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Abstract. For a chordal graph G, we study the problem of whether a
new vertex u and a given set of edges between u and vertices of G can be
added to G so that the resulting graph remains chordal. We show how to
resolve this efficiently, and at the same time, if the answer is no, define a
maximal subset of the proposed edges that can be added, or conversely a
minimal set of extra edges that should be added in addition to the given
set. Based on these results, we present a new algorithm which computes
both a minimal triangulation and a maximal chordal subgraph of an
arbitrary input graph in O(nm) time. This time complexity matches the
best known time bound for minimal triangulation, using a totally new
vertex incremental approach. In opposition to previous algorithms, our
process adds each new vertex without reconsidering any choice made at
previous steps, and without requiring any knowledge of the vertices that
might be added at further steps.

1 Introduction

Chordal graphs are a well studied class, with applications in many fields. One
important aspect in applications is maintaining a chordal graph incrementally,
and previous work has dealt with the problem of adding or removing an arbitrary
edge while maintaining chordality [6], [16].

When the graph fails to be chordal, edges can be added or removed to ob-
tain a chordal graph: either add edges until the graph becomes chordal, a process
called triangulation, or remove edges until the graph becomes chordal, thus com-
puting a chordal subgraph. Adding or removing a minimum number of edges has
been shown to be NP-hard [17], [22]. However, adding or removing an inclusion
minimal set of edges can be done in polynomial time. Given an arbitrary chordal
subgraph (e.g., an independent set on the vertices of the graph) or supergraph
(e.g, a complete graph on the same vertex set) of the input graph, edges can
be added or removed one by one after testing that the resulting graph remains
chordal, until no further candidate edge can be found. This ensures that mini-
mality is achieved, by the results of [I8]. The problem of maintaining a chordal
graph by edge addition or deletion and the problem of computing a maximal
chordal subgraph or a minimal chordal supergraph are thus strongly related.

The problem of adding an inclusion minimal set of fill edges, called min-
imal triangulation, has been well studied since 1976, and several O(nm) time
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algorithms exist for solving it [3], [4], [10], [18], though none of these algorithms
uses an edge incremental approach as described above. However, the algorithm
proposed in [7], which requires even less time when the fill is small, does use an
edge deletion approach. The reverse problem of computing a maximal chordal
subgraph has also been studied, and several O(Am) time algorithms exist, where
A is the maximum degree in the graph [2], [11], [21].

In this paper, we present a new process for adding a verter with a given
set of incident edges to a chordal graph while maintaining chordality, which we
are able to implement more efficiently than if we were to add the corresponding
edges one by one. Our process is based on two new characterizations. The first
is a characterization of a chordal graph by its edges, and the second is a charac-
terization of the set of edges R incident to a vertex u which must be added to a
chordal graph along with edge (u,v) to ensure that chordality is preserved. We
show that we can compute this set R of edges in O(n) time, by proposing a data
structure which corresponds to a clique tree of the current chordal subgraph.

We use our results to compute both a minimal triangulation and a maximal
chordal subgraph of a given arbitrary graph in O(nm) time. This is done by
an incremental process which repeatedly adds a new vertex u to the already
constructed chordal graph H along with a maximal set of edges of the input
graph between v and H, or a minimal set of extra edges between v and H in
addition to original such edges.

Some of the existing algorithms which compute a maximal chordal subgraph
or a minimal triangulation also use a vertex incremental process [2], [4], [5], [11],
[18], [21], though none of them compute both chordal graphs at the same time.
In addition, all these previous algorithms require knowing the whole graph in
advance, as either vertices that are not yet processed are marked in some way
to define the next vertex in the process, or edges are added between pairs of
vertices that are not yet processed.

Our approach here is completely different from the previous ones, as it is
more general: At each vertex addition step, we do not require the added vertex
to be or to become simplicial, which enables us to process the vertices in any
order. Moreover, we add only edges incident to the new vertex, so that we never
need to reconsider or change the chordal graph which has been computed so far.

As a result, our process can add any vertex with any proposed neighborhood,
and efficiently give a correction if the resulting graph fails to be chordal, either by
computing a maximal subset of the edges to be added, or a minimal set of extra
edges along with the proposed ones. In addition, the transitory chordal graph is
maintained in a dynamic fashion, as making the desired or necessary additions
to the graph does not require a recomputation from start, which would be the
case for the other mentioned algorithms if the input graph was to be extended
with new vertices after some steps or the end of the computation.
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2 Graph Theoretic Background and Notation

We assume that all input graphs are simple and connected. For disconnected
graphs, the results can be applied on each connected component. A graph is
denoted G = (V, E), with n = |V|, and m = |E|. A vertex sequence v; — vg —
... — v, describes a path if (v;,v;41) is an edge for 1 < i < k. The length of a path
is the number of edges in it. A cycle is a path that starts and ends with the same
vertex. A chord of a cycle (path) is an edge connecting two non-consecutive
vertices of the cycle (path). A cligue is a set of vertices that are all pairwise
adjacent. A simplicial vertex is one whose neighborhood induces a clique.

For the following definitions, we will omit subscript G when the graph is
clear from the context. The neighborhood of a vertex v in G is Ng(v) = {u #
v | (u,v) € E}, and for a set of vertices A, Ng(A4) = UzeaNg(z) — A. G(A) is
the subgraph induced by a vertex set A C V', but we often denote it simply by
A when there is no ambiguity. We would like to stress that when we say merely
subgraph we do not necessarily mean an induced subgraph. Thus subgraph can
be a proper subgraph on the same vertex set with fewer edges.

A subset S of V is called a separator if G(V '\ S) is disconnected. S is a uv-
separator if vertices u and v are in different connected components of G(V'\ S),
and a minimal uv-separator if no subset of S is a uv-separator. S is a minimal
separator of G if there is some pair {u,v} of vertices in G such that S is a
minimal uv-separator. Equivalently, S is a minimal separator if there exist two
connected components C; and Co of G(V'\ S) such that Ng(C1) = Ng(Cs2) = S.

A pair of non adjacent vertices {u,v} is a 2-pair in G if there is no chordless
path of length 3 or more between u and v [14]. If G is not connected, then
two vertices that belong to different connected components constitute a 2-pair
by definition. If G is connected, it has been shown that {u,v} is a 2-pair iff
N(u) N N(v) is a minimal uv-separator of G [I], [19].

A graph is chordal if it contains no chordless cycle of length > 4. Conse-
quently, all induced subgraphs of a chordal graph are also chordal. G is chordal
iff every minimal separator of G is a clique [12]. Chordal graphs are the inter-
section graphs of subtrees of a tree [9], [13], [20], and the following result on this
graph class gives a very useful tool which we will use as a data structure in our
algorithm.

Theorem 1. ([9], [T3], [20]) A graph G is chordal iff there exists a tree T, whose
vertex set is the set of mazimal cliques of G, that satisfies the following prop-
erty: for every verter v in G, the set of mazximal cliques containing v induces a
connected subtree of T'.

Such a tree is called a clique tree [§], and each tree node of T is a vertex set
of G corresponding to a maximal clique of G. We will not distinguish between
cliques of G and their corresponding tree nodes. In addition, it is customary to
let each edge (K, K;) of T hold the vertices of K; N K;. Thus edges of T are
also vertex sets. Although a chordal graph can have many different clique trees,
these all share the following important properties that are related to an efficient
implementation of our algorithm.
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Theorem 2. ([9], [15]) Let T be a clique tree of a chordal graph G. Every edge
of T is a minimal separator of G, and for every minimal separator S in G, there
is an edge (K;, K;) =K;,NK; =S inT.

Theorem 3. ([8]) T is a clique tree of G iff for every pair of distinct cliques K;
and K in G, the intersection K; N K; is contained in every node of T (maximal
clique of G) appearing on the path between K, and K; inT.

Note that as a consequence, the intersection K; N K; is also contained in
every edge of T (minimal separator of G) appearing on the path between K;
and K; in T'. A chordal graph has at most n maximal cliques and n — 1 minimal
separators, and hence the number of nodes and edges in a clique tree is O(n).

3 A New Characterization of Chordal Graphs

In this section we present a new characterization of chordal graphs that will be
the basis of our algorithm.

Definition 1. We will say that an edge (u,v) is mono saturating in G = (V, E)
if {u,v} is a 2-pair in G' = (V, E\ {(u,v)}).

Theorem 4. A graph is chordal iff every edge is mono saturating.

Proof. Let G = (V, E) be chordal, and assume on the contrary that there is
an edge (u,v) € E which is not mono saturating. Thus G’ is connected, and
N(u) N N(v) is not a uv-separator in G'. Let us remove N(u) N N(v) from G'.
There is still a path connecting v and v in the remaining graph. Let p be a
shortest such path. Now, p contains a vertex z € N(u) which is not adjacent
to v, and a vertex z € N(v) which is not adjacent to w. Thus the following is a
chordless cycle of length at least 4 in G: u—p—v—u =u—x—...—2—v—u, which
contradicts our assumption that G is chordal. For the other direction, let every
edge in G be mono saturating, and assume on the contrary that G is not chordal.
Thus there exists a chordless cycle C of length at least 4 in G. Let (u,v) be any
edge of C. Since at least one other vertex of C' must be removed to disconnect
v and v in G’, any minimal uv-separator of G’ contains a vertex x of C, where
x & N(u) or z ¢ N(v). Therefore N(u) N N(v) cannot be a uv-separator, which
contradicts our assumption that every edge is mono saturating.

Corollary 1. Given a chordal graph G = (V, E), where (u,v) € E, the graph
(V, EU{(u,v)}) is chordal iff {u,v} is a 2-pair in G.

As a consequence, while maintaining a chordal graph by adding edges, we
could check every edge of the input graph to see if the endpoints constitute a 2-
pair in the transitory chordal subgraph. However, this approach requires that we
check every edge several times, as pairs of vertices can become 2-pairs only after
the addition of some other edges. Our main result, to be presented as Theorem
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Bl gives a more powerful tool that allows examining each edge of the input graph
only once during such a process, which yields our interesting time complexity.
Assume the following scenario: we are given a chordal graph G, and we want
to add an edge (u,v) to G; since we want the resulting graph to remain chordal,
we must allow addition of other necessary edges to achieve this, but we allow
only addition of edges incident to u. (Vertex u is the most recently added vertex
in the vertex incremental approach described in the next section.) Naturally, if
we add every edge between u and the other vertices of GG, the resulting graph
is chordal. However, our main goal is to add as few edges as possible. Theorem
[l gives a necessary and sufficient condition for the addition of each such edge
(u,v). Before we present it, we need the following definition for ease of notation.

Definition 2. Given a chordal graph G = (V,E) and any pair of vertices u
and v in G such that (u,v) ¢ E, R(G,u,v) = {(u,z) | = belongs to a minimal
wv-separator of G}. We will call R(G,u,v) the set of required edges for (u,v)
incident to u.

Theorem 5. Let G = (V, E) be a chordal graph, let w and v be any two non-
adjacent vertices of G, and assume that one wants to add edge (u,v) to G.
R(G,u,v) is an inclusion minimal set of edges that must be added to G along
with edge (u,v) in order to obtain a chordal graph H.

Proof. Assume that edge set R(G,u,v) U {(u,v)} is added to G. We will show
that H thus obtained is chordal. Observe first that (u,v) is mono saturating in
H since every possible uv-separator of H is contained in Ny (u), and thus does
not appear on any chordless cycle of length more than 3, as we have seen in the
proof of Theorem [4. Assume on the contrary that H is not chordal, and let C
be a chordless cycle of length at least 4 in H. Then C' must contain at least one
newly added edge (u,z) € R(G,u,v). Let C =u—y; —ya — ... —Yp — T —u
with k& > 2. Since edge (u,x) was added, x belongs to a minimal uv-separator
S of G. Let Cy and C3 be two connected components of G(V \ S) such that
Ng(C1) = Ng(Cs) = S. Assume without loss of generality that v € Cy and
v € C5. Then every vertex of C belongs to S U C since S is a clique in both G
and H, and C is chordless. Thus in G, there is a chordless path p; containing
Yo — ... — Yr — = between u and z, where all vertices of p; belong to C; U S. In
addition there is also a chordless path ps between x and v (might be a single
edge) passing only through vertices belonging to Cs. As a consequence, ya must
belong to some minimal uz-separator of GG, and thus also to some minimal uv-
separator of G, since p; — p2 is a chordless path between u and v in G. But
then (u,y2) belongs to R(G,u,v) and has been added to H contradicting our
assumption that C =u —y; —y2 — ... — yx — = — u is a chordless cycle of H.
Now we will show that the set R(G,u,v) is inclusion minimal. Assume on
the contrary that (u,v) and a proper subset of R(G,u,v) are added to G, and
that the resulting graph H is chordal. Thus there is a vertex x belonging to a
minimal uv-separator S of G such that (u, x) does not belong to H. Let C be the
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connected component of G(V '\ S) that contains u and C5 the one that contains
v. In G there must be a chordless path p; between v and x with all intermediate
vertices belonging to C1, and pa between z and v with all intermediate vertices
belonging to Cs. Let ¢; be a vertex of p; closest to x and adjacent to u, and let
g2 be an analogous vertex of ps (g2 might be v), such that u —py —x —ps—v =
U—P11—q1—P12—T—P21— @2 —p22—v. Thenu—q1 —pr2—T—pa1 —q@—u
is a chordless cycle in H , giving us the desired contradiction.

Corollary 2. Let G = (V, E) be a chordal graph, and let u and v be any pair of
non adjacent vertices in G. Then H = (V, EU{(u,v)}UR(G,u,v)) is a minimal
triangulation of (V, EU {(u,v)}).

4 A Vertex Incremental Algorithm for Simultaneous
Maximal Subtriangulation and Minimal Triangulation

In this section we apply our results of Section 3 to the problem of computing a
maximal chordal subgraph H = (V, D) and a minimal triangulation M = (V, F)
of an arbitrary graph G = (V, F), where D C E C F..

Our algorithm is based on the following vertex incremental principle. Start
with an empty subset U of V', increase U with a new vertex u of G at each
step, and do computations according to Theorem [5] to obtain a maximal chordal
subgraph H of G(U) or a minimal triangulation M of G(U) on vertex set U at
the end of each step. In the case of a maximal subtriangulation, we will allow
adding only edges that belong to E between w and the vertices of H, whereas
in the case of a minimal triangulation, the required edges between v and H will
also be added. For this incremental approach, we first need the following two
lemmas.

Lemma 1. Given G = (V,E), let H = (U, D) be a mazimal chordal subgraph
of GWU) = (U,E"), where U CV and D C E' C E. No edge belonging to E'\ D
can be contained in a mazimal chordal subgraph of G that also contains H.

Proof. Let (u,v) be any edge of E'\ D. Thus u and v both belong to the chordal
subgraph H. Let H' = (V, D') be a maximal chordal subgraph of G with D C D/,
and assume on the contrary that (u,v) belongs to D’. Since induced subgraphs
of chordal graphs are also chordal, H'(U) is chordal and contains edge (u,v).
But this contradicts the assumption that H is a maximal chordal subgraph of
G(U), since H'(U) is a chordal subgraph of G(U) that contains H as a proper
subgraph.

Lemma 2. Given G = (V,E), let M = (U, F) be a minimal triangulation of
GU) with U C V. Then any minimal triangulation of (V,E U F) obtained
by introducing only edges with at least one endpoint in V \ U is a minimal
triangulation of G.
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Proof. Let M’ = (V, F') be a minimal triangulation of (V, E U F) obtained by
introducing only edges with at least one endpoint in V\U. M’ exists by Theorem
Bl and M’ is certainly a triangulation of G since it is chordal and contains all
edges of G. Assume on the contrary that M’ is not a minimal triangulation
of G. Thus there is at least one edge in F’ \ E that can be removed. If this
edge belongs to F' \ (F U F'), then this contradicts our assumption that M’ is
a minimal triangulation of (V, E'U F'). Thus an edge (u,v) belonging to F'\ E
can be removed from M’ without destroying its chordality. However, since M is
a minimal triangulation of G(U), removing (u,v) creates a chordless cycle C of
length at least 4 in M. Since no edge of F’\ F have both its endpoints in U,
F'\ F does not contain a chord of C, and consequently the vertices belonging
to C will induce a chordless cycle in M’ if (u,v) is removed, giving the desired
contradiction.

With the data structure proposed in the next section, computing and adding
set R(H,u,v) can be done in O(n) time for each examined edge (u,v). Observe
that every edge needs to be examined at most once, giving a total time com-
plexity of = O(nm). We are now ready to present our algorithm, and here we
give the maximal chordal subgraph version.

Algorithm Incremental Maximal Subtriangulation (IMS)
Input: G = (V, E).
Output: A maximal chordal subgraph H = (V, D) of G.
Pick a vertex s of G; U ={s}; D =10
for i =2 ton do
Pick a vertex u € Ne¢(U); U=UU{u}; N = Ng(u)NU;
while N is not empty do
Pick a vertex v € N; N =N\ {v};
X = {z | z belongs to a minimal uv-separator of H = (U, D)};
R={(w) |z e X}
if R C FE then
D=DuU{(u,v)}UR; N=N\X,
H = (U,D);

Let us call IMT (Incremental Minimal Triangulation) the algorithm that
results from removing line ”if R C E then” of Algorithm IMS. Thus in IMT,
edge set {(u,v)} UR is always added to the transitory graph for every examined
edge (u,v). It can be proved by straight forward induction using Theorem Bland
Lemmas [M and 2] that Algorithm IMS computes a maximal chordal subgraph
and Algorithm IMT computes a minimal triangulation of the input graph. In
Example [T executions of both of these algorithms are shown on the same input
graph. Figure [l (a) shows IMS and (b) shows IMT.

Ezxample 1. Consider Figure [I. The vertices of the input graph are processed
in the order shown by the numbers on the vertices. At step 1, only vertex 1
is added to H. At step 2, vertex 2 and edge (2,1) are added, and similarly at
steps 3 and 4, vertex 3 and edge (3,2), and vertex 4 and edge (4,1) are added,
respectively. The first column of the figure shows graph H with thick lines on the
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4 1 4 1 4 1 4 .1
(a) 6€>7 6€>7 6€>7 6€>7
3 2 3 2 3 2 3 2
Step 4 Step 5 Step 6 Step 7
4 1 4 1 4 1 4 1
7
‘ A
(b) 6 5 7 6 N 7 6 Q 7 6 7
. VAN
3 2 3 2 3 2 3 2

Fig. 1. The figure shows graph H in thick lines after steps 4, 5, 6, and 7 of (a) Algorithm
IMS when computing a maximal chordal subgraph and (b) Algorithm IMT when
computing a minimal triangulation.

input graph after these 4 steps. Graph H so far is the same for both a maximal
chordal subgraph (a), and a minimal triangulation (b). We will explain the rest
of the executions in more detail.

(a) At step 5, N = {3,4}, and edge (5,3) is examined first. In this case,
set X is empty, and edge (5,3) is thus added. For the addition of edge (5,4),
X = {1,2,3}, and since required edges (5,1) and (5,2) are not present in G,
edge (5,4) is not added. At step 6, N = {3,4,5}, and edge (6, 3) is examined
first and added since X is empty. For the addition of edge (6,4), X = {1,2,3},
and since required edges (6, 1) and (6,2) are not present in G, edge (6,4) is not
added. For the addition of edge (6,5), X = {3}, and (6,5) is added since edge
(6,3) is present in G and in H.

(b) At step 5, edge (5,3) is added as in (a), and in addition, edge (5,4)
is added along with the required edges (5,1) and (5,2). At step 6, edge (6,3)
is added as in (a). For the addition of edge (6,4), X = {1,2,3,5} since the
minimal 6, 4-separators are {1,5},{2,5}, and {3}. Thus edge (6,4) and required
edges (6,1), (6,2), and (6,5) are added to H.

Step 7 adds edges (7,1) and (7,2) in both (a) and (b) without requiring any
additional edges in either case.

5 Data Structure and Time Complexity

The input graph G is represented by an adjacency list, and we use a clique tree T’
of H as an additional data structure to store and work on H. In order to achieve
the total O(nm) time bound, for each edge (u,v) of G to be examined we have
to do the following two operations in O(n) time: 1. Compute the union X of all
minimal wv-separators in H, which gives the required edge set R(H,u,v). 2. If
R(H,u,v) U {(u,v)} is to be added to H, update T to reflect this modification
of H.

The main idea is to use a path P,, of the clique tree T between a clique
(tree node) C,, that contains u and a clique C, that contains v, and compute
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Fig.2. A chordal graph H is given in (a), and (b) shows a clique tree of H, where
C, = C1, C, = C5, and P,, is the whole clique tree. After steps (c) and (d), path Py,
between C7 and C5 is in the desired form, and only this portion of the tree is shown
after step (d). In step (e), u is placed in every clique on Py, and in step (f) Cy is
separated from the path since edge (u, q) is not intended. C; is removed in (g) since it
becomes non maximal. The new corresponding graph H of which the modified tree is
a clique tree is shown in (h).

the union of edges on this path that correspond to minimal uv-separators. For
this operation, C, and C,, are chosen so that no maximal clique between C,, and
C, on P,, contains u or v, as illustrated in Figure [ (a) and (b). In addition, T'
is modified so that path P,, between C,, and C, contains only distinct minimal
uv-separators, as shown in Figure ] (¢) and (d). Now the union of the edges of
P,, give the desired vertex set X.

Unfortunately, the sum of the sizes of the edges on P,, can be larger than
O(n). Thus if the tree nodes and tree edges of T are implemented in the tradi-
tional way as vertex lists containing vertices of each tree node and edge, then
Operation 1 described above cannot be done in O(n) time. For this reason, we
present a new implementation of clique trees: Every edge (Cy,Cy) of T is imple-
mented as two lists that we will call difference lists. One list contains vertices
belonging to Cy \ Cs. This list has two names; it is called both add(Cs, Cy) and
remove(Cq, C2). The other list contains vertices belonging to Cy\ Cy. This list is
called add(C1, Cs) and also remove(Cy, C1). Now, if every clique C of T contains
pointers to its add and remove lists, then C actually does not need to store a list
of vertices that it contains. To see how to compute X, let P, = C1—Co—...—Cg;
then X = UM} (add(C;_1,C;) \ remove(C;, Ciy1)). Every vertex of G can ap-
pear in at most one add list and at most one remove list on this path due to
Theorem Bl and thus computing X can be done in O(n) time as described using
a characteristic vector to store X. Further details of Operation 1, and details of
Operation 2 are omitted in this extended abstract due to limited space. We refer
the reader to Figure 2 (e) - (h).



56 A. Berry, P. Heggernes, and Y. Villanger

6 Concluding Remarks

In this paper, we contribute new theoretical results on chordality as well as an
efficient handling of the corresponding data structures. Not only do we have a
new O(nm) time dynamic algorithm for minimal triangulation of a graph G,
but we are able to compute at the same time a maximal chordal subgraph, thus
”minimally sandwiching” the graph between two chordal graphs: H; C G C Ho.
This special feature of our algorithm enables the user, at no extra cost, to choose
at each vertex addition step whether he wants to add or delete edges, or even to
do so at each edge addition step.

When one wants to add to a chordal graph an edge between {u,v} which
is not a 2-pair, there is a succession of 2-pair edges incident to u that can be
added first, making {u,v} a 2-pair of the new graph thus obtained. Our main
theorem precisely describes this set of edges as our set of required edges. It was
not known earlier which edges needed to be added in order to ensure that {u,v}
becomes a 2-pair, and even less how to compute them efficiently.
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