Consistency Conditions on the Medial Axis

Anthony Pollitt!, Peter Giblin', and Benjamin Kimia?

! University of Liverpool, Liverpool L69 3BX, England
{a.j.pollitt,pjgiblin}@liv.ac.uk
2 Brown University, Providence, RI, USA
kimia@lems.brown.edu

Abstract. The medial axis in 3D consists of 2D sheets, meeting in 1D
curves and special points. In this paper we investigate the consistency
conditions which must hold on a collection of sheets meeting in curves
and points in order that they could be the medial axis of a smooth
surface.

1 Introduction

The Medial Axis (MA) was introduced by Blum as a representation of shape [1]
in the early 1960s. Its intuitive appeal has since captured the imagination of
researchers in fields where the representation of shape plays a key role, including
object recognition, path planning, shape design and modelling, shape averaging,
morphing shape, and meshing unorganized point samples, among many others.
In many of these applications, the ability to recover the original shape from the
medial axis is highly significant. In this paper we give details of constraints on
the medial axis at special points, which will effect a more precise reconstruction
of the original shape.

In the context of object recognition, while the early literature on the use
of the medial axis is dominated by methods for computing its geometric trace,
the use of a graph-based representation of the medial axis has enabled robust
recognition in the face of instabilities [15/1923]. The definition of a shape simi-
larity metric as mediated by the skeletal graph depends in a significant way on
the ability to reconstruct the shape from its medial axis [618]. ] This requires a
knowledge of the constraints. Other areas where this is important include stocha-
stic shape [I3JI1]; the averaging of a group of shapes, examples of which occur
in medical imaging [§]; the matching of regions using ‘deformable shape loci’
model [I6]; and industrial design [3]. Also, the field of ergonomics uses average
human form measurements to optimize the interaction of people with products.
The reconstruction of shape from the medial axis is also critical in robotics,
where the medial axis of the free space is used for path planning [9/10].

In 2D, the medial axis of a generic planar shape consists of smooth branches
with endpoints, the branches meeting in threes at points variously known as

! in particular in using the shock graph [18] where the graph-based geometric trace is

augmented with a qualitative motion of flow; the dynamically defined shock graph
is more consistent with perceptual categories of shape [20].
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Y-junctions, triple intersections or A$ points; see for example [7]. Each point of
the medial axis is the centre of a ‘maximal’ circle which is tangent to the shape
boundary in at least two points, or, for endpoints of the medial axis, is tangent
to the shape boundary at an extremum of curvature. Conversely, given a smooth
branch v and a ‘radius’ function r we can reconstruct, at any rate locally, the
two corresponding parts v+ and v~ of the outer boundary as an envelope of
circles, centred on the smooth branch and of radius r. (See for example [6].)

However, given a connected set of smooth branches with ends and Y-junctions
it is far from clear that this can be the medial axis of a shape with a smooth
boundary. Even considering the local situation, it is not clear that from an ar-
bitrary Y-junction furnished with three radius functions (agreeing at the junction
point) we can expect to recover a smooth shape. In [6] it was shown that at the
Y-junction there are constraints on the geometry of the three branches and on
the ‘dynamics’, that is the derivatives of the three radius functions. One of the
simplest of these constraints is

K1 K2 K3

sin ¢1 + sin ¢2 + sin ¢3 -

(1)

where the k; are the curvatures of the medial axis branches at the junction and
the ¢; can be interpreted here as the angles between the branches (¢; is the
angle between the branches with curvatures ko, k3, etc.). (See also [BJ4121122]
for work on the relationship between the curvatures of the medial axis and the
boundary.)

The constraints arise because close to a Y-junction there are two ways to use
the medial axis to construct each piece of the shape boundary. Given two smooth
medial axis branches 71,72, close to a Y-junction, and choosing orientations
suitably, we reconstruct yli and ’yQi. In this case, 7" must agree with 7, at the
point where they meet. (See Fig. [ left.)

Yi=Y;

%=

Fig. 1. Left: the A} case in 2D. Right: the 3D situation of the A? case

In this paper we take the step from 2D into 3D. The medial axis of a 3D
region [2[7[T2], or of the smooth surface S bounding such a region, is defined as
the closure of the locus of centres of spheres tangent to S in at least two places,
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only mazximal spheres being considered, that is spheres whose radius equals the
shortest distance from the centre to S. Using the standard notation of Fig.[2], the
medial axis in 3D has sheets of A? points (ordinary tangency at two points and
the centres of the spheres are maximal); curves of A3 points (triple tangency) and
Ajz points (edge of the medial axis where spheres have contact along a ridge); and
these curves end in A} points (quadruple tangency) and A; A3 (or fin) points.

A2 A3 As A A1 A3z SS A; Az MA

Fig. 2. The local forms of the 3D medial axis in the generic case. Thus A% is a smooth
sheet, A? is a Y-junction curve, As is a boundary edge of a smooth sheet, Af is a point
where four A% curves lying on six sheets meet. Finally the ‘A; A3 SS’ figure shows the
‘symmetry set’, consisting of a swallowtail surface and a smooth sheet with boundary;
this is truncated as shown in the A; As medial axis figure. The large dot marks where
the boundary (A3) edge and the Y-junction (A$) curve end at the A; Az point—also
called a ‘fin point’—itself.

This paper examines the constraints on the medial axis from a theoretical
perspective; applications will follow. The results on the 3D medial axis are new;
see Prop. [l Prop.[2, (@) and Prop. [l for the Y-junction (A4%) case. See Prop. Bl
and (I3)) for A3, Prop. @ for A} and Prop. [ for A;As. See [17] for full details.

Acknowledgements. Pollitt and Giblin acknowledge the support of the British
Research Council EPSRC; Giblin and Kimia acknowledge the support of NSF.
The authors have also benefited greatly from conversations with Professor J.
Damon.

2 The Medial Axis in Three Dimensions

We consider a smooth (A4%) medial axis sheet v and its corresponding local
boundary surfaces v* and v~ in 3D and quote some connected definitions and
formulae from [7]. Thus spheres (radius r) centred on « are tangent to 7. We
have:

vE =y —rN*T, (2)

where N+ is the unit normal to the boundary surface, oriented towards the
centre of the bitangent sphere (i.e. tangent in at least two points). We shall
assume that near a point of interest on vy the gradient of r is non-zero, and use
the coordinate system given by the lines r = constant, parametrized by ¢, say
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and referred to as ‘t-curves’, and the gradient lines of r, parametrized by r and
referred to as ‘r-curves’. We can fix the (r,t) coordinate system close to (rg,0)
say, by taking t to be arclength along the t-curve r = ry. We denote partial
derivatives by suffices.

The unit vector T is defined to be parallel to ,., with IV a unit normal vector
to the medial axis and taking U = N x T makes an orthonormal triad [T, U, N].
The velocity v is defined by:

Yr = ’UT’ Yt = wU 5 (3>

and w a function which satisfies w(rg,t) = 1 for all ¢. See Fig. [, right. The
convention of taking the boundary point 4+ to be on the ‘4N’ side of 17" and
denoting ¢ to be the angle (0 < ¢ < ) turned anticlockwise from T to —NT,
in the plane oriented by T, N, means that

1
N* = —cos¢T TsinpN , TT = Fsin¢T + cos N , and cos¢p = —— . (4)
v

Here the unit vector TF is tangent to v and parallel to U x N*. The equations
@), @) hold for all points of ~.
The second order derivatives of v at v(rp,0) are as follows.

Yor = aT — va’U + 026" N, vy = a'T + a*U — 07! N, vy = —a—T—l— k'N , (5)
v

where a, a, a* are defined everywhere on v respectively as v,, v, w, and &7,
k!, and 7! are respectively the normal curvature in the direction of the r-curve,
the normal curvature in the direction of the t-curve, and the geodesic torsion in
the direction of the t-curve.

3 The A? (Y-junction Curve) Case

We consider the case when the medial axis of the boundary surface .S is locally
three sheets, 71, 72, 3, say intersecting in a space curve, the A3, or Y-junction,
curve. Points of this curve are called Y-junction points and are centres of tri-
tangent spheres, i.e. spheres tangent to the boundary in three points. The local
boundary surfaces associated to -; are 'yii. There are six associated bound-
ary surfaces and each coincides with one, and only one, of the others, so there
are three distinct boundary surfaces. Let the identifications be fy;" = Yiiqs L€
v =75, v =75 ,7 =~y . This is analogous to the Y-junction case in 2D —
see Fig. [M left. Making such identifications has consequences for the geometry
and dynamics of the medial sheets 71, v2, v3. We obtain constraints by impo-
sing conditions which use successively more derivatives. These constraints can
be expressed in terms of two coordinate systems, which are as follows.

First Coordinate System. On each medial sheet ~; there is a radius function
r;, which can be used to set up the ‘grad(r;)-coordinate system’ as defined in
Sect. 2 for a single A7 sheet. Hence on v; we have
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Fig. 3. Left: this is in the plane of Ny, By, respectively the principal normal and the
binormal to the Y-junction curve. The unit normals N; to the medial sheets v; and
the angles ¢; between Ny and N; are shown. Right: an example of a boundary surface
consisting of a parabolic cylinder with an end and its medial axis near to a Y-junction
curve. The boundary is in wireframe, the medial axis is shaded

e T;, N; — respectively the unit tangent to the r;-curve, unit normal to ~;;

o U, = N; x T;, the angle ¢; from T; to —Nf; velocity v; = —1/ cos ¢;;

e three accelerations: a;, al, a};

e three ‘geometries”: k!, k!, 7} — respectively the normal curvature in the
direction of the r;-curve, and the normal curvature, geodesic torsion in

the direction of the ¢;-curve.

Second Coordinate System. This coordinate system is specially adapted to
the Y-junction case. We set up a local Frenet frame (which will exist for generic
Y-junction curves, where the curvature is non-zero) at a point +;(r; = 7o, t; = 0)
of the Y-junction curve; thus we define the following.

e Ty, Ny, By, k, T are respectively the unit tangent, principal normal, binormal,
curvature and torsion of the Y-junction curve;

® «;, Y; are respectively the angle from Ty to T;, the angle from Ny to N;.
Choose ; such that 0 < 91 < W9 < 15 < 27 (see Fig. B left);

e r is the radius of the tritangent sphere centred on a Y-junction point;

e ¢y is the angle between Ty and fNii. Choose ¢y to be obtuse, corresponding
to Ty being in the direction of r increasing along the Y-junction curve;

° KJ}’V is the normal curvature of ; in the direction of W; = N; x Ty;

o/ (‘prime’) denotes differentiation with respect to arclength along

the Y-junction curve.

The simplest constraints use the first coordinate system and are as follows
(see Sect. [ for details).
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Proposition 1. At v;(ro,0) on the Y-junction curve the following holds.

3 T t tot
—0 a; KV, — aik; — 20T\ 0 ()
- 3 g -
i = v; sin ¢;

The equation on the left of (@) is a constraint only on the geometry (ki,
k!) of the medial azis; it does not involve the dynamics. Compare this with the
simplest constraint () in the 2D case.

The identifications ’yj' = 7,41 on the Y-junction curve and (2) mean we have
N;‘ = N;H. The normals Nii can be expressed in terms of ¢y, oy, ¢; and
using the second coordinate system. Then the following can be proved.

3

toi o Ky
Z (Iil sin ¢; + Sng

i=1

Proposition 2. At all points of the Y-junction curve, N = N, fori=1...3
if and only if all of the following hold.

COS ¢; = €; COS Oy \/1 + tan? ¢y cos?6; , sin@; = sin gy sinb; , (7)

) — tan ¢y | cos ;]|
, sinay = , (8)
\/1 + tan? ¢y cos? 6;

€;

cosqy =
' \/1 + tan? ¢y cos? 6;

where 0; = ;1o — Y11 and €; = sign(cos b;).

At the second order level of derivatives we involve the geometry of the Y-
junction curve to get another constraint. We can obtain expressions for k!, s,
and 7} at v; (1o, 0) in terms of k, 7, &}V, 9!, ¢y, and 1y o 3. Using these expressions
it can be shown that the basic constraint on the left of (@) is the same as the

following.

i (/ifv sin? ¢y — 2(7 + 1) cos gy sin ¢y cos ; + k cos? ¢y cos @Z)i) _0 (9)
el sin GZ- o

For more on the Y-junction case in general, see Sect. [l Now we consider an
example of these constraints.
Example. Suppose the boundary surface to be a parabolic gutter given by
z = by? and the plane & = p for b, p constants. Then a sphere whose centre lies
on the A3 curve has two points of contact with z = by? and one with z = p.
See Fig. Bl right where b = 1, p = 0.6. The medial axis can then be calculated
explicitly in terms of (z,y) for y > 0 and where (z,y,by?) is a point on the
parabolic gutter and we get

1
o) = (20,052 4 55) el = (o -y =202 43) , (10)

b=
v/ 1+ 4b2y2 '

1
ri(z,y) = 27)\/1+4b2y27 ro(z,y) =p—x, rs(z,y) =p—x . (12)

v3(2,y) = (z,y(1 — 2bA),by* + \), where A = (11)
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The A3 curve (which we shall call C) is given by the transversal intersection of
Y1, 72, and 3. (So 1 — 2bX = 0, giving = in terms of y.)

From these parametrizations we can calculate explicitly the terms that appear
in the constraints above. We can calculate formulae for v;, a;, ¢;, ¢y in terms
of y, and so we can verify ({l) and () from Prop. Blfor this example. In a similar
way we can check that (@), which is the same as the equation on the left of ()
from Prop. [l holds in this example.

4 The A3 Case

The Az case is when v (rg,0) = v~ (r9,0) (consider Fig. [ right — this corre-
sponds to ¢ = 0 or 7). The corresponding points of the medial axis v are edge
points, for which the velocity v satisfies v2 = 1 (see @), @)). We discovered the
condition for the boundary surface to be smooth at an edge point (rq, 0), which
is as follows.

a aa* 9
- — 0 13
2o (4 @2) £ (13)
In the case of the medial axis vy being a general cylinder parametrized as v(u, z) =
o(u) + 2(0,0,1) = (X(u),Y(u),2) for § a unit speed curve, the condition for
smoothness of the boundary at a point of the z-axis where v? =72 +72 = 1 and
ro is r at this point is

ro(Fuulzz — riz) — (Ti?“uu 4 27y Tus + rirzz) #0. (14)

Connection Between Curvatures. A parametrization of the medial axis near
to an edge point can be obtained by taking the associated boundary surface S
in Monge form near to an Az point. Let S be given by (z,y, f(z,y)) where

f(z,y) = (k12? + kay?) + (b12%y + boxy® + bsy®)

15
+(Col‘4+011’3y+"')+(d0f£5+d1;p4y+...)+... ( )

(Note by = 0 — this corresponds to Ag along the a-direction.) Explicit calculations
give the following.

Proposition 3. The limiting value (if it exists) of the Gauss curvature K
(which is the product of the principal curvatures on the medial axis) as x,y — 0,
i.e. as we tend towards the edge point is

4(4b2d0 — C%)Iﬁ%
((r1 = K2) (K} — 8co) — 4b7)%

K= (16)

The denominator of the right hand side of (I6) is only zero if 0 is an Ay
point, which we assume is not true. Equation (I8) is analogous to the A3 case in
2D (see (92) of Lemma 8 from [6].) The limiting value of K as in (I6]) depends
on the 5-jet of the boundary in three dimensions. Equation (1) gives a criterion
for K = 0 on the medial axis. We can also express K in terms of derivatives of
the principal curvatures k1 and k2 at (x,y) = (0,0) on the boundary (see [17]).
This is also analogous to the situation in 2D.
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Now consider the reconstruction of the boundary near to a ridge curve. As-
sume we are given the edge as a space curve, r along it, the tangent planes to
v, and the angle between the tangent to the edge and grad(r) at a point of the
edge. Then it can be shown that we obtain the ridge curve, the tangent planes to
the boundary along the ridge, the principal curvatures and principal directions
of the boundary along the ridge. Compare this with (I6) from Prop.[3, where
very high order information about the boundary at a ridge point is required to
determine second order information on the medial axis.

Local Maximum or Minimum of r along a Ridge Curve. It can be shown
that the derivative of r with respect to arclength along the ridge is equal to zero
at x =y = 0 if and only if b; = 0. Hence, using [I4, pp.144], r having a local
maximum or minimum on the edge is the same as k1 having a critical point on

S.

5 The Af Case

When a sphere is tangent to the boundary surface S in four distinct points, the
centre of this sphere is called an A} point. On the medial axis this corresponds
to six sheets ;, for i = 1...6, intersecting in a point, which is the A point (see
Fig.[2). At this point, four Y-junction curves intersect. Each medial axis sheet
contains two Y-junction curves. We can obtain constraints on the medial axis
at an A} point similar to those in Sect. Bl but these are complicated and so are
omitted (see [17]). Here we give a result about the reconstruction of the four
boundary points.

Proposition 4 (Reconstruction at A} Points). At an A} point, the four
contact points between the boundary surface S and a mazximal sphere are deter-
mined by the directed tangents to the four Y-junction curves, pointing into the
medial axis, and the radius of the sphere.

6 Radial Shape Operator

Now we shall give details of the calculations which gave the constraints of Sect. B
and more complicated constraints which follow in the Y-junction case (Sect. ).
This section contains results connecting the geometry and dynamics of a medial
axis sheet with the two corresponding boundary sheets, which are of use in Sect.
[[1 These results were obtained by using Damon’s Radial Shape Operator Sia.q
[] of an n-dimensional medial axis M C IR™' with associated boundary B.
For R a multivalued radial vector field from points of M to the corresponding
points of B, with R = rR;, where R; is a unit vector field and r is the radius
function, the boundary B = {x + R(z) : x € M all values of R}. (In [] U is
used for our R, but for us U is already in use.) Also, in a neighbourhood of a
point xg € M with a single smooth choice of value for R, let the radial map be
given by ¢ (x) = = + R(x).
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Definition 1. ([{, §1].) At a non-edge point xg of M with a smooth value of R,
let
. [OR
Srad(v) = —projp <8vl) (17)
forv € T, M. Here projp denotes projection onto Ty M along R. Also, 68121
is the covariant derivative of Ry in the direction of v. The principal radial cur-
vatures Kkr; are the eigenvalues of Syaq. The corresponding eigenvectors are the

principal radial directions. Let diy(v;) = gf;.

Now we will specialize to consider a smooth medial axis M C IR*. We assume
the boundary is smooth and take —N £ for R;. We shall choose a basis v for
Ty, M and obtain the radial shape operator matrix (denoted ST) with respect
to this basis.

Lemma 1. ([§l Theorem 3.2].) For a smooth point xo of M, let x{, = ¢1(xg),
and v’ be the image of v for a basis {V1,Va}. Then there is a bijection between the
principal curvatures k; of B at x(, and the principal radial curvatures k,; of M at
xo (counted with multiplicities) given by k; = Kri/(1—7kr;). The principal radial
directions corresponding to k,; are mapped by dip1 to the principal directions
corresponding to K;.

We shall choose {V1,V2} = {T,U} to be the basis for S,.q of v at v(rg,0).
Then we get

r

+ =+ a K at 3 1
se= () - <_¢ = it (5 ¥ 7'simo) ¢> )

v t *
S51 S a t o3 a t o3
21 ©22 _vﬁ:FT Sln¢ Fiﬁ] Sln(b

Lemma 2. We have the following, where trace®, det™ respectively denote the
trace, determinant of S .
trace™ — trace™ K" dett —det™  a*k"v — ak! — 2atTv

— t i = 19
2 sng T F s 2 V3 sin é (19)

The principal directions on v* can be expressed in terms of the geometry of
~ by using Lemma [I].

7 The A3 (Y-junction Curve) Case Continued

Now we obtain the complete set of constraints on the medial axis at a Y-junction
point at the level of second order derivatives, using the results of Sect. 6l In order
to equate 7;", 7;;; up to second order derivatives we need to set N;¥ = N,
at Y-junction points (this gave Prop. B) and, in addition, equate the principal
curvatures and principal directions of 7? ; Yiz1 at the Y-junction point 7;(ro, 0).

Now we have three smooth sheets ~y; for i = 1 to 3, so let S‘jfi denote the matrix
representation of the radial shape operator of 7; corresponding to boundary fyii
with respect to the basis v; = {T;,U;} at v;(ro,0). Then let tracef, detii be the
trace, determinant of S‘jfi . Hence we give each term of (I9) and (I8) the subscript
i. We can prove the following.
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Lemma 3. Equating principal curvatures on V;F = 71 at (ro,0) is the same
as setting trace] = trace; |, and det] = det; ;.

Using Lemmas [2] and [3] we get that equating principal curvatures on ’yz-+ =Y
at (ro,0) implies Prop. [l

In order to obtain all of the information given by equating principal curvatu-
res and principal directions, it was necessary to use the second coordinate system
of Sect. 3 (involving the A$ curve). This allowed us to obtain the following (full
details can be found in [I7]).

Proposition 5 (Constraint on Curvatures). At v;(rp,0) on the Y-junction
curve the principal curvatures and principal directions of the boundaries ’y;r s Vit
fori=1, 2, 8 are equal if and only if the following holds.

kY sin ¢y (011 cos gy cos20; 41 — B cos hit1) N 2(1 + ¢}) cos ¢y cos b;

sin 91 [¢0)S] 01‘4’_1 sin 97;_;'_1 sin 91
3 (0745 cos py cos20; 2 — ¢it2COS Pit2) (20)
COS 01_;,.2 sin 0i+2
K (Sin Yiy2008° diya  sinthiyycos® pip1  cos By )

sin ¢y B

cos ;2 cos ;41 sin 6;

where B; = cos? ¢y + sin® ¢y sin? 6;.

When the denominators of the expression above for £V are zero, we need an

alternative. A point for which siné; = 0 for some ¢ is a fin (A;A3) point and
will be covered in Sect. Bl When sin ¢y = 0 the three points of contact on the
boundary are coincident and so the sphere of contact has As contact with the
boundary. This case is not generic for a surface, so we ignore it. The remaining
possibility is when cos §; = 0 for some i. See [I7] for an alternative form of (20)
which does not have cos#; in any of the denominators involved.

Local Maximum or Minimum of r Along a Y-junction Curve. This
corresponds to cos ¢y = 0 at v;(rg,0). Let cos¢gy = 0 in (Q) and we get

; () -0 @)

Compare this with () in two dimensions.

8 The A;A; (Fin) Case

An A;Aj point on the medial axis is where a Y-junction curve and an As curve
meet and end, i.e. the Ay A3 point is the centre of a sphere which is tangent to
a surface in three places, but two of the points of contact are coincident. The
medial axis near to an A; A3z point looks like part of a swallowtail surface with
a ‘fin’ (another medial sheet) intersecting with the swallowtail in a curve (see
Fig. 2 right). The A; Az point, or fin point, is then the point where the fin meets
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the other two sheets. The equation (20) holds at Y-junction points, and so it
holds in the limit as two of the points coincide.

Let the coincident points of contact be fyi" and v; , which means that sin ¢; =
0 at the A;As point, from (@) and (). From (@) this corresponds to sinf; = 0,
(we dismissed the possibility of sin¢y = 0 just after Prop. [Bl). Therefore 7
and 3 are part of the swallowtail surface. Explicit calculations show that, as
t — 0, Y5 — oo like 1/t and k3's — oo like 1/t2. Also iy sinfy — —ipssin 6,
and ngv sin 6 — f/{gv sin® 01, both of which are finite. The medial sheet v, is
smooth so x{V, ay, a!, a} all remain finite as sin#; = 0. Using these it can be
shown that ¢}, ¢1sinfy, and ¢} sin 6 all remain finite as sin#; — 0. Then we
get the limiting forms of (20) for i =1, 2, 3 as follows.

Proposition 6. As we tend towards a fin point along a Y-junction curve, the
medial sheets must satisfy the following, where each term is finite as sinf; — 0.

bosin? 01 — b3 sin? 0, and (gbg - ¢3) sinf; — a finite number , (22)
ligv sin? 0 ) sin (3% kY sin? 0, ) sin by
3
sin 05 - sin 6o (23)

_$asin®01cosda g s
- cos 05 sin 05 2’(/}2 sin 6 cos QSY ¢1 sin 6; s

W o.: cos | | : /
K1 Sln(by — ﬁ (¢3 — ¢2) Sln91 -2 (T + ¢1) COS ¢Y
+ 245 sin 01 cos ¢y cos(202) K cos by cos gy
cos 5 sin 6o sin ¢y :

(24)

See [I7] for alternative forms of (Z3), (24)) which do not have cos 6 in any of
the denominators involved (and so are valid for cosf; = 0). The conclusions of
Prop. Bl can be verified when the medial axis is as in the example of Sect. Bl (the
fin point correponds to y = 0).

9 Summary and Conclusions

We have investigated the conditions which the geometry of the medial axis and
the dynamics of the radius function must obey at singular points of the medial
axis in order to obtain a consistent reconstruction of the boundary surfaces. The
main case of interest is that of three sheets of the medial axis meeting in a curve
(namely the locus of centres of spheres tangent to the boundary surface in three
places). The constraints involve curvatures of the medial axis in two independent
directions. To this extent they are reminiscent of the constraints in the 2D case
which have been used in an important study of stochastic shape, among many
others.
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