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Abstract. In formal language theory, many families of languages are
defined using grammars or finite acceptors like pushdown automata and
Turing machines. For instance, context-sensitive languages are the lan-
guages generated by growing grammars, or equivalently those accepted
by Turing machines whose work tape’s size is proportional to that of
their input. A few years ago, a new characterisation of context-sensitive
languages as the sets of traces, or path labels, of rational graphs (infinite
graphs defined by sets of finite-state transducers) was established.

We investigate a similar characterisation in the more general frame-
work of graphs defined by term transducers. In particular, we show that
the languages of term-automatic graphs between regular sets of vertices
coincide with the languages accepted by alternating linearly bounded
Turing machines. As a technical tool, we also introduce an arborescent
variant of tiling systems, which provides yet another characterisation of
these languages.

Introduction

In classical language theory, context-sensitive languages, one of the families of the
Chomsky hierarchy [Cho59], are defined as the languages generated by growing
grammars. They were later characterised as the languages accepted by linearly
space-bounded Turing machines [Kur64], i.e. Turing machines whose runs on any
input word of length n use at most k- n work tape cells, for some constant k.
In [LS97], it was shown that context-sensitive languages also coincide with the
languages accepted by bounded tiling systems.

In 2001, [MSOI] provided yet another characterisation of this family as the
set of path languages of rational graphs [Mor((], i.e. infinite graphs whose ver-
tices are words and whose sets of edges are defined by finite transducers. This
result was later extended in [Ris02] to the more restricted family of automatic
graphs (Cf. [KN9]), and even to synchronous rational graphs when an infinite
number of initial and final vertices are considered (see also [MRO03]). In a way,
this provides a “forward”, automata-based characterisation of context-sensitive
languages, as opposed to linearly bounded machines which are essentially a two-
way mechanism. To prove the inclusion of context-sensitive languages in the set
of path languages of these families of graphs, these papers use a normal form
for growing grammars, due to Penttonen [Pen74]. In [CMO06], these results were
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reformulated using simpler proof techniques based on tiling systems. This also al-
lowed to investigate interesting sub-cases, in particular concerning deterministic
context-sensitive languages or various sub-classes of rational graphs.

The aim of this work is to extend the results of [LS97] and [CMOG] to the
more general family ETIME of languages accepted by deterministic Turing ma-
chines working in time less than 29" or equivalently by alternating linearly
bounded machines. This family lies between context-sensitive and recursively-
enumerable languages in the Chomsky hierarchy. We obtain two new character-
isations of ETIME, first as the languages accepted by arborescent tiling systems
and second as the traces of infinite graphs defined by various classes of term
transducers, namely term-synchronous and term-automatic (or tree-automatic)
graphs [BGOOQ].

After recalling definitions and notations in Section [l we introduce the no-
tion of arborescent tiling systems in Section [2] and prove that they characterise
ETIME. Finally, we extend previously mentioned proofs over rational graphs to
the family of term-automatic graphs in Section

1 Notations

1.1 Words, Terms and Trees

A word u over alphabet ' can be seen as a tuple (a1, ...,a,) of elements of X,
usually written ag ...a,. Its i-th letter is denoted by u(i) = a;. The set of all
words over X is written 2. The number of letters occurring in u is its length,
written |u| (here |u| = n). The empty word is written . The concatenation of
two words v = ay...a, and v = by ...b,, is the word wv = ay...a,b1...b,,.
The concatenation operation extends to sets of words: for all A, B C X* AB
stands for the set {uv | u € A and v € B}.

Let F' = |UJ,,~( Fn be a finite ranked alphabet, each F), being the set of symbols
of F of arity n, and X be a finite set of variables disjoint from F (all sets F},
are also disjoint). We denote the arity of a symbol f € F by a(f). Variables are
considered of arity 0. The set of finite first-order terms on F' with variables in X,
written T'(F, X), is the smallest set including X such that f € F}, A t1,...,t, €
T(F,X) = fti...t, € T(F,X). Words can be seen as terms over a ranked
alphabet whose symbols have arity exactly 1 and whose last symbol is a variable
or a special constant. To improve readability, ft; ... t, will sometimes be written
flt1, .o tn).

A finite ordered tree t over a set of labels X' is a mapping from a prefix-closed
set dom(t) C N* into Y. Elements of dom(t¢) are called positions, and for every
p € dom(t), t(p) is the label of the node at position p. The node at position &
is called the root of the tree, nodes at maximal positions (i.e. positions x such
that fly # ¢, xy € dom(t)) are called leaves, other nodes are called internal.

Any term t over a ranked alphabet F' and set of variables X can be represented
as a finite ordered ranked tree, whose leaves are labelled with constants in Fj
or variables in X and whose internal nodes are labelled with symbols of arity
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equal to the number of children of that node. In that case, the domain of t,
additionally to being prefix-closed, also has the following properties:

L. Vp € dom(t), t(p) € Fp>1 = {j|pj € dom(t)} = [1,n],
2. Vp € dom(t), t(p) € FoUX = {j|pj € dom(t)} = 0.

In such a tree, position pi with ¢ € N always denotes the i-th child of node p.
Conversely, any finite ordered tree ¢ labelled over X' can be represented as a
ranked tree ¢/, and hence as a term, by mapping each node label a to a set of
symbols (a,n) in X x N, with a(a,n) = n, and by renumbering all positions such
that dom(#') verifies the above properties. This will usually be left implicit.

A finite tree (or term) automaton is a tuple A = (Q, F, qo, ), where Q is a
set of control states, F' a ranked alphabet, gy the initial set and § the set of
transition rules of A of the form (q, f,q1, ..., ¢,) with a(f) =n. A run of A over
a tree t is a mapping p from dom(t) to @ such that p(e) = ¢o and for all node
u € dom(t) of arity a(u) = n, (p(u),t(u), p(ul),...,p(un)) € 6. If A has a valid
run on t, we say that ¢ is accepted by A. The set of trees accepted by a finite
automaton is called its language, and all such languages are said to be regular.

1.2 Graphs

A labelled, directed and simple graph is a set G C V x X' x V where X is a finite
set of labels and V' an arbitrary countable set. An element (s, a,t) of G is an
edge of source s, target t and label a, and is written s % t or simply s = t if G

is understood. An edge with the same source and target is called a loop. The set
of all sources and targets of a graph form its support Vg, its elements are called
vertices. A sequence of edges (s1 Doty s tr) with Vi € [2,k], s; = t;—1
is called a path. It is written s; — ¢z, where u = a; ...ay, is the corresponding
path label. Vertex sp is called the origin of the path, t; its destination. A path
is called a cycle if its origin and destination are the same vertex. The language,
or set of traces of a labelled graph between two sets I and F' of vertices is the
set of all words w such that there exists a path labelled by w whose origin is in
I and destination in F.

1.3 Turing Machines

A Turing machine is a tuple M = (I, X, @, qo, F, §) where X is the input alpha-
bet, I" the tape or work alphabet (with X C I'), @ is a set of states among which
qo is an initial state and F' is a set of final states, and ¢ is a set of transition
rules of the form pA — ¢Be where p,q € Q, A, B € I' U{O} (O being a blank
symbol not in I') and € € {+, —}.

Configurations of M are denoted as words upv, where uv is the content of
the work tape (where prefix and suffix blank symbols are omitted), p is the
current control state and the head scans the cell containing the first letter of
v. A transition d = pA — ¢gBe is enabled on any configuration ¢ of the form
upAv, and yields a new configuration d(c) = uBqv’ (with v' = v if v # ¢, or O
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otherwise) if ¢ = + and w/'qCBv (with «'C = uwif u e or v =e and C =0
otherwise) if € = —. If d is not enabled on ¢, then d(c) is left undefined.

An alternating Turing machine M is defined similarly, with the exception that
rules are of the form d = pA — /\ie[l’n] q;B;i€;. The alternation degree n of d
is written a(d), by analogy with the notion of arity. For all i < a(d), we write
d; the non-alternating transition pA — ¢; B;e;. A run of M on input word w is
a tree whose root is labelled by configuration gow, and such that the children
of any node labelled by configuration ¢ are labelled by ¢y, ..., ¢, if and only if
there exists a transition d € é enabled on ¢ such that a(d) = n and Vi € [1,n],
¢; = d;(c¢). Such a run is successful if all its leaves are labelled by configurations
whose control state is in F'.

A Turing machine is linearly bounded if on every run the total work tape space
it uses is at most proportional to the length of its input word. By standard coding
techniques, it is sufficient to consider machines whose tape is limited to the cells
initially containing the input word. This may be enforced by forbidding transition
rules to rewrite the blank symbol . The languages of non-alternating linearly
bounded machines form the complexity class SPACE(O(n)), which is equivalent
to context-sensitive languages [Kur64]. Adding alternation, one obtains the more
general class ASPACE(O(n)). By classical complexity results [CKS81], it is also
equivalent to the class DTIME(2°9(™); also called ETIME.

2 Arborescent Tiling Systems

To facilitate the proofs of our main results, this section provides an important
technical tool, which was also central to some versions of the corresponding
proofs on rational graphs and context-sensitive languages (Cf. [CMO06]).

Tiling systems were originally defined to recognise or specify picture lan-
guages, i.e. sets of two-dimensional words on finite alphabets [GR96], called local
picture languages. However, by only looking at the words contained in the first
row of each picture of a local picture language, one obtains a context-sensitive
language, and the converse is true : for any context-sensitive language there ex-
ists a local picture language (and a tiling system accepting it) whose set of upper
frontiers is that language [LS97].

In this section, we extend this result to an arborescent extension of tiling
systems, and prove that this new formalism characterises precisely the class
ETIME.

2.1 Definitions

Instead of planar pictures, we consider so-called arborescent pictures, which are
to ordinary pictures what terms are to words.

Definition 1 (Arborescent picture). Let I' be a finite alphabet, an arbores-
cent picture p over I' is a mapping from the set X x [1,m] to I", where X C N,.*
is a finite, prefiz-closed set of sequences of positive integers (called positions in
the framework of trees) and m is a positive integer called the width of p. The set
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dom(p) = X x [1,m] is the domain of p. The set of arborescent pictures over
X x [1,m] is written AP(X,m).

Like in the case of trees, we assume that X is not only prefix-closed but also
left-closed, i.e. Vi > 0, wi € X = Vj < i, uj € X. For a given picture
p € AP(X,m), we write fr(p) the word w € I'"™ such that w(i) = p(e, ), which
we call the (upper) frontier of p.

Arborescent pictures of domain X x [1,m] are isomorphic to ordered trees
of domain X with nodes labelled over the set I"™. As such, if m = 1 they are
isomorphic to I'-labelled ordered trees. One can observe that any branch of an
arborescent picture seen as a I'"™-labelled tree, as well as any arborescent picture
whose set of positions X is a subset of 1*, is an ordinary, planar picture.

Definition 2 (Sub-picture). For any arborescent picture p € AP(X,m), the
sub-picture p' = ply,i,y,n of p at offset o = (x,i) withx € X and i € [0,m—1] is
the arborescent picture of domain'Y x [1,n] such that'Y is prefiz- and left-closed
and ¥(y,j) € Y x [1,n], (xy,i+j) € X x [1,m] and p'(y,7) = p(zy,i + j).

We can now define arborescent tiling systems, which allow the specification of
sets of arborescent pictures. Similarly to planar tiling systems, in order to be
able to recognise meaningful sets of pictures, we first add a border or frame to
each picture using a new symbol #.

Definition 3 (Framed picture). Let p be an arborescent picture of domain
X x [1,m] over I' and # ¢ I' a new symbol, we define the #-framed picture
py as the picture of domain X' x [1,m + 2] with X' = {¢} U{1}X U X" and
X"={1z1 |z € X ANy € N,xy € X} such that

pu(e, i) =# for allie [1,m+ 2],
pu(lz,1) = # and py(le,m + 2) = # for all x € X,

pu(z,i) = # forallz € X" i€ [l,m+2],
py(le,i+1) = p(z,19) for all z € X i€ [1,m)].

An arborescent tiling system is then defined as a set of tiling elements of width
and height 2, which can then be combined to form larger framed pictures.

Definition 4 (Arborescent tiling system). An arborescent tiling system (or
ATS) S is a triple (I, #, A), where I is a finite alphabet, # ¢ I' a frame symbol
and A is a set of arborescent tiling elements (tiles) in {I'x ' x ™ x '™ | n. > 0}
with I' = I'U {#}.

Each tiling element d € A is of the form d = (A, B,C,D) with A,B € I
and C,D € I'™ for some positive integer n. We define additional notations
to conveniently manipulate tiling elements. Let d = (A4, B,C,D) with C =
Cy...Cpand D = Dy ...D,, we write a(d) = n to denote the arity of d, and d;
with ¢ € [1,a(d)] to denote the (planar) tile (A, B, C;, D;).

Note that any tiling element d = (A, B,C, D) of arity n is isomorphic to an
arborescent picture pg of domain X x [1,2], where X = {¢,1,...,n} and p4(e, 1),
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pa(e,2), pa(i, 1) and p4(i,2) are respectively equal to A, B, C; and D; (for all
€ [1,n]). In general we do not distinguish p4 from d and write simply d.
Well-formed tiling systems should obey a certain number of restrictions over
their set of tiles, regarding in particular the occurrences of the frame symbol #
inside tiles. For all d = (A, B,C, D),

(A, B) = (#,#) = a(d) =11 (Cy,D1) # (#,#),
3i7<Ci7Dz)_(# #) (d)zl/\(AvB)#<#7 )
Fi,Ci =H#HND; ## — A=H#NVi,C; = #,
Ji,Di = #AC; £ H# — B=H#AVi, D, — #,

Ll Y

Before defining the set of pictures and the word language accepted by an
arborescent tiling system, we define for any arborescent picture p of domain
X x [1,m] over I" the set T(p) of tiling elements of p as the set of all sub-
pictures pl|; ; x,2 of p such that x is an internal position in X, j € [1,m—1] and
X ={e}uU{i’ >0|xzi' € X}.

Definition 5 (Language of a tiling system). The set of arborescent pictures
accepted by an arborescent tiling system S = (I, #, A) is the set P(S) = {p €
AP | T(px) C A}. The (word) language accepted by S is the set L(S) = {w €
I'*|3p € P(S),w = fr(p)} of all upper frontiers of pictures of P(S).

As previously, note that arborescent tiling systems are a syntactical generalisa-
tion of planar tiling systems : framed pictures with a domain X C 1* or branches
of framed arborescent pictures are planar framed pictures, and arborescent tiling
systems whose elements all have arity 1 are ordinary, planar tiling systems.

a a abp b b c c c

-7 ><><\><bb++cc
aa++beXXXXXb++++c
D e X 4+ + 4+
+ 4+ + + + + x x X

H#HA;H A HF AT A HH
# a a a b b b c c c #
///# 5
#aa++bbxxx#xxxbb++cc#
X X X b+ + + + ¢ #
# a + + + + b X X X #
X X X ++ ++ + + #
L
HH A A HHFAHHF A H

Fig. 1. Arborescent picture p and the corresponding framed picture p4
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Ezample 1. Figure Pl represents an arborescent picture p whose frontier is the
word a3b3c?, as well as the corresponding framed picture. For the sake of clarity,
the tree-structure of p is denoted by dashed lines only where the arity is greater
than 1. By considering all sub-pictures of height and width 2 of that framed pic-
ture, one obtains a set of tiling elements A, which contains, among others, tiling
elements (#, #,a,b), (a,+,+,+) and (+, +, #, #) of arity 1 and (b, ¢, b+, x+)
of arity 2, but not (b, ¢, b+, c+) or (#, +,#,+) for instance.

One can see that the tiling system S = ({a,b,c,+, x}, #, A) accepts all ar-
borescent pictures similar to p whose frontiers are words of the form a™b"c"
with n > 2 : the left branch of each such picture ensures that the number of
a’s and b’s is equal by replacing at each successive row one occurrence of a and
one occurrence of b by some symbol +. Occurrences of ¢ are irrelevant and are
replaced with symbol x. A lower frame borders can only be generated once all
occurrences of a and b have been replaced. A similar check is performed by the
right branch for symbols b and c.

Note that S does not accept the word abe, since accepting a similar picture
with frontier abc would require some additional tiling elements, like for instance
(a,b,+x,++) and (b, ¢, ++, x+). Consequently, the language L(S) is {a"b"c" |
n > 2},

2.2 Languages of Arborescent Tiling Systems

In this section, we prove that arborescent tiling systems and alternating linearly
bounded machines define the same family of languages, namely ASPACE(O(n)),
also equal as previously mentioned to DTIME(2°(") = ETIME.

Proposition 1. For every arborescent tiling system S, there exists an alternat-
ing linearly bounded machine M such that L(M) = L(S).

Proof sketch. Let S = (I'y#, A) be an arborescent tiling system. We build an
alternating linearly bounded machine M = (I, I, Q, g4, f, 6) accepting L(S). Its
work alphabet I" is the union of all I'* for k € [1,a(S)], where I' = I'U{#} and
a(S) = max{a(d) | d € A}. We informally describe M’s behaviour as follows:

1. M starts in configuration [gzw|, where w € I'* is the input word. In a first
sweep, it checks that w is a possible frontier of a picture accepted by S.

2. In the next sweep, M generates a n-tuple of possible next rows based on the
current configuration and the tiles in A. M then uses universal branching to
evaluate the sub-pictures whose upper frontiers are each of these rows.

3. The last generated row consists in a sequence of frame symbols # if and only
if the last written symbol is #. If this is the case on the current computation
branch, reach accepting state f. Otherwise, repeat the previous step.

Steps B and B are repeated until all computation branches have reached the
accepting state f. O

Proposition 2. For every alternating linearly bounded machine M, there exists
an arborescent tiling system S such that L(S) = L(M).
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Proof sketch. Let M = (X, T,Q,qo, F,6) be an alternating linearly bounded
machine. We build an arborescent tiling system S = (I, #, A) such that L(S) =
[L(M)], where [ and ] are two new symbols. The set of tiling elements A is built
in order to conform to the following informal specification.

S first needs to set an input word w as the upper frontier of any picture it
accepts. It then encodes the initial configuration of M on w as the second row.
Subsequent tiles simulate the application of a transition of M on the configu-
ration encoded by the current row, and check that the previous transition was
correctly simulated. This requires additional information, in particular about the
position of the head and the index of the last simulated transition, to be added
to the picture alphabet. Arity n tiling elements are used when the simulated
rule is of alternation degree n. This process goes on until an accepting state is
reached by M on a given execution branch. In that case, a bottom border is
generated by S on the corresponding picture branch. O

From Propositions [l and 2l we deduce the announced theorem.

Theorem 1. The languages of arborescent tiling systems form the complexity
class ETIME.

Note that the language accepted by the tiling system of Example[lis a context-
sensitive language, which could also be accepted by a non-arborescent tiling
system.

3 Traces of Term-Automatic Graphs

We now turn to the main result of this paper, which is the study of languages
of graphs characterised by automata-defined binary relations over terms, and in
particular term-automatic graphs. We define these relations and the graphs they
generate, then present a two-steps proof that the languages of term-automatic
graphs indeed coincide with ASPACE(O(n)). First, we establish this result for
the simpler term-synchronous graphs in Section B2, then generalise it to term-
automatic graphs in Section [3.3]

3.1 Definitions

Let s = f(s1...8m) and t = g(t1 ...t,) be two terms over some ranked alphabet
F. We define the overlap [st] of s and t as a term over domain dom(s) U dom(t)
and extended alphabet (F U {L})? (each element (f,g) of this alphabet being
written simply fg), such that Vp € dom(s) U dom(¢), [st](p) = fg with f = s(p)
if p € dom(s) or L otherwise, and g = t(p) if p € dom(¢) or L otherwise. This
notation is extended to sets in the natural way.

We can now define term-automatic and term-synchronous relations. We say a
binary relation R is term- (or tree-)automatic if the term language [R] = {[st] |
(s,t) € R} is regular. If furthermore for all (s,t) € R, dom(s) = dom(t), it
is called synchronous. In other words, a synchronous relation is an automatic
relation which only associates terms with the same domain. Both families of
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relations are closed under relational composition. Term-automatic and term-
synchronous relations are syntactical extensions of the corresponding families of
relations over words. As such, they also define extended families of graphs.

Definition 6. A X-graph G is term-automatic (resp. term-synchronous) if it is
isomorphic to a graph {u % v |a € X, (u,v) € Ry}, where (Ry)aes is a family
of term-automatic (resp. term-synchronous) relations.

3.2 Term-Synchronous Graphs

This section presents direct simulations of alternating tiling systems by syn-
chronous graphs and conversely, showing that the languages of term-synchronous
graphs between regular sets of vertices form the class ETIME.

Proposition 3. For every term-synchronous graph G and regular sets I and F
there exists an arborescent tiling system S such that L(S) = L(G, I, F).

Proof sketch. Let G = (Ry)aex be a synchronous graph, and I, F two regular
sets of vertices of G. We build a tiling system S = (I',#, A) such that L(S) =
L(G,I,S).

For all a € X, let A, be a finite top-down term automaton accepting the
language [R,] (as defined in Section[31]), and Ay, Ap similar automata for I and
F respectively. For every a € X, we also define relations Rj., = Id; o R, and
Roor = R, o Idp, where Id;, denotes the identity relation over some set L. Let
also Ajoq and Agop be two automata accepting the languages [Ryoq] and [Reor]
respectively. The control state sets of all these automata are supposed disjoint.

The idea of this construction is that, for every path tg = ¢ ... 23 ¢,, in G with
to € I, t, € F and Vi, dom(t;) = X, S should accept an arborescent picture p
whose upper frontier is w and whose successive vertical “slices” correspond to
encodings of runs of Ajoq,, Ay, -, Aa,_, and A, or respectively. Conversely,
S should only accept all such pictures which correspond to paths in G between
I and F. These conditions are sufficient for L(S) to be equal to L(G, I, F'). To
ensure they indeed hold, we define A in order to be able to check that the i-th
and (i + 1)-th “slices” are indeed compatible. O

Proposition 4. For every arborescent tiling system S, there exists a term-syn-
chronous graph G and regular sets I and F such that L(G, I, F) = L(S).

Proof sketch. Let S = (I',#,A) be an arborescent tiling system. We build a
term-synchronous graph G such that L(S) = L(G, I, F) for some regular sets
I and F. In the following, symbol # is overloaded to make the notation less
cumbersome, and represents functional symbols of varying arities, which can be
deduced from the context. In particular, we write #x for a given prefix-closed
set X the term of domain X whose nodes are all labelled with #.

Let R,, a € X, be the binary relation between all terms #(s) and #(¢) (i.e.
s and ¢ with an additional unary # at the root) such that a labels the root
of t and for a given p € P(S), either s = p|.; x1 and t = p|c 41, x,1 for some
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i>0o0rs=#x and t = pl. o x1. Let G be the graph defined by (Rq)ecx, we
show that G is term-synchronous by constructing automata (Ag).ex such that
L(A,) = [Ra] = {[st] | (s,t) € R,}. For all a, A, has transitions:

Q##H# — qaB1 if (#,#,A,B) € 4,
QAB,iAB —4cpa---49CD.k if d = (Ai,Bi,C,D) S A, k= a(d),
A; = A(i) and B; = B(i),
qapAiBi — ¢ if (A;, By, #,#) € A,
A; = A(i) and B; = B(i).

We define I as the regular set of all terms labelled over {#}, and F' as the set
of all possible rightmost columns of pictures accepted by S. This set of terms is
accepted by an automaton Ap whose construction is straightforward.

By construction of I, Ar and each of the A,, there is a path in G labelled
by a word w between a vertex in I and a vertex in F' iff the vertices along that
path are the successive columns of a picture in P(S) with frontier w. O

3.3 Term-Automatic Graphs

In this section, we show that the more general family of term-automatic graphs
defines the same family of languages as their synchronous counterparts.

Proposition 5. For every term-automatic graph G and regular sets of terms I
and F, there exists a term-synchronous graph G' and reqular sets I' and F' such
that L(G', I', F") = L(G, I, F).

Proof sketch. Let G be a term-automatic graph defined by a family (R,).ex of
automatic relations and I, F' be two regular languages, each [R,] being accepted
by an automaton A,, I by A; and F' by Arp. We define a synchronous graph
G’ = (R])4ex and two regular sets I’ and F’ such that L(G, I, F) = L(G',I', F").

Recall that term-automatic relations are defined using a notion of overlap
between terms (Cf. Section B]). Two terms s and ¢ with different domains
belong to a term-automatic relation R defined by automaton A if the overlap
[st] of s and t is accepted by A. This notion of overlap consists in “unifying” the
domains of s and ¢, and padding undefined positions with a special symbol L.

We wish to reuse this idea, but instead of unifying the domains of two terms
only, we have to unify the domains of all vertices along a given path. Indeed,
in a term-synchronous graph, edges can only exist between terms with precisely
the same domain. For every term s standing for a vertex in GG, we will thus have
to consider an infinite set of “versions” of s in G’, one for each possible term
domain larger than that of s.

Let I' be a ranked alphabet, we define alphabet I as I'" = Iy U I, with
I'y = #o and I}, = I' U#,, where n is the maximal arity of symbols in I". Let
¢ be a mapping from T'(I") to 27U") such that for any term ¢ € T'(I"),

o(t) = {t' € T(I")| dom(t) C dom(t'), Vp € dom(t),t (p) = t(p)
and Vp € dom(t') \ dom(t),t'(p) € {#o, #n}}-
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In other words, to any term ¢, ¢ associates the set of all terms obtained by
“padding” t with silent symbols #( and #,,. This mapping is extended to sets of
terms in the natural way. Note that, given any ¢’ € F(I"), there exists at most
one term t € T'(I') such that t' € ¢(1).

We now define, for every a € X, relation R/ as {(s',t') | (s,t) € Ry, s’ €
o(s), t' € ¢(t) and dom(s’) = dom(t')}. This synchronous relation can be char-
acterised by a finite tree automaton A/, defined from A,. We also let I' = ¢(I)
and F’' = ¢(F), for which automata can be similarly defined from A; and Ap.

Let G’ be the term-synchronous graph defined by (R/,)aes. One can show that
for every path labelled w in G’ between some i’ € I’ and f’ € F’, there exists a
unique path between I and F' in G with the same label, and that conversely for
every w-path between I and F' in G there must exist at least one corresponding
path in G’ between I’ and F’. This ensures that L(G, I, F) and L(G',I', F') are
indeed equal. a

Remark 1. Note that for every term-automatic graph G and regular sets I and
F, there exists a term-automatic graph G’ and finite sets I’ and F’ such that
L(G',I',F') = L(G, 1, F). Indeed, for any regular I and F and finite I’ and F’
the relations I’ x I and F' x F’ are automatic. Since term-automatic relations
are closed under union and composition, this can be used to build G’ from G.

This, however, does not hold in the term-synchronous case. Indeed, since each
connected component of a term-synchronous graph is finite, the language of any
such graph from a finite set of initial vertices is regular.

Combining Theorem [II, Propositions Bl @] and Bl as well as Remark [l we ob-
tain the following result concerning the family of languages accepted by term-
synchronous and term-automatic graphs.

Theorem 2. The languages of term-synchronous graphs between reqular sets of
vertices and of term-automatic graphs between regular or finite sets of vertices
form the complexity class ETIME.

4 Conclusion

We have proved that the class of languages accepted by alternating linearly
bounded machines (ETIME) can also be characterised as the sets of first rows
of pictures accepted by arborescent tiling systems, as well as the sets of path
labels of term-automatic graphs between regular or finite sets of initial and final
vertices.

A natural extension of this work would be to generalise Theorem [2] to graphs
defined by more expressive classes of tree transducers, in order to fully extend
the existing results on rational graphs. In practice, this would require extending
the construction for Proposition [H to more general padding techniques.

Further points of interest concern the extension of other results from [CMOG]
to term-automatic graphs, in particular regarding structural restrictions of these
graphs, like finite or bounded degree, or the restriction to a single initial vertex,
as well as a similar study of related complexity classes or families of languages.
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