — A7) = Re. We split the space X = Rp @ W,
ie.u =ty +w,wheret € R and w € W. By the Lyapunov—Schmidt reduction we
see that our problem is equivalent to the system

w=AQgty +w)
/g(tw +w)p =0,

where A is the inverse of the operator —A — X I in W (since zero is not an eigenvalue
of it).

We study now the solutionset ¥ = {(z,w) e Rx W : w = AQb(t¢ +w)} of the
first equation in the system. By the boundedness of g, there exists R > O such that

AQgtp +w)ll <r, VteR, VYweW

and hence ¥ C R x B,, where B, denotes the open ball in W of radius r and
centered at zero. This implies also that @, (w) =w — AAQg(te + w), for A € [0, 1]
and w € W, defines a homotopy and thus

deg (,, B,,0) = deg (g, B,,0) = 1.

Given o > 0, by using Theorem 4.3.4 we obtain the existence of a connected set
¥y C X suchthat ¥, crosses {—o} x W as well as {«} x W. Taking into account that
T, is connected and the continuity on R x W of the function y (t,w) = [ gt +w)e
we deduce that y(%,) is an interval. Three cases may occur: 0 € y(X,), y(Zy) C
(0, 400) or y(Xq) C (— 00,0).

In the first case, we have already solved the system and so our problem.

With respect to the second case, i.e., y(%,) C (0, +00), we deduce that for every
pair (¢,z) € R x Z the function u = t¢ + w satisfies

—Au=—tAp — Aw =rto + 1w+ gto +w) — y(t,w)p < Lu+ g(u), in 2,

namely, it is a sub-solution of our problem. Clearly it is possible to take a very
negative number ¢ in order to have u be smaller than or equal to the super-solution
w given by hypothesis. Consequently, Theorem 7.2.1 applies and we also obtain a
solution of our problem in this case.

The proof in the third case is similar: it suffices to observe now that u = r¢ + w
is a super-solution. O



Chapter 8
Problems with A Priori Bounds

In this chapter we discuss problems in which one can obtain a priori bounds for the
solutions. Roughly, this happens if the nonlinearity is sublinear at infinity. It will be
shown that, according to the properties of the nonlinearity, we can use the global
inversion theorem (to get existence and uniqueness) or topological degree or else
critical point theory.

8.1 An Elementary Nonexistence Result

Consider the Dirichlet boundary value problem
—Au = f(u)+ h(x), in 2, @.1)
u=20, on 0%2. ’

In this case, the existence of a priori bounds for (8.1) is strongly related to the fact that
the limits at infinity of f(u)/u do not intersect the spectrum of the Laplace operator,
in a sense made precise in the sequel.

To put more in evidence the necessity of interaction with spectrum, observe that
if (8.1) has one solution, using a positive eigenfunction ¢; associated to the first
eigenvalue A; of the Laplace operator as a test function, we conclude that

/ [f @) + h(x) — Aul@; = 0.

Consequently we deduce the following trivial nonexistence result.

Proposition 8.1.1 Assume that Q is an open subset in RY, f is continuous and
h e LX(). If either

e f(u)+ h(x) < Muforeveryu € Randa.e. x € 2, or
o f(u)+ h(x) > Muforeveryu € Randa.e. x € €,

then problem (8.1) has no weak solution. m]
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8.2 Existence of A Priori Bounds

Let f € C'(R,R) and assume that the following limits exist:

lim M =y_eR, lim M =y; eR. (8.2)

u—>—00 U u—+00 Y

We denote by T the closed interval of extrema y_ and .

Forfixed0 < v < 1,let X = {u € C>"(Q) : u(x) =00n 32}, ¥ = C*’(Q) and
F(u) = —Au — f(u). For any h € Y, the classical solutions of (8.1) are u € X such
that F'(u) = h.

Proposition 8.2.1 Suppose that (8.2) holds and that the interval T does not contain
any eigenvalue Ay. Letu, € X and set h,, = F(u,). Then u, is bounded in X provided
that h, € Y is.

Proof We start by proving that [|u, ||y is bounded. Otherwise, up to a subsequence,
we can assume that ||u, ||y converges to infinity. Setting z, = u,|lu, ||;1 and using
(8.2) to write

) =yesT+y_s” +g(s), with |s|1—i>15-100 gls)s~' =0,

we immediately check that z,, satisfies

g(uy,) hy
lunlly — lunlly

—Azy = yiz + vz, + (8.3)

The right-hand si_de is bounded in C(2) and hence by Schauder estimates, z, is
bounded in C'¥(Q). Then, up to a subsequence, z, converges strongly to some z in
C'(Q) with ||z]ly = 1. Using a test function ¢ we get

/VZ,, V¢:/V+Z:_¢+/V7Zn_¢+/g(un)2n¢+/ ”uhn||y¢

By using the dominated convergence theorem we have
. / g0 o
n=>too ) lunly

/VZ'V¢=/[V+Z++V—Z_]¢-

This means that z # 0 satisfies

—Az =a(x)z, ing,
z=0, on 0€2,

and hence

(8.4)

where

)y, ifz(x) = 05
alx) = {y_, if 7(x) < 0. ®.5)
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Then Ag[a] = 1 for some integer k > 1. We assume now that y, < y_ (the
verification for the reversed case y_ < y, is left to the reader). Observe that if z
does not change sign then either —Az = y,z% or —Az = y_z~. Both cases are not
possible because I' = [y, y_] does not contain any eigenvalue A;. Hence u changes
sign and the following holds:

Hx e Q:a(x) >y} >0and |{x € Q:a(x) <y_}| >0.
Using the comparison property of eigenvalues (see Proposition 1.3.11-i)), we obtain

)\',
L=yl > Mglal =1 > My ] =
+ V-

A

ie.,
Y+ <Ag <v-,
a contradiction because I' = [y, y_] does not contain any eigenvalue A;. Therefore,

|lu, ||y 1s bounded and Schauder estimates (see Theorem 1.2.11) imply that |ju, || x is
also bounded. O

8.3 Ecxistence of Solutions

In this section we will see how the different abstract techniques developed in the
previous chapters can be used in conjunction with the a priori bounds of the previous
section to prove existence of solutions of the problem (8.1). We will keep the notation
introduced before.

8.3.1 Using the Global Inversion Theorem

Our first result deals with a case in which the global inversion Theorem 3.4.5 applies.
We start by proving the following lemma.

Lemma 8.3.1 Suppose that f € C'(R,R) satisfies (8.2). If the interval T' does not
contain any eigenvalue Ay, then F is proper.

Proof Leth, €Y,h, - h €Y andletu, € X be such that F(u,) = h,, namely

—Au, = f(un) + hy(x), in L,
u, =0, on 0%2.
By Proposition 8.2.1, u,, is bounded in X. In particular, f(u,) + h, is also bounded
in Y. By the compactness of K : ¥ —> Y we deduce that, up to a subsequence,
u, converges in Y to some u € X satisfying —Au = f(u) + h(x), in Q. Finally,



86 8 Problems with A Priori Bounds
using that —A(u, —u) = f(u,) — f(u) + h,(x) — h(x) and Schauder estimates (see
Theorem 1.2.11), we readily conclude that u,, converges in X to u. O
Theorem 8.3.2 Let f € C'(R,R) be such that

1. condition (8.2) is satisfied and the interval I does not contain any eigenvalue Ay,
2. forallu € R, either f'(u) < Ay, or Ay < f'(u) < Agyy for some k > 1.

Then (8.1) has a unique solution for allh € Y.

Proof Let us show that F has no singular points. One has
dFw)[v] = Av+ f'(wv.

Using assumption 2 and the comparison property of the eigenvalues, it readily follows
that Ker d F'(u) = {0} and this implies that the singular set is empty. By hypothesis
1 (see Lemma 8.3.1), F'is proper and the global inversion theorem applies, proving
the result. O

8.3.2 Using Degree Theory

We apply the Schauder fixed point Theorem 4.2.6 to prove the existence part of
Theorem 8.3.2.

Theorem 8.3.3 Suppose that f € C(R,R) satisfies (8.2) and the interval I does
not contain any eigenvalue iy. Then (8.1) has at least one solution.

Proof We will carry out the proof in the case Ay < y_, Yy < 1. fy_, yp < A
the arguments require trivial changes. We let y = % and denote by K, :
L*(Q) —> L*(Q) the inverse of the operator —A — y I (which is well defined
because y is not an eigenvalue of the Laplacian operator). We write (8.1) as

u=K,[INwl, uelLXQ),
where N : L*(Q) — L?(Q) is defined by
Nu(x) = f(u(x))+ h(x) — yu(x), Vx e Q.

Hence, we just have to prove the existence of a fixed point of T = K, o N. This
is done by using the Schauder fixed point theorem. In order to do this, observe that
from the hypotheses on f, the continuous function g defined in 2 x R by

gx,s) = f(x,8) —yesT —y_s™, VseR

(with s™ = max{s, 0} and s~ = min{s, 0}) satisfies limyg— 400 g(x,5)/s =0 (i.e., it
is sublinear). Hence, there exists i € (0, (Ax+1 — Ax)/2) such that

|f(x,8)—ys| <Tls|, VseR
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and thus
1 Tullz < 1K, IN@l2
< ———— |I1f G, u) = yulla + 11A]2
Akl — Ak [ ]
< — 2 [l + I]2]
= T Lxjiugl2 2
Akl — Ak
< pllullz + C,
where © = Akjﬁ—xk € (0,1). So choosing r > 0 such that ur + C < r, we

deduce that || Tu|| ;2 < r, provided ||u||;2 < r,i.e., T(B(0,r)) C B(0,r). Finally the
compactness of K, and the continuity of the Nemitski operator N (see Theorem 1.2.1)
imply the compactness of 7, and we can so use the Schauder Theorem 4.2.6 to
conclude the proof. O

Remark 8.3.4 From the proof of Schauder Theorem 4.2.6 by using the degree, we
deduce that there exists » > 0 such that deg (T, B(0,r),0) = 1.

Remark 8.3.5 1f, in addition, item 2 of Theorem 8.3.2 is satisfied, then it is possible
to prove the uniqueness of the solution as well. Indeed, the meaning of this condition
is that the operator T is a contraction and thus the Banach contraction principle can
be applied to obtain (existence and) uniqueness.

8.3.3 Using Critical Point Theory

According to the discussion of Sect. 7.1.2, solutions of (8.1) could also be found by
looking for critical points of the Euler functional

Tw) = %/|Vu|2—/F(u)—/h(x)u, ue E = H)(Q),

where F(u) = fou f(s)ds. Let us remark that for every ¢ > 0 there exists C;, > 0
such that

|F@)] < Ce + 5 (max{y—,y4} +¢) Jul”. (8.6)
In particular, F(u) € L'(Q) forallu € E and J € C'(E,RR). Moreover, setting

Fu) = / F(u),

one has the following.



88 8 Problems with A Priori Bounds

Lemma 8.3.6 F is weakly continuous.

Proof Letu, — uweaklyin E. By the Rellich—-Kondrachov TheoremA.4.9, 4, — u
strongly in L2, up to a subsequence. From (8.6) and the dominated convergence
theorem, we deduce that F(u,) — F(u). O

In order to prove Theorem 8.3.3 by applying the results on critical point theory to
the functional J, we state the following lemma on the Palais—Smale condition.

Lemma 8.3.7 IfT does not contain any eigenvalue Ay, then J satisfies the Palais—
Smale condition.

Remark 8.3.8 The reader should observe the similarity between the proof of this
lemma and the corresponding proof of Proposition 8.2.1.

Proof Let{u,} C HO1 (£2) be a sequence such that {7 (u,)} is bounded and {7’ (u,)}
tends to zero in HO1 (R2). To prove that {u,} has a convergent subsequence, it suffices
to show that it is bounded in HO1 (2) (see Lemma 7.1.1). Assume, by contradiction,
that ||u, || — +o0. Using that

VACHIC)N 0
n—>+oo  |uy ||
and taking z,, = u,/||u, ||, we obtain
n h
lim Vz,- Vo — AC )(p— ¢ _ ,
n—>+00 llet llut

forevery ¢ € Hj (). Passing to a subsequence if necessary, we may assume without
loss of generality that z, — zin HOI(Q), Zu — zin L3(R), z,(x) = z(x) a.e. x € Q.
Thus, by the Lebesgue dominated convergence theorem we yield

ACT / (et +v-2)g

notoo ) flull T

and hence
f Vz Vo = / (vazt +v-27) o,

i.e., v is a solution of the problem (8.4). This implies that z = 0 and this is a
contradiction because we deduce that

0= lim (J/(un) | 7)) =1— lim /f(x’ Un)Zn — /th =1
n——+4o00o n——+o0o

Therefore, {u,} is bounded and the Palais—Smale condition has been verified. O

Variational proof of Theorem 8.3.3 By Lemma 8.3.7, it suffices to study the geometry
of J. It is convenient to consider three cases:

Case 1. max{y_,y+} < A
Case2. A < y_, Y+ < A
Case 3. Ap < y—, ¥+ < Ax+ 1, withk > 2.
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Case 1 We begin proving that if max{y_, y+} < XA;, then 7 has a minimum on E
which gives rise to a solution (8.9). Indeed, if we fix ¥ € (max{y_, y+}, A1), from
(8.6) one has

T = Hull> —c; — %7/ ul® — Al flull 2.

Using the Poincaré inequality (Corollary 1.3.9) we deduce

Y
V(OEE (1 - AT) lull* = c1 — callull.

Since ¥ < Ay, it follows that J is coercive and then, by Theorem 5.4.1-2, 7 has a
minimum on E. (It is also possible to show that 7 is w.l.s.c. and therefore to apply
Corollary 1.2.5 instead of Theorem 5.4.1-2, to prove the existence of a minimum of

JonkE)

Case 2 We prove that if A; < y_, Y4 < X, the functional J has a mountain pass
critical point. Indeed, choosing A < i < y—, Y4 < I < Ay, it is easy to verify that

1 1
EWZ —Cy < Fu) < Eﬁuz +Cy, VueR,
and thus
1 2 M 2
Jw) < Ellull - 5”“”2 + C11Q| + Il 2 llull2, (8.7)
1 2 ﬁ 2
T ) > Ellull - Ellulle — G| = ||kl 2 llull L2 (8.8)

From (8.7) it follows that

lim J(te;) = —o0.
[t|>+00
From (8.8) it follows that
inf J > —o0.
(p1)+
Moreover, the Palais—Smale condition holds (see Lemma 8.3.7). Then we can use
the variant of the mountain pass theorem given in Theorem 5.3.8 to infer that [ has
a critical point.

Case 3 We show that if Ay < y_,y+ < Aryr1, With k& > 2, then the saddle point
theorem applies.

Indeed, choosing Ay < u < y—,y+ < It < Aky1, and repeating the arguments
carried out in case 2, it is easy to verify that 7 satisfies (8.7) and (8.8).
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Splitting H} () into HJ(Q) = V @ V! with V = (g1, ¢2,...,¢), we deduce
from the variational characterization of the eigenvalues X, A; and Ay that

72l .2
Al

1
T = §<1—Aﬁ) lul®> + C112] + lul, VueV
k

and 1 0 A
2
Tw) > = (1 - R ) Jul> = C2IQ — —=|lull, Vue V™.
2 Ak+1 Al

So, it is possible to choose R > 0 such that

max < inf .
ueV. [lu|=R TG ueV+ T

All the hypotheses of the Rabinowitz saddle point Theorem 5.3.9 are satisfied, and

the variational proof of Theorem 8.3.3 is also concluded in Case 3. O

8.4 Positive Solutions

Here we will be interested in applying Theorem 8.3.3 to find positive solutions of

{—Au = f(x,u), inQ, (8.9)

u=20, on 0%2,

under the assumption that f(x,0) > 0. In such a case we will define f for u < 0 by
setting

f,w) = f(x,0), Yu=<0. (8.10)

Since the modified f satisfies f(x,u) > 0 for every u < 0, then by the maximum
principle, any solution of (8.9), with the modified f, is greater than or equal to zero
so that the value of f for u < 0 does not play any role. In the sequel we will always
understand that f denotes the given nonlinearity extended to negative u by (8.10).

If yy :=limy 4 f(x,5)/s < Aj, then Theorem 8.3.3 gives us the existence of
a (non-negative) solution of (8.9) obtained as a global minimum of the associated
Euler functional. In order to prove that this is not zero we need some additional
hypotheses on the behavior of f at zero. Notice that the role played by —oo in the
study of the existence of solutions in the previous sections will be now replaced
by u = 0. In this way, the following result is the counterpart of Theorem 8.3.3 for
positive solutions in the case max{y_, y+} < A;.

Theorem 8.4.1 Assume that y, < Ay and let us suppose that

o S
Yo := lim >
u—07t u

A 8.11)

Then (8.9) has a strictly positive solution.

Proof Let z be the minimum found in Theorem 8.3.3. By the maximum principle,
z > 0.1If (8.11) holds, let us show that z # 0. Actually, let ¢; > 0 denote the positive



8.4 Positive Solutions 91

eigenfunction corresponding to Aj, such that ||¢;|| = 1, and evaluate J(t¢;) for
t ~ 0. Fixing ¢ > 0 such that yp — & > Ay, by (8.11) there exists § > 0 such that
f ) = (yo — e)u provided 0 < u < §. Then F(x,u) > %(yo —&)|ul?for0 <u <8
and if t < 8||¢; ||} we find

Tt =41* — / F(x,topdx < 217 — 12y —e) f prdx.

Since —Ag@; = ¢y, then [ @ldx = )‘1_I and

Yo— &
J(tqol)s%ﬂ(l—ok—l),

which together with yy — ¢ > A implies that

. Jer)
lim
=0+ t

<0,

and hence J(t¢;) < 0 provided r > 0 is sufficiently small. As a consequence
J(z) = ming J < 0, proving that z # 0. o

Next we give a new proof of the preceding theorem by using sub- and super-solutions.
As usual, ¢; > 0 denotes a positive eigenfunction corresponding to X;. In addition,
let e > O satisfy
—Ae=1, inQ
{ e=1, onadQ.

Another proof of Theorem 8.4.1 1In order to apply Theorem 7.2.1 we have to prove
the existence of an ordered pair of sub- and super-solutions of (8.9). This is done in
two steps.

e Step 1. v = e¢ is a sub-solution of (8.9), provided ¢ > 0 is sufficiently small.
e Step 2. w = Me is a super-solution of (8.9), provided M is sufficiently large.

Step 1. Using the assumption yp > Aj, there exists § > 0 such that f(t) > X,z for all
t € (0,6). Then, if & > 0 is such that ¢|¢; |« < 8, we get f(e@;) > Ajeg; and thus
—Av=—cApr =A1ep1 < f(x,e01) = f(x,v), Vo =0,

proving that v is a sub-solution of (8.9).

Step 2. Fixing § > 0 such that §le| < 1, y4+ < A; implies that f(x, Me) < §Me
provided M > 0 is sufficiently large. Then w = Me satisfies

—Aw =M > Méle|c > §Me > f(x,Me), wpo =M,

proving that w is a super-solution.

Moreover, by the Hopf lemma (see [58, Lemma 3.4]), there exists M > 0 such
that v = g¢; < w = Me in Q. Therefore, Theorem 7.2.1 applies and (8.9) has a
solution u such that 0 < ep; < u < Me. O
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Remark 8.4.2 If f assumes negative values, e.g., if lim,_, ;~ f(x,u) < 0, then,
according to the discussion at the proof of Theorem 8.4.1 based on sub- super-
solutions, any w = b > 0 such that f(b) < 0 can be taken as a super-solution
instead of Me. For ¢ > 0 sufficiently small, one has that ep; < b and (8.9) has a
solution u such that 0 < eg; < u < b.

Remark 8.4.3 Let us point out that, taking into account Lemma 7.2.6, the two proofs
of Theorem 8.4.1 are similar.

Theorem 8.4.4 [f, in addition to the hypotheses of the preceding theorem, f(x,u) =
f(uw) and g(u) := u~" f(u) is decreasing for u > 0, then (8.9) has a unique positive
solution.

Proof The uniqueness result is based upon the following lemma which is interesting
in itself.

Lemma 8.4.5 Suppose that g(u) is decreasing for u > 0 and let v,w be a positive
sub-solution, resp. super-solution, of (8.9), satisfyingv =w = 0on dQ2. Thenv <w
in .

Proof From the definition of sub- and super-solution we deduce

—VAW+wAV > vf(w) —wf)
= wwg(w) —wvg(v) = vwlgw) — g(v)]. (8.12)

Let x(¢) be smooth, nondecreasing and such that

x()=0, ifr <0,
x@®)=1, ifr>1,

t
Xe(t) = x <_) .
&

/ [—=vAW +wAV]Y(v —w) = /VW(g(W) —8NX(v —w). (8.13)

and set, for ¢ > 0,

Then (8.12) yields

Let us evaluate the integral /,,, . on the left-hand side of (8.13). Integrating by parts
(remember that v = w = 0 on 92) we find

Lwe = /vxé(v —w)Vw - (Vv — Vw) — /wxg(v —wW)Vy - (Vv — Vw)
= /vxg’(v —w)(Vw — Vv) - (Vv — Vw)

+ / vV =wWx.(v = w)Vv - (Vv — Vw).
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Since v > 0 and x, > 0 we get

Lwe < / v =w)x,(v —=w)Vv - (Vv — Vw).
Consider the last integral and set

1
Ye(t) = /0 sx.(s)ds.
With this notation, one has
f V=w)x.(v = w)Vv - (Vv — Vw) = / Vv - V(ye(v — w)).
Moreover, an integration by parts yields
/Vv V(v —w)) = — / Ye(v — w)Av.

Since 0 < y,(t) < e for all t € R, we infer that

~ [rw-wav = [ fome-w <ce.
for some ¢ > 0. In conclusion, putting together the previous inequalities we get

Iywe <ce.

Inserting this bound in (8.13) we find

/ vw(g(w) — g)x.(v —w) < ce.

Passing to the limit as ¢ — 0 and taking into account the definition of x, we deduce
/ vw(gw) —g() < 0.
{xeQv(x)>w(x)}

On the other hand, since g(u) = u~"' f(u) is decreasing, then
gw) > g(v), VxeQ:v(x)>wk).

Since v and w are positive, it follows that

/ vw(gw) —g(v)) = 0.
{xeQv(x)>w(x)}

Then

/ vw(gw) —g(v)) =0,
{xeQv(x)>w(x)}

and we conclude that the set {x € 2 : v(x) > w(x)} has zero Lebesgue measure.
This means that v < w in 2, completing the proof. O
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Proof of Theorem 8.4.4 completed Let u;,u; be any pair of positive solutions to
(8.9). Applying Lemma 8.4.5 with v = u; and w = u, we get that u; < u. On
the other hand, we can also take v = u; and w = u; yielding u; > u,. Therefore,
uy = up, proving the theorem. O

Example 8.4.6 (i) For 0 < g < 1, consider the problem

_ — ol i
{ Au=Au?, in Q2 (8.14)

u=>0, on 0%2.
In this case, g(u) = Au~!,
o= lim g(u) =400, y4 = lim gu) =0,
u—0t u—~+00

and thus Theorems 8.4.1 and 8.4.4 yield the existence of a unique positive solution
of (8.14) for all A > 0.
(i1) As a second application we can consider the problem

_ — _ P
{ Au=au—uP, inQ (8.15)

u=>0, on 9€2,
with p > 1. Here g(u) = a — u”~! and

vo= lim gw)=a, y,= lim gu)=—ooc.
Hence Theorem 8.4.4 applies provided o > A; and yields a unique positive solution
u, of (8.15). Using Proposition 8.1.1, (8.15) has a trivial solution only provided that
0 < o < A,. Furthermore, in the present case b, = ()'/?~V is a super-solution of
(8.15) because f(by) = 0. Then (8.15) has asolution u, suchthateg; < u, < by, see
Remark 8.4.2. Since b, — 0 as @ — 0, from uy(x) < b, it follows that |uy|s — O
as o — 0. This means that 1, is a bifurcation point from the trivial solution. O

Following with the last remark, we wish to see that from A; there branches off a
curve of positive solutions of (8.15). Actually, if we consider the problem

—Au=Af(w), inQ
{ u=20, on 082, (8.16)
for a function f € C!'(R*) such that
y. <0 and 1i%1+ gw)=yw (8.17)

where g(u) = f(u)/u, Theorem 8.4.1 yields a positive solution u; of (8.16) provided

0, if yp = +o00;

h>vi= {Alyol, if 0 <y < +o00.
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Lemma 8.4.7 Suppose that f € C'(RT) is such that
f'w) < gw), Yu>0 (8.18)

and let uy be a positive solution of (8.16). Then A([ f'(uy)] > 1, where L{[m] denotes
the first positive eigenvalue of

—Au = mx)u, in
u=0, on 022.

Proof The function u, satisfies —Au; = Ag(uy)u,, which implies that A =
Melg(u;)] forsome k € N. Since u; > 0, it follows thatk = 1, namely A = A{[g(u;)].
By assumption, f’(u;) < g(u;) and hence the properties of the eigenvalues of (8.14)
(see Proposition 1.3.11) imply that A{[ f'(u3)] > A1[g(uy)] = 1. O

Theorem 8.4.8 Suppose that f € C'(R") satisfies (8.17) and (8.18). Then the
family {uy : . > v} is a curve.

Proof LetX ={u e CHQ)NC(Q) : u(x) =0, Vx € IQ}, Y = C(RQ) and consider
the map F(A,u) = Au + Af(u). One has that F(A,u;) = 0 for all L > X and the
linearized equation d, F'(1, u;)[¢] = O is the problem

¢ =0, on 992. (8.19)

{—A¢> = Af'(un)¢, inQ
According to Lemma 8.4.7, A{[ f'(u;)] > 1 and therefore (8.19) has only the trivial
solution ¢ = 0. This allows us to apply the implicit function theorem to F'(x, u) = 0,
showing that the family {u; : A > v} is a curve. O

Remark 8.4.9 Theorem 8.4.8 applies to the Examples 8.4.6 (Eq. (8.15) is not in the
form (8.16), but in such a case the proof of Theorem 8.4.8 can be carried out with
uninfluential changes), proving that the family {u; : A > 0}, resp. {u, : L > A}
is a curve of solutions of (8.14), resp. (8.15). In the latter case, taking also into
account that |u; |oc — 0 as A — 0 (see Example 8.4.6-(i)), we can draw a diagram
representing the family {u; : A > 0} (see Fig. 8.1).

Our last result deals with the case f(x,0) > 0. Since we use the abstract results in
Sect. 4.4, like in the preceding examples, it is convenient to introduce a real parameter
A. Hence, instead of (8.9) , we consider the problem

{—Au = Af(x,u), inQ (8.20)

u=0>0, on 0%2.
Theorem 8.4.10 Let us suppose that

feC@xR, f(x,00>0 VxeQ, (8.21)
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Fig. 8.1 Bifurcation diagram e
for Remark 8.4.9

and lim,_, 1 f(x,u)/u = y;+ € R. Then (8.20) has a global branch S of positive
solutions emanating from (0,0). Furthermore, the projection Proj, S of S in the
A-axis contains [0, A), where

A= )/+')\I, lf)/+>0,'
is arbitrary, if y; <0.

In particular, if y; < 0, for all . > 0 (8.20) has a positive solution u, such that
()\, I/l)\) IS

Proof Consider ®(A,u) = u — AKf(u). Since K f(0) # 0, then Theorem 4.4.1
applies and yields a global branch § of positive solutions emanating from (0, 0).

If (8.21) holds, then Proposition 8.2.1 can be used to deduce that SN[0, A —eg] x X
is bounded for every ¢ > 0. O

Remark 8.4.11 Following the ideas of the previous theorem, an additional proof of
Theorem 8.4.1 can be given using the Global bifurcation Theorem 6.3.1 instead of
Theorem 4.4.1.



Chapter 9
Asymptotically Linear Problems

From now on we consider problems which do not possess a priori estimates of their
solutions. Specifically, this chapter deals with asymptotically linear problems. For
this class of equations it is quite natural to use the bifurcation from infinity. The
classical Landesman-Lazer existence result is found by this method as well as by
using a variational approach. The bifurcation from infinity also leads to proving the
anti-maximum principle.

9.1 Existence of Positive Solutions

We give here some of the existence results in the work [14]. Specifically, we study
the existence of positive solutions of the boundary value problem

—Au=xrf(w), x €

u=20, x € 092, ©.1)
where Q is a bounded open subset of RV, A > 0 and f € C'([0,+00)), with
£(0) = 0 and with positive right derivative f(0) = mo > 0.

First, as in Sect. 8.4, we reduce the study of the existence of positive solutions to
the existence of solutions of an extended problem. Indeed, we extend f to (— oo, 0)
by defining f(s) = f(0) for s < 0. With this extension, the maximum principle
implies that every nontrivial solution of (9.1) is positive.

Now, take X = C(Q), K : X —> X the inverse of the Laplacian operator and
consider the operator ® : [0,00) x X —> X given by ®(A, u) = u — AK[ f(u)], for
every A > 0 and u € X. As in Sect. 7.1, we can rewrite the extended problem (9.1)
as the zeros of @, i.e.

(A, u) =0.

Theorem 9.1.1 If f(0) = 0 and ffr(O) = mgy > 0, then Ag = A1/my is the unique
bifurcation point from zero of positive solutions of (9.1). In addition, the continuum
emanating from (1o, 0) is unbounded.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 97
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_9, © Springer Science+Business Media, LLC 2011
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Proof To apply Theorem 6.3.1 we just have to prove the change of index of ®(, -)
as A crosses A = A¢. The proof is based on the following claims.

e Claim 1. There exists Ay > 0 such that for every interval A C [0, 400) \ {Ao}
there is ¢ > 0 satisfying

Dr,u) #0, VrieA, V0 <|ul <e.
* Claim 2. For every A > A there exists § > 0 such that
P, u) 19, Y0 <|ul|l <8, Vr=0.

To prove Claim 1, we argue by contradiction assuming that there exists a sequence
(Ansup) € A x X satisfying

An — A 75 )VO, ”un” — O,

O(Ay,u,) =0, u, >0.

Since K is compact, dividing the equation u, = 1, K [ f(u,)] by |lu, ||, we deduce
that, up to a subsequence, u, ||u, || =" strongly converges to some v € X. Necessarily,
v is an eigenfunction of norm one associated to A, i.e., it satisfies

v=2AK[mgv], |v|=1

In particular, v > 0. Using ¢, as a test function in this eigenvalue problem we obtain

M/Vﬁlh Z)»mo/\/ﬁl)l,

and we conclude that A = Am,, which is a contradiction and the proof of Claim 1
is finished.
As a consequence of Claim 1 we obtain

(a) The unique possible bifurcation point of positive solutions is A = Ag.
(b) If A < Ag and we take A = [0, A] then

{(®@;,0) = i(P,0)=i(I,0) = 1.

With respect to the proof of Claim 2, we fix A > Ay and we assume, by contradiction,
that there exist sequences u, € X and t, > O satisfying u, > 01in Q, ||u,|| — 0
and

DA, uy) = T 01,

or, equivalently,
u, = AK[f(u,)] + t,01.

Dividing this equation by ||u,|| and using the compactness of K, we deduce that,
up to a subsequence, K[ f(u,)/|lu,||] is convergent and hence t,/||u, || is bounded.
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Passing again to a subsequence, if necessary, we can assume that z,, / ||u, || — 7 > 0
and u, /||u, || — v with v € X satisfying

—Av=Af'"O)w+tAri, x €
v=20, x € 02
vl = 1.

As in Claim 1, we deduce then that Af'(0) = Ay, a contradiction.
As a by-product of Claim 2, if A > ¢, we derive that

1(9,,0) =i(d; — 1¢1,0), V7T >0.
But, again using Claim 2, the problem

—Aw=Af(W)+ 7101, xEQ
w=20, x € 082

has no nontrivial solution. Since, w = 0 is not a solution provided that T > 0, we
deduce that the last index is zero, i.e.,

I(CD)\,O) = O, VA > )\0,

and we have proved the change of index. O

9.2 Bifurcation from Infinity

Definition 9.2.1 ) is a bifurcation point from infinity of ®(X, u) = 0 if there exists
a sequence (A,, u,) € R x X satisfying

)\n — )"003 ”ui’l” —> +00, q)()"n’un) =0.

Assume that
qD()\" u) =u-—- T()\" M),

with T a compact operator. Following [75], if we make the Kelvin transform
u
= W, u#0,
we derive that
O 1) = 0 z— |IzIPT <,\, i) =0,
W0 } = EE
z#0.

Therefore, if we define

Bnn - |2 IPT <x, ﬁ) L ifz#£0,

0, ifz=0,

we deduce that A is a bifurcation point from infinity for ®(%,u) = 0 if and only if
Moo 18 a bifurcation point from zero for ®(A,z) = 0.
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Theorem 9.2.2 Let @ C RY be bounded and open and let f be a C' function in
[0, +00) such that

f(s) = moos + 8(s)

where g satisfies

Jim_s0)s =0,

Then Lo = A1 /My is the unique bifurcation point from infinity of positive solutions
of (9.1). Moreover; there exists a subset Lo in R x C (Q) of positive solutions of
(9.1) such that oo = {(1,2) : A z/]|zl1P) € Too} U {(Aso, 0)} is connected and
unbounded.

Proof The result follows using the same arguments in the proof of Theorem 9.1.1.
O

Remark 9.2.3 Assume that the hypotheses of Theorems 9.1.1 and 9.2.2 are satisfied.

1. Let « be a positive number. If f(s) > as for every s > 0 then it is easy to show
(applying Proposition 8.1.1) that the problem (9.1) has no solution for A > 0.
Then in this case, the continuum bifurcating from (X, 0) is the same that emanates
from infinity at A. See Fig. 9.1.

2. In the case that there exist 0 < 6, < 6, such that f(s) < 0, for every s € (61, 6),
the reader can use the Maximum principle to verify that problem (9.1) has no
solution (A, u) in the strip of R x C(2) given by 6; < |u||oc < 0>. Therefore, in
this case X, N Xy = @. See Fig. 9.2.

[l

Fig. 9.1 Bifurcation diagram
for Remark 9.2.3-1
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Fig. 9.2 Bifurcation diagram (||
for Remark 9.2.3-2

I
1
1
1
1
1
I
I
A

Ao

9.3 On the Behavior of the Bifurcations from Infinity

Let @ C R" be bounded and open and let g be a C! function in [0, +00) satisfying
Jim_e6)/s =0,
Consider the boundary value problem

—Au=Xtu+gu), xe,
u=020, x € 012. ©-2)

In a similar way to the preceding results, it is possible to prove the following result.

Theorem 9.3.1 The value Ay = X is the unique bifurcation point from infinity of
positive solutions of (9.2). Moreover, if g(0) = 0, then .. = A; — g'(0) is the unique
bifurcation point from zero of positive solutions of (9.2). In addition, there exists a
continuum “connecting” (A — g'(0), 0) with (71, 00).

Proof The bifurcation from zero at A — g’(0) and the bifurcation from infinity at
A1 are deduced as in the preceding theorems. On the other hand, since g is C ! there
exists ¢ > 0 such that ou > g(u) > —au for u > 0. Then the problem (9.2) has no
solution provided that |A| > 0 and, therefore, the continuum emanating from zero
at A; — g’(0) is also bifurcating from infinity at A;. O

Remark 9.3.2 In particular, there exists a solution of (9.2) for every A in the interval
of extrema Ay and A; — g’(0). However, in the cases that we are able to establish the
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Fig. 9.3 Bifurcation to the [l
left

M

side of the bifurcations from infinity and from zero, we will improve this existence
result.

The side of the bifurcation from zero is completely described by the following
theorem. Without loss of generality, we assume that g’(0) = 0.

Theorem 9.3.3 If ¢'(0) = 0 and there exists ¢ > 0 such that

gu) >0, Vue,e), 9.3)
then the bifurcation from zero of Theorem 9.3.1 is to the left (see Fig. 9.3). Similarly,
if the inequality in (9.3) is reversed, then the bifurcation from zero is to the right.

Proof If (A,,u,) € R x X are solutions of (9.2) with A, — Ay and |lu,|| — O,
then, as we have seen in the proof of Claim 1 of Theorem 9.1.1, up to a subsequence
u, /||lu, || converges to ¢;. Using this eigenfunction as a test function in the equation
satisfied by u,,, we obtain

(5 _)‘n)/ Up@1 = / guy)e1.
Q Q

Since 0 < u, is uniformly convergent to zero, we deduce by (9.3) that g(u,(x)) > 0,
for every x € Q and hence that A,, < A;.
The result for the reversed inequalities is proved similarly. O

With respect to the bifurcation from infinity we can prove the following result.

Theorem 9.3.4 [24] If there exists ¢ > 0 such that
gwu* > ¢, Yu>0, 9.4)

then the bifurcation from infinity of the preceding theorem is to the left (see Fig. 9.4).
Similarly, if the inequality in (9.4) is reversed, then the bifurcation from infinity is to
the right.
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Fig. 9.4 Bifurcation diagram

i r; )
if (9.4) is satisfied Jue

Proof We give here the proof in the case that a more restrictive hypothesis than (9.4)
is satisfied, namely we assume that there exists « < 2 such that

gwu® >¢e, Yu> 0. 9.5)

For the general case we refer to [24].

If (A, u,) € R x X are solutions of (9.2) with A,, — A and ||u,|| — oo, then,
up to a subsequence, u,/||u,|| converges to ¢;. Using this eigenfunction as a test
function in the equation satisfied by u,, and dividing by ||u, ||, we obtain

u, 1
(A —An)/ —@ = /g(un)fm.
flus |l [l

Hence, taking into account that | ”Z—””cpl converges to [ gof > 0, we deduce

sgn[A; — A,] =sgn [/ g(un)wl} .
To conclude the proof, we just have to show that the sign of the right-hand side is

positive. This is deduced from the Fatou lemma. Indeed, using the fact that u,, /| u, ||
converges to ¢, we deduce that u, (x) converges to +o0o and, by (9.5), we have

u —a
lim inf ||un||°‘/g(un)(p1 = liminf/.g(un)uz z 01
n—+00 n—+00 lun ||

z,sffpll’“ > 0.
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Remark 9.3.5 In [24], some counterexamples show that, in general, if the nonlin-
earity g is below any quadratic hyperbola /s, then the side of the bifurcation from
infinity cannot be decided. The case of quasilinear operators in divergence form (in-
stead of the Laplacian operator) is studied in [23]. More recent results can be found
in [55, 56].

9.4 The Local Anti-Maximum Principle

As aconsequence of the preceding results, we point out the bifurcation nature of some
classical results like the (local) anti-maximum principle of Clement and Peletier and
the Landesman—Lazer theorem for resonant problems.

Theorem 9.4.1 Letr > N. For every h € L"(X2), there exists ¢ = ¢(h) > 0 such
that

1 If/ hoy < 0O, then every solution (A, u;) of
Q

—Au =X u+ h(x), x € <,
u(x) =0, x € 092, ©.6)

satisfies

(a) (local anti-minimum principle) u, > 0 in Q provided that .| < ) < A| + ¢,

(b) (local minimum principle) u; < 0 in Q2 provided that .y — & <, < Aj.

2. If/ hg, > 0, then every solution (1, u) of (9.6) satisfies

Q
(a) (local anti-maximum principle) u; < 0in Q provided that .y < A < *| +¢,
(b) (local maximum principle) u; > 0 in Q2 provided that A\ — & < A < Aj.

3. If/ hg, = 0, then every solution (A, u,) of (9.6) with A # A| changes sign in Q.
Q

Remark 9.4.2 In[41, Theorem 2] Clement and Peletier proved a slightly less general
version of the cases I(a) and 2(a) of this theorem. Indeed, these authors substituted
the condition of the sign of the integral of ug; by a condition on the sign of % in
all Q.

Proof We start with case /. Note that by the Fredholm alternative, the linear problem
(9.6) has no solution for A = A, and there is a unique solution if A is not an eigenvalue
of the Laplacian operator. In addition, for X = W?'(Q), the value A = 1; is a
bifurcation point “from 400" in the sense that there are solutions (A, u; ) emanating
from A; at infinity such that u; /||uy || is converging in W2" () C C'(Q) to ¢; as A
tends to ;. Also, there is a bifurcation “from —o00”, i.e., solutions (X, &, ) emanating
from X; at infinity such that u, /||u, || is converging to —¢; as A tends to A;. (See
Fig. 9.5 for the bifurcation diagram.) Now it is immediate to conclude from the
preceding section that the bifurcation from +o0 is to the right, while the bifurcation
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Fig. 9.5 Bifurcation diagram

E: r;l‘
for case 1 of Theorem 9.4.1 ! A

A
from —oo is to the left. The proof of / is thus concluded. The argument for 2 is

similar.
Finally, to prove 3, it suffices to take ¢; as a test function in (9.6) to conclude

that every solution (X, u) of this problem satisfies (A; —A) [ u¢@; = 0 and u changes
Q

sign. O

Remark 9.4.3 1. The choice of » > N allows us to apply our bifurcation results
which involve the space X = W?’(Q), continuously embedded in C'($2). This
fact allows us to ensure that the normalized solutions converge to ¢; (or to —¢;)
in the C'-topology. Since ¢, lies in the interior of the cone of positive functions
of C'(R), then the positivity (or negativity) of the solutions near the bifurcation
point easily follows. On the contrary, if we consider » < N, such an argument
does not work, and in fact the result is not true, as is proved in [85].

2. A related result for elliptic problems with nonlinear boundary conditions is given
in [25].

9.5 The Landesman-Lazer Condition

The case of (9.2) with A = A; is particularly interesting. Thus in this section we
study the problem

—Au =t u+ g(x,u), x e,

u(x) =0, x € 082, ©.7)
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where g is a bounded Carathéodory function for which

3g100(x) = vlir+n g(x,s) 9.8)
dg_co(x) = liIPoo g(x,s). 9.9)

The classical result by Landesman and Lazer [62] related to resonance at the principal
eigenvalue A; states the following.

Theorem 9.5.1 Assume, in addition to (9.8) and (9.9), one of the following two
conditions:

/g+m¢1 <0< f 8—cof1, (9.10)
Q Q

or

/g+oo¢1 >0> / 8—co®1. (9.11)
Q Q

Then (9.7) admits at least one solution.

Proof We approach the problem (9.7) by embedding it into a one parameter family
of problems as follows:

—Au= u+gx,u), xecQ,

u(x) =0, x € 082, ©.12)

with A € R. Observe that the boundedness of the function g ensures that bifurcation
from infinity for problem (9.12) occurs at A;. In addition, by taking ¢; as a test
function in (9.12), it is easily deduced that if the condition (9.10) holds then the
bifurcation from infinity is to the right. Similarly, if (9.11) holds, the bifurcation
from infinity is to the left.

As we will see, the behavior of the bifurcations from infinity at A; for problem
(9.12) determines the existence of solution for the resonant problem (9.7). The key
to relate these two problems is to interpret the concepts of bifurcations to the left
and to the right in the sense of a priori bounds for the norms of the solutions. From
this point of view, observe that every possible bifurcation from oo at A is to the left
(resp. to the right) if and only if there exist ¢ > 0 and M > O such that every solution
(A, u) of (9.12) with A € [A1, A1 + €] (resp. . € [ — &, 11]) satisfies ||u|| < M.

Here we just complete the proof in the case that condition (9.11) holds, when the
bifurcation from oo is to the left. In other words, there exists ¢ > 0 and M > 0 such
that

lull =M

for every solution (A, u) of (9.12) with A} <X < A +&.

Taking into account for every A which is not an eigenvalue, that there exists at least
a solution (A, u) of (9.12) (see Theorem 8.3.3), we can choose a sequence (A, ;)
of solutions with A, — A, A, > Ay, Vn € N. Then |u,|| < M for n large and the
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compactness of K proves that a subsequence of u, must converge to a solution of
the resonant problem (9.7). |

Remark 9.5.2 The previous general results of the side of bifurcations from infinity

can be applied to obtain an improvement of the above classical existence result
(see [24]).

9.5.1 A Variational Proof of the Landesman—Lazer Result

In this section we complete the study of problem (9.7) by giving another proof of
Theorem 9.5.1. This is based on variational techniques and shows that the solutions
found are essentially of different variational nature according to the fact that either
(9.10) or (9.11) is satisfied.

Variational proof of Theorem 9.5.1 Consider the functional J : HOl Q) — R
defined for every u € Hjj () by

1 A
J(u) = §f|Vu|2—7'f|u|2—/G<x,u>,

where, as usual G(x,s) = fg g(x,t)dt.

Lemma 9.5.3 Assume that either (9.10) or (9.11) is satisfied. Then the functional
J satisfies the Palais—Smale condition.

Proof Assume that {u,} satisfies
Jwu,) <C, VneN, (9.13)
and
(T ), v) <€ lvll VneN, Vve Hy(Q) (9.14)

with C > 0 and ¢, tending to zero.

The proof will be finished if we prove that {u,} is bounded in HOI (R2) (see
Lemma 7.1.1). Suppose, by contradiction, that ||u,|| converges to 400 (up to a
subsequence), and define z, = u, /| u,||. Thus {z,} is bounded in HOI(Q) and hence,
up to subsequences, converges to a function z weakly in Hj () and strongly in
L3(Q). Dividing (9.13) by ||u, 1%, we get (using only the fact that 7 (u,) is bounded

from above)
: 1 1 G(x,uy,)
1 — | |Vzu* — =2 nz—f <0
1,?3,‘3"2/' wl =3 1/'2' ol =

Since, by the hypotheses on g and {u,},

G s Yn
lim/ o) _ o,
n=o0 ) lun |
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lim /Izn|2=/|z|2,
n—0oQ
limsup/ |Vz, > < )»1/|Z|2-
n— o0

Using the weak lower semicontinuity of the norm, and the Poincaré inequality, we

get
A /|z|2 s/WZF Sliminf/IVznlz slimsup/lenP < /|z|2.
n—>+0o n—+00

Thus, the inequalities are indeed equalities, so that (by the uniform convexity of
HOI(Q)) {z,} converges strongly to z in HO1 (R2) and

/IVZIZZM /|z|2.

This implies, by the definition of A, that z = £¢; (observe that the norm of z in
HOI(Q) is 1 by the strong convergence of {z,} to z).
Let us write (9.13), and (9.14) with v = u,,. We have

—CS/IVunlz—)»1 /|un|2_2/G(x»Mn)§C,

—€u [lupll < _f |Vun|2+)"l /|un|2+/g(x:”n)un < €nllugl.

while

we have

Summing up, and dividing by ||u, ||,

V[g(x )2 = 2hs i) 5| < < ¥
where
G920,
h(x,s) = S 9.15)

g(x,0) ifs=0.
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Letting n tend to infinity, we get

lim / g, ) 2 — 2 h(x 1) 2] = O.

n—-+00

Suppose that, for example, z,, converges to +¢;. Then u,(x) tends to +oo for almost
every x € €2, and so, by (9.8)

g(x,uy(x)) = gioo(x) for almost every x € €2,

h(x,u,(x)) = gioo(x) for almost every x € Q.

Consequently, the properties of g and G, and the Lebesgue theorem imply

lim lg(Cx,up) 20 — 2 h(x,u,) 20] = — /ngoo o1,

n—+400
Ozfg+w D1,

which contradicts both (9.10) and (9.11). Thus {u,} is bounded and the lemma
follows. O

and so,

Remark 9.5.4 We explicitly remark that in the above proof it is shown that “for every
sequence u, such that J (u,) is bounded from above and ||u,| converges to +00, we
have, up to a subsequence, the strong convergence of u, /||u,|| to £¢1.”

Variational proof of Theorem 9.5.1 completed Once we have proved that J satisfies
the Palais—Smale condition, we study the geometry of 7 which depends strongly on
the conditions (9.10) and (9.11). The proof is divided into two steps.

Step 1. If (9.11) holds, we will see that 7 is coercive and hence (see Theorem 5.4.1)
it has a global minimizer, which concludes the proof in this case. Indeed, suppose by
contradiction that 7 is not coercive, that is, that there exists a sequence u,, such that
J (u,,) is bounded from above and ||, || converges to +00. Applying Remark 9.5.4,
we can assume that u, /||u, || is strongly convergent to £¢; and thus

TWn) _ f G(x, up)

0= lim .
ot 112

=00 |luy |2

However, using (9.8) (resp. (9.9)), by the L’Hopital rule we have
. G(-x, ul‘l)
lim 5 = | &+o00¥1,
n—00 lla

. G(x,uy,)
lim = [ g—c®1),

n—>00 |1, ”2

(resp.

provided u,, /||u, || converges to ¢, (resp. —¢;). In any case we obtain a contradiction
with the hypothesis (9.11), which proves that 7 is coercive and thus the theorem.



110 9 Asymptotically Linear Problems

Step 2. If (9.10) holds, we follow an argument close to that one used in Case 2 of the
variational proof of Theorem 8.3.3 given in Sect. 8.3.3, namely we obtain a solution
by applying the Theorem 5.3.8 to J. Indeed, again by the L’Hopital rule, using (9.8)
and (9.10), we deduce that

J(te1) . G(x,ter)
=2 = lim | —— = [ gi0001 <O.
t—+00

1
1—+oo 12|y |12 2l

Similarly,

Jte)) lim /G(x,wl) _ /g o1 <0
= S | e e <O.
i==o0 g2 == ) 22 >

These two facts imply that

lim J(te;) = —o0.
|t|—+o0
In addition, the variational characterization of A, gives us (see Case 2 in the variational
proof of Theorem 8.3.3)
inf J > —o0.
o)+
Then we have verified the geometrical hypotheses, and we conclude the existence of
a mountain pass critical point of 7, concluding the proof. O



Chapter 10
Asymmetric Nonlinearities

This chapter deals with nonlinear problems with nonlinearities whose behavior at
~+o00 and —oo jumps through an eigenvalue of the linear part. Specifically, we come
back to the problem

{—Au = fW) +hx), xe, (10.1)

u = 0’ X € 89,
where € is a bounded open set in RN and 4 € C (€). On f € C'(R) we assume:

(1) Setting f(u) = g(u)u foru # 0, yx = lim,,_, 1o g(u).
(10.2)
)0 <y <A <yr <Ay

We first discuss the case in which the precise solutions number can be found by
using the global inversion theorem with singularities stated in Sect. 3.5. Moreover,
we show how some multiplicity results can be obtained by using sub- and super-
solutions jointly with degree arguments or with variational arguments. In Sect. 10.4
we employ the topological degree to find continua of solutions.

10.1 The Approach by Ambrosetti and Prodi

We begin the study of our problem by following the ideas of [16] which use the
global inversion theorem with singularities.

Theorem 10.1.1 Let f € C*(R, R) and suppose that (10.2) holds and that () >
0, for everyu € R. Then Y := C*(Q) = Yy U Y, U Ys, where

1. Yy is a C' submanifold of codimension 1 in Y and (10.1) has a unique solution
inX .= Cz’”(ﬁ),for everyh € Yy,

2. (10.1) has no solution in X, for every h € Yy;

3. (10.1) has exactly two solutions in X, for every h € Y.

The proof will be deduced by the following lemma. We keep the notation introduced
in Sect. 8.3.1. In particular, we let F'(u) = —Au — f(u), u € X.
A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 111

Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_10, © Springer Science+Business Media, LLC 2011
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Lemma 10.1.2 (i) F is proper.

(i1) The singular set X' of F is not empty, closed, connected and every u € ¥’ is an
ordinary singular point.

(iii) Forevery h € ¥/, F(u) = h has a unique solution.

Proof (i) To prove the properness of F' we argue in a similar way to the proof of
Lemma 8.3.1. We limit ourselves to indicating the changes. As before, if u, € X
satisfies F(uy) = hy € Y and h; is bounded, then we claim that u; is bounded
in C%’(Q). Otherwise, up to a subsequence, z; := u|lux||~' converges to some
z € C1(Q), with ||z]] = 1, which solves (8.4), where a is given by (8.5). Since z # 0,
it follows that A j(a) = 1 for some integer j > 1. Since a < A, the comparison of the
eigenvalues (Proposition 1.3.11-(i)) implies that A;(a) = 1. Then the eigenfunction
z is either positive or negative in 2 and hence a equals either y, or y_. Since both
y+ are not eigenvalues of the Laplace operator, we get a contradiction. The rest is as
in Lemma 8.3.1.

(ii) Fix z € X with z > 0 and write u = tz +w, witht € Rand w € (Rz)*.
Remember that u € X’ whenever

—Av = fl(tz +w)v, veX

has a nontrivial solution, namely if A, [ f'(tz+w)] = 1. Since f” > 0, f'(tz+w) >
f'(sz+w) provided r > s and thus, by (Proposition 1.3.11-(i)), t —> A [f'(tz+w)]is
decreasing. Moreover, by case ii) of the same proposition and from f'(tz4+w) — y_
ast — —oo, resp. f'(tz+w) — y, ast — +o0, it follows that A [ f'(tz + w)] —
A/y— ast — —oo, resp. A [f'(tz+w)] = A1/ys ast — +oo. Then there exists
a unique ¢* such that A[f'(tz + w)] = 1. This shows that ¥’ is not empty and
has a Cartesian representation on (Rz)*, proving the first part of (ii). Since u € ¥’
whenever A [ f'(u)] = 1, there exists ¢ € X, which does not change sign in €,
such that Kerd F'(u) = Rg and Range d F' (1) = Ker ¢ where (¢, h) = f he. Since
d*Fwlg, ¢l = f"(u)p* we get

(Y, d*Fw)le, ¢l) = / ' #0

because f”(u) > 0, proving that u is an ordinary singular point.
(ii1) By contradiction, let # # v be singular points such that F'(u) = F(v). Setting

Jw) —f)

u—v

s ifu(x) # v(x),

a(x) =
f'(u(x)), if u(x) = v(x),
we find that z = u — v satisfies —Az = a(x)z. As before we infer that A;[a] = 1

and z is, say, positive, namely u > v. Since f” > 0 and a < f’(v) we deduce that
MLf'(V)] < 1 = Aq[al], a contradiction with the fact that v € X', O

Proof of Theorem 10.1.1 It suffices to use the previous lemma and apply
Theorem 3.5.1. O
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Remark 10.1.3 Inthe preceding proof or, more specifically, in the verification of case
(1) of Lemma 10.1.2, it is essential that zero is the unique solution of the problem
(10.3),

—Av = avt -
Av=avT +pv-, x e } (10.3)

v=0, x € 092,

provided that o and B lie between two consecutive eigenvalues. The set ¥ of the
pairs («, 8) such that (10.3) has nontrivial solutions is called the Fucik spectrum.
It was Fucik [53] who gave a complete description of it in the case N = 1. With
respect to the case N > 2, in Dancer [43], it is shown that the two lines {A,} x R and
R x {A} are isolated in X, and in Gallouét and Kavian [54], it is proved that from
each pair (Mg, A¢) emanates a curve S;_; in X. A variational characterization of the
curve S| emanating from (A, X,) is given in De Figueiredo and Gossez [49], where,
in addition, it is proved that S| is asymptotic to the lines {A;} x Rand R x {1}. In
[28] the description of the spectrum in the radial case is given.

10.2 The Approach by Amann-Hess

In the following sections, we study different approaches to (10.1). We anticipate that
we will not assume f” > 0 but we will only obtain estimates from below of the
number of solutions. Specifically, this section is devoted to studying the approach
due to Amann and Hess [4]. It combines the method of the sub-super-solutions with
degree arguments to prove the existence of solutions for the problem

—Au= f(u)+tox)+ h(x), x €€,
u=0, X €082, (10-4)
where ¢, h € C(Q), p(x) > 0 forx € Q, f € C'(R) and there exist the limits
Y+ = lim, .+ g(u) with g(u) = f(u)/u, for u # 0.

First, we need to prove the following lemmas.

Lemma 10.2.1 [f (10.2) is satisfied, then the solutions of (10.4,) are uniformly

bounded on compact sets of t, i.e., for every compact interval I' C R, there exists
R > 0 such that every solution u of (10.4,) with t € T satisfies

lullcr < R.

Proof Suppose on the contrary that u, is a solution of (10.4,) with #, bounded
and |lu,||c1 — oo. Using that t,/||u,||c1 converges to zero we deduce that z,, =
U, /|lunll o1 strongly converges to a nonzero solution z of (8.4). As has been seen in
Lemma 10.1.2, this problem has only the zero solution and we obtain a contradiction,
proving the lemma. O

Following McKenna—Walter [70] we also prove the following nonexistence result.



114 10 Asymmetric Nonlinearities

Lemma 10.2.2 If hypothesis (10.2) holds, then there exists &9 > 0 such that for each
0 < & < gy there is t, € R such that for every t < t. and A € [0, 1], the problem

—Au=Af(w+to+h, xeg,
u:o XEBQ,

has no solution in 3 By, :(1¢) = {u € Cé(ﬁ) Y lu—tpllcr = |tle}, where ¢ denotes
the unique solution in Cé(Q) of —A¢ = ¢ in Q.

Proof Let gy > 0 be such that ||¢||c1 > &, ||¢||§ —&ollelli > 0and Azl <
A3 [lI#113 — eoll@ll1] . We argue by contradiction and suppose that for some & € (0, &)
there exist sequences ¢, € R, A, € [0,1] and u, € Cé(SZ) with , - —o0, A, —
A €[0,1]and || 7= — @llc1 = &, satisfying

—Auy, :)\nf(uil)+tn(p+h, x € Q.

Un
lll

00, because otherwise z, — 0 in Cé () and thus 0 € B,(¢), which is impossible by
the choice of gg.

On the other hand, there exists z € HO1 (£2) such that (up to a subsequence) z, — z
weakly in Hj (2), strongly in L?(€2) and z,,(x) — z(x) a.e. x € Q. Arguing as before,
we deduce the strong convergence of z, to z. Consequently, ||z — ¢|lc1 = €.

Dividing by ¢, the equation satisfied by u,, and taking limits as n tends to infinity,
we deduce from (10.2) that z satisfies the following equation:

Since |2 — ¢]|c1 = &, the sequence z, := u,/t, is bounded. Moreover, |u,||c1 —

—Az=Xda(x)z+¢, xeQ
where a(x) is given by (8.5). Since z # ¢, we have L # 0. We claim that z is

non-negative. Indeed, by taking z~ := min{z, 0} as a test function in the equation
satisfied by z and using that y_ < X, we obtain from Corollary 1.3.9

Mz I3 < /VZ'VZ_ =A/a(x)(z_)2+/¢z_
=)»/)L(Z_)2+/<pz_ < allz 5

Since A € [0, 1], then z~ = 0, proving the claim.
We now take ¢ as a test function in the equation satisfied by z and z in the equation

satisfied by ¢ to get
fz¢=/Vz~V¢=Ay+/z¢+f¢¢.

lellillz — @ller = /w(z—¢)=/\y+/zq> sz/Zd),

We have
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because y; > A;. Taking into account that ||z — ¢|| 1 = ¢, we can write z = ¢ + €23
with ||z;[|c1 = 1. Thus,

ellelli = Ax, /z¢ = Ak [|I¢|I§+8/Z1¢] > 1 [lI013 — ellelh] .-

Since [|¢[5 —¢llglli > 0,if & < o, this implies that A < 8!(p”1 < )Ll
a[llol —ellelh] — A2
On the other hand, z is a positive super-solution of the problem

—Au=Ayiu x € L,
u=0 x € 0Q2.

Ifé§ < 1/, w = Sig; is a sub-solution of this problem. We can choose §
small enough to conclude that w < z. The method of sub- and super-solution
(Theorem 7.2.1) allows us to deduce the existence of a non-negative, nontriv-

Al

ial solution. As a consequence, because we have previously shown that A < e

A= }% > i—;, which is a contradiction. O

Theorem 10.2.3 If condition (10.2) holds, then there exists a number t* € R such
that the problem (10.4,) has

e no solution if t > t*,
* atleast one solution if t = t*
e and at least two solutions if t < t*.

Proof We begin by observing that hypothesis (10.2) means that there exist§ < A; <8
and C > 0 such that

fls)=8s—-C (10.5)
and
f(s)>38s —C, (10.6)

fors € R.
We show first that problem (10.4;) has no solution provided that 7 is large enough.
Indeed, this is deduced by taking a first eigenfunction ¢; > 0 as a test function to

obtain
M/W,OlZ/f(u)¢1+t/¢¢1+/h¢1.

Hence, if u is a solution of (10.4,) with f ugp; > 0, then, by (10.6),

ff<ﬂ€01S()»l—g)/uﬁﬂl—(f/wl—/h%S—C/%—/hfﬂl

and the positiveness of ¢ (and of ¢;) implies that ¢ is bounded from above. A similar
argument using (10.5) (instead of (10.6)) shows the same iff up; < 0.
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Consequently, the set S := {r € R : (10.4,) admits a solution} is bounded from
above. The rest of the proof is divided into two steps:

Step 1 S is a nonempty closed interval, i.e., there exists ¢* such that S = (—o0, #*].
Step 2 Problem (10.4;) has at least two solutions for r < t*.

Proof of Step 1 First we apply Lemma 10.2.2 to prove that S is not the empty
set. In order to do that we use the Leray—Schauder degree. Let t < ¢, (where f,
is given by Lemma 10.2.2) and ®,(u) = u — K(f(u) + t¢ + h) where, as usual,
K : CH(Q2) —> CL(Q) is the inverse operator of the Laplacian operator in the space
Cé (Q). By the invariance of the Leray—Schauder degree, Lemma 10.2.2 implies that

deg (r, By o (1¢),0) = deg (I — K(t9), By s (1¢),0) = 1.

Then there exists a solution of (10.4,) in Bj;;(#¢) and the set S is not empty.

Now, we observe that § is an interval unbounded from below. Indeed, if 1) € S
then there exists a solution g of (10.4,,). Clearly, it is a super-solution for (10.4;)
for every ¢t < ty. Moreover, if y, is the unique solution of the linear problem

—Au=6u—C+tex)+hkx), xeQ,
M:(), XEBQ,

then condition (10.5) implies that y, is a sub-solution of (10.4;) with —Au, < —Aug
(already we have just proved that y, is less than or equal to every super-solution of
(10.4;)) and thus, by the maximum principle, #, < ug. Therefore, the sub-super-
solution method' (Theorem 7.2.1) applies, and we conclude that (—o00, fy] C S and
S is an interval unbounded from below.

Lett* = sup S. To conclude the proof of Step 1, it suffices to show that #* € S. To
this end let {#,} be a sequence in S converging to ¢*. For every #,, let u, be a solution
of (10.4,), i.e., u, = K(f(u,) + th,¢ + h). By Lemma 10.2.1, ||u, || is bounded
and from the compactness of K we deduce that—up to a subsequence— u,, strongly
converges to a solution of (10.4}) and * € S.

Proof of Step 2 Fix t < t* and let u* be a solution of (10.4,«). Then, as we have
seen in the first step, u™ (resp. u,) is a super-solution (resp. a sub- solution) of (10.4;)
with u, < w*. Further, by the strong maximum principle and the Hopf lemma (see
[58, Lemma 3.4]) we have u, < u* in 2 and "ai: < g—fj on 0€2. Thus, we can define
the set
| = . ou*  ou  du,
UR)={ueCy(2): uy, <u<u"in 2, — < — < — on 9} N B(0).
on on on
Let ®,(u) = I — K(f(u) + t¢ + h). By Lemma 7.2.3, there is R > 0 such that
deg (®,, U,(R),0) = 1 which, by the existence property of the degree, implies the
existence of a first solution of (10.4,) in U,(R). The key idea to find the second
solution of (10.4,) is to compute the degree of @, in Bg(0) and to use the excision

! Tndeed, by Remark 2.2.3, we deduce the existence of a minimal solution of (10.4,).
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property. Indeed, by Lemma 10.2.1, ift; > ¢*, R may be chosen such that ||u|c1 < R
for each solution u of (10.4,) with s € [z, #;]. Using the homotopy invariance of the
Leray—Schauder degree and the fact that problem (7;,) has no solution, we get

deg (@, Bg(0),0) = deg (®P,,, Br(0),0) =
Therefore, the excision property of the degree implies that
deg (P, Br(0) \ Ui(R),0) = deg (P, Br(0),0) — deg (®;, U;(R),0) = —

which means that, in addition to the solution of (10.4,) in U;(R), there exists a
second solution in Bg(0) \ U;(R). Therefore, Step 2 has been proved and thus the
theorem. O

10.3 Variational Approach by Mountain Pass and Sub- and
Super-Solutions

We devote this section to discuss a different proof [51] of the existence of the second
solution in Theorem 10.2.3. This is based on variational arguments. Specifically, in
the proof given in the previous section we have seen that the set S = {r € R :
(10.4,) admits a solution} = (—o0, "] and that for every t € (—oo,*] there exist
a sub-solution and a super-solution of (10.4,) which are well ordered. By applying
Lemma 6 there exists a solution u; of (10.4;) which is (between the sub-solution and
the super-solution and) a local minimizer of the functional

Tw) = %f |Vu|2—/F(u)—t/¢u—/hu, u e H(Q),

where F(u) = [ f
In addition, we have

. TG 1 2 F(sp)) ¢ 1
Jim —o— = lim §/|V§01| —/ 2 —;/90(01—?2/}1%
/W |——/% (1——>/|V<p1|
_2

Since y; > A the above estimate implies that

liI_P J(spr) = —00 (10.7)

and it is possible to choose an arbitrarily large s such that J(s¢;) < J(u1). In
conclusion, the geometry of the mountain pass (Theorem 5.3.6) is satisfied. It re-
mains to show that the Palais—Smale condition holds. For this, it suffices to prove
that every sequence {u,} C HO' (2) such that {7 (u,)} is bounded and {J’'(u,)}
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tends to zero in HOI(SZ) is bounded in HOI(SZ) (see Lemma 7.1.1). Assume, by con-
tradiction, that ||lu,|| — —+oo (up to a subsequence) and observe that using that
lim, . 100 J'(u,)(@)/|lun ]| = 0 and taking v, = u,,/||u, ||, we obtain

lim [/ vy, - f(Mn)¢ / 19¢ / ¢ } —o,
n—+00 [lu || [z, || lle I

forevery ¢ € Hj (). Passing to a subsequence if necessary, we may assume without
loss of generality that v, — vin H} (), v, — vin L3(Q), v,(x) — v(x) a.e. x € Q.
Thus, by the Lebesgue dominated convergence theorem and (10.2) we obtain

tim_ [ L% = tim_ [ swmg = [ (ot +r7)o.

n——+00 (7] n—+00

Hence
/VV V¢ = / (yevt +y-v7) 8,

i.e., v is a solution of the problem (8.4). As has been seen in Lemma 10.1.2, this
implies that v = 0, a contradiction because

0= lim T w)v,) =1 — lim [/ S Wn)vy —t/</>vn —/hvn} =1

Hence, u, is bounded and the Palais—Smale condition has been verified. Applying
Theorem 5.3.6, we obtain the existence of a critical point (and thus a solution of
(10.4,)) uy # u; of J. The variational proof of the existence of a second solution in
Theorem 10.2.3 is thus concluded. |

Remark 10.3.1 Since we devoted this section to apply variational methods, it is
really worthwhile to see that, if ¢ = ¢;, then the mountain pass theorem may also
be applied to prove that the set S of all ¢ for which problem (10.4,) can be solved is
not empty (i.e., a variational proof of Step 1 of the proof of Theorem 10.2.3). Indeed,
we are going to show that (10.4,) is solvable if + < 0. To this end, consider the
subspace W = {u € Hj(Q) : [ ugy = 0} (which is orthogonal to Re;). Roughly
speaking, since the first eigenvalue in W of the Laplacian operator is A, (remember
the variational characterization of A, given in Theorem 1.3.8) and condition (10.2)
holds, we deduce that

inf J(w) > —o0.

Pve
Since ¢ = @, we observe that J(w) = %f |Vw|?— [ F(w)— [ hw does not depend
on t and thus, there is 7y < 0 such that J(—¢;) = %f Vo1 1> = [ F(—p)+1 [ @7+
[ hey < infew T (w) for every t < 1.
In addition, by (10.7), for every ¢ < fy there is s > 0 (depending on #) such

that 7 (s¢;) < inf,,ew J(w). Theorem 5.3.8 applies and proves that 7 has a critical
point which is a solution of (10.4,) for ¢t < t,.
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10.4 Approach by Degree Giving a Continuum of Solutions

In this section, we follow the ideas of [20, 21] and apply Theorem 4.4.2 to give an
alternative proof of Theorem 10.2.3. Specifically, we prove the following result.

Theorem 10.4.1 Let ¢ € L°(R2) be a positive function and let f : R — R be
a C' function satisfying (10.2). Let t* be the supremum of all t € R such that
problem (10.4;) admits a solution. Then t* is finite and there exists a continuum C in
Y ={(t,u) e R x Cé(ﬁ) : u solution of (10.4,)} satisfying that

1. (—o0,t*] C Projy C. .
2. Foreveryt € (—00,t*), the t-slice C; = {u € Cé(Q) : (t,u) € C} contains two
distinct solutions of (10.4;).

Remark 10.4.2 As a consequence, we recover the assertion of Theorem 10.2.3:
(10.4,) has, at least, two (resp. one, zero) solutions for t < ¢* (resp. t < t*,t > t*).

Proof As we have seen in the proof of Theorem 10.2.3 in Sect. 10.2, S = {r e R :
(10.4,) admits a solution} = (—o0, t*]. Observe that the family X« of the solutions
of (10.4,+) is clearly a compact set in C}(S2). Let u* be the minimal solution of
(10.4;+) and choose 1y < t*. We have seen in Step 1 of the proof of Theorem 10.2.3
that it is possible to pick a sub-solution u,, < u* of (10.4,,) which is not a solution.
Clearly u,, is also a sub-solution and not a solution for (10.4,) if # € [#p,7*]. As in the
proof of Theorem 10.2.3, there is R > 0 such that, if ®,(u) = I — K(f(w)+tp +h)
and

ou* ou
- =
on on
then deg (®;, U,,(R),0) = 1, for every ¢ € [y, t¥).

Applying Theorem 4.4.2 with X = C&(ﬁ), [a,b] = [t,t*], U = Bg(0) and
U, = U, (R), we deduce the existence of a continuum S, in X such that

_ ou
Uy(R)={u e C(;(Q) Dl <u< u*in Q, < 8;t0 on 92} N Br(0),
n

Sy N{to} x Uyy(R)) # 9,

and
Sio N ({20} x [Br(0) \ Uy (R)]) # 0.

In particular, the continuum S, crosses {t} x dU,,(R), for some ¢ € (t, t*]. It has
been observed that, by the strong comparison principle, this is possible if and only if
t = t*. Consequently, the choice of u* implies that S;, crosses {¢*} x dU,,(R) exactly
in (+*, u*). This proof is concluded by taking C = U;)<+S;, . |

Remark 10.4.3 We will see in the next chapter that the above proof can cover the
case of a nonlinearity f such that y; = 400 (superlinear at +00).






Chapter 11
Superlinear Problems

This chapter deals with superlinear problems, i.e., nonlinear Dirichlet boundary value
problems whose nonlinearity f(u) is superlinear at co, namely

lim f@ =400

u——+oo Y

In this case an appropriate approach seems to be critical point theory. Actually, the
mountain pass theorem or the linking theorem can be used to find solutions. We also
show how to study superlinear problems by using the topological degree.

11.1 Using Min-Max Theorems

We will find solutions of problems with a superlinear nonlinearity by means of the
min-max theorems proved in Sects. 5.3 and 5.5. For the reader’s convenience we
will first consider the model case

(11.1)

—Au=ru+uP"lu, xeQ
u = O, X € 89,

where A > 0 is a parameter and 1 < p < 2* — 1. Let us remark that 2* is given by
(7.3). The solutions of (11.1) are the critical points of

To(u) = 3llull® = 3 Mlull; — Hw), u e E = Hy(R),
where
H(w) = #/W’“.
Lemma 11.1.1 If1 < p < 2* — 1, then J, satisfies the (P S). for all c > 0.

Proof Letu, € E be such that J,(u,) — ¢ and J,(u,) — 0. From the former,
resp. the latter multiplied by u,,, we get
Sl l? = 5 Al |13 = H(w,) = ¢ + o(1),

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 121
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_11, © Springer Science+Business Media, LLC 2011
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a1 = Allun 13 = (H' () | ) = o(1).

From the first identity we infer ||u, [|> — A ||u,, ||% = 2H(u,)+ 2c + o(1) and, inserting
this into the second one, we deduce that

(H'(uy) | ) = 2H(up,) + 2¢ + o(1). (11.2)
Using the homogeneity of H (H'(u)(u) = (p + 1)H(u)), we have
(p — DH(u,) = 2¢ + o(1).

Then p > 1 and the definition of H imply that &, is bounded in L?(£2) and this
shows that ||u, II% + H(u,) is bounded. Therefore ||u, || is also bounded. The rest of
the proof follows from Lemma 7.1.1. O

Remark 11.1.2 The homogeneity of H can be substituted by the condition
Hu) < 0(H (w) | w), 0 € (0, %). (11.3)
Actually, using (11.3) in (11.2) we get
H(uy) < O(H (uy) | uy) = 20H(uy,) + 26¢ + o(1),

namely,
(1 =20)H(un) < 20c + o(1),

and the conclusion follows in the same way.

The geometrical properties of the functional 7, depend on the value A. Indeed, since
the characteristic values of the operator LA are the decreasing sequence ; = ﬁ
(j =1,2...), applying Examples 5.3.1 and 5.5.1, we have the following result on
the verification of the conditions (J 1)—(J4) introduced in Sects. 5.3 and 5.5.

Lemma 11.1.3 (i) If A < Ay, then J, satisfies (J1) and (J2).
D) If i < A < Aiy1, kK = 1, then J, satisfies (J3) and (J4), with V =
span{(pl,~~- 9(pk}~ O

The preceding lemmas allow us to apply the mountain pass theorem 5.3.6, resp.
the min—max theorem 5.5.3, provided A < Ay, resp. Ay < A < Ay, yielding a
nontrivial critical point of 7, and hence a nontrivial solution of (11.1). Furthermore,
if L < A, we can assert that the solution is positive in 2. Indeed, the same previous
arguments work to prove the existence of a solution if we substitute the nonlinearity
|u|?~'u with its positive part. In addition, we deduce by the maximum principle that
the solution we find is positive.
Similar arguments apply to the problem

—Au=X u+ f(x,u), xe€Q,

u=0, x € 092, (11.4)

where f € C'(Q x R, R) satisfies
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(i) f(x,0)= fu(x,0) =0,
(i) | f(x,u)| <ay+ax|ul? with1l < p <2*—1,
(iti) 36 € (0, %) such that, letting F'(x,u) = fou f(x,s)ds,

0< F(x,u) <Ouf(x,u), Yxe, VYu=>O0. (11.5)

In this more general case the preceding arguments require some modifications that
we are going to outline.

As for the (PS) condition, it suffices to point out that now one has that H(u) =
J F(x,u)dx as well as (H'(u) | u) = [uf(x,u)dx and hence assumption (iii)
implies that (11.3) holds.

The verifications of (J1) or (J3) in Lemma 11.1.3 (see Example 5.3.1) do not
depend on the homogeneity of the nonlinearity. On the other hand, from (11.5) it
follows that f(x,u)F~'(x,u) > 6~'u~" and hence, integrating,

|F(x,u)| > alu|'?, a>0. (11.6)

Using again (11.5), we deduce that f is superlinear at infinity and allows us to repeat
the arguments carried out in Example 5.5.1 proving that (J2) or (J4) holds.
In conclusion, we can state the following result.

Theorem 11.1.4 If f satisfies (i), (ii) and (iii), then (11.4) has a nontrivial solution.
Moreover, if A < A1, (11.4) has a positive solution. a

Remark 11.1.5 Condition (iii) can be further weakened by requiring that it hold
only for all |u| > 1. The proof requires some minor changes that are left to the
reader.

Remark 11.1.6 Exercises 40 and 41 show that, in general, positive solutions given
by the preceding theorem cannot be obtained by sub- and super-solutions.

Remark 11.1.7 In general, (11.4) has no nontrivial solution u € H*(2) N HOl Q) if
A <0, p>2"—1and N > 2. This can be derived as a consequence of an integral
identity for the case f(x,u) = f(u), due to Pohozaev, which states that any solution
of (11.4) verifies

N/F(u)— NT_zfuf(u)+A/u2 = %/ W3 (x - v)do, (11.7)
I

where v is the unit outer normal on 92 and u, = g—fj Roughly, (11.7) follows by
multiplying (11.4) by x - Vu to deduce that

fwx-Vu=—Au(x-Vu)
. 1. , N-=2 )
= —div((x - Vu) Vu) + Ele x|Vul|*) — T|Vu| ,
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which, integrating in €2 and using the divergence theorem, implies

N/F(u): —/(x.Vu)uv+%/|Vu|2(x~Vu)— NT_2/|VM|2.
Q2 Q2

Finally, (11.7) is obtained by observing that Vu = u, v (since u = 0 on 9£2) and
taking into account that, by choosing « as a test function in (11.4),

/|Vu|2=/f(u)u.

When f(u) = |u|”"'u, the left-hand side of (11.7) becomes

(- 22) oo -

If, in addition, A < 0 and the set 2 is star-shaped, i.e., such that x - v > 0 on 92,
we infer from (11.7) that

e
p

Therefore, if (11.4) has a nontrivial solution, then p + 1 < 2N /(N — 2) = 2*.

Remark 11.1.8 In contrast to the previous discussion, if we consider the following
linear perturbation of problem (11.4):

—Au=ru+ u¥u, xeQ

u=0, x €9, (11.8)

and N > 4, then (11.8) has a positive solution whenever 0 < A < X;. In the
case N = 3 there exists A* > 0 such that (11.8) has a positive solution whenever
A* < A < A;. Moreover, if €2 is a ball, necessarily A* > 0.

These and other results dealing with (11.8), including existence of solutions for

A > X, are out of the scope of this book. For an exposition, we refer, e.g., to [37].

11.2 Superlinear Ambrosetti—-Prodi Problem
In this section we study a superlinear version of the Ambrosetti and Prodi problem.
Specifically, we consider the boundary value problem

—Au= f(x,u)+1tp, x€Q,

u=020, x € 092, (11.9,)

where ¢ € L*(2) is a positive function, and f is a continuous function such that

f(x $) _

lim

§—>—00

y_(x) < A; —e, uniformlyinx € €, (11.10)
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for some ¢ > 0. In addition, we suppose that there exists h(x) € L°°(2) and
1 < p <2* — 1 such that

. f(x,s)
m
p

s—>+00 §

= h(x) > ¢ >0, uniformlyinx € Q. (11.11)

Notice that this hypothesis implies that f is superlinear at +o0c and satisfies the
subcritical condition (i) of the previous section.

Theorem 11.2.1 Let ¢ € L°°(R2) be a positive function and let f be a continuous
function satisfying (11.10) and (11.11). Then t*, the supremum of all t € R such
that problem (11.9,) admits a solution, is finite and there exists a continuum C in
Y={(t,u) e Rx Cé(ﬁ) : u solution of (11.9,)} satisfying that

1. (—o00,t*] C Proji C. .
2. Foreveryt € (— 00,t*), the t-slice C; = {u € Cé(Q) . (t,u) € C} contains two
distinct solutions of (11.9,). O

Remark 11.2.2 Similarly to Remark 10.4.2, we obtain as a corollary that problem
(11.9;) has, at least, two (respectively, one, zero) solutions for r < ¢* (respectively,
t<t*t>t").

The proof is essentially equal to the one of Theorem 10.4.1. The only change is the
estimate given by Lemma 10.2.1. In this case, an easy extension of the result by
Gidas and Spruck in [57] gives the following result.

Lemma 11.2.3 Let ¢ € L*(2) be a positive function. Suppose that f satisfies
(11.10) and (11.11). Then the solutions of (11.9;) are uniformly bounded in compact
sets of t, i.e., for every compact interval I' C R, there exists ¢ € R such that every
solution u of (11.9;) with t € T satisfies

lulcr < c.

Proof By bootstrap arguments, it is sufficient to prove the existence of an a priori
estimate for the norm in L*°(2) of the solutions of (11.9;,) with 7 in a given compact
interval I'. The proof is divided into two steps:

Step 1. There exists a positive constant ¢ such that
u(x) > —c, x € ,

for every solution u of (P;) withz € T.

Step 2. There exists a positive constant C such that
ux)<C, x € Q,

for every solution u of (P,) witht € I".

Proof of Step 1 In order to prove this a priori bound, we observe that, taking u~ =
min{u, 0} as a test function in the equation satisfied by u, and by using hypothesis
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(11.10), we get a uniform bound in the Hol(Q)—norm of u~. For each k € R, the
function Gy is given by

s+ k, ifs <—k,
Gi(s) =10, if —k<s <k,
s —k, ifk <s.

Taking v = G¢(u™) as a test function in the equation satisfied by u, we obtain that

/|VGk(”_)|2 Z/[f(x,u_)er]Gk(u_),
Qe

where Q; = {x € Q : u(x) < —k}. From (11.10), there exists a positive constant C
such that
fx,8)+tp>Cs, Vs<—k, Vtel.

We deduce from above that

/IVGk(bF)I2 < C/Ibflle('f)l-
Q2

Using now the Sobolev inequality, we get

IG5 < Cy / IVGr(u)* < Cz/ |G ().
Qi

Moreover, if r > 2N /(N + 2), by the Holder inequality, we infer

/ ™ |G| < (111G ) || Q4|17 =120,
Qe

Hence,
1GL @3 < Collu™ Il Gl |11,

Notice now that for every h > k, |G (u™)| > h — k in €, which implies that
(h —R)IQu]"*" < Collu [,1Q| 71/,

or equivalently that
Collu |71 1 2/7
(h — k>
The following lemma of real analysis can be found in [83, Lemme 4.1, p. 19].

|2 <

Lemma 11.2.4 Assume thatk; > 0, C,«, 8 > 0 and that V(h) is a non-increasing
and non-negative function satisfying

C
WU(h) < ——Wk)P, Vh>k>k.
()_(h_k)a (k) >k >k

IfB > 1, then W(hy) = 0, with ho = ky + (CW (k;)P~129B/(B=1)1/a O
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Applying the previous lemma with W(h) := |Q2;|, we deduce the existence of a
positive constant i such that [2;,| = 0 and hence that ||u~ | < const., for every
solution u of (P,) with ¢t € I'. Therefore, Step 1 has been proved.

Proof of Step 2 Consider the constant ¢ obtained in the first step. It suffices to show
the existence of ¢ € R* such that v(x) := u(x) + ¢ < ¢, for every x € . Since
v =u+ ¢ > 0 satisfies

—Av = fx,v)+19, x€Q,
Vv=c, x €09,

with f(x,s) = f(x,s — c¢), we follow the outline of [57] where the case ¢ = 0 is
studied. Arguing by contradiction, assume that there exist positive solutions v, €
C'(€) of the above problem with A, € I' and points P, €  such that:

¢ < M, = maxv, = v,(P,) = +o0.
Q

Then, up to a subsequence, we may assume
A —> A, P> PeQ.

Two cases can occur: either P € Q or P € 9. In both cases, we will obtain a
contradiction.

1-p
Indeed, in the first case, i.e., P € ,letd = dist(P,9R)/2 > 0, u, = M,,* and

wu(y) = un 7 V(P 4 1Y), (11.12)

for every y in the ball B 4 (0) of center 0 and radius Mi. Observe that u, — 0,
n n

sup w, = wy,(0) =1,
B 4 (0)
H“n

and w, satisfies
—Awy(y) = gu(y), Y€ Bﬁ(O), (11.13)

where ,
4P
&) =i f <An,uny + Pn,un vn(y)>

By LP-theory, we get that v, € W“(B (0)), for every s > 1. In addition, if we fix

R > 0 and let ny be a positive integer such that R < d/u, for every n > ngy, we
obtain for every R’ € (R, d/u,) that

W llw2s gy < C (IWall sy + 18l LB ) »

where C is a positive constant depending only on N, p, «, 8 and R’.
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By (11.11), the right-hand side of this equation satisfies

2p_ =2
lim /’eril f <)»m MKny + Pn’ /’Llfil Vn(y)> - h(/"ny + Pn)Vn(y)p =0. (1114)
n—00

Taking into account that

WallLs@g o) + 18nllLsBp ) < C1 = C1(R', Xy), Yn > no,

we deduce a uniform bound for [|w, || w2s g,y for every n > ng. Choosing s large
enough, we obtain from Morrey’s theorem (see Theorem A.4.3) that [|wy || c1.4 gy 18
uniformly bounded. Therefore we can apply the Ascoli—Arzela theorem and deduce
the existence of a function w € C(Bg(0)) such that, up to a subsequence, w,, — w
in C(Bg(0)) and h(u,y + P,) — v, for some v > 0. Necessarily, we have that
w(0) = 1 and, using again (11.14),

—Aw =wvw?, y e Bg(0).

Then, by regularity, for T € (0, 1), w € C"*(Bg(0)). From the arbitrariness of R > 0
we deduce that w is defined in R" and it is a solution of

—Aw(y) =wl(y), yeRV.

By Theorem 1.2 in [57], w = 0, contradicting that w(0) = 1.

In the second case, P € 92 and since 92 is smooth, we can suppose that near P the
boundary of 2 is contained in the hyperplane x = 0 and that a neighborhood of P
in Q is contained in the set {x € RY : xy > 0}. We setd,, = dist(P,, Q) = P, - ey,
(e, = (0,...,0,1)), and we observe that the function w, given by (11.12) is well
defined in 2, = B (0) N {yy > —d,/u,}, for some § > 0. Moreover, it satisfies
(11.13)in 2,,. By L;n-theory up to the boundary (see Theorem 1.2.11-1) and Morrey’s
theorem, we deduce again that |[Vw,| is uniformly bounded in €2,,. Consequently,

dy,
w,(0) —w, | ——e,
Mo

i.e., d, /1L, is away from zero. If, for a subsequence, d,/u, — 00, we can apply
similar arguments to those of the first case to reach again a contradiction. On the
other hand, if d,, / j1,, is bounded from above, we assume, passing to a subsequence if
necessary, thatd, /u, — s > 0. Since w,, satisfies (11.13)in €2,,, again by L”-theory,
for every R, & > 0, we get a uniform bound of w,, in C'"*(Bz(0) N {yy > —s +&})
for n large enough. Therefore, we obtain that, up to a subsequence, w, — w in
CY(Br(0) N {yy > —s + &}), h(uny + P,) — v, for some v > 0, and using that R
and ¢ are arbitrary, w is a solution of

dy
=< C_’
Hn

1=

—Aw =wvw?, {yy > —s},

w() =0, {ynv=-—s}

Theorem 1.3 in [57] implies then that w = 0, a contradiction with w(0) = 1. m|
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It is worthwhile to observe that the above theorem implies also the existence of
positive solution of (11.4) provided that A < A;.

Corollary 11.2.5 If f is a continuous function in Q x [0, +-00) satisfying (i) of the
previous section and (11.11), then problem (11.4) has a positive solution provided
that A < 1.

Remark 11.2.6 Compare this result with the assertion proved in Theorem 11.1.4 for
A< )»1 .

Proof To prove the corollary, we extend, as usual when we look for positive so-
lutions, the nonlinearity to all  x R by setting f(x,u) = 0 for u < 0. Choosing
¢ = @1, we embed the problem (11.4) into the one-parameter family of problems
(11.9;). Applying Theorem 11.2.1, we deduce the existence of, at least, two solutions
of (11.9;) for ¢ < t*. The proof will be concluded if we show that t* > 0 because
this implies that (11.9¢), i.e. (11.4) has two solutions: one is the zero one and the
other the positive solution that we are looking for. To prove that t* > 0, it suffices
to observe that, by condition (i) and for # > 0, d¢; is a super-solution of (11.9;)
provided that § > O is sufficient small. O






Chapter 12
Quasilinear Problems

In this chapter we consider a class of quasilinear elliptic problems. In order to handle
this case an improvement of the mountain pass theorem is needed because the Euler
functional fails to be C!. This critical point result is discussed in Sect. 12.2 and
is applied to boundary value problems in Sect. 12.3. A nonvariational equation is
also considered in Sect. 12.4, where we apply the global bifurcation theorem (see
Theorem 4.4.1).

12.1 First Results

We study quasilinear Dirichlet problems in a bounded open set Q C R, where
N > 3 (the case N = 2 is left to the reader (see Exercise 49)). Specifically, we
replace the linear operator A by a quasilinear operator, namely we consider here
operators like Qu = —div (a(x, u)Vu) + g(x, u)|Vu|?, where a(x, s) and g(x, s) are
continuous functions in 2 x R satisfying

o <alx,s)<pB, Vxe, VseR, (12.1)
for positive constants «, 8, and
g(x,5)s >0, VxeQ, VseR. (12.2)

Observe that Q contains a lower order term with quadratic growth with respect to the
gradient. From the works of Boccardo et al. [33—35] this kind of quasilinear operator
has been extensively studied, especially if the right-hand side is linear. In particular,
among other results, these authors have proved the following one.

Theorem 12.1.1 Assume that a(x,s) and g(x, s) are continuous functions in Q2 x R
satisfying (12.1) and (12.2). If h(x) € L1(2) with g > %, then the problem

—div(a(x,)Vu) + g(x,w)|Vu|*> = h(x), x € Q
u=20, x € 0Q2

has a solution u € HO1 (QNCEQ). m|

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 131
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_12, © Springer Science+Business Media, LLC 2011
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When a and g are independent of x € 2, 1i.e., a(x,s) = a(s) and g(x,s) = g(s), the
uniqueness of solution is a consequence of the following principle [27].

Theorem 12.1.2 Given a continuous function g : [0,400) —> [0,400) and g >
%, let O < hy, hy € L1(2) be functions such that

hi(x) = hy(x), Vx e Q.
If0<u,ve HO1 (2) N L°(K2) verify
—div(@(@)Vu) + gw)|Vul> = h;, x€Q

and
—div(@(W)Vv) + gW)|VV]> = hy, x € R,

then u < v.

s N
Proof Define y(s) = [ g(t) dt and P(s) = [ a(t)e " dt, for every s > 0. Taking
0 0

e 7P — PW]T € Hy(Q) N L™(Q)

as a test function in the equation satisfied by u, we obtain

/ ViV [e O [P) - PO)T] + / 2|Vl [Pw) — P)]*

= /hle_”(“) [P(u) — PV]T. (12.3)
Using that y’ = g, we have
V[e " Pw) — PO =e "WV I[P — PW)]T
— gw)Vue "™ [P(u) — PM]*.
Hence (12.3) means
/ eV V[P@) = PO = / hie™"® [P@) — PO
Since VP(u) = P'(u)Vu = e~ ¥ ®Vu, we can rewrite the above equality as
/ VPw)-V[Pu)— PW]" = /hleﬂ’(“) [P(uw)— PW]T. (12.4)

Similarly, taking now e~ 7™ [P(u) — P(v)]" as a test function in the equation of v,
we deduce that

/VP(V) SVI[Pw) — POV = /hzeﬂ(” [P(u)— PW]T.
Subtracting this from (12.4) we get from the non-negativeness of h; — h;
/ V[P — PO]™* < / (h1e™® — hye™ ) [P(w) — POW]T <0,

i.e., P(u) < P(v) or equivalently u < v. ]
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By Theorems 12.1.1 and 12.1.2, if 2* is given by (7.3), given p € (1,2* — 1), we can
consider the operator K¢ : R x Hy(Q) — H, () by defining, for every A € R and
for every w € HOl (2), K4(A,w) as the unique solution « in Hol (2) of the problem

—Au+ gw)|Vul* = Atwt(x)? + h(x), x e Q,
u=0, x €9Q.

In the following result we state without proof the compactness property of K&(x, w).
For details see [22].

Proposition 12.1.3 If the sequences t, € [0, 1] and X, > 0 are convergent, respec-
tively, to t* and ), and w, is Hy(Q2)-weakly convergent to w, then the sequence of
the unique solution u,, € HOI(SZ) of

— Aty + t,8()| Vit |* = Ay wi(x)? + h(x), x €,
u, =0, x € 082,

is strongly convergent in H} () to the solution u of

—Au+t*g)|Vu)* = awt(x)? + h(x), x € Q,
u=0~0, x € 092. O

12.2 Mountain Pass Theorem for Nondifferentiable Functionals
and Applications

The study of quasilinear problems associated to the operator Q of the preceding
section with a superlinear right-hand side requires the extension of the mountain
pass Theorem 11.1.4 to cover the case of functionals which are not differentiable in
all directions.

The proof of the classical mountain pass theorem given in Sect. 5.3 was based on
the deformation lemma (Lemma 5.3.2). A different approach based on the Ekeland
variational principle (Theorem 5.4.2) can be found in [29, 48, 69]. In this section,
we prove the required extension by following the latter strategy. All the ideas used
here are close to those in [19].

Theorem 12.2.1 Let X be a Banach space withanorm ||-||x andY C X a subspace,
which is itself a Banach space endowed with a different norm || - ||y. Assume that
J : X — Riis a functional on X such that Jy is continuous in (Y, || - |x + || - lly)
and satisfies the following hypotheses:

(a) J has a directional derivative {J'(u),v) at each u € X through any direction
veY.

(b) For fixed u € X, the function {J'(u),v) is linear inv € Y, and, for fixedv € Y,
the function (J'(u), v) is continuous in u € X.
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Assume that fore € Y,

¢ = inf max J(y(t)) > ¢; = max {J(0), J (e)} (12.5)
yel t€[0,1]
with T the set of the continuous paths y : [0,1] — (Y, || - llx + || - lly) such that
y(0) = 0 and y(1) = e. Suppose, in addition, that J satisfies the condition

(C) Any sequence {u,} in Y satisfying for some {K,} C (0,4o00) and {¢,} —> O the
conditions

{J (u,)} is bounded, (12.6)

lunlly < 2K, Vn €N, (12.7)

(T wn)ov)| < [”Iv{”y

n

+ ||V||X] Vv ey, (12.8)

possesses a convergent subsequence in X.

Then c is a critical value of J, i.e., there exists a (nonzero) point u € Y such that
J () = ¢ and which is a critical point of J: (J'(u),v) =0, Vv € Y.

Proof Consider the functional G defined on I" by setting

Gy) = [max Jy@®), Vyel.

By (12.5) we observe that G is bounded from below with infimum c. Let us consider

&, = -1 and a sequence {y, } of minimizing paths in I" satisfying

<G e+ 2
Let us denote M,, := max;e[o,11[|v2(*)ly > llelly. For each fixed n € N, we consider
the distance d,, in T" given by d,(y, ) = max,e[o,l]wﬂ + ly(@) =y ®)|x, for
y,y € I'. Equipped with this, I is a complete metric snpace and G is also a lower
semicontinuous functional. Hence, applying the Ekeland variational principle (see
Theorem 5.4.2), we deduce that there exists y,, € I satisfying

c<GF@,) <G <c+ %

W (1) — 7,
(T, 72) = max lya(®) =V, Oy

rel0.1] M, +v@® = 7,Ollx < Ve, (129)

and

G <G+ Veudu(¥, ), VO € T\ {7} (12.10)
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Now we show that there exists 7, € T := {t € [0,1] : ¢ — /&, < J(¥,(t))} such
that u, := y,(t,) satisfies

T (un),v)| < @[”XJ'Y + ||v||X} , YveV. (12.11)

n

Indeed, if by contradiction we assume that for every ¢ € 7T there exists v, € ¥ such
that ”jwﬁ + Ivllx = 1 and (J'(7,(t)),v:) < —/&, then, by hypothesis b), there
exist §; > 0 and an open neighborhood B; of ¢ in [0, 1] such that

(T @) +uw),v) < —/en (12.12)

for every s € B, and u € X such that |lu||x < &. Since 7 is compact, there exists
a finite family of neighborhoods B;,, B,,,..., B, such that 7 C U';:]B,j. Take
8 = min{d;,,,,. .., 8, } and choose functions v, ¥; € C([0, 1], [0, 1]) satisfying

1, ifc <JF,(s)),

V= {o, it T, < ¢ — &,

and .
dist (s,[0,1] — B,,
) GOUZB) e U B,,
Vis) = ;dist(s, [0,1] — By,)
0, if s € [0,1] — U, B,,.

It is easy to check that y* := 7y, + 8y le':l Vv, € I'. Note also that for every
s € [0,1] — T, we have y*(s) = ¥,(s) and thus J(y*(s)) = T (7 ,(5)) < ¢ — &n.
On the other hand, if s € T, hypothesis (a) and the mean value theorem imply the
existence of T € (0, 1) such that

k k
Ty () = T@,(8) = (T 7 u(s) + T8Y(5) Z Vi(s)vi;), 8 (s) Z Vi(s)vi;)

j=1 j=1

k k
(by (b)) = 8Y(5) D Wi (NI @, (5) + T8Y(5) Y ¥rj(s)vi)), vi;)

j=1 j=1

k
(by (12.12)) < =89 (5)/En ) _ ¥/j(s)

j=1
= —8/ea ¥ (s).

Consequently, if s is the point in [0, 1] in which J o y™* attains its maximum, i.e.,
J(y*(s)) = G(y*) > ¢, we deduce necessarily that y(s) = 1,5 € T, and

Gy =T () =TT, () — e <G(7,) —8/en
S g(?yg) - \/Edn(y*’?n)
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This contradicts (12.10) and proves the existence of u, € ¥,,(7) such that ¢ — /&, <
J(uy) < ¢+ 5 and (12.11) holds.
In addition, by (12.9),

lually = 17,E)lly < 17, — va)lly + lvat)lly < (1+ M) /e

This means that the sequence {u,} satisfies (12.6)—(12.8) and therefore we conclude
the proof by using the compactness condition (C). O

Remark 12.2.2 A similar result was proved in [39] using a nonsmooth critical point
theorem for continuous functionals due to Corvellec et al. [42] together with a result
of Boccardo et al. [35]. Moreover, the existence of nontrivial critical points for
one-dimensional general functionals is proved in [63].

12.3 Application to Quasilinear Variational Problems

We apply the previous theorem to study the critical points of the functional
1
Iw =3 [t - [ Fea., e x = Hi@,

where €2 is an open set in RY and, for positive constants ¢, 8 and y, a(x,s) is a
Carathéodory function satisfying (12.1) and with Carathéodory derivative a;(x, s)
with respect to the variable s such that, for some y > 0,

lag(x,$)| <y, (12.13)

for every s € R and a.e. x € Q2. We also assume that F(x,u) = fou f(x,s)ds where
f € CY(Q x R, R) satisfies the conditions (like in Theorem 11.1.4)

1) f(x,0) = fulx,0) =0,
G) |fx,u) <Ci+ Colulf withl < p < 2* — 1.

Notice that in this case the functional 7 is differentiable at every u € X only along

directions v € Y := HOI(Q) N L°°(€2) with the derivative given by

1
(T (), v) = /a(x,u)Vu Vv + 3 / a.(x, )| Vul*v — / fx,uv.
In other words, the Euler-Lagrange problem associated to 7 is the following:

—div (a(x,u)Vu) + 1a,(x,w)|Vu]* = f(x,u), x €

12.14
u=020, x € 092. ( )

Hence J satisfies the assumptions (a) and (b) of Theorem 12.2.1. In addition, we
give sufficient conditions for the condition (C).
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Lemma 12.3.1 If there exists so > 0 such that
a.(x,s)s >0, ae.x €Q, Vs>s, (12.15)
and there exist 0 € (O, %) and oy > 0 such that the inequalities (11.5) and

1
(g - 1) a(r.s) + 30, 5)s = a0, a.ex € (12.16)

hold, then the functional J satisfies the compactness condition (C).

Remark 12.3.2 As in the proof of the (P S), condition for the semilinear case studied
in Chap. 11 (see Lemma 11.1.1), the outline of the proof consists of two steps. First,
we prove that {u,} is bounded and, second, that it possesses a strongly convergent
subsequence in X. We point out that the second step is more tricky in the quasilinear
case (compare it with Lemma 7.1.1).

Proof Let{u,}beasequenceinY satisfying (12.6)—(12.8) forsome {K,} C (0, +00)
and {e,} —> 0. We begin by proving that the sequence {u,} is bounded. In order to
do this, following the ideas of Lemma 11.1.1, we choose v = u, as a test function in
(12.8) to deduce from (12.7) that

(T (), tn)| < €0 [2 4 llunllx] -
Moreover, by using (12.6), we infer that
T () = (T (un), un) < C + 6, [2+ |lunllx]-

Hence, the hypothesis (12.16) means that

2 1 6 ’ 2
O[()/ |Vun| = / 5 —0 a(-xaun) + Eas(-xs un)un |Vl/t,,|
= C + En [2 + ”un”X] + / [F()C, I/t”) - eunf(xa un)] .

Now, the boundedness of {u,} follows from (11.5) as in the proof for the problem
(11.4).

In particular, passing to a subsequence if necessary, we can assume that {u,} is
weakly converging to some u in H (), and, by Theorem A.4.9, strongly converging
in L*(2) and dominated by a function h e LX), ie., lu,| < h almost everywhere
in .

We are going to prove that the sequence u, is strongly convergent in H ()
to u. Let us introduce the truncature function 7; and Gy given by Ti(s) =
max{min{s, k}, —k} and G (s) = s — Ti(s), for every s € R, and then we proceed
via the following steps.

Step 1. For every fixed k > s, the sequence T} (u,) converges to T («) in HO1 ().
Step 2. For each § > 0, there exist ky > s and ng € N such that |G, (u,)| < § for
every k > ko and n > ny.
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Indeed, using that u, = Ti(u,) + G(u,), we have

lun — ull < llup — Tl + 1| Tie(u) — ul|
< 1Tk (un) — Te@Il + |G ()|l + 1 Ti () — ul|
and Steps 1 and 2 show that the last three terms are arbitrarily small provided that k
is sufficiently large, i.e., u, converges in HOl (£2) to u.

To prove the first step, we follow [32]. We fix k > s¢ and take ¢ € C (R, R) such
that ¢(0) = 0. We denote wﬁ = Ti(u,) — Ty (u). It is easy to verify that the sequence

{pwh)} is

» weakly converging to zero in Hy (Q2),
* converging to zero almost everywhere in €2 and
» strongly converging to zero in LY(S2) for every g € [1,400).

Using (12.1) and (12.15), we deduce that if k > s, then
« / k2 ) < / a (e, )|V P ()
al(x, uy)
- / Tmnﬁo(k—n(u))
k<uy
al(x, uy)
+/ A Vit P — k= Tidw)
Uy <—k
and thus
o / |VwE 20/ (wh) < / a(x, u,) Vi, - Vwh)e' (wh)
— / a(x, u,) Vi, - Vwh)g (wh)
lun | >k
— f a(x, u)VTi(u) - Vwh)g' (wh)
al(x,u,)
+ / T|Vun|2¢<wﬁ>

I
- / B 19, 2k,
Jun | <k 2

Now, taking v, = go(w’,;) as a test function in (12.8), we obtain

‘ / a(x, u,) Vi, - V(ipwh)) + @Wunw(wﬁ) — O u)ewh)| < &,
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where €, > 0, €, — 0 and hence, by (12.13), we deduce that

o / VW P wh) < &, + ‘ / A, 1)Vt - V) (k)
|un‘>k

+ ‘ [ a(e. 1) VTu(u) - Yk (W)

+y / IVwE2owh) + / IV T () *p(wWE)

+ ‘ / F e, u)pwh)

By Corollary A.1.13 and the definition of w¥,

/ a(x,u,)Vu, - wal<p/(wfl) = —/ a(x,u,)Vu, - VTk(u)go’(wfl).
|un|>k

|un|>k

The weak convergence of Vu, to u and the strong one of a(x,u,)V Tk(u)gp/(w,’j) to
zero in L*(S2) imply then that

lim a(x, uy) Vi, - Vwie'(wy) = 0.
n=00 [un|>k
Similarly,
lim [ aCx,u,)VTi(u) - Ve (wy) =0
n—0oQ
and

tim [ 19700P e = fim [ o0 = o

and consequently, we have
lim |wal|2 [ozgu’(wfl) — yw(wﬁ)] =0.

Choosing ¢(s) = se™’ with n > 0 large enough, it is easy to verify that w¢’(s) —
yo(s) > % for every s € R and, therefore, we deduce that

lim [ |[Vwf> =0,
n—oQ

i.e., we prove the strong convergence in HO1 (2) of Ty(uy,) to Ti(u), and Step 1 is
concluded.
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With respect to the proof of Step 2, observe that taking v = G(u,) as a test
function in (12.8) and using (12.7), we have that

1
Sn :=/a(xaul1)|VGk(un)|2+§/a,(-xvun)Gk(un)|VGk(un)|2_/f(x7un)Gk(un)

is a sequence of numbers which converges to zero. By using (12.1), (12.15) and
k > so we get

1
o / VG < / e )V GG + / &' ()G (1) V G ()

<& + / J (1) Gr(un).

Moreover, by the subcritical growth condition (ii) and the Sobolev embedding
theorem (see Corollary A.4.10) we also get

/f(x,un)Gk(un) =< Cz/ |G () +C2/ ln]” |G (un)|

1
< Gl i 2 1Gr ()2

+ Col|Gr ) o> ( / |un|2P>
Qn,k

1
< Gl Gr(un) 1182 112

0=

* 1_r
+ CGHu a7 (1) F)

where 2 = 2N /(N + 2) is the Holder conjugate exponent of 2* (see Notation). By
the boundedness of u,, in HOl (£2) and by the Young inequality, we obtain

1 A
[ £ermnGin) = &1t + 12,00 ] 161N
Geup)|?> 1
< G5 [12ul} 10,00~ 98] (1200, 2
’ ’ 2 2
Since 2,y C {x € Q : h(x) > k}, then klim |2, x| = 0, uniformly in n € N.
— 00

Therefore, for each § > 0, there exists ky > sy such that for every k > kgpandn € N,

Cs 1 (1-£)1 o
—_— Qn 2 Qn 2% 2] —.
= 19204t + 12040 <3
Consequently,

o Cs 1 —2)L

NG = 8y + 5 [120al? +19204 053]
and there exists ny € N such that

Gkl <8, Vk =ko, Vn = no.

This concludes Step 2 and the proof of the lemma. O
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Theorem 12.3.3 Assume that the preceding conditions (i) and (ii) are satisfied. If,

in addition, there exist so > 0, 0 € (0, %) and oy > 0 such that the inequalities
(11.5), (12.15) and (12.16) hold, then problem (12.14) has at least one nontrivial
solution.

Proof We begin by proving thatif E = X = HJ(), then the functional J satisfies
the conditions (J1) and (J2) introduced in Sect. 5.3. The verification is divided into
two steps:

Step 1. First we show that u = Qis a strictlocal minimum of 7. Indeed, by hypotheses
(i) and (ii), we deduce that for fixed € > O there exists C, > 0 such that

F(x,s) < ajes® + CosPt, Vs > 0.
Then F(u) := f Fx,u)=o0 (||u||2) atu = 0 and, by (12.1), we obtain
T ) = allul® = o (|lu]®)
from which one easily deduce the existence of positive constants p, R such that
Juw=p>0 forlul=R>0 (12.17)

and (J 1) is verified.

Step 2. To verify (J2), observe that, by (12.1) and (11.5) (which implies (11.6)), we
have for ¢t > 0

B
ﬂwosgﬂmW—cM”wW”+@.

R

Thus, there exists #y > Torl such that J (fo¢1) < 0 and condition (J2) is satisfied.
Now, in order to apply Theorem 12.2.1, take X = HOI(SZ) and ¥ = HO1 ()N
L*>(2) endowed with the norm || - [ly = || - lo + || - II, and e = 7¢;. Moreover, let

I'={y:[0,11 — (¥,] - lly) : y iscontinuous and y(0) =0, (1) =-e}.

Observe thatevery y € I’ is continuous from [0, 1]to HOI(SZ), so that, since ||fp¢; || >
2R, there exists € [0, 1] such that ||y (7)|| = R. Thus, by (12.17),

¢ = inf max J(y(@)) > p > max{J(0), J (tog1)} = 0,
yel' te[0,1]

and hypothesis (12.5) holds.

Inaddition, Lemma 12.3.1 implies that (C) is verified, and Theorem 12.2.1 implies
that there exists u € HOI () N L*®() such that J(u) = ¢ > 0 and (J'(u),v) =0
for every v € Hy(Q) N L>(Q). O
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12.4 Some Nonvariational Quasilinear Problems

We will see now how the topological methods developed in Chaps. 4 and 6 can also

be applied to study quasilinear problems. Specifically, let 2 be an open and bounded
subset of RY (N > 3),A > 0,1 < p < Y2 and 0 < h € L¥+2(R). Consider the
(nonvariational) boundary value problem

—Au+ g@)|Vul* = AulP"'u+ h(x), xeQ,

u=0, x € 0%, (12.18,)

for a suitable non-negative continuous function g : [0, +00) —> [0, +00). We look
for positive solutions of (12.18;), i.e., u € HOI(Q) such that u > 0 ae. x €
g)|Vul|* € LY(Q) and

/Vu-V(/)—i—/g(u)sz(p =xfu"<p+/h¢, (12.19)

for every ¢ € Hol(Q) N L*®(R).

The following lemma concerning the regularity of the solutions will be useful in
the sequel. It can be easily deduced by using the Stampacchia technique [82], as in
the proof of Lemma 11.2.3. The details are left to the reader (see Exercise 50).

Lemma 12.4.1 Assume that h € L1(Q2) with q > % Ifue HO1 (R2) is a solution for
(12.18;), then u belongs to L>°(2).

Now we give sufficient conditions to ensure that problem (12.18,) satisfies the
uniform strong maximum principle in compactly embedded domains; that is, for
every w CC €2 there exists a positive constant (independent from A) which is a
lower bound in w of any solution of (12.18;).

Proposition 12.4.2 Suppose that 0 < h € L1(Q), g > N/2. Then for every  CC
Q there exists L, > 0 such that

u(x)>L,, ae x€w,

or every super-solution u € H}(Q) of (12.18;) (with A any positive constant).
0

Proof For every s € R, Ti(s) = max{min{s, 1}, —1}. Taking into account that
As? 4+ h(x) > Ty(h(x)), for all s > 0, every solution u € HOI(Q) is a super-solution
for the problem

—Av+ gW)IVv]* = Ti(h(x)), x €,
v=0, x € 092.

By Theorems 12.1.1 and 12.1.2, this problem has a unique continuous solution
v € H}(Q)N C(Q). Using that v € C(Q) and v > 0in Q, if ® CC  we in-
fer the existence of L, > 0 such that v(x) > min,v = L,. By the comparison
principle given in Theorem 12.1.2, we deduce that u > v > L, and the proof is
concluded. O
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Observe that with the notation of Sect. 12.1, (12.18;) can be rewritten' as a fixed
point problem, namely,
u= K.

with Kf(u) = K38(A,u). The compactness of K$(A,w) (see Proposition 12.1.3)
allows us to apply the Leray—Schauder degree techniques to study the existence of
“continua of solutions” of (12.18;).

Consider the solution set, i.e.,

Y ={(u) e Rx H(Q) : u=K;u).

We state the existence of solutions by proving the existence of a global continuum
in ¥ which emanates from the unique solution of (12.18)) and by establishing its
asymptotic behavior. We point out that in the semilinear case (g = 0), given i 3 0
and p > 1, there exists A* > O such that (12.18;) has no positive solution for
every A > A%, i.e., Projjo +0) % is bounded. On the contrary, the quasilinear case is
quite different. Indeed, we give sufficient conditions (see (12.20) below) to ensure
that Projjo,+c) 2 is unbounded. The role of these conditions is to provide for every
compact set A of A’s the existence of suitable a priori bounds of the H] (£2)-norm
of solutions of (12.18;) with A € A, i.e., to establish that the A-slice X; = {u €
H}() : (h,u) € T} is bounded.

Theorem 12.4.3 Consider p € (1,2* — 1), 0 £ h € LY(RQ), g > N/2 and assume
that g > 0 is continuous in the interval [0, +00).

() If1 < p < 2 and, for some constants s1,c > 0and 0 <y < 2 — p, g satisfies
g6) = =, Vs, (12.20)
s

then problem (12.18;,) admits a positive solution for every A € [0, 400).
(i) If there are sy, 80 > 0 such that
§P

- o =
fO ef,. gt g,

then there exist \*, A, > 0 such that (12.18;,) admits a positive solution for every
A € [0, L) and admits no positive solution for A > \*.

8o, Vs > so, (12.21)

Proof First, we prove that there exists an unbounded continuum § C X which
contains (0, #y), where uq is the unique solution of (12.18). In order to do this,
we compute the index of the solution uy € HOI(Q) for (12.18y) by showing that
i(K8,up) = 1. Indeed, by Theorems 12.1.1 and 12.1.2 let U(¢) be the unique solu-
tion of

—Au+tgw)|Vul® = h(x), x €,

(12.22)
u=020, x € 092,

! Compare this approach with the one in the work by Ruiz and Suérez [79], for g¢ = 1 and a logistic
nonlinearity, where the authors combine regularity in C'(2) with the properties of the inverse K
of the Laplacian operator in C(£2) in order to use bifurcation techniques.
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and define H : [0,1] x H}() — Hj(RQ) by setting H(t,w) = U(t) for every
(t,w) € [0,1] x HOI(Q). Observe that H(1,w) = U(1) = Kg(w) = ug, while
H(O,w) = U(0) = K(h(x)) and it is well known that i(K (h(x)), U(0)) = 1. By
Proposition 12.1.3 we deduce that H is compact. In addition, using that g > 0, and
taking u as a test function in (12.22), we have [ |Vu|*> < [ hu. The H6lder and
Sobolev inequalities with S = sup{||lu|l»+ : |lul| = 1} the Sobolev constant (see
Notation) imply [|U(?)|l < Sllhllan/v+2), for every ¢ € [0, 1]. Hence, choosing
R > S|lhllan/v+2), we obtain u # H(t,u) for every t € [0,1] and u € HOI(Q) with
llull > R, and we can apply the homotopy invariance of the degree to conclude that

i(Kg,uo) = i(H(1,),U(1)) = i(H(0,-), U(0))
= i(K(h(x)),U(0)) =1,

and the claim has been proved. The existence of an unbounded continuum S C X
follows now from Theorem 4.4.1.

The unboundedness of the continuum S implies that one of the projections of S,
either its projection Proj[o+o0)S on the A-axis or its projection Proj H) (@S on the
HOl (£2)-axis, is an unbounded set. We will see that in case i) the former projection
is unbounded. More precisely, for every compact set A of A’s, we will show the
existence of suitable a priori bounds of the H()I(Q)—norm of solutions of (12.18;)
with A € A. This will imply that the A-slice S, = {u € HOI(Q) : (Au) € S}is
bounded. On the other hand, in case ii) it is the later projection which is unbounded
since, as we will see below, there exists A* > 0 such that (12.18;) has no positive
solutions for A > A*. Clearly, this will conclude the proof of the theorem.

(i) Since 1 < p < 2 and (12.20) holds with y < 2 — p, we may construct a
continuous and non-negative function go(s) such that go(s) = 0 for every s < %0,
go(s) = - forevery s > 59 and g(s) > go(s) for every s > 0. We also define the
function ¢(s) given by

o(s) = / exp (—/ go(t)dt)dv, Vs > 0.
0 v
It is elementary to prove that

1. 0 < ¢(s) < s forevery s € (0, 400).
2. ¢'(s) + go(s)p(s) = 1 for every s € (0, +00).
3. There exists o > 0 with go(s)¢(s) < o for every s > 0.

Let u € HJ(Q) be a positive solution of (12.18,) for some A > 0. Observe that,
using 3., go(u)@(u) € L*(2), which, by 2., implies that Vo(u) € L(Q). Taking
into account that, by 1., we have ¢(u#) < u we deduce that ¢(u) € HOI(Q). Hence we
can take ¢(u) as a test function and using that go(s) < g(s) we obtain

> 2 / |Vul* (¢'(u) + go(w)p(u))
< / (Vi - Vo) + g VulP ()

= /(Aup+h)(p(u).
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Since ¢(s)s~7 is bounded from above near infinity (by 3 and by the construction of
go) and near zero (by the definition of ¢ and y < 2 — p < 1), there exists C > 0
such that ¢(s) < Cs” for every s > 0. Therefore, dividing the previous inequality
by ||u||?1?, setting z = u/||u|| and using the Holder and Sobolev inequalities we get

hz
2—p—y pt+y
u <Cx +
el - /Z / ]| Py -1

By - Al
=G a1 v v,

for some Ci, C, > 0. Consequently, we deduce that if A is bounded, then the norm
|lu|| is also bounded. Therefore the proof of case i) is done.

(ii) For ® CC Q we denote by x,(x) the characteristic function of @ and consider
the first eigenvalue (resp. eigenfunction) u,, (resp, ¢,,) associated to the eigenvalue
problem

—Au = rx,(x)u, x e,
u=20, x € 092.

We show that a necessary condition for the existence of solution u € HO1 (2) of
(12.18;) is ue = Xc, for a suitable positive constant ¢. To do that, consider a
sequence of functions 0 < ¢, € C°(L2) converging in HOI(Q) to ¢,,. Taking p(u) =

Ty (u)
eIt sdig e Hy () N L®(R) as a test function in (12.18,) and using the fact
that &7 > 0, we get

/Vu - V‘pne*flTk(“) g(t)dt +/ g(u)|vu|267 flk g(t)dt¢n
{u=k}

T ()
zk/u”e_flk sdig, |

Taking limits, firstly as k tends to oo (using the Fatou lemma) and secondly as n
goes to oo (using the H()I(Q)-convergence of ¢, to ¢, and the Lebesgue theorem),
we have

/Vu Ve i 80t > )\‘/upefflug(t)dtd)w.

On the other hand, taking
ul’e_ f]u g(tydt

1/,(“) == _fou = flr g(t)dtds

u
for u > 0 and choosing w = e~ rewd g ¢ H} () as a test function in the

0
equation satisfied by ¢,,, we find
Mw/xw(x)wqbw Z/VW'V¢w zkquﬁwl/f(u)

> / Ko (W (1),
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Using Proposition 12.4.2, there exists L, > 0 such that u(x) > L, a.e. x € .
Moreover, by condition (12.21), ¢ := inf¢[z,, 00) ¥ (s) > 0 and we conclude that

Mw/w¢w = }"C/W(bw,

that is, pu, > Xc, as desired. Choosing A* = pu,/c we conclude the proof of
case (ii). O

Remark 12.4.4 Moreover, if in addition to the hypotheses (i) of the above theorem,
g satisfies that there exists ¢ < p such that

1
gs) <C (s" + —) , Vs >0, (12.23)

N

then ||lu,|| — +oo for every sequence (A,,u,) in ¥ with A, — —+oo. Indeed, if

(An,u,) € X and for 0 < ¢ € C5°(2) we take ﬁq as a test function (it is an
U

admissible test function due to Proposition 12.4.2), we have

v |Vu, | (un) -
\/\Vun . _20 —q qfl 7 +/ § q7 IVun|2(p _ \/\h% = )\‘n / l,tf: q(p’
u, Uy u u

n n n

and thus

Vo g(un) -
/Vun'u_q—i_/ il |Vun|2§02)‘n/ug 9.

By Proposition 12.4.2, u,, is uniformly away from zero in supp ¢ and, therefore, using

(12.23) we deduce that & (“q”)

n
[ ul ¢ is also away from zero. Therefore, if u, is bounded in H; (2), the left-hand

side of the above equality is bounded from above, and thus A,, has to also be bounded.
In this way, the remark follows.

is bounded from above in supp ¢ and the sequence

The last part of the section is devoted to studying the case h = 0.

Theorem 12.4.5 Assume h = 0 and suppose that g > 0 is continuous in the interval
[0, 4+00). If p > 1 and there is a continuous non-positive function g € L'(0, +00)
such that

g) > g+ 2. Vs>, (12.24)
S

then there exists A* > 0 such that (12.18;) has no solution for A < A*.

Remark 12.4.6 1tis shown by Orsina and Puel [73] (for the case 7 = 0) that a suitable
change of variables reduces the quasilinear equation to a semilinear one. In this way
the authors prove that if g € L'(0,+00), then there exists a positive solution for
every A > 0, while if g(#)r > g > p fort > 1, then there exists a positive solution
for A > 0 large enough and no positive solution if A > 0 is sufficiently small. The
above improvement as well as Theorem 12.4.3 are contained in [22] and show that the
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topological methods help us to understand the true role of the different hypotheses
imposed on the behavior of the nonlinearity g, revealing the different effects that
take place in the solution set S.

Proof We consider the function

Ti(s) :
@(s) = / exp (/ g(r)dr)dt, Vs > 0.
0 s

which satisfies the following.

1. @'(s) + g(s)p(s) = [T](s)]* forevery 0 < s # 1.
2. There exists a positive constant C such that s”¢(s) < C[Ti(s)]* for all s > 0.
Indeed, this is trivial for s < 1, while for s > 1, taking into account that g < 0

and (12.24), we have

1 1 t
sP(s) =/ s? exp (/ g(r)dr +/ g(r)dr)dt
0 s 1

1
— (1) exp ( / (e - 2) dr)

+00
(12.24) < (1) exp <—/ §(r)dr>z C < C[Ti()*.
1

If u € Hy(RQ) is a positive solution of (12.18,) and we take ¢(u) € Hj () as a test
function we deduce from the above items that

i f [Ti(w)]* < / IVTiw)|* = / |Vul*(¢'(u) + g(u)pw))
<x / W) < Ch / (TP,

and the proof is concluded by taking A* = £






Chapter 13
Stationary States of Evolution Equations

This final chapter deals with the existence of ground and bound states of nonlin-
ear Schrodinger (NLS) equations. Semiclassical states are discussed in Sect. 13.2.
Systems of coupled NLS equations are handled in Sects. 13.3 and 13.4.

When dealing with elliptic equations on unbounded domains the main problem
is the (P.S) condition. We show how one can bypass this difficulty in a few specific
cases.

However, the study of problems on unbounded domains is out of the scope of
this book. The interested reader is referred, e.g., to [15], which contains several
references.

13.1 Soliton States to Stationary NLS Equations

Elliptic equations on all RV arise as stationary states of evolution equations such as
the time-independent solution of the nonlinear wave equation

Uy — Au+ lu=u?.
As a second example, we can consider the NLS equation
—iy =AY +ay + |y, (13.1)

where i denotes the imaginary unit and ¥ = (¢, x) is complex valued. In (13.1),
the ansatz (¢, x) = e **'u(x), with u(x) € R, yields for u the equation

—Au+ru=uP"'u, xeRV, (13.2)

where A = a — w. We will assume that A > Oand 1 < p < 2* — 1, where 2* is given
by (7.3). We look for solutions # > 0 of (13.2) such that u € E := H'(R"). These

solutions verify
/u2 < 00, /|Vu|2 < 00,

and are called bound states of (13.2). Among the bound states, solutions with minimal
energy have a particular interest. They are called ground states.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 149
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2_13, © Springer Science+Business Media, LLC 2011
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Let u € E be a solution of
—Au+u=|u’u. (13.3)
A straight calculation shows that
u (x) = AP0y /=Dy (13.4)

solves (13.2). Therefore in the sequel we will look for solutions of (13.3), which can
be found as critical points of

L2 1 1
T () = 3 lull —m/|u|‘”+, u€k,

where |lul* = [[IVul*+ u*]. With this notation, a ground state of (13.3) is a
solution z > 0 such that

J@=min{Jw) :uec E, J' () =0).

There are several methods that can be used to find a ground state. We will employ
the Nehari natural constraint. Let us introduce the functional

Gw) = (T () | u) = ||ul* — / Jul 1,
and consider the set
N ={uecE\{0}:Gu) =0}.
Since, obviously, any positive solution of (13.3) belongs to AV, then any z such that
J @) =min{J W) : u € N'}

is a ground state (see also Lemma 13.1.1). Some of the main features of N are
collected below.

(N.1) 3r > Osuch that ||u]| > r forallu € N.

Proof From G”(0)[v,v] = 2||v|)? it follows that 3 > 0 such that G(x) > O for all
uwith 0 < ||v|]| < r, yielding (N.1). |

(N.2) infnr T ) = (5 — i)’
Proof For all u € N there holds

T W) = 5 llull* — ﬁ/w*' = (5 — pllal?, (13.5)

and (N.1) implies J(u) > (% _ #)r; q

(N.3) Forall u € N it holds that (G'(u) | u) < (1 — p)r* < 0.
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Proof One has that
G | w) = 20ul® = (p + 1)[ .

Since on NV, u # 0 and [ |u|P*! = |lul|?, we infer that (G'(x) | u) = (1 — p)llul?,
and (N.3) follows from (N.1). |

(N.4) N is a smooth manifold diffeomorphic to the unit sphere S of E.

Proof From (N.3) it follows, in particular, that G'(u#) # 0 for all u € N and this
proves that G~1(0) \ {0} is a smooth manifold (of codimension 1) in E. This and
(N.1) imply that NV is also a smooth manifold. Moreover, for all v € E, v # 0,
G(tv) = 0 if and only if £2||v||> — t?*! [ |[v|?*1. This means that

2
veN 1! = vl
/'|V|p+1’

(13.6)

proving that N >~ . i
We are now in position to prove the following lemma.

Lemma 13.1.1 Any critical point of J constrained on N is a critical point of J
on E.

Proof Let z € N be a critical point of J constrained on N, i.., satisfying
VaJ (z) = 0. By the Lagrange multiplier rule (see also Remark 5.3.5) there exists
1 € R such that 7'(z) = uG'(z). Taking the scalar product with z, we find

(J'@ 12 =@ @ | 2. (13.7)

From (N.3) it follows that (G'(z) | z) # 0. On the other hand (7'(z) | z) = G(z) =0
and therefore (13.7) implies that u = 0, whence J'(z) = uG'(z) = 0. O

After these preliminaries, we can prove the existence of a ground state of (13.3).

Theorem 13.1.2 If 1 < p < 2* — 1, then (13.3) has a positive ground state U,
which is radially symmetric.

Proof If N =1 an elementary phase plane analysis shows that (13.3) has a unique
radially symmetric, radially decreasing ground state U. For example, if p = 3 then

V2

cosh (x)

U(x) =

In the case N > 2 we need to use the functional framework outlined before. From
(N.2), J is bounded from below on . By the Ekeland variational principle, there
exist sequences u; € N, ux € R such that

Ju) = c:=inf{Jw) :ue N} >0, JT'(u)— uG ) — 0. (13.8)
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Since we can substitute u; with |uy|, we can assume that u;y > 0. Moreover, if u}
denotes the Schwarz symmetric function associated to ug,! let 17 > 0 be such that
tfuf € N Ttis well known that [|u}[|* < |lug||*, while [ |uf]”™" = [ |ug|”*'. Then
(13.6) yields

L g g 12

kK — f|u2|p+1 — f|uk|p+1 =

Moreover,
T = G = 5O < G = s Nlud)> = T o).

Therefore, we can also suppose that u; is radial.

From the first expression of (13.8) and (13.5) it follows that (5 — - 7)|
and hence there exists ¢’ > 0 such that |luy || < ¢’. Without relabeling, we can assume
that uy — u, weakly in E. Since u;, are radially symmetric, and the subspace of the
radially symmetric functions in E is compactly embedded in LPT1(RY), N > 2, we
deduce that there exists U € E such that uy — U strongly in LP*!(R"). From the
second expression of (13.8) we get

|uel|* — ¢

(T () | w) — pr(G (i) | ) — 0.

Since (J'(ux) | ux) = G(ur) = 0 and (G' () | wp) < (1 — p)r? < 0, see (N.3), it
follows that , — 0. Setting h(u) = ﬁ S |ulP*t, one has J'(ux) = wx — b’ (ux)
and therefore the second expression of (13.8) yields ux = h'(ur) — uxG'(u) + o(1).
Then we find u; — U( = h'(U)) strongly in E. It follows immediately that U € N,
JWU)=cand J'(U) L N. Using Lemma 13.1.1, we deduce that U is a nontrivial
solution of (13.3). Since uy, are radially symmetric and non-negative, it follows that
U is radially symmetric and U > 0. Finally, from the equation —AU + U = U?,
the fact that U # 0 and the maximum principle, we deduce that U > 0. O

Our next result deals with the nonautonomous equation
—Au+qxu=ul""u, ueH'R"), (13.9)

where N > 2,1 < p < 2* — 1. We assume that the potential ¢ € C(R") satisfies

(g1) 3g¢ > 0 such that g(x) > qo, for every x € RV,
(g2) ‘ |linl q(x) = +o00.
X|—> 100

! For the definition and properties of the Schwarz symmetrization, see [59].
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We follow [78]. Solutions of (13.9) are the stationary points of the functional

1 2 2 _L/ +1
J(M)—zf[|vu| +qu’] b1 lul?

on H'(RM). Actually we will work on
E={ue H'R"): / [IVul* + g u*] < +o0}.

By (g1), the space £ is endowed with the norm

llul|2 = / [IVul* + g u?].

With this notation we can write
1 ) 1
= — _— ptl
J(u) 2”“”5 ijlflul

It is easy to check that £ ¢ H'(RY) c LP*!(R") with continuous embedding (see
Exercise 9).

Theorem 13.1.3 If (q1)-(q2) hold then (13.9) has a positive (and a negative)
solution.

Proof 1tis clear that 7 has the mountain pass geometry. As usual, we let
= inf t
¢ = inf max J(y ()

denote the mountain pass value. One has that ¢ > 0. To apply the mountain pass
theorem we should check the (P S) condition. Unfortunately, we cannot carry out the
procedure used in the case of problems on a bounded domain, because the embedding
& C L7 fails to be compact. In the previous theorem this difficulty has been bypassed
using the fact that the problem was autonomous and this allowed us to work with
radial functions. Here we will use the fact that the potential ¢ satisfies (g2).

First of all, the Ekeland variational principle (Theorem 5.4.2) yields a sequence
u, € & such that

J(uy) = ¢, J'(u,) — 0. (13.10)

Standard arguments imply that ||u||¢ < M.Hence, up to a subsequence, u, converges
weakly in &, and strongly in Ll’;tl(RN ), to some u € £. Moreover, from (13.10) it
follows that

(T u)v)e — (T @)\v)e. (13.11)

Then u is a weak (and by regularity, strong) solution of (13.9). Let us show that
u # 0.
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From (13.11) we infer that, forn > 1,
%<wa—lfwo=/[l——iﬁwm“. (13.12)
2 - 2 2 p+1
Inserting into (13.12) the Gagliardo—Nirenberg interpolation inequality (see [36,
p- 23D
0 1-0 . 1 1
lunllp+1 < CillVugllsllunll,™ ., with6 = N [5 - m:|

we find that |
(p+1)(©) (p+1)(1-0)
s = G (19, 1),

where C, = C; [% — #] This inequality and the fact that ||u,|¢ is bounded
implies that there exists ¢’ > 0 such that
¢ < lupll. (13.13)

Letting By = {x € R" : |x| < R}, we can write, for any R > 0,

/Iun|2=/ |un|2+/N it (13.14)
Br RN\Bgr

The last integral can be estimated as follows:

1
/ mﬁsf———7/ g w2
RN\Bg 1nfRN\BRq RN\Bg

2
< lulle
lnfRN\BR q2

1

2
inf s M
RN\Bg 4

A

From (13.13) and (13.14) we get

1
¢ < / > + ———— M*.
Br lnfRN\BR q
Using (¢2) we find

im —— =0,
R—o0 infgn\ g, q

and thus there exists Ry > 0 such that for all R > Ry and n > 1 one has

1
—ds/|wﬁ
2 Br

With fixed R > Ry, since u, converges strongly to u in L?(Bg), we obtain that

1
/ lu?> = lim lun)? > = ¢’ > 0.
Br 2

n—00 BR

This implies that u # 0. Finally, substituting the nonlinearity |u|”~'u with its positive
part, we find that u > 0. O
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13.2 Semiclassical States of NLS Equations with Potentials

In order to study the relationship between classical and quantum mechanics, one
introduces a small parameter ¢ € R and considers the problem

—&2Au+ V(xX)u = uP, (13.15)

where from this pointon 2 < p 4+ 1 < 2*. We want to see if (13.15) has a positive
solution for & ~ 0, u, which concentrates at some point x*, in the sense that

V8>0,3e*">0,R>0: u(x) <48, V|x—x* <eR, s <¢".

These solutions look like a soliton whose energy concentrates at x* and are called
semiclassical states of (13.15). We anticipate that the concentration point x* is a
stationary point of V.

There is a broad literature on the existence of semiclassical states, starting with
the paper by Floer and Weinstein [52]. In addition to solutions concentrating at
a single point, the existence of semiclassical states with many (possibly infinitely
many) peaks has been proved, in dependence of suitable properties of the potential
V and of the nature of its stationary points.

Here we will limit ourselves to discussing a basic result, following [8].

We will suppose that V satisfies

(V1) 0 < infgy V(x) < supgpy V(x) < 400,
(V2) V has a non-degenerate stationary point at x*: there exists &« > 0 such that
V(x) — V(x*) = £alx — x*> + o(|x — x*]?).

Up to a translation we can assume that

x*=0, and V() =1.

To highlight that (13.15) is perturbation in nature it is convenient to perform the
change of variable x + ex. Then (13.15) becomes

—Au+ V(ex)u =u?,
or else
—Au+u+ (V(ex) — Du = u”. (13.16)

Clearly, if u is a solution of (13.16) then u(x/¢) is a semiclassical state of (13.15)
concentrating at x* = 0.



156 13 Stationary States of Evolution Equations

We will seek solutions of (13.16) as critical points of the functional
T.(w) = T(w) + Ge(w), u € E:=H'RY),
where

1 2 1 1
T = ull® - mfw*

and

Gowy = 1 f (V(ex) — i

We will find critical points of Z, by means of the perturbation results discussed in
Sect. 5.6. We will keep the notation introduced therein. In particular, we will continue
to consider the case in which Z is one dimensional, with parameter s € R.

Lemma 13.2.1 Assumptions (A1), (A2) and (A3) of Sect. 5.6 are verified.
Proof One has

1/2
G (vl = / (V(ex)— Dzv < [ / (V(ex) — 1)24 V2.

Moreover, (V2) yields V(sx) — 1 = a?e?x? + o(¢2x?). On the other hand, since z
has an exponential decay at infinity, one finds that [ x?z* < ¢|. As a consequence,

[/ (V(ex) — 1)%2} : < cra? &2 4 o(?), (13.17)

and (A1) follows.
To prove (A2) let W be the space (7)* and write W = (z) @ W'. It is well known
that, for ¢ =0,
PT"(D[z,z2] >0, VseR.

It follows that there exists ¢ > 0 such that
PZ/(Dlz,z] > ¢, &~0.
Moreover, it is easy to see that, taking ¢ possibly different,
PT)(@)[v,v] < —c, VYveW, &e~0.

Then PZ](z) is invertible, provided ¢ is sufficiently small and (A2) holds.
Finally the proof of (A3) is trivial. O
Remark 13.2.2 Since ||w,|| < c1[G.(2)l, (13.17) implies that ||w, | = O(e?).

We are now in position to state the following result, which follows immediately from
the preceding lemmas and from the perturbation Theorem 5.6.5.

Theorem 13.2.3 Let (V1)—(V2) hold. Then for € small, (13.15) has a semiclassical
state which concentrates at x*.
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Proof In order to apply the perturbation Theorem 5.6.5, it remains to show that the
reduced functional

T.(5) = To(z(s) + we(s)), s €R
has a stationary point s;. One has
Ze(2(s) + we(5)) = Z(2(s) + we(s)) + Ge(z(s) + we(s))

= Z(z(s)) + O(llwe()II*) + 3 f (V(ex) — D(z(s) + we(s).

Let us remark that z(s) = U( - —s) and then Z(z(s)) = cg. Moreover, using
Remark 13.2.2, we infer

L) +weo) =a+ 3 [ (Vien) = D26 + o)
Finally, (V2) implies
f(V(sx) — 1)z2(s) = iaEZ/x2U2(x —5)= +ae? / v+ s)zUz(y)dy.
Since U is an even function, [ ysU(y)dy = 0 and thus

/ (V(ex) — DZ2(s) = ta c1625% + ¢,

where
= %/Uz(y)dy, = %/yzUz(y)dy

In conclusion we find that
Z.(5) = Z.(2(s) + we(s)) = c3 £ a c16%5% + o(e?).

Hence the reduced functional Z, has a stationary point s} such thats} — Oase — 0.
The result now follows from Theorem 5.6.5. O

Remark 13.2.4 In the case discussed above the presence of a perturbation like G, (i)
does not allow us to use the implicit function theorem to solve the auxiliary equation
as in the case ¢G(u). Actually, PZ, could fail to be C I because G/ (u) might not
tend to zero as ¢ — 0. The difficulty is overcome by using (A1)—(A3). A specific
example is reported in Exercise 51.

Remark 13.2.5 There is a great deal of work on problems like (13.15) under several
different assumptions on the potential V. For instance, different approaches to find
semiclassical states can be found in [45] or [86].
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13.3 Systems of NLS Equations

In this section we will study a system of linearly coupled NLS equations, such as

s — 3
{ W +u=u +ir, xelR, (13.18)

—V'+v=v¥ 4+ xeR.

These systems typically arise in nonlinear optics. We follow [7].

First of all, in addition to the trivial solution (0,0), there are two families of
nontrivial solution pairs. First, if we look for solutions such that u = v, we find the
equation

—u"+ (1 —Nu=u’,
whose solution is

V2T=1)
cosh (VT =) 0=h=l (13.19)

On the other hand, if we look for solutions such that u = —v, we find

Ui_n(x) =

"+ A+ Mu =i,

whose solution is

J2+X)
cosh (\/(T+ A)x)’

Hence (13.18) has the following two families of nontrivial solutions:

Ur(x) =

e (U=, Ui-), 0 < A <1 (symmetric states);
* (U4, —Ui4), A = 0 (anti-symmetric states).

We now look for solutions of (13.18) different from the symmetric and anti-
symmetric states. Let us start with the case in which the parameter A > 0 is small.
We set

e X ={uecC*R): ux)=u(—x), limy | o u(x) = 0},

e X=XxX,
e Y ={ueCMR):ukx)=u—x))},
e Y=Y xY.

Let us point out that for A = 0, (13.18) has the following nontrivial solutions: (U, 0),
©0,0),U,x0).

Theorem 13.3.1 From each (U,0),(0,U), (U, £U) there branches off, for A > 0
small enough, a unique curve (u,,v;) € X of solutions of (13.18), such that u, # 0,

V) iO
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Proof Considerthemap F : R x X — Y
FOuuv)= (=" +u—u’ — v, =" +v—1> = ).

In order to apply the implicit function theorem at A = 0, (u,v) = (U,0), let us
consider the partial derivative d,.,,F'(0; U, 0),

Ay F(O; U, 0)[u,v] = (=1 4+ u — 3U%u, —v" +v)
and the equation d,,)F(0; U, 0)[u,v] = (h,k) € Y, namely the decoupled system

—u"+u—3U%=h,
—V' +v=k.

We claim that it has a unique solution. This is trivially true for the latter equation. As
for the former, we first remark that u = U’ is a nontrivial solution of the linearized
equation

' +u—3U0%% =0,

and the only one satisfying lim|y|—. o u(x) = O (see Appendix 13.5 at the end of this
chapter). Since U’ is an odd function, the equation —u" + u — 3U%u = 0, u € X,
has only the trivial solution, and the claim follows.

The same arguments hold for the derivative

dunFO; U, £U)[u,v] = (—u" +u — 3U%u, —" +v — 3U%).

These arguments allow us to apply the implicit function Theorem 3.2.1 to F(A; u,v) =
0, and the existence of the families (i, ,v;) follows. Of course, none of the compo-
nents can be identically zero because if A > 0, (13.18) has no solution of the form
(u,0) or (0,v). |

Next, we look for secondary bifurcations from the family of symmetric states
(Ui_, Ui_;). We will use Theorem 6.1.3, concerned with the bifurcation from the
simple eigenvalue. For this, we change the variable, setting

w=w,w), wi=u—U-y,, wr=v-U~-,
and consider the map
F,w) = F(h,wy + Uiy, wa + Ui3),
in such a way that (we set 0 = (0, 0))
F(A;0)= FO, U, U1-;) =0.
We need to study the operator

TA = dWIF()L;O) = d(u’v)F()»; Ulf)t, Ulf)\) € L(X, Y)
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Let us start with Ker [T, ] and consider the linearized system T, [u, v] = (0, 0):

—u’ +u—3U ,u— =0,
(13.20)
—v'+v—=3U_,v—2u =0,
with (u,v) € X. Setting
¢ =u-+v,
v=u—v,
system (13.20) becomes
—¢"+(1 -1 —3Ui_, ¢ =0,
(13.21)
¥+ A+ 0y =307,y =0,

Since (13.21) is decoupled, we can study the two equations separately. As before,
the unique nontrivial solution of the first equation is U _, , which does not belong to
X, whence ¢ = 0. Let us now consider the second equation in (13.21). It is of the
type (13.30) discussed in the first item of Appendix 13.5, namely

¥+ Q)Y =0,

with
0,(x)=1+4xr-3U},,

and
b)\ = lim Q)\(.X) =1+A.
[x]—>o00

Let us denote by A, the operator

AW) ==y + Q)Y ¥ e HR).

Lemma 13.3.2 For A € [0, 1) the first two eigenvalues vi(X) < vy(X) of A, are
given by:

(@) vi(h) =51 =3,
(b) 1(h) = 2.

Proof Let us compute A, (f;) with

1
Hilx) = cosh? (+/T = A x)

With this notation, one has Q;(x) =1+ A — 6(1 — A) f;.. Since

V= —2(1 — ) fo + 6(1 — A)sinh® (V1 — A x) f2,
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and O, fo, = (1+1) fL,—6(1—A) ff, we find (the dependence of f on A is understood)

Ai(f) =B =1 f —6(1 — A)sinh? (/T —ax) f* — 6(1 — ) f?
=@ —1f —6(1—)(sinh® (VT —21x)+ D f>
=B —=1)f —6(1 — i) cosh® (v/1— A x)f>
=@-Nf—6(1—-1)f=Gr—3)f

Since f; > 0, it follows (see Appendix 13.5-(1)) that SA — 3 is the first eigenvalue
of A;, proving (a).
Next, let us set g, = U|_, and remark that

—gl + (1 —n)g, —3U% 8. =0.
Then one finds:
A(@) = =g/ + (1 + Mg, —3U] 81 =24g: .
Since g, has a single zero, it follows that 22 is the second eigenvalue of A;, proving
(b). Let us point out that vi(A) < vy(A) < b, provided A < 1. O

From the previous lemma we deduce the following.

Lemma 13.3.3 (i) Forall » € [0, 1), A # 3/5, the operator T, is invertible.
(i) Forx = 3/5, Ker [T, ] is one dimensional and spanned by ¢* = (f*, f*), where
f* = f3/5. Moreover, the Range[T, ] equals the subspace Yo C Y,

Yoz{(h,k)eY:/hf*:/kf*:0}.

Proof (i-1) For 0 < A < 3/5, resp. 3/5 < A < 1, one has that v;(A) < 0 < vy()),
resp. vi(*) > 0, and therefore Ker [A;] = {0}. Then the solution of (13.21) is given
by ¢ =0,y = 0. Since

u=1+v),
(13.22)

v=1(— ),

it follows that (13.20) has only the trivial solution (0, 0), proving that Ker [T;] =
{(0,0)} for A € [0,3/5) U (3/5,1).

(i-2) To show that the system T,[u,v] = (h,k) has a unique solution for any
(h,k) € Y and for A € [0,3/5)U (3/5, 1), it suffices to pass to the decoupled system

—¢"+(1 —A¢p —3U, ¢ =h +k,
(13.23)
—Y"+ A+ =302, ¢ =h—k,

which has a unique solution. From (i-1)—(i-2) it follows that (i) holds.



162 13 Stationary States of Evolution Equations
(i1) For A = 3/5, Lemma 13.3.2 implies that Ker [A,] is spanned by f*. Using
again (13.22), it follows that Ker [T,], A = 3/5, is spanned by ¢* = (f*, ).

Moreover, arguing as before, the system T, [u,v] = (h, k) is equivalent to (13.23),
which has, for A = 3/5, a unique solution, provided

/(h —k)f* =0. (13.24)

Furthermore, multiplying the system T [u, v] = (h, k) by f* and integrating by parts,
it follows that

/u[—(f*)”+f*—3U1{Af*] —,\/vf* = [ hf*,
/v[—(f*)” + f* =30, 7] —A/uf* = [kf*.

From A, (f*) =0, A = 3/5, we infer —(f*)" + f* — 3U12_3/5f* = %f* and hence
fr=i o= o
g/vf*—gfuf*szf*.

This and (13.24) imply [hf* = [kf* = 0. This shows that for A = 3/5,

Range[T; ] = Y, and completes the proof of the lemma. O

Theorem 13.3.4 For A* = 3/5 there is a branching of solutions (u;,v;) € X of
(13.18) from the family of symmetric states (U1_;,U,_,), and it is the only one (see
Fig. 13.1).

(Ui Ui

(U,U)

- - - - - -

Fig. 13.1 Bifurcation % A
diagram for Theorem 13.3.4 3/5 1
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Proof As anticipated before, we will use Theorem 6.1.3. Lemma 13.3.3-(ii) shows
that assumptions (F.1) and (F.2) of Sect. 6.1 hold, with 4 = A* and ¢ = ¢*. As for
condition (F.3), let us evaluate the mixed derivative

dwF 0, 0)[u,v] = (=3d, U} u — v, =3d, U, v — u). (13.25)
In the Appendix 13.5-(2) it is proved that
dy WFL*, 0)[u, v] = (h*, h*),

for some h* € Y such that
/h*f* <0. (13.26)

It follows that d, wF(1*,0)[¢*] &€ Yy, namely that (F.3) holds. Then an application
of Theorem 6.1.3 implies that A = A* is a bifurcation point.

Moreover, Lemma 13.3.3-(i) implies that any A € (0,1), A # 3/5, cannot be a
bifurcation point. O

Remark 13.3.5 System (13.18) has other solutions, different in nature from the ones
found before. For example, the authors have proved in [12] the existence, for A = ¢
small, of solutions (u,, v.) such that, as ¢ — 0,

Us(x) ~U(x +&) + Ux — &), ve(x) ~ =U(x),

where &, ~ log (1/¢). The authors suspect that these solutions can be continued for
A € [0, 1) and will converge, as A — 1 to the anti-symmetric pair (U, —U,). Let
us mention that [12] also deals with the PDE counterpart of (13.18) in dimension
n = 2,3. In such a case it is proved that there exist solutions whose first component
has many bumps located near the vertices of any regular polygon with less than six
sides, resp. any regular polyhedra but the dodecahedron, in dimension n = 2, resp.
n=3.

Remark 13.3.6 There is a numerical evidence that a secondary bifurcation branches
off at A = 1 from the anti-symmetric states (U.,, —U;y;). However, we do not
know a rigorous proof of this result.

Remark 13.3.7 For other results dealing with nonlinearly coupled NLS equations
we refer to [11].

13.4 Nonautonomous Systems

Here we discuss the results of [7] dealing with the nonautonomous system

' +u=~0+ebi(x)u>+xrv, xeR,
(13.27)
—V' +v=>0+eby()V  +iu, xeR,
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where b;, i = 1,2 satisfy

b; € L*(R), |xllil)noob,»(x) =0,i=1,2. (13.28)

Solutions of (13.27) will be searched as critical points of
Zep(u,v) = L,w) + Li(v) —eGu,v), (u,v) €E
where E = H!(R) x H'(R),

Tty = Hull? - 5/u4—%/u2

Glu,v) = 4 f (b1 (o) + bae)v) .

and

For ¢ = 0 the unperturbed functional Z , has the following manifold of critical
points:

Zy={zz =Ux+8),U(x+8), §eR, 0< ) <1}

In order to use the perturbation methods studied in Sect. 5.6, we will check that the
assumptions (A1)-(A3) hold.
Set w = (wy, w,). From

(G'ze)lw) = /(bl(x)wl + by (x)w)U;, (x + §),

and using (13.28), an argument already used before shows that [|G'(z)|| < ¢, for
some ¢ > 0, proving (Al).

Condition (A3) is also easily verified. To prove that (A2) holds we will show that
Z, is non-degenerate, in the sense that T, Z, = Ker[Z)(z)] forall z € Z. Up to
translation, it suffices to take & = 0. Let

3
F:{AER:O<A<1,)\#§}.
Lemma 134.1 If 1 € T, then the kernel of I[(U\-5,U_;)] is spanned by
Wi, Ui
Proof We have to prove that any w = (w;, w;) solving the linear system

—w/ 4wy —3U% ,w; — Awp =0,
(13.29)
—w) +wy — 3U12_sz —Aw; =0,

has the form w = (U|_,, U|_,). Setting
Y =w —wa,
the function i solves

A(Y) = —v" + O, ()Y = Ay, ¥ € H\(R), (13.30)
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where

6(1—2)
cosh? (v/T=Arx)

Let us show thatif A € T" then ¥ = 0. By Lemma 13.3.2-(a), the first eigenvalue of
(13.30) is

0:x)=1+A1-3U{,(x)=1+1—

A, = inf {/ () + Qs (x)u?] : /;ﬁ = 1} =51 —3.

Since for A > % one has that A; > 0, it follows that A = 0 is not an eigenvalue of

(13.30). Therefore ¥ = 0 provided % <A<l

We next deal with the case 0 < A < % In this case, by Lemma 13.3.2, it holds
that 5A — 3 < 0 < 2A with 2 is the second eigenvalue (and SA — 3 the first one) of
(13.30). Thus A = 0 is not an eigenvalue of (13.30), proving that ¥ = 0.

From w; = w,, we find that w, satisfies
—wy + (1 — Awy —3UE ,wy =0,
and hence w, = U|_,, completing the proof. O

Lemma 13.4.2 If A € T, then PZ)(z¢) is invertible and (A2) holds.

Proof From the preceding lemma it follows that T;, Z; = Ker (Z}[z¢]) and hence
PT}(z¢) is injective. It remains to prove that PZ}(z¢) is also surjective. We take
£=0andlet W ¢ H'(R)besuchthatE = 7,Z, @ W.Forh = (h,h)) € W x W
we search u = (u;,u2),v = (v, v2) € W x W such that Z}(z)[u, v] = (h|v) for all
v € W x W. Therefore, u satisfies the system

—I/l/l/ 4+ u; — 3U12_Au1 — Ay = E],
- (13.31)
—M/Z/ —+ ur — 3U12_)\u2 — Auy = hs,

where E,- = —h! +h;,i =1,2. Setting ¢ = u; — up, and ¢ = u; + up, we find the
decoupled linear system

"+ (L+ MY —3U2, ¢ = hy — ha,

o (13.32)
—¢" + (1 —A)p — 33U} ¢ = hy + ha.
The first equation can be written as
(A\W)Iv) = (= o), Vv e W, (13.33)

where

Ay =1 / [ + (1 + 192 — 307,97

Since 0 is not an eigenvalue of A’, the Fredholm alternative yields a unique v solving
(13.33).
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Similarly, setting
A =1 [ [0+ (1 = a2 = 302,0%].

the second equation of (13.32) becomes (A5 (¢)[v2) = (h1+ha|v,), foreveryv, € W.
Since f [(@)? + (1 — AM)¢?] is a norm equivalent to || - || and Ker [A}] is spanned
by U;_,, then h; + h, € W = Ker [A/z]l, and the Fredholm alternative yields that
Al(p) = El + ﬁz has a unique solution in W. This shows that PZ} (z¢) is invertible
forall £ € R.

From the preceding arguments it readily follows that there exists § > 0 such that
|PI)(ze)|| = 8 forall £ € R.

Setting W = (W1, W) and using that

G"(z)(w, W)] =3¢ / (b1 (W (x) + b ()W )UT_, (x + &),
we get
1G"(ze)| <eC, VE&EeR,
and (A2) follows. O

In order to apply Theorem 5.6.5 it remains to show that the reduced functional
Zeo(ze) = Z(ze + wey) + 6G(ze + wee) has a stationary point. According to
Remark 5.6.6 we can look for the stationary points of G(£) := G(z). One has

1 1
9@ = / (b1(xX)+by(X)U}_, (x+&)dx = 2 / (b1(x—&)+by(x—ENU}_, (x)dx.

Taking into account that by, b, satisfy (13.22) and using arguments already carried
out before, one readily verifies that

lim G(¢)=0.

[§l—>00

Thus G(£) has at least one maximum or minimum.
The preceding arguments allow us to apply the perturbation result.

Theorem 13.4.3 Suppose that (13.28) holds and let .. € T'. Then for ¢ > 0
small enough, the system (13.27) has a solution (u;,v,) near the symmetric state
(Ul—)J Ul—)»)’ O

Remark 13.4.4 If A = O the system (13.27) becomes a single NLS equation and we
recover the result proved in [13].

Remark 13.4.5 Linearly coupled systems of nonautonomous NLS equations are
discussed in [10].
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13.5 Appendix

(1) Consider the linear eigenvalue problem (13.30), i.e.

AW) :=—y" + Q)Y = vy, ¥ € H'(R),
where Q(x) is a bounded function such that

lim Q(x)=>b.

|x|—o00

Itis well known, see e.g. [84, Sect. 3], that the essential spectrum o,(A) of A is given
by

0.(A) = [b, +00). (13.34)

A =inf{/ (W) + Q] : /u2 _ 1},

and suppose that A < b. Then A is the smallest eigenvalue of A. The corresponding
eigenspace is spanned by a positive function and A is the unique eigenvalue with
this property.

Moreover, set

(2) Here we carry out in detail the calculation to evaluate (13.25) and prove (13.26).
Since Ulz_k = 2(1 — A) f, one finds that

UL, = 6)0f, — 651 — Axtanh (v/1 — A x)fi.

Therefore,
d}L,WF()“*3 0)[”3 V] = (h*? h*)3

where
h* = (61" — 1) f* — 6+/1 — A* x tanh (v/T — A% x) f*
= 2 f*—6y2/5xtanh (/2/5x) f*.

One has that 2* € Y and
/h*f* = ]5_3,/00511_4 (\/gx)dx
— 6@/ X sinh (\/gx) cosh™ (\/gx) dx

6
cosh™ (y)dy — F / y sinh (y) cosh™ (y)dy.
5

:%/
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Integrating by parts, one has
/ ysinh (y) cosh™ (y)dy = 4 f cosh™ (y)dy.

Hence

/h*f = /cosh_4 (y)dy — A/COSh_4 (»dy
5[ 2

107
= cosh™ (y)dy < 0,

~ 75

proving (13.26).



Appendix A
Sobolev Spaces

We devote this appendix to the definition and study of the main properties of the
Sobolev spaces. The reader can found the details of the proofs in [1, 36, 58, 61,
88]. We assume throughout the appendix that €2 is an open set in R¥, k is a positive
integer and 1 < p < 4-o0.

A.1 Weak Derivative

In this section we introduce the notion of the weak derivative and its main properties.
As a motivation of the weak differentiation, we suggest applying integration by parts
(or the divergence theorem) to deduce the following characterization.

Proposition A.1.1 If u € C'(Q) and v; € C(Q), fori = 1,2,..., N, then the
following assertions are equivalent:

1. Vi = (;)_xu’
2. /q)(x)vi(x)dx = —/u(x)%(x)dx, Vo € C°(R). O

Definition A.1.2 If u € LIIUC(Q) and o = (o1, a2, ...,ay) is a multi-index, we say

that u is weakly a-derivable if there exists a function v, € L! () such that

loc

/ Px)WVe(x)dx = (=1 / u(x)Dp(x)dx, Vo € C(RQ).

Clearly, if such a function v, exists, then it is unique (up to subsets of 2 with zero
measure). This unique function v,, is called the weak o-derivative of u, and it will be
denoted by v, = D%u.

Taking into account that C*(£2) is the subspace of C(2) which contains all continuous
functions u € C(£2) whose (classical) a-derivatives with order || < k also belong to
C(£2), we can construct a similar space W(Q) for the weak derivative. Specifically,
we denote by WH(S) the set of all functions u € L,'OC(Q) which are weakly o-

derivable for every multi-index o with order || < k. Clearly, by Proposition A.1.1,
CK(Q) c WkQ).

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 169
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2, © Springer Science+Business Media, LLC 2011
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Since the weak derivative is linear, i.e.,
D*(u +v) = D*u+ D%, D*(\u) = rD%u

for every weakly «-derivable functions # and v, and A € R, WK(Q) is a linear
subspace of L ().
We recommend that the reader practice the above definition by verifying the next

examples.

Example A.1.3 1. If Q = (—1,1) C Rand u : 2 — R is the modulus function in
Q,ie., u(x) = |x|, forevery x € Q, thenu € W\(Q) — C1(RQ).
2. Let Q =(—1,1) C Rand u : 2 — R be the sign function in €, i.e.,

I, 0<x<1
u(x) = 0, x=0
-1, —-1<x<0,

then u ¢ WH(Q).
3. Take Q = B(0, R), the ball centered at zero with radius R, andu : Q — R a
function satisfying u(x) = f(|x|), Vx € \ {0} with f € C'((0, R)). If we have

lim +V=' f(r) =0,
r—>0+t

then
ue W(Q)< D%uelL (Q), V|a|<l.

loc

Using this result, we can prove that the following functions:

1

—, if0 < |x| <R,

u(x) = { ¥l A1)
0, if x = 0;
log <log (“‘—’T)) if0 < |x| <R,

v(x) = (A.2)
0, if x =0;
|x|log <log (%)), if 0 < |x] < R,

w(x) = (A.3)
0, ifx =0;

verify
ue W Q= k+a<N

andv € WN=L(Q),w € WN(Q).
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4. Consider 2 = (0,1) x (—1,1), 2; =(0,1) x (0,1), 2, =(0,1) x (— 1,0) and
the function u : Q@ — R defined by

0, y=0,
u(x,y) =
1, y>0.

Then u ¢ W(Q), but u|q,ua, € W'(2; U Qy).

Note also that if « and 8 are multi-indices and u € L]IOC(Q) is a weakly B-derivable
function with B-derivative D#u which is a-derivable in turn, then u is weakly (c+ f)-
derivable with D**#y = D*(D#u)).! This implies that one of the main properties of
the spaces W*(Q) is their inductive character; i.e., we can obtain W*(Q2) (k € N\ {1})
as the functions of W*~1(2) whose derivatives of order m—1 belong to W'().

Another remarkable property is that the weak derivative is a local concept.
Proposition A.1.4 Ifu € L\ (Q), then the following assertions are equivalent:

loc
(i) ue WKS.
(ii) For every x € Q2 there exists an open neighborhood V. = V(x) of x in Q such
that uly € WK(V).

The functions of W*(2) can be approximated by functions C§° (R™). To do this, we
consider 0 < p € C° (R™) such that its support verifies

supp o C B(0,1)

f px)dx = 1.
RN
We define for h > O and u € LIIOC(Q) the set Q(h) = {x € Q : h < dist (x,0R2)}

and the function u;, € C*°(2(h)) by setting

i) = — [ o (222 utyyay,
hN h

for every x € Q(h). Foru € L! (), it holds that

loc

and

(h—0%) .
{un} =5 ulnLlloc

().

If, in addition, u is weakly a-derivable (with & a multi-index), then we have D*u €
LIIOC(Q) and we can consider (D%u), € C*(2(h)). On the other hand, since u;, €

C*°(R2(h)) we can compute its derivative D*(u);, in (k). The theorem of derivation
under the integral sign shows that both functions are the same, i.e.,

D up(x) = (Du)u(x), Vx € Qh).

As a consequence we deduce the following characterization of the weak derivative.

! In general, D**#y may exists without D?u existing. Indeed, consider the function in Example 4
with o = (1,0) and B = (0, 1).
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Theorem A.1.5 [fu,v € L! (Q)anda is a multi-index, then the following assertions
are equivalent:

(i) v= D%u.
(ii) There exists a sequence {¢,} C Cgo(RN ) such that

{¢n} —> win L, (),
{D*¢,} —> vin L} ().

It is worthwhile to observe thatif u € L?(2) for 1 < p < 400, then it is possible to
define uy, in all RV as being u;, € C*(R") and

h—0t .
) "= win LP(9).

Using this in conjunction with the previous theorem, we obtain the following.

Corollary A.1.6 Ifu € LP(Q), v € LY (Q) with1 < p < +o0 and a a multi-index,

loc

then the following assertions are equivalent:

(i) v=D"u.
(ii) There exists a sequence {¢p,} C C(‘)’C(RN ) such that

{d.} —> uin LP(Q),
(D%¢p,} —> vin LE (Q).

loc
Theorem A.1.5 also gives a necessary and sufficient condition for the classical deriv-
ability of a weakly derivable function. (Remember that every (classically) derivable
function is also weakly derivable, i.e., C'(Q) C W(Q)).

Corollary A.1.7 Ifu € W(Q) satisfies

9
Mo Vie{l,2,... N},
ax,‘

then u € CH(Q).

Of course, by % € C(£2) we mean that there exists a continuous function in the

equivalence class of 2% e L! (). Similarly, the condition u € C'(£2) means also

3Xi loc

that in the equivalence class of u € L] () there exists a function of class C' in Q.
In turn, a consequence of the previous corollary is the following one.

Corollary A.1.8 IfQ C R is open and connected and u € W'(Q) satisfies Vu = 0
(a.e. x € 2), then u is constant.

The weak derivative can also be characterized using absolutely continuous functions.
Observe that for the local character of the weak derivative it suffices to suppose that
QC RNis arectangle Q2 = (aj, by) x (az, b)) x --- x (ay,by). Ifi € {1,2,... ,N},
we take ; := (a1,b1) x (a2,b2) X ... (ai—1,bi—1) X (@i11,bi41) X - -+ X (an,by).
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We denote by AC;(£2) the set of all measurable functions u : 2 — R such that the
set B of all points X = (x1,... ,Xi_1,Xisls.-. ,XN) € ﬁi for which the function
t = u(xy,...,xX_1,t,Xiy1,...,Xy) is absolutely continuous in (a;, b;) has zero
(N — 1)-dimensional Lebesgue measure.

Theorem A.1.9 If Q = (a1, by) x (a2,b2) x --- x (ay,by) and u € L} (Q), then
the following assertions are equivalent:

(i) ueWiQ).
(ii) For everyi € {1,2,...,N} there exist a constant o; € R, a function h; €
L} () and a subset A; C Q; such that
(a) The (N — 1)-dimensional Lebesgue measure of A; is zero.
(b) ForeveryX = (X{,... ,Xi_1,Xi41s-.. »XN) € §i — A; we have
UXTs e s X1 Xy XLy oo s XN)

Xi
=/ hi(X1, . S Xis 1,8, Xig 1y - - 5 XN)S + k3
a;

almost everywhere in X € (a;, b;) and where ks € R denotes a constant
which depends onx € Q; — A;.
(iii) Foreveryi € {1,2,..., N} there exists a function u; € AC;(2) such that
(a) u(x) =u;(x)ae x € Q,

(b) The classical derivative® a—ul satisfies
Xi

~

%GLI

B.X' loc(Q)‘

In addition, if one of the above assertions holds, then

ou B'iil
— ) =—) = hi(x)ae x € Q.
ax,‘ 8x,~

Roughly the implication (i)=>(iii) is that a function u € W(Q) if and only if for
every coordinate axis, e.g. x;, it is possible to find a function U; in the equivalence
class of u € L. () such that T; is absolutely continuous for almost everywhere
all line segments in Q2 parallel to the coordinate axis and whose partial derivative
with respect to x; is locally integrable in Q2. Functions satisfying this property were
already studied by Beppo Levi and, subsequently, by Leonida Tonelli.

Some consequences of the above characterization are the following.

Corollary A.1.10 Ifu : Q — R is a locally Lipschitzian function in Q, then u €
wiQ).

Example 3 above shows that the converse is not true.

2 which exists almost everywhere in Q.
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Next we study whether the product of two weakly derivable functions is weakly
derivable. Clearly, the answer is no in general. Indeed, if we consider 2 = B(0, 1) C
RV, «, B € R satisfying

max{l+o, 1 +8} <N < 1l4+a+8

and u(x) = g, v(x) = #, then u,v € W1(Q), but uv ¢ WH(Q).
However, taking into account that the product of absolutely continuous functions
is absolutely continuous, it is possible to prove the following result.

Corollary A.1.11 Ifu,v € W(Q), then the following assertions are equivalent:
(i) u-vew! (Q)wzth (uv)—u——i—va“foreveryl e{l,2,...,N}.

(ii) u-v € LlOC(Q) andfor everyi € {1,2,... ,N},
av 4 ou el @
u— — .

0x; Vax, o

A particular case in which (ii) (and thus (i)) holds is u,v € W!(£) N L>®(Q).

In the sequel we also study the chain rule for the weak derivative. As before for
the product, we first see an example proving that it is not true in general. Indeed, if
Q= B(0,1) CcRY, ux) = w1th1+oz<N<1+2ozandf(t)_t2 vVt e R,
then f € C'(R) c W! (R)andu e WI(Q)but fou g WH(Q).

Since the composition of a Lipschitz function with an absolutely continuous
function is absolutely continuous, the following consequence can be proved.

Corollary A.1.12 Let f : R — R be a Lipschitz function andu € W'(2). Consider
A ={t eR : 3f (1)}’ and define the function g : R — R by

f'@®), teA,
g() = (A.4)
0, teR\A.

Then, the composition f ou € W'(Q) with

] a
B_(f ou)x)= g(u(x))—u(x), a.e. x € Q2
X 8x,-

foreveryi € {1,2,... ,N}.

We remark that all the hypotheses of the above result are satisfied provided that
f € C'(R) with bounded derivative.

As an application we obtain the weak derivative of the functions u* = max{u, 0},
u~ = min{u, 0} and |u| provided that u € W' ().

3 The fundamental theorem of the calculus implies that the measure of R \ A is zero.
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Corollary A.1.13 Ifu € WX(Q), then u*,u™, |u| € W'(Q) with

Vu(x), ifu(x) >0,
Vut(x) = a.e. x € €,
0, ifu(x) <0,

0, if u(x) > 0,
Vu (x) = ae x € ,
Vu(x), ifu(x) <0,

Vu(x), ifu(x) >0,
Vi0u|(x) = 0, ifu(x) =0, ae x € Q.
—Vu(x), ifulx) <0,

In particular,
Vux)=0a.e x € Q, :={x € Q : ulx) = a},

foreverya € R.

The second part of the previous corollary is usually attributed to G. Stampacchia (83)
(see also [72, Theorem 3.2.2, p. 69]).

A.2 Sobolev Spaces

In addition to considering an open set €2 in RY and k € N, we take p €[1,+o0].

Definition A.2.1 The Sobolev space Wkr(Q) is defined as
WhP(Q) = {u e WHQ) : Du e LP(Q), Vx| <k}.

Clearly, W*P(Q) is a linear subspace of (LP(S),|-|l,). We can consider two
equivalent norms in W5?(Q):

1 .
[X e 1D%ull5]? i p e [1,+00),

leellp =
maxjy <[ D%l if p = Fo0,
and
el = D I1Dull,.
lee| <k

In particular, if p = 2 the norm ||-[|;, of the space HX(Q) = W*2(Q) is the one
associated to the inner product

(URVISES Z (D%u, D*v) 2q) -
|| <k

We have to note that from a historical point of view, the introduction of these spaces
was not motivated by the similarity with C¥(Q) that we have used in Sect. 1.1.
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J. Schauder had already studied the Cauchy problem associated to quasilinear equa-
tions of hyperbolic type by applying the theory of fixed points. In order to do this,
he considered the space E of the functions u of class C* in an open Q C R" such
that all of its partial derivatives D%u up to order k belong to L(£2), and he equipped
this space with the norm ||-||; ,. Unfortunately, this space E is not complete with this
norm. Just after, Sobolev considered the functions u € L*(2) with weak derivatives
D%u in L*(R) for |a| < k. This space with the norm |- llx.> is already complete.

Theorem A.2.2 The Sobolev space W*P(QQ) is a Banach space for 1 < p < +o0.
In addition,

(i) Wk’/’(Q) is reflexive for 1 < p < 400,
(ii) WEP(Q) is separable for 1 < p < +o0.

In particular, H(Q) is a separable Hilbert space.

Now it is easy to deduce from Corollaries A.1.11 and A.1.12 the following versions
for the product and chain rule in the Sobolev space Wkr(Q).

Proposition A.2.3 Let p,q,r € [1,400] be such that*
1 1 1
— 4 - =
p q r
Ifue WoP(Q) and v € WE(Q), then uv € W (Q) with

a(uv)
0X;

x) = v(x)—(x) + u(x)T(x) a.e. x € Q,

foreveryi € {1,2,... ,N}.

Proposition A.2.4 Assume thatu € W' (Q)and f : R — Risa Lipschitz function.
Consider the set A = {t eR: Elf’(t)} and the function g : R — R given by (A.4).
If fou € LP(R), then f ou € WP(Q) with

3(f0 u)

(x) = g(u(x))—(x) aex e

foreveryi € {1,2,... ,N}. O

A sufficient condition to obtain that f o u € LP(2) is that either f(0) = 0 or Q is
bounded.

It is clear that every function in C*(2) such that its partial derivatives up to order
k are also in L?(S2) belongs to W*?(R2). The next result shows that this class of
functions is dense in W*?(Q) provided that 1 < p < +o0.

Theorem A.2.5 (N.G. Meyers-J. Serrin) If 1 < p < o0, then the subspace
C>®(Q) N WkP(Q) is dense in WrP(Q). O

4 We adopt the agreement é =0.
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The above result is not true for p = +oc. Indeed, the modulus function u(x) = |x|
in (— 1,1) belongs to W' (-1, 1) with

u'(x) =

Since the derivative cannot be approximated in the norm ||-||,, by continuous
functions, we deduce that u does not belong to the closure of the subspace
Whe(—1,1)NCY(—1,1)in W (=1, 1).

A.3 Boundary Values in Sobolev Spaces

Definition A.3.1 We denote by Wg "P() the closure of C°(£2) in the space WkP(Q).
In the particular case p = 2, we also write W(lf’p(Q) = Hé‘(Q).

Clearly, if we consider in Wé‘"’ (2) the induced norm of W*?(Q2), we deduce by
Theorem A.2.2 the following result.

Theorem A.3.2 Wé’p(Q) is a Banach space provided that 1 < p < +oo. In
addition,

(i) Wé(’p(Q) is reflexive provided that 1 < p < +o00.
(ii) W(];’p(Q) is separable provided that 1 < p < 4o00.

In particular, Hé‘(Q) is a separable Hilbert space.
Remark A.3.3 The reader can verify the following assertions.

1. If 1 < p < 400 and u € W5P(Q) has compact support in €2, then u € W(I;’p(Q).
2. If 1 < p <+4ooand, foru € Wol’p(Q), we consider its zero extension #, i.e.,

u(x), x € <,
u(x) =
0, x e RV\ Q,

then@ € W!»(RY) with

ou
9% B_)Ci(x)’ x €,
— )=
8)6,‘

0, x e RV\ Q,
foreveryi € {1,2,... ,N}.

If we analyze carefully the properties of Sobolev space W('f P (Q) we see that all of
them are similar to the ones satisfied by the space of the functions in C'($2) which
vanish on the boundary 9€2. The next result strengthens this idea.
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Theorem A.3.4 Consider a function u € WP() N C(Q).

(i) Ifu(x) =0 for every x € IR then u € Wy ().
(ii) If 92 is piecewise of class C' and u € WOI’P(SZ) then u(x) = 0 for every x € 0S2.

We also have the following version of the chain rule.

Theorem A.3.5 If p € [1,400) and f : R — R is Lipschitz with f(0) = 0, then
foue WOl’p(Q)for every u € Wol’p(Q). O

Using the space Wg "’ (), we can define an ordering between values on the boundary
of functions in W57 ().

Definition A.3.6 If 1 < p < +ooand u,v € WP(Q), we say

() u<konoQ < u—k)" =max{u—k, 0} W,"(Q).
(1) u>konoQ2 <= —u<—konodf.
(i) u <vondQL <= u—v <0o0nad.
(iv) u>vondQ2 <= v <uonaf.
u<vonad2
V) u=vonoQ <=
v <uonodf2.

Remark A.3.7 1. If Q has infinite measure, then every nonzero constant does not
belong to W'?(2) and hence the definition given in case (iii) does not cover to
the one given in (i).

2. The relation defined in (iii) is an order relation in W!?(Q) (if we understand by
equality on 92 that given in (v)).

By using the chain rule a characterization of WOl "P(Q) as the functions in W!P(Q)
which vanish on 92 can be deduced.

Proposition A.3.8 If1 < p < 400 and u € W"P(Q), then
ue Wy (Q) < u=0ondQ.

Applying Theorem A.3.4, we obtain the next connection between weak inequality
on €2 and the classical one.

Proposition A.3.9 If Q2 C RY is open, p € [1,400) and u € WHP(Q) N C(RQ), we
have:

(i) Ifu(x) <0,Vx € 0%, thenu < 0 on 02
(ii) Conversely, if 3K is piecewise of class C' and u < 0 on 3, then u(x) < 0 for
every x € 052.

The case (ii) of the above proposition is false if the boundary 9€2 of €2 is not smooth.
Indeed, it suffices to have in mind that Wo1 P(B(0, D\ {0}) = WO1 "P(B(0, 1)), provided
that NV >2and 1 < p < N.
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The proposition also fails if we replace the constant O by a nonzero constant.
Indeed, taking N > 5, Q = {x eRY : x| > 1} and

u(_x) = Vx € ﬁ,

| x N2
we have u € C2(Q) N H'(R) and
ulx)=-—1, Vx €09,

but it is not true that u < —1 on 92.
Proposition A.3.10 If p € [1,+00), then Wy (RY) = WEP(RN),

Remark A.3.11 1. The above result is false for the case p = oco. For example, if Q2
is unbounded in R", then every nonzero constant belongs to Wko°(Q) and it is
not in Wy *°(€2). Thus, Wy (Q) & W**(€) in this case.

2. As a consequence of the proposition, we have u < v on RN, for every u,v €
wWhr(RN).

To conclude the summary of properties of Wg "P(Q) we give the Poincaré inequality.

Proposition A.3.12 If p € [1,+00) and @ C RY is open and bounded in one
direction, then there exists a positive constant C depending uniquely on Q2 such that

Cllull, < |Vull,, Yue WP ().

One of the main consequences of the Poincaré inequality is that, under its hypotheses,
[Vull, defines a norm WO1 "P(Q) which is equivalent to ||-|| 1,p- In addition, in the case
p = 2, this new norm ||Vu||, in Hol(Q) is associated to the inner product f Vu-Vvy
foru,v € HY(Q).

A.4 Embedding Theorems

We now study the well-known Sobolev and Rellich—-Kondrachov embedding theo-
rems. Some words are in order to precisely state the meaning of embedding and
compact embedding.

Definition A.4.1 Let (X, || - ||x) and (Y, | - ||y) be normed spaces.

(1) We say that the space X is embedded in the space Y, and we denote itby X < Y,
if there exists an injective linear and continuous operator from X into Y. In this
case, the operator is called an embedding.

(ii)) We say that the space X is compactly embedded in the space Y, and we denote
it by X“— Y, if there exists an embedding of X in Y which is compact.

Here, we shall consider embeddings of W*?(2) into three classes of spaces:
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i) W/H@Q) with0 < j <k W%(Q) = LI(Q)) and q denotes the conjugate
exponent of p, i.e., (é + i = 1).

) C '}_{'; (2), for j € NU{0}, i.e., the space of functions with continuous and bounded
partial derivatives up to order j. This is a Banach space with the following norm:

= max _sup |[D%u(x)|

ull ~j
” ”Cé(Q) 0§|0¢|§I B S

for every u € C3(Q).

(>iii) Cé”‘;(Q), i.e., the space of functions with bounded and uniformly continuous
partial derivatives up to order j in €2 and such that the partial derivatives of
order j satisfy a Holder condition with exponent v € (0, 1). It is also a Banach
space with the norm

|D*u(x) — D*(y)|
lx — y*

u Al = j N
” ”Cé,u(Q) ”u”Cé(Q) + Z sup
laj=jx,y € Q

X F#y
for every u € C3"(). Clearly, C3"(R) C CH().

The embedding of W*” () into a space of the type (i), that is, in W/ (), is given by
the inclusion I of W*5P(Q2) in W/4(2). Indeed, if the inclusion W5?(Q) c W/4(Q)
holds, then, by the closed graph theorem, the map / is continuous and hence an
embedding.

Taking into account that the elements of W*”(2) are not functions defined in &2, but
are equivalence classes of functions which coincide up to a subset of Q2 with zero
measure, we have to make precise the meaning of the embeddings of type (ii) and
(iii). It is that the equivalence class u € W*P(Q) contains a function in the space
of the continuous functions which will be the image Iu of the embedding. Thus,
for instance, the embedding WX (Q) — Céqu(Q) means that every u € W5P(Q),
considered as a function instead of an equivalence class, can be redefined in a subset
in © with zero measure in such a way that the modified function % (which is equal
to u in WhP(Q)) belongs to Cg’u(Q) and, for some constant k > 0 independent of
u € WhkP(Q), satisfies the inequality

1l e o) = Kl
The embedding theorems need some hypotheses on the regularity of the boundary
0 of Q. If x € RY is a point and B C R" is an open ball such that x ¢ B, we call
the cone of vertex x and height » > 0 to the set

C,=Bx,r)N{x+Ay—x):yeB,r>0}.

Definition A.4.2 We say that 2 satisfies the cone condition if there exists a cone C
such that every x € 2 is the vertex of a cone C, contained in 2 and congruent (by a
rigid motion) to C.
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Every bounded domain  c R" with boundary 92 of class C! satisfies the cone
condition. In general the converse assertion is not true (it suffices to consider a square
in R?).

An example of an open set 2 C R? which does not satisfy the cone condition is
the set of points of the unit ball in R? with distance to (1/2, 0) greater than or equal

to 1/2, i.e.,
R2 s Y)s R2 2’ s ) .

We gather in a unique theorem the main embedding results (without taking into
account their compactness) of the Sobolev spaces. Usually, it is attributed to S. L.
Sobolev, but it also includes improvements due to C.B. Morrey, E. Gagliardo and L.
Nirenberg.

Theorem A.4.3 Let Q@ € RY be an open subset satisfying the cone condition. Con-
sider also k € NU{0}, 1 < p < ocoand j € NU {0}. We have the following
embeddings.

1. Ifk < %, then Withr(Q) < W719(Q) for every q € [p, NNT?([)]

2. Ifk = %, then Withp(Q) < WI4(Q) for every p < q < oc. In addition, in the
particular case p = 1 and k = N, we also have WitN1(Q) < CL(KQ).

3. Ifk > % then W/HkP(Q) < C3 ().
Furthermore, if 9Q2 is of class C U then

4. Ifk—1< % then WIthr(Q) — C}'\(Q) for every v € (O,k - %]

5. Ifk—1="2, then Witkr(Q) — CE() for every’ v € (0, 1).

The following examples show that this theorem is optimal.

Example A.4.4 Let Q = B(0, R) be the ball of center 0 and radius R > 0 and fix
ke N.If1 < p,q < ooanda > 0 are such that g <a< N;]‘”, then the function

u: Q2 — R given by (A.1) satisfies u € W*P(Q) \ L4(Q). Indeed, since

(x+k)p <N,

Example A.1.3-3 shows thatu € WP (). Moreover, N < ag andhence u & LI(S).

This example shows that the embedding of W*P(Q) in L4(R2) does not hold for
q > NNTI])cp It also proves that if kp < N then the embedding of W5P(2) in C(R2) is
not true.

Example A4.5 Let k € Nand p > 1 such that kp = N. Consider 2 = B(0, R),
the ball of radius R > O centered at zero, and u : 2 — R given by (A.2). Clearly,

5pr: land N =k — 1, thenitcanbe v € (0, 1].
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u ¢ L°°(£2). On the other hand, by Example A.1.3-3, we also have

N
ue WH’P(Q) = Wkr(Q).
This example proves that, for p > 1 and kp = N, even if the embeddings
WEP(Q) — LU(Q), Vg € [p,+00)

hold, in general, W*N/%(Q) is not embedded in L°°(S2). The best space in which to
embed this space is the Orlicz space of the measurable functions in €2 satisfying

/ (e‘”(x)lN/(ka)) dx < oo.

Q

Example A.4.6 Considerk e N, 1 < p <ooandv € (0,1). If(k—l) < = <k

then the embedding of WP () in C}, () isnot true forv > k— Y Indeed, Con51der
R > 0,2 = B(0, R) and the functlon u : Q2 — R defined by (A. 1) with @ € R such

that o € (—v, N k). Then (& + k)p < N and thus u € W*P(Q).
In addition, since ¢ + v > 0,

|u(x) — u(0)]

— 70(71}’ v 0
0P | x| X #

and we see that it is not possible to redefine the function u in a set of zero measure
in such a way that the new function belongs to C"(£2).

Example A.4.7 Let k € N and p > 1 be such that (¢ — 1)p = N. We prove that
the embedding of case 5 fails for v = 1 by showing a function u € W*P () which
cannot be redefined in a zero measure set to belong to C 1(Q). Indeed, for R > 0,
consider the function u# : 2 = B(0, R) — R given by (A.3). It is not difficult (see
Example A.1.3-3) to verify that

ue W[%]H’I’(Q) = WhP(Q).

On the other hand, observing that for x # 0,

juC) —uO)| _ (10 4_R>
o e\

converges to 400 as x goes to zero, we see that there is no function in the equivalence
class of the functions almost everywhere equal to # which belongs to the space C'(£2)
(furthermore, this equivalence class does not contain a locally Lipschitzian function
in ).

Our last example is devoted to show that Theorem A .4.3 is not true in general provided
that €2 is not smooth.
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Example A.4.8 Consider Q = {(x,y) eR?>:0<x|<1,0< y < 1} and the
function u defined in it by

1, f0<x<1,0<y<l,

u(x,y) =
0, if -1<x<0,0<y<]l.

Observe that u € W'P(Q) for every p > 1 and that the associated equivalence class
does not contain any uniformly continuous function. This proves that the embedding
of WhP(Q) in Cg’u(Q) in case 4 fails for this open Q even if we assume that 0 <
N

= < 1.
p

F. Rellich had already proved the compactness of some of the previous embeddings
in the case p = 2. The general case (p > 1) was studied by V.I. Kondrachov.

Theorem A.4.9 (Compact embedding of Rellich—-Kondrachov) Let 2 be a bounded
and open subset in RN satisfying the cone condition, k € N and p € [1,+00). The
following embeddings are compact for every j € N U {0}.

1 Ifk < %, then WItr(Q)<> WiP(Q) for every g € [1, NNT'/;>

2. Ifk = %, then Withr(Q)e— W/-P(Q) for every q € [1,4+00).

3. Ifk > %, then Withr(Q)&> CL(Q) and Withr(Q)<> WiP(Q) for every q €
(1, 00).

Furthermore, assuming that 32 is of class C', we also have the following assertions.
4. Ifk > X, then Withr(@)C} ().
5. Ifk > % >k — 1, then Wj+’””’(Q)Q—>C£’,‘;(Q)f0r every) <v <k — % ]

Since the zero extension of a function u € Wé P () is an element of W*P(RY), we can
consider Wg "P() as a subset of W57 (RY). Therefore, observing that Theorem A.4.3
is satisfied in the case 2 = R", we deduce that it is also true if we replace the spaces
WXP(Q) in that theorem by W(I; "P(Q) (even if © does not satisfy the cone condition).

Similarly, if 2 C R¥ is a bounded domain, taking an open ball B(0, R) (which
satisfies the cone condition) such that Q C B(0, R), the inclusion Wé‘ Q) ¢
WXP(B(0, R)) holds and, by applying Theorem A.4.9 of Rellich—-Kondrachov to
WH5P(B(0, R)), we deduce that the assertions of that theorem are also true if we
replace W57 (Q2) by W(]; "7 (Q). Consequently, we have proved the following corollary.

Corollary A.4.10 If Q is an open subset in RY, then all embeddings of Theo-
rem A.4.3 hold provided that we replace the space W57 (Q) by W(f’Lk’p(Q).

If, in addition Q is bounded, then all the compact embeddings in Theorem A.4.9
are also true if we replace the space Withr(Q) by Woﬁk’p(Q).






Exercises

Exercises related to Chapter 1

1. If p € [1,00] and k is an integer greater than or equal to 1, let ¥ be the number of
multi-indices o with order || less than or equal to k. If Q is an open subset of RY
prove that the set {(D%u)q<x : u € WXP(Q)} is a closed subset of the product
space LP(2) x ). x LP(2). As a consequence, show that W*?(Q) is a Banach
space which is separable if 1 < p < 400 and reflexive for 1 < p < +o00. (See
[36, Proposition 9.1].)

2. Verify the Examples A.1.3.

3. If X and Y are Banach spaces, prove that every linear operator 7 : X — Y
such that T'(A) is relatively compact for all bounded set A C X is continuous.

4. Prove that the composition of a continuous operator with a compact operator is
also a compact operator.

5. Prove that the restriction to HOI(Q) of the inverse K of the Laplacian operator
given in Sect. 1.2.5 is compact from H_ () into itself.

6. Let Q be a bounded subset of RY. Prove:

(a) For every two Holder exponents 0 < p < v < 1, the inclusion C%"(Q) C
C%*(Q) is compact.

(b) Deduce that the restriction to C%"(Q) of the inverse K of the Laplacian
operator given in Sect. 1.2.5 is also compact from C%"(Q) into itself.

7. If X =Y = C(Q) and f € C'(R), show that the Nemitski operator associated
to f,ie, F: X — Y givenby F(u) = f ou, u € X, is differentiable and
F'(w[v] = f'(u)v, for every u,v € X.

8. Leta € L"(2),b € L*(2), r,s > 1, be such that

| £, u)] < a(x) + b(x)|ulP/d.

Find r, s in such a way that the Nemitski operator f maps L”(£2) into L?(£2).
9. Letgo > 0 and g € C(R") be such that g(x) > go for every x € RV, Prove that
the space

E={ue H'R"): / [IVul* + g u’] < +o0}.

A. Ambrosetti, D. Arcoya, An Introduction to Nonlinear Functional Analysis and 185
Elliptic Problems, Progress in Nonlinear Differential Equations and Their Applications 82,
DOI 10.1007/978-0-8176-8114-2, © Springer Science+Business Media, LLC 2011
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endowed with the norm
lullz = / [IVul? + g u?]

is a Banach space such that & ¢ H'(R") with continuous embedding.

10. If A € L(X,Y) is invertible, show that the map F : A —> A~!is differentiable
and dF(A) : B — —A~'BA~!. Hint. Use the fact that if T € L(X, X) with
IT| < 1,then (I — T) is invertible and

(I-T)"'= Z(— DFT*.

Exercises related to Chapter 2

11. Leth € C([0, 1]), k € C([0, 1] x [0, 1]) be continuous functions. If f : R — R
is a Lipschitz function with constant L, prove the following assertions.
(a) The operator K : C([0, 1]) —> C([0, 1]) defined by

1
Ku(x):/ k(x,y)f(u(y)dy, 0<x<I1,
0

is linear and bounded.
(b) The Hammerstein integral equation

1
u(x) —/(; k(x,y) f(u(y)dy = h(x), 0=<x=<1,

has a unique solution u# € C([0, 1]) provided that L || K || < 1.
12. Let f : [a,b] x R —> R be a continuous function which is increasing in the
second variable, i.e., for every fixed x € [a, b], the function f(x, y) is increasing
in y € R. Prove that if v,w € C([a, b]) satisfy v(x) < w(x) for every x € [a, b]
and

b b
v(x)f/ f(x,v(x))dx and /f(x,w(x))dxfw(x),

forevery x € [a, b], then there exists u € C([a, b]) such that v(x) < u(x) < w(x)
and

b
u(x) = / flx,u(x))dx,

for every x € [a, b].
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Exercises related to Chapter 3

13.

14.

15.

Let k € C([0, 1] x [0, 1]) be a continuous function and consider the operator
K : C([0,1]) — C([0, 1]) defined by

1
Ku(x):/ k(x,Yu(y)dy, 0<x<1.
0

Prove that if A belongs to the resolvent p(K) of K, then there exists § > 0 such
that the integral equation

1
hi(x) = / k(x Vlu(y) + uP1dy + h(x), 0<x <1,
0

possesses a solution u € C([0, 1]) for every h € C([0, 1]) satisfying ||i||cc < §.
Let ¢ : R —> R be an increasing function of class C' in R \ {0} satisfying

1 ifl_L<x<l+L
n’ n 4n?2 T T n 4n¥
o)=1 0. ifx=o0,
_l lf_l_L< <_l+]
n’ 4n2 =7 T n 4n?

Prove that ¢ is differentiable at zero with ¢’(0) = 1, but it is not injective in any
neighborhood of zero.

Let ¢ be the function defined in Exercise 14 and consider the Nemitski operator
associated toit, F : C([—1,1]) — C([—1,1]), F(u) = ¢ ou. Prove that F is
differentiable at u = 0 with d F(0) equal to the identity, but F is not surjective
in any neighborhood of zero.

Exercises related to Chapter 4

16. Let X = ¢( be the Banach space of the real sequences x = {x,} converging to

zero with the norm ||x || = max |x,|. Consider the operator T : X — X defined
n

by
I+ [lx]]

(Tx), = and (Tx)pq1 = X, ifn > 1.

Prove that

(a) T is continuous and maps the unit ball of X into itself,
(b) T is not compact,
(c) T has no fixed point.

Use (c) to deduce that it is not possible to define a topological degree (satisfying
all the degree properties) for such a T'.
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17.

18.

19.

20.

Exercises

Let 2 be a convex bounded set in a Banach space X. Suppose that T : Q@ —> X
is compact and 7' (9€2) C 2. Prove that 7" has a fixed point.

(Peano’s theorem). Let f be a continuous function in a domain £ C R2. Prove
that for every (xg, yp) € €2, there exists at least one solution of (2.2). (Hint. Use
Lemma 2.1.3 and apply the Schauder fixed point Theorem 4.2.6 to the operator
T given by (2.5).)

(Improvement of Theorem 4.4.1 under more restrictive conditions) Let T : R x
X — X be acompact map with X a Banach space. Consider the set X of the pairs
(A, u) € R x X which solves the equation u = T (A, u). Assume that (Ao, up) € T
and let C be the connected component X that contains (Ao, up). Prove that if each
solution in some neighborhood of (A, up) is isolated with nonzero index, then
all the connected components of C \ {(X¢, up)} are unbounded.

Let E = V @ W with V finite dimensional. For R > 0 we denote by By (R)
(resp. Sy (R)) the closed ball (resp. the sphere) in V of radius R and center O and
consider

I'=1{h:By(r) — R : h|g, (g is the identity map}.
By using the Brouwer degree, prove that

h(By(R) NW # 0.

Exercises related to Chapter 5

21.

22.

23.

Let 7 : X —> R be a convex functional in a Banach space X. Prove:

(a) Every critical point of 7 is a global minimum.
(b) If, in addition, J is strictly convex, then it has at most a global minimum.

(Weierstrass counterexample) Prove that the infimum

1
inf {/ @) cueCl(—1,1], u(—1)=—1, u(l) = 1}
-1

is not attained.
Let X = CJ[0, 1],

1/2 1
A:{ueC[O,l]:/ u—/ u=1}
0 172

and ® : X — R, ®(v) = ||v||so. Prove that
inf &) = 1

and the above infimum is not attained in A. What can be said about the reflexivity
of X?
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24.

25.

26.

27.

28.

29.

Let E be a Hilbert space and M = G~!(0), with G € C"!(E,R) such that
G'(u) # 0 on M. Prove that if u € M is a local minimum constrained on M for
a functional 7 € C'(E,R), then there exists A € R such that J'(x) = LG ().
Let X be a Banach space and J € C!(X,R). Prove that if 7 satisfies (P S),,
then K, ={ue X : Ju) =c, J'(u) = 0} is a compact set.
Prove that if X is a Banach space, then every functional 7 € C 1(X ,R) which
is bounded from below and satisfies (P S),, at m = inf 7, attains its infimum.
Compare with Corollary 1.2.5.
Let X be a Banach space. Prove that every functional 7 € C'(X,R) bounded
from below and satisfying (P S), for every ¢ € R, is coercive. (Hint. See [65].)
Let E be a Hilbert space and J € C!'(X,R) a functional satisfying the Palais—
Smale condition (P S), at every ¢ > 0. Assume that J(0) = 0 and that u = 0
is a local minimum of 7, i.e., J(0) < J(u) for every u € E with |lu|| < r, for
some r > 0. Use the Ekeland variational principle to prove thatif 0 < p < r,
then either

inf J(u) >0

lull=p
or there is u, € E such that ||u,|| = p and J(u,) = 0. (Hint. See [51].)
Prove that if the mountain pass critical point is non-degenerate, then its Morse
index is 1.

Exercises related to Chapter 6

30.

31.

32.

If X is a Banach space and L : X —> X is a linear operator, prove that A* is a
bifurcation point of the equation

Lu=Au, uelX

if and only if it is an accumulation point of eigenvalues of L.
For F : R? — R we consider the equation

Fo,u)=0, uelR.

(a) Prove that if F(A, u) = Au + °, then A = 0 is the unique bifurcation point
of the equation.
(b) Prove that there is no bifurcation point if F(A,u) = A?u + .

The following example shows that Theorem 6.1.2 fails if it is only imposed that
the geometrical multiplicity of the eigenvalue A* is one. Consider E = R? and
F :R x E — R given by

FOux,y) = <“}\; y), (x,y) € E.
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Prove:
(a) A* = 0is aneigenvalue of L(x,y) = <_()y ) with algebraic multiplicity two
and geometrical multiplicity one.

(b) The equation F(X,x,y) = 0, (x,y) € E has no bifurcation points.

Exercises related to Chapters 7-13

33. Prove thatif f satisfies (7.2), then the functional 7, considered in Sect. 7.1.2 is
of class C'.

34. Give a detailed proof of Proposition 8.1.1.

35. Prove that zero is the unique solution of (11.8) for A > A;.

36. Let f € C'(R) satisfy f(0) = 0, Ay < f/(0) < A, and suppose that
lim,_ 450 1A 54”) ‘= y1 < A;. Prove that (8.9) has exactly one positive solution
and one negative solution.

37. By using Banach contraction Theorem 2.1.2 (see Remark 8.3.5), prove the
uniqueness of solution in Theorem 8.3.3 provided that item 2 of Theorem 8.3.2
holds.

38. (A variational proof of the uniqueness of solution in Theorem 8.3.2) By applying
Exercise 21 to the functional considered in Sect. 8.3.3, prove that if the C 1
function f satisfies f'(u) < Ay, for every u € R, then (8.1) has a unique
solution in H} () for all h € L*(Q).

39. Prove the claim of Remark 8.4.11.

40. Let f : R — R be a convex function with f(0) = 0 and u a solution of

—Au= f(u), xeQ

u=0,  xedx. (13.2)

Prove:

(a) Au is a sub-solution for every A > 1.
(b) Auis asuper-solutionif 0 < A < 1.

41. Let f : R — R be such that @ is increasing. Prove that every sub-solution
u; > 0 and super-solution u, > 0 of (13.2) satisfy

uy £ up, in Q.

42. letge C 2(2) be a function such that

(@) Thesets QT :={x € Q : g(x) >0} and Q™ := {x € Q : g(x) < 0} are
notempty.
b)) I':=Q+NQ- C 2,and Vg(x) #0onT.

Assume also that 1 < p < 2* — 1, Q is a bounded regular domain in R with
N > 3, and that m € L*(2) changes sign in Q*. Prove that the closure of the
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set of nontrivial weak solutions of problem

—Au = mx)u+ g’ 'u, x e,
u=020, x € 092,

contains a bounded continuum of positive solutions bifurcating from the point
(A1(m),0) and also from (A_;(m),0). In particular, there is at least one positive
solution of the problem for every A € (A_;(m), A1(m)). (Hint. See [40].)

43. (Semi-positon problem) Consider the problem (9.1) where 2 is a bounded open
subset of R¥, A > 0 and f € C!([0,+00)) such that f(0) < 0 and f(s) =
Moos +g(s) with lim,_, 1 oo g(s)/s = 0. Prove that if (9.4) holds, then there exists
& > 0 such that (9.1) has at least one positive solution for A € (n:‘—; -4, ”’}—O‘O).

Prove similarly the existence of solution to the right of ”}l‘—‘ when the inequality
(9.4) is reversed. \
44. Let f : R — R be a continuous function satisfying

~+00
f(s) < ooand | |lir2 fw) =0.

—0Q

Consider the functional 7 defined in HO1 () by

Jw) = %/ |Vu|*> — %/uz —fF(u), u € Hy(),

where F(u) = [ f. Prove:

(a) J is bounded from below.

(b) By applying Theorem 5.3.8, it has either a global minimum or a mountain
pass critical point.

45. Prove Remark 11.1.5.
46. Assume that 1 < p < 2* — 1 and consider the Nehari manifold N = {u €
H}(Q) : [ |Vul> = [ |u|P*'}. Prove that
(a) The infimum m of J(u) = § [ |Vul*> — # [ ulP*! on N is attained at a
nonzero solution of the problem

—Au=ul’"lu, xeQ
u=20, x € 092.

(b) Verify that m is the mountain pass value of J:
m= ;‘g max Ty (@),

where I' = {y € C([0, 1], H}(RQ)) : h(0) =0, J(y(1)) <0}.
47. Use the Pohozaev identity to prove that every eigenfunction ¢ # 0 of the Laplace
operator satisfies
d¢

— #0, indQ.
on
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48.

49.

50.
51.

Exercises

LetA>0and0 < g <1 < p < 2* — 1, where 2* is given by (7.3). Prove that
there exists Ao > O such that the problem

—Au=Mul"u+ uPlu, xeQ,
u = 0’ X € 89,

has no solution for A > A, at least one solution for A = Ay and at least two
positive solutions for A < Xq. (Hint. See [9].)

Prove that, with obvious changes, the results of Chap. 12 are also true for the
case that the dimension N = 2.

Prove Lemma 12.4.1.

Assume that the potential V satisfies (V1)—(V2) of Sect. 13.2and V(x) — 1 =
¢ > 0 for every |x| > 1. Verify that the abstract method in Sect. 5.6 can be
applied. (Hint. Write the auxiliary equation PI)(z¢ +w) = 0 as

w=—(PI/(ze)) '[PI}(ze) + R(ze, w)] := Neg(w)

and apply Theorem 2.1.2.)
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