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Abstract. Let G be an embedded planar graph whose edges may
be curves. For two arbitrary points of G, we can compare the length
of the shortest path in G connecting them against their Euclidean
distance. The maximum of all these ratios is called the geometric
dilation of G. Given a finite point set, we would like to know the
smallest possible dilation of any graph that contains the given points.
In this paper we prove that a dilation of 1.678 is always sufficient, and
that π/2 = 1.570 . . . is sometimes necessary in order to accommodate a
finite set of points.
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1 Introduction

Transportation networks like waterways, railroad systems, or urban street sys-
tems can be modelled by a graph G in the plane whose edges are piecewise
smooth curves that do not intersect, except at vertices of G.1

The quality of G as means of transport can be measured in the following
way. For any two points, p and q, of G, let ξG(p, q) denote a shortest path in G
from p to q. Then the dilation of G is defined by

δ(G) := max
p,q∈G

|ξG(p, q)|
|pq| . (1)

The value of δ(G) measures the longest possible detour that results from using
G instead of moving as the crow flies.

The above definition of δ(G) does not specify which points p, q of G to con-
sider. There are two alternatives, corresponding to different applications.

Access to a railroad system is only possible at stations. In such a model we
would use, as measure of quality, the graph-theoretic dilation, where only the
vertices p, q of G are considered in definition (1). Here, only the lengths of the
edges of G are of interest but not their geometric shapes.
1 That is, we do not allow bridges at this stage, but it would, in principle, be possible

to enlarge our model.
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Along urban streets, however, houses are densely distributed. Here it makes
sense to include all points p, q of G in definition (1), vertices and interior edge
points alike. This gives rise to the geometric dilation of graph G.

The graph-theoretic dilation has been extensively studied in the literature
on spanners (see e. g. Eppstein’s chapter in the Handbook of Computational
Geometry [6] for a survey). One can efficiently construct spanners of bounded
dilation and degree, whose weight is close to that of the minimum spanning tree,
see Bose et al. [3]. Also, lower time bounds are known, see Chen et al. [4].

In contrast to this, the geometric dilation is a rather novel concept. So far,
there are only three types of results. Icking et al. [9] and Aichholzer et al. [2]
have provided upper bounds to the geometric dilation of planar curves in terms
of their oscillation width, and Ebbers-Baumann et al. [5], Agarwal et al. [1],
and Langerman et al. [11] have shown how to efficiently compute the geometric
dilation of a given polygonal chain or cycle over n edges. Recently, Grüne [7] has
given an algorithm for the related problem of computing the detour of a simple
polygon.

Besides computing the dilation of given graphs, it is quite interesting to
construct graphs of low dilation that contain a given finite point set.2 In case of
the graph-theoretic dilation the optimum solution must be a triangulation, since
straight edges work best, and adding edges without creating new vertices never
hurts. Yet, it seems not to be known how to efficiently compute the triangulation
of minimum graph-theoretic dilation over a given vertex set. It is not even clear
what maximum value the lowest possible dilation over all finite point sets can
attain (see Problems 8 and 9 in [6]).

In this paper we are addressing the corresponding question for the geometric
dilation. Given a finite point set P , we are interested in the smallest possible
geometric dilation of any finite planar graph that contains all points of P , i. e.,
in the value of

∆(P ) := inf
P⊂G,G finite

δ(G).

We call ∆(P ) the geometric dilation of the point set P . Even for a set P of size 3,
computing ∆(P ) is a non-trivial task.

Our main interest in this paper is in the maximal value ∆(P ) can attain, for
an arbitrary finite point set, P . We are proving the following results.

1. There exist finite point sets whose geometric dilation is as large as π/2 =
1.570 . . ..

2. No finite point set can have a dilation larger than 1.678.

The first result is proven in Section 2, using Cauchy’s surface area formula
and a novel result on cycles in geometric graphs (Lemma 2). The second result
will be shown in Section 3. We shall construct a periodic geometric graph G∞
of dilation 1.6778 . . . that covers the plane, such that each finite point set is
contained in a finite part G of a scaled copy of G∞. While this construction is
2 Observe that the complete graph over P does not solve this problem because the edge

crossings would generate new vertices that must also be considered in definition (1).
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certainly not efficient—the size of G depends on the rational coordinates of our
input set—it serves well in establishing the upper bound.

2 A Lower Bound to the Geometric Dilation of Point
Sets

In this section we show that some point sets can only be embedded in graphs of
large geometric dilation. Our main result is the following.

Theorem 1. Let Pn denote the vertex set of the regular n-gon on the unit circle.
Then, we have ∆(Pn) = π/2 = 1, 570 . . . for each n ≥ 10.

In order to prove Theorem 1, we will show that neither any graph with
cycles nor a tree containing the given point set has a dilation smaller than π/2.
As preparation we proof the following lemma.

Lemma 1. Any closed curve C has dilation at least π/2.

Proof. First, let C be a closed convex curve, and let δ denote its dilation. For
each direction α, there is a unique pair of points (pα, qα), called a partition pair,
that halves the perimeter |C| of C; see Figure 1. We call

h(α) = |pαqα|

the partition distance at angle α. Let b(α) be the breadth of C in orientation
α. Clearly, b(α) ≥ h(α) holds. Moreover, we have |C|/2

h(α) ≤ δ, by definition of the
dilation.

x
α

pα

qα

C

h(α)

b(α)

|C|
2

Fig. 1. The breadth of a convex curve
is at least its partition distance.

C
C ′

r

s

Fig. 2. Cycle C′ results from enlarging
cycle C.
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Thus, by Cauchy’s surface area formula,

|C| =
∫ π

0
b(α) dα ≥

∫ π

0
h(α) dα ≥

∫ π

0

|C|/2
δ

dα =
π|C|
2δ

,

hence δ ≥ π/2.
Next, let C be a closed non-convex curve. Again, for each orientation α there

is a partition pair (pα, qα) of C. This can be shown by a continuity argument:
Clearly, there is a partition pair (pβ , qβ) for some orientation β; as we let these
points move along C in clockwise direction, at equal speed, each will eventually
reach its partner’s position. During this process, each possible orientation has
been attained. Now let ch(C) denote the convex hull of C. Then, |C| ≥ |ch(C)|
holds, and we have bch(C)(α) ≥ hC(α). So, the proof for the convex case carries
over. ��

Now, let G be an arbitrary geometric graph that contains a bounded face.
In order to deal with this case we provide the following result.

Lemma 2. Let G be a finite geometric graph in the plane that contains a
bounded face. Then there exists a cycle, C in G such that for any two points, p
and q of C there exists a shortest path ξG(p, q) from p to q in G that is a subset
of C.

Proof. (Sketch.) We start with a cycle, C, that equals the boundary of a
bounded face. As long as there are shorter connections between points on C
than those provided by C, we use them to form a bigger cycle C ′ (see Figure 2),
while maintaining the following.

Invariant. Let a, b be two points on cycle C. Then no shortest path in G con-
necting them uses any edge that passes through the interior of the bounded face
encircled by C. ��

Together with Lemma 1 on the dilation of closed curves the subsequent the-
orem follows directly:

Theorem 2. Each graph containing a bounded face has dilation at least π/2.

It remains to show, that no graph without cycles, i. e. a tree, can provide a
smaller dilation for embedding the vertex set Pn of a regular n-gon with n ≥ 10.

Lemma 3. Let tree T contain the point set Pn. Then δ(T ) ≥ π/2 holds.

Proof. Assume that tree T contains Pn, and that δ(T ) < π/2 holds. Then, if p, q
are two neighboring points of Pn, the unique path ξ(p, q) in T connecting them
is of length at most aπ/2, where

a = |pq| = 2 sin(
π

n
) ≤ 2 sin(

π

10
) =

√
5 − 1
2

= 0, 618 . . . .
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Let z be an arbitrary point on this path. Since z can be reached from p by a
curve of length at most aπ/2, its Euclidean distance from p cannot exceed this
value. The same holds for q. Thus, z must be included in the lune formed by the
two circles of radius

a
π

2
≤

√
5 − 1
2

π

2
= 0, 9708 . . . < 1

centered at p and q; see Figure 3. Thus, no lune contains the unit circle’s cen-
ter. Now let us consider the arrangement of all lunes of neighboring points, as

q
a

p
π
2 a

z

lune(p, q)

π
2 a

Fig. 3. The path between neighboring
points is contained in their lune.

p1

p2

p3

pn

pn−1

C

Fig. 4. The path C from p1 to pn is
not contained in the lune of p1 and pn.

depicted in Figure 4, and assume that the points are labelled p1, p2, . . . , pn in
counterclockwise order. The concatenation

C = ξ(p1, p2)ξ(p2, p3) . . . ξ(pn−1, pn)

is a path in T that is contained in, and visits, all lunes associated with these
point pairs. Together with ξ(pn, p1), which must be contained in the lune of pn

and p1, C forms a closed path in T that encircles the center of the unit circle
and is, thus, not contractible, contradicting the fact that T is a tree. ��
Now we can prove Theorem 1.

Proof. Clearly, for each n we have ∆(Pn) ≤ π/2, because this is the dilation
of the unit circle. Let n ≥ 10. According to Theorem 2, any graph containing
a cycle has a dilation δ(G) ≥ π/2. On the other hand according to Lemma 3
no tree containing Pn can provide a smaller dilation. So we have shown that no
graph at all containing all points of Pn can have a dilation smaller than π/2. ��

The arguments displayed in the proof of Lemma 3 can also be used in proving
the following result.
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Corollary 1. Let C be a closed curve, and let Pn be a set of n points evenly
placed on C. Then the dilation of any tree containing Pn tends to infinity, as n
grows.

We want to point out that Theorem 1 does not hold for small values of n.
Trivially, ∆(P1) = ∆(P2) = 1. For n = 3 we have the subsequent result.

Corollary 2. ∆(P3) = 2√
3

= 1, 157 . . ..

To show this corollary the following technical lemma, stated here without proof,
is useful.

Lemma 4. Let v be a vertex of G where two edges meet at angle α, that is, the
tangents to the piecewise smooth edges in the common vertex v form an angle α.
Then, δ(G) ≥ 1

sin(α/2) holds.

It follows the proof of Corollary 2.

Proof. We can achieve the bound ∆(P3) = 2√
3

by the Steiner tree on P3, i. e.,
by connecting the center of the unit circle by a straight segment to each point
of P3. These segments meet at an 120◦ angle. By Lemma 4, this causes a local
dilation of 1/ sin(α/2). In our case, no bigger value than 1/ sin(60◦) = 2√

3
can

occur.
In order to prove that no graph G containing P3 can have a smaller dilation

we need only consider the following cases. G cannot contain a cycle, because any
cycle has a dilation of at least π/2 according to Lemma 1. Therefore G has to be
either a simple chain or a tree with a vertex of degree at least 3. If G is a simple
chain passing through the three points in the order p, q, r, then its dilation is at
least |pq|+|qr|

|pr| = 2. Otherwise, G is a tree with a vertex of degree at least 3. But
then we can be sure that its dilation is at least 2√

3
, by the angle argument of

Lemma 4. ��

3 An Upper Bound to the Geometric Dilation

In this section we will show that each finite point set can be embedded in a
finite graph of geometric dilation at most 1.678. More precisely, we prove the
following.

Theorem 3. There is a periodic, plane covering graph G∞ of dilation
1, 67784 . . . such that each finite set of rational points is contained in a finite
part of a scaled copy of G∞.

We proceed in three steps. First, we state a simple yet important technical
result in Lemma 5. Then, the proof of Theorem 3 starts with the construction
of a certain cycle, C. Graph G∞ will then be obtained by taking the hexagonal
grid of unit length, and replacing each vertex with a copy of C. The proof will
be concluded by showing how to embed finite point sets in G∞.

In determining the geometric dilation of graphs the following lemma is useful;
it has first been used for chains in [5]. Observe that an analogous result for the
graph-theoretic dilation does not hold.
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Lemma 5. The geometric dilation of a graph is always attained by two co-visible
points.

Proof. Assume that δ(G) is attained by points p, q that are not co-visible and
have a minimal Euclidean distance, among all such pairs. Then the line segment
pq contains a point r of G in its interior. Hence,

δ(G) =
ξG(p, q)

|pq| ≤ ξG(p, r) + ξG(r, q)
|pr| + |rq|

≤ max(
ξG(p, r)

|pr| ,
ξG(r, q)

|pq| )

≤ δ(G).

Thus, the dilation of G is also attained by one of the pairs (p, q), (q, r), a con-
tradiction. ��

60◦r
x

R

R

(−c, 0)
(b, 0)

C

︸ ︷︷ ︸ ︸︷︷︸

b

L

b1

︸ ︷︷ ︸

c b2

Fig. 5. The cycle C and the essentials of
its construction.

x

R
120◦

D3

x

R

H

c

c

D2

Fig. 6. The periodic graph G∞.

Now we give the proof of Theorem 3.

Proof. First, we construct a closed cycle, C, that will then be used in building
a periodic graph, G∞, of dilation δ(G) = 1, 67784 . . .. The cycle C is defined as
follows. We draw the positive X−axis and two more half lines starting from the
origin at angles of 120◦ and −120◦, correspondingly. Next, we fix two numbers,
0 < c < b < 0.5, that will be specified later, when optimizing the bound.
Depending on b, c we draw three circles, each of which touches two of the three
half lines at the distance b1 = b−c

2 from the origin; see Figure 5. For their
radius, r, and for the distance, x from their centers to the origin we obtain

x

2
= x cos 60◦ = b1 =

b − c

2
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x
√

3
2

= x sin 60◦ = r,

which implies x = b − c and r =
√

3
2 (b − c).

Now we consider the line segment, L, of length b + c from (−c, 0) to (b, 0),
and imagine that its midpoint is glued to the upper circle. As this circle rotates
clockwise by 60◦, the right endpoint of L describes a circular arc of length R π/3,
where

R =
√

r2 + b2
2 =

√
3
4

(b − c)2 +
1
4

(b + c)2

=
√

b2 − bc + c2.

After this rotation, line segment L is unglued from the upper circle, and
glued to the left circle instead, that now rotates clockwise by 60◦, and so on.
This results in a cycle C that consists of six circular arcs of length R π/3 each.

By construction, each pair of endpoints of the rotating line segment is a
partition pair of C, because the endpoints of C are always moving with identical
speed. Moreover, each such pair attains the maximum dilation of C. So, we have

D1 := δ(C) =
π R

b + c
.

Now we construct a periodic graph G∞ that covers the plane. This graph
is obtained by centering rotated copies of cycle C at the vertices of the regular
hexagonal grid3 of unit edge length, and cutting off those parts of the axes
contained in those copies; see Figure 6.

Thanks to Lemma 5, we need only compute the dilation of the two faces
occurring in G∞, which are the cycle C and the boundary of the “dodecagonal”
face. On the latter, two candidate partition pairs of points exist that might attain
maximum dilation. In vertical direction, we have a pair whose dilation equals

D2 =
2πR + 3 (1 − 2b)√

3
;

Observe that the numerator equals three times one third of the perimeter of cycle
C, plus three times the length of a shortened unit edge, whereas the denominator
measures the height of the hexagonal cell. The other candidate pair is obtained
by intersecting, with the copies of C, the line H connecting the centers of two
generating circles; see Figure 6. Since the diagonal of the hexagonal cell is of
length 2, the distance between these intersection points equals

2 (
√

x2 + 1 − 2x cos 120◦ − R),

by the law of cosines. This leads to

D3 =
2πR + 3 (1 − 2b)

2 (
√

x2 + x + 1 − R)
.

3 Without this refinement, the plain hexagonal grid would have a dilation of
√

3 =
1.7320 . . ..
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Analysis shows that the maximum of D1, D2, D3 can be minimized to

D1 = D2 = D3 = 1.6778 . . .

by putting
c = 0.1248 . . . and b = 0.1939 . . .

Now let us assume that we are given a finite set of rational points, P =
{p1, . . . , pn}, that must be embedded in a graph of low dilation. Assume that

pi = (
ei

fi
,
gi

hi
)

holds with natural numbers ei, fi, gi, hi. Let

K := (
1
2

− b)
1√
3

1∏
j fj

1∏
j hj

min
j

fj

ej
,

where b is the constant involved in constructing the cycle C. By a theorem of
Dirichlet’s, there are infinitely many integer pairs (r, s) satisfying

|
√

3 − r

s
| <

1
s2 <

K

s
.

We choose one such pair and put

γ :=
1
r

1√
3

1∏
j fj

1∏
j hj

,

and construct the graph G introduced above over a hexagonal grid of edge
length γ. We are going to place the points pi on (some of) the horizontal edges
of the 12-gons, close to their mid points. This is possible because of two facts.
First, each Y −coordinate gi/hi is an integer multiple of

√
3 γ, the distance of

two neighboring horizontal levels in G.
Second, each X−coordinate ei/fi is close enough to an integer multiple of the

distance 3γ between two neighboring mid points of the same Y −level. Indeed,
√

3s

r

ei

fi
= ei s

∏
j �=i

fj

∏
j

hj 3γ

is an integer multiple of 3γ, and we have

|
√

3s

r

ei

fi
− ei

fi
| =

ei

fi

s

r
|
√

3 − r

s
| <

ei

fi

s

r

K

s

=
ei

fi
min

j

fj

ej
(
1
2

− b) γ < (
1
2

− b) γ,

so that the point still lies on the horizontal edge. ��

This concludes the proof of Theorem 3 and, thus, of the main result of this
section.
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4 Concluding Remarks

In this paper we have, for the first time, studied the geometric dilation of geo-
metric graphs. We have introduced the notion of the geometric dilation, ∆(P ),
of a finite set of points, P , as the minimal dilation of all finite graphs that con-
tain P . We have shown that the vertices of the regular n−gon have dilation
π/2 = 1.570 . . ., and that no finite point set has a dilation bigger than 1.678.

These results give rise to many further questions. How can we compute the
geometric dilation of a given point set? How costly (in weight and computing
time) is the construction of a geometric graph attaining (or: approximating)
∆(P )? What is the precise value of

∆ := sup
P finite

∆(P )?

(We conjecture ∆ > π/2 .) And finally, what happens if we extend this definition
to non-finite sets, e. g. simple geometric shapes?
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