
Mining Correct Properties in Incomplete
Databases

François Rioult and Bruno Crémilleux

GREYC, CNRS - UMR 6072, Université de Caen
F-14032 Caen Cédex France

{Francois.Rioult,Bruno.Cremilleux}@info.unicaen.fr

Abstract. Missing values issue in databases is an important problem
because missing values bias the information provided by the usual data
mining methods. In this paper, we are searching for mining patterns sat-
isfying correct properties in presence of missing values (it means that
these patterns must satisfy the properties in the corresponding complete
database). We focus on k-free patterns. Thanks to a new definition of this
property suitable for incomplete data and compatible with the usual one,
we certify that the extracted k-free patterns in an incomplete database
also satisfy this property in the corresponding complete database. More-
over, this approach enables to provide an anti-monotone criterion with
respect to the pattern inclusion and thus design an efficient level-wise
algorithm which extracts correct k-free patterns in presence of missing
values.

1 Introduction

Missing values in databases is a problem as old as the origin of these storage
structures. It is an important issue because information extracted by usual data
mining or statistics methods in incomplete data are biased and do not reflect
the sound knowledge on the domain. We show in Section 3.1 the damages due
to missing values in the pattern mining area. The popular uses of (frequent)
patterns (e.g., rules, classification, clustering) are no longer reliable. The basic
idea of elementary techniques to cope with missing values is to guess them (e.g.,
use of the mean, the most common value, default value) and complete them.
Unfortunately, these techniques are not satisfactory because they exaggerate
correlations [1] and missing values completion remains a hard track.

On the contrary, in this paper, we are searching for mining patterns satisfying
properties in presence of missing values which are also satisfied in the corre-
sponding complete database. Our key idea is to highlight properties from an
incomplete database, these properties must be consistent in the real database
without missing values. We say that these properties are correct. This can be
achieved because some characteristics are not removed by missing values. For
instance, if a pattern is frequent in a database with missing values, it must be
frequent in the corresponding complete database. In Section 4.1, we propose

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 208–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Mining Correct Properties in Incomplete Databases 209

an operator to define the relation between an incomplete database and every
possible completion.

In this paper, we focus on the property of k-freeness [2]. This property is at the
core of frequent pattern mining, association rules building, and more generally
condensed representations of frequent patterns [3] which enable multiple uses
of frequent patterns. Our main contribution is to propose a new definition of
the k-freeness property in incomplete data which is fully compatible with the
usual one in a database without missing values. This new definition certifies that
the extracted patterns satisfying this definition in an incomplete database are
k-free in the corresponding complete database and, in fact, in every completion
of the incomplete database. Moreover, this approach leads to an anti-monotone
criterion with respect to the pattern inclusion and thus allows to design an
efficient level-wise algorithm which extracts k-free patterns in presence of missing
values. This work is a first step towards classification in incomplete databases
with generalized associations and its application to missing values imputation.

The presentation is organized as follows: Section 2 gives the background about
the k-freeness of patterns and the generalized association rules. Section 3 briefly
shows the damages caused by the missing values and presents our position state-
ment. We define in Section 4 the computation of k-free patterns in presence of
missing values and demonstrate that these patterns are correct in the correspond-
ing complete database. Experiments on benchmark data confirm the effectiveness
of our method (Section 5).

2 k-Free Patterns and Generalized Association Rules

In this section, we introduce the k-free patterns and the generalized association
rules which stem from these patterns.

2.1 Preliminaries

Let us consider a database which gathers objects depicted by quantitative or
qualitative attributes in an attribute/values format (see Table 1). Eight objects
are described by three attributes X1, X2 and X3. In the field of boolean pattern
mining, qualitative attributes need to be discretized in order to get boolean
contexts (this article does not discuss this stage).

Let r be a database and (A, O, R) a boolean context where O is the set of
objects, A is the set of attributes and R is a binary relation. An object is a
subset of A (for example, o1 = {a1, a3, a5}) and it will be denoted as a string
(i.e., a1a3a5). |r| is the number of objects in r, i.e. |r| = |O|. Table 2 indicates
the boolean context where X3 is coded by the attributes a5 to a7.

A pattern X is a subset of A, its support is the set of objects containing X (we
denote supp(X) = rX = {o ∈ O | X ⊆ o}) and its frequency F(X) = |supp(X)|
is the number of objects in the support. A classical association rule [4] is an
expression X → Y , where X and Y are two patterns. It is quantified by its
frequency (i.e., F(X ∪Y)) and its confidence: conf(X → Y) = F(X ∪Y)/F(X).

210 F. Rioult and B. Crémilleux

Table 1. Attribute/value format database

attributes
objects X1 X2 X3

o1 + → 0.2
o2 − → 0
o3 + → 0.1
o4 + ← 0.4
o5 − → 0.6
o6 − → 0.5
o7 + ← 1
o8 − ← 0.8

Table 2. Boolean context r

attributes
objects a1 a2 a3 a4 a5 a6 a7

o1 × × ×
o2 × × ×
o3 × × ×
o4 × × ×
o5 × × ×
o6 × × ×
o7 × × ×
o8 × × ×

2.2 Generalized Association Rules and k-Freeness

We start by recalling generalized patterns [2] because they are at the core of the
generalized association rules. A generalized pattern is made of boolean attributes
and negations of boolean attributes. For example, the generalized pattern Z =
a1a2a3 can be written as the union of a positive part X = a1a3 and a negative
one Y where Y = a2. An object o supports Z = X ∪ Y if X ⊆ o and Y ∩ o = ∅.
To alleviate the notations, we omit the union sign in the following and write
XY instead of X ∪ Y . F(XY) is central: if it is null, one element of Y is always
present with X and ensures a generalized association between X et Y . These
associations lead to the generalized association rules introduced in [2] which are
a generalized form of association rules. The originality of these rules (also called
disjunctive rules) is to conclude on a disjunction of attributes as indicated by
Definition 1, which comes from [2].

Definition 1. A generalized association rule based on Z = X ∪ Y is an expres-
sion X→ ∨Y where X and Y are two classical patterns. It is exact in a database
r if every object of r containing the premise X also contains one attribute of the
conclusion Y . We denote |=r X→ ∨Y ⇐⇒ F(XY , r) = 0.

We define the frequency of a generalized association rule as follows (this defini-
tion diverges from that of the classical association rules).

Definition 2. The frequency F(X→ ∨Y) of X→ ∨Y is the number of objects
containing X and at least one attribute of Y . We get F(X→ ∨Y) = F(X) −
F(XY).

Let us move now to k-free patterns. They have been proposed1 by Calders and
Goethals [2], and they are very useful to compute the generalized association
rules. A k-free pattern expresses the absence of correlation between its attributes:

Definition 3 (k-free pattern). A pattern Z is k-free in a complete database
r (without missing values) and we denote kFree(Z, r) if it does not exist any
1 With k = 2, these patterns have been introduced by [5] with the term of disjunction-

free sets.

Mining Correct Properties in Incomplete Databases 211

generalized association rules based on Z in r, or: ∀X ∪ Y = Z, |Y | ≤ k ⇒
F(XY)
= 0.

The k-free patterns have excellent properties to sum up the collections of fre-
quent patterns. For example, in the mushroom dataset [6], there are 2.7 · 109

present patterns, but 426, 134 1-free and 224, 154 2-free patterns. With k higher
than 5, the number of k-free patterns keeps under 214, 530, and they are mined
in two minutes. Until now, k-free patterns have mostly been employed to com-
pute condensed representations of frequent patterns [3] but they get meaningful
properties to produce rules. In particular, 1-free patterns are used to compute
the non redundant classical association rules [7,8]. The premise of such a rule is
a 1-free X and its conclusion is the Galois closure h(X).

2.3 Generalized Association Rules Mining

The exhibition of non redundant generalized association rules is more complex.
We indicate two techniques. The first one mines the 1-free patterns and then
computes their generalized closure [9]. It gathers all minimal patterns Y sharing
one attribute with every object containing X , it is obtained by computing the
minimal transversals [10] of these objects [9]. The second technique takes ben-
efit from the anti-monotonicity of the k-freeness and the border theory of this
property [11]. The rules are built from the minimal non k-free patterns, which
constitute the negative border of the k-free patterns. Generalized association rules
stem from non k-free patterns (such a rule X→ ∨Z\X is built from a non k-free
pattern Z where X is the smallest subset of Z such that F(XZ\X) = 0).

Generalized association rules convey correlations with a richer formalism than
the classical ones. They enable new uses such as supervised classification [12]
based on positive and negative rules [13] (i.e., rules concluding on an attribute
or its negation). For example, the rule a1 → a4 ∨ a5 is exact in the Table 2 data
and leads to the positive rule a1a4 → a5 and the negative one a4a5 → a1.

From the computation point of view, k-freeness is an anti-monotone prop-
erty and these patterns can be efficiently mined thanks to the level-wise frame-
work [11]. In order to check if a candidate pattern is k-free during the scan stage,
the frequency of XY is computed with the inclusion-exclusion principle [14], by
using the frequencies of the subsets of XY : F(XY) =

∑
∅⊆J⊆Y (−1)|J|F(XJ).

As we have seen that in practice k remains low, the difficulty of computing the
supports with the inclusion-exclusion principle is bearable.

3 Missing Values

We show here the damages due to the missing values and we give our position
statement to solve this pattern mining problem.

3.1 Damages of Missing Values on k-Free Patterns

Assuming that some attributes of the dataset given in Table 1 are unknown, then
missing values appear. We use the character ’?’ to denote that a value is neither

212 F. Rioult and B. Crémilleux

Table 3. Incomplete DB r′

attributes
objects a1 a2 a3 a4 a5 a6 a7

o1 × × ×
o2 × × ×
o3 × × ? ? ?
o4 × × ×
o5 × × ×
o6 ? ? × ×
o7 × × ×
o8 × ? ? ×

Table 4. 1-free 2-frequent patterns and their
closures

Complete DB r Incomplete DB r′

X h(X) X h(X) X h(X) X h(X)
a1 a1a3 a5 a1 a1a3

a2 a1a4 a2 a1a5

a3 a1a5 a3 a3 a2a3

a4 a2a3 a4 a1 a2a5 a3

a5 a3 a2a6 a3 a5 a3 a2a6 a3

a6 a3a6 a2 a6 a3a6

a7 a4 a7 a4a7

present nor absent for every boolean attribute coming from the corresponding
attribute in the original database. We have introduced three missing values in our
running example and the database r′ resulting from this operation is indicated
in Table 3.

The usual support computation for a pattern X in an incomplete database is
realized as follows: an object belongs to the support of X if all of its attributes
are present in X . If one of its attributes is missing or absent, the object does not
belong to the support. How to compute the supports for generalized patterns
in presence of missing values? Definition 3 does not plan this situation and the
problem is particularly accurate for computing the frequency of XY . Without
any recommendation, computations are performed by ignoring the missing values
(i.e, they are not taken into account).

Table 4 depicts this problem. This table gives the 1-free patterns with a min-
imum support of two objects. The left part relates the results in the complete
database, the right part in the incomplete one. For each pattern, the closure is
indicated. The right part lists the 1-free patterns of r′: a1a4 is 1-free in r and
no longer in r′. Furthermore, the right part includes patterns, such as a2a5 and
a4a7, which are not in r: we qualify them as incorrect.

Missing values lead to damages both on free patterns and their closures. As-
suming that an attribute a belongs to X ’s closure in the complete database: it
means that a is always present with X . If missing values appear on a, this asso-
ciation may break broken for some objects: a goes out from the closure (damage
on the closure) and Xa can become free (damage on the free pattern). In our
example, a4 is in a7’s closure in r, while it goes out from this closure in r′ because
of the missing value in the object o8. Thus, a4a7 is incorrectly declared 1-free.

Experiments on benchmarks from the UCI [6] emphasize these damages as
well. Starting from a complete database, we artificially introduce missing val-
ues according to a uniform probability. Then we mine the 3-free patterns and
measure the number of incorrect patterns relatively to the number of correct
patterns in the original context (cf. Figure 1). The number of incorrect patterns
differs according to the databases. It is less than 10% for the datasets pima,
wine, liver-disorders, servo and tic-tac-toe (the corresponding chart is

Mining Correct Properties in Incomplete Databases 213

not reported). For the datasets given on the left part of the figure, the number
of incorrect patterns is between 10 and 90% of the number of exact patterns.
In the right part, this quantity rises 300%, which means that for four computed
patterns, three are incorrect.

In real conditions where the complete database is not known, it is impossible to
differentiate good and bad patterns, and to foresee if a small or a big proportion
of incorrect patterns will appear. Our work aims at avoiding the damages by
correctly computing the k-free patterns in incomplete contexts.

page−blocks

lymphography

iris

glass

 0 5 10 15 20

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0

Missing values rate (%)

In
co

rr
ec

t p
at

te
rn

s
(%

)

zoo

solar−flare

 0

 50

 100

 150

 200

 250

 300 300

 250

 200

 150

 100

 50

 0
 0 5 10 15 20

Missing values rate (%)

In
co

rr
ec

t p
at

te
rn

s
(%

)

Fig. 1. Incorrect 3-free patterns in UCI datasets

3.2 Position of Our Work

There are several works which address the missing values issue in databases [15,16]
but contributions in the field of data mining are few. Arnaud Ragel [17] studied
association rules mining in presence of missing values by redefining the support
and the confidence, these rules may be used to a completion (or imputation) goal.
We will clearly state the differences with our work in Section 4.3). More recently,
[18] gives a basic completion method, founded on the probability of the different
attributes. The support of a pattern for an object is no longer boolean but prob-
abilistic. [19] computes prediction rules in the complete part of a database. These
rules provide intervals for continuous attributes.

Our work stems from the following principles:

– we do not want to impute the missing values before the knowledge discovery
stage, because it is a difficult operation without any specific knowledge.

– we wish to mine the whole incomplete database without reducing it to its
complete part. It means that we do not want to remove objects or attributes.

We do not assume any statistical hypothesis about the probability model of
the missing values. In order to deal with missing values, the next section defines
a modeling operator mv(). We will see that this formalization is useful because
it allows to define an incomplete database as the result of an operation removing
some values from the complete database. Then computations performed in an
incomplete database can characterize properties which are common to every
corresponding complete database.

214 F. Rioult and B. Crémilleux

The following shows that it is possible to discover valid knowledge for the com-
plete database under these hypothesizes. As stated in introduction, this principle
is not surprising: if we consider that missing values hide the true values of the
data, the frequencies of some patterns will only decrease (we do not know for
some objects if they are present). A frequent pattern in an incomplete database
only can be a fortiori frequent in the complete dataset. We will use the same
principle to compute correct k-free patterns in presence of missing values.

4 Mining k-Free Patterns in Incomplete Databases

We propose here a definition of the k-freeness property in an incomplete database.
We show that it enables to compute patterns ensuring the property of freeness in
every completion.

4.1 Missing Values Modeling Operator

As previously explained, our position for the missing value problem requires a
modeling operator. It defines the relation between an incomplete database and
every possible completion.

Definition 4 (Missing values modeling operator). Let r = (A, O, R) be a
boolean context. An operator mv() is named a missing values modeling operator
if it transforms a complete database r in mv(r) = (A, O, mv(R)). The new
binary relation mv(R) takes its values in {present, absent, missing} and satisfies
the following properties, for every attribute a in A, every object o in O, and
value ∈ {present, absent}:

1. mv(R)(a, o) = value ⇒ R(a, o) = value ;
2. R(a, o) = value ⇒ mv(R)(a, o) ∈ {value, absent} ;

Section 3.1 showed that computing the k-free patterns without precaution leads
to incorrect patterns. In our work, we correctly define the computation of the
k-freeness property:

Definition 5 (k-correct pattern). Let r′ be an incomplete database and mv()
a modeling operator for the missing values. A pattern Z is k-correct in r′ if for
every complete database r, (mv(r) = r′) ⇒ kFree(Z, r).

4.2 Temporarily Deactivating Objects

We introduce here the deactivation of objects in an incomplete database. It
differentiates on the one hand the objects which support or not a given pattern,
and on the other hand the incomplete objects where the decision of support can
not be taken. The deactivation enables to quantify the frequency gap between
the complete and the incomplete database. In presence of missing values, the
frequencies can indeed only decrease. In our example (Table 2), F(a3a5, r) = 3

Mining Correct Properties in Incomplete Databases 215

but F(a3a5, mv(r)) = 2 (Table 3 with r′ = mv(r)). In order to correctly compute
the frequency of a pattern X in mv(r), it is necessary to differentiate the objects
of mv(r) having a missing value among the attributes of X . These objects will
be temporarily deactivated in order to compute an estimation of supp(X, r) with
the help of supp(X, mv(r)), because it is impossible to decide if they do contain
X or not.

Definition 6 (Deactivated object). For a classical pattern X ⊆ A, an object
o∈O is deactivated if ∀a∈X, mv(R)(a, o)
=absent and ∃a ∈ X s.t. mv(R)(a, o) =
missing. We denote DES(X, mv(r)) for the objects of mv(r) deactivated for X.

Figure 2 exemplifies the notion of deactivation, by simultaneously presenting the
complete database r (on the left) and the incomplete one mv(r) (on the right).
We suppose that each object of the top part contains X and this part is named
rX . The down part is named rX .

Fig. 2. Database mv(r) and deactivated objects for X

On the right, the hatched zone shows the objects of mv(r) which contain
missing values. It is composed of six sets of objects, which are described below
(their composition is indicated for our example of Table 3, with X = a2a3):

Region A: (o2, o5) the objects without missing value, containing X ;
Region B: (no object in our example) the objects initially containing X , whose

missing values do not obscure the presence of X . These objects belong to
mv(r)X ;

Region C: (o6) the objects initially containing X , whose missing values hide
the presence of X and constitute DES(X, mv(rX));

Region D: (o8) the objects not containing X in the complete database, but
which could contain it with a suitable imputation of the missing values. The
object o8 does not contain the pattern a2a3 in the complete database of our
example, and it is preventively deactivated;

216 F. Rioult and B. Crémilleux

Region E: (o3) the incomplete objects not containing X in the original dataset
nor after any imputation of the missing values;

Region F: (o1, o4, o7) the complete objects which do not contain X .

In the incomplete database mv(r), each object is assigned in three different
groups for deciding the support of X :

Regions A and B: mv(r)X the objects supporting X , in spite of the missing
values of B;

Regions C and D: DES(X, mv(r)) the objects where the support of X is un-
decidable;

Regions E and F : the objects not supporting X .

The deactivation allows to precisely characterize the support difference be-
tween the incomplete database and the complete one:

Proposition 1. Let X be a classical pattern, r a database and mv a modeling
operator. DES(X, mv(rX)) = rX \ mv(r)X and |DES(X, mv(rX))| = F(X, r)−
F(X, mv(r)).

Let us detail this principle for our example and the pattern a2a3: ra2a3 =
{o2, o5, o6} and its frequency is 3. In the incomplete database, its frequency is 2
and DES(a2a3, mv(ra2a3)) = {o6}: we have the equality of Proposition 1. If the
complete dataset r is not known, rX is neither known, nor |DES(X, mv(rX))|.
But the support can be bounded with considering the deactivated objects in
mv(r) instead of mv(rX), because this database contains more objects than
mv(rX). In our example DES(a2a3, mv(r)) = {o6, o8} because of the confusion
induced in o8 by the missing value on a3 and a4. F(a2a3, r) is then between
F(a2a3, mv(r)) and F(a2a3, mv(r)) + |DES(a2a3, mv(r))|, i.e. between 2 and 4.

In the following, it is necessary to define the deactivation for the generalized
patterns. For that purpose, we use the inclusion-exclusion principle:

Definition 7 (Generalized deactivation)
des(XY , mv(rXY)) =

∑
∅⊆J⊆Y (−1)|J||DES(XJ, mv(rXJ))|.

The set DES(XY , mv(rXY)) is not defined, so we denote the generalized deac-
tivation with lower cases: des(XY , mv(rXY)). It allows nevertheless to quantify
the frequency difference between the complete and the incomplete database.

Proposition 2. des(XY , mv(rXY)) = F(XY , r) − F(XY , mv(r)).

This frequency gap can be negative. When the association between X and Y
exists in the complete database (F(XY , r) = 0), one missing value can delete
it in the incomplete one (F(XY , mv(r)) > 0). In this case, the difference is
negative. In our example, des(a7a4) = 0 − 1 = −1.

For the deactivated objects regarding an association X→ ∨Y , we define
|DES(X→ ∨Y , mv(rX→∨Y))| = |DES(X, mv(rX))| − des(XY , mv(rXY)). We
then have a similar behavior as emphasized in Propositions 1 and 2:
|DES(X→ ∨Y , mv(rX→∨Y))| = F(X→ ∨Y , r) − F(X→ ∨Y , mv(r)).

Mining Correct Properties in Incomplete Databases 217

Moreover, an object is deactivated for an associationX→ ∨Y if it is deactivated
for X , or if it contains X but every attribute of Y is missing. Denoting DES(∧Y,
mv(rX→∨Y)X) for these objects, we have |DES(X→ ∨Y , mv(rX→∨Y)) =
|DES(X, mv(rX→∨Y))| + |DES(∧Y, mv(rX→∨Y)X)|.

4.3 Differences with Ragel’s Approach

In this section, we set our deactivation principle with respect to A. Ragel’s
work [17,20]. To compute F(X, mv(r)), A. Ragel deactivates all objects con-
taining a missing value in X without regarding whether an object may support
X . In our example, o6 would be deactivated for a2a4 because a2 is missing. Nev-
ertheless, o6 cannot support a2a4 because o6 does not contain a4. It means that
there is no complete database where o6 can support a2a4. This observation led
M. Kryszkiewicz to propose a new definition [21]. In our paper, we use this
definition (cf. Definition 6).

4.4 k-Freeness Definition and Correction in Incomplete Databases

With the help of the deactivation of the incomplete objects, the frequency of
XY in r can be bounded by two quantities which are computed in mv(r) :

Property 1. F(XY , mv(r)) − |DES(∧Y, (mv(r))X)| ≤ F(XY , r) ≤ F(XY ,
mv(r)) + |DES(X, mv(r))|.

Proof. Proposition 2 says that F(XY , r) = F(XY , mv(r)) + des(XY , mv(rXY)).
The deactivation of an association allows to write des(XY , mv(rXY)) =
|DES(X, mv(rX))| − |DES(X→ ∨Y , mv(rX→∨Y))|. On one hand, we have
the upper bound des(XY , mv(rXY)) ≤ |DES(X, mv(rX))|, and when avoid-
ing the restriction on the deactivation database, des(XY , mv(rXY)) ≤
|DES(X, mv(r))|. On the other hand, we break up des(XY , mv(rXY)) =
|DES(X, mv(rX))| − (|DES(X, mv(rX→∨Y))| + |DES(∧Y, mv(rX→∨Y)X)|) =
(|DES(X, mv(rX))| − |DES(X, mv(rX→∨Y))|) − |DES(∧Y, mv(rX→∨Y)X)|. The
difference |DES(X, mv(rX))|− |DES(X, mv(rX→∨Y))| is positive so we have the lower
bound des(XY , mv(rXY)) ≥ |DES(∧Y, mv(rX→∨Y)X)|. Without the restriction on
the deactivation database, des(XY , mv(rXY)) ≥ |DES(∧Y, mv(r)X)|.

The k-freeness property can be defined in incomplete databases with the bounds
for the frequency of XY .

Definition 8 (k-freeness in incomplete databases)

– A pattern Z is k-free in mv(r) and we denote kFree(Z, mv(r)) if and only
if ∀XY = Z, |Y | ≤ k, F(XY , mv(r)) − |DES(∧Y, (mv(r))X)| > 0.

– A pattern Z is k-dependent in mv(r) and we denote kDepdt(Z, r) if and only
if ∃XY = Z, |Y | ≤ k, F(XY , mv(r)) + |DES(X, mv(r))| = 0.

k-freeness and k-dependence are independently introduced. Section 4.5 will jus-
tify this distinction because these definitions are not reverse, due to the missing
values.

218 F. Rioult and B. Crémilleux

Let us first note that, in a complete database, our definition of the k-freeness
is compatible with the classical Definition 3. In this case, the set of deactivated
objects is empty when there is no missing values. It is an important point in
order to design algorithms which work indifferently on complete or incomplete
contexts.

The k-freeness in an incomplete database is linked to this in a complete
database with the important following theorem:

Theorem 1 (k-freeness correction). Let r′ be an incomplete database and
mv() a missing values modeling operator. For every complete database r such
that mv(r) = r′ and every pattern Z,
- kFree(Z, r′) =⇒ kFree(Z, r);
- kDepdt(Z, r′) =⇒ ¬kFree(Z, r).
The k-free patterns of r′ are k-correct.

Proof. Property 1 shows that F(XY , r) is bounded by F(XY , r′)−|DES(∧Y, r′X)|
and F(XY , r′) + |DES(X, r′)|. If the lower bound is strictly positive, F(XY , r)
is also strictly positive then non null and the pattern is k-free in r. If the upper
bound is null, F(XY , r) is null and the pattern is not k-free in r.

Computed with Definition 8, the k-free patterns are then k-correct, i.e. they
are k-free in every database completion. In [22,23], this correction is shown for
the particular case when k = 1. These definitions of the k-freeness and the k-
dependence allow to compute properties which are true in every completion: our
definitions are correct. They are also complete because they characterize all
k-free patterns in every completion:

Theorem 2 (k-freeness completeness). Let r′ be an incomplete database.
If Z is k-free in every complete database r such that there exists a modeling
operator mv() with mv(r) = r′, then Z is k-free in r′: the k-correct patterns of
r′ are k-free in r′.

Proof. Suppose the converse, i.e. let Z be k-free in every database r such that
mv(r) = r′ but non k-free in r′. ∃XY = Z | F(XY , r′) − DES(∧Y, r′X) ≤ 0.
Let r0 be the database stemming from r′ with replacing each missing value by
an absent value, then mv(r0) = r′. In r0, the deactivation is null because r0 is
complete, and the computation of F(XY , r0) gives the same result as in r′ where
it is done with the frequencies of the present attributes. F(XY , r0) is then null
and Z is not k-free is r0 : contradiction.

In an incomplete database, every computed k-free pattern is k-correct and every
pattern which is k-free in every completion of the database is covered by this
definition.

4.5 Properties of the k-Freeness in Incomplete Databases

The k-freeness and the k-dependency are not complementary: some patterns will
be neither k-free nor k-dependent because it is sometimes impossible to decide

Mining Correct Properties in Incomplete Databases 219

if they are present or not in an object. The table below details the computation
of 1-freeness for the pattern a4a7:

X Y F(XY , mv(r)) |DES(∧Y, mv(r)X)| |DES(X, mv(r))| 1-free? 1-dependent?
a4 a7 1 1 1 1 − 1 ≯ 0 : no 1 + 1 �= 0 : no
a7 a4 1 1 1 1 − 1 ≯ 0 : no 1 + 1 �= 0 : no

We now give a vital property for designing k-free patterns mining algorithms.
It refers to the (anti)-monotonicity of the k-freeness or dependency. The k-
freeness does not satisfy a property of (anti-)monotonicity, but Theorem 3 indi-
cates that the k-dependency is monotone.

Theorem 3 (Monotonicity of the k-dependency property). The
k-dependency property is monotone, i.e. for all patterns Z and every database
r′, Z ⊆ Z ′ ⇒ (kDepdt(Z, r′)
⇒ kDepdt(Z ′, r′)).

Proof. Let Z be a k-dependent pattern. ∃XY = Z, F(XY , mv(r)) +
|DES(X, mv(r))| = 0 or F(XY , mv(r)) = 0 and |DES(X, mv(r))| = 0.
F(XY , mv(r)) = 0 means that for all object o ∈ O, X ⊆ o ⇒ Y ∩ o
= ∅.
A fortiori, X ⊆ o ⇒ aY ∩ o
= ∅ for all a ∈ A, then F(XaY , mv(r)) = 0. By
induction on all attributes of Z ′\Z, one deduces that Z ′ is also k-dependent.

With this result, the framework of the level-wise algorithms can be used with the
negation of the k-dependency constraint, and we have written the MV-k-miner
prototype.

4.6 Prototype MV-k-miner

We have designed the MV-k-miner prototype which returns the correct and com-
plete collection of k-free patterns. It is based on the mining of k-dependent pat-
terns. It runs on a two-step process: a classical level-wise scan of the search space
(Algorithm 1) and the candidate process phase (Algorithm 2).

MV-k-miner stores DES(X, mv(r)) and DES(∧Y, mv(rX)) for each pattern.
This allows to compute two couples of bounds for F(X, mv(r)) during the
generation: the first couple is based on DES(X, mv(r)) and stands for the k-
dependency. The corresponding pruning criterion is only used during the gen-
eration phase, so these bounds are not stored. The second couple is related to
DES(∧Y, mv(rX)) and stands for the k-freeness. It is used both during the gen-
eration phase and the scan phase, so these bounds are stored. The memory cost
is finally higher than for a classical algorithm in complete databases, but the
execution time is comparable. Our implementation should take benefit of recent
development in k-free pattern mining [24].

5 Experiments on UCI Benchmarks

We show here the relevance of our missing values treatment by reproducing
the experiments described in Section 3.1. We measure the number of 3-free

220 F. Rioult and B. Crémilleux

Data : an incomplete database mv(r), a frequency minimum threshold γ, and
k > 0 a rule depth

Result : the set S of the patterns satisfying kFree

Dl is the set of patterns of length l, k-dependent or non frequent ;
l = 1; initialize Cand1 with the singletons ;
repeat

/*compute the disqualifiers */
Dl = {X ∈ Candl s.t. kDepdt(X, mv(r)) ∨ ¬frequent(X, mv(r))} ;
/*discard disqualiers */
Sl = {X ∈ Candl\Dl | kFree(X,mv(r))} ;
generate the candidates in Candl+1 (cf. algorithm 2);
l = l + 1 ;

until Candl = ∅;
return S =

⋃
l Sl ;

Algorithm 1. MV-k-miner: k-free patterns miner in incomplete databases

Data : a set Sl of k-free patterns with length l

Result : the set Candl+1 of the pattern candidate to kDepdt

for every candidate Z, generated by two patterns in Sl sharing the same
l − 1-prefix do

begin
verify that all the Z′ � Z of length |Z| − 1 are k-free ;
/*compute the frequency bounds */
build the tree of the patterns X and their frequencies such that |Z\X| ≤ k ;
for every X in the tree, compute the alternated sum of the frequency of its
subsets, that constitutes a preliminary version of
σ(X, Y) =

∑
∅⊆J�Y (−1)|J|F(XJ) for bounding F(Z) ;

compute σ(X,Y) − |DES(∧Y, mv(rX))| and σ(X,Y) + |DES(X, mv(r))| ;
store the bound σ(X,Y) + |DES(X, mv(r))| pour F(Z) ;
if the bounds are equal, decline the candidate ;

end
end

Algorithm 2. l + 1-candidate generation

patterns computed with MV-k-miner in mv(r), compared to r. The results for
solar-flare and zoo are reported in Figure 3. In the other datasets, the same
trends appear. For each dataset, the running time of the whole experience is
about 10 seconds.

As expected, the number of patterns recovered by our method decreases ac-
cording to the number of missing values. Indeed, each pattern is k-correct or
k-free in every complete dataset, whose number is exponential in the number of
missing values. But MV-k-miner computes only k-correct patterns. While data
mining is known to produce a huge number of patterns, their correctness is es-
sential. Missing values damages are then avoided and this result opens the way
for the uses of k-free patterns mentioned in Section 2.3. In particular, the fu-
ture of this work has to address the interestingness of the correct k-free patterns

Mining Correct Properties in Incomplete Databases 221

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 15 10 5 0

Missing values rate (%)

3−
fr

ee
 p

at
te

rn
s

(%
)

 20 0 5 10 15 20
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Missing values rate (%)

3−
fr

ee
 p

at
te

rn
s

(%
)

solar-flare zoo

Fig. 3. Proportion of 3-free patterns in mv(r) (r gives 100 %)

during a supervised classification process, according to the approach based on
minimal k-free patterns, as outlined in Section 2.3.

6 Conclusion

Without any suitable treatment, missing values in incomplete databases lead the
k-free pattern mining algorithms to produce incorrect patterns. With the help of
a modeling operator, we have introduced the notion of k-correct patterns in an
incomplete database. These patterns are k-free in every corresponding complete
database. We have then proposed a new definition for the k-free property in an in-
completedatabase.Thanks to this newdefinition, theminedpatterns arek-correct,
and all k-correct patterns are mined: this avoids damages due to missing values.

Our perspectives address now the classification with generalized associations
and its application to missing values imputation. The first step of this project con-
sists in studying how to compute generalized closures in incomplete databases.

References

1. Grzymala-Busse, J., Hu, M.: A comparison of several approaches to missing at-
tribute values in data mining. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS
(LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001)

2. Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. In:
Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS
(LNAI), vol. 2838, pp. 71–82. Springer, Heidelberg (2003)

3. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Elo-
maa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431,
Springer, Heidelberg (2002)

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Intl.
Conference on Very Large Data Bases (VLDB’94), Santiago de Chile, Chile, pp.
487–499 (1994)

5. Bykowski, A., Rigotti, C.: A condensed representation to find frequent patterns. In:
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
Santa Barbara, USA, pp. 267–273. ACM Press, New York (2001)

222 F. Rioult and B. Crémilleux

6. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
7. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining minimal

non-redundant association rules using frequent closed itemsets. In: International
Conference on Deductive and Object Databases (DOOD’00), pp. 972–986 (2000)

8. Zaki, M.: Generating non-redundant association rules. In: ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, Boston, USA, pp.
34–43. ACM Press, New York (2000)

9. Rioult, F.: Extraction de connaissances dans les bases de données comportant des
valeurs manquantes ou un grand nombre d’attributs. PhD thesis, Université de
Caen Basse-Normandie, France (2005)

10. Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph
transversals, and machine learning. In: ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS’97), Tucson, USA, ACM Press,
New York (1997)

11. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

12. Antonie, M.L., Zäıane, O.: An associative classifier based on positive and nega-
tive rules. In: ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’04), Paris, France, ACM Press, New York (2004)

13. Antonie, M.L., Zäıane, O.: Mining positive and negative association rules: An ap-
proach for confined rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pe-
dreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Hei-
delberg (2004)

14. Jaroszewicz, S., Simovici, D.: Support approximations using bonferroni-type in-
equalities. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS
(LNAI), vol. 2431, pp. 212–224. Springer, Heidelberg (2002)

15. Dyreson, C.E.: A Bibliography on Uncertainty Management in Information Sys-
tems. In: Uncertainty Management in Information Systems, Kluwer Academic Pub-
lishers, Dordrecht (1997)

16. Levene, M., Loizou, G.: Database design for incomplete relations. ACM Transac-
tions on Database Systems 24(1), 80–126 (1999)

17. Ragel, A., Crémilleux, B.: Mvc - a preprocessing method to deal with missing
values. Knowledge-Based Systems 12(5-6), 285–291 (1999)

18. Nayak, J., Cook, D.: Approximate association rule mining. In: Florida Artificial
Intelligence Research Symposium, Key West, Florida, USA, pp. 259–263 (2001)

19. Jami, S., Jen, T., Laurent, D., Loizou, G., Sy, O.: Extraction de régles d’association
pour la prédiction de valeurs manquantes. In: Colloque Africain sur la Recherche
en Informatique (CARI) (2004)

20. Ragel, A., Crémilleux, B.: Treatment of missing values for association rules. In: Wu,
X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 258–270.
Springer, Heidelberg (1998)

21. Kryszkiewicz., M.: Association rules in incomplete databases. In: Zhong, N., Zhou,
L. (eds.) Methodologies for Knowledge Discovery and Data Mining. LNCS (LNAI),
vol. 1574, pp. 84–93. Springer, Heidelberg (1999)

22. Rioult, F., Crémilleux, B.: Condensed representations in presence of missing values.
In: Berthold, M.R., Lenz, H-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003.
LNCS, vol. 2810, pp. 578–588. Springer, Heidelberg (2003)

23. Rioult, F., Crémilleux, B.: Représentation condensée en présence de valeurs man-
quantes. In: XXIIé congrés Inforsid, Biarritz, France, pp. 301–317 (2004)

24. Calders, T., Goethals, B.: Quick inclusion-exclusion. In: Bonchi, F., Boulicaut,
J.-F. (eds.) KDID 2005. LNCS, vol. 3933, Springer, Heidelberg (2006)

On Interactive Pattern Mining
from Relational Databases

Francesco Bonchi1, Fosca Giannotti1, Claudio Lucchese2,3,
Salvatore Orlando2,3, Raffaele Perego3, and Roberto Trasarti1

1 Pisa KDD Laboratory, ISTI - CNR,
Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

2 Computer Science Dep., University Ca’ Foscari
Via Torino 155, Venezia Mestre, Italy
3 Pisa HPC Laboratory, ISTI - CNR,

Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy

Abstract. In this paper we present ConQueSt, a constraint based
querying system devised with the aim of supporting the intrinsically
exploratory (i.e., human-guided, interactive, iterative) nature of pattern
discovery. Following the inductive database vision, our framework pro-
vides users with an expressive constraint based query language which
allows the discovery process to be effectively driven toward potentially
interesting patterns. Such constraints are also exploited to reduce the
cost of pattern mining computation. We implemented a comprehensive
mining system that can access real world relational databases from which
extract data. After a preprocessing step, mining queries are answered by
an efficient pattern mining engine which entails several data and search
space reduction techniques. Resulting patterns are then presented to the
user, and possibly stored in the database. New user-defined constraints
can be easily added to the system in order to target the particular ap-
plication considered.

1 Introduction

According to the inductive database vision [16], the task of extracting useful and
interesting knowledge from data is just an exploratory querying process, i.e.,
human-guided, iterative and interactive. The analyst, exploiting an expressive
query language, drives the discovery process through a sequence of complex min-
ing queries, extracts patterns satisfying some user-defined constraints, refines the
queries, materializes the extracted patterns as first-class citizens in the database,
combines the patterns to produce more complex knowledge, and cross-over the
data and the patterns. Therefore, an Inductive Database system should provide
the following features:

Coupling with a DBMS. The analyst must be able to retrieve the portion of
interesting data (for instance, by means of SQL queries). Moreover, extracted
patterns should also be stored in the DBMS in order to be further queried
or mined (closure principle).

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 42–62, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

On Interactive Pattern Mining from Relational Databases 43

Expressiveness of the query language. The analyst must be able to inter-
act with the pattern discovery system by specify declaratively how the de-
sired patterns should look like and which conditions they should satisfy. The
analyst is supposed to have a high-level vision of the pattern discovery sys-
tem, without worrying about the details of the computational engine, in the
same way as a database user has not to worry about query optimization.
The task of composing all constraints and producing the most efficient min-
ing strategy (execution plan) for a given query should be thus completely
demanded to the underlying system.

Efficiency of the mining engine. Keeping query response time as small as
possible is, on the one hand necessary, since our goal is to give frequent
feedbacks to the user allowing realistic human-guided exploration. On the
other hand, it is a very challenging task, due to the exponential complexity
of pattern discovery computations. To this end, data and search space re-
duction properties of constraints should be effectively exploited by pushing
them within the mining algorithms. Pattern discovery is usually a highly
iterative task: a mining session is usually made up of a series of queries (ex-
ploration), where each new query adjusts, refines or combines the results of
some previous queries. It is important that the mining engine adopts tech-
niques for incremental mining; i.e. reusing results of previous queries, in order
to give a faster response to the last query presented to the system, instead
of performing again the mining from scratch.

Graphical user interface. The exploratory nature of pattern discovery im-
poses to the system not only to return frequent feedbacks to the user, but
also to provide pattern visualization and navigation tools. These tools should
help the user in visualizing the continuous feedbacks form the systems, al-
lowing an easier and human-based identification of the fragments of inter-
esting knowledge. Such tools should also play the role of graphical querying
interface: the action of browsing pattern visualization should be tightly inte-
grated (both by a conceptual and engineering point of view) with the action
of iteratively querying.

Starting from the above requirements we designed ConQueSt, an exploratory
pattern discovery system equipped with a simple, yet powerful, query language
(named spql for simple pattern query language) and a user friendly interface for
accessing the underlying DBMS. While designing ConQueSt query language,
architecture and user interface, we have kept in mind all the tasks involved
in the typical knowledge discovery process [11]: (i) source data selection, (ii)
data preparation and pre-processing, (iii) pattern discovery and model building.
The user supervises the whole process, not only defining the parameters of the
three tasks, but also evaluating the quality of the outcome of each step and
possibly re-tuning the parameters of any step. Moreover, the user is in charge
of interpreting and evaluating the extracted knowledge, even if the system must
provide adequate support for this task. As we will show in this paper, the three
main tasks of the knowledge discovery process are represented both in the query
language and in the architecture of the ConQueSt system.

44 F. Bonchi et al.

Fig. 1. ConQueSt knowledge discovery process

ConQueSt is the result of a joint work of the Pisa KDD (Knowledge Discov-
ery and Delivery) and HPC (High Performance Computing) Laboratories: it is
built around a scalable and high-performance constraint-based mining engine ex-
ploiting state-of-the-art constraint pushing techniques, as those ones developed
in the last three years by our two labs [24,6,5,7,8].

1.1 Constraint Based Pattern Mining

Devising fast and scalable algorithms, able to crunch huge amount of data, has
been so far one of the main goal of data mining research. Recently, researchers
realized that in many practical cases it does not matter how much efficiently
knowledge is extracted, since the volume of the results themselves is often embar-
rassing, and creates a second order mining problem for the human expert. This
situation is very common in the case of association rules and frequent pattern
mining [2], where the identification of the fragments of interesting knowledge,
blurred within a huge quantity of mostly useless patterns, is very difficult.

The constraint-based pattern mining paradigm has been recognized as one
of the fundamental techniques for inductive databases: user-defined constraints
drive the mining process towards potentially interesting patterns only. More-
over, they can be pushed deep inside the mining algorithm in order to deal
with the exponential search space curse, achieving better performance [28,23,15].
Constraint-based frequent pattern mining has been studied a lot as a query
optimization problem, i.e., developing efficient, sound and complete evaluation
strategies for constraint-based mining queries. To this aim, properties of con-
straints have been studied comprehensively, e.g., anti-monotonicity, succinct-
ness [23,19], monotonicity [18,9,5], convertibility [25], loose anti-monotonicity
[8], and on the basis of such properties efficient computational strategies have
been defined. The formal problem statement follows.

On Interactive Pattern Mining from Relational Databases 45

Definition 1 (Constrained Frequent Itemset Mining). LetI ={x1, ..., xn}
be a set of distinct items, where an item is an object with some predefined attributes
(e.g., price, type, etc.). An itemset X is a non-empty subset of I. A transaction
database D is a bag of itemsets t ∈ 2I, usually called transactions. A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint as
the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. The
support of an itemset X in database D, denoted suppD(X), is the number of
transactions which are superset of X. Given a user-defined minimum support,
denoted σ, an itemset X is called frequent in D if suppD(X) ≥ σ. This defines
the minimum frequency constraint: Cfreq[D,σ](X) ⇔ suppD(X) ≥ σ. In general,
given a conjunction of constraints C the constrained frequent itemsets mining
problem requires to compute Th(Cfreq) ∩ Th(C).

While developing ConQueSt we have tried to reduce as much as possible
the gap existing between real-world data stored in relational DBMS, and the
constraint-based pattern discovery paradigm, as defined above. In fact, the data
is usually stored in relational databases, and thus in the form of relations and
not of transactions. In sections 2 and 3.2 we explain how transactions are defined
and constructed both at the query language and at the system level. Moreover,
the constraint-based mining paradigm assumes that the constraints are defined
on attributes of the items that are in functional dependency with the items. This
rarely the case in real-world data: just think about the price of one item in a
market over a period of one month. ConQueSt provides support to solve this
cases, allowing the user to reconstruct the ideal situation of functional depen-
dency, for instance, by choosing to take the average of prices of the item in the
period as price attribute.

In this paper we provide an overview of ConQueSt’s main design choices
and features. The paper is organized as follows. In Section 2 we provide a brief
overview of the spql language which is at the basis of our system. Then in Section
3 we provide an high level description of ConQueSt’s architecture, we then
describe the three main modules in the sections that follow. In particular, Section
3.1 describes the graphical user interface and how the interactions between the
user and the system actually happens; Section 3.2 describes the query interpreter
and pre-processor modules; Section 3.3 describes the mining engines and the
algorithmic choices underlying it. Finally in Section 4 we discuss other existing
mining systems and query languages, and in Section 5 we draw some conclusions.

2 A Simple Data Mining Query Language

According to the constraint-based mining paradigm, the data analyst must have
a high-level vision of the pattern discovery system, without worrying about the
details of the computational engine, in the very same way a database designer
has not to worry about query optimizations. The analyst must be provided with
a set of primitives to be used to communicate with the pattern discovery sys-
tem, using a query language. The analyst just needs to declaratively specify

46 F. Bonchi et al.

in the pattern discovery query how the desired patterns should look like and
which conditions they should obey (a set of constraints). Such rigorous interac-
tion between the analyst and the pattern discovery system, can be implemented
following [20], where Mannila introduces an elegant formalization for the notion
of interactive mining process: the term inductive database refers to a relational
database plus the set of all sentences from a specified class of sentences that are
true w.r.t. the data. In other words, the inductive database is a database frame-
work which integrates the raw data with the knowledge extracted from the data
and materialized in the form of patterns. In this way, the knowledge discovery
process consists essentially in an iterative querying process, enabled by a query
language that can deal either with raw data or patterns.

Definition 2. Given an instance r of a relation R, a class L of sentences (pat-
terns), and a selection predicate q, a pattern discovery task is to find a theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}

The selection predicate q indicates whether a pattern s is considered interesting.
In the constraint-based paradigm, such selection predicate q is defined by a
conjunction of constraints. In this Section, going through a rigorous identification
of all its basic components, we provide a definition of constraint-based frequent
pattern mining query over a relational database DB [4].

The first needed component is the data source: which table must be mined
for frequent patterns, and which attributed do identify transactions and items.

Definition 3 (Data Source). Given a database DB any relational expression
V on preds(DB) can be selected as data source.

Definition 4 (Transaction id). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our data source. Any subset
of attributes T ⊂ sch(V) can be selected as transaction identifier, and named
transaction id.

Definition 5 (Item attribute). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our data source. Given a subset
of attributes T ⊂ sch(V) as transaction id, let Y = {y|y ∈ sch(V)\T ∧ T → y
does not hold}; we define an attribute I ∈ Y an item attribute provided the
functional dependency T I → Y \I holds in DB.

Proposition 1. Given a relational database DB, a triple 〈V , T , I〉 denoting the
data source V, the transaction id T , the item attribute I, uniquely identifies a
transactional database, as defined in Definition 1.

We next distinguish between attributes which describe items (descriptive at-
tributes), from attribute which describe transactions (circumstance attributes).

Definition 6 (Circumstance attribute). [12] Given a database DB and a
relation V derived from preds(DB). Let V with attributes sch(V) be our data
source. Given a subset of attributes T ⊂ sch(V) as transaction id, we define any
attribute A ∈ sch(R) where R is a relation in preds(DB) circumstance attribute
provided that A /∈ T and the functional dependency T → A holds in DB.

On Interactive Pattern Mining from Relational Databases 47

Definition 7 (Descriptive attribute). Given a database DB and a relation
V derived from preds(DB). Let V with attributes sch(V) be our data source.
Given a subset of attributes T ⊂ sch(V) as transaction id, and given I as item
attribute; we define descriptive attribute any attribute A ∈ sch(R) where R is a
relation in preds(DB), provided the functional dependency I → A holds in DB.

Consider the mining view: sales(tID, locationID, time, product, price)
where each attribute has the intended semantics of its name and with tID acting
as the transaction id. Since the functional dependency {tID} → {locationID}
holds, locationID is a circumstance attribute. The same is true for time. We also
have {tID, product} → {price}, and {product} → {price}, thus product is
an item attribute, while price is a descriptive attribute.

Constraints, as introduced in the previous Section (see Definition 1), describes
properties of itemsets, i.e., a constraint C is a boolean function over the domain
of itemsets: C : 2I → {true, false}. According to this view, constraints are only
those ones defined on item attributes (Definition 5) or descriptive attributes
(Definition 7).

Constraints defined over the transaction id (Definition 4) or over circumstance
attributes (Definition 6) are not constraints in the strict sense. Indeed, they
can be seen as selection conditions on the transactions to be mined and thus
they can be satisfied in the definition of the mining view. Consider the relation:
sales(tID, locationID, time, product, price) where each attribute has
the intended semantics of its name and with tID acting as the transaction id.
Since the functional dependency {tID} → {locationID} holds, locationID is
a circumstance attribute. The constraints locationID ∈ {Florence, Milan,
Rome} is not a real constraint of the frequent pattern extraction, indeed it is
a condition in the mining view definition, i.e., it is satisfied by imposing such
condition in the relational expression defining the mining view (for a deeper
insight on circumstance attributes and constraints defined over them see [27,12]).

We have provided all the needed components for defining a constraint-based
frequent pattern query as follows.

Definition 8 (Constraint-based frequent pattern query). Givenadatabase
DB, let the quintuple 〈V , T , I, σ, C〉 denotes the mining view V, the transaction id
T , the item attribute I, the minimum support threshold σ, and a conjunction of
constraints on itemsets C.

The primitive for constraint-based itemset mining takes in input such quintu-
ple and returns a binary relation recording the set of itemsets which satisfy C and
are frequent (w.r.t. σ) in the transaction database 〈V , T , I〉, and their supports:

freq(V , T , I, σ, C) = {(I, S) | C(I) ∧ supp〈V,T ,I〉(I) = S ∧ S ≥ σ}

The spql query language that is at the basis of ConQueSt, is essentially syntac-
tic sugar, in SQL-like style, to express constraint-based frequent pattern queries
like freq(V , T , I, σ, C). It is a superset of SQL, in a double sense: first any spql

query contains a SQL query needed to define the data source; second, in Con-

QueSt we allow the user to define any SQL query, which could be useful, for
instance, to pre-process the data or post-process the extracted patterns.

48 F. Bonchi et al.

Table 1. An example spql mining query

1. MINE PATTERNS WITH SUPP>= 5 IN
2. SELECT product.product_name, product.gross_weight, sales_fact_1998.time_id,

sales_fact_1998.customer_id, sales_fact_1998.store_id
3. FROM [product], [sales_fact_1998]
4. WHERE sales_fact_1998.product_id=product.product_id
5. TRANSACTION sales_fact_1998.time_id, sales_fact_1998.customer_id,

sales_fact_1998.store_id
6. ITEM product.product_name
7. ATTRIBUTE product.gross_weight
8. CONSTRAINED BY Sum(product.gross_weight)<=30

In Table 1 we report a true spql mining query, defined within ConQueSt on
the famous foodmart2000 datamart. A simple spql query consists of four parts:

1. the user-defined minimum support threshold σ in line 1;
2. the SQL style SELECT statement to specify the data source V to be extracted

from the DB (lines 2–4);
3. the mining view definition by means of TRANSACTION (to identify T), ITEM

(to identify I), and of ATTRIBUTE on which constraints are defined (lines
5–7);

4. the conjunction of constraints C that the extracted patterns must satisfy in
line 8.

Since the data source is in relational form, a pre-processing step is needed to
create a set of transactions, which are the input of any frequent pattern mining
system. Transaction are created by grouping ITEM by the attributes specified
in the TRANSACTION clause. For instance, in the query Table 1, transactions
are built groping sales by time id, customer id and store id: this means that
we consider a unique transaction when we got the same customer in the same
store at the same time. It is worth noting that with this simple mechanism of
defining transactions we can easily handle both the inter-attribute and the intra-
attribute pattern mining cases. We have chosen a well defined set of classes of
constraints. These constraints have been deeply studied and analyzed in the past
few years, in order to find nice properties that can be used at mining time to
reduce the computational cost. In particular the ConQueSt system is able to
deal with anti-monotone, succinct [23], monotone [5], convertible [26] and loose
anti-monotone [8] constraints. Such classes include all the constraints based on
the aggregates listed in Table 2.

It is worth noting how all steps of the knowledge discovery process, i.e., (i)
source data selection, (ii) data preparation and pre-processing and (iii) pattern
discovery, are expressed within the typical spql query. In particular, the source
data selection is expressed by means on the select statement, the preprocessing
is expressed by means of items and transactions identification, and the mining
is expressed by listing the desired constraints, including the frequency one.

On Interactive Pattern Mining from Relational Databases 49

Table 2. The set of available constraints

subset subset supset superset
asubset attributes are subset len length
asupset attributes are superset acount attributes count
min minimum max maximum
range range sum sum
avg average var variance
std standard deviation spv sample variance
md mean deviation med median

This is a spql query in its basilar form. Different kinds of spql query exist,
since we have extended the language to accommodate the use of soft constraints
[3], and discretization tasks. In ConQueSt we have introduced the possibility
of defining queries according to the new paradigm of pattern discovery based on
soft constraints [3], i.e., where constraints are no longer rigid boolean functions.
This allows the user to describe what is the “shape” of the patterns of interest,
and receive back those patterns that “mostly” exhibits such shape. The patterns
are also sorted according to a measure of interestingness, i.e., how much a pattern
agrees with the given description. Having this order, allows also to define top-k
queries. In this paper we avoid entering in the details of these extensions. The
interested reader can find an example of spql query using soft constraints in
the paper [3] in this volume.

In Table 3 a portion of spql formal grammar definition is provided.

Table 3. A portion of spql formal grammar definition

<SpqlQuery> ::= (<SqlQuery>| <MineQuery> | <Discretize>)
<MineQuery> ::=<Header>
<SqlQuery>
<MiningDefinition>
<Constraints>
<Header> ::= MINE PATTERNS WITH SUPP >= <Number>
<MiningDefinition> ::= TRANSACTION <Transaction>
 ITEM
<Item>
[ATTRIBUTE <Attribute>]
<Transaction> ::= <Field>[<Separator><Transaction>]
<Item> ::= <Field>[<Separator><Item>]
<Attribute> ::= <Field>[<Separator><Attribute>]
<Field> ::= <String>.<String>
<Constraints> ::= CONSTRAINED BY <Function>
<Function> ::= (<FunctionM>(<Field>)<Op><Number> | <FunctionS>(<Field>)<Op><Set> |

<FunctionN>()<Op><Number>) [<Separator>(Function)]
<FunctionM> ::= (Minimum | Maximum | Range | Variance | Std_Deviation | Median | Average | Sum)
<FunctionS>::= (Subset_of | Superset_of | Attribute_Subset_of | Attribute_Superset_of)
<FunctionN>::= Length
<Op> ::= (>|<|>=|<=)
<Separator> ::= ,

 ::= \n
<Set> ::= <String>[<Separator><Set>]
<Discretize>::= DISCRETIZE <Field> AS <Field>
 FROM <String>
 IN
(<Method>| <Intervals>) BINS
 SMOOTINGH BY <Smethod>
<Method> ::= (EQUALWIDTH | EQUALDEPTH)
<Smethod> ::= (AVERAGE | COUNT | BIN BOUNDARIES)
<Intervals>::= (<Number> <Separator> <Number>)[<Separator> <Intervals>]
<Number> ::= (0-9) [<Number>]
<String> ::= (a-z|A-Z|0-9) [<String>]

50 F. Bonchi et al.

3 Architecture of the System

The ConQueSt architecture, as shown in Fig. 2, is composed of three main
modules:

– the Graphical User Interface (GUI);
– the Query Interpreter and and Pre-processor (QIP);
– the Mining Engine (ME).

For portability reasons, the GUI and the QIP have been implemented in Java,
while the ME was implemented in C++ in order to provide high performance
during the most expensive task.

Fig. 2. ConQueSt architecture

In our vision, a mining system has to be tightly coupled with DMBS softwares,
because databases are the place where data is. Our choice is to allow all the three
main components to access independently a database. In fact, the GUI must
show to the user the data present in the database, the QIP must retrieve the
data of interested and prepare them for the mining engine, which will eventually
store the discovered patterns in the database. To this end, the three components
stand on a JDBC [1] abstraction layer, in order to provide independency from
the particular database server software where data are stored. In fact, the JDBC
API provides connectivity to a wide range of SQL databases. ConQueSt for
instance, can retrieve data from PostgreSQL as well as from Microsoft Access
database servers, and additional compatibility can be provided just by adding
the JDBC plug-in provided by the database server software house.

The separation in these modules reflects the separation among different, well
defined and independent tasks. In fact, every module could be a single software
package running on a different machine. For instance, the GUI may run on the
user machine, while the QIP may be located in a different site where a fast
access to the database is provided, and finally the ME may be running on an
high performance cluster serving many users with many different tasks. Finally,
the JDBC layer allow us to ignore the physical location of the database server.

Actually, a communication protocol is established, flowing from the GUI,
through the QIP and ending at the mining engine. The GUI, interactively with

On Interactive Pattern Mining from Relational Databases 51

the user, creates a spql query which is then sent to the query interpreter. The
latter preprocesses the data of interest and translates part of the spql query
in an list of constraints. These constraints, and a filesystem pointer to the pre-
processed data are finally sent to the ME which can now start the mining process.
As long as this simple protocol is fulfilled, every single component can increase
its features and improve its functionalities independently from the others.

3.1 Graphical User Interface

The user interface (see a screen-shot in Figure 3) is designed not only to stand
in between the user and the mining engine, but also to stand between the user
and the data. Data is assumed to be in the form of a relational database. As
soon as the user connects to the database, a set of information and statistics are
collected and presented in many ways. The idea is to provide a simple and high
level mean to the user to define the mining task. It is simple, since the user can
reach his goal just by using user friendly mouse-clicks. Moreover, many high level
information and statistics are provided. Finally, the GUI is complete, meaning
that any operation related to the definition of a mining query can be done just
by mouse-clicks without the need of editing an spql query by hand.However, in
the case an expert user prefers to write a query by hand, or simply to change
an existing one, ConQueSt’s inverse-parser takes care of updating the GUI’s
modules on-the-fly, in such a way that exists always a perfect correspondence

Fig. 3. ConQueSt graphical user interface

52 F. Bonchi et al.

(a) (b)

Fig. 4. ConQueSt The upper-right corner of the GUI, corresponding to the query in
Table 1 (a), and the lower-right corner with the description of the education attribute
of the customer table (b)

between the spql query textually reported in the bottom panel of the GUI, and
its definition contained in the central area and in the two upper-right corner
panels of the GUI. In Figure 4(a), we report the two upper-right corner panels
for the query in Table 1.

Navigating the Structure of the Database. Most of the GUI is dedicated
to the Desk Area. Here the tables present in the database are showed in a
shape of a graph structure. Each vertex of the graph represents a table, and
the user may choose to see or not to see all the fields of the table. Each
edge of the graph corresponds to a logical link between a foreign key and
a primary key. Finally, a Tables List helps the user to select, to hide or to
show any of the tables. This gives the user an high level view of the database,
allowing him grasp all the relations and connections at a glance, and to focus
on the portion of data of interest.

Table-Fields Information and Statistics. Every table maybe actually visu-
alized in the Table Visualization panel, but aggregated information are more
useful to the user. For this reason ConQueSt shows the data type of each
field, statistics of the selected field (e.g. average, minimum, maximum) and
a bar or pie chart of the distribution of the values of the selected field (see a
screenshot in Figure 4(b)). This information may help the user in deciding
the discretization parameters and the constraints thresholds.

Interactive SPQL query definition. The first part of the spql query con-
sists in the mining view definition, i.e. the set of fields defining transactions,
items and attributes. The user may set the mining view simply by right-
clicking directly on the Desk Area the table-fields of interest. Those fields will
be highlighted in the Desk Area and reported in the Mining View Definition
panel. Whenever a mining view definition implicitly require relational joins

On Interactive Pattern Mining from Relational Databases 53

Fig. 5. The output of a mining query in the pattern browser

(e.g. transaction ids and item ids are in different table), they are automati-
cally inserted in the final spql query. Constraints and respective threshold
may also be set by right-clicking on the Desk Area or also using the constrains
panel (in Figure 4). These facilities allows the user the fully define the mining
task just by navigating the dataset graph and using mouse clicks.

Advanced SPQL query definition. At any moment, the user can edit by
hand the query in the spql query panel. Any modification of the query
will be reflected in the rest of the GUI, e.g. by updating the Mining View
Definition panel. The possibility to edit directly the query, rather than using
the GUI, does not provide any additional expressive power from a mining
point of view. Anyway, since part of the spql query is pure SQL, we can allow
the user to exploit complex SQL queries and additional constraints that are
not part of the mining task, but rather they are part of the data preparation
phase. Moreover, any SQL query can be submitted in place of an spql

query, providing additional control to the analyst. Finally, before executing
the mining task, a preview of the data in the transactional format, together
with its items and attributes, is provided in the Mining View panel. This is
helpful to check the output of the data preparation step before evaluating
the query (or in other terms, before starting the mining).

Pattern Browser. Result of mining queries are shown to the user in a special-
ized interface, named Pattern Browser (see Figure 5. The Pattern Browser
provides statistics on the query results, and various functionalities for in-
teractive navigation the set of patterns, such as various kinds of visualizing
the patterns, or sorting them. The pattern browser also shows the spql

54 F. Bonchi et al.

query that generated the patterns, and allows the user to tune the query
parameters according to his needs, for instance, strengthening or relaxing
some constraints on-the-fly. This allows the user to quickly make the query
converge towards the desired parameters, for instance, towards a reasonably
sized solution set. In the pattern browser the user can also invoke some post-
processing ore require to materialize the extracted patterns in the underlying
database. At the moment the unique kind of post-processing implemented is
the extraction of association rules from the patterns results set, but we plan
to introduce more complex post-processing which uses extracted patterns as
basic bricks to build global models as clustering or classifiers. Also the set
of extracted association rules can be materialized as relational tables in the
underlying database.

3.2 Query Interpreter and Pre-processor

The second module takes care of interpreting the spql query, retrieving from
the underlying DBMS the data source, and preparing it for the mining phase.

The preprocessor receives from the GUI a well-formed spql query, and it is in
charge to accomplish the data preparation step. In fact, the Mining Engine is not
able to deal with a relational dataset, it can only read data in a proper format.
This format is the one traditionally used in frequent itemsets mining contexts.
The input dataset is a collection of transactions, where each transaction is a set
of items. Each of these items is stored as an integer identifier. In the relational
dataset an item may be a string, or even a floating point value, but to feed the
mining engine these values have to be discretized or mapped.

Thus, the query interpreter, uses the mining view definition present in the
spql query to retrieve from the original dataset the data of interest. These data
are mapped and translated in a categorical format and finally stored on disk.
The rest of the query, i.e. frequency and other constraints, are forwarded to the
mining engine together with a pointer the the transactional dataset.

3.3 The Mining Engine

The last module constitutes the core of the system which mines the transactional
dataset and extract the patterns. The mining core guarantees the scalability and
performance of the system by exploiting efficient mining algorithms and data
reduction techniques coming from the constraint-based mining paradigm.

The ConQueSt mining engine is based on DCI [24], a high performance,
Apriori-like, frequent itemsets mining algorithm, with has the nice feature of
being resource and data aware. It is resource aware, because, unlike many other
algorithms, it performs the first iterations out-of-core, reducing the dataset and
rewriting it directly to the disk. When the dataset is small enough, it is converted
and stored as a vertical bitmap in main memory. It is data aware because its
behavior changes in presence of sparse or dense datasets. It uses a compact
representation in the case of sparse datasets, and detects highly correlated items
to save bitwise works in the case of dense datasets. ConQueSt by inheriting the

On Interactive Pattern Mining from Relational Databases 55

same characteristics, is extremely robust and able to effectively mine different
kinds of datasets, regardless of their size.

Although the ConQueSt mining engine adopts a level-wise Apriori-like visit
of the lattice, thanks to its internal vertical bitwise representation of the dataset,
and associated counting strategy, it performs better than other state-of-the-art
algorithms that exploit a depth first visit. Moreover, as we have shown in our
previous works [5,8], adopting a level-wise strategy has the great advantage of
allowing the exploitation of different kinds of constraints all together by means
of data-reduction. At each iteration of the mining process, the dataset is pruned
by exploiting the independent data reductions properties of all user-specified
constraints. Our framework, exploits a real synergy of all constraints that the
user defines for the pattern extraction: each constraint does not only play its part
in reducing the data, but this reduction in turns strengthens the pruning power
of the other constraints. Moreover data-reduction induces a pruning of the search
space, which in turn strengthens future data reductions. The orthogonality of
the exploited constraint pushing techniques has a twofold benefit: first, all the
techniques can be amalgamated together achieving a very efficient computation.

Moreover, since we have precisely identified classes of constraints which share
nice properties, each class has been implemented as an independent module,
which plays its role in precise points of the computation. Each module is then
instantiated on the basis of the specific constraints supplied by the user. Con-

QueSt can be easily extended to cope with new user-defined constraints. In
fact, it is not the constraint itself that performs data and search space reduc-
tions directly, but it is instead the overall framework which exploits constraints
classes properties during the computation. Therefore, in order to define a novel
constraint, and embed it in the computational framework, it is sufficient to com-
municate to the system to which classes (possibly more than one) it belongs.

4 Other Mining Query Languages

In this section we discuss other approaches to the data mining query language
definition issue. For lack of space we focus only on the approaches most related to
the ConQueSt proposal. We are aware that this presentation does not exhaus-
tively cover the wide state-of-the-art of the research (and also the development)
on data mining systems and query languages.

The problem of providing an effective interface between data sources and
data mining tasks has been a primary concern in data mining. There are several
perspectives upon which this interface is desirable, the most important ones
being (i) to provide a standard formalization of the desired patterns and the
constraints they should obey to; and (ii) to achieve a tighter integration between
the data sources and the relational databases (which likely accommodate them).
The common ground of most of the approaches can be summarized as follows:

– create and manipulate data mining models through a SQL-based interface
(thus implementing a “command-driven” data mining metaphor);

– abstract away the algorithmic particulars;

56 F. Bonchi et al.

– allow for mining tasks to be performed on data in the database (thus avoiding
the need to export to a special-purpose environment).

Approaches differ on what kinds of models should be created (which patterns
are of interest), and what operations we should be able to perform (which con-
straints the patterns should satisfy). The query language proposed in [21,22]
extends SQL with the new operator MINE RULE, which allows the computa-
tion and coding of associations in a relational format. Let us consider the rela-
tion transaction(Date, CustID, Item, Value) that contains the transactions of
a sales representative. The following rule allows the extraction of the rules with
support 20% and confidence 50%:

MINE RULE Associations AS
SELECT DISTINCT 1..n Item AS BODY, 1..1 Item AS HEAD,

SUPPORT,CONFIDENCE
WHERE BODY.Value > 100 AND HEAD.Value > 100
FROM transaction
GROUP BY CustID

HAVING COUNT(Item) > 4
CLUSTER BY Date

HAVING BODY.Date < HEAD.Date
EXTRACTING RULES WITH SUPPORT: 0.2, CONFIDENCE: 0.5

The above expression specifies the mining of associations of purchased items
such that the right part of the rule (consisting of only 1 item) has been purchased
after the left part of the rule (that can consist of more than one item), and related
to those customers who bought more than 4 items. Moreover, we consider only
items with a value greater than 100.

The above approach reflects the following features:

– The source data is specified as a relational entity, and data preparation is
accomplished by means of the usual relational operators. For example, the
source table can be specified by means of usual join operations, selections
and projections.

– The extended query language allows mining of unidimensional association
rules. The GROUP BY keyword allows the specification of the transaction
identifier, while the item description is specified in the SELECT part of the
operator.

– Limited forms of background knowledge can be specified, by imposing some
conditions over the admitted values of BODY and HEAD, and by using mul-
tiple source tables. Notice, however, that relying directly on SQL does not
allow direct specification of more expressive constructs, such as, e.g., con-
cept hierarchies. A limited form of data reorganization is specified by the
CLUSTER keyword, that allows the specification of topology constraints (i.e.
membership constraints of the components of rules to clusters).

– Concerning interestingness measures, the above operator allows the specifi-
cation of the usual support and confidence constraints, and of further con-
straints over the contents of the rules (in particular, the SELECT keyword
allows the specification of cardinality constraints).

On Interactive Pattern Mining from Relational Databases 57

– extracted knowledge is represented by means of relational tables, containing
the specification of four attributes: Body, head, Support, Confidence.

Similarly to MINE RULE, the DMQL language [13,14], is designed as an ex-
tension of SQL that allows to select the primary source knowledge in SQL-like
form. However, the emphasis here is on the kind of patterns to be extracted.
Indeed, DMQL supports several mining tasks involving rules: characteristic, dis-
criminant, classification and association rules. The following query:

use database university database find characteristic rules
related to gpa, birth place, address, count(*)%
from student where status = "graduate" and major = "cs"
and birth place = "Canada"
with noise threshold = 0.05

specifies that the database used to extract the rules is the university database
(use database university database), that the kind of rules you are interested
in are characteristic rules (find characteristic rules) w.r.t. the attributes
gpa, birth place, and address (related to ...). The query specifies also that
this rules are extracted on the students who are graduated in computer science,
and that are born in Canada. As for MINE RULE, the specification of primary
source knowledge is made explicit in the from and where clauses.

DMQL exploits follows a decoupled approach between specification and im-
plementation, since the extraction is accomplished by external algorithms, and
the specification of the query has the main objective of preparing the data and
encoding them in a format suitable for the algorithms. Interestingly, DMQL al-
lows the manipulation of a limited form of background knowledge, by allowing
the direct specification of concept hierarchies.

Unfortunately, neither MINE RULE nor DMQL provide operators to further
query the extracted patterns. The closure principle is marginally considered in
MINE RULE (the mining result is stored into a relational table and can be fur-
ther queried), but not considered at all within DMQL. By contrast, Imielinkski
and others [17] propose a data mining query language (MSQL) which seeks to
provide a language both to selectively generate patterns, and to separately query
them. MSQL allows the extraction of association rules only, and can be seen as
an extension of MINE RULE. The pattern language of MSQL is based on mul-
tidimensional propositional rules, which are specified by means of descriptors.
A descriptor is an expression of the form: (Ai = aij) where Ai is an attribute,
and aij is a either a value or a range of values in the domain of Ai. The rules
extracted from MSQL have hence the form Body ⇒ Consequent where Body is a
conjunctset (i.e. the conjunction of an arbitrary number of descriptors such that
each descriptor in the set refers to a different attribute) and Consequent is a
single descriptor. Rules are generated by means of a GetRules statement which,
apart from syntax issues, has similar features as MINE RULE and DMQL. In
addition, MSQL allows for nested queries, that is, queries containing subqueries.

The extracted rules are stored in a RuleBase and then they can be further
queried, by means of the SelectRules statement. It is possible to select a subset
of the generated rules that verify a certain condition

58 F. Bonchi et al.

SelectRules(R) where Body has { (Age=*), (Sex=*) } and Consequent
is { (Address=*) }

as well as to select the tuples of the input database that violate (satisfy) all (any
of) the extracted rules:

Select * from Actor where VIOLATES ALL(
GetRules(Actor)
where Body is { (Age = *) }
and Consequent is { (Sex = *) }
and confidence > 0.3

)

A novel and completely different perspective to inductive databases querying
has been devised in [10]. The basic intuition is that, if the pattern language L
were stored within relational tables, any constraint predicate Q could be specified
by means of a relational algebra expression, and the DBMS could take care of
implementing the best strategy for computing the solution space. Assume, for
example, that sequences are stored within a relational engine by means of the
following relations:

– Sequences(sid,item,pos), representing each sequence by means of a sequence
identifier, an item and its relative position within the sequence;

– Supports(sid,supp) which specifies, for each sequence, its frequency.

Then, the following SQL query asks for the sequences holding with frequency
greater than 60%, or such that item a occurs before item b within the transaction,
can be expressed as follows:

SELECT Supports.sid
FROM Sequences S1, Sequences S2, Supports
WHERE S1.sid = Supports.sid AND S2.sid = S1.sid

AND Supports.supp > 60
OR (S1.item = a AND S2.item = b AND S1.pos < S2.pos)

Clearly, the pattern language can be extremely huge, and hence it is quite un-
practical to effectively store it. Indeed, the pattern language is represented as
a virtual table, i.e., an empty table which has to be populated. In the above
example, although the Sequences and Supports tables are exploited within the
query, they are assumed to be virtual tables, i.e., no materialization actually
exists for them within the DBMS. The idea here is that, whenever the user
queries such pattern tables, an efficient data mining algorithm is triggered by
the DBMS, which materializes those tuples needed to answer the query. After-
wards, the query can be effectively executed. Thus, the core of the approach is
a constraint extraction procedure, which analyzes a given SQL query and iden-
tifies the relevant constraints. The procedure builds, for each SQL query, the
corresponding relational algebra tree. Since virtual tables appear in leaf nodes
of the tree, a bottom-up traversal of the tree allows the detection of the neces-
sary constraints. Finally, specific calls to a mining engine can be raised in order
to populate those nodes representing virtual tables.

On Interactive Pattern Mining from Relational Databases 59

This approach has the merit of providing a real tight coupling between the
mining and the DBMS, or in other terms, between the mining queries and the
database queries. Indeed, this approach does not even require the definition of
a data mining query language, since it is SQL itself to play such role. However,
it is not clear how such approach could support a complex knowledge discovery
process. For instance, the pre-processing step is completely overlooked by this
approach: preparing the data for mining would require long and complex SQL
queries. Moreover, since we got no reference to the source data, it is not clear
how the mining view could be defined and/or changed within a mining session.
Consider again the Sequences and Supports relations in the example above, and
suppose that the support of sequences patterns are computed w.r.t. a database
of sequences of events with a weekly timescale: what if the analyst decides to
move to the daily timescale?

The problem of providing little support to the pre-processing and evaluation
phase of the knowledge discovery process, is common to all the query languages
discussed above. In ConQueSt, while we can take care of the pre-processing at
the language level (e.g., easy mining view definition, attributes discretization),
the evaluation phase is attacked merely at the system level by means of the
pattern browser capabilities, such as the on-the-fly constraints tuning. More so-
phisticated post-processing of the extracted patterns, and reasoning techniques,
should be studied and developed in our future work.

5 Conclusion

Many distinguishing features make ConQueSt a unique system:

Large variety of constraints handled - To the best of our knowledge, Con-

QueSt is the only system able to deal with so many different constraints all
together, and provide the opportunity of easily defining new ones. While some
prototypes for constraint-based pattern discovery exist, they are usually focused
on few kinds of constraints, and their algorithmic techniques can not be easily
extended to other constraints.

Usability - ConQueSt has been devised to fruitfully deal with real-world prob-
lems. The user friendly interface, the pre-processing capabilities and the simple
connectivity to relational DBMS, make it easy for the user to immediately start
to find nuggets of interesting knowledge in her/his data. Modularity and exten-
sibility make the system able to adapt to changing application needs. Efficiency,
robustness and scalability make possible to mine real-world huge datasets.

Robustness and resources awareness - One of the main drawbacks of the
state-of-the art software for pattern discovery, is that it usually fails to mine
large amounts of data due to memory lack. In this sense, ConQueStis robust,
since huge datasets are mined out-of-core until the data-reduction framework
reduces the dataset size enough to move it in-core.

Efficiency - ConQueSt is a high performance mining software. As an Example
consider Figure 6 where we compare execution times of ConQueSt against

60 F. Bonchi et al.

Dataset Retail, Minimum Support = 7, avg(X) > m

constraint threshold m
60 80 100 120 140

tim
e

(s
ec

s.
)

0

20

40

60

80

100

120

140
FicM
FicM
ConQueSt

Fig. 6. Performance comparison

FICA and FICM [26], two depth first algorithms, ad-hoc devised to deal with
the avg constraint (the one used in the comparison).

Even tough ConQueSt is already fruitfully usable on real-world problems,
many direction must be explored in the next future: efficient incremental min-
ing, advanced visualization techniques, more complex post-processing, building
global models from the interesting patterns, mining patterns from complex data
such as sequences and graphs. We are continuously developing new functionali-
ties of ConQueSt.

References

1. http://java.sun.com/products/jdbc/
2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large

Databases. In: Proceedings of VLDB 1994 (1994)
3. Bistarelli, S., Bonchi, F.: Extending the soft constraint based mining paradigm. In:

KDID 2006. LNCS, vol. 4747, pp. 24–41. Springer, Heidelberg (2007)
4. Bonchi, F.: Frequent Pattern Queries: Language and Optimizations. PhD thesis,

Ph.D. thesis TD10- 03, Dipartimento di Informatica, Università di Pisa (2003)
5. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAMiner: Optimized level-

wise frequent pattern mining with monotone constraints. In: Proceedings of ICDM
2003 (2003)

6. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAnte: Anticipated data
reduction in constrained pattern mining. In: Lavrač, N., Gamberger, D., Todor-
ovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, Springer,
Heidelberg (2003)

7. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In:
Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, Springer, Heidelberg (2004)

http://java.sun.com/products/jdbc/

On Interactive Pattern Mining from Relational Databases 61

8. Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining.
In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518,
Springer, Heidelberg (2005)

9. Bucila, C., Gehrke, J., Kifer, D., White, W.: DualMiner: A dual-pruning algorithm
for itemsets with constraints. In: Proceedings of ACM SIGKDD 2002, ACM Press,
New York (2002)

10. Calders, T., Goetals, B., Prado, A.: Integrating pattern mining in relational data-
bases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 454–461. Springer, Heidelberg (2006)

11. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: The kdd process for extracting
useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)

12. Grahne, G., Lakshmanan, L.V.S., Wang, X., Xie, M.H.: On dual mining: From
patterns to circumstances, and back. In: Proceedings of the 17th International
Conference on Data Engineering (ICDE 2001), April 2-6, 2001, Heidelberg, Ger-
many (2001)

13. Han, J., Fu, Y., Koperski, K., Wang, W., Zaiane, O.: DMQL: A Data Mining Query
Language for Relational Databases. In: SIGMOD 1996 Workshop on Research Is-
sues on Data Mining and Knowledge Discovery (DMKD 1996) (1996)

14. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman,
San Francisco (2000)

15. Han, J., Lakshmanan, L.V.S., Ng, R.T.: Constraint-based, multidimensional data
mining. Computer 32(8), 46–50 (1999)

16. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Comm.
Of The Acm 39, 58–64 (1996)

17. Imielinski, T., Virmani, A.: MSQL: A Query Language for Database Mining. Data
Mining and Knowledge Discovery 3(4), 373–408 (1999)

18. Kramer, S., Raedt, L.D., Helma, C.: Molecular feature mining in hiv data. In:
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, San Francisco, August 26-29, 2001, pp. 136–143. ACM
Press, New York (2001)

19. Lakshmanan, L.V.S., Ng, R.T., Han, J., Pang, A.: Optimization of constrained
frequent set queries with 2-variable constraints. SIGMOD Record 28(2) (1999)

20. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

21. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules.
In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB
1996, Proceedings of 22th International Conference on Very Large Data Bases,
Mumbai (Bombay), India, 3–6 september 1996, pp. 122–133. Morgan Kaufmann,
San Francisco (1996)

22. Meo, R., Psaila, G., Ceri, S.: A Tightly-Coupled Architecture for Data Mining. In:
International Conference on Data Engineering (ICDE 1998), pp. 316–323 (1998)

23. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and prun-
ing optimizations of constrained associations rules. In: Proceedings of the ACM
SIGMOD 1998, ACM Press, New York (1998)

24. Orlando, S., Palmerini, P., Perego, R., Silvestri, F.: Adaptive and Resource-Aware
Mining of Frequent Sets. In: Proc. of the 2002 IEEE Int. Conference on Data
Mining (ICDM 2002), Maebashi City, Japan, December 2002, pp. 338–345. IEEE
Computer Society Press, Los Alamitos (2002)

62 F. Bonchi et al.

25. Pei, J., Han, J.: Can we push more constraints into frequent pattern mining? In:
Proceedings of ACM SIGKDD 2000, ACM Press, New York (2000)

26. Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible
constraints. In: Proceedings of ICDE 2001 (2001)

27. Esposito, R., Meo, R., Botta, M.: Answering constraint-based mining queries on
itemsets using previous materialized results. Journal of Intelligent Information Sys-
tems (2005)

28. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints.
In: Proceedings of ACM SIGKDD 1997, ACM Press, New York (1997)

Analysis of Time Series Data
with Predictive Clustering Trees

Sašo Džeroski1, Valentin Gjorgjioski1, Ivica Slavkov1, and Jan Struyf2

1 Dept. of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

{Saso.Dzeroski, Valentin.Gjorgjioski, Ivica.Slavkov}@ijs.si
2 Dept. of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
Jan.Struyf@cs.kuleuven.be

Abstract. Predictive clustering is a general framework that unifies
clustering and prediction. This paper investigates how to apply this
framework to cluster time series data. The resulting system, Clus-TS,
constructs predictive clustering trees (PCTs) that partition a given set
of time series into homogeneous clusters. In addition, PCTs provide a
symbolic description of the clusters. We evaluate Clus-TS on time series
data from microarray experiments. Each data set records the change over
time in the expression level of yeast genes as a response to a change in
environmental conditions. Our evaluation shows that Clus-TS is able to
cluster genes with similar responses, and to predict the time series based
on the description of a gene. Clus-TS is part of a larger project where the
goal is to investigate how global models can be combined with inductive
databases.

1 Introduction

Predictive clustering is a general framework that combines clustering and pre-
diction [1]. Predictive clustering partitions a given data set into a set of clusters
such that the instances in a given cluster are similar to each other and dissimilar
to the instances in other clusters. In this sense, predictive clustering is identical
to regular clustering [11]. The difference is that predictive clustering associates
a predictive model to each cluster. This model assigns instances to clusters and
provides predictions for new instances. So far, decision trees [1,22] and rule sets
[25] have been used in the context of predictive clustering.

This paper investigates how predictive clustering can be applied to cluster
time series [13]. A time series is an ordered sequence of measurements of a
continuous variable that changes over time. Fig. 1.a presents an example of
eight time series partitioned into three clusters: cluster C1 contains time series
that increase and subsequently decrease, C2 has mainly decreasing time series
and C3 mainly increasing ones. Fig. 1.b shows a so-called predictive clustering
tree (PCT) for this set of clusters. This is the predictive model associated with
the clustering.

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 63–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

64 S. Džeroski et al.

(a)

C1
C3

C2
(b)

GO0043232
yes no

GO0000313
yes no

C1 C2

C3

c1 = c2 =

c3 =

Fig. 1. (a) A set of time series clustered into three clusters. (b) A predictive clustering
tree associated with this clustering. Each leaf of the tree corresponds to one cluster.

We propose a new algorithm called Clus-TS (Clustering-Time Series) that
constructs trees such as the one shown in Fig. 1.b. Clus-TS instantiates the
general PCT induction algorithm proposed by Blockeel et al. [1] to the task of
time series clustering. This is non-trivial because the general algorithm requires
computing a centroid for each cluster and for most distance measures suitable
for time series clustering, no closed algebraic form centroid is known.

We evaluate Clus-TS on time series data from microarray experiments [9].
Each data set records the change over time in the expression level of yeast genes
in response to a change in environmental conditions. A lot of work has been done
on clustering this type of short time series gene expression data [4]. Our main
motivation is to use alternative distance measures (that mainly take the shape
of the time series into account) and to construct clusters that can be explained
by a given set of features. Besides the time series, various other data about each
gene are available. Here, we consider motifs and terms from the Gene Ontology
(GO) [5]. The motifs are subsequences that occur in the amino acid sequence
of many genes. The motivation for using motifs as features is due to Curk et
al. [2], who use motifs in a similar analysis. The motifs or GO terms appear in
the internal nodes of the PCT (Fig. 1.b) and provide a symbolic description of
the clusters. C1 includes, for example, all genes that have terms “GO:0043232”
and “GO:0000313” in their description. This is related to itemset constrained
clustering [20], which clusters vectors of numeric values and constrains each
cluster by means of an itemset.

So far, most research on inductive databases (IDBs) [10,3] has focused on
local models (i.e., models that apply to only a subset of the examples), such
as frequent item sets and association rules. Clus-TS is part of a larger project
[7,22,25] were the goal is to investigate how IDBs can be extended to global
models, such as decision trees (for prediction) and mixture models (for clus-
tering). Predictive clustering has been argued to provide a general framework
unifying clustering and prediction, two of the most basic data mining tasks, and
is therefore an excellent starting point for extending IDBs to global models [25].

Analysis of Time Series Data with Predictive Clustering Trees 65

In particular, we are interested in developing a system that is applicable to
clustering and prediction in many application domains, including bioinformatics.
Extending PCTs to time series clustering is a step in this direction.

2 Predictive Clustering Trees

2.1 Prediction, Clustering, and Predictive Clustering Trees

Predictivemodeling aims at constructingmodels that canpredict a target property
of an object from a description of the object. Predictive models are learned from
sets of examples, where each example has the form (D, T), with D being an ob-
ject description and T a target property value. While a variety of representations
ranging from propositional to first order logic have been used for D, T is almost
always considered to consist of a single target attribute called the class, which is
either discrete (classification problem) or continuous (regression problem).

Clustering [11], on the other hand, is concerned with grouping objects into sub-
sets of objects (called clusters) that are similar w.r.t. their description D. There is
no target property defined in clustering tasks. In conventional clustering, the no-
tion of a distance (or conversely, similarity) is crucial: examples are considered to
be points in a metric space and clusters are constructed such that examples in the
same cluster are close according to a particular distance metric. A centroid (or pro-
totypical example) may be used as a representative for a cluster. The centroid is
the point with the lowest average (squared) distance to all the examples in the clus-
ter, i.e., the mean or medoid of the examples. Hierarchical clustering and k-means
clustering are the most commonly used algorithms for this type of clustering (see
Section 4.4).

Predictive clustering [1] combines elements from both prediction and clustering.
As in clustering, we seek clusters of examples that are similar to each other, but in
general taking both the descriptive part and the target property into account (the
distance measure is defined on D ∪ T). In addition, a predictive model must be
associated to each cluster. The predictive model assigns new instances to clusters
based on their description D and provides a prediction for the target property T .
A well-known type of model that can be used to this end is a decision tree [17]. A
decision tree that is used for predictive clustering is called a predictive clustering
tree (PCT, Fig. 1.b). Each node of a PCT represents a cluster. The conjunction of
conditions on the path from the root to that node gives a description of the clus-
ter. Essentially, each cluster has a symbolic description in the form of a rule (IF
conjunction of conditions THEN cluster)1, while a tree structure represents the
hierarchy of clusters. Clusters that are not on the same branch of a tree do not
overlap.

In Fig. 1, the description D of a gene consists of GO terms with which the gene
is annotated, and the target property T is the time series recorded for the gene. In
general, we could include both D and T in the distance measure. We are, however,
most interested in the time series part. Therefore, we define the distance measure
1 This idea was first used in conceptual clustering [15].

66 S. Džeroski et al.

only on T . We consider various distance measures in Section 3.1. The resulting
PCT (Fig. 1.b) represents a clustering that is homogeneous w.r.t. T and the nodes
of the tree provide a symbolic description of the clusters. Note that a PCT can also
be used for prediction: use the tree to assign a new instance to a leaf and take the
centroid (denoted with ci in Fig. 1.b) of the corresponding cluster as prediction.

2.2 Building Predictive Clustering Trees

Table 1 presents the generic induction algorithm for PCTs [1]. It is a variant of
the standard greedy recursive top-down decision tree induction algorithm used,
e.g., in C4.5 [17]. It takes as input a set of instances I (in our case genes described
by motifs or GO terms and their associated time series). The procedure BestTest
(Table 1, right) searches for the best acceptable test (motif or GO term) that can
be put in a node. If such a test t∗ can be found then the algorithm creates a new
internal node labeled t∗ and calls itself recursively to construct a subtree for each
cluster in the partition P∗ induced by t∗ on the instances. If no acceptable test can
be found, then the algorithm creates a leaf, and the recursion terminates. (The pro-
cedure Acceptable defines the stopping criterion of the algorithm, e.g., specifying
maximum tree depth or a minimum number of instances in each leaf).

Table 1. The generic PCT induction algorithm Clus

procedure PCT(I) returns tree
1: (t∗, h∗, P∗) = BestTest(I)
2: if t∗ �= none then
3: for each Ik ∈ P∗ do
4: treek = PCT(Ik)
5: return node(t∗,

�
k{treek})

6: else
7: return leaf(centroid(I))

procedure BestTest(I)
1: (t∗, h∗, P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on I
4: h = Var(I) −

�
Ik∈P

|Ik|
|I| Var(Ik)

5: if (h > h∗) ∧ Acceptable(t, P) then
6: (t∗, h∗, P∗) = (t, h, P)
7: return (t∗, h∗, P∗)

Up till here, the algorithm is identical to a standard decision tree learner. The
main difference is in the heuristic that is used for selecting the tests. For PCTs,
this heuristic is the reduction in variance (weighted by cluster size, see line 4 of
BestTest). Maximizing variance reduction maximizes cluster homogeneity. The
next section discusses how cluster variance can be defined for time series.

An implementation of the PCT induction algorithm is available in the Clus
system, which can be obtained at http://www.cs.kuleuven.be/∼dtai/clus.

3 PCTs for Time Series Clustering

3.1 Distance Measures

In this section, we discuss a number of distance measures for time series, which
will be used in the definition of cluster variance later on. Some measures require

http://www.cs.kuleuven.be/~dtai/clus

Analysis of Time Series Data with Predictive Clustering Trees 67

that all time series in the data set have the same length. This property holds
true for the data that we consider in the experimental evaluation (Section 4).

If all time series have the same length then one can represent them as real
valued vectors and use standard vector distance measures such as the Euclidean
or Manhattan distance. These measures are, however, not always appropriate
for time series because they assume that the time series are synchronized, and
mainly capture the difference in scale and baseline. Below, we discuss three dis-
tance measures that have been proposed to alleviate these shortcomings.

Dynamic Time Warping. (DTW) [19] can capture a non-linear distortion
along the time axis. It accomplishes this by assigning multiple values of one of
the time series to a single value of the other. As a result, DTW is suitable if the
time series are not properly synchronized, e.g., if one is delayed, or if the two
time series are not of the same length. Fig. 2.a illustrates DTW and compares
it to the Euclidean distance.

dDTW(X, Y) with X = α1, α2, . . . , αI , Y = β1, β2, . . . , βJ is defined based on
the notion of a warping path between X and Y . A warping path is a sequence
of grid points F = f1, f2, . . . , fK on the I × J plane (Fig. 2.b). Let the distance
between two values αik

and βjk
be d(fk) = |αik

− βjk
|, then an evaluation

function Δ(F) is given by Δ(F) = 1/(I + J)
∑K

k=1 d(fk)wk. The weights wk are
as follows: wk = (ik − ik−1) + (jk − jk−1), i0 = j0 = 0. The smaller the value of
Δ(F), the more similar X and Y are. In order to prevent excessive distortion,
we assume an adjustment window (|ik − jk| ≤ r). dDTW(X, Y) is the minimum
of Δ(F). dDTW can be computed with dynamic programming in time O(IJ).

Both the Euclidean distance and DTW take into account differences in scale
and baseline. If a given time series is identical to a second time series, but scaled
by a certain factor or offset by some constant, then the two time series will be
distant. For many applications, these differences are, however, not important;

(a)

0 10 20 30 40 50 60

0 10 20 30 40 50 60

(b)

0 5 10 15 20 25 30

0
5

10
15

20
25

a aa1 Ii

1

j

J

b

b

b

f = (i , j)k

f = (1, 1)

f = (I, J)

1

K

A

B

Warping
Path

Adjustment
 Window

Adjustment
 Window

kk

Fig. 2. (a) Euclidean distance (top) compared to DTW (bottom). (b) A warping path.
(Artwork courtesy of Eamonn Keogh).

68 S. Džeroski et al.

only the shape of the time series matters. The next two measures are more ap-
propriate for such applications.

Correlation. The correlation coefficient r(X, Y) between two time series X and
Y is calculated as

r(X, Y) =
E[(X − E[X]) · (Y − E[Y])]

E[(X − E[X])2] · E[(Y − E[Y])2]
, (1)

where E[V] denotes expectation (i.e., mean value) of V . r(X, Y) measures the
degree of linear dependence between X and Y . It has the following intuitive
meaning in terms of the shapes of X and Y : r close to 1 means that the shapes
are similar. If there is a linear relation between X and Y then the time series are
identical but might have a different scale or baseline. r close to -1 means that X
and Y have “mirrored” shapes, and r close to 0 means that the shapes are unre-
lated (and consequently dissimilar). Based on this intuitive interpretation, we can
define the distance between two time series as dr(X, Y) =

√
0.5 · (1 − r(X, Y)).

dr has, however, two drawbacks. First, it is difficult to properly estimate corre-
lation if the number of observations is small (i.e., a short time series). Second,
dr can only capture the linear dependencies between the time series. Two time
series that are non-linearly related will be distant. Fig. 3 illustrates this effect.

A Qualitative Distance. A third distance measure is the qualitative distance
proposed by Todorovski et al. [23]. It is based on a qualitative comparison of the
shape of the time series. Consider two time series X and Y (Fig. 3). Then choose
a pair of time points i and j and observe the qualitative change of the value of
X and Y at these points. There are three possibilities: increase (Xi > Xj), no-
change (Xi ≈ Xj), and decrease (Xi < Xj). dqual is obtained by summing the
difference in qualitative change observed for X and Y for all pairs of time points,
i.e.,

dqual(X, Y) =
n−1∑

i=1

n∑

j=i+1

2 · Diff (q(Xi, Xj), q(Yi, Yj))
N · (N − 1)

, (2)

with Diff (q1, q2) a function that defines the difference between different quali-
tative changes (Fig. 2). Roughly speaking, dqual counts the number of disagree-
ments in change of X and Y .

dqual does not have the drawbacks of the correlation based measure. First, it
can be computed for very short time series, without decreasing the quality of the
estimate. Second, it captures the similarity in shape of the time series, regardless

Table 2. The definition of Diff (q1, q2)

Diff (q1, q2) increase no-change decrease
increase 0 0.5 1
no-change 0.5 0 0.5
decrease 1 0.5 0

Analysis of Time Series Data with Predictive Clustering Trees 69

0 1 2 3

1

2

3

4

5

0 1 2 3

1

2

3

4

5

Time

(a)
dEuclid(X, Y) = 2.45
dDTW(X, Y) = 0.63
dr(X, Y) = 0
dqual(X, Y) = 0

Time

(b)
dEuclid(X, Y) = 2.65
dDTW(X, Y) = 0.75
dr(X, Y) = 0.12
dqual(X, Y) = 0

Fig. 3. Comparison of four distance measures for time series. Time series (a) are linearly
related resulting in dr(X, Y) = 0. Time series (b) are non-linearly related, but still have
a similar shape, resulting in dqual(X, Y) = 0.

of whether their dependence is linear or non-linear (Fig. 3). In the experimental
evaluation, we will use dqual (Section 4).

3.2 Computing Cluster Variance

Recall from Section 2.2 that the PCT induction algorithm requires a measure
of cluster variance in its heuristics. The variance of a cluster C can be defined
based on a distance measure as

Var(C) =
1

|C|
∑

X∈C

d2(X, c) , (3)

with c the cluster centroid of C. To cluster time series, d should be a distance
measure defined on time series, such as the ones discussed in the previous section.

The centroid c can be computed as argminq

∑
X∈C d2(X, q). We consider two

possible representations for c: (a) the centroid is an arbitrary time series, and
(b) the centroid is one of the time series from the cluster (the cluster prototype).
In representation (b), the centroid can be computed with |C|2 distance compu-
tations by substituting q with each time series in the cluster. In representation
(a), the space of candidate centroids is infinite. This means that either a closed
algebraic form for the centroid is required or that one should resort to approx-
imative algorithms to compute the centroid. No closed form for the centroid is
known in representation (a) for the distance measure dqual. To the best of our
knowledge, the same holds for dDTW and dr.

An alternative way to define cluster variance is based on the sum of the
squared pairwise distances (SSPD) between the cluster elements, i.e.,

Var(C) =
1

2|C|2
∑

X∈C

∑

Y ∈C

d2(X, Y) . (4)

(The factor 2 in the denominator of (4) ensures that (4) is identical to (3) for
the Euclidean distance.) The advantage of this approach is that no centroid is

70 S. Džeroski et al.

required. It also requires |C|2 distance computations. This is the same time com-
plexity as the approach with the centroid in representation (b). Hence, using the
definition based on a centroid is only more efficient if the centroid can be com-
puted in time linear in the cluster size. This is the case for the Euclidean distance
in combination with using the pointwise average of the time series as centroid.
For the other distance measures, no such centroids are known. Therefore, we
choose to estimate cluster variance using the SSPD.

A second advantage is that (4) can be easily approximated by means of sam-
pling, e.g., by using,

Var(C) =
1

2|C|m
∑

X∈ C

⎛

⎝
∑

Y ∈ sample(C,m)

d2(X, Y)

⎞

⎠ , (5)

with sample(C, m) a random sample without replacement of m elements from
C, instead of (4) if |C| ≥ m. The computational cost of (5) grows only linearly
with the cluster size. In the experimental evaluation, we compare (4) to (5).

3.3 Cluster Centroids for the Tree Leaves

The PCT induction algorithm places cluster centroids in its leaves, which can
be inspected by the domain expert and used as a prediction. For these centroids,
we use representation (b) as discussed above.

4 Analyzing Gene Expression Time Series with PCTs

4.1 The Problem

DNA microarray analysis is an interesting application area for short time series
clustering. Clustering genes by their time expression pattern makes sense because
genes which are co-regulated or have a similar function, under certain conditions,
will have a similar temporal profile. Instead of simply clustering the expression
time series with, e.g., HAC, and later on elucidating the characteristics of the
obtained clusters (as done in e.g., [4]), we perform constrained clustering with
PCTs. This yields the clusters and symbolic descriptions of the clusters in one
step.

We use the data from a study conducted by Gasch et al. [9]. The purpose of
the study is to explore the changes in expression levels of yeast (Saccharomyces
cerevisiae) genes under diverse environmental stresses. Various sudden changes
in the environmental conditions are tested, ranging from heat shock to amino
acid starvation for a prolonged period of time. The gene expression levels of
around 5000 genes are measured at different time points using microarrays. The
data is log-transformed and normalized based on the time-zero measurement of
yeast cells under normal environmental conditions. We use three sets of exper-
iments from Gasch et al. [9]: amino acid starvation (AAS), diauxic shift (DS),
and diamide treatment (DT).

Analysis of Time Series Data with Predictive Clustering Trees 71

4.2 The Mining Scenario

Our mining scenario consists of two steps. In a first step, we use a local pattern
mining algorithm to construct patterns based on the description of the yeast
genes. In a second step, we use these local patterns as features to construct
PCTs. We use two types of features: motifs and GO terms [5].

For the first set of features, we mine frequent subsequences (motifs) occurring
in the DNA sequences of the yeast genes, which we obtain from the Stanford
database. We use the constraint based mining algorithm FAVST [12,16]. FAVST
supports three types of constraints: minimum frequency, and minimum and max-
imum motif length. We query FAVST for sequences that appear in 25% of the
genes and consist of at least 8 nucleotides. In this way, we obtain approximately
300 motifs ranging from 8 to 10 nucleotides. These motifs are passed to Clus-TS
to build PCTs with the motifs in the internal nodes.

In the second set of features, each feature is a GO term. We obtain the GO
term annotations for each yeast gene from the Gene Ontology [5] (version April,
2006). Note that the GO terms are structured in a hierarchy. We use both the
part of and is a relations to include for each gene all relevant GO terms. To
limit the number of features, we set a minimum frequency threshold: each GO
term must appear for at least 50 of the genes.

4.3 Predicting Time Series with PCTs

Recall that PCTs can be used both for prediction and clustering. PCTs predict
values just like regular decision trees. They sort each test instance into a leaf
and assign as prediction the label of that leaf. PCTs label their leaves with the
training set centroids of the corresponding clusters. In this section, we evalu-
ate PCTs in a predictive setting and in Section 4.5 we assess their clustering
performance.

To evaluate predictive performance, we need an error metric. An obvious
candidate is the root mean squared error (RMSE), which is defined as

RMSE(I, T) =

√
1
|I|

∑

X∈ I

d2(T (X), series(X)) , (6)

with I the set of test instances, T the PCT that is being tested, T (X) the time
series predicted by T for instance X , and series(X) the actual series of X .

We compare the PCT built by Clus-TS to a default predictor DEF that always
predicts the overall training set centroid. We measure predictive RMSE using 10
fold cross-validation. We set the minimum number of time series in each cluster
to 10 and all other parameters of Clus-TS to their default values. Clus supports
size constraints by means of the post pruning method proposed by Garofalakis et
al. [8], which employs dynamic programming to find the most accurate subtree
no larger than a given number of leaves. Here, accuracy is estimated as training
set RMSE (see also [22]). Fig. 4 presents the results for different values of the size
constraint.

72 S. Džeroski et al.

0 20 40 60 80 100 120 140 160
-10

-8
-6
-4
-2
0
2
4
6
8

10

0 20 40 60 80 100 120 140 160
-10

-8
-6
-4
-2
0
2
4
6
8

10

0 20 40 60 80 100 120 140 160
-10

-8
-6
-4
-2
0
2
4
6
8

10

Maximum number of clusters (tree leaves)

R
M

SE
re

la
ti
ve

to
D

E
F

[%
]

Amino acid starvation (AAS)

DEF

Maximum number of clusters (tree leaves)

R
M

SE
re

la
ti
ve

to
D

E
F

[%
]

Diauxic shift (DS)

DEF

Maximum number of clusters (tree leaves)

R
M

SE
re

la
ti
ve

to
D

E
F

[%
]

Diamide treatment (DT)

DEF

PCT Motif (lin.) PCT GO (lin.) PCT GO (N2)

Fig. 4. RMS error versus maximum number of clusters

Analysis of Time Series Data with Predictive Clustering Trees 73

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Top n% of data classified

R
M

SE

Amino acid starvation (AAS)

DEF

tree size = 113

Top n% of data classified

R
M

SE

Diauxic shift (DS)

DEF

tree size = 106

Top n% of data classified

R
M

SE

Diamide treatment (DT)

DEF

tree size = 125

PCT GO (lin.) DEF

Fig. 5. RMS error versus percentage of data classified

74 S. Džeroski et al.

GO0042254
yes no

GO0005830
yes no

GO0005737
yes no

GO0043231
yes no

C1

C2

C3

C4 C5

|C1| = 227 |C2| = 121 |C3| = 2833

|C4| = 939 |C5| = 1230

Fig. 6. Size 5 PCT for amino acid starvation (AAS)

GO0043232
yes no

GO0000313
yes no

GO0030529
yes no

GO0031981
yes no

C1

C2

C3 C4

C5

|C1| = 71 |C2| = 235 |C3| = 172

|C4| = 368 |C5| = 4424

Fig. 7. Size 5 PCT for diauxic shift (DS)

GO0007028
yes no

GO0003735
yes no

GO0005830
yes no

GO0005739
yes no

C1 C2 C3

C4 C5

|C1| = 29 |C2| = 196 |C3| = 121

|C4| = 861 |C5| = 3967

Fig. 8. Size 5 PCT for diamide treatment (DT)

The PCTs with motifs as features do not perform well (RMSE close to that of
DEF) and quickly overfit for larger size trees. The optimal tree size for the PCTs
with GO terms seems to be around 30 nodes. The PCTs with GO terms perform

Analysis of Time Series Data with Predictive Clustering Trees 75

better, but still have a relatively high RMSE. Fig. 4 also compares Clus-TS with
the SSPD variance estimate with quadratic time complexity (PCT N2) to the
linear approximation with sample size m = 10 (PCT lin.). Both estimates yield
a comparable predictive performance. PCT N2 performs slightly better for small
trees, but becomes worse for larger trees. PCT N2 is a factor 6.8 to 12.6 slower
than PCT lin.

From a biological viewpoint, the PCTs cluster genes that have a similar func-
tion (GO terms) and a similar response in expression level to a certain change
in environmental conditions. One problem is that, as noted by Gasch et al. [9],
only a subset of the genes (about 900) have a stereotypical response to the envi-
ronmental stress. That is, only a subset of the genes can be accurately clustered,
whereas the other genes have an uncorrelated response. As a result, we hypothe-
size that the PCTs are able to more accurately predict the time series of a subset
of the genes. We therefore perform the following experiment. Besides recording
the predicted time series for each test set gene, we also record a confidence value
for each prediction. We then sort the genes by confidence value and compute
the RMSE of the top n percent most confident predictions. We use the training
set RMSE of the leaf that made the prediction as confidence estimate. This is
similar to the approach used for generating a ROC curve for a decision tree [6].
Fig. 5 presents the results2. It shows that more accurate predictions are obtained
if we restrict the test set based on the confidence of the predictions. For example,
if time series are predicted for the top 5%, then the RMSE decreases to about
50% of that of DEF.

Fig. 6, 7, and 8 show as an illustration the PCT for each data set obtained
with the maximum size set to 5 leaves. They also show the cluster centroids for
each of the leaves.

4.4 Hierarchical Agglomerative Clustering

In this section, we briefly discuss Hierarchical Agglomerative Clustering (HAC)
(see, e.g., [14]). We use HAC as a baseline to compare Clus-TS to. HAC is one
of the most widely used clustering approaches. It produces a nested hierarchy of
groups of similar objects, based on a matrix containing the pairwise distances
between all objects. HAC repeats the following three steps until all objects are
in the same cluster:

1. Search the distance matrix for the two closest objects or clusters.
2. Join the two objects (clusters) to produce a new cluster.
3. Update the distance matrix to include the distances between the new cluster

and all other clusters (objects).

2 PCTs are obtained with the same parameters as before, except that we use validation
set based pruning instead of specifying a size constraint. Clus-TS uses here 1000
genes of the original training set for pruning and the rest for the tree construction
(suggested by [24]). Simply selecting a PCT from Fig. 4 is unfair; it corresponds to
optimizing the size parameter on the test set.

76 S. Džeroski et al.

0 50 100 150 200 250 300 350 400 450 500
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Number of clusters (PCT/HAC leaves)

IC
V

Amino acid starvation (AAS)

Number of clusters (PCT/HAC leaves)

IC
V

Diauxic shift (DS)

Number of clusters (PCT/HAC leaves)

IC
V

Diamide treatment (DT)

PCT Motif PCT GO PCT HAC HAC

Fig. 9. ICV versus number of clusters

There are four well known HAC algorithms: single-link, complete-link, group-
average, and centroid clustering, which differ in the cluster similarity measure

Analysis of Time Series Data with Predictive Clustering Trees 77

they employ. We decided to use single-link HAC because it is usually considered
to be the simplest approach and it has the lowest time complexity. Furthermore,
it yields a better intra cluster variation than the PCTs. Therefore, we did not
consider more elaborate approaches. Single-link HAC computes the distance be-
tween two clusters as the distance between the closest pair of objects. The HAC
implementation that we use has a computational cost of O(N2), with N the
number of time series, and for efficiency it uses a next-best-merge array [14].

An important drawback of single-link HAC is that it suffers from the chaining
effect [14], which in some cases may result in undesirable elongated clusters.
Because the merge criterion is strictly local (it only takes the two closest objects
into account), a chain of points can be extended over a long distance without
regard to the overall shape of the emerging cluster.

4.5 Clustering Time Series with PCTs

In this section, we compare PCTs to HAC (Section 4.4). The evaluation metric
that we use is intra cluster variation (ICV) defined as

ICV(C) =
∑

Ci∈ C

|Ci|
|C| Var(Ci) , (7)

with C the set of clusters (PCT or HAC leaves), |C| the data set size, and Var(Ci)
the variance of cluster Ci (Equation 4).

We measure ICV for different values of the size constraint (Section 4.3). The
minimum cluster size is set to 5. For HAC, we cut the hierarchy of clusters at
different levels to obtain measurements for a varying number of clusters. Fig. 9
presents the results. For the data sets AAC and DS, HAC is able to decrease
ICV much faster than PCTs. The reason is that PCTs constrain the clusters
based on the given features. If the ICV-wise best split at a given point in the
cluster hierarchy can not be described in terms of the features, then Clus-TS
will select a suboptimal split. It is therefore important to have good descriptive
features when performing predictive clustering.

To test the impact of the features, we constructed artificial data sets with the
same time series, but with as features the characteristic vector of the clustering
produced by HAC, that is, one Boolean feature for each cluster (internal nodes
and leaves) indicating for each example if it belongs to that particular cluster or
not. Fig. 9 shows that, given these features, Clus-TS even outperforms HAC.

On the DT data set, HAC performs worse compared to Clus-TS. Note that
this may happen because HAC is also heuristic (e.g., because of the chaining
effect, cf. Section 4.4).

5 Future Work

We plan to extend the experimental evaluation. This includes testing more data
sets (e.g., all changes in environmental conditions studied in [9], or other types

78 S. Džeroski et al.

of short time series data), working with domain experts to interpret the cluster-
ings, and using more types of descriptive features. Our experiments show that
having appropriate features is very important for predictive clustering. It would
be interesting to try experiments with more features, possibly automatically
constructed using feature construction methods.

In Section 3.2, we considered two representations for the cluster centroid that
are both time series. The centroid, however, does not need to be in the same do-
main as the objects that are being clustered. It would be interesting to investi-
gate more expressive representations of the cluster centroid, such as a parametric
representation of the distribution of the time series. The advantage of such an ap-
proach, while it can be computationally more expensive, is that it captures more
information about the cluster. This is akin to classification with the Gini index or
information gain heuristics [18], which summarize a set of examples by means of
its class distribution instead of the majority class.

We plan to incorporate different types of constraints in our models. This is im-
portant in the context of inductive databases because the inductive queries might
include various types of constraints on the resulting PCTs. Our current system
already includes accuracy and size constraints [22]. In further work, we wish to
investigate constraints more specific to clustering [26] and in particular clustering
of time series.

Another direction of research is investigating how PCTs, and in particular
PCTs for clustering time series, can be integrated tightly with inductive data-
bases. Fromont and Blockeel [7] and Slavkov et al. [21] present ongoing work in
this direction.

6 Conclusion

This paper proposes predictive clustering trees (PCTs) to cluster time series
data. The main advantage of using PCTs over other clustering algorithms, such
as hierarchical agglomerative clustering and k-means, is that PCTs cluster the
time series and provide a description of the clusters at the same time. This allows
one to relate various heterogeneous data types and to draw conclusions about
their relations.

Using PCTs for time series data is non-trivial because for many appropriate
distance measures (correlation based, dynamic time warping, and a qualitative
distance), no closed algebraic form for the centroid is known. Therefore, we pro-
pose to compute cluster variance based on the sum of squared pairwise distances
(SSPD) between the cluster elements. This method has not been used previously
in predictive clustering and is one of the contributions of the paper. Our experi-
ments show that the SSPD can be efficiently approximated by means of sampling.

Our approach combines local models (motifs of DNA) with global models
(PCTs). The local models are used to describe clusters and can be used to
predict cluster membership. Such a combination of models is a typical feature
required from an inductive database: a first query is used to mine the local
models and a second query returns global models based on these local models.

Analysis of Time Series Data with Predictive Clustering Trees 79

The experimental evaluation shows that PCTs can be used for predicting
the expression response of yeast genes to different changes in environmental
conditions. This, however, proved to be a hard task and more research is required,
e.g., to find more predictive features.

Acknowledgments. This work was supported by the IQ project (IST-FET
FP6-516169). Jan Struyf is a postdoctoral fellow of the Fund for Scientific Re-
search of Flanders (FWO-Vlaanderen).

References

1. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
15th Int’l Conf. on Machine Learning, pp. 55–63 (1998)

2. Curk, T., Zupan, B., Petrovič, U., Shaulsky, G.: Računalnǐsko odkrivanje mehaniz-
mov uravnavanja istražanja genov. In: Prvo srečanje slovenskih bioinformatikov,
pp. 56–58 (2005)

3. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69–77 (2002)

4. Ernst, J., Nau, G.J., Bar-Joseph, Z.: Clustering short time series gene expression
data. Bioinformatics 21(Suppl. 1), 159–168 (2005)

5. Ashburner, M., et al.: Gene Ontology: Tool for the unification of biology. The Gene
Ontology Consortium. Nature Genet. 25(1), 25–29 (2000)

6. Ferri, C., Flach, P.A., Hernández-Orallo, J.: Learning decision trees using the area
under the ROC curve. In: 19th Int’l Conf. on Machine Learning, pp. 139–146 (2002)

7. Fromont, E., Blockeel, H., Struyf, J.: Integrating decision tree learning into induc-
tive databases. In: KDID 2006. LNCS, vol. 4747, pp. 81–96. Springer, Heidelberg
(2007)

8. Garofalakis, M., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Mining and Knowledge Discovery 7(2), 187–214 (2003)

9. Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M., Storz, G., Bot-
stein, D., Brown, P.: Genomic expression program in the response of yeast cells to
environmental changes. Mol. Biol. Cell. 11, 4241–4257 (2000)

10. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

11. Kaufman, L., Rousseeuw, P.J. (eds.): Finding groups in data: An introduction to
cluster analysis. Wiley, Chichester (1990)

12. Lee, S.D., De Raedt, L.: An efficient algorithm for mining string data-bases under
constraints. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp.
108–129. Springer, Heidelberg (2005)

13. Liao, T.W.: Clustering of time series data – a survey. Pattern Recognition 38,
1857–1874 (2005)

14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2007)

15. Michalski, R.S., Stepp, R.E.: Learning from observation: conceptual clustering. In:
Machine Learning: an Artificial Intelligence Approach, vol. 1, Tioga Publishing
Company (1983)

16. Mitasiunaité, I., Boulicaut, J.-F.: Looking for monotonicity properties of a similar-
ity constraint on sequences. In: ACM Symposium of Applied Computing SAC’2006,
Special Track on Data Mining, pp. 546–552. ACM Press, New York (2006)

80 S. Džeroski et al.

17. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann, San Francisco (1993)

18. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini index and
information gain criteria. Annals of Mathematics and Artificial Intelligence 41(1),
77–93 (2004)

19. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken-
word recognition. In: IEEE Transaction on Acoustics, Speech, and Signal Process-
ing. LNAI, vol. ASSP-26, pp. 43–49. IEEE Computer Society Press, Los Alamitos
(1978)

20. Sese, J., Kurokawa, Y., Monden, M., Kato, K., Morishita, S.: Constrained clusters
of gene expression profiles with pathological features. Bioinformatics 20, 3137–3145
(2004)

21. Slavkov, I., Džeroski, S., Struyf, J., Loskovska, S.: Constrained clustering of gene
expression profiles. In: Conf. on Data Mining and Data Warehouses (SiKDD 2005)
at the 7th Int’l Multi-Conference on Information Society 2005, pp. 212–215 (2005)

22. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
222–233. Springer, Heidelberg (2006)

23. Todorovski, L., Cestnik, B., Kline, M., Lavrač, N., Džeroski, S.: Qualitative cluster-
ing of short time-series: A case study of firms reputation data. In: ECML/PKDD
2002 Workshop on Integration and Collaboration Aspects of Data Mining, Decision
Support and Meta-Learning, pp. 141–149 (2002)

24. Torgo, L.: A comparative study of reliable error estimators for pruning regression
trees. In: Coelho, H. (ed.) IBERAMIA 1998. LNCS (LNAI), vol. 1484, Springer,
Heidelberg (1998)

25. Ženko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi,
F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer,
Heidelberg (2006)

26. Wagstaff, K.L.: Value, cost, and sharing: Open issues in constrained clustering. In:
KDID 2006. LNCS, vol. 4747, pp. 24–41. Springer, Heidelberg (2007)

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 240–258, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Three Strategies for Concurrent Processing of Frequent
Itemset Queries Using FP-Growth

Marek Wojciechowski, Krzysztof Galecki, and Krzysztof Gawronek

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznan, Poland
marek@cs.put.poznan.pl

Abstract. Frequent itemset mining is often regarded as advanced querying
where a user specifies the source dataset and pattern constraints using a given
constraint model. Recently, a new problem of optimizing processing of sets of
frequent itemset queries has been considered and two multiple query
optimization techniques for frequent itemset queries: Mine Merge and Common
Counting have been proposed and tested on the Apriori algorithm. In this paper
we discuss and experimentally evaluate three strategies for concurrent
processing of frequent itemset queries using FP-growth as a basic frequent
itemset mining algorithm. The first strategy is Mine Merge, which does not
depend on a particular mining algorithm and can be applied to FP-growth
without modifications. The second is an implementation of the general idea of
Common Counting for FP-growth. The last is a completely new strategy,
motivated by identified shortcomings of the previous two strategies in the
context of FP-growth.

1 Introduction

Discovery of frequent itemsets [1] is a very important data mining problem with
numerous practical applications. Informally, frequent itemsets are subsets frequently
occurring in a collection of sets of items. Frequent itemsets are typically used to
generate association rules. However, since generation of rules is a rather
straightforward task, the focus of researchers has been mostly on optimizing the
frequent itemset discovery step.

Many frequent itemset mining algorithms have been developed. The two most
prominent classes of algorithms are Apriori-like (level-wise) and pattern-growth
methods. Apriori-like solutions, represented by the classic Apriori algorithm [3],
perform a breadth-first search of the pattern space. Apriori starts with discovering
frequent itemsets of size 1, and then iteratively generates candidates from previously
found smaller frequent itemsets and counts their occurrences in a database scan. The
problems identified with Apriori are: (1) multiple database scans, and (2) huge
number of candidates generated for dense datasets and/or low frequency threshold
(minimum support).

To address the limitations of Apriori-like methods, a novel mining paradigm has
been proposed, called pattern-growth [8], which consists in a depth-first search of the

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 241

pattern space. Pattern-growth methods also build larger frequent itemsets from
smaller ones but instead of candidate generation and testing, they exploit the idea of
database projections. Typically, pattern-growth methods start with transforming the
original database into some complex data structure, preferably fitting into main
memory. A classic example of the pattern-growth family of algorithms is FP-growth
[9][10], which transforms a database into an FP-tree stored in main memory using just
2 database scans, and then performs mining on that optimized FP-tree structure.

Frequent itemset mining is often regarded as advanced database querying where a
user specifies the source dataset, the minimum support threshold, and optionally
pattern constraints within a given constraint model [11]. A significant amount of
research on efficient processing of frequent itemset queries has been done in recent
years, focusing mainly on constraint handling (see [18] for an overview) and reusing
results of previous queries [5][7][15][16].

Recently, a new problem of optimizing processing of sets of frequent itemset
queries has been considered, bringing the concept of multiple-query optimization to
the domain of frequent itemset mining. The idea was to process the queries
concurrently rather than sequentially and exploit the overlapping of queries’ source
datasets. Sets of frequent itemset queries available for concurrent processing may
arise in data mining systems operating in a batch mode or be collected within a given
time window in multi-user interactive data mining environments. A motivating
example from the domain of market basket analysis could be a set of queries
discovering frequent itemsets from the overlapping parts of a database table
containing customer transaction data from overlapping time periods.

Two multiple-query optimization techniques for frequent itemset queries have been
proposed: Mine Merge [24] and Common Counting [22]. Mine Merge is a general
strategy that consists in transforming the original batch of queries into a batch of
intermediate queries operating on non-overlapping datasets, and then using the results
of the intermediate queries to answer the original queries. Although Mine Merge does
not depend on a particular mining algorithm, its efficiency has been evaluated only
for Apriori, and it is unclear how it would perform with pattern-growth algorithms
like FP-growth. Common Counting has been specifically designed to work with
Apriori-like algorithms. The idea of Common Counting is concurrent execution of
Apriori for each query, and integration of dataset scans required by Apriori so that the
parts of the dataset shared by the queries are read only once per Apriori iteration.

In this paper, we (1) generalize the strategy applied by Common Counting and
adapt it to work with FP-growth in the form of the Common Building method; (2)
propose a completely new strategy of processing of batches of frequent itemset
queries, aiming at integrating the data structures used by the queries, and implement it
for FP-growth as the Common FP-tree method; (3) experimentally evaluate the three
strategies in the context of FP-growth.

1.1 Related Work

Multiple-query optimization has been extensively studied in the context of database
systems (see [21] for an overview). The idea was to identify common subexpressions
and construct a global execution plan minimizing the overall processing time by
executing the common subexpressions only once for the set of queries [4][12][19].

242 M. Wojciechowski, K. Galecki, and K. Gawronek

Data mining queries could also benefit from this general strategy, however, due to
their different nature they require novel multiple-query processing methods.

To the best of our knowledge, apart from the Common Counting and Mine Merge
methods mentioned above, multiple-query optimization for frequent pattern queries
has been considered only in the context of frequent pattern mining on multiple
datasets [14]. The idea was to reduce the common computations appearing in different
complex queries, each of which compared the support of patterns in several disjoint
datasets. This is fundamentally different from our problem, where each query refers to
only one dataset and the queries’ datasets overlap.

Earlier, the need for multiple-query optimization has been postulated in the
somewhat related research area of inductive logic programming, where a technique
based on similar ideas as Common Counting has been proposed, consisting in
combining similar queries into query packs [6].

As an introduction to multiple-data-mining-query optimization, we can regard
techniques of reusing intermediate or final results of previous queries to answer a new
query. Methods falling into that category that have been studied in the context of
frequent itemset discovery are: incremental mining [7], caching intermediate query
results [17], and reusing materialized complete [5][15][16] or condensed [13] results
of previous queries provided that syntactic differences between the queries satisfy
certain conditions.

1.2 Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 2 we review basic
definitions regarding frequent itemset mining and we briefly describe the FP-growth
algorithm. Section 3 contains basic definitions regarding frequent itemset queries and
presents the previously proposed multiple-query optimization techniques: Mine
Merge and Common Counting. In Sect. 4 we present the Common Building method
as an adaptation of Common Counting to FP-growth. In Sect. 5 we introduce a new
strategy for concurrent processing of frequent itemset queries and its implementation
for FP-growth, called Common FP-tree. Section 6 presents experimental results.
Section 7 contains conclusions and directions for future work.

2 Frequent Itemset Mining and Review of FP-Growth

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets,
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T.
We say that an itemset T supports an itemset X⊆L if T supports every item in the set
X. The support of the itemset X is the percentage of T in D that support X. The
problem of mining frequent itemsets in D consists in discovering all itemsets whose
support is no less than a user-defined minimum support threshold minsup.

FP-growth. The initial phase of FP-growth is the construction of a memory structure
called FP-tree. FP-tree is a highly compact representation of the original database (in
particular for so-called dense datasets), which is assumed to fit into the main memory.

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 243

FP-tree contains only frequent items, each transaction has a corresponding path in the
tree, and transactions having a common prefix share the common starting fragment of
their paths. When storing a transaction in an FP-tree, only its frequent items are
considered and are sorted according to a fixed order. Typically, frequency descending
order is used as it is likely to result in a good compression ratio. The procedure of
creating an FP-tree requires two database scans: one to discover frequent items and
their counts, and one to build the tree by adding transactions to it one by one. An FP-
tree for an example database represented by the first two columns of Table 1 and the
minimum support threshold of 50% is presented in Fig. 1 (example from [9]).

Table 1. Example transaction database

TID Items Ordered frequent items
100 a;c;d;f;g;i;m;p f;c;a;m;p
200 a;b;c;f;l;m;o f;c;a;b;m
300 b;f;h;j;o f;b
400 b;c;k;s;p c;b;p
500 a;c;e;f;l;m;n;p f;c;a;m;p

Fig. 1. An FP-tree for an example database

After an FP-tree is built, the actual FP-growth procedure is recursively applied to
it, which discovers all frequent itemsets in a depth-first manner by exploring
projections (called conditional pattern bases) of the tree with respect to frequent
prefixes found so far. The projections are stored in memory in the form of FP-trees
(called conditional FP-trees). FP-growth exploits the property that the support of an
itemset X∪Y is equal to the support of Y in the set of transactions containing X (which

244 M. Wojciechowski, K. Galecki, and K. Gawronek

forms the conditional pattern base of X). Thus, FP-growth builds longer patters from
previously found shorter ones. Part of the FP-tree structure is the header table
containing pointers to the lists containing all occurrences of given items in a tree,
which facilitate the projection operation. It should be noted that after the FP-tree is
created, the original database is not scanned anymore, and therefore the whole mining
process requires exactly two database scans. The FP-growth algorithm is formally
presented in Fig. 2, together with its initial tree-building phase. Our formulation
differs slightly from that from [9] because we assume that minsup is relative to the
total number of transactions. Therefore, in the first scan of the dataset we calculate the
minimum required number of occurrences mincount, corresponding to minsup
provided in a query. The mincount value is passed as a parameter to the FP-growth
procedure. The term “frequent” within the algorithm implicitly refers to this mincount
threshold.

Input: database D, minimum support threshold minsup
Output: the complete set of frequent itemsets
Method:
1. scan D to calculate mincount and discover frequent items and their counts
2. create the root of FP-tree labeled as null
3. scan D and add each transaction to FP-tree omitting non-frequent items
4. call FP-growth(FP-tree, null, mincount)

procedure FP-growth(FP-tree, α, mincount) {
 if FP-tree contains a single path P
 then for each combination β of nodes in P do
 generate frequent itemset β∪α
 with count(β∪α,D)= min count of nodes in β;
 else for each ai in header table of FP-tree do {
 generate frequent itemset β = ai∪α
 with count(β,D) = count(ai,FP-tree);
 construct β's conditional pattern base and then
 β's conditional FP-treeβ;
 if FP-treeβ ≠ ∅ then FP-growth(FP-treeβ,β, mincount);
}

Fig. 2. FP-growth algorithm

FP-growth has been found more efficient than Apriori for dense datasets (i.e.,
containing numerous and/or long frequent itemsets) and for low support thresholds.
Moreover, as stated in [18], FP-growth can incorporate more types of pattern
constraints than Apriori. In particular, a class of convertible constraints has been
identified, representing the constraints that can be handled by FP-growth by properly
ordering the items when storing a transaction in a tree (instead of “default” frequency
descending order).

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 245

3 Multiple-Query Optimization for Frequent Itemset Queries

3.1 Basic Definitions and Problem Statement

Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ,
minsup), where R is a database relation, a is a set-valued attribute of R, Σ is a
condition involving the attributes of R called data selection predicate, Φ is a
condition involving discovered itemsets called pattern constraint, and minsup is the
minimum support threshold. The result of dmq is a set of itemsets discovered in
πaσΣR, satisfying Φ, and having support ≥ minsup (π and σ denote relational
projection and selection operations respectively).

Example. Given the database relation R1(a1, a2), where a2 is a set-valued attribute and
a1 is of integer type. The frequent itemset query dmq1 = (R1, "a2", "a1>5",
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-
valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3%
and length less than 4 are discovered in the collection of records having a1>5.

Elementary data selection predicates. The set S={s1, s2 ,..., sk} of data selection
predicates over the relation R is a set of elementary data selection predicates for a set
of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} if for all u,v we have
σsuR∩σsvR =∅ and for each dmqi there exist integers a, b, ..., m such that
σΣiR=σsaR∪σsbR∪..∪σsmR. The set of elementary data selection predicates represents
the partitioning of the database determined by overlapping of queries’ datasets.

Example. Given the relation R1=(attr1, attr2) and three data mining queries:
dmq1=(R1, "attr2", "5 <attr1<20", ∅, 3%), dmq2=(R1, "attr2", "0<attr1<15", ∅, 5%),
dmq3=(R1, "attr2", "5<attr1<15 or 30<attr1<40", ∅, 4%). The set of elementary data
selection predicates is then S={s1="0<attr1<5", s2="5<attr1<15", s3="15<attr1<20",
s4="30<attr1<40"}.

Problem Statement. Given a set of frequent itemset queries DMQ = {dmq1, dmq2, ...,
dmqn}, the problem of multiple-query optimization of DMQ consists in generating an
algorithm to execute DMQ that minimizes the overall processing time.

In general, it is assumed that after collecting the queries to be concurrently executed
using any strategy, duplicated queries are eliminated in a pre-processing step. It is
also advisable to combine queries operating on exactly the same dataset (at least the
ones that have the same data selection predicate) into one query, whose results can be
used to answer the original queries by simple checking of pattern constraints and/or
support. Such a new query should have the support threshold equal to the smallest
threshold among the queries to be replaced and the pattern constraint in the form of a
disjunction of their pattern constraints.

3.2 Mine Merge

Mine Merge employs the property that for a database divided into a set of disjoint
partitions, an itemset frequent in a whole database, must also be frequent in at least

246 M. Wojciechowski, K. Galecki, and K. Gawronek

one partition of it. This important property has been proved in [20] and served as the
basis for a frequent itemset mining algorithm called Partition. The difference between
Partition and Mine Merge is that Partition uses memory-based partitions, determined
by the amount of available main-memory, while Mine Merge operates on disk-based
partitions, which are the consequence of overlapping between queries’ datasets.

/* Generate intermediate queries IDMQ = {idmq1, idmq2, ...} */

IDMQ ←∅
for each sj∈S do begin
 Q ← {dmqi∈DMQ | σsjR⊆σΣiR }
 intermediate_minsup ← min{minsupi | dmqi=(R, a, si, Φi, minsupi)∈Q}
 intermediate_Φ ←Φ1∨Φ2∨...∨Φ|Q|, ∀i=1..|Q|, dmqi=(R, a, si, Φi, minsupi)∈Q
 IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_minsup)

 end
/* Execute intermediate queries */
 for each idmqi ∈ IDMQ do

 IFi ← execute(idmqi)
/* Generate results for original queries DMQ = {dmq1, dmq2, ...} */
 for each dmqi∈ DMQ do
 Ci ← {c|c∈ Uk IFk , σskR⊆σΣiR, c.support ≥ minsupi, c satisfies Φi}

for each sj∈S do begin
 CC ← {Ci | σsjR⊆σΣiR }; /* select the candidates to count now */
 if CC≠∅ then count(CC, σsjR);
end
for (i=1; i<=n; i++) do
 Answeri ← {c ∈ Ci | c.support ≥ minsupi} /* generate final results */

Fig. 3. Mine Merge method

Mine Merge first generates a set of intermediate queries, in which each frequent
itemset query is based on a single elementary data selection predicate only. The
intermediate queries are derived from those original queries that are sharing a given
elementary data selection predicate. The minimum support thresholds and pattern
constraints for the intermediate queries are chosen so that their results are guaranteed
to include all locally frequent itemsets for all the original queries that refer to the
database partition corresponding to a given intermediate query, i.e., (1) the support
threshold of an intermediate query is the smallest minimum support threshold value
from all the relevant original queries, (2) the pattern constraint of an intermediate
query is a disjunction of the pattern constraints of the relevant original queries.

Next, the intermediate queries are executed sequentially using any frequent itemset
mining algorithm (Apriori, FP-growth, etc.). The pattern constraints that the chosen
algorithm can incorporate are pushed into the mining process, the remaining ones are
verified in a post-processing phase.

The results of intermediate queries are merged to form global candidates for the
original queries. For each of the original queries the set of its global candidates is a

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 247

union of frequent itemsets from all the intermediate queries operating on subsets of its
dataset. Since intermediate queries correspond to elementary data selection predicates,
these intermediate queries represent a partitioning of the original query’s dataset into
a set of disjoint partitions. Thus, the set of global candidates is guaranteed to contain
all frequent itemsets thanks to the property that in a partitioned dataset a pattern can
be frequent only if it is frequent in at least one partition.

Finally, a database scan is performed to count the global candidate supports and to
answer the original queries. The pseudocode of Mine Merge is shown in Fig. 3.

Obviously, efficiency of Mine Merge depends on the presence of efficient access
paths to dataset partitions corresponding to elementary data selection predicates. In
fact, Mine Merge must exploit ordering and/or indexing of the database relation
containing the mined datasets. Otherwise, each of the intermediate queries would
perform full relation scans, similarly as in sequential processing of the original
queries. This would lead to worse performance of Mine Merge than in case of
sequential processing because the number of intermediate queries generated by Mine
Merge is greater than the number of original queries. Another problem with Mine
Merge is that it introduces an extra database scan to generate final results from the
results of the intermediate queries, and therefore requires significant overlapping of
queries’ datasets in order to outperform sequential processing. Finally, Mine Merge is
not appropriate for large batches of queries as the number of intermediate queries in
the worst case is 2n-1, where n is the number of queries (all subsets of the set of
queries except the empty set). In such worst-case scenarios gains thanks to I/O
reduction may not compensate the increased amount of computations.

Although Mine Merge is independent of the mining algorithm used to execute
intermediate queries, one can expect that its performance relative to sequential
processing will depend on the chosen mining algorithm. For instance, the efficiency
of Mine Merge for Apriori strongly depends on data distribution which has an impact
on the number of Apriori iterations required for the intermediate queries. The same
should be true for FP-growth, i.e., the size of FP-tree and processing time of the
recursive FP-growth procedure for each intermediate query will depend on data
distribution. Additionally, one can expect that in case of FP-growth, which requires
exactly only two database scans, it will be more difficult for Mine Merge to
compensate the cost of its extra database scan with the reduction of I/O thanks to
dataset overlapping between the queries than it was for Apriori.

3.3 Common Counting

Common Counting was specifically developed for the Apriori algorithm. It consists in
concurrent execution of a set of frequent itemset queries using Apriori and integrating
their dataset scans. The method iteratively generates and counts candidates for all the
data mining queries, storing candidates generated for each query in memory (in
separate hash-tree structures). For each elementary data selection predicate, its
corresponding database partition is scanned once per iteration, and candidates for all
the queries referring to that partition are counted.

An advantage of Common Counting over Mine Merge is that it does not introduce
any significant computations and I/O operations apart from these performed by
Apriori executions. Therefore, Common Counting outperforms sequential processing

248 M. Wojciechowski, K. Galecki, and K. Gawronek

if any overlapping between queries’ datasets occurs and in general is more predictable
than Mine Merge. Another positive feature of Common Counting is that, contrary to
Mine Merge, in order to outperform sequential processing it does not require efficient
access paths to dataset partitions corresponding to elementary data selection
predicates. Moreover, if full scans of database relation are necessary to identify
datasets for each query, Common Counting is particularly efficient compared to
sequential processing as it performs one full scan per Apriori iteration, serving all the
queries. (Transactions are read sequentially and each of them is processed by the
queries, whose data selection predicates it satisfies.)

One problem with Common Counting is that it needs to maintain data structures
(candidate hash-trees) of several queries in main memory at the same time. If the
candidates of all the queries do not fit into memory, the counting process is divided
into phases, and queries are scheduled into phases so that an overall I/O cost is
minimized [23][25].

4 Common Building: Adaptation of Common Counting for
FP-Growth

Common Counting as formulated for Apriori cannot be applied directly to FP-growth
because FP-growth does not perform candidate generation and counting. However,
we can exploit the general strategy of Common Counting, which is integration of
operations performed by a set of queries during the scan of the common part of the
dataset. In case of FP-growth, the database is scanned 2 times (during the FP-tree
building phase), and these two scans can be integrated for the collection of queries for
which FP-trees are to be built. Thus, our adaptation of Common Counting to FP-
growth will consist in concurrent building of FP-trees in main memory for a batch of
queries, and therefore will be called Common Building. The Common Building
method for FP-growth for two concurrent queries dmq1 and dmq2 can be formalized as
presented in Fig. 4. Generalization of the procedure for an arbitrary number of queries
is straightforward.

Integration of common I/O operations takes place only during the tree-building
step, the FP-growth recursive procedure is not affected by the multiple-query
processing strategy. D1 and D2 denote parts of the database read by dmq1 and dmq2
respectively. Similarly, mincount1 and mincount2 are minimum required numbers of
occurrences for an itemset to be frequent for dmq1 and dmq2 respectively. FP-tree1
and FP-tree2 are separate FP-tree structures containing compressed datasets for dmq1
and dmq2 as proposed in [9].

It should be noted that Common Building for FP-growth preserves one of the
crucial positive features of Apriori Common Counting as it also does not rely on the
presence of efficient access paths to dataset partitions corresponding to elementary
data selection predicates for its efficiency, and is even more advantageous if full scans
are the only (or the most efficient) choice. If full scans of the database relation are
necessary, Common Building will build FP-trees for all the queries using two scans,
whereas in case of sequential processing each query would need its own two scans.

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 249

1. scan D to calculate mincount1 and mincount2,
 and discover frequent items for dmq1 and dmq2

2. create the root of FP-tree1 labeled as null
3. create the root of FP-tree2 labeled as null

4. scan D1 – D2 and add each transaction to FP-tree1,

 omitting items not frequent for dmq1
5. scan D1 ∩ D2 and add each transaction to both FP-tree1 and FP-tree2,
 omitting items not frequent for dmq1 and dmq2 respectively
6. scan D2 – D1 and add each transaction to FP-tree2,

 omitting items not frequent for dmq2
7. call FP-growth(FP-tree1, null, mincount1)
8. call FP-growth(FP-tree2, null, mincount2)

Fig. 4. Common Building method

Common Building does not explicitly consider pattern constraints, which are an
important elements of frequent pattern queries, and had to be considered by Mine
Merge (when generating intermediate queries). This is due to the fact that constraints
are taken into account by FP-growth when sorting the frequent elements from a
transaction before adding it to an FP-tree and within the recursive FP-growth
procedure. With Common Building, these operations are performed independently for
each query, and therefore the constraints can be handled as described in [18].

Common Building as an adaptation of Common Counting inherits not only its
advantages but also its disadvantage, which is the need for maintaining the data
structures (FP-trees in case of Common Building) for several queries at the same time
in main memory. If fact, this is even a more serious problem for Common Building
than it was for original Common Counting for the following two reasons. Firstly, an
initial FP-tree serving as a compressed and compact representation of the source
dataset is not the only memory structure used by FP-growth. The recursively called
FP-growth procedure builds conditional FP-trees, which especially in early calls
require significant amounts of main memory. Secondly, if datasets are sparse then the
FP-tree structure does not offer significant compression and storing initial FP-trees for
several queries simultaneously in main memory may be infeasible. To address the
above problem, in the next section we propose a novel, memory-saving strategy for
concurrent processing of frequent itemset queries using FP-growth.

5 Common FP-Tree: Integration of Queries’ FP-Trees into One
Data Structure

Common Building builds a separate initial FP-tree for each query. If data distribution
is uniform and/or the queries’ datasets significantly overlap, FP-trees built by
Common Building will have a significant number of paths in common. Motivated by
this observation, we propose a new strategy, named Common FP-tree, aiming at
integration of FP-trees of several queries into one data structure, and thus reducing
memory consumption.

250 M. Wojciechowski, K. Galecki, and K. Gawronek

The basic idea is to extend the FP-tree structure so that instead of just one counter,
each tree node will contain a vector of counters – one per frequent itemset query. We
will call this extended FP-tree CFP-tree. CFP-tree must contain all the information
needed for answering all the frequent itemset queries whose datasets its represents. In
order to guarantee that, when storing a transaction in CFP-tree, items frequent in any
of the queries referring to this transaction (referred to as locally frequent) have to be
preserved. However, for each tree node the counter of a given query is incremented
only provided that both following conditions are fulfilled: (1) the item represented by
the node is frequent for the query and (2) the query refers to the transaction being
processed. If a new node is introduced to the tree, counters of the queries for which
the above two conditions hold are set to 1 and the remaining counters are set to 0.

One remaining implementation detail regarding CFP-tree is the ordering of items.
In general, the supports of items can be different for different queries and therefore
finding an order-preserving frequency descending order for locally frequent items for
all the queries is not possible. As a sensible compromise, we propose to use global
frequency descending order when storing a transaction in a CFP-tree. These global
supports can be counted in the same database scan as local item supports for the
queries (when counting these global supports only parts of the database relevant for at
least one query are considered).

Table 2. Example transaction database

TID Items Ordered relevant locally frequent items
100 a;c;d;f;g;i;m;p f;c;a;m;p
200 a;b;c;f;l;m;o f;c;a;b;m
300 b;f;h;j;o f;b
400 B;f;k f;b
500 b;c;k;s;p C;b;p;s
600 a;c;e;f;l;m;n;p f;c;a;m;p
700 c;f;m;p;s f;c;p;s
800 a;c;f;s f;c;s

To illustrate the structure of CFP-tree let us consider an example database

represented by the first two columns of Table 2 (which will be referred to by the
queries as relation R1) and two frequent itemset queries dmq1 = (R1, "Items", "100 ≤
TID ≤ 600", "∅", 40%) and dmq2 = (R1, "Items", "400 ≤ TID ≤ 800", "∅", 50%). The
first query refers to the first six transactions, the second – to the last five. Three
transactions are shared by the queries. For both queries an item (and any itemset) is
frequent if it is contained in at least three transactions.

In the first scan of the database frequent items for dmq1 and dmq2 are discovered
and global supports of all the items are registered. The frequent items for dmq1 are {a,
b, c, f, m, p} and for dmq2: {c, f, p, s}. The global item supports are used to
descendingly order the list containing all items frequent for at least one query1. In our

1 If two or more items have equal global support, they can be ordered arbitrarily. However, this

order has to be fixed and used for all the transactions.

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 251

case: <(f:7), (c:6), (a:4), (b:4), (m:4), (p:4), (s:3)>. This list will be used to sort
transactions before storing them in the CFP-tree. The third column of Table 2 shows
the form in which each transaction will be inserted into the CFP-tree. For example,
from transaction 500, which belongs to the datasets of both queries, items frequent for
at least one query are preserved, while for transaction 800, which is referred only by
the second query, only its frequent items are preserved.

The resulting CFP-tree for the database from Table 2 and the two example queries
is depicted in Fig. 5. Note that, as explained earlier, some of the counters have the
value of 0, which means that either a given item is not frequent for a given query or a
given path in the tree represents only transactions that do not belong to the source
dataset of a given query. For instance, the rightmost branch of the CFP-tree represents
only transaction 500. The transaction belongs to the datasets of both considered
queries, so items frequent for any of them are preserved and ordered according to
descending global supports: <c, b, p, s>. However, since b and s are frequent only for
one of the queries, only one of the counters in their nodes on the path is non-zero.

Fig. 5. CFP-tree for an example database and two queries

The Common FP-tree method for two concurrent queries: dmq1 and dmq2 is
formally presented in Fig. 6. Similarly as with Common Building, generalization of
the procedure for an arbitrary number of queries is straightforward.

Steps 1-6 represent the process of building the CFP-tree structure, described earlier
in detail. In steps 7 and 8 actual in-memory mining is performed for the two queries
sequentially. In the first call to the FP-growth procedure the FP-tree of a given query,
“embedded” in the CFP-tree structure has to be “logically extracted”. This logical
extraction, for brevity represented in the algorithm as a call to extractFPtree function,
is performed on-line, while traversing the tree, according to the following set of rules:

a) for query dmqi, only i-th counters in tree nodes are considered;
b) when analyzing a path in a tree, nodes whose counters are 0 are ignored, but

their descendants are considered;

252 M. Wojciechowski, K. Galecki, and K. Gawronek

c) when using the header table for projections, the items infrequent for a given
query are omitted;

d) when following the list connecting all the nodes representing the same item
(starting from the header table), nodes whose counters are 0 are ignored, but
the traversal from such nodes continues.

The above rules are applied only in the first call to FP-growth as conditional FP-trees
passed to further recursive calls are classic FP-tree structures.

1. scan D to calculate mincount1 and mincount2, discover frequent items for dmq1
and dmq2, and count global support of the locally frequent itemsets
2. create the root of CFP-tree labeled as null
3. scan D1 – D2 and add each transaction to CFP-tree,

 omitting items not frequent for dmq1
5. scan D1 ∩ D2 and add each transaction to CFP-tree,
 omitting items not frequent for both dmq1 and dmq2
6. scan D2 – D1 and add each transaction to CFP-tree,

 omitting items not frequent in for dmq2
7. call FP-growth(extractFPtree(dmq1, CFP-tree), null, mincount1)
8. call FP-growth(extractFPtree(dmq2, CFP-tree), null, mincount2)

Fig. 6. Common FP-tree method

Similarly to Common Building, Common FP-tree performs exactly two scans of
the database for the whole batch of queries, reading parts shared by the queries once
per scan. Common FP-tree also does not rely on the presence of efficient access paths
to dataset partitions corresponding to selection predicates for its efficiency, and is
more advantageous over sequential processing if full scans are required.

As for constraint handling, Common FP-tree has one drawback compared to
Common Building. Handling convertible constraints, which require specific ordering
of items before storing a transaction in a tree, is possible only for one of the
concurrently processed queries, due to the fact that the same fixed order has to be
used by all the queries2. This problem definitely can be a subject of further study.

6 Experimental Results

In order to evaluate performance of Mine Merge using FP-growth, Common Building,
and Common FP-tree we performed several experiments using synthetic datasets
generated with GEN [2]. The datasets were stored in flat files on a disk. The
transactions forming a dataset were ordered according to the transaction identifier.
The dataset selection predicates had a form of range predicates on transaction
identifiers. To facilitate access to database partitions determined by overlapping
between queries’ datasets, the data files were accompanied with simple sequential
indexes. The experiments were conducted on a PC with Intel Pentium M 1,6 GHz
processor and 1024 MB of main memory, running Microsoft Windows XP.

2 Unless, of course, two or more queries would benefit from the same ordering.

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 253

In the experiments we varied the minimum support threshold and the overlapping
between the queries’ datasets. Although neither of the methods requires this, in all the
experiments all the queries to be concurrently processed used the same support
threshold, so as to make the potential influence of the support threshold easier to
observe.

In the first series of experiments we used a small dataset (denoted as GEN1)
generated using the following parameters: number of transactions = 50000, number of
different items = 1000, average number of items in a transaction = 5, number of
patterns = 500, average pattern length = 3. The size of this dataset was 2.5 MB.
Figure 7 presents the execution times for Mine Merge using FP-growth (MM),
Common Building (CB), Common FP-tree (CT), and sequential processing using FP-
growth (SP) of two queries for minimum support thresholds of 1% and 2%
respectively. The thresholds where experimentally selected so that they resulted in
significantly different sizes of FP-trees (on average by the factor of 40). For both
values of the support threshold the level of overlapping varied from 0% to 100%.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

dataset overlapping [%]

tim
e

[s
]

CB

CT

SP

MM

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100
dataset overlapping [%]

ti
m

e
[s

]

CB
CT
SP
MM

Fig. 7. Execution times on the GEN1 dataset for Mine Merge (MM), Common Building(CB),
Common FP-tree (CT), and sequential processing (SP) for 2 overlapping queries with
minsup=1% (left) and minsup=2% (right)

The experiments show that Common Building reduces the overall processing time
if any overlapping between queries’ datasets occurs (the same was true for Apriori as
reported in [22]). However, Mine Merge to outperform sequential processing with FP-
growth required the overlapping of about 60%, and still was beaten by Common
Building and Common FP-tree in each tested case. Execution time of Common
FP-tree was shorter than that of Common Building if the overlapping between the
queries’ datasets was greater than about 50%. The different support threshold values
did not significantly influence the relative performance of the compared methods.

Comparing the above results with the ones reported for concurrent processing of
frequent itemset queries using Apriori in [24], we observe that using FP-growth, Mine
Merge requires much more significant overlapping between the queries and exhibits
worse relative performance to Common Building than to Common Counting in case
of Apriori. This can be explained by the fact that FP-growth uses only 2 database
scans, typically much fewer then Apriori, and therefore for FP-growth Mine Merge
needs more I/O reduction during the integrated scans to compensate the extra scan of
database that it performs after collecting results of intermediate queries.

254 M. Wojciechowski, K. Galecki, and K. Gawronek

0

5

10

15

20

25

30

35

40

2 3 4 5
number of queries

tim
e

[s
]

CB

CT

SP

0

5

10

15

20

25

30

35

40

2 3 4 5
number of queries

tim
e

[s
]

CB

CT

SP

Fig. 8. Execution times on the GEN1 dataset for Common Building(CB), Common FP-tree
(CT), and sequential processing (SP) for 2-5 identical queries with minsup=1% (left) and
minsup=2% (right)

We also experimented with sets containing more than two queries using Common
Building, Common FP-tree, and sequential processing. Mine Merge was excluded
from these tests as it was found to be clearly the worst strategy for sets of two queries,
and our theoretical analysis (Sect. 3.2) indicated that it is not suitable for large batches
of queries. In general, it is hard to compare the performance of our methods for
different numbers of queries in a batch because the more queries the more
overlapping configurations possible. Therefore, in order to assess the influence of the
number of queries on their performance we “benchmarked” the methods on sets of
identical queries. Figure 8 shows the execution times for the batches of 2 to 5 queries
and support thresholds of 1% and 2%. The results indicate that the greater the number
of queries the bigger advantage of Common Building and Common FP-tree over
sequential processing. This is due to the fact that the more queries, the greater relative
reduction of I/O. The execution time of Common FP-tree stays almost constant with
the increase of the number of identical queries as its tree structure stays the same and
the time required to handle additional node counters is negligible.

Apart from measuring processing times of the tested methods, we also investigated
main memory consumption by the two most efficient methods: Common Building and
Common FP-tree3. For these two methods, Figure 9 shows the number of tree nodes4
for different levels of overlapping and support thresholds of 1% and 2% respectively.
The values for Common Building are sums of the number of nodes for both queries5.
The experiments show that Common FP-tree requires significantly less memory than
Common Building, and as expected memory savings increase with the level of
overlapping.

3 Note that Mine Merge does not introduce any specific memory management issues compared

to sequential processing as it uses unmodified FP-tree structure and by processing
intermediate queries sequentially never needs to maintain FP-trees of more than one query at
the same time.

4 For the case of two queries comparing the numbers of tree nodes provides a satisfactory appr-
oximation of the relation between the actual tree sizes as in that case the nodes consist mostly
of pointers with one extra integer counter per node in case of Common FP-tree.

5 The number of nodes measured for Common Building was not constant due to the fact that in
our experiments changing the level of overlapping resulted in different parts of the generated
dataset being mined and the items were not uniformly distributed.

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 255

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

dataset overlapping [%]

n
u

m
b

er
 o

f t
re

e
n

o
d

es

CB

CT

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100
dataset overlapping [%]

n
um

b
er

 o
f

tr
ee

 n
o

d
es

CB

CT

Fig. 9. Number of tree nodes for Common Building (CB) and Common FP-tree (CT)
for 2 overlapping queries on GEN1 with minsup=1% (left) and minsup=2% (right)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 20 50 80 100
dataset overlapping [%]

tim
e

[s
]

CB

CT

SP

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 20 50 80 100
dataset overlapping [%]

tim
e

[s
]

CB

CT

SP

Fig. 10. Execution times on the GEN2 dataset for Common Building(CB), Common FP-tree
(CT), and sequential processing (SP) for 2 overlapping queries with minsup=0.9% (left) and
minsup=1.05% (right)

In the second series of experiments, aiming at testing scalability of the proposed
methods, we used a significantly larger and more dense dataset (denoted as GEN2)
generated using the following parameters: number of transactions = 2500000, number
of different items = 10000, average number of items in a transaction = 8, number of
patterns = 1500, average pattern length = 4. The size of this dataset was 260 MB.
Figure 10 presents the execution times for the two most promising methods: Common

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

0 20 50 80 100
dataset overlapping [%]

n
u

m
b

er
 o

f t
re

e
n

o
d

es

CB

CT

0

5000

10000

15000

20000

25000

0 20 50 80 100

dataset overlapping [%]

n
u

m
b

er
 o

f t
re

e
n

o
d

es

CB

CT

Fig. 11. Number of tree nodes for Common Building (CB) and Common FP-tree (CT)
for 2 overlapping queries on GEN2 with minsup=0.9% (left) and minsup=1.05% (right)

256 M. Wojciechowski, K. Galecki, and K. Gawronek

Building (CB) and Common FP-tree (CT), compared to the execution times of
sequential processing using FP-growth (SP) for two queries and minimum support
thresholds of 0.9% and 1.05% respectively. For both values of the support threshold
the level of overlapping varied from 0% to 100%. The thresholds where again
experimentally selected so that they resulted in significantly different sizes of FP-trees
(on average by the factor of 4). The numbers of tree nodes for Common Building
(CB) and Common FP-tree (CT) are shown in Fig. 11. The results obtained for the
large GEN2 dataset are consistent with the ones on the small GEN1 dataset both in
terms of relative execution times and sizes of tree structures.

7 Conclusions

We have addressed the problem of concurrent processing of frequent itemsets queries.
While previous studies analyzed this problem only in the context of the Apriori
algorithm, in this paper we focused on FP-growth, which represents a newer,
pattern-growth family of data mining algorithms. We considered and experimentally
evaluated three multiple-query processing strategies for FP-growth. The first was
Mine Merge, originally proposed for Apriori, consisting in transforming the original
set of queries into the set of intermediate queries on non-overlapping datasets. The
second, inspired by Common Counting for Apriori, was based on integration of
dataset scans performed by the queries on shared parts of the database, and was
formulated for FP-growth as the Common Building method. The third was a
completely new strategy, aiming at integrating memory structures used by the queries,
and was implemented in the context of FP-growth as the Common FP-tree method.

The experiments show that Common Building reduces the overall processing time
compared to sequential processing if any overlapping between queries’ datasets
occurs (the same was true for Apriori Common Counting). On the other hand, Mine
Merge to be successful with FP-growth requires much more significant overlapping
between the queries than in case of Apriori. Finally, the novel strategy, applied by
Common FP-tree, outperformed Common Building if queries’ datasets overlapped by
more than 30% to 50% depending on the nature of the dataset, and in all cases had
smaller memory requirements, which makes it an optimal solution for highly
overlapping queries and environments with limited memory. For queries that do not
overlap significantly, Common Building is more appropriate.

For each of the proposed methods we analyzed the influence of the presence of
efficient access paths to queries’ source datasets and briefly discussed the possibility
of integrating pattern constraints into the mining process. Handling pattern constraints
within Mine Merge and Common Building is trivial but their incorporation into
Common FP-tree leaves some open questions for future research.

Another direction for further research, which we are currently investigating, is
concurrent processing of frequent itemset queries using Apriori by integrating
candidate hash-trees of the queries, resulting in a method analogous to Common FP-
tree for FP-growth. Finally, we also plan to investigate further possibilities of
computation sharing between the concurrently processed queries, going beyond
sharing disk accesses and memory data structures.

 Three Strategies for Concurrent Processing of Frequent Itemset Queries 257

Acknowledgments. Part of this work has been published by the authors as
“Concurrent Processing of Frequent Itemset Queries Using FP-Growth Algorithm” in
the Proceedings of the 1st ADBIS Workshop on Data Mining and Knowledge
Discovery (ADMKD'05), Tallinn, Estonia, 2005.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items
in Large Databases. In: Proc. of the 1993 ACM SIGMOD Conf. on Management of Data,
ACM Press, New York (1993)

2. Agrawal, R., Mehta, M., Shafer, J., Srikant, R., Arning, A., Bollinger, T.: The Quest Data
Mining System. In: Proc. of the 2nd Int’l Conference on Knowledge Discovery in
Databases and Data Mining (1996)

3. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the
20th Int’l Conf. on Very Large Data Bases (1994)

4. Alsabbagh, J.R., Raghavan, V.V.: Analysis of common subexpression exploitation models
in multiple-query processing. In: Proc. of the 10th ICDE Conference (1994)

5. Baralis, E., Psaila, G.: Incremental Refinement of Mining Queries. In: Mohania, M.K.,
Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 173–182. Springer, Heidelberg
(1999)

6. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.:
Improving the Efficiency of Inductive Logic Programming Through the Use of Query
Packs. Journal of Artificial Intelligence Research 16 (2002)

7. Cheung, D.W., Han, J., Ng, V., Wong, C.Y.: Maintenance of Discovered Association
Rules in Large Databases: An Incremental Updating Technique. In: Proc. of the 12th
ICDE (1996)

8. Han, J., Pei, J.: Mining Frequent Patterns by Pattern-Growth: Methodology and
Implications. SIGKDD Explorations (December 2000)

9. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proc.
of the 2000 ACM SIGMOD Conf. on Management of Data, ACM Press, New York (2000)

10. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation:
A Frequent-pattern Tree Approach. Data Mining and Knowledge Discovery: An
International Journal 8(1) (2004)

11. Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM 39(11) (1996)

12. Jarke, M.: Common subexpression isolation in multiple query optimization. In: Kim, W.,
Reiner, D.S. (eds.) Query Processing in Database Systems, Springer, Heidelberg (1985)

13. Jeudy, B., Boulicaut, J-F.: Using condensed representations for interactive association rule
mining. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI),
vol. 2431, pp. 225–236. Springer, Heidelberg (2002)

14. Jin, R., Sinha, K., Agrawal, G.: Simultaneous Optimization of Complex Mining Tasks
with a Knowledgeable Cache. In: Proc. of the 11th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM Press, New York (2005)

15. Meo, R.: Optimization of a Language for Data Mining. In: Proc. of the ACM Symposium
on Applied Computing - Data Mining Track, ACM Press, New York (2003)

16. Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Materialized Data Mining Views. In:
Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, Springer, Heidelberg (2000)

258 M. Wojciechowski, K. Galecki, and K. Gawronek

17. Nag, B., Deshpande, P.M., DeWitt, D.J.: Using a Knowledge Cache for Interactive
Discovery of Association Rules. In: Proc. of the 5th KDD Conference (1999)

18. Pei, J., Han, J.: Can We Push More Constraints into Frequent Pattern Mining? In:
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM Press, New York (2000)

19. Roy, P., Seshadri, S., Sundarshan, S., Bhobe, S.: Efficient and Extensible Algorithms for
Multi Query Optimization. ACM SIGMOD Intl. Conference on Management of Data
(2000)

20. Savasere, A., Omiecinski, E., Navathe, S.: An Efficient Algorithm for Mining Association
Rules in Large Databases. In: Proc. 21th Int’l Conf. Very Large Data Bases (1995)

21. Sellis, T.: Multiple-query optimization. ACM Transactions on Database Systems 13(1)
(1988)

22. Wojciechowski, M., Zakrzewicz, M.: Evaluation of Common Counting Method for
Concurrent Data Mining Queries. In: Kalinichenko, L.A., Manthey, R., Thalheim, B.,
Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, Springer, Heidelberg (2003)

23. Wojciechowski, M., Zakrzewicz, M.: Data Mining Query Scheduling for Apriori Common
Counting. In: Proc. of the Sixth International Baltic Conference on Databases and
Information Systems (2004)

24. Wojciechowski, M., Zakrzewicz, M.: Evaluation of the Mine Merge Method for Data
Mining Query Processing. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS
2004. LNCS, vol. 3255, Springer, Heidelberg (2004)

25. Wojciechowski, M., Zakrzewicz, M.: On Multiple Query Optimization in Data Mining. In:
Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, Springer,
Heidelberg (2005)

Beam Search Induction and Similarity
Constraints for Predictive Clustering Trees

Dragi Kocev1, Jan Struyf2, and Sašo Džeroski1

1 Dept. of Knowledge Technologies, Jožef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia

Dragi.Kocev@ijs.si, Saso.Dzeroski@ijs.si
2 Dept. of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
Jan.Struyf@cs.kuleuven.be

Abstract. Much research on inductive databases (IDBs) focuses on lo-
cal models, such as item sets and association rules. In this work, we
investigate how IDBs can support global models, such as decision trees.
Our focus is on predictive clustering trees (PCTs). PCTs generalize deci-
sion trees and can be used for prediction and clustering, two of the most
common data mining tasks. Regular PCT induction builds PCTs top-
down, using a greedy algorithm, similar to that of C4.5. We propose a
new induction algorithm for PCTs based on beam search. This has three
advantages over the regular method: (a) it returns a set of PCTs satis-
fying the user constraints instead of just one PCT; (b) it better allows
for pushing of user constraints into the induction algorithm; and (c) it is
less susceptible to myopia. In addition, we propose similarity constraints
for PCTs, which improve the diversity of the resulting PCT set.

1 Introduction

Inductive databases (IDBs) [9,5] represent a database view on data mining and
knowledge discovery. IDBs contain not only data, but also models. In an IDB,
ordinary queries can be used to access and manipulate data, while inductive
queries can be used to generate, manipulate, and apply models. For example,
“find a set of accurate decision trees that have at most ten nodes” is an inductive
query.

IDBs are closely related to constraint-based mining [3]. Because the induc-
tive queries can include particular constraints, the IDB needs constraint-based
mining algorithms that can be called to construct the models that satisfy these
constraints. The above example query includes, for instance, the constraint that
the trees can contain at most ten nodes.

Much research on IDBs focuses on local models, i.e., models that apply to
only a subset of the examples, such as item sets and association rules. We inves-
tigate how IDBs can support global models. In particular, we consider predictive
clustering trees (PCTs) [1]. PCTs generalize decision trees and can be used for
both prediction and clustering tasks. We define PCTs in Section 2.

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 134–151, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Beam Search Induction and Similarity Constraints for PCTs 135

Regular PCT induction builds PCTs top-down using a greedy algorithm simi-
lar to that of C4.5 [12] or Cart [4]. This approach has three main disadvantages
w.r.t. inductive databases: (a) it returns only one PCT. This is incompatible
with the IDB view that inductive queries should (if possible) return the set of
all models satisfying the constraints in the query; (b) many useful constraints
are not easy to push into the induction algorithm. Size constraints, such as the
one in our example query, must be handled mostly during post-pruning [7]; and
(c) because the algorithm is greedy, it is susceptible to myopia: It may not find
any tree satisfying the constraints, even though several exist in the hypothesis
space.

In this paper, we propose a new induction algorithm for PCTs that addresses
these three problems to a certain extent, while maintaining an acceptable com-
putational cost. The algorithm employs beam search. Beam search considers at
each step of the search the k best models according to a particular evaluation
score. Therefore, it returns a set of models instead of just one model. Beam
search also supports pushing of size constraints into the induction algorithm, as
we will show in Section 4. Finally, beam search is known to be less susceptible
to myopia than regular greedy search.

Preliminary experiments have revealed a disadvantage of using beam search
for constructing PCTs. Namely, the beam tends to fill up with small variations
of the same PCT, such as trees that differ only in one node. To alleviate this, we
propose similarity constraints for PCTs. We show that these constraints improve
beam diversity.

The remainder of this paper is organized as follows. In Section 2 we present
PCTs. The beam search algorithm is explained in Section 3. In Sections 4 and 5
we discuss anti-monotonic and similarity constraints that can be pushed in the
beam search induction process. Section 6 presents the experimental setup, and
Section 7 discusses the experimental results. We conclude and discuss further
work in Section 8.

2 Predictive Clustering Trees

PCTs [1] generalize classification and regression trees and can be used for a
variety of learning tasks including different types of prediction and clustering.
The PCT framework views a decision tree as a hierarchy of clusters (Fig. 1):
the top-node of a PCT corresponds to one cluster containing all data, which is
recursively partitioned into smaller clusters while moving down the tree. The
leaves represent the clusters at the lowest level of the hierarchy and each leaf
is labeled with its cluster’s centroid. PCTs are constructed such that each split
maximally improves average cluster homogeneity.

PCTs can be built with a greedy recursive top-down induction algorithm
(PCT-TDI, Table 1), similar to that of C4.5 [12] or Cart [4]. The algorithm
takes as input a set of training instances I. The main loop searches for the best
acceptable attribute-value test that can be put in a node (BestTest, Table 1). If
such a test t∗ can be found then the algorithm creates a new internal node labeled

136 D. Kocev, J. Struyf, and S. Džeroski

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

A ≤ 3
yes no

B ≤ 5
yes no

B

A

Fig. 1. A classification tree (left) is a special case of a PCT. It hierarchically partitions
the instances into homogeneous clusters (right).

Table 1. The top-down induction (TDI) algorithm for PCTs

procedure PCT-TDI(I)
1: (t∗, h∗, P∗) = BestTest(I)
2: if t∗ �= none then
3: for each Ik ∈ P∗ do
4: treek = PCT(Ik)
5: return node(t∗,

⋃
k{treek})

6: else
7: return leaf(centroid(I))

procedure BestTest(I)
1: (t∗, h∗, P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = Partition(t, I)
4: h = Var(I) −

∑
Ik∈P

|Ik|
|I| Var(Ik)

5: if (h > h∗) ∧ Acceptable(t, P) then
6: (t∗, h∗, P∗) = (t, h, P)
7: return (t∗, h∗, P∗)

t∗ and calls itself recursively to construct a subtree for each subset in the partition
P∗ induced by t∗ on the training instances. If no acceptable test can be found,
then the algorithm creates a leaf. (A test is unacceptable if minI∈P |I| < m,
with m a parameter that lower-bounds the number of instances in a leaf.) The
heuristic that ranks the tests is computed as the reduction in variance caused
by partitioning the instances (Line 4 of BestTest).

The difference with standard decision tree learners is that PCTs treat the
variance function and the centroid function that computes a label for each leaf
as parameters that can be instantiated for a given learning task. For a clustering
task, the variance function takes all the attributes into account, while for a
prediction task it focuses on the target attribute that is to be predicted. The
same holds for the centroid function.

PCTs include classification and regression trees [4] as a special case. To con-
struct a regression tree, for example, the regular definition of variance is used
and the centroid is computed as the mean of the target values in the node. To
construct a classification tree, the variance is computed either as the entropy
of the class attribute (then the heuristic is equivalent to information gain [12]),
or by converting the target attribute to a set of binary attributes (one for each
class) and using the regular definition of variance over the resulting 0/1 vectors

Beam Search Induction and Similarity Constraints for PCTs 137

Table 2. The beam search algorithm Clus-BS

procedure Clus-BS(I ,k)
1: i = 0
2: Tleaf =leaf(centroid(I))
3: h = Heuristic(Tleaf , I)
4: beam0 = {(h, Tleaf)}
5: repeat
6: i = i + 1
7: beami = beami−1

8: for each T ∈ beami−1 do
9: R = Refine(T, I)

10: for each Tcand ∈ R do
11: h = Heuristic(Tcand, I)
12: hworst = maxT∈beamiHeuristic(T, I)
13: Tworst = argmaxT∈beamiHeuristic(T, I)
14: if h < hworst or |beami| < k then
15: beami = beami ∪ {(h, Tcand)}
16: if |beami| > k then
17: beami = beami \ {(hworst, Tworst)}
18: until beami = beami−1

19: return beami

procedure Refine(T, I)
1: R = ∅
2: for each leaf l ∈ T do
3: Il = Instances(I ,l)
4: for each attribute a do
5: t = best test on a
6: {I1, I2} = Partition(t, Il)
7: l1 = leaf(centroid(I1))
8: l2 = leaf(centroid(I2))
9: n = node(t,{l1, l2})

10: Tr = replace l by n in T
11: R = R ∪ {Tr}
12: return R

(then the heuristic reduces to the Gini index [4]). The centroid function labels
a leaf with the majority class of the examples. These definitions can be trivially
extended to the multi-objective case (more than one target attribute) and to
less trivial learning tasks, such as multi-label and hierarchical classification [2],
or clustering of time series [6].

PCTs are implemented in the Clus system. Clus implements syntactic con-
straints and constraints on the size and/or accuracy of the trees [13]. It also
implements various pruning methods, which are commonly used by decision tree
learners to avoid over-fitting. More information about PCTs and Clus can be
found at http://www.cs.kuleuven.be/∼dtai/clus and in reference [1].

3 Beam Search

We propose the beam search algorithm Clus-BS, shown in Table 2. The beam
is a set of PCTs ordered by their heuristic value. The algorithm starts with a
beam that contains precisely one PCT: a leaf covering all the training data I.

Each iteration of the main loop creates a new beam by refining the PCTs in
the current beam. That is, the algorithm iterates over the trees in the current
beam and computes for each PCT its set of refinements (Fig. 2). A refinement
is a copy of the given PCT in which one particular leaf is replaced by a depth
one sub-tree (i.e., an internal node with a particular attribute-value test and

http://www.cs.kuleuven.be/~dtai/clus

138 D. Kocev, J. Struyf, and S. Džeroski

two leaves). Note that a PCT can have many refinements: a PCT with L leaves
yields L · M refined trees, with M the number of possible tests that can be put
in a new node. In Clus-BS, M is equal to the number of attributes. That is,
Clus-BS considers for each attribute only the test with the best heuristic value.
Note that the number of possible tests on a numeric attribute A is typically
huge: one test A < ai, for each possible split point ai. Clus-BS only constructs
one refined tree for the split that yields the best heuristic value. This approach
limits the number of refinements of a given PCT and increases the diversity of
the trees in the beam.

Clus-BS computes for each generated refinement its heuristic value. The
heuristic function differs from the heuristic used in the top-down induction al-
gorithm (TDI) from Section 2. The heuristic in the latter is local, i.e., it only
depends on the instances local to the node that is being constructed. In Clus-
BS, the heuristic is global and measures the quality of the entire tree. The reason
is that beam search needs to compare different trees, whereas TDI only needs
to rank different tests for the same tree node. The heuristic that we propose to
use is:

h(T, I) =

(
∑

leaf ∈ T

|Ileaf |
|I| Var(Ileaf)

)

+ α · size(T) , (1)

with I all training data and Ileaf the examples sorted into leaf. It has two compo-
nents: the first one is the average variance of the leaves of the PCT weighted by
size, and the second one is a size penalty. The latter biases the search to smaller
trees and can be seen as a soft version of a size constraint. The size function
that we use throughout the paper counts the total number of nodes in the PCT
(internal nodes + leaves).

After the heuristic value of a tree is computed, Clus-BS compares it to the
value of the worst tree in the beam. If the new tree is better, or if there are fewer
than k trees (k is the beam width), then Clus-BS adds the new PCT to the
beam, and if this exceeds the beam width, then it removes the worst tree from
the beam. The algorithm ends when the beam no longer changes. This either
occurs if none of the refinements of a tree in the beam is better than the current
worst tree, or if none of the trees in the beam yields any valid refinements. This
is the point in the algorithm where the user constraints from the inductive query
can be used to prune the search: a refinement is valid in Clus-BS if it does not
violate any of these constraints. Section 4 discusses this in detail.

Note that (1) is similar to the heuristic used in the TDI algorithm from
Section 2. Assume that there are no constraints, α = 0 and k = 1. In this
case, the tree computed by Clus-BS will be identical to the tree constructed
with TDI. The only difference with TDI is the order in which the leaves are
refined: TDI refines depth-first, whereas Clus-BS with a beam width of one
refines best-first.

The computational cost of Clus-BS is as follows. Computing the best test
for one attribute for the instances in a given leaf costs O(|Ileaf | log |Ileaf |) (to find

Beam Search Induction and Similarity Constraints for PCTs 139

(a
)

(b
)

(c
)

A
<

a 0

ye
s

no

fa
lse

tru
e

A
<

a 0

ye
s

no

C
<

c 0

ye
s

no

B
in

{b 0
,b

1}

ye
s

no

tru
e

fa
lse

fa
lse

tru
e

A
<

a 0

ye
s

no

D
in

{d
0,

d 1
,d

2}

ye
s

no

B
in

{b 0
,b

1}

ye
s

no

fa
lse

tru
e

fa
lse

tru
e

A
<

a 0

ye
s

no

F
<

f 0

ye
s

no

B
in

{b 0
,b

1}

ye
s

no

fa
lse

tru
e

fa
lse

tru
e

A
<

a 0

ye
s

no B
in

{b 0
,b

1}

ye
s

no

fa
lse

fa
lse

tru
e

A
<

a 0

ye
s

no

E
<

e 0

ye
s

no

fa
lse

tru
e

fa
lse

A
<

a 0

ye
s

no

K
<

k 0

ye
s

no

fa
lse

tru
e

tru
e

F
ig

.2
.

R
efi

ni
ng

th
e

tr
ee

s
in

th
e

be
am

.
(a

)
A

tr
ee

in
th

e
be

am
;
(b

)
th

e
re

fin
em

en
ts

of
tr

ee
(a

);
(c

)
th

e
re

fin
em

en
ts

of
th

e
to

p-
m

os
t

tr
ee

in
(b

).
N

ot
e

th
at

th
e

re
fin

em
en

ts
(c

)
ar

e
on

ly
co

m
pu

te
d

in
a

su
bs

eq
ue

nt
it
er

at
io

n
of

th
e

se
ar

ch
af

te
r

th
e

to
p-

m
os

t
tr

ee
of

(b
)

ha
s

en
te

re
d

th
e

be
am

.

140 D. Kocev, J. Struyf, and S. Džeroski

the best split point for a numeric attribute, the instances must be sorted; after
sorting, finding the best split can be done in O(|Ileaf |) time [12]). If the score of
the best test is better than that of the worst tree in the beam, then the refined
tree must be constructed O(size(T)) and inserted into the beam O(log k) (if the
beam is implemented as a balanced binary search tree). Repeating this for all
attributes and all leaves yields O(|A|·|I| log |I|+|A|·|leaves(T)|·(size(T)+logk))
because each instance occurs in at most one leaf. If s upper-bounds the size of
the trees in the beam, then the cost of refining the entire beam is O(k · |A| ·
|I| log |I|+ s2k · |A|+ s · |A| · k log k). Finally, the cost of running n iterations of
Clus-BS is O(nk · |A| · |I| log |I|+ns2k · |A|+ns · |A| ·k log k). For comparison, the
computational cost of TDI is O(D · |A| · |I| log |I|), with D the depth of the tree.
Assuming that the first term dominates the complexity of Clus-BS, it follows
that Clus-BS is O(kn/D) times slower. Note that n is in the best case equal to
the number of leaves in the largest tree because each iteration can add at most
one leaf.

4 Anti-monotonic Constraints

Clus-BS supports any conjunction or disjunction of constraints that are anti-
monotonic with regard to the refinement order. We define this more precisely
with the following definitions.

Definition 1 (Refinement set). The refinement set ρ∗(T) of a tree T given
a refinement operator ρ is the set that is obtained by recursively applying ρ, that
is, limn→∞ ρn(T), with ρ0(T) = {T } and ρi(T) = ρi−1(T)∪

(⋃
Tr∈ρi−1(T) ρ(Tr)

)

if i > 0.

In Clus-BS, ρ(T) is implemented by the Refine procedure in Table 2. Consider
again Fig. 2. All trees shown in this figure are part of ρ∗(T), with T the tree in
Fig. 2.a.

Definition 2 (Refinement order). The refinement order ≥ref is a partial or-
der defined on trees as T1 ≥ref T2 if and only if T1 ∈ ρ∗(T2).

Note that T1 ≥ref T2 can be thought of as “T2 is a subtree of T1 sharing the
same root”.

Definition 3 (Anti-monotonic constraint). A constraint is a Boolean func-
tion over trees. A constraint c is anti-monotonic with respect to ≥ref if and only
if ∀T1, T2 : (T1 ≥ref T2 ∧ c(T1)) → c(T2).

If one considers an increasing sequence of trees according to the refinement
order (E.g., going from (a) to (c) in Fig. 2) then the value of an anti-monotonic
constraint can only decrease along the sequence, that is, change from true to
false. This observation is exploited by Clus-BS. If a given refinement violates
one of the anti-monotonic constraints, then the search can be pruned (by not

Beam Search Induction and Similarity Constraints for PCTs 141

adding the refinement to the beam) because any subsequent refinement will also
violate the constraint (because of its anti-monotonicity).

We list a number of useful anti-monotonic constraints for trees.

1. The maximum size constraint cs(T) = (size(T) ≤ s) upper-bounds the size of
the tree. This constraint is useful for decision trees because domain experts
are typically interested in small trees for interpretability reasons.

2. The minimum cluster size constraint cm(T) = (minleaf ∈ T |Ileaf | ≥ m) lower-
bounds the number of instances in each leaf of the tree. This constraint is
implemented by most decision tree learners.

3. The maximum depth constraint upper-bounds the maximum depth of the
tree. Sometimes it is useful to constrain tree depth, for example, because the
resulting tree will be more balanced.

4. The maximum prediction cost constraint. This is an extension of the max-
imum depth constraint, where each test is weighted by its prediction cost.
Prediction cost constraints are useful in medical applications where the at-
tributes correspond to expensive lab tests. In such applications, it is useful
to upper-bound the prediction cost of the tree.

All the above constraints are anti-monotonic and can be handled efficiently
by Clus-BS. In the experimental evaluation, we investigate the effect of using
maximum size constraints (Section 6).

So far, we assumed that the user is interested in obtaining trees that are
as accurate as possible. For decision trees, this is accomplished algorithmically
by using a heuristic function that is known to yield accurate trees. Another
possibility is that the user explicitly provides a constraint on the accuracy of the
tree, e.g., acc(T, I) ≥ 85%. (Note that this constraint is not anti-monotonic.)
The goal is then to find, e.g., the smallest tree that satisfies this constraint.
To this end, the algorithm is run repeatedly with increasing values for the size
constraint until the accuracy constraint is satisfied [13].

5 Similarity Constraints

The heuristic value defined in Section 3 only takes the variance and the size of the
PCT into account. In this section, we define a soft similarity constraint, which
can be included in the heuristic computation and biases the search towards a
diverse set of trees (which are dissimilar to each other, as much as possible). We
will call Clus-BS with these (dis)similarity constraints included Clus-BS-S.

To quantify the (dis)similarity of two trees,Clus-BS-S requires a distance func-
tion between trees. Two obvious approaches are: (a) define the distance based on
the syntactic representation of the trees, or (b) define the distance based on the
predictions that the trees make on the training instances. One problem with (a)
is that many syntactically different trees can represent the same concept, for ex-
ample, the trees in Fig. 3 both represent the concept A ∧ B. If our goal is to find
trees that are semantically different, then (b) is to be preferred and we therefore
focus on this approach here.

142 D. Kocev, J. Struyf, and S. Džeroski

A
true false

B
true false

true false

false

B
true false

A
true false

true false

false

Fig. 3. Syntactically different trees representing the concept A ∧ B

We propose to compute the distance between two trees (T1 and T2) as the
normalized root mean squared distance between their predictions on the data
set at hand, that is

d(T1, T2, I) =
1
η
·

√∑
t∈I dp(p(T1, t), p(T2, t))2

|I| , (2)

with η a normalization factor, |I| the number of training instances, p(Tj, t) the
prediction of tree Tj for instance t, and dp a distance function between pre-
dictions. In (2), η and dp depend on the learning task. For regression tasks,
dp is the absolute difference between the predictions, and η = M − m, with
M = maxt∈I,j∈{1,2} p(Tj , t) and m = mint∈I,j∈{1,2} p(Tj, t). This choice of η
ensures that d(T1, T2, I) is in the interval (0, 1). For classification tasks, dp = δ
with

δ(a, b) =
{

1 if a 	= b
0 if a = b

, (3)

and η is 1. These distance functions can be easily adapted to the more general
PCT types mentioned in Section 2 (e.g., for multi-target prediction, multi-label
and hierarchical classification and clustering of time series).

The heuristic value of a tree can now be modified by adding a term that
penalizes trees that are similar to the other trees in the beam.

h(T, beam, I) =

(
∑

leaf ∈ T

|Ileaf |
|I| Var(Ileaf)

)

+α ·size(T)+β ·sim(T, beam, I) (4)

Because the heuristic value of a tree now also depends on the other trees
in the beam, it changes when a new tree is added. Therefore, each time that
Clus-BS-S considers a new candidate tree, it recomputes the heuristic value of
all trees already in the beam using (4), which incorporates the similarity to the
new candidate tree (Tcand) by using (5).

sim(T, beam, I) = 1 −
d(T, Tcand, I) +

∑
Ti∈beam d(T, Ti, I)

|beam| (5)

Note that (5) is in the interval (0, 1) because the numerator has |beam| non-
zero terms that are in (0, 1). Clus-BS-S computes the heuristic value of Tcand

Beam Search Induction and Similarity Constraints for PCTs 143

Table 3. The data sets and their p roperties: number of instances (|I |), number of
discrete/continuous input attributes (D/C), number of classes (Cls), probability of
majority class (Maj), entropy of the class distribution (Ent), mean value of the target
(Mean), and standard deviation of the target (St.dev.)

(a) Classification data sets.
Data set |I | D/C Cls Maj Ent
car 1728 6/0 4 0.70 1.21
mushroom 8124 22/0 2 0.52 1.00
segment 2310 0/19 7 0.14 2.81
vowel 990 3/10 11 0.09 3.46
vehicle 846 0/19 4 0.26 2.00
iris 150 0/4 3 0.33 1.58
ionosphere 351 0/34 2 0.64 0.94
chess 3196 36/0 2 0.52 1.00

(b) Regression data sets.
Data set |I | D/C Mean St.dev.
autoPrice 159 0/15 11445.73 5877.86
bodyfat 252 0/14 19.15 8.37
cpu 209 1/6 99.33 154.76
housing 506 1/12 22.53 9.20
pollution 60 0/15 940.36 62.21
servo 167 4/0 1.39 1.56
pyrim 74 0/27 0.66 0.13
machine cpu 209 0/6 105.62 160.83

using (4). If the heuristic value of the candidate tree is better than that of the
worst tree in the beam, the candidate tree enters the beam and the worst tree
is removed.

6 Experiments

6.1 Aims

We compare Clus with the regular recursive top-down induction algorithm
(TDI, Table 1) to Clus with beam search (BS, Table 2), and beam search with
similarity constraints (BS-S). Our aim is to test the following hypotheses.

1. Hill-climbing search, which is used by TDI, suffers from shortsightedness.
TDI may return a suboptimal model due to its limited exploration of the
hypothesis space. Beam search is known to be less susceptible to this prob-
lem. We therefore expect that on average BS will yield models that are more
accurate or at least as accurate as the models built by TDI.

2. Similarity constraints improve the diversity of the beam, possibly at the cost
of some predictive accuracy. Diversity is important for the domain expert,
who is typically interested in looking at different models, for example because
one PCT is easier to interpret than the other PCTs. Note that if we consider
all models in the beam to make up the answer to the inductive query, then
all these PCTs should be reasonably accurate.

6.2 Setup

We perform experiments on 8 regression and 8 classification data sets from the
UCI machine learning repository [10]. Table 3 lists the properties of the data sets.
We set the parameters of the beam search algorithms ad-hoc to the following
values: k = 10, α = 10−5, and β = 1, where k is the beam width, α is the size

144 D. Kocev, J. Struyf, and S. Džeroski

penalty and β is the influence of the similarity constraint (Equations (1) and (4)).
For the classification data sets, we use the version of the heuristic that employs
class entropy to estimate the variance of the target attribute. All experiments
are performed with the Clus system (Section 2), in which the algorithms BS
and BS-S have been implemented.

We measure the predictive performance of each algorithm using 10 fold cross-
validation. For the classification data sets, we report accuracy and for the re-
gression data sets the Pearson correlation coefficient. Because the beam search
algorithms yield not one but k trees, we have to select one of these k trees to
compare to TDI. We decided to use the tree that performs best on the training
data (Ttrain) for this purpose.

To test if all trees in the beam are sufficiently accurate, we measure their
average predictive accuracy (or correlation coefficient). We also measure the
minimum and maximum accuracy (or correlation coefficient) of the trees in the
beam and use these to calculate the difference in performance between the worst
tree and Ttrain and the best tree and Ttrain. That is, we compute Dworst = At−Aw

and Dbest = Ab − At, with At the test set performance of Ttrain, and Aw the
minimum and Ab the maximum test set performance of the trees in the beam.
If Dworst = 0, then Ttrain is the worst tree in the beam, and if Dbest = 0, then
it is the best tree in the beam. We report the average of Dworst and Dbest over
the 10 cross-validation folds.

To quantify the effect of the similarity constraints, we calculate for the two
beam search algorithms beam similarity, which we define as the average similarity
of the trees in the beam. Similarity(beam, I) = 1

|beam|
∑

T ∈ beam sim(T, beam, I),
with sim(T, beam, I) = 1 − 1

|beam|
∑

Ti ∈ beam d(T, Ti, I), the similarity of tree T

w.r.t. the other trees in the beam, and d(T, Ti, I) the distance between trees T
and Ti as defined in Section 5. We report beam similarity on the test set averaged
over the 10 cross-validation folds.

We perform experiments for different values of the size constraint. Recall that
in the beam search algorithm, this type of constraints can be enforced during
the search (Section 4). For TDI this is not possible and therefore we use a two
step approach that first builds one large tree and subsequently prunes it back to
satisfy the size constraint [7]. We also report results without any size constraint.
For these results we use, both for TDI and BS, the same pruning algorithm
that is also used in C4.5 [12] (for classification data sets) and in M5 [11] (for
regression data sets).

7 Results and Discussion

7.1 Predictive Performance

Table 4 compares the cross-validated accuracy of TDI, BS, and BS-S on the
classification data and Table 5 the cross-validated correlation coefficient for the
regression data. The tables contain results for different values of the size con-
straint: maximum size ranging from 5 (SC5) to 51 (SC51) nodes, and no size

Beam Search Induction and Similarity Constraints for PCTs 145

constraint (NoSC). Each column includes the number of statistically significant
wins (p ≤ 0.05), which are obtained by a 10 fold cross-validated paired t-test
and indicated in bold face.

The results confirm our first hypothesis. BS yields models of comparable ac-
curacy to TDI. BS wins on 5 classification and 3 regression tasks. TDI wins on
2 classification and no regression tasks. This confirms that BS yields more ac-
curate models, which can be explained because it is less susceptible to myopia.
There is no clear correlation between the number of wins and the value of the
size constraint.

BS-S wins on 6 classification and 4 regression tasks and loses on 13 classifi-
cation and 1 regression tasks. BS-S performs, when compared to BS, worse on
classification data than on regression data. This is because the heuristic (used
in BS-S) trades off accuracy for diversity. If a given tree in the beam is accurate,
then new trees will be biased to be less accurate because the similarity score
favors trees with different predictions. For classification problems this effect is
more pronounced because a 0/1 distance between predictions is used, whereas
in the regression case a continuous distance function is used. The latter makes
it “easier” to have different predictions that are still reasonably accurate. Also,
this effect is stronger for bigger size constraints (the majority of the losses of
BS-S are for SC31, SC51 and NoSC) because the relative contribution of the
similarity score to the heuristic is greater for bigger size constraints. Note that
the losses are in the range of 1-2% accuracy, so for the majority of domains this
is not a serious problem.

Our second hypothesis was that BS-S trades off accuracy for beam diversity.
Table 6 lists the beam similarity for BS and BS-S for the classification data and
SC7. The beam similarity of BS-S is always smaller than that of BS. Fig. 4 shows
the trees in the final beam for the “vehicle” data for BS and BS-S. The trees of
BS all have the same test in the top node and include tests on 5 attributes. The
BS-S trees have tests on 3 different attributes in the top node and include tests
on 6 attributes in total. This shows that the trees produced by BS-S not only
produce different predictions, but are also syntactically different from the trees
constructed with BS.

Table 6 lists the average accuracy of the trees in the beam and shows how much
worse (better) the worst (best) tree is compared to the result reported in Table 4.
Consider first the results for BS. For the data sets “mushroom”, “segment”,
and “vehicle”, all trees are of comparable accuracy. For “car”, “vowel”, “iris”,
“ionosphere”, and “chess”, the differences in accuracy become larger. For most
of these, Ttrain is on average among the best trees. This is most obvious for
“chess” where Dbest = 0. Only for 2 out of 8 data sets (“car” and “ionosphere”)
Dbest > Dworst. Note that the differences are larger for BS-S than for BS. This
shows that the variance in accuracy increases with the beam diversity.

7.2 Induction Time

Table 7 compares the running times of all algorithms and the number of models
evaluated by BS and BS-S. Observe that BS-S is (much) slower than BS and

146 D. Kocev, J. Struyf, and S. Džeroski

Table 4. Comparison of beam search (BS) and BS with similarity constraints (BS-S)
to top-down induction (TDI) on classification data (accuracy)

TDI BS TDI BS TDI BS TDI BS
Data set SC5 SC7 SC11 SC17

car 77.8 77.8 79.2 77.1 82.2 81.8 87.0 85.6
mushroom 99.4 99.4 99.4 99.6 99.9 100.0 100.0 100.0

segment 40.0 40.7 55.6 55.6 80.9 81.1 90.2 90.4
vowel 20.6 20.7 25.2 27.3 31.6 33.6 38.9 42.3

vehicle 48.7 51.2 51.2 60.2 64.5 64.5 68.9 66.4
iris 92.0 92.0 94.0 96.0 93.3 93.3 93.3 92.7

ionosphere 89.5 89.2 88.6 88.3 88.9 90.6 88.6 88.9
chess 75.5 76.9 90.4 90.4 94.1 93.8 96.5 96.9
Wins 0 0 1 2 0 1 0 1

SC31 SC51 NoSC (Acc) NoSC (Size)
car 92.8 92.6 95.0 94.0 97.5 97.6 113 117

mushroom 100.0 100.0 100.0 100.0 100.0 100.0 15 11
segment 94.9 94.2 96.2 96.0 96.7 96.8 85 85

vowel 49.2 51.8 55.7 61.2 79.2 80.8 191 179
vehicle 70.0 72.5 71.7 72.7 73.9 72.0 167 179

iris 93.3 92.7 93.3 92.7 92.7 92.7 9 11
ionosphere 88.9 88.9 88.9 88.9 88.6 89.5 29 27

chess 97.8 97.7 99.3 99.4 99.4 99.5 53 53
Wins 0 0 1 1 0 0

TDI BS-S TDI BS-S TDI BS-S TDI BS-S
Data set SC5 SC7 SC11 SC17

car 77.8 77.8 79.2 77.1 82.2 81.1 87.0 86.0
mushroom 99.4 99.4 99.4 99.6 99.9 100.0 100.0 99.6

segment 40.0 39.6 55.6 55.1 80.9 81.0 90.2 91.6
vowel 20.6 20.7 25.2 27.3 31.6 36.0 38.9 42.0

vehicle 48.7 51.2 51.2 60.2 64.5 64.3 68.9 68.7
iris 92.0 92.0 94.0 96.0 93.3 93.3 93.3 92.7

ionosphere 89.5 89.2 88.6 88.6 88.9 92.0 88.6 91.5
chess 75.5 76.9 90.4 90.4 94.1 93.8 96.5 95.6
Wins 0 0 1 2 0 2 2 2

SC31 SC51 NoSC (Acc) NoSC (Size)
car 92.8 90.9 95.0 93.3 97.5 97.2 113 95

mushroom 100.0 99.6 100.0 99.6 100.0 99.6 15 11
segment 94.9 94.3 96.2 94.8 96.7 95.4 85 81

vowel 49.2 50.3 55.7 57.9 79.2 81.7 191 187
vehicle 70.0 67.4 71.7 71.4 73.9 71.6 167 189

iris 93.3 92.7 93.3 92.7 92.7 94.7 9 13
ionosphere 88.9 90.6 88.9 90.3 88.6 92.0 29 25

chess 97.8 97.6 99.3 98.3 99.4 98.3 53 43
Wins 3 0 4 0 3 0

Beam Search Induction and Similarity Constraints for PCTs 147

Table 5. Comparison of beam search (BS) and BS with similarity constraints (BS-S)
to top-down induction (TDI) on regression data (correlation coefficient)

TDI BS TDI BS TDI BS TDI BS
Data set SC5 SC7 SC11 SC17

autoPrice 0.86 0.88 0.88 0.90 0.87 0.89 0.88 0.89
bodyfat 0.87 0.87 0.94 0.94 0.95 0.95 0.97 0.96

cpu 0.92 0.92 0.92 0.92 0.93 0.94 0.95 0.95
housing 0.76 0.76 0.80 0.78 0.86 0.85 0.89 0.88

pollution 0.44 0.44 0.50 0.53 0.48 0.41 0.55 0.51
servo 0.82 0.82 0.89 0.91 0.90 0.94 0.91 0.93
pyrim 0.64 0.49 0.68 0.54 0.72 0.65 0.73 0.74

machine cpu 0.80 0.79 0.84 0.83 0.87 0.86 0.88 0.87
Wins 0 0 0 0 0 1 0 0

SC31 SC51 NoSC (Acc) NoSC (Size)
autoPrice 0.88 0.90 0.88 0.91 0.88 0.91 17 17

bodyfat 0.98 0.97 0.97 0.97 0.96 0.97 65 77
cpu 0.95 0.95 0.95 0.95 0.94 0.94 23 51

housing 0.91 0.90 0.90 0.89 0.90 0.89 63 55
pollution 0.52 0.62 0.53 0.59 0.49 0.52 13 13

servo 0.92 0.95 0.92 0.95 0.91 0.91 21 17
pyrim 0.73 0.74 0.73 0.68 0.58 0.56 11 11

machine cpu 0.89 0.89 0.90 0.89 0.89 0.87 33 27
Wins 0 1 0 1 0 0

TDI BS-S TDI BS-S TDI BS-S TDI BS-S
Data set SC5 SC7 SC11 SC17

autoPrice 0.86 0.88 0.88 0.90 0.87 0.86 0.88 0.91
bodyfat 0.87 0.87 0.94 0.94 0.95 0.95 0.97 0.97

cpu 0.92 0.92 0.92 0.92 0.93 0.93 0.95 0.95
housing 0.76 0.76 0.80 0.78 0.86 0.85 0.89 0.89

pollution 0.44 0.44 0.50 0.50 0.48 0.47 0.55 0.60
servo 0.82 0.82 0.89 0.91 0.90 0.94 0.91 0.93
pyrim 0.64 0.34 0.68 0.63 0.72 0.53 0.73 0.68

machine cpu 0.80 0.79 0.84 0.83 0.87 0.85 0.88 0.88
Wins 0 0 0 0 0 1 0 0

SC31 SC51 NoSC (Acc) NoSC (Size)
autoPrice 0.88 0.90 0.88 0.91 0.88 0.90 17 29

bodyfat 0.98 0.97 0.97 0.97 0.96 0.98 65 71
cpu 0.95 0.95 0.95 0.95 0.94 0.95 23 41

housing 0.91 0.90 0.90 0.89 0.90 0.90 63 75
pollution 0.52 0.62 0.53 0.51 0.49 0.52 13 13

servo 0.92 0.95 0.92 0.96 0.91 0.91 21 19
pyrim 0.73 0.65 0.73 0.64 0.58 0.54 11 13

machine cpu 0.89 0.90 0.90 0.90 0.89 0.88 33 25
Wins 0 1 1 2 0 0

148 D. Kocev, J. Struyf, and S. Džeroski

(a) Without similarity constraint (BS):

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

SCALED V ARIANCE MINOR > 309
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCALED V ARIANCE MINOR > 309
yes no

van saab bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

SCATTER RATIO > 142
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

ELONGATEDNESS > 46
yes no

saab van van bus

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCATTER RATIO > 142
yes no

van saab bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

ELONGATEDNESS > 46
yes no

van saab van bus

MAX LENGTH ASPECT RATIO > 8
yes no

SCATTER RATIO > 163
yes no

SCALED V ARIANCE MINOR > 309
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCATTER RATIO > 163
yes no

SCATTER RATIO > 142
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

SCATTER RATIO > 163
yes no

ELONGATEDNESS > 46
yes no

saab van van bus

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

PR AXIS RECTANGULARITY > 18
yes no

van saab bus van

(b) With similarity constraint (BS-S):

MAX LENGTH ASPECT RATIO > 8
yes no

SCALED V ARIANCE MINOR > 389
yes no

SCALED V ARIANCE MINOR > 309
yes no

saab van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCALED V ARIANCE MINOR > 309
yes no

van saab bus van

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

ELONGATEDNESS > 46
yes no

van saab van bus

MAX LENGTH ASPECT RATIO > 8
yes no

PR AXIS RECTANGULARITY > 20
yes no

SCALED V ARIANCE MINOR > 309
yes no

opel van bus van

MAX LENGTH ASPECT RATIO > 8
yes no

PR AXIS RECTANGULARITY > 20
yes no

ELONGATEDNESS > 46
yes no

opel van van bus

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

MAX LENGTH RECTANGULARITY > 137
yes no

van saab bus saab

MAX LENGTH ASPECT RATIO > 8
yes no

ELONGATEDNESS > 41
yes no

SCALED RADIUS OF GY RATION > 170
yes no

van saab bus van

ELONGATEDNESS > 41
yes no

MAX LENGTH ASPECT RATIO > 8
yes no

MAX LENGTH ASPECT RATIO > 7
yes no

van bus opel bus

ELONGATEDNESS > 41
yes no

MAX LENGTH RECTANGULARITY > 137
yes no

MAX LENGTH ASPECT RATIO > 7
yes no

van saab opel bus

SCALED V ARIANCE MINOR > 389
yes no

MAX LENGTH ASPECT RATIO > 7
yes no

MAX LENGTH RECTANGULARITY > 137
yes no

opel bus van saab

Fig. 4. Trees in the final beam for the “vehicle” data (BS and BS-S), SC7

Beam Search Induction and Similarity Constraints for PCTs 149

Table 6. Average cross-validated accuracy of all trees in the beam, comparison of the
worst tree in the beam to the reported result of Ttrain (Dworst), comparison of the best
tree in the beam to Ttrain (Dbest), and beam similarity. Results for trees constrained
to have at most 7 nodes (SC7).

Avg. test perf. Dworst Dbest Beam similarity
Data set BS BS-S BS BS-S BS BS-S BS BS-S

car 78.8 77.4 1.1 8.5 4.3 4.3 0.67 0.61
mushroom 99.4 98.8 0.2 3.6 0.0 0.0 0.99 0.90

segment 55.6 55.1 1.0 4.2 0.2 2.6 0.82 0.38
vowel 25.1 25.3 7.2 7.9 2.5 3.8 0.43 0.27

vehicle 59.6 55.8 1.5 13.2 0.1 1.2 0.89 0.47
iris 93.0 93.3 5.3 10.7 1.3 2.0 0.91 0.86

ionosphere 88.6 88.1 2.0 8.6 4.0 5.4 0.86 0.72
chess 82.4 81.3 13.8 17.3 0.0 0.0 0.67 0.55

Table 7. Run times and number of evaluated models. (The experiments were run on
an AMD Opteron Processor 250 2.4GHz system with 8GB of RAM running Linux).

Run time [s] Evaluated models
Classification data set TDI BS BS-S BS BS-S
car 0.06 0.80 31.25 2638 57879
mushroom 0.08 1.38 20.17 217 4761
segment 0.28 10.17 168.05 2168 151868
vowel 0.34 9.52 249.62 6567 483294
vehicle 0.14 6.18 264.18 6723 590628
iris 0.04 0.04 0.09 198 809
ionosphere 0.10 1.01 5.35 779 29926
chess 0.08 2.35 111.55 1800 92256
Regression data set
autoPrice 0.06 0.37 40.03 2856 69158
bodyfat 0.06 0.48 84.05 2471 94185
cpu 0.08 0.21 9.67 1333 12415
housing 0.09 3.30 1009.27 10821 549292
pollution 0.04 0.09 3.09 1288 13049
servo 0.06 0.16 6.67 2114 11239
pyrim 0.03 0.16 2.65 1195 9357
machine cpu 0.06 0.25 21.44 2178 28131

TDI. The longer running time of BS-S is due to two reasons. First, it evaluates
more PCTs because of the similarity measure that is included in the heuristic
score. In BS, the score of the “worst” tree in the beam monotonically improves
with the iteration number. In BS-S, this is no longer the case because the score
of the trees in the beam needs to be recomputed when a new tree enters the
beam (because of the similarity component). As a result, it becomes harder for
BS-S to satisfy the stopping criterion (the beam no longer changes). Second, in

150 D. Kocev, J. Struyf, and S. Džeroski

BS-S, evaluating a single model takes a factor O(k2 · |I|) longer than in BS, with
k the beam width and |I| the number of instances. (We exploit properties of the
distance measure (d(Ta, Tb, I) = d(Tb, Ta, I) and d(Ta, Ta, I) = 0) to make the
evaluation of the similarity component efficient).

8 Conclusion and Further Work

We propose a new algorithm for inducing predictive clustering trees (PCTs) that
uses beam search. The main advantages of this algorithm are that: it induces a
set of PCTs instead of just one PCT; it supports pushing of anti-monotonic user
constraints, such as maximum tree size, into the induction algorithm; and it is
less susceptible to myopia. In order to improve beam diversity, we introduce soft
similarity constraints based on the predictions of the PCTs.

Our current set of experiments takes into account fixed values for the parame-
ters k (the beam width), and α and β (the contribution of tree size and similarity
score to the heuristic value). In future work, we plan to perform experiments for
different values of β to gain more insight in the trade-off between predictive
performance and beam similarity. Also, the influence of the beam width will be
investigated.

We plan to investigate the use of alternative distance functions for the simi-
larity score. Recall that we hypothesized that the reason for having less accurate
trees in the classification case is that the distance function is less “continuous”
than in the regression case. We plan to investigate smoother distance functions
for classification. Such functions could, for example, take the predicted class
distribution into account instead of just the predicted majority class.

Model diversity, which can be controlled by means of the heuristic proposed
in Section 5, has been shown to increase the predictive performance of classifier
ensembles [8]. Therefore, we plan to investigate if beam search with similarity
constraints can be used to construct an accurate ensemble of PCTs. That is,
instead of selecting from the beam the one PCT that performs best on the
training data, the PCT ensemble will combine all PCTs in the beam by means
of a combination function, such as majority voting. We also plan to investigate
other alternatives for introducing diversity in the beam.

The experimental evaluation of this paper focuses on classification and re-
gression trees. In future work, we plan to test beam search for more general
PCT types. Note that this is, from an algorithmic point of view, trivial: the only
component that changes is the definition of the variance and distance functions.
In this context, we plan to investigate the use of beam search for multi-target
prediction tasks [1], where non-trivial interactions between the target attributes
may exist.

Acknowledgments. This work was supported by the IQ project (IST-FET
FP6-516169). Jan Struyf is a postdoctoral fellow of the Fund for Scientific Re-
search of Flanders (FWO-Vlaanderen).

Beam Search Induction and Similarity Constraints for PCTs 151

References

1. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
15th Int’l Conf. on Machine Learning, pp. 55–63 (1998)

2. Blockeel, H., Schietgat, L., Struyf, J., Džeroski, S., Clare, A.: Decision trees for
hierarchical multilabel classification: A case study in functional genomics. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 18–29. Springer, Heidelberg (2006)

3. Boulicaut, J.-F., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399–416.
Springer, Heidelberg (2005)

4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regres-
sion trees, Wadsworth, Belmont (1984)

5. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69–77 (2002)

6. Džeroski, S., Slavkov, I., Gjorgjioski, V., Struyf, J.: Analysis of time series data with
predictive clustering trees. In: KDID 2006. LNCS, vol. 4747, pp. 63–80. Springer,
Heidelberg (2007)

7. Garofalakis, M., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Mining and Knowledge Discovery 7(2), 187–214 (2003)

8. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 12, 993–1001 (1990)

9. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

10. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases. Univer-
sity of California, Department of Information and Computer Science, Irvine, CA
(1996), http://www.ics.uci.edu/∼mlearn/mlrepository.html

11. Quinlan, J.R.: Learning with continuous classes. In: 5th Australian Joint Confer-
ence on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)

12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann, San Francisco (1993)

13. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–
233. Springer, Heidelberg (2006)

http://www.ics.uci.edu/~mlearn/mlrepository.html

Towards a General Framework for Data Mining

Sašo Džeroski

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. In this paper, we address the ambitious task of formulat-
ing a general framework for data mining. We discuss the requirements
that such a framework should fulfill: It should elegantly handle differ-
ent types of data, different data mining tasks, and different types of
patterns/models. We also discuss data mining languages and what they
should support: this includes the design and implementation of data
mining algorithms, as well as their composition into nontrivial multi-
step knowledge discovery scenarios relevant for practical application. We
proceed by laying out some basic concepts, starting with (structured)
data and generalizations (e.g., patterns and models) and continuing with
data mining tasks and basic components of data mining algorithms (i.e.,
refinement operators, distances, features and kernels). We next discuss
how to use these concepts to formulate constraint-based data mining
tasks and design generic data mining algorithms. We finally discuss how
these components would fit in the overall framework and in particular
into a language for data mining and knowledge discovery.

1 Introduction: The Challenges for Data Mining

While knowledge discovery in databases (KDD) and data mining have enjoyed
great popularity and success in recent years, there is a distinct lack of a generally
accepted framework for data mining. The present lack of such a framework is
perceived as an obstacle to the further development of the field. For example, at
the SIGKDD-2003 conference panel “Data Mining: The Next 10 Years” (Fayyad
et al. 2003), U. Fayyad emphasizes in his position statement that “the biggest
stumbling block from the scientific perspective is the lack of a fundamental theory
or a clear and well-understood statement of problems and challenges”.

Yang and Wu (2006) collected the opinions of a number of outstanding data
mining researchers about the most challenging problems in data mining research
(and presented them at ICDM-2005). Among the ten topics considered most im-
portant and worthy of further research, the development of a unifying theory is
listed first. The article states: “Several respondents feel that the current state of
the art of data mining research is too ad-hoc. ... a theoretical framework that uni-
fies different data mining tasks ..., as well as different data mining approaches ...,
would help the field and provide a basis for future research.”

High on the list of important research topics is mining complex data (Yang
and Wu 2006). We will take complex data here to mean structured data that
depart from the format most commonly used in data mining, namely the format

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 259–300, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

260 S. Džeroski

of a single table. This will include sequences and graphs, but also text, images,
video, and multi-media data. From this viewpoint, much of the current research
in data mining is about mining complex data, e.g., text mining, link mining,
mining social network data, web mining, multi-media data mining. Many of
the grand challenges for data mining are perceived to be in this area, cf. the
SIGKDD-2006 conference panel (Piatetsky-Shapiro et al. 2006). An additional
challenge is to treat the mining of different types of structured data in a uniform
fashion, which is becoming increasingly more difficult, as somewhat separate
research (sub)communities are evolving around text/link/tree/graph mining.

Hand in hand with the above go the problems of mining complex patterns and
the incorporation of domain knowledge (Yang and Wu 2006; Aggrawal’s com-
ments in Fayyad et al. 2003). As the complexity of the data analyzed grows, more
expressive formalisms are needed to represent patterns found in the data. The use
of such formalisms has been proposed within relational data mining (Džeroski
and Lavrač 2001) and statistical relational learning (Getoor and Taskar, 2007);
these are now used increasingly more often in link mining, web mining and min-
ing of network data.

The last set of methodological questions that we want to emphasize here
concerns knowledge discovery as a process, rather than individual data min-
ing tasks and approaches. Data preparation typically takes significant time and
different data mining operations need to be applied and composed in practical
applications. Arguably, there is insufficient support for humans carrying out the
knowledge discovery process as a whole. Integration and compositionality of data
mining operations/algorithms are called for.

At a KDD-03 panel discussion (Fayyad et al. 2003), Fayyad states: “In a typ-
ical data mining session, I spend most of my time extracting and manipulating
data, not really doing data mining and exploration. The trail of ‘droppings’ I
leave behind in any given data mining session is enormous, and it seems every
time it is replicated and repeated, almost from scratch, again.” Ramakrishnan
(at the same panel) follows suit and identifies as technical challenges the fol-
lowing: “(1) Finding ways to address the real bottleneck in data mining, which
is the human cycles spent in analyzing data. ... Real advances will come from
techniques that lead to more efficient management of the process of data mining,
and that reduce the cycle time in arriving at useful insights. (2) Data mining
is often perceived as a bag of tricks. We need to at least provide a vision of
how these tricks fit into a coherent tool-kit.” In the same article, Uthurusamy
makes the point that: “Even obvious and immediate needs like ... the core need
of integration have not received their much-deserved attention... The original
process centric view of KDD espoused the three ‘I’s (Integrated, Iterative, and
Interactive) as basic for KDD. These are central to the ideas of ‘Computer As-
sisted Human Discovery’ and ‘Human Assisted Computer Discovery.’ There has
been very little work on these in recent years.” Yang and Wu (2006) also point
out the need to support the composition of data mining operators, as well as the
need to have a theory behind this.

Towards a General Framework for Data Mining 261

In the remainder of this article, we first discuss (Section 2) inductive databa-
ses and inductive queries, one of the most promising approaches to formulating a
general framework for data mining, then discuss the desirable properties of such
a framework (Section 3). Section 4 defines the basic concepts of data mining,
including data, patterns/models, and data mining tasks. Section 5 discusses
the dual nature of patterns/models, which can be viewed both as data and as
functions. Section 6 introduces constraint-based data mining and discusses the
types of constraints considered therein. Section 7 introduces the key ingredients
of data mining algorithms (i.e., refinement operators, distances, features and
kernels). Section 8 revisits constraint-based data mining and treats it in the
context of the basic ingredients from Section 7. Section 9 discusses the design of
generic data mining algorithms for structured data. We finally discuss how all of
the above components would fit in the overall framework and in particular into
a language for data mining and knowledge discovery in Section 10. The article
closes with a brief discussion of related work.

2 Inductive Databases and Inductive Queries

Inductive databases (IDBs, Imielinski and Mannila 1996, De Raedt 2002a) are
an emerging research area at the intersection of data mining and databases. In
addition to normal data, inductive databases contain patterns (either material-
ized or defined as views). Besides patterns (which are of local nature), models
(which are of global nature) can also be considered. In the IDB framework, pat-
terns become “first-class citizens” and can be stored and manipulated just like
data in ordinary databases.

Inductive databases embody a database perspective on knowledge discovery,
where knowledge discovery processes become query sessions. Ordinary queries
can be used to access and manipulate data, while inductive queries (IQs) can be
used to generate (mine), manipulate, and apply patterns. KDD thus becomes
an extended querying process (Imielinski and Mannila 1996) in which both the
data and the patterns that hold (are valid) in the data are queried. IDB research
thus aims at replacing the traditional KDD process model, where steps like pre-
processing, data cleaning, and model construction follow each other in succession,
by a simpler model in which all data pre-processing operations, data mining
operations, as well as post-processing operations are queries to an inductive
database and can be interleaved in many different ways.

Given an inductive database that contains data and patterns, several different
types of queries can be posed. Data retrieval queries use only the data and their
results are also data: no pattern is involved in the query. In IDBs, we can also have
cross-over queries that combine patterns and data in order to obtain new data,
e.g., apply a predictive model to a dataset to obtain predictions for a target prop-
erty. In processing patterns, the patterns are queried without access to the data:
this is what is usually done in the post-processing stages of data mining. Data min-
ing queries use the data and their results are patterns: new patterns are generated

262 S. Džeroski

from the data and this corresponds to the traditional data mining step. When we
talk about inductive queries, we most often mean data mining queries.

A general statement of the problem of data mining (Mannila and Toivonen
1997) involves the specification of a language of patterns and a set of constraints
that a pattern has to satisfy. The latter can be divided in two parts: language
constraints and evaluation constraints. The first part only concerns the pattern
itself, while the second part concerns the validity of the pattern with respect
to a given database. Constraints thus play a central role in data mining and
constraint-based data mining is now a recognized research topic (Bayardo 2002).
The use of constraints enables more efficient induction and focusses the search
for patterns on patterns likely to be of interest to the end user.

In the context of inductive databases, inductive queries consist of constraints.
Inductive queries can involve language constraints (e.g., find association rules
with item A in the head) and evaluation constraints, formed by using evaluation
functions. The latter express the validity of a pattern on a given dataset. We
can use these to form evaluation constraints (e.g., find all item sets with support
above a threshold) or optimization constraints (e.g., find the 10 association rules
with highest confidence).

Different types of data and patterns have been considered in data mining,
including frequent itemsets, episodes, Datalog queries, and graphs. Designing
inductive databases for these types of patterns involves the design of inductive
query languages and solvers for the queries in these languages, i.e., constraint-
based data mining algorithms. Of central importance is the issue of defining the
primitive constraints that can be applied for the chosen data and pattern types,
that can be used to compose inductive queries. For each pattern domain (type
of data, type of pattern, and primitive constraints), a specific solver is designed,
following the philosophy of constraint logic programming (De Raedt 2002b).

The IDB framework is an appealing approach towards a theory for data min-
ing, because it employs declarative queries instead of ad-hoc procedural con-
structs. As such, it holds the promise of facilitating the formulation of an “alge-
bra” for data mining, along the lines of Codd’s relational algebra for databases
(Calders et al. 2006b, Johnson et al. 2000). The IDB framework is also appealing
for data mining applications, as it supports the entire KDD process (Boulicaut
et al. 1999). In inductive query languages, the results of one (inductive) query
can be used as input for another: nontrivial multi-step KDD scenarios can be
thus supported in IDBs, rather than just single data mining operations.

The state-of-the-art in IDBs (Boulicaut et al. 2006) is that there exists some
theory for and various effective approaches to constraint-based mining (induc-
tive querying) of local patterns, such as frequent itemsets and sequences. There
is an obvious lack of a theory for and practical approaches to inductive querying
of global models. This issue has only recently began to attract some attention
through the research on constrained induction of tree-based (Garofalakis et al.
2003, Struyf and Džeroski 2006) and equation-based (Džeroski et al. 2006) pre-
dictive models.

Towards a General Framework for Data Mining 263

More importantly, most of the existing approaches to constraint-based data
mining and inductive querying work in isolation and are not integrated with
databases or other data mining tools. Only few attempts at integration have been
made, such as the approach of mining views (Calders et al. 2006a). Answering
complex inductive queries that involve different pattern domains and supporting
complex KDD scenarios has also barely been studied.

3 Desiderata for a General Data Mining Framework

In this section, we briefly discuss the requirements that a general framework for
data mining should fulfill. In our opinion, such a framework should elegantly
handle different types of data, different data mining tasks, and different types
of patterns/models. These should be orthogonal dimensions, so that combina-
tions should be facilitated, e.g., tree-based approaches for classification of images
(where the type of data is image(s), the task is classification and the model type
is decision tree(s)).

One of the distinguishing features of data mining is its concern with analyzing
different types of data. Besides data in the format of a single table, which is most
commonly used in data mining, complex data are receiving increasing amounts
of interest. These include data in the form of sequences and graphs, but also
text, images, video, and multi-media data. Much of the current research in data
mining is about mining such complex data, e.g., text mining, link mining, mining
social network data, web mining, multi-media data mining. A major challenge
is to treat the mining of different types of structured data in a uniform fashion.

Many different data analysis tasks have been considered so far within the
field of data mining. By far the most common is the task of predictive mod-
elling, which includes classification and regression. Mining frequent patterns is
the next most popular, with the focus shifting from mining frequent itemsets to
mining frequent patterns in complex data. Clustering, which has strong roots in
the statistical community, is also commonly encountered in data mining, with
distance-based and density-based clustering as the two prevailing forms. A vari-
ety of other tasks has been considered, such as change and deviation detection,
but it is not clear whether these are of fundamental nature or can be defined by
composing some of the tasks listed here.

Finally, different kinds/representations of patterns/models may be used for
the same data mining task. This is most obvious for predictive modelling, where a
variety of methods/approaches exist, ranging from rules and trees, through sup-
port vector machines, to probabilistic models (such as Naive Bayes or Bayesian
networks for classification). The different types of models are interpreted in dif-
ferent ways, and different algorithms may exist for building the same kind of
model (cf. the plethora of algorithms for building decision trees).

A general framework for data mining should define a set of basic concepts that
cover the dimensions outlined above. Through combining these basic concepts, one
should be able to obtain most of the diversity present in data mining approaches
today. Hopefully, it would also facilitate the derivation of new approaches and

264 S. Džeroski

insights. The basic concepts would be a keystone in the development of data min-
ing languages, which should support the design and implementation of data min-
ing algorithms, as well as their composition into nontrivial multi-step knowledge
discovery scenarios relevant for practical application. In the latter case, we can
speak of knowledge discovery languages.

4 The Basic Concepts of Data Mining

“Knowledge discovery in databases (KDD) is the non-trivial process of identi-
fying valid, novel, potentially useful, and ultimately understandable patterns in
data”, state Fayyad et al. (1996). According to this definition, data mining (DM)
is the central step in the KDD process concerned with applying computational
techniques (i.e., data mining algorithms implemented as computer programs) to
actually find patterns in the data. To arrive at a general theory/framework for
data mining, we need to have general definitions for the above terms, including
data, patterns and validity.

The basic concepts of data mining include data, data mining tasks, and pat-
terns/models. The validity of a pattern/model on a given set of data is related
to the data mining task considered. Below we discuss these in some detail.

4.1 Data

Let us start with data: This is the most basic ingredient of data mining. A data
mining algorithm takes as input a set of data. An individual datum in the data
set has its own structure, e.g., consists of values for several attributes, which may
be of different types or take values from different ranges. We typically assume
that all data items are of the same type and share the same structure.

More generally, we are given a data type T and a set of data D of this type.
We will not discuss in detail what a data type is and how to formally define
it: any standard textbook on data structures (e.g., Aho et al. 1983) covers this
topic, while a more formal treatment in the context of logic is given by Lloyd
(2003). It is important to notice, though, that a set of basic/primitive types is
typically taken as a starting point, and more complex data types are built by
using type constructors. As argued above, it is of crucial importance to be able
to deal with structured data, as these are attracting an increasing amount of
attention within data mining.

Assume we are given a set of primitive data types, such as Boolean or Real.
Other primitive data types might include Discrete(S), where S is a finite set of
identifiers, or Integer. In addition, we are given some type constructors, such as
Tuple and Set, that can be used to construct more complex data types from
existing ones. For example, Tuple(Boolean,Real) denotes a data type where
each datum consists of a pair of a Boolean value and a real number, while
Set(Tuple(Boolean,Real)) denotes a data type where each datum is a set of such
pairs.

Other type constructors might include Sequence(T), which denotes a sequence
of objects of type T, or LabeledGraph(VL,EL), which denotes a graph where

Towards a General Framework for Data Mining 265

vertex labels are of type VL and edge labels are of type EL. With these, we
can easily represent the complex data types that are of practical interest. For
example, DNA sequences would be of type Sequence(Discrete({A, C, G, T })),
while molecules would be labeled graphs with vertices representing atoms and
edges representing bonds between atoms: atoms would be labeled with the type
of element (e.g., nitrogen, oxygen) and edges would be labeled with the type of
bond (e.g., single, double, triple).

4.2 Patterns and Models

Here we will consider four types of patterns/models, which are directly related
to the data mining tasks discussed later in this section. These are probability
distributions, patterns (in the sense of frequent patterns), predictive models and
clusterings. All of these are defined on a given type of data, except for predictive
models, which are defined on a pair of data types. Note that we allow arbitrary
(arbitrarily complex) data types. The most typical case in data mining would
consider a data type T = Tuple(T1, . . ., Tk), where each of T1, . . ., Tk is Boolean,
Discrete(S) or Real.

A probability distribution D on type T is a mapping from objects of type
T to non-negative Reals, i.e., has the signature d :: T → R0+. For uncountably
infinite types, probability densities are used instead. The sum of all probabilities
(the integral of the probability densities) over T is constrained to amount to one.

A pattern P on type T is a Boolean function on objects of type T, i.e., has
the signature p :: T → bool. A pattern on type T is true or false on an object
of type T. Frawley et al. (1991) define a pattern as a statement (expression) in
a given language, that describes (relationships among) the facts in (a subset of)
the data. In the broadest sense, the word pattern is used to describe the output
of a variety of data mining algorithms and includes probability distributions,
predictive models and clusters/clusterings; however, we restrict it here to the
sense that it is most commonly used, i.e., in the sense of frequent pattern mining.

A predictive model M for types Td, Tc is a function that takes an object
of type Td and returns one of type Tc, i.e., has the signature m :: Td → Tc. Most
often, predictive modelling is concerned with classification, where Tc would be
Boolean (for binary classification) or Discrete(S) (for multi-class classification),
or regression, where Tc would be Real. In our case, we allow both Td (description)
and Tc (class/target) to be arbitrarily complex data types.

A probabilistic predictive model P for types Tc, Td is a function that
takes an object of type Tc and returns a probability distribution over type Td,
i.e., has the signature p :: Tc → (Td → R0+). For discrete Tc, the probability
of each possible class value is given by a prediction. For real-valued Tc, the
probability distribution can be, for example, assumed to be normal and its mean
and standard deviation can be given by the prediction.

A clustering C on a set of objects S of type T is a function from S
to {1, . . . , k}, where k is the number of clusters, which has to obey k ≤ |S|.
Unlike all the previously listed types of patterns, a clustering is not necessarily
a total function on T, but rather a partial function defined only on objects from

266 S. Džeroski

S. Overlapping and soft clusterings, where an element can (partially) belong to
more that one cluster have the signature T → ({1, . . . , k} → R0+).

We can think of C as a matrix B, where B(e, c) states to which degree datum
e belongs to cluster c. In conventional clustering B(e, c) = 1 if datum e belongs
to cluster c and 0 otherwise; only one “1” entry is allowed in each row of B. In
overlapping clustering, there can be more than one “1” in each row of B. In soft
clustering, the sum of the entries in each row should amount to one.

In predictive clustering, C is a total function on T. In addition, we have
T=(Td,Tc) and we have a predictive model associated with each cluster through
a mapping M :: {1, . . . , k} → (Td → Tc). Performing the function composition
of M and C, i.e., applying first C and then M, we get a predictive model on T.

4.3 Data Mining Tasks

In essence, the task of data mining is to produce a generalization from a given
set of data. A plethora of data mining tasks has been considered so far in the
literature. Here we will focus on four tasks, according to the generalizations
produced: approximating the (joint) probability distribution, learning predictive
models, clustering and finding valid (frequent) patterns.

Estimating the (Joint) Probability Distribution. A set of data (of type
T) is often assumed to be a sample taken from a population according to a
probability distribution. A probability distribution/density function assigns a
non-negative probability/density to each object of type T. Probably the most
general data mining task (Hand et al. 2001) is the task of estimating the (joint)
probability distribution D over type T from a set of data items or a sample
drawn from that distribution.

As mentioned above, in the most typical case we would have T = Tuple(T1,
. . ., Tk), where each of T1, . . ., Tk is Boolean, Discrete(S) or Real. We talk about
the joint probability distribution to emphasize the difference to the marginal
distributions of each of the variables of type T1, . . ., Tk: the joint distribution
captures the interactions among the variables.

Representing multi-variate distributions is a non-trivial task. Two approaches
are commonly used in data mining. In the density-based clustering paradigm,
mixtures of multi-variate Gaussian distributions are typically considered (Hand
et al. 2001). Probabilistic graphical models, most notably Bayesian networks,
represent graphically the (in)dependencies between the variables: Learning their
structure and parameters is an important approach to the problem of estimating
the joint probability distribution.

Learning a (Probabilistic) Predictive Model. In this task, we are given
a dataset that consists of examples of the form (d, c), where each d is of type
Td and each c is of type Tc. We will refer to d as the description and c as the
class or target. To learn a predictive model means to find a mapping from the
description to the target, m :: Td → Tc, that fits the data closely. This means
that the observed target values and the target values predicted by the model,
i.e., c and ĉ = m(d), have to match closely.

Towards a General Framework for Data Mining 267

In the case of learning probabilistic models, we need to find a mapping of the
form m :: Td → (Tc → R0+). In a more general formulation of the problem,
the training examples can have probability distributions over the c values instead
of individual c values: This can represent uncertainty in the observations. Few (if
any) actual data mining approaches take this stand; most assume that a single
value for the target is given for each example.

Many different kinds of predictive models have been considered in data min-
ing. Some examples include classification rules, decision trees and (generalized)
linear models. We postpone the discussion on different model kinds (classes)
until later in the chapter.

The present task can be viewed as a special case of the task of estimating the
probability distribution. If we solve the latter and obtain P ((d, c)), an estimate
of the probability of observing the example (d, c), we can derive the conditional
distribution P (c|d), which is a predictive probabilistic model.

Clustering. Clustering in general is concerned with grouping objects into classes
of similar objects (Kaufman and Rousseeuw 1990). Given a set of examples (ob-
ject descriptions), the task of clustering is to partition these examples into sub-
sets, called clusters. The notion of a distance (or conversely, similarity) is crucial
here: examples are considered to be points in a metric space (a space with a dis-
tance metric). The goal of clustering is to achieve high similarity between objects
within individual clusters (intra-cluster similarity) and low similarity between ob-
jects that belong to different clusters (inter-cluster similarity).

In clustering, the examples do not contain a target property to be predicted,
but only an object description. Note that a prototype (prototypical example)
may be used as a representative for a cluster. This may be, e.g., the mean or the
medoid of the examples in the cluster (which are examples with lowest average
distance to all the examples in the cluster).

Clustering is known as cluster analysis in statistics, as customer segmenta-
tion in marketing and customer relationship management, and as unsupervised
learning in machine learning. Conventional clustering focusses on distance-based
cluster analysis. In conceptual clustering (Michalski 1980), a symbolic represen-
tation of the resulting clusters is produced in addition to the partition into
clusters: we can thus consider each cluster to be a concept (much like a class in
classification). In predictive clustering (Blockeel et al. 1998), a predictive model
is associated with the clustering, so that new instances can be immediately asso-
ciated with one of the created clusters and its prototype, which can be considered
as a representative of the cluster.

In density-based clustering (Hand et al. 2001), clusters correspond to different
components of the joint probability distribution, which is assumed to be a mix-
ture model. An example belongs to each cluster to a different degree, determined
by the probability that the corresponding component of the mixture assigns to
it. In this context, clustering is clearly a special case of the task of estimating
the joint probability distribution.

Pattern Discovery. In contrast to the previous three tasks, where the goal
is to build a single global model describing the entire set of data given as

268 S. Džeroski

input, the task of pattern discovery is to find all local patterns from a given
pattern language that satisfy the required conditions. A prototypical instantia-
tion of this task is the task of finding frequent itemsets (sets of items, such as
{bread, butter}), which are often found together in a transaction (e.g., a market
basket) (Aggrawal et al 1993). The condition that a pattern (itemset) has to
satisfy in this case is to appear in (hold true for) a sufficiently high proportion
(called support and denoted by s) of the transactions in the input dataset.

With the increasing interest in mining complex data, mining frequent patterns
is also considered for structured data. We can thus talk about mining frequent
subsequences or mining frequent subgraphs in sequence or graph data. We can
consider as frequency the multiple occurrences of a pattern in a single data
structure (e.g., sequence or graph) or the single occurrences of a pattern in
multiple data structures.

The task of finding frequent itemsets (patterns) is typically performed in
the context of association analysis (Han and Kamber 2001). After all frequent
itemsets are found, one looks for association rules of the form X → Y , where X
and Y are frequent itemsets and the confidence of the rule passes a threshold c.
The confidence of the rule X → Y is the percentage of transactions containing
X that also contain Y . Generalizations of the task of pattern discovery include
the discovery of clauses in first order logic (Dehaspe and De Raedt 1997) and
the discovery of frequent Datalog queries and query extensions (Dehaspe and
Toivonen 1999), the latter being generalizations of finding frequent itemsets and
association rules to first order logic.

While the original formulation of the problems of frequent itemset and associ-
ation rule mining reports all itemsets and rules that pass the support respectively
confidence threshold, we can think of these tasks also as ranking tasks, where the
itemsets and rules are ordered according to support, respectively confidence. One
can then imagine asking for the top-k most frequent itemsets or most confident
association rules. This formulation bears an important similarity to the problem
of feature ranking and selection, which is often encountered in the context of
global (mostly predictive) modelling. Top-k queries of this kind also appear in
the context of correlated itemsets and association rules, which can be used for
constructing classifiers. In fact, there is an increasing body of research that uses
the results of local pattern mining/discovery to build global (predictive) models.

In this context, we can view the tasks of bump hunting (Friedman and Fisher
1999) and subgroup discovery (Kloesgen 2002, Lavrač et al. 2004) as special
cases of pattern discovery. Both involve finding groups of examples where the
(probability distribution of) the values of a designated target is unusual. Here
unusual can be taken to mean unusually large or small, or, more generally,
significantly different from the average (or the distribution) over the entire
dataset/population. It is in addition desired that these regions be describable in
an interpretable form involving simple statements (rules).

Note, finally, that finding frequent patterns can be viewed as a special case of
estimating the joint probability distribution. If we think of the joint probability
distribution as a surface in multi-dimensional space, then the frequent patterns

Towards a General Framework for Data Mining 269

(and the groups of examples for which they are true) would correspond to peaks
of the surface. The threshold on the frequency would correspond to a hyperplane
that would cut off patterns below the given frequency.

5 The Dual Nature of Patterns and Models

Patterns and models inherently have a dual nature. According to the definitions
from the previous sections, they are functions that take as input data points and
map them to probabilities, Booleans, class predictions or probabilities thereover,
or cluster assignments. On the other hand, they can be treated as data structures
and as such represented, stored and manipulated.

Let us illustrate this with a simple example. Suppose we have a frequent item-
set consisting of the items bread and butter. We can view this as a set, namely
{bread, butter}, and store it in a database. In this fashion, we can store the
frequent itemsets derived from a set of transactions. On the other hand, from
the functional viewpoint, the itemset represents a mapping from transactions
to Booleans. The transactions which contain the itemset, i.e., both bread and
butter, are assigned the value true, i.e., the pattern holds true for such transac-
tions. For example, the transaction {bread, butter, milk} subsumes our itemset
and yields the value true, while {beer, peanuts, butter} does not and yields the
value false.

5.1 The Data Aspect: Classes of Patterns and Models

Many different kinds of predictive models have been considered in the data
mining literature. Classification rules, decision trees and linear models are just
a few examples. We will refer to these as model classes. In the case of patterns
we will talk about pattern classes.

A class of patterns CP on type T is a set of patterns P on type T , expressed
in a language LP . Similarly, a class of models CM on types Td, Tc is a set of
models M on types Td, Tc, expressed in a language LM . In the same fashion, we
can define classes of probability distributions CD and clusterings CC .

The languages LP /LM/LD/LC refer to the data part of the patterns and
models. They essentially define data types for representing the patterns and
models. For example, if we have data types Td = (Real, Real) and Te = Real,
linear models would be represented by three real-valued coefficients and would
need a data type Tl = (Real, Real, Real) to be represented.

Suppose we have a dataset where data items correspond to descriptions of
individuals, each individual being described by a tuple of the form (Gender,
Age, HairColor), where Gender = Discrete({M, F}), Age = Real, HairColor =
Discrete({Blond, Brown, Black, Red, Other}), and the target is of type
Education = Discrete({None, Elementary, High, College, BSc, MSc, PhD}).
The language of decision trees for this case would be the language of tree struc-
tures with tests like HairColor=Blond in the internal nodes and predictions like
Education=PhD in the leaves. The elements of this language (its alphabet) de-
pend on the attributes and their values, and vary with the underlying data type.

270 S. Džeroski

5.2 The Function Aspect: Interpreters

There is usually a unique mapping from the data part of a pattern/model to the
function part. This takes the data part of a pattern/model as input, and returns
the corresponding function as an output. The mapping we refer to is inherently
second/higher order (Lloyd 2003) since it has a function as an output.

This mapping can be realized through a so-called interpreter. An interpreter
takes as input (the data part of) a pattern and an example, and returns the
result of applying the (function part) of the pattern to the example. Given a
data type d, an example E of type d, and a pattern P of type p :: d → bool,
an interpreter I returns the result of applying P to E, i.e., I(P, E) = P (E).

The signature of the interpreter is i :: p → d → bool. If we apply the
interpreter to a pattern and an example, we obtain a Boolean value. In functional
programming (Thompson 1999), we can evaluate the interpreter only partially,
i.e., apply it only to the data part of a pattern, obtaining as a result the function
part of the pattern. The partial evaluation i p has a signature d → bool.

The interpreters map from the data part of a pattern/model to the function
part. Suppose we are given a linear model with coefficients a, b, and c. The
interpreter of linear models Il would, given a, b, and c, and a data tuple of the
form (x, y), return the value of the linear combination ax + by + c. A partial
evaluation/application of the interpreter to the tuple of constant coefficients of
the linear model Il (a, b, c) would yield the linear function aX + bY + c: This
linear function can then be applied to specific tuples (x, y) to yield predictions.

The interpreter is crucial for the semantics of a class patterns/models: a class
of patterns/models is only completely defined when the corresponding interpreter
is defined (e.g., IP /IM for patterns/models are parts of the definition of the
class CP /CM). To illustrate this, consider rule sets, which may be ordered or
unordered. Both can actually be represented by the same list of rules: It is the
interpreter that treats the rules as ordered or unordered. In the first case, the
rules are considered in the order they appear in the list and the first rule that
applies to a given example is taken to make a prediction. In the second case, all
rules from the list that apply to a given example are taken, and their predictions
combined to obtain a final prediction.

6 Constraints in Data Mining: Introduction

Let us recall briefly that data mining is concerned with finding patterns/models
that are valid in a given set of data. The key ingredients of data mining thus
include data, data mining tasks, and patterns/models, which we have elabo-
rated on in some detail in the previous sections. We now turn to the issue of
pattern/model validity. Essentially, we say that a pattern is valid if it satisfies a
given set of constraints. The constraints considered depend heavily on the data
mining task at hand, and so does the concept of validity. In this section, we
introduce the notion of constraints and discuss the different types of constraints.

A view generally held is that constraints are Boolean functions on patterns/
models. A constraint is either satisfied or not satisfied. Given that patterns and

Towards a General Framework for Data Mining 271

models have a dual nature, i.e., have both a data and a function aspect, we can
have constraints on each of these aspects.

6.1 Language Constraints

Language constraints concern the data part of a pattern/model. Boolean lan-
guage constraints define a subclass/sublanguage of the class of patterns/models
considered. For example, in the context of mining frequent itemsets, we might
be interested only in itemsets where a specific item, e.g., beer occurs. Or, in
the context of learning predictive models, we may be interested only in decision
trees that have a specific attribute in the root node and, in addition, do not have
more than seven leaves.

These are language constraints and refer to the data part only. We can check
whether they are satisfied or not without accessing the data that we have been
given as a part of the data mining task. If we are in the context of inductive
databases and queries, queries on the data part of patterns/models are composed
of primitive language constraints.

Language constraints may also involve (cost) functions on the data part of
patterns/models. An example of these is the size of a decision tree, mentioned
above. Another example would be the cost of an itemset (market basket), in
the context where each item has a price. The cost functions as discussed here
are mappings from the data part of a pattern/model to non-negative reals and
Boolean language constraints can put thresholds on the values of these functions.

6.2 Evaluation Constraints

Evaluation constraints correspond to inductive queries that concern the function
aspect of patterns/models. Evaluation constraints are typically Boolean func-
tions, i.e., statements, involving evaluation functions and comparing them to con-
stant thresholds. Evaluation functions measure the validity of patterns/models
on a given set of data.

Evaluation functions are functionals, i.e., they take a function (in this case
a pattern or a model) as input and return a scalar (real) value as output. The
set of data is an additional input to the evaluation functions. For example,
the frequency of a pattern on a given dataset is a typical evaluation function.
Similarly, the classification error of a predictive model is also an evaluation
function. Evaluation constraints typically compare the value of an evaluation
function to a constant threshold, e.g., minimum support or maximum error.

Constraints on the function part of a pattern/model may also involve some
general property of the function, which does not depend on the specific dataset
considered. For example, we may only consider functions that are convex or
symmetric or monotonic in certain variables. These properties are usually defined
over the entire domain of the function, i.e., the corresponding data type, but may
be checked for the specific dataset at hand.

272 S. Džeroski

6.3 Optimization Constraints

Many Boolean constraints are obtained by imposing a threshold on the value
of a function(al). This can be a threshold on a cost function over the data part
of a pattern/model or on an evaluation function(al) on the function part of the
model. Boolean constraints are either satisfied or not.

On the other hand, optimization constraints ask for (a fixed-size set of) pat-
terns/models that have a maximal/minimal value for a given cost or evaluation
function. Example queries involving such constraints would ask for the k most
frequent itemsets or the top k correlated patterns. Alternatively, we might ask
for the most accurate decision tree of size five, or the smallest decision tree with
classification accuracy of at least 90%.

In this context, optima for the cost/evaluation function at hand are searched
for over the entire class of patterns/models considered, in the case the optimiza-
tion constraint is the only one given. But, as illustrated above, optimization
constraints often appear in conjunction with (language or evaluation) Boolean
constraints. In this case, optima are searched for over the patterns/models that
satisfy the given Boolean constraints.

6.4 Soft Constraints

If we define language and evaluation constraints as Boolean functions, we view
them as hard constraints. A constraint is either satisfied or not satisfied by
a pattern. The fact that constraints actually define what patterns are valid or
interesting in data mining, and that interestingness is not a dichotomy (Bistarelli
and Bonchi 2005), has lead to the introduction of so-called soft constraints.

Instead of dismissing a pattern for violating a constraint, we might consider
the pattern incurring a penalty for violating a constraint. In the cases where we
typically consider a larger number of binary constraints, such as must-link and
cannot-link constraints in constrained clustering (Wagstaff and Cardie 2000),
a fixed penalty may be assigned for violating each constraint. In case we are
dealing with evaluation constraints that compare an evaluation function to a
threshold, the penalty incurred by violating the constraint may depend on how
badly the constraint is violated. For example, if we have a size threshold of five,
and the actual size is six, a smaller penalty would be incurred as compared to
the case where the actual size is twenty.

In the hard constraint setting, a pattern/model is either a solution or not.
In the soft constraint setting, all patterns/models are solutions to a different
degree. Patterns that satisfy the constraint(s) get zero penalty: This leads to an
optimization problem where we look for patterns with minimum penalty.

6.5 The Task(s) of (Constraint-Based) Data Mining

Having set the scene, we can now attempt to formulate a very general version
of the problem addressed by data mining. We are given a dataset D, drawn
according to some probability distribution P , consisting of objects of type T . We

Towards a General Framework for Data Mining 273

are also given a data mining task, one of the four listed in a previous section
(estimating the probability distribution P , learning a predictive model, cluster-
ing or pattern discovery). We are further given a class of generalizations CG

(patterns/models/clusterings/probability distributions), from which to find so-
lutions to the data mining task at hand. Finally, a set of constraints C is given,
which can include both language and evaluation constraints.

The problem addressed by constraint-based data mining is to find a set of
generalizations G from CG that satisfy the constraints in C, if C is boolean, or
optimize the constraints in C, if C contains optimization or soft constraints. A
desired cardinality on the solution set is usually specified.

In the above formulation, all of data mining is really constraint-based data
mining. We argue that the ‘classical’ formulations of and approaches to data
mining tasks, such as clustering and predictive modelling, are a special case of
the above formulation. A major difference between the ‘classical’ data mining
paradigm and the ‘modern’ constraint-based one is that the former typically
consider only one optimization constraint, such as minimize predictive error
or intra-cluster variance, and requires only one solution (predictive model or
clustering).

A related difference concerns the fact that most of the ‘classical’ approaches to
data mining are heuristic and do not give any guarantees regarding the solutions.
For example, a decision tree generated by a learning algorithm is typically not
guaranteed to be the smallest or most accurate tree for the given dataset. On the
other hand, constraint-based mining approaches have typically been concerned
with the development of so-called ‘optimal solvers’, i.e., data mining algorithms
that return the complete set of solutions that satisfy a given set of constraints
or the truly optimal solutions (e.g., the k itemsets with highest correlation to a
given target) in the context of optimization constraints.

7 The Key Ingredients of Data Mining Algorithms

7.1 Generality and Refinement Operators

The notion of generality is a key notion in data mining, in particular for the
task of pattern discovery. To find patterns/models valid in the data, data mining
algorithms search the space of patterns defined by the class of patterns/models
considered, possibly additionally restricted by language constraints. To make the
search efficient, the space of patterns/models is typically ordered by a generality
or subsumption relation. A generality relation on a set (of patterns/models) is
a partial order on that set.

The generality relation typically refers to the function part of a pattern/mo-
del. The corresponding notion for the data part is that of refinement. A typical
example of a refinement relation is the subset relation on the space of itemsets.
This relation is a partial order on itemsets and structures itemsets into a lattice
structure, which is typically explored during the search for, e.g., frequent item-
sets. The refinement relation is typically the closure of a refinement operator,
which performs minimal refinements. In the case of itemsets, it takes an itemset

274 S. Džeroski

and adds an item to it: if all possible items are beer, diapers, milk and peanuts,
the refinements of the itemset i1 = beer are i2 = beer, diapers, i3 = beer, milk and
i4 =beer, peanuts. Starting with the empty itemset, we can obtain any itemset
through a sequence of refinements (applications of the refinement operator).

We can think of refinement and generality as expressing the same relation
between patterns at the data (or syntax) level and the function (or semantics)
level. In logic, we talk about subsumption in the first case and logical entailment
(implication) in the second (Džeroski 2007). For example, if we take the itemsets
from the above paragraph, i2 is a refinement of i1 at the data level means i1 ⊆ i2.
At the function level, i1 and i2 are Boolean functions over transactions, i1(t) and
i2(t). Generality here has the following meaning: i1 is more general than i2 at
the function level means ∀t : i2(t) |= i1(t), where |= denotes logical implication.

In the ideal case, the notions of refinement at the syntactic and generality
at the semantic level (resp. the data and function level) coincide. Whether this
is actually the case depends on the interpreter for the class of patterns consid-
ered. These issues have received considerable attention in the area of inductive
logic programming (Lavrač and Džeroski 1994, Džeroski 2007), where both data
and patterns are represented in first order logic. The notions of generality and
refinements are also directly relevant to and ubiquitously used in mining predic-
tive models and other forms of generalizations. However, the notion of semantic
generality does not transfer in a straightforward manner to the case of functions
that are not binary/Boolean (i.e., to clusterings, probability distributions and
predictive models in general).

7.2 Distances and Prototypes

Distance functions are of crucial importance for the design of many data mining
algorithms, most notably for clustering and predictive modelling. A distance
function d for type T is a mapping from pairs of objects of type T to non-negative
reals: d :: T × T → R0+. A distance function has to satisfy three properties:
(1) d(x, y) ≥ 0, (2) d(x, y) = 0 if and only if x = y, and (3) d(x, y) = d(y, x).

Note that the distance between two objects should be zero if and only if
the two objects are identical (this property is called discernibility) and that a
distance function should be symmetric. Properties (1) and (2) taken together
produce positive definiteness. An additional property of interest for distance
functions is the triangle inequality: (4) d(x, z) ≤ d(x, y) + d(y, z). A distance
function that satisfies the triangle inequality is called a metric.

While it is immediately obvious that we need distances for distance-based
clustering (where by definition we want to minimize the distance between objects
in a cluster), it is may be less obvious why we need them for predictive modelling.
The primary reason is the need to assess the predictions of a model: we need to
compare the true value of the target to the predicted one, for any given example.
In most predictive modelling approaches, it is assumed that the error/penalty
incurred by predicting x instead of y is the same as the one incurred by predicting
y instead of x, and equal to some distance function d(x, y).

Towards a General Framework for Data Mining 275

For any type of data we can easily define the distance function δ, which takes
the value zero for pairs of identical data points and one for all other pairs:
δ(x, x) = 0 and δ(x, y) = 1 for x �= y. In fact, this is the distance function most
commonly used for discrete/nominal data types in data mining algorithms. For
real numbers, we can use |x − y| as the distance between x and y.

Related to the notion of distance is the notion of a prototype. A prototype is
something that is representative of a category of things, in this case of all the
objects in a given set S. The prototype of a set of objects (defined in the context
of a given distance d) is the object o that has the lowest average square distance
to all of the objects in S: o = argminq

∑
X∈S d2(X, q). Note that the quantity

that we want to minimize in this formula is a generalization of the notion of
variance from a set of real numbers to a set of arbitrary objects.

A prototype function p for objects of type T , takes as input a set S of objects
of type T , and returns an object of type T , i.e., the prototype: p :: Set(T) → T.
We can consider two possibilities here: (a) the prototype is an arbitrary object
of type T or (b) the prototype is one of the objects from S. In the case (b), the
prototype can be computed with |S|2 distance computations by substituting q
with each of the objects in s. In the case (a), the space of candidate prototypes
may easily be infinite. We thus need to have a closed algebraic form of the
prototype or should resort to approximative algorithms to compute it.

In vector spaces, such as the Euclidean spaces Rn, where objects may be
scaled or added, the prototype of a set of objects can be defined in closed form
as the centroid of the set. The notion of centroid generalizes the notion of mean
from sets of real numbers to multidimensional spaces. The centroid is defined
as the (weighted) mean / average of the vectors in the set: by default each
vector has an equal weight (1/|S|), although different weights may be assigned
to different vectors. For example, given a set S of vectors xi in the Euclidean
space Rn, each of the form xi = (xi1, . . . , xik), the centroid x is defined as
x = (x1, . . . , xi), where xj =

∑|S|
i=1 xij/|S|. The centroid can be computed by

|S| addition computations and one scaling computation.
Prototypes and prototype functions are directly relevant to the clustering

task of data mining, as well as the task of predictive modelling. Quite often,
a prototype is associated with each cluster. In predictive modelling approaches
which partition the space of training examples, such as tree-based and rule-based
methods, the prediction of a rule/tree leaf is typically obtained by constructing
a prototype of the (target part) of the examples covered by the rule/leaf.

7.3 Features and Background Knowledge

The term ‘feature’ is heavily used in pattern recognition (Bishop 2006), where
features are individual measurable properties of a phenomena or object being
observed. Features are usually numeric, but structural features (such as strings
and graphs) are used in syntactic pattern recognition. While different areas of
pattern recognition (such as image analysis or speech recognition) obviously use
different features, once the features are decided upon, a relatively small set of

276 S. Džeroski

algorithms is used to analyze the resulting data table. These algorithms include,
e.g., linear discriminants / regression and probabilistic (naive Bayes) approaches.

Some approaches to data mining do not explicitly rely on a feature-based rep-
resentation of the data analyzed. For example, many distance-based approaches
to prediction (e.g., nearest neighbor methods) and clustering (e.g., hierarchical
agglomerative/divisive clustering or k-medoids) only need a distance function
on the underlying data (type). However, even for these, the distances are most
commonly calculated through a set of features. The majority of data mining
algorithms, though, crucially depend on the use of features (linear regression,
naive Bayes, decision trees, classification rules, to name the most common ones).

Defining an appropriate set of features for a data mining problem at hand is
still much of an art. However, it is also a step of key importance for the successful
use of data mining. In the following, we try to formalize the notion of a feature
and briefly discuss principled approaches to generating features.

Suppose d is a datum (structured object) of type T . Note that d can be, e.g.,
an image represented by an array of real numbers, or a recording of speech,
represented by a sequence of real numbers. A feature f of objects of type T is a
mapping from objects of type T to a primitive data type (Boolean, Discrete or
Real) and f(d) refers to the value of the feature for the specific object d.

There are at least three ways to arrive at features for a given object d of
type T . First, the feature may have been directly observed and thus be a part
of the representation of d. For example, if we have a molecule represented by its
molecular weight, hydrophobicity and activity against a given species of bacteria,
hydrophobicity as a bulk property is typically measured directly and is a feature
of the molecule.

The other two ways are related to background knowledge concerning the struc-
ture of the object or concerning domain knowledge. Suppose molecules are repre-
sented by labeled graphs with vertices representing atoms and edges representing
bonds between atoms: atoms would be labeled by the type of element (e.g., ni-
trogen, oxygen) and edges would be labeled by the type of bond (e.g., single,
double, triple). In this context, a (simple) structural feature might indicate the
presence/absence of a carbon and oxygen atom connected by a double bond
(a C = O group) in a given molecule. To illustrate how a feature may be de-
rived through the use of some domain knowledge, consider molecules again. The
presence of (complex) structures, such as certain functional groups (alcohols) or
complexes thereof (triple fused rings) might be used as features. Connectivity
indices calculated on the entire graph might also be used as features.

Background knowledge can be thought of as a set of mappings that generate
new features, either directly, as in the case of connectivity indices on graphs
mentioned above, or indirectly. In the second case, a mapping from the back-
ground knowledge would map an object from one representation to another, and
features can be generated from the latter. For images, such a mapping might per-
form image segmentation and describe each segment with a new set of features,
thus transforming the learning problem to a completely different representation.

Towards a General Framework for Data Mining 277

From the latter, new features can then be generated directly or through the
further use of domain knowledge.

7.4 Kernels

Kernel Methods (KMs, Shawe-Taylor and Cristianini 2004) in general, and Sup-
port Vector Machines (SVMs) in particular, are among the most successful re-
cent developments within the machine learning and data mining communities.
KMs can be used to address different tasks of data mining, such as clustering,
classification, and regression, for general types of data, such as sequences, text
documents, sets of points, vectors, images, etc. KMs (implicitly) map the data
from its original representation into a high dimensional feature space, where
each coordinate corresponds to one feature of the data items, transforming the
data into a set of points in a Euclidean / linear space. Linear analysis methods
are then applied (such as separating two classes by a hyperplane), but since the
mapping can be nonlinear, nonlinear concepts can effectively be captured.

Technically, a kernel k corresponds to the inner product in some feature space.
The computational attractiveness of kernel methods comes from the fact that
quite often a closed form of these feature space inner products exists. The kernel
can then be calculated directly, thus performing the feature transformation only
implicitly without ever computing the coordinates of the data in the ‘feature
space’. This is called the kernel trick.

Whether, for a given function k with signature k :: T × T → R, a fea-
ture transformation φ exists from T to a Hilbert space H , such that k(x, x′) =
〈φ(x), φ(x′)〉 for all x, x′ can be checked by verifying that the function is pos-
itive definite. A symmetric function k on pairs of data points of type T is a
positive definite kernel on T if, for all positive integers n, x1, . . . , xn ∈ T and
c1, . . . , cn ∈ R, it holds that

∑
i,j∈1,...,n cicjk(xi, xj) ≥ 0. While it is not always

easy to prove positive definiteness for a given kernel, positive definite kernels
do have nice closure properties. In particular, they are closed under sum, di-
rect sum, multiplication by a scalar, product, tensor product, zero extension,
pointwise limits, and exponentiation (Shawe-Taylor and Cristianini 2004).

Probably the simplest kernel is the linear one, defined for tuples of real num-
bers (x, x′) as k(x, x′) = 〈x, x′〉, where φ(x) = x. If we have x = (x1, x2) and
x′ = (x′

1, x
′
2), then k(x, x′) = x1x

′
1 +x2x

′
2. Other kernels include the polynomial

k(x, x′) = (〈x, x′〉 + 1)p and the exponential k(x, x′) = e−γ||x−x′||2 kernel.
At the conceptual level, kernels elegantly relate to both features and distances.

As mentioned above, a kernel k (implicitly) defines a mapping from the original
space to a Hilbert space x → φ(x), the latter being the feature space implicitly
associated with the kernel. A (pos. def.) kernel also defines a distance: if k is a
kernel, then d(x, y) =

√
k(x, x) − 2k(x, y) + k(y, y) is a (pseudo)metric.

At the practical level, kernel functions have been introduced for different types
of data, such as vectors, text, and images, including structured data, such as se-
quences and graphs (Gaertner 2003). There are also many algorithms capable of
operating with kernels: these include SVMs, Fisher’s linear discriminant analysis

278 S. Džeroski

(LDA), principal components analysis (PCA), ridge regression, spectral cluster-
ing, and many others. Since any kernel can be used with any kernel-algorithm,
it is possible to construct many combinations, such as regression over DNA se-
quences, classification of documents, and clustering of images.

8 Constraints in Data Mining: Revisited

8.1 Evaluation Functions for the Basic Data Mining Tasks

The evaluation functions used in evaluation constraints are tightly coupled with
the data mining task at hand. If we are solving a predictive modelling problem,
the evaluation function used will most likely concern predictive error. If we are
solving a frequent pattern mining problem, the evaluation function used will
definitely concern the frequency of the patterns.

For predictive models with a signature m :: Td → Tc, we need a distance
(or cost) function dc on objects of type Tc to define the notion of predictive error.
For a given model m and a dataset D, the average predictive error of the model
is defined as 1/|D| ×

∑
e=(a,t)∈D dc(t, m(a)). For each example e = (a, t) in the

dataset, which consists of a descriptive (attribute) part a and target (class) part
t, the prediction of the model m(a) is obtained and its distance to the true class
value t is calculated. Analogously, the notion of mean squared error would be
defined as 1/|D| ×

∑
e=(a,t)∈D d2

c(t, m(a)).
The notion of cost-sensitive prediction has been recently gaining increasing

amounts of attention in the data mining community. In this setting, the errors
incurred by predicting x instead of y and predicting y instead of x, are typically
not the same. The corresponding misprediction (analogous to misclassification)
cost function is thus not symmetric, i.e., is not a distance. The notion of average
misprediction cost can be defined as above, where the distance d(x, y) is replaced
by a cost function c(x, y).

In the case of probabilistic models, which predict a probability distribution
over the target type and are of the form m :: Td → (Tc → R0+), we need
a distance function on probability distributions over the target data type Tc.
When Tc is discrete and takes values from S = {s1, . . . , sk}, we can represent
a probability distribution on Tc with a vector p = (p1, . . . , pk) of probabilities
of its possible values. We can then use distances on vectors of reals. However,
distances or cost functions that explicitly take into account the fact that we are
dealing with probability distributions can also be taken, such as the likelihood-
ratio defined for two distributions p and q as

∑k
i=1 pilog(pi/qi). The latter is

a special case of the Kullback-Leibler divergence, defined also for probability
distributions / densities over continuous variables.

For the task of estimating the probability distribution of objects of type
T , we need a scoring function for distributions / densities. The most commonly
used ones are based on likelihood or log-likelihood (Hand et al. 2001). Given a
dataset D and a probability distribution p, the likelihood function is defined as
L(p) =

∏
e∈D p(e) and the log-likelihood function as logL(P) =

∑
e∈D logp(e).

Towards a General Framework for Data Mining 279

Another possibility for evaluating a candidate probability distribution p is to
calculate the integrated (average) squared error between p and the true distri-
bution p∗. This is defined as

∫
x (p(x) − p∗(x))2dx. We can ignore terms that do

not depend on p, yielding
∫

x
p2(x)dx −

∫
x

p∗(x)p(x)dx =
∫

x
p2(x)dx − E(p(x)),

where each of the terms can be approximated to obtain an estimate of the true
integrated (average) squared error for p: E(p(x)) denotes the expectation of p(x).

Density-based clustering is a direct special case of the task of estimating the
joint probability distribution, where clusters correspond to different components
of the joint probability distribution, which is assumed to be a mixture model. A
mixture model has the form p(x) =

∑k
i=1 πkpk(x) and decomposes the overall

density (or distribution) for x into a weighted linear combination of k component
or class densities. In this case, the same evaluation functions as for the task of
estimating the probability distribution can be applied.

For the traditional partition-based clustering approach, the quality of a clus-
tering is typically evaluated with intra-cluster variance (ICV). For a clustering
with k clusters Ci with D = ∪k

i=1Ci, we have ICV = 1
|D|

∑k
i=1 |Ci|V ar(Ci),

where Ci is the set of elements of cluster i. Var(Ci) is the intra-cluster vari-
ance of cluster i and is defined as V ar(Ci) =

∑
e∈Ci

d2(e, Ci), where Ci is the
prototype of cluster Ci with respect to the distance d.

Finally, for the task of pattern discovery, with the discovery of frequent
patterns as the prototypical instantiation, the primary evaluation function is
frequency. Recall that patterns are Boolean functions and have the signature
p :: T → bool. For a dataset D of objects of type T , the frequency of a pattern
p is defined as f(p, D) = |{e|e ∈ D, p(e) = true}|.

8.2 Cost Functions for Language Constraints

The cost functions that are used in language constraints concern the data part of
generalizations (patterns/models/...). Most often, these functions are related to
the size/complexity of the generalizations. They are different for different classes
of generalizations, e.g., for itemsets, mixture models of Gaussians, linear models
or decision trees. For itemsets, the size is the cardinality of the itemset, i.e., the
number of items in it. For decision trees, it can be the total number of nodes,
the number of leaves or the depth of the tree. For linear models, it can be the
number of variables (with non-zero coefficients) included in the model.

More general versions of cost functions involve costs of the individual language
elements, such as items or attributes, and sum/aggregate these over all elements
appearing in the pattern/model. These are motivated by practical considera-
tions, e.g., costs for items in an itemset and total cost of a market basket. In the
context of predictive models, e.g., attribute-value decision trees, it makes sense
to talk about prediction cost, defined as the total cost of all attributes used by
the model. For example, in medical applications where the attributes correspond
to expensive lab tests, it might be useful to upper-bound the prediction cost of
a decision tree.

Language constraints as commonly used in constraint-based data mining in-
volve thresholds on the values of cost functions (e.g., find a decision tree of size

280 S. Džeroski

at most ten leaves). They are typically combined with evaluation constraints, be
it threshold or optimization (e.g., find a tree of size at most 10 with classification
error of at most 10% or find a tree of size at most 10 and the smallest classi-
fication error). Also, optimization constraints may involve the language-related
cost functions, e.g., find the smallest decision tree with classification error lower
than 10%.

In the ‘classical’ formulations of and approaches to data mining tasks, scoring
functions often combine evaluation functions and language cost functions. The
typical score function is a linear combination of the two, i.e., Score(G, D) =
wE × Evaluation(G.function, D) + wL × LanguageCost(G.data), where G is
the generalization (pattern/model) scored and D is the underlying dataset. For
predictive modelling, this can translate to Score = wE × Error + wS × Size.

8.3 Monotonicity and Closedness

The notion of monotonicity of an evaluation (or cost) function on a class of
generalizations is often considered in constraint-based data mining. In mathe-
matics, a function f(x) is monotonic (monotonically increasing) if ∀x, y : x <
y → f(x) ≤ f(y), i.e., the function preserves the < order. If the function reverses
the order, i.e., ∀x, y : x < y → f(x) ≥ f(y), we call it monotonically decreasing.

In data mining, in addition to the order on Real numbers, we also have a
generality order on the class of generalizations. The latter is typically induced
by a refinement operator. We say that g1 ≤ref g2 if g2 can be obtained from g1
through a sequence of refinements (and thus g1 is more general than g2): we will
refer to this order as the refinement order.

An evaluation (or cost) function is called monotonic if it preserves the re-
finement order or anti-monotonic if it reverses it. More precisely, an evaluation
function f is called monotonic if ∀g1, g2 : g1 ≤ref g2 → f(g1) ≤ f(g2) and anti-
monotonic (or monotonically decreasing) if ∀g1, g2 : g1 ≤ref g2 → f(g1) ≥ f(g2).

Note that the above notions are defined for both evaluation/cost functions
that refer to the function part of a generalization and for functions that refer
to the data part. In this context, the frequency of itemsets is anti-monotonic (it
decreases monotonically with the refinement order). The total cost of an itemset
and the total prediction cost of a decision tree, on the other hand, are monotonic.

In the constraint-based data mining literature (Boulicaut and Jeudy 2006),
the refinement order considered is typically the subset relation on itemsets (≤ref

is identical to ⊆). A constraint C (taken as a Boolean function) is considered
monotonic if i1 ≤ref i2 ∧ C(i1) implies C(i2). A maximum frequency constraint
of the form freq(i) ≤ θ, where θ is a constant, is monotonic. Similarly, minimum
frequency/support constraints of the form freq(i) ≥ θ, the ones most commonly
considered in data mining, are anti-monotonic. A disjunction or a conjunction
of anti-monotonic constraints is an anti-monotonic constraint. The negation of
a monotonic constraint is anti-monotonic and vice versa.

The notions of monotonicity and anti-monotonicity are important because
they allow for the design of efficient constraint-based data mining algorithms.
Anti-monotonicity means that when a pattern does not satisfy a constraint C,

Towards a General Framework for Data Mining 281

then none of its refinements can satisfy C. It thus becomes possible to prune
huge parts of the search space which can not contain interesting patterns. This
has been studied within the learning as search framework (Mitchell, 1982) and
the generic levelwise algorithm from (Mannila and Toivonen, 1997) has inspired
many algorithmic developments.

Finally, let us mention the notion of closedness. A pattern (generalization) is
closed, with respect to a given refinement operator ≤ref and evaluation function
f , if refining the pattern in any way decreases the value of the evaluation func-
tion. More precisely, x is closed if ∀y, x ≤ref y : f(y) < f(x). While this notion
has primarily been considered in the context of mining frequent itemsets, where
it plays an important role in condensed representations (Calders et al. 2005), it
can be defined analogously for other types of patterns, as indicated above.

8.4 Multi-objective Optimization and Constraint-Based Data
Mining

The moment we consider more than one evaluation or cost function in the context
of a single data mining task, we are dealing with a multi-objective optimization
problem. In multi-objective optimization we wish to simultaneously optimize
several (possibly conflicting) objectives. More precisely, we want to minimize
each component of a vector of objective/evaluation functions f = (f1, . . . , fm)
simultaneously.

In the context of multi-objective optimization, the notions of Pareto domi-
nance and Pareto optimality are important. We say that a vector of values of
the objective functions g weakly dominates another vector h iff gi ≤ hi for all i.
If, in addition, gj < hj for at least one j, we say that g dominates h. If gi < hi

for all i, we are talking about strict Pareto dominance.
The weak Pareto dominance is a natural generalization of the ≤ relation on

real numbers. While ≤ induces a total order on reals, the weak Pareto dominance
induces only a partial order on vectors of reals. This means that two objective
vectors (and therefore two solutions) can be incomparable: In case of conflicting
objectives the multi-objective optimization problem can have multiple optimal
solutions. A solution and its corresponding vector of objective function values are
Pareto optimal if they are not Pareto dominated by any other solution/vector
in the space considered. All Pareto optimal solutions compose the Pareto opti-
mal set, while the corresponding objective vectors constitute the Pareto optimal
front.

The typical approach to multi-objective optimization taken within the data
mining community, as indicated earlier in this section, is to transform the multi-
objective optimization problem into a single-objective problem, by combining
the individual objectives using a weighted sum. A single solution (e.g., predic-
tive model) is then acquired by solving the corresponding single-objective prob-
lem (e.g., optimizing the weighted sum of error and complexity of the predictive
model). This approach is recognized in multi-objective optimization as an appli-
cation of the ‘preference-based principle’ (Deb 2001), where the user explicitly
specifies her preference for the different objectives (e.g., weights) in advance.

282 S. Džeroski

In contrast, using the ‘ideal principle’, the multi-objective problem is first
solved and only then the user selects a single solution among several alternatives,
using preference information. The ideal principle is ideal in the sense that it
does not demand from the user to set a preference for the objectives before
optimization. Only when several tradeoff solutions are known, the user chooses
the preferred one among them.

The ideal principle for multi-objective optimization seems very suitable in
the context of inductive databases/queries and constrained based data mining,
where multiple objectives are often employed and multiple solutions are usually
expected. After a set of solutions has been obtained, this can be the input for
further (inductive) queries that would allow the user to express her preference
and select a solution. Unfortunately, few approaches in data mining and machine
learning employ the ideal approach, with the notable exception of Tušar (2007).
This leaves ample space for the development of truly multi-objective approaches
to constraint-based data mining and inductive querying, which we believe is a
promising direction for further research.

9 Generic Algorithms for Mining Structured Data

Early on in this article, we have stated that a unifying approach to mining
different types of data would be a significant step towards a general data min-
ing framework. Having elaborated on the different types of data, different data
mining tasks and the basic components of data mining algorithms, we can now
outline what such a unifying approach would look like. Essentially, it should
provide an elegant mechanism for defining the key ingredients of data mining
algorithms, such as generality/refinement operators, distances, features and ker-
nels, for the different types of data considered.

The key data mining notions have been studied extensively and are reasonably
well understood for primitive data types. The basic idea of the unified approach
to mining structured data is to derive the key components of data mining al-
gorithms for a complex data type (built through using type constructors) from
information on the structure of that type (what constructors on what simpler
data types) and the key components for the simpler data types. For example, a
distance function d on tuples of type Tuple(T1, . . . , Tn) can be composed from
distance functions di on types Ti by adding up the distances for each tuple
component d(x, y) = d((x1, . . . , xn), (y1, . . . , yn)) =

∑n
i=1 di(xi, yi).

Note that there are several degrees of freedom when constructing the dis-
tance for a more complex data type from distances on simpler types. One di-
mension is the type constructor, which besides Tuple() may also be Set() or
Sequence(). Even if we fix the type constructor to Tuple(), there are alterna-
tive ways to combine the distances on the simpler types: for example, we can
take the square root of the sum of squared distances for each tuple component
d(x, y) =

√∑n
i=1 d2

i (xi, yi) instead of the above. Finally, different distances may
exist for the same simpler type (e.g., d11 and d12 on type T1, instead of just d1).

Towards a General Framework for Data Mining 283

The approach we have outlined above for distances can be also applied for
generality/refinement operators, features and kernels. In the remainder of this
section, we outline how this would be done. We also discuss generic data mining
algorithms that would work on arbitrary types of data: These would be param-
eterized with the key components mentioned above.

9.1 Distances and Distance-Based Algorithms

Distances. We have already discussed how distances for simpler data types can
be combined to derive distances for more complex data types created with the
Tuple() constructor: this is done in a straightforward fashion by adding up the
distances along each component. For the Set() constructor, the situation is more
complicated. Many proposals exist in the literature for constructing a distance
on sets of objects of type T from a distance on objects of type T . A concise, yet
comprehensive, overview is given by Kalousis et al. (2007).

The simpler option of constructing a distance on sets is to calculate the dis-
tances for all pairs of elements D(A, B) = {d(ai, bj)|(ai, bj) ∈ A × B}, then
aggregate this d(A, B) = f(D(A, B)): Here A and B are sets, ai/bj are elements
thereof, and f an aggregation function. The three options of f = min, max or
average give rise to the so-called single, complete and average linkage, which are
in common use, e.g., in hierarchical clustering. Even if d(a, b) is a metric, none
of the three variants here is a metric and only single linkage is a true distance
function, as the other two are not reflexive. The Hausdorff distance, defined
as dH(A, B) = max(maxai{minbj{d(ai, bj)}}, maxbi{minaj {d(bi, aj)}}), one of
the most well known distances for sets, is a metric if d(a, b) is a metric.

The more complicated option is to consider a set of relations between elements
of A and B, R = {Ri|Ri ⊆ A × B} and compute the distance between A and B
based on the relation Ri ∈ R that minimizes a distance on the elements of Ri.
Here the relations may be surjections, fair surjections, linkings, or matchings
(Kalousis 2007). Of these, the proposal by Ramon and Bruynooghe (2001) is
a metric: as R it considers matchings in which each element of the two sets
is associated with at most one element of the other set. The distance, defined
as d(A, B) = minRi∈R(

∑
(ai,bj)∈Ri d(ai, bj) + (|B − Ri(A)| + |A − R−1

i (B)|)M
2)

adds a M/2 penalty for the elements of A and B that do not participate in the
relation Ri, where M is the maximum possible distance between two elements.

For the Sequence() type constructor, the edit-distance approach can be used.
While this has typically been used for sequences of alphabet symbols, i.e., Se-
quence(Discrete(Alphabet))), Kalousis et al. (2007) have recently suggested an
extension towards sequences of arbitrary complex objects on which a distance d
is defined. Given two sequences A = [a1 . . . , am] and B = [b1 . . . , bm], an align-
ment of A and B is a pair of sequences A′ and B′ of equal length l ≥ max(n, m),
constructed from the initial sequences by insertion of gaps, −. In an alignment,
an element from A/B can be aligned to a gap (insert/delete operation) or two
elements from A resp. B can be aligned with each other (replace operation).

The cost of an alignment is simply the sum of the cost of all operations used to
derive the alignment, where the cost of the replace operation is c(x, y) = d(x, y)

284 S. Džeroski

and the cost of the insert and delete operations is a constant, i.e., c(x, −) =
c(−, y) = α, called the gap penalty. The alignment-based edit distance, dE(A, B),
of two sequences A and B is then simply the minimum cost overall possible
alignments of the two sequences, i.e., the cost of the lowest cost sequence of
operations that turns the first sequence into the second. The edit distance can
be computed using dynamic programming (Durbin et al., 1998) in time O(mn).

Generic Distance-Based Algorithms. It is quite easy to formulate generic
distance-based algorithms for data mining, which have the distance as a pa-
rameter. For example, hierarchical agglomerative clustering only makes use of
the distances between the objects clustered and distances between sets of such
objects. The latter can be based on single, complete or average linkage.

Clustering algorithms that make use of cluster prototypes, such as the k-
means/medoids algorithm, require in addition a prototype function to be defined
on the type of objects clustered. A closed-form prototype is desirable since its
computation is more efficient and supports the version of the k-means algorithm
parameterized with the distance and prototype functions. If no closed-form is
known, the prototype of a cluster can be computed as the element of the cluster
that has the lowest average (squared) distance to the other objects in the cluster,
and the distance-parameterized version of (k-means like) k-medoids applies.

Distance-based prediction algorithms are also easy to formulate in a generic
way. For a predictive problem of type Ti → Tj, the nearest neighbor method
applies as long as we have a distance on Ti. To make a prediction for a new
instance, the distance between the (descriptive part of the) new instance and
the training instances is calculated. The target part is copied from the nearest
training instance and returned as a prediction. To use the k-nearest neighbor
algorithm, we also need a prototype function on the target data type: the pre-
diction returned is the prototype of the target parts of the k nearest (in the
description space) instances.

9.2 Kernels and Kernel Methods

Kernels for a complex data type T can be derived from kernels for the simpler
data types used to form T , analogously to distances. The manner in which the
kernels for the simpler types are combined depends on the type constructor used
to form T . As for distances, the easiest case is the one for tuples. A kernel
function k on tuples of type Tuple(T1, . . . , Tn) can be composed from kernel
functions ki on types Ti by adding up the kernels for each tuple component
k(x, y) = k((x1, . . . , xn), (y1, . . . , yn)) =

∑n
i=1 ki(xi, yi).

One possibility for kernels on sets is the product kernel, defined as k(A, B) =∑
x∈A,y∈B k(x, y). This is a special case of the convolution kernel proposed by

Haussler (1999), which defines kernels of composite objects based on a rela-
tion between an object and its parts. Sets and multi-sets are also a special
case of abstractions, which are mappings to the set of (non-negative) reals: sets
are mappings to {0, 1} (A(x) = 1 if x ∈ A), while multi-sets are mappings to

Towards a General Framework for Data Mining 285

non-negative integers (B(x) = 2 if x occurs in B twice). Kernels for abstractions
can be defined by k(A, B) =

∑
x∈A,y∈B A(x)B(y)k(x, y) (Lloyd 2003).

Analogously to the manner in which edit-distances on strings have been
adapted to work on sequences on structured objects (Kalousis et al. 2006), ker-
nels on strings have been adapted to work on sequences on structured objects
(Woznica et al. 2006). In particular, the “Contiguous Sublist” and the “Longest
Common Sublist” kernels have been adapted to structured objects. A more de-
tailed treatment of kernels on structured data is given by Gaertner (2003).

Kernel methods are also generic in the sense that any kernel can be used with
any kernel algorithm, thus the kernel function can be seen as a parameter to the
algorithm. We will not discuss here in detail any of the kernel methods, except
to mention the most commonly used methods: support vector machines (SVMs),
ridge regression and spectral clustering. As we have seen, kernels for structured
data can be derived in a principled manner. In addition, special kernels have been
designed for text, images, sequences and graphs, thus making kernel methods
applicable to many kinds of data.

9.3 Features and Feature-Based Methods

The vast majority of data mining methods operate on a feature-based represen-
tation of data. These include, among others, decision trees and rules, linear equa-
tions and discriminants, and probabilistic methods (naive Bayes, Bayes nets).
We will not discuss these here, but all of them assume that data reside in a sin-
gle table, with columns representing features and rows representing data points
(also referred to as instances and examples). Methods from machine learning,
pattern recognition and statistics alike make use of this representation.

In this (sub)section, we briefly discuss how to derive features for structured
objects in a principled manner. So far, this issue has been considered in more
detail by subcommunities dealing with the analysis of more specific forms of
data, such as image processing. The notable exception has been the relational
data mining (Džeroski and Lavrač 2001) community, where propositionalization,
introduced by Lavrač and Džeroski (1994), explicitly deals with the construction
of features from (possibly structured) data represented relationally.

A large body of work exists in the machine learning and data mining commu-
nities that goes under the heading of feature construction and feature extraction
(Liu and Motoda 1998), jointly referred to as feature discovery or feature trans-
formation. Feature transformation is defined as the process in which a new set
of features is constructed. If the new features are constructed by logical opera-
tions (e.g., conjunction or disjunction) on the original features, we speak about
feature construction. If functional mappings are used instead (e.g., linear com-
binations), we speak about feature extraction. The crucial assumption is that
the set of objects is originally already represented by a set of features, which are
further combined to obtain new features. In our discussion, we do not make this
assumption; rather the objects considered are of an arbitrary data type.

To construct the features for a type T , we proceed as follows. If the type
T is primitive (Boolean, Discrete(S) or Real), a single feature of that type is

286 S. Džeroski

generated; we write Features(T) = {UniqueID : T }, where the feature of type
T is assigned a unique identifier UniqueID. For a type Tuple(T1, . . . , Tn), the
set of features generated is the union of the set of features derived for each of
the component types, i.e., Features(T) = ∪n

i=1Features(Ti).
To describe a set of objects t = {t1, . . . , tk} of type T , the most general

approach would be to view t as a sample from a probability distribution pT and
specify the (joint) probability distribution as approximated from that sample.
To describe t in terms of features, we need to consider features for describing
probability distributions. If we assume the objects of type T can be described
by a set/vector of features over the space Features(T), we need to specify a
probability distribution over that space. A simplified approach to this problem
is to specify the marginals of this distribution, i.e., the distributions of the values
for each feature.

For features of type Discrete(S), where S = {s1, . . . , sm}, m features suffice
to describe the distribution completely, namely P (si), i = 1, . . . , m. Oftentimes,
the mode of the distribution would be included as a feature, which is also of
type Discrete(S). The cardinality of the set |t| is also a feature to be included.
For real-valued features, their minimum and maximum values can be used as
features, as well as the mean, standard deviation, and median: these are known
as aggregates in relational databases. Histograms may be used if a more accurate
description of the distribution is necessary.

For strings (sequences of objects of type Discrete(S)), n-grams are often used
as features. These count the number of occurrences of each of the letters in
the alphabet (1-grams), pairs of letters (2-grams), triplets of letters (3-grams),
and so on. For time series (sequences of objects of type Real), many different
features can also be constructed by using techniques from signal processing, such
as the Fourier transform (Bracewell 1965) to the frequency domain or by wavelet
analysis (Mallat 1999).

For objects of type Sequence(T), assume we can represent objects of type T
with Features(T). We hence consider feature construction on an object of the
type Sequence(Tuple(F1, . . . , Fk)), where Fi are the types of the features from
Features(T). In analogy to the approach taken for sets, where the marginals
were used to represent the probability distribution, we replace the type
Sequence(Tuple(F1, . . . , Fk)) with Tuple(Sequence(F1), . . ., Sequence(Fk)) and
derive features from this, resulting in the feature set Features(Sequence(T)) =
∪n

i=1Features(Sequence(Fi)).
We have already mentioned earlier that features may be derived through the

use of domain or background knowledge. Background knowledge can be thought
of as a set of mappings. Assuming we are given a data type T for the data we
are analyzing, as well as some additional data types Ti, as well as background
knowledge consisting of a set of mappings bi : T → Ti.

In addition to the features Features(T) that can be derived from T directly
as discussed earlier in this section, features can be generated also from each of
the types Ti. Suppose each of Ti gives rise to Featuresi(Ti). For an object t

Towards a General Framework for Data Mining 287

of type T , besides Features(t), the feature-based representation would include
Featuresi(bi(t)).

For simplicity we have assumed one level of background knowledge only: all
mappings apply to type T and yield an object of a type other than T . We can
easily imagine that the background knowledge mappings apply to, as well as,
yield objects of different types. The mappings would then be composed according
to their type signatures. In that case, objects such as bi(bj(t)) and features
thereof will have to be considered.

Let us conclude by noting that a huge number of features may be generated in
this fashion. Hence we expect such feature generation to be used in conjunction
with feature ranking and selection, where pattern discovery can be viewed as a
form of the latter. For example, instead of using all possible n-grams as features
to describe a sequence, only those that occur with a frequency exceeding a certain
threshold may be used. There is a strong link between feature construction and
(frequent) pattern discovery: the latter has been used to generate features for
predictive modelling both in the context of frequent itemsets (Cheng et al. 2007)
and frequent Datalog queries (King et al. 2001).

9.4 Refinement Orders and (Frequent) Pattern Discovery

In the most general formulation of pattern discovery, we can have an arbitrary
language/class of patterns, a matching/covering relationship which corresponds
to the interpreter for the given class of patterns, and an arbitrary evaluation
function to optimize. In practice, the most commonly encountered pattern dis-
covery task is the task of mining frequent patterns, where the evaluation function
is frequency. For this task, the language of patterns is commonly the same (or
very close) to the language of the data (type) considered.

When we mine frequent itemsets, the patterns - itemsets - are expressed in
exactly the same language as the data - transactions. The same holds when min-
ing frequent (sub)strings, (sub)sequences of structured terms or (sub)graphs.
Consequently, the matching relationship used is a syntactic subsumption rela-
tionship, defined on the data type in question. For frequent itemsets this is the
subset relation (on transactions), for the other data types this is analogously the
substring, subsequence, and subgraph relationship.

The prototypical algorithm for mining frequent patterns starts its search with
the empty pattern (set/sequence/graph), which is always frequent. It then pro-
ceeds levelwise, considering at each level the refinements of the patterns from
the previous level and testing their frequencies. Only frequent patterns are kept
for further refinement: Due to the anti-monotonicity of frequency, no refinement
of an infrequent pattern can be frequent.

The key to a generic algorithm for mining frequent patterns that would work
for arbitrary data types is to derive a subsumption/refinement relation from
the definition of the type and subsumption relations for the component types,
in much the same fashion we discussed above for distances, kernels and feature
sets. For the primitive data types, subsumption is defined as follows. For the type
Discrete(S), a pattern is a subset of S and the ≤ref relation corresponds to the ⊆

288 S. Džeroski

relation. The data type Boolean can be viewed as a special case of Discrete(S),
with S = {false, true} ({0, 1}). For the type Real, a pattern is an interval of the
form (a, b): we say (a, b) ≤ref (c, d) iff a ≥ c and b ≤ d, i.e., (a, b) ⊆ (c, d) if we
view the intervals as sets of real numbers.

For two tuples x and y of type Tuple(T1, . . . , Tn), such that x = (x1, . . . , xn)
and y = (y1, . . . , yn), we have x ≤T y = ∧n

i=1(xi ≤Ti yi). For two sets X and Y
of objects of type T , we have X ≤ref Y iff there is a subset Y ′ of Y such that
each element xi ∈ X can be paired with an element yi ∈ Y ′ such that xi ≤T yi.
For two sequences X and Y of objects of type T , we have X ≤ref Y iff there is
a subsequence Y ′ of Y of the same length as X , such that (xi ≤T y′

i) for all i.

10 Towards a Language for Data Mining and Knowledge
Discovery

Based on the elements presented above, we outline here a vision of a language for
data mining and knowledge discovery. First-order citizens of the language would
include data types, data sets, and generalizations (patterns, models, clusterings,
probability distributions), as well as data mining algorithm components, such as
distance/cost functions, feature sets, kernels and refinement operators.

We envisage an interpreted language of declarative nature, incorporating some
features from both functional programming (Thompson 1999) and logic pro-
gramming (Lloyd 1987). For example, storing and querying structured data,
database style, would be nicely supported by the logic programming side of the
language. The same would hold for materialized collections of patterns/models,
when queries concern the data part thereof.

On the other hand, the functional programming side would support the ma-
nipulation of the function aspects of patterns/models, such as the retrieval of
the function aspect of a pattern/model from the data aspect or deriving predic-
tions through the application of a given predictive model to new data. It would
support operations on patterns and models, such as creating a mixture model
from a given set of probability distributions. It would also support the deriva-
tion of the basic data mining algorithm ingredients for more complex data types
from those of the component types. Finally, it would support the composition
of different data mining operations into knowledge discovery scenarios.

10.1 Data and Background Knowledge

The data part of the language would be close in spirit to deductive databases
(Lloyd 1983). A database in this setting would contain a set of data types
T1, . . . , Tn, as well as (some) datasets Dij of objects of (each of) these types
Ti. Background knowledge, consisting of a set of mappings b : Ti → Tj , can also
be included.

Each dataset can be viewed as a predicate. Each background knowledge map-
ping can be also viewed as a predicate b(Ti, Tj). Assuming that the data are

Towards a General Framework for Data Mining 289

represented relationally (in a flattened form), queries on data would be very
similar to Datalog queries.

In our setting, data types are represented explicitly and can also be the object
of manipulation. Recall that types are constructed from primitive data types
(Boolean, Discrete(S), and Real) using type constructors (Tuple, Set, Sequence).
In this context, it is important to note the relationships between different data
types, which can lead to a taxonomy/ontology of data types.

For example, we can have a data type molecule, which is a special case of
labeled graphs. Molecular fragments, which can also be defined as a type, are
substructures (linear paths) in such graphs. Explicitly representing and reason-
ing with such information can be very useful, for example, to determine the
applicability of different data mining algorithms to different data types: an algo-
rithm for mining frequent subgraphs can be used for finding frequent molecular
fragments.

10.2 Generalizations

Patterns, models, clusterings and probability distributions (which we collectively
refer to as generalizations) are first-class citizens in this framework. Recall that
they all have both a data and a function part. Classes of generalizations can be
defined, for which an interpreter can map the data part of a generalization to
its function part.

The function part of a generalization is typed according to the underlying data
type(s), for example, Sequence({A, C, T, G}) → Boolean. For the data part, a
type definition needs to be given, so that the generalizations can be explicitly
stored and queried as data objects. The symbols that can appear in the type
definition depend on the underlying data type(s), as well as the class of gen-
eralizations. If we consider classification trees that classify tuples of Boolean
features X = (x1, . . . , xn) into a Boolean class, internal nodes of the trees would
be labeled with a feature name xi ∈ X while leaves will be labeled with one of
{true, false}.

We can imagine sets of decision trees stored in a ‘dataset’ of the appropriate
type. For example, the set of trees in a random forest can be stored in such a
dataset. The trees need not all be generated by machine: we can give students,
as part of their machine learning exam, the task to generate a decision tree for
a certain (small) set of examples. All of the answers we get from the class of
students would form such a dataset of decision trees as well.

Datasets of generalizations of the kind outlined above can be queried in much
the same fashion as ordinary datasets. For example, datasets of decision trees
can be queried much like datasets of ordinary trees. We might ask, e.g., for all
the trees that contain a certain feature at the root node.

The set of solutions to a data mining query, i.e., the set of generalizations of a
certain class satisfying a given set of constraints would also constitute a dataset
of generalizations. For example, all the decision trees of size at most 10 leaves
with classification error of at most 10% would form a dataset of trees. Another
example would be the set of all itemsets with frequency higher than 10% and

290 S. Džeroski

cost lower than 100$: Note that the latter also refers to a cost function on the
data part of the pattern. Additional queries, called post-processing queries, can
be posed after the data mining results have become part of a dataset.

10.3 Cross-Over Queries

Cross-over queries apply generalizations to a given datum or a dataset. If the
source data type is Td and the generalization maps to type Tc, we can think
of cross-over queries as producing pairs of type (Td, Tc). Recall that patterns
map to Booleans, clusterings to integers in the range 1, . . . , k (where k is the
number of clusters), probability distributions/densities to non-negative Reals,
and predictive models to an arbitrary data type Tc. Since cross-over queries
most often involve predictive models, we refer to the application as a prediction
join.

More specifically, the application of a generalization to a given datum refers
to the function part of the generalization. If the function part is explicitly stored
(e.g., as a stored procedure), it would be called directly. Otherwise we would
make use of the interpreter for the particular class of generalizations.

Once we have the results of applying a generalization to a dataset, the value of
an evaluation function can be computed for that generalization. For example, for
a classification model, the classification error can be computed. For a clustering,
the intra-cluster variance can be calculated.

10.4 Generic Data Mining: Components and Algorithms

We also propose that the basic components of data mining algorithms, i.e., dis-
tance and prototype functions, kernel functions, feature sets, and refinement
operators, are also first-class citizens of our language. Suppose we have a set
of distance functions, e.g., a set of weighted Euclidean distances over tuples of
reals, each represented by a tuple of weights. We can query this set and look for
distances that give a very high weight (over a threshold) to a selected feature.

Generic data mining algorithms, such as the ones for distance-based prediction
discussed in the previous section, could then be used, parameterized with the
selected basic components. We envisage several generic algorithms for each of
the major approaches (distance-based, kernel, and feature based). For example,
distance-based methods would include hierarchical clustering (agglomerative and
divisive), k-means/medoids clustering, and k-nearest neighbor prediction.

Generic feature-based algorithms for predictive data mining would be param-
eterized with feature sets on the descriptive side and distance functions for the
target side. If the prediction problem is predicting objects of type Tc from objects
of type Td, the algorithm will need a set of features Features(Tc) and a distance
on Td as input. Algorithms for learning predictive clustering trees (Blockeel et
al. 1998) and rules (Ženko et al. 2006) have come closest to this paradigm.

We expect default basic components to be associated with each data type
and/or generic algorithm. For example, a default distance can be associated
with each data type. For the primitive data types, these have been discussed

Towards a General Framework for Data Mining 291

earlier (Section 7.2). For compound data types, if not specified explicitly, default
distances can be derived using the methodology outlined in Section 9.1.

10.5 Constraints and Data Mining Queries

Once we have defined a data mining task and selected the associated basic compo-
nents, we can define precisely the evaluation function(s) to be used. For example,
we can only define predictive error once we have defined a distance/cost function
on the target data type of a predictive modelling task. Different evaluation func-
tions can be defined by selecting different basic components (distances). For prob-
abilistic classification, one can optimize squared loss or log loss, depending on the
underlying distance on probability distributions over discrete variables. Note that
the above are independent of the class of predictive models used.

Besides evaluation constraints, language constraints, which can be subsump-
tion-based or based on cost functions, can also be used. These are defined for
a specific class of generalizations. Subsumption constraints involve the gener-
ality/refinement order on the data part of the generalization. For example, a
specific item has to appear in the discovered frequent itemsets or the classifica-
tion tree has to include a given subtree at the root. Examples of cost functions
for language constraints include the size or depth of a decision tree and the cost
of an itemset. Note that we can also have evaluation constraints that are specific
for a given class of generalizations. For instance, we can require each leaf of a
decision tree to cover at least 10 examples, have accuracy of its majority class
higher than a threshold, or have a majority class frequency higher by a given
margin than the frequency of any other class (Nijssen and Fromont 2007).

Similar to the ontology of data types mentioned above, we can imagine having
a hierarchy/an ontology on generalizations. Evaluation and language cost func-
tions can be defined at different levels in this ontology. The most general ones
will apply, say, for all models, while more specific ones will apply for a given
class of models only, e.g., for decision trees.

When a user defines a data mining task, she will then have available a choice
of primitives (evaluation functions, language cost functions, and subsumption
relations) appropriate to the task at hand. The primitives can be used to form
individual constraints, which can then be combined to form inductive (data
mining) queries. Recall that we have Boolean (hard) constraints, optimization
constraints and soft constraints. Boolean constraints can be combined via log-
ical operations to form complex queries. Note that the use of multiple evalua-
tion/language cost functions entails a multi-objective optimization problem, to
which different approaches can be applied as outlined in Section 8.4.

The design of data mining algorithms to solve arbitrary inductive queries
composed along the lines described above is still much of an open issue. So far,
most of the algorithms for constraint-based data mining have focussed on mining
frequent patterns (in structured data) under frequency constraints (Boulicaut et
al. 2005). Mining closed patterns and mining under (language) cost constraints
has also been considered in this setting. Since all of the above are anti-monotonic,

292 S. Džeroski

combinations thereof are also anti-monotonic and the generic algorithm for min-
ing frequent patterns (discussed in Section 9.4) applies.

Interest in the constraint-based mining of predictive models has increased
recently. A number of methods have been proposed that take into account ac-
curacy and size constraints in decision trees (Garofalakis et al. 2003), as well
as subsumption constraints (Struyf and Džeroski 2006). Constraints (including
subsumption and accuracy) have also been considered in the context of learning
polynomial equations (Džeroski et al. 2005). However, unlike ‘complete’ frequent
pattern mining approaches, which return the complete/optimal set of solutions,
these approaches are heuristic and give no guarantees. Only recently have ‘com-
plete’ approaches been considered for predictive models, e.g., for learning optimal
decision trees (Nijssen and Fromont 2007).

10.6 Re-using the Results of Learning

Recall that the set of solutions to an inductive query produced by a data min-
ing algorithm constitutes a dataset of generalizations (e.g., patterns/models)
and can be stored as such. It then becomes available for further queries, be it
post-processing queries, cross-over queries or inductive queries. Actually, post-
processing queries can be viewed as just data queries on the data part of the
generalizations.

One way to use cross-over queries is to apply learned models (patterns) on a
new set of data to produce a new (feature-based) representation. For example,
as discussed in Section 9.3 frequent patterns (discovered by data mining) have
already been used as features for predictive modelling. This has been done both
for itemsets/propositional representations (Cheng et al. 2007) and for structured
objects/relational representations (King et al. 2001).

Models can also be used to generate new features, either directly or indirectly.
If the target type of a model is a primitive type or a vector thereof, the model’s
predictions can be used directly as features. If it is structured, feature construc-
tion thereon can be applied as outlined in Section 9.3. The above can be done
for any model, irrespective of its representation.

For some classes of models, features can be generated from the structure of
the data part of the model. For instance, if we have a decision tree, we can take
fragments thereof, such as paths which represent a conjunction of conditions,
and make these new features. A similar approach has been used by Srinivasan
and King (1999) to extract features from a logic program, then use these for
predicting biological activity of molecules.

We can also pose inductive queries on sets of patterns/models. We take as
input the data part of the patterns/models. It is important to note that the
ability to mine structured data is of crucial importance here. Namely, patterns
and models are often structured objects, even if the data they were generated
from is flat/propositional: Take for example decision trees and Bayesian networks
derived from a propositional dataset.

Termier et al. (2006) first learn gene networks from microarray data through
a process that generates many different networks. They then apply frequent

Towards a General Framework for Data Mining 293

pattern mining to extract DAGs (directed acyclic graphs) which commonly occur
in the networks. A human expert then only needs to look at and assess the
biological meaning of these smaller components of the gene networks.

The above discussion addresses directly issues raised by Siebes (2006) as prior-
ity issues to be solved in order to achieve truly inductive database functionality.
The paragraphs immediately above refer to what Siebes calls ‘Models on Models’
or ‘Mining on Models and Patterns’. The earlier part of the discussion refers to
what Siebes calls ‘Models for Models’. Both are related to meta-learning (Vilalta
and Drissi 2002), where the results of (base-level) learning are used as input to
a further learning process.

More complicated ways are possible of re-using learned patterns and models.
In some ways, these would depart from the basic data mining tasks that we have
addressed earlier in this article. For example, a given set of data can be used to
improve an existing predictive model: This task is referred to as theory revision.
Here we want to find an improved model, which however is not discovered from
scratch but is based on the given model. One possibility is to formulate this in
terms of subsumption constraints. Džeroski et al. (2005) discuss a scenario in
which a previously discovered polynomial is used in a sub-polynomial constraint
in the discovery of more complex polynomials. In general, we want the revised
model to be similar to the original model, and constraints based on (syntactic
or semantic) similarity of patterns/models might prove to be useful.

10.7 Operations on Generalizations

It would be desirable to support some operations on generalizations in a data
mining language. An example would be the operation that combines a set of
regression models by taking the average prediction of individual models. A set
of classification models would be combined via majority voting and a set of
probabilistic classification models by probability distribution voting/summation.
Another example would be the weighted summation of a number of probability
distributions to obtain a mixture model. Finally, clustering aggregation (Gionis
et al. 2005) takes as input a set of clusterings and finds a clustering that agrees
as much as possible with the given clusterings.

The first two examples above are easy to implement, especially in functional
programming languages. We can operate on the functional part of the gener-
alizations directly, and obtain, e.g., r(x) = (r1(x) + . . . + rk(x))/k in the first
example, where ri(x) are the individual regression models (the function parts
thereof). For certain classes of generalizations, these operations can be done on
the data part thereof in closed form: if ri(x) were linear models represented by
the coefficients for each of the features xj used, we could simply add these up.

Defining operations on generalizations with a clear semantics goes in the di-
rection of defining an algebra for data mining, analogous to relational algebra.
Mannila (2001) outlined a proposal of an algebra for probabilistic (mixture)
models, with the basic operations of projection, selection, union and join ana-
logues to the operations in the relational model. A probabilistic model is viewed

294 S. Džeroski

as a relation: selection corresponds to partial evaluation of the model, projec-
tion to marginalization over the variables projected away, union corresponds to
mixing, and applying a model to an ordinary relation to (prediction) join.

10.8 Integration Aspects, Compositionality, and Scenarios

So, how would a user go about solving a specific data mining problem in the
framework outlined here? She would start with the data: Define data type(s), or
choose from pre-defined ones, then load a dataset. Along with the data type(s),
distances/prototypes, features, kernels and refinements may be defined (either
directly by the user or in a semi-automated fashion from the definitions of the
data types).

The data mining task has to be specified next: This can be one of pattern dis-
covery, estimating a probability distribution, clustering or prediction. A different
type of generalization (a set of patterns, a probability distribution, a clustering
or a predictive model) is produced as output, depending on the task. These are
parameterized in the first instance with the types of data they operate on.

Once a data mining task and the underlying data types are selected, a class
of generalizations has to be selected. We expect that some generic classes (e.g.,
trees) will be predefined, parameterized with the appropriate basic components
(e.g., feature sets). Evaluation/language cost functions and constraints have to
be selected next, based on distance/cost functions and refinement orders on the
underlying data/generalization types: These constitute an inductive query.

Integration. The language we envision would support the creation of data min-
ing algorithms capable of solving a variety of inductive queries on a variety of
data types involving a variety of evaluation and language constraints. The key
to this would be the support for different data types, the explicit treatment of
generalizations as both data objects and functions, the explicit representation
and manipulation of basic components of data mining algorithms, as well as
constraint primitives (evaluation an language cost functions). Data mining al-
gorithms implemented in this environment would be tightly integrated into an
overall knowledge discovery language, where outputs of one data mining opera-
tion can be used as input to another.

Loose integration of externally developed data mining algorithms would also
be possible. For an algorithm to be plugged in, we would need a precise spec-
ification of the data mining task addressed, the underlying data type(s), and
the class of generalizations considered. If the algorithm is constraint-based, the
evaluation and language primitives used, and the types of constraints supported
should also be specified. For example, MolFea (Kramer and De Raedt 2001)
addresses the task of finding frequent patterns in the form of linear molecular
fragments in data that consists of molecular structures in the form of labeled
graphs and takes into account subsumption language constraints and frequency
evaluation constraints.

Compositionality. Compositionality is the technique of constructing complex
analyses by using a collection of standard operations as building blocks, with the

Towards a General Framework for Data Mining 295

outputs of some operations serving as inputs to other operations (Ramakrishnan
et al. 2005). Relational algebra, for example, includes the operations of selection,
projection, join, union and difference that take as input tables and produce tables
as output. In the context of data mining, it has so far been a largely open issue
what are the operators of interest, their inputs and outputs.

We argue that data mining operators corresponding to the data mining tasks
we have defined and discussed here should definitely be included in an algebra for
data mining. Whether or not (and which) operations of lower granularity should
be included can be debated on further and depends on whether we want to focus
on knowledge discovery or data mining. In a knowledge discovery language a
coarser granularity may be preferred, while for data mining a finer granularity
might be necessary.

We have described data mining tasks/operations, as well as the basic ingredi-
ents of data mining algorithms, in terms of their signatures, i.e., the domain and
ranges of the functions they are computing. Not all operations can be meaning-
fully combined in all possible ways and signatures provide us with some guidance
on what combinations are meaningful. For example, the output of a frequent pat-
tern mining algorithm for data type T applied to a dataset D1 of objects of type
T can be used as the input to a cross-over operation (together with another
dataset D2 of objects of type T).

The signatures of data mining operators can be organized in a hierarchy (Ra-
makrishnan et al. 2005). At the higher level, the signatures are described in
general terms, such as pattern or model. In the lower levels they may be special-
ized for certain types/classes of patterns or models. Following the same approach
makes sense in our case as well. We propose to lift the hierarchy described there,
which works only for propositional data, to the case of mining structured data.
The ontology of structured data types would be taken into account as well.

Scenarios. Real-life applications of data mining typically require interactive
sessions and involve the formulation of a complex sequence of inter-related in-
ductive queries (including data mining operations), which we will call a KDD
scenario (Boulicaut et al. 1999). Some of the inductive queries would generate
or manipulate patterns, others would apply these patterns to a given dataset to
form a new dataset, still others would use the new dataset to to build a pre-
dictive model. The ability to formulate and execute such sequences of queries
crucially depends on compositionality, the ability to use the output of one query
as the input to another.

KDD scenarios can be described at different levels of detail and precision and
can serve multiple purposes. At the lowest level of detail, the specific data min-
ing algorithms used and and their exact parameter settings employed would be
included, as well as the specific data analyzed. Moving towards higher levels of
abstraction, details can be gradually omitted, e.g., first the parameter setting of
the algorithm, then the actual algorithm may be omitted but the class of gener-
alizations produced by it can be kept, and finally the class of generalizations can
be left out (but the data mining task kept). On the data side, one might move
from the specification of an actual dataset to a specification of the underlying

296 S. Džeroski

data type and further to data types that are higher in the hierarchy/ontology of
data types. Having ontologies of data types, data mining tasks, generalizations
and data mining algorithms would greatly facilitate the description of scenar-
ios at higher abstraction levels: the abstraction can proceed along each of the
respective ontologies.

At the most detailed level of description, KDD scenarios can serve to doc-
ument the exact sequence of data mining operations undertaken by a human
analyst on a specific task. This would facilitate, for example, the repetition of
the entire sequence of analyses after an erroneous data entry has been corrected
in the source data. At higher levels of abstraction, the scenarios would enable
the re-use of already performed analyses, e.g., on a new dataset of the same type.
We thus argue that the explicit storage and manipulation of scenarios (e.g., by
reducing/increasing the level of detail) would greatly facilitate the KDD pro-
cess as a whole, reduce human effort and thus alleviate a major bottleneck in
applying KDD in practice.

11 Related Work

When attempting to formulate a general framework for data mining, the poten-
tial set of related work items is dangerously large. Here we will give a biased
sample of what we consider related work. Parts of it have been mentioned previ-
ously, while others have not been explicitly mentioned above even though they
have made an intellectual influence during the writing of this article.

Let us start with inductive databases and constraint-based data mining. Since
the notion of inductive databases was introduced, a significant body of research
has grown on these two topics: A survey can be found in the book edited by
Boulicaut et al. (2005). An earlier collection of papers focussing on constraint-
based data mining was edited by Bayardo (2002).

Data mining query languages are also directly relevant: A survey article is
presented by Boulicaut and Masson (2005). A more recent proposal for an SQL-
based data mining query languages, which allows for the integration of various
data mining operations at the data level, has been given by Kramer et al. (2006).
Finally, the IQL language proposed by Nijssen and De Raedt (2007/this volume),
is very close in spirit to the discussion presented here: it recognizes the impor-
tance of functions and extends tuple relational calculus with a function and
a typing system. However, it only allows for loose integration of data mining
algorithms and does not support the creation of new algorithms.

Another way to recognize the importance of functions is to use higher-order
logic or functional programming to facilitate the implementation of data mining
algorithms (for mining structured data). Lloyd (2003) uses higher-order logic
to define structured data types and principled ways of constructing distances,
features (which he calls predicates) and kernels. Allison (2004) uses functional
programming to define data types and type classes for models (where models
include probability distributions, mixture models and decision trees) that allow
for models to be manipulated in a precise and flexible way.

Towards a General Framework for Data Mining 297

Formulating an algebra for data mining that would be the equivalent of Codd’s
relational algebra for databases is probably the most ambitious goal in the con-
text of the discussion presented here. The 3W-model (Johnson et al. 2000) was
among the first to take an algebraic view on data mining: A refined version has
been presented recently by Calders et al. (2006b). Mannila (2001) presented an
algebraic view on operations with mixture models. Siebes (2006) discusses how
to lift relational algebra to patterns and models. Finally, the compositionality
of data mining operators, as discussed by Ramakrishnan et al. (2005), can be
expected to play a crucial role in the general framework.

Acknowledgments. This work was supported by the IQ project (IST-FET
FP6-516169). Thanks are due to the members of the project for providing the
intellectual background for this work, as well as numerous discussions on related
issues. Special thanks to Jan Struyf, who helped with this article in various
ways, which among other things included a detailed proofreading and search
for references. Thanks also to Alexandros Kalousis and Ljupčo Todorovski for
reading this text at short notice, as well as Marko Bohanec and Bernard Ženko
for commenting on portions thereof. Thanks as well to Martin Erwig and John
Lloyd for the useful discussions on functional programming languages and their
use for data mining.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proc. of the ACM SIGMOD Conf. on Management of
Data, pp. 207–216. ACM Press, New York (1993)

2. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison-
Wesley, Reading, MA (1983)

3. Allison, L.: Models for machine learning and data mining in functional program-
ming. Journal of Functional Programming 15(1), 15–32 (2004)

4. R. Bayardo (ed.) Constraints in data mining. Special issue of SIGKDD Explo-
rations, 4(1) (2002)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
6. Bistarelli, S., Bonch, F.: Interestingness is not a Dichotomy: Introducing Softness

in Constrained Pattern Mining. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho,
R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, Springer, Heidelberg
(2005)

7. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
Proc. of the 15th Intl. Conf. on Machine Learning, pp. 55–63. Morgan Kaufmann,
San Mateo, CA (1998)

8. Boulicaut, J.-F., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399–416.
Springer, Berlin (2005)

9. Boulicaut, J.-F., Masson, C.: Data mining query languages. In: Maimon, O.,
Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, Springer,
Berlin (2005)

10. Boulicaut, J.-F., Klemettinen, M., Mannila, H.: Modeling KDD processes within
the inductive database framework. In: Mohania, M.K., Tjoa, A.M. (eds.) DaWaK
1999. LNCS, vol. 1676, pp. 293–302. Springer, Heidelberg (1999)

298 S. Džeroski

11. Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006)

12. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill, New
York (1965)

13. Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations
for frequent sets. In: Boulicaut, J-F., De Raedt, L., Mannila, H. (eds.) Constraint-
Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 64–80.
Springer, Heidelberg (2006)

14. Calders, T., Goethals, B., Prado, A.B.: Integrating pattern mining in relational
databases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 454–461. Springer, Heidelberg (2006a)

15. Calders, T., Lakshmanan, L.V.S., Ng, R.T., Paredaens, J.: Expressive power of an
algebra for data mining. ACM Transactions on Database Systems 31(4), 1169–1214
(2006b)

16. Cheng, H., Yan, X., Han, J., Hsu, C.-W.: Discriminative frequent pattern analysis
for effective classification. In: Proc. 23nd Intl. Conf. on Data Engineering, pp.
716–725. IEEE Computer Society Press, Los Alamitos (2007)

17. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley &
Sons, New York (2001)

18. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26, 99–146 (1997)
19. Dehaspe, L., Toivonen, H.: Discovery of frequent Datalog patterns. Data Mining

and Knowledge Discovery 3(1), 7–36 (1999)
20. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),

69–77 (2002a)
21. De Raedt, L.: Data mining as constraint logic programming. In: Kakas, A.C., Sadri,

F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI),
vol. 2408, pp. 113–125. Springer, Heidelberg (2002b)

22. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

23. Džeroski, S.: Inductive logic programming in a nutshell. In: Getoor, L., Taskar, B.
(eds.) Statistical Relational Learning, MIT Press, Cambridge, MA (2007)

24. Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, Berlin (2001)
25. Džeroski, S., Todorovski, L., Ljubič, P.: Inductive queries on polynomial equations.

In: Boulicaut, J-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848, pp. 127–154. Springer, Heidelberg
(2006)

26. Fayyad, U., Piatetsky-Shapiro, G., Uthurusamy, R.: Summary from the KDD-2003
panel – “Data Mining: The Next 10 Years”. SIGKDD Explorations 5(2), 191–196
(2003)

27. Friedman, J.H., Fisher, N.I.: Bump hunting in high-dimensional data. Statistics
and Computing 9(2), 123–143 (1999)

28. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: An overview. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthu-
rusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 495–515.
MIT Press, Cambridge, MA (1996)

29. Frawley, W.J., Piatetsky-Shapiro, G., Matheus, C.J.: Knowledge discovery in
databases: An overview. In: Knowledge Discovery in Databases, pp. 1–30.
AAAI/MIT Press, Cambridge

30. Gaertner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1),
49–58 (2003)

Towards a General Framework for Data Mining 299

31. Garofalakis, M., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Mining and Knowledge Discovery 7(2), 187–214 (2003)

32. Getoor, L., Taskar, B. (eds.): Statistical Relational Learning. MIT Press, Cam-
bridge, MA (2007)

33. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. In: Proc. of the 21st
Intl. Conf. on Data Engineering, pp. 341–352. IEEE Computer Society Press, Los
Alamitos (2005)

34. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco, CA (2001)

35. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cam-
bridge, MA (2001)

36. Haussler, D.: Convolution kernels on discrete structures. UC Santa Cruz, Technical
Report UCS-CRL-99-10 (1999)

37. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

38. Johnson, T., Lakshmanan, L.V., Ng, R.: The 3W model and algebra for unified
data mining. In: Proc. of the Intl. Conf. on Very Large Data Bases, pp. 21–32.
Morgan Kaufmann, San Francisco, CA (2000)

39. Kalousis, A., Woznica, A., Hilario, M.: A unifying framework for relational
distance-based learning founded on relational algebra. Technical Report, Computer
Science Department, University of Geneva (2006)

40. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley & Sons, New York (1990)

41. King, R.D., Karwath, A., Clare, A., Dehaspe, L.: The utility of different represen-
tations of protein sequence for predicting functional class. Bioinformatics 17(5),
445–454 (2001)

42. Kloesgen, W.: Data mining tasks and methods: Subgroup discovery: deviation
analysis. In: Kloesgen, W., Zytkow, J.M. (eds.) Handbook of Data Mining and
Knowledge Discovery, pp. 354–361. Oxford University Press, Oxford (2002)

43. Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive Databases in the Relational Model: The Data as
the Bridge. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
124–138. Springer, Heidelberg (2006)

44. Lavrač, N., Kavšek, B., Flach, P.A., Todorovski, L.: Subgroup Discovery with CN2-
SD. Journal of Machine Learning Research 5, 153–188 (2004)

45. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, Chichester (1994)

46. Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Min-
ing Perspective. Kluwer, Dorderecht (1998)

47. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)
48. Lloyd, J.W.: An introduction to deductive database systems. Australian Computer

Journal 15(2), 52–57 (1983)
49. Lloyd, J.W.: Logic for Learning. Springer, Berlin (2003)
50. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)
51. Inductive databases vision: Relational operations on models. Unpublished slides.

In: Presented at the meeting of the cInQ project (December 2001)
52. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge

discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)
53. Michalski, R.S.: Knowledge acquisition through conceptual clustering: A theoret-

ical framework and an algorithm for partitioning data into conjunctive concepts.
Intl. Jrnl. of Policy Analysis and Information Systems 4, 219–244 (1980)

300 S. Džeroski

54. Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203–226 (1982)
55. Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In:

Proc. of The 13th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data
Mining, ACM Press, New York (to appear, 2007)

56. Piatetsky-Shapiro, G., Djeraba, C., Getoor, L., Grossman, R., Feldman, R., Zaki,
M.: What are the grand challenges for data mining? KDD-2006 Panel report.
SIGKDD Explorations 8(2), 70–77 (2006)

57. Ramakrishnan, R., et al.: Data Mining: The Next Generation. In: Ramakrish-
nan, R., Agrawal, R., Freytag, J.-C. (eds.) Perspectives Wshp. – Data Mining:
The Next Generation. Intl. Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2005)

58. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10), 765–780 (2001)

59. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

60. Siebes, A.: Data mining in inductive databases. In: Bonchi, F., Boulicaut, J-F.
(eds.) KDID 2005. LNCS, vol. 3933, pp. 1–23. Springer, Heidelberg (2006)

61. Srinivasan, A., King, R.D.: Feature construction with inductive logic program-
ming: A study of quantitative predictions of biological activity aided by structural
attributes. Knowledge Discovery and Data Mining 3(1), 37–57 (1999)

62. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222–
233. Springer, Heidelberg (2006)

63. Termier, A., Tamada, Y., Imoto, S., Washio, T., Higuchi, T.: From closed tree
mining towards closed DAG mining. In: Proc. of the Intl. Wshp. on Data Mining
and Statistical Science, pp. 1–7 (2006)

64. Thompson, S.: Haskell: The Craft of Functional Programming. Add. Wesley, Read-
ing (1999)

65. Tušar, T.: Design of an Algorithm for Multiobjective Optimization with Differential
Evolution. M.Sc. Thesis. Faculty of Computer and Information Science, University
of Ljubljana, Slovenia (2007)

66. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial
Intelligence Review 18(2), 77–95 (2002)

67. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. 17th
Intl. Conf. on Machine Learning, pp. 1103–1110. Morgan Kaufmann, San Francisco,
CA (2000)

68. Woznica, A., Kalousis, A., Hilario, M.: Kernels on lists and sets over relational
algebra: an application to classification of protein fingerprints. In: Ng, W-K., Kit-
suregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp.
546–551. Springer, Heidelberg (2006)

69. Yang, Q., Wu, X.: 10 Challenging problems in data mining research. Intl. Jrnl. of
Information Technology & Decision Making 5(4), 597–604 (2006)

70. Ženko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi,
F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234–250. Springer,
Heidelberg (2006)

Efficient Mining Under Rich Constraints
Derived from Various Datasets

Arnaud Soulet1, Jǐŕı Kléma1,2, and Bruno Crémilleux1

1 GREYC, Université de Caen
Campus Côte de Nacre

F-14032 Caen Cédex France
{Forename.Surname}@info.unicaen.fr

2 Department of Cybernetics
Czech Technical University, Prague

klema@labe.felk.cvut.cz

Abstract. Mining patterns under many kinds of constraints is a key
point to successfully get new knowledge. In this paper, we propose an
efficient new algorithm Music-dfs which soundly and completely mines
patterns with various constraints from large data and takes into account
external data represented by several heterogeneous datasets. Constraints
are freely built of a large set of primitives and enable to link the informa-
tion scattered in various knowledge sources. Efficiency is achieved thanks
to a new closure operator providing an interval pruning strategy applied
during the depth-first search of a pattern space. A transcriptomic case
study shows the effectiveness and scalability of our approach. It also
demonstrates a way to employ background knowledge, such as free texts
or gene ontologies, in the discovery of meaningful patterns.

Keywords: constraint-based mining, transcriptomic data.

1 Introduction

In current scientific, industrial or business data mining applications, the critical
need is not to generate data, but to derive knowledge from huge and heteroge-
neous datasets produced at high throughput. In order to explore and discover
new highly valuable knowledge it is necessary to develop environments and tools
able to put all this data together. This involves different challenges, like design-
ing efficient tools to tackle a large amount of data and the discovery of patterns
of a potential user’s interest through several datasets. There are various ways
to interconnect the heterogeneous data sources and to express the mutual rela-
tions among the entities they address. Constraints provide a focus on the most
promising knowledge by reducing the number of extracted patterns to those of
a potential interest given by the user. Furthermore, when constraints can be
pushed deep inside the mining algorithm, performance is improved, making the
mining task computationally feasible and resulting in a human-workable output.

This paper addresses the issue of efficient pattern mining from large binary
data under flexible constraints derived from additional heterogeneous datasets

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 223–239, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 A. Soulet, J. Kléma, and B. Crémilleux

synthetizing background knowledge (BK). Large datasets are characterized
mainly by a large number of columns (i.e., items). This characteristic often en-
countered in a lot of domains (e.g., bioinformatics, text mining) represents a
remarkable challenge. Usual algorithms show difficulties in running on this kind
of data due to the exponential search space growth with the number of items.
Known level-wise algorithms commonly fail in mining frequent or constrained
patterns in such data [17]. On top of that, the user often would like to inte-
grate BK in the mining process in order to focus on the most plausible patterns
consistent with pieces of existing knowledge. BK is available in relational and
literature databases, ontological trees and other sources. Nevertheless, mining
in a heterogeneous environment allowing a large set of descriptions at various
levels of detail is highly non-trivial. This paper solves the problem by pushing
user-defined constraints that may stem both from the mined binary data and
the BK summarized in similarity matrices or textual files.

The contribution of this paper is twofold. First we provide a new algorithm
Music-dfs which soundly and completely mines constrained patterns from large
data while taking into account external data (i.e., several heterogeneous datasets).
Except for specific constraints for which tricks like the transposition of data [14, 9]
or the use of the extension [8] can be used, levelwise approaches cannot tackle large
data due to the huge number of candidates. On the contrary, Music-dfs is based
on a depth first search strategy. The key idea is to use a new closure operator en-
abling an efficient interval pruning for various constraints (see Section 3). In [5], the
authors also benefit from intervals to prune the search space, but their approach is
restricted to the conjunction of one monotone constraint and one anti-monotone
constraint.The output ofMusic-dfs is an interval condensed representation: each
pattern satisfying the given constraint appears once in the collection of intervals
only. Second, we provide a generic framework to mine patterns with a large set of
constraints based on several heterogeneous datasets like texts or similarity matri-
ces. It is a way to take into account the BK. Section 4 depicts a transcriptomic
case study. The biological demands require to mine the expression data with con-
straints concerning complex relations represented by free texts and gene ontolo-
gies. The discovered patterns are likely to encompass interesting and interpretable
knowledge.

This paper differs from our work in [20] for a double reason. First, the frame-
work is extended to external data. Second, Music-dfs is deeply different from
the prototype used in [20]: Music-dfs integrates primitives to tackle external
data and thanks to its strategy to prune the search space (new interval pruning
based on prefix-free patterns, see Section 3), it is able to mine large data. Sec-
tion 4 demonstrates the practical effectiveness of Music-dfs in a transcriptomic
case study and shows that other prototypes (including the prototype presented
in [20]) fail. To the best of our knowledge, there is no other constraint-based tool
to efficiently discover patterns from large data under a broad set of constraints
linking the information distributed in various knowledge sources.

This paper is organized as follows. Section 2 introduces our framework to mine
patterns satisfying constraints defined over several kinds of datasets. In Section 3,

Efficient Mining Under Rich Constraints Derived from Various Datasets 225

we present the theoretical essentials that underlie the efficiency of Music-dfs

and we provide its main features. Experiments showing the efficiency of Music-

dfs and the cross-fertilization between several sources of genomic information
are given in Section 4.

2 Defining Constraints on Several Datasets

2.1 Integrating Background Knowledge Within Constraints

Usual data-mining tasks rarely deal with a single dataset. Often it is necessary
to connect knowledge scattered in several heterogeneous sources. In constraint-
based mining, the constraints should effectively link different datasets and knowl-
edge types. In the domain of genomics, there is a natural need to derive con-
straints both from expression data and descriptions of the genes and/or biological
situations under consideration. Such constraints require to tackle various data
types - transcriptome data and background knowledge may be stored in the
boolean, numeric, symbolic or textual format.

Let us consider the transcriptomic mining context given in Figure 1. Firstly,
the involved data include a transcriptome dataset also called internal data. The
dataset is in the transactional format - the items correspond to genes and the
transactions represent biological situations. The occurrence of an item in a trans-
action signifies over-expression of the corresponding gene in the corresponding
biological situation (genes A, E and F are over-expressed in situation s1). Sec-
ondly, external data – a similarity matrix and textual resources – are considered.
They summarize background knowledge that contains various information on
items (i.e., genes). This knowledge is transformed into a similarity matrix and
a set of texts. Each field of the triangular matrix sij ∈ [0, 1] gives a similarity
measure between the items i and j. The textual dataset provides a description of
genes. Each row of this dataset contains a list of phrases characterizing the given
gene (details are given in Section 4.1). The mined patterns are composed of items
of the internal data, the corresponding transactions are usually also noted (and
possibly analyzed). The external data are used to further specify constraints in
order to focus on meaningful patterns. In other words, the constraints may stem
from all the datasets.

Table 1 provides the meaning of the primitive constraints applied in this text.
The meaning of the primitives is also illustrated by their real values taken from
the example in Figure 1. As primitives can address different datasets, the dataset
makes another parameter of the primitive (for clarity not shown in Table 1).

A real example of the compound constraint q(X) is given in Figure 1. The first
part (a) of q addresses the internal data and means that the biologist is inter-
ested in patterns having a satisfactory size – a minimal area. Indeed, area(X) =
freq(X)×length(X) is the product of the frequency of X and its length and means
that the pattern must cover a minimum number of situations and contain a mini-
mum number of genes. The other parts deal with the external data: (b) is used to
discard ribosomal patterns (one gene exception per pattern is allowed), (c) avoids

226 A. Soulet, J. Kléma, and B. Crémilleux

Internal data External data

Boolean matrix D

Situations Genes
s1 A E F
s2 B C D
s3 A B C D E F
s4 A B C D

Similarity matrix
A B C D E F

A .07 ? ? .2 0
B .06 ? ? 0
C .07 .05 .04
D .03 .1
E ?

Textual data
A ’metal ion binding’ ’transcription factor’

B ’serine-type peptidase activity’ ’proteolysis’

C ’DNA binding’ ’metal ion binding’

D ’ATP binding’ ’nucleotide binding’

E ’proteolysis’

F ’ATP binding’ ’metal ion binding’

freq, length,... regexpsumsim, svmsim,...

q(X) ≡ freq(X) × length(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, TEXT terms)) ≤ 1 (b)
∧ svsim(X, TEXT)/(svsim(X, TEXT) + mvsim(X, TEXT)) ≥ 0.7 (c)
∧ sumsim(X, TEXT)/svsim(X, TEXT) ≥ 0.025 (d)

Fig. 1. Example of a toy (transcriptomic) mining context and a constraint

Table 1. Examples of primitives and their values in the data mining context of Figure 1.
Let us note that item pairs of the pattern ABC are (A,B), (A,C) and (B, C).

Primitives Values
Boolean matrix

freq(X) frequency of X freq(ABC) = 2
length(X) length of X length(ABC) = 3

Textual data
regexp(X, RE) items of X whose associated phrases

match the regular expression RE
regexp(ABC,′ ∗ ion ∗′)
= AC

Similarity matrix
sumsim(X) the similarity sum over the set of item

pairs of X
sumsim(ABC) = 0.13

svsim(X) the number of item pairs in X for which
a similarity value is recorded

svsim(ABC) = 2

mvsim(X) the number of item pairs in X for which
a similarity value is missing

mvsim(ABC) = 1

insim(X, min, max) the number of item pairs of X whose
similarity lies between min and max

insim(ABC, 0.07, 1) =
1

patterns with prevailing items of an unknown function and (d) is to ensure a min-
imal average gene similarity. Section 4 provides another constraint q′.

Let us generalize the previous informal description. Let I be a set of items.
A pattern is a non-empty subset of I. D is a transactional dataset (or boolean
matrix) composed of rows usually called transactions. A pattern X is present
in D whenever it is included in one transaction of D at least. The constraint-
based mining task aims to discover all the patterns present in D and satisfying
a constraint q. Unfortunately, real constraints adressing several datasets (the
constraint q, for example) are difficult to mine because they have no suitable
property as monotonicity [12] or convertibility [16].

Efficient Mining Under Rich Constraints Derived from Various Datasets 227

2.2 Primitive-Based Constraints

This section presents our framework previously defined in [20] (and the declar-
ative language) enabling the user to set compound and meaningful constraints.
This framework naturally integrates primitives adressing external data (e.g.,
sumsim or regexp). Furthermore, in our framework constraints are freely built
of a large set of primitives. Beyond the primitives mentioned earlier there are
primitives such as {∧, ∨, ¬, <, ≤, ⊂, ⊆, +, −, ×, /, sum, max, min,∪, ∩, \}. The
compound constraints of this framework are called primitive-based constraints.
There are no formal properties required on the final constraints. The only prop-
erty which is required on the primitives to belong to our framework is a property
of monotonicity according to each variable of a primitive (when the others re-
main constant) [20]. We have already shown that the whole set of primitive-based
constraints constitutes a super-class of monotone, anti-monotone, succinct and
convertible constraints [19]. Consequently, the proposed framework provides a
flexible and rich constraint (query) language. The user can iteratively develop
complex constraints integrating various knowledge types.

Let us recall that the primitives and the constraints defined in [20] only address
one boolean data set. Current constraints can consider properties taken from a
wide scale of dataset types. In addition to the similarity and textual datasets,
the framework also enables to access numerical datasets having items in rows
and numerical attributes in columns. It implements the primitive X.val which
gives the list of values of the attribute named val for the items contained in the
pattern X .

We give below other examples of constraints belonging to primitive-based
constraints and highlighting the generality of our framework:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

freq(X) × length(X) ≥ 6 minimal area (nothing)
(min(X.val) + max(X.val))/2≤50 maximal mean (loose anti-monotone [2])
sum(X.val)/length(X) ≥ 25 minimal average (convertible [16])
AE ⊆ X having AE (monotone [12])
freq(X) ≥ 2 minimal frequency (anti-monotone [1])

A previous work [21] approximates primitive-based constraints by one anti-
monotone and one monotone constraint which can be pushed by DualMiner [5].
The next section describes an alternative solution in order to benefit from equiva-
lence classes. This way is often more efficient because it avoids the enumeration of
all the patterns which compose a particularly huge collection in the case of wide
datasets. Besides, in context of wide datasets, previous algorithm Music [20]
is ineffective due to the breadth-first search approach (see experiments in Sec-
tion 4.2). Then, Section 3 presents a new algorithm dedicated to primitive-based
constraints in wide datasets.

3 Music-dfs Tool

This section presents the Music-dfs tool (Mining with a User-SpecifIed
Constraint,Depth-FirstSearchapproach)whichbenefits fromtheprimitive-based

228 A. Soulet, J. Kléma, and B. Crémilleux

constraints presented in the previous section. Efficiency is achieved thanks to the
exploitation of the primitive and constraint properties. We start by giving the key
idea of the safe pruning process based on intervals.

3.1 Main Features of the Interval Pruning

The pruning process performed by Music-dfs is based on the key idea to exploit
properties of the monotonicity of the primitives (see Section 2) on the bounds
of intervals to prune them. This new kind of pruning is called interval pruning.
Given two patterns X ⊆ Y , the interval [X, Y], also called sub-algebra or sub-
lattice, corresponds to the set {Z ⊆ I | X ⊆ Z ⊆ Y }. Figure 2 depicts an
example with the interval [AB, ABCD] and the values of the primitives sumsim
and svsim.

AB

ABCD

ABDABC

0.07/1

?/?

0.2/3

?/?

sumsim(AB)/svsim(AB)

Fig. 2. Illustration of the interval pruning

Assume the constraint sumsim(X)/svsim(X) ≥ 0.25. As the values associ-
ated to the similarities are positive, sumsim(X) is an increasing function ac-
cording X . Thus sumsim(ABCD) is the highest sumsim value for the pat-
terns in [AB, ABCD]. Similarly, all the patterns of this interval have a higher
svsim(X) value than svsim(AB). Thereby, each pattern in [AB, ABCD] has its
average similarity lower or equal than sumsim(ABCD)/svsim(AB) = 0.2/1.
As this fraction does not exceed 0.25, no pattern of [AB, ABCD] can satisfy
the constraint and this interval can be pruned. We say that this pruning is
negative because no pattern satisfies the constraint. In the same way, if the
values of proper combinations of the primitives on the bounds of an interval
[X, Y] show that all the patterns in [X, Y] satisfy the constraint, then [X, Y]
is also pruned and this pruning is named positive. For instance, assuming that
sumsim(AB)/svsim(ABCD) ≥ 0.02, then all the patterns in [AB, ABCD] sat-
isfy the constraint.

In a more formal way, this approach is performed by two interval pruning op-
erators ��� and
�� introduced in [20] (but only for primitives handling boolean
data). The main idea of these operators is to recursively decompose the con-
straint to benefit from the monotone properties of the primitives and then to
safely negatively or positively prune intervals as depicted above. This process is
straightforwardly extended to all the primitives, no matter what kind of dataset
they regard. This highlights the generic properties of our framework, as well as
the feature of pushing all the parts of the constraint q into the mining step.
Table 2 gives the description of the lower and upper bounding operators corre-
sponding to the previous examples of primitives. In Table 2, the general notation

Efficient Mining Under Rich Constraints Derived from Various Datasets 229

Table 2. The definitions of ��� and 	�
 with particular primitives

e ∈ Ei Primitive(s) �e�〈X, Y 〉 	e
〈X, Y 〉
e1θe2 θ ∈ {∧,∨, +,×,∪,∩} �e1�〈X, Y 〉θ�e2�〈X, Y 〉 	e1
〈X, Y 〉θ	e2
〈X, Y 〉
e1θe2 θ ∈ {>,≥,⊃,⊇,−, /, \} �e1�〈X, Y 〉θ	e2
〈X, Y 〉 	e1
〈X, Y 〉θ�e2�〈X, Y 〉
θe1 θ ∈ {¬, freq, } θ	e1
〈X, Y 〉 θ�e1�〈X, Y 〉

θ(e1.val) θ ∈ {min} θ(e1
〈X, Y 〉.val) θ(�e1�〈X, Y 〉.val)
θ(e1) θ ∈ {length} θ�e1�〈X, Y 〉 θ	e1
〈X, Y 〉

θ(e1.val) θ ∈ {sum, max} θ(�e1�〈X, Y 〉.val) θ(e1
〈X, Y 〉.val)
θ(e1) θ ∈ {sumsim, svsim, θ(�e1�〈X, Y 〉) θ(e1
〈X, Y 〉)

mvsim}
θ(e1, m, M) θ ∈ {insim} θ(�e1�〈X, Y 〉, m, M) θ(e1
〈X, Y 〉, m, M)
θ(e1, RE) θ ∈ {regexp} θ(�e1�〈X, Y 〉, RE) θ(e1
〈X, Y 〉, RE)

c ∈ Ei - c c
X ∈ LI - X Y

Ei designates one space among B, �+ or LI = 2I and Ei the associated expres-
sions (for instance, the set of constraints Q for the booleans B).

The next section indicates how the intervals are built.

3.2 Interval Condensed Representation

As indicated in Section 1, levelwise algorithms are not suitable to mine datasets
with a large number of items due to the huge number of candidates growing
exponentially according to the number of items. We adopt a depth-first search
strategy instead of enumerating the candidate patterns and avoiding subsequent
memory failures. We introduce a new and specific closure operator based on a
prefix ordering relation �. We show that this closure operator is central to the
interval condensed representation (Theorem 1) and enables efficient pruning of
the search space.

The prefix ordering relation � starts from an arbitrary order over items A <
B < C < . . . as done in [16]. We say that an ordered pattern X = x1x2 . . . xn

(i.e., ∀i < j, we have xi < xj) is a prefix of an ordered pattern Y = y1y2 . . . ym

and note X � Y iff we have n ≤ m and ∀i ∈ {1, . . . , n}, xi = yi. For instance, the
prefixes of ABCD are the patterns A, AB, ABC and ABCD. On the contrary,
AD �� ADC because the ordered form of ADC corresponds to ACD, and AD
is not a prefix of ACD.

Definition 1 (Prefix-closure). The prefix-closure of a pattern X, denoted
cl�(X), is the pattern {a ∈ I|∃Y ⊆ X such that Y � Y ∪ {a} and freq(Y a) =
freq(Y)}.

The pattern cl�(X) gathers together the items occurring in all the transactions
containing Y ⊆ X such that Y is a prefix of Y ∪{a}. The fixed points of operator
cl� are named the prefix-closed patterns. Let us illustrate this definition on our
running example (cf. Figure 1). The pattern ABC is not a prefix-closed pattern

230 A. Soulet, J. Kléma, and B. Crémilleux

because ABC is a prefix of ABCD and freq(ABCD) = freq(ABC). On the
contrary, ABCD is prefix-closed. We straightforwardly deduce that any pattern
and its prefix-closure have the same frequency. For instance, as cl�(ABC) =
ABCD, freq(ABC) = freq(ABCD) = 2.

A closure operator is a function satisfying three main properties: extensiv-
ity, isotony, and idempotency [22]. Next property shows that cl� is a closure
operator:

Property 1 (Closure operator). The prefix-closure operator cl� is a closure
operator.

Proof. Extensivity: Let X be a pattern and a ∈ X . We have {a} ⊆ X and
obviously, a � a and freq(a) = freq(a). Then, we obtain that a ∈ cl�(X) and
cl� is extensive. Isotony: Let X ⊆ Y and a ∈ cl�(X). There exists Z ⊆ X
such that Z � Za and freq(Za) = freq(Z). As we also have Z ⊆ Y (and
freq(Za) = freq(Z)), we obtain that a ∈ cl�(Y) and conclude that cl�(X) ⊆
cl�(Y). Idempotency: Let X be a pattern. Let a ∈ cl�(cl�(X)). There exists
Z ⊆ cl�(X) such that freq(Za) = freq(Z) with Z � Za. As Z ⊆ cl�(X), for
all ai ∈ Z, there is Zi ⊆ X such that freq(Ziai) = freq(Zi) with Zi � Ziai. We
have

⋃
i Zi �

⋃
i Zia and freq(

⋃
i Zi) = freq(

⋃
i Zia) (because freq(

⋃
i Zi) =

freq(Z)). As the pattern
⋃

i Zi ⊆ X , a belongs to cl�(X) and then, cl� is
idempotent. ��
Property 1 is important because it enables to infer results requiring the properties
of a closure operator. First, this new prefix-closure operator designs equivalence
classes through the lattice of patterns. More precisely, two patterns X and Y
are equivalent iff they have the same prefix-closure (i.e., cl�(X) = cl�(Y)). Of
course, as cl� is idempotent, the maximal pattern (w.r.t. ⊆) of a given equiva-
lence class of X corresponds to the prefix-closed pattern cl�(X). Conversely, we
call prefix-free patterns the minimal patterns (w.r.t. ⊆) of equivalence classes.
Second, closure properties enable to prove that the prefix-freeness is an anti-
monotone constraint (see Property 2 in the next section).

Contrary to the equivalence classes defined by the Galois closure [4, 15], equiv-
alence classes provided by cl� have a unique prefix-free pattern. This allows to
prove that a pattern belongs to one interval only and provides the important
result on the interval condensed representation (cf. Theorem 1). This result can-
not be achieved without the new closure operator. Lemma 1 indicates that any
equivalence class has a unique prefix-free pattern:

Lemma 1 (Prefix-freeness operator). Let X be a pattern, there exists an
unique minimal pattern (w.r.t. ⊆), denoted fr�(X), in its equivalence class.

Proof. Supposing that X and Y are two minimal patterns of the same equiv-
alence class: we have cl�(X) = cl�(Y). As X and Y are different, there exists
a ∈ X such that a �∈ Y and a ≤ min≤{b ∈ Y \X} (or we swap X and Y). As X is
minimal, no pattern Z ⊆ X ∩ Y satisfies that Z � Za and freq(Za) = freq(Z).
Besides, for all Z such that Y ∩ X ⊂ Z ⊂ Y , we have Z �� Za because a is
smaller than any item of Y \X . So, a does not belong to cl�(Y) and then, we

Efficient Mining Under Rich Constraints Derived from Various Datasets 231

obtain that cl�(X) �= cl�(Y). Thus, we conclude that any equivalence class
exactly contains one prefix-free pattern. ��
Lemma 1 means that the operator fr� links a pattern X to the minimal pat-
tern of its equivalence class, i.e. fr�(X). X is prefix-free iff fr�(X) = X . Any
equivalence class corresponds to an interval delimited by one prefix-free pattern
and its prefix-closed pattern (i.e., [fr�(X), cl�(X)]). For example, AB (resp.
ABCD) is the prefix-free (resp. prefix-closed) pattern of the equivalence class
[AB, ABCD].

Now let us show that the whole collection of the intervals formed by all the
prefix-free patterns and their prefix-closed patterns provides an interval con-
densed representation where each pattern X is present only once in the set of
intervals.

Theorem 1 (Interval condensed representation). Each pattern X present
in the dataset is included in the interval [fr�(X), cl�(X)]. Besides, the number
of these intervals is less than or equal to the number of patterns.

Proof. Let X be a pattern and R = {[fr�(X), cl�(X)]|freq(X) ≥ 1}. Lemma 1
proves that X is exactly contained in [fr�(X), cl�(X)]. The latter is unique.
As X belongs to R by definition, we conclude that R is a representation of any
pattern. Now, the extensivity and the idempotency of prefix-closure operator cl�
ensure that |R| ≤ |{X ⊆ I such that freq(X) ≥ 1}|. This proves Theorem 1. ��
In the worst case the size of the condensed representation is the number of pat-
terns (each pattern is its own prefix-free and its own prefix-closed pattern). But,
in practice, the number of intervals is low compared to the number of patterns
(in our running example, only 23 intervals sum up the 63 present patterns).

The condensed representation highlighted by Theorem 1 differs from the con-
densed representations of frequent patterns based on the Galois closure [4, 15]:
in this last case, intervals are described by a free (or key) pattern and its Ga-
lois closure and a frequent pattern may appear in several intervals. We claim
that the presence of a pattern in a single interval brings meaningful advantages:
the mining is more efficient because each pattern is tested at most once. This
property improves the synthesis of the output of the mining process and facili-
tates its analysis by the end-user. The next section shows that by combining this
condensed representation and the interval pruning operators, we get an interval
condensed representation of primitive-based constrained patterns.

3.3 Mining Primitive-Based Constraints in Large Datasets

When running, Music-dfs enumerates all the intervals sorted in a lexicographic
order and checks whether they can be pruned as proposed in Section 3.1. The
enumeration benefits from the anti-monotonicity property of the prefix-freeness
(cf. Property 2). The memory requirements grow only linearly with the number
of items and the number of transactions.

Property 2. The prefix-freeness is an anti-monotone constraint (w.r.t. ⊆).

232 A. Soulet, J. Kléma, and B. Crémilleux

The proof of Property 2 is very similar to those of the usual freeness [4, 15]:

Proof. Let X be a pattern which is not a prefix-free pattern. So, there is Z ⊂ X
such that cl�(Z) = cl�(X). Let Y be a pattern with X ⊆ Y . First, we observe
that cl�(Y) = cl�(X∪(Y \X)) and cl�(X∪(Y \X)) = cl�(cl�(X)∪cl�(Y \X))
(usual property of closure operators). As cl�(Z) = cl�(X), we obtain that
cl�(cl�(X) ∪ cl�(Y \X)) = cl�(cl�(Z) ∪ cl�(Y \X)) and then, cl�(cl�(Z) ∪
cl�(Y \X)) = cl�(Z ∪(Y \X)). Finally, as Z is a proper subset of X , the pattern
Z ∪ (Y \X) is a proper subset of Y . Thus, we conclude that Y is not prefix-free.

��
In other words, the anti-monotonicity ensures us that once we know that a
pattern is not prefix-free, any superset of this pattern is not prefix-free any-
more [1, 12]. Algorithms 1 and 2 give the sketch of Music-dfs.

Algorithm 1. GlobalScan

Input: A prefix-pattern X, a primitive based constraint q and a dataset D
Output: Interval condensed representation of constrained patterns having X as prefix
1: if ¬P refixF ree(X) then return ∅ // anti-monotone pruning
2: return LocalScan([X, cl�(X)], q,D) // local mining

∪
⋃
{GlobalScan(Xa, q,D)|a ∈ I ∧ a ≥ max≤ X} // recursive enumeration

Algorithm 2. LocalScan

Input: An interval [X, Y], a primitive based constraint q and a dataset D
Output: Interval condensed representation of constrained patterns of [X, Y]
1: if �q�〈X, Y 〉 then return {[X, Y]} // positive interval pruning
2: if ¬	q
〈X, Y 〉 then return ∅ // negative interval pruning
3: if q(X) then return [X, X] ∪

⋃
{LocalScan([Xa, cl�(Xa)], q,D)|a ∈ Y \X}

4: return
⋃
{LocalScan([Xa, cl�(Xa)], q,D)|a ∈ Y \X} // recursive division

Music-dfs scans the whole search space by running GlobalScan on each
item of I. GlobalScan recursively performs a depth-first search and stops
whenever a pattern is not prefix-free (Line 1, GlobalScan). For each prefix-
free pattern X , it computes its prefix-closed pattern and builds [X, cl�(X)] (Line
2, GlobalScan). Then, LocalScan tests this interval by using the operators
��� and
�� informally presented in Section 3.1. If the interval pruning can be
performed, the interval is selected (positive pruning, Line 1 from LocalScan)
or rejected (negative pruning, Line 2 from LocalScan). Otherwise, the inter-
val is explored by recursively dividing it (Line 3 or 4 from LocalScan). The
decomposition of the intervals is done so that each pattern is considered only
once. The next theorem provides the correctness of Music-dfs:

Theorem 2 (Correctness). Music-dfs mines soundly and completely all the
patterns satisfying q by means of intervals.

Efficient Mining Under Rich Constraints Derived from Various Datasets 233

Proof. Property 2 ensures us that Music-dfs enumerates all the interval con-
densed representation. Thereby, any pattern is considered (Theorem 1) individ-
ually or globally with the safe pruning stemmed from to the interval pruning
(see Section 3.1). ��
An additional anti-monotone constraint can be pushed in conjunction of prefix-
freeness (Line 1, GlobalScan). This constraint (e.g., minimal frequency
constraint) optimizes the extraction by reducing more the search space. Such
anti-monotone constraint is automatically deduced from the original constraint
q in [21].

4 Mining Constrained Patterns from Transcriptomic
Data

This section depicts the effectiveness of our approach on a transcriptomic case
study. We experimentally show two results. First, the usefulness of the interval
pruning strategy of Music-dfs (the other prototypes fail for such large data, cf.
Section 4.2). Second, BK enables to automatically focus on the most plausible
candidate patterns (cf. Section 4.3). This underlines the need to mine constrained
patterns by taking into account external data. If not mentioned otherwise, the
experiments are run on the genomic data described in Section 4.1.

4.1 Gene Expression Data and Background Knowledge

In this experiment we deal with the SAGE (Serial Analysis of Gene Expres-
sion) [24] human expression data downloaded from the NCBI website
(www.ncbi.nlm.nih.gov). The final binary dataset contains 11082 genes tested
in 207 biological situations, each gene can be either over-expressed in the given
situation or not. The biological details regarding gene selection, mapping and
binarization can be seen in [10].

BK available in literature databases, biological ontologies and other sources
is used to help to focus automatically on the most plausible candidate patterns.
We have experimented with the gene ontology (GO) and free-text data. First,
the available gene databases were automatically searched and the records for
each gene were built (around two thirds of genes have non-empty records, there
is no information available for the rest of them). Then, various similarity met-
rics among the gene records were proposed and calculated. More precisely, the
gene records were converted into the vector space model [18]. A single gene cor-
responds to a single vector, whose components correspond to a frequency of a
single term from the vocabulary. The similarity between genes was defined as the
cosine of the angle between the corresponding term-frequency inverse-document-
frequency (TFIDF) [18] vectors. TFIDF representation statistically measures
how important a term is to a gene record. Moreover, the gene records were also
simplified to get a condensed textual description. More details on text mining,
gene ontologies and similarities are in [10].

www.ncbi.nlm.nih.gov

234 A. Soulet, J. Kléma, and B. Crémilleux

4.2 Efficiency of Music-dfs

Dealing with large datasets Let us show the necessity of the depth-first search and
usefulness of the interval pruning strategy of Music-dfs. All the experiments
were conducted on a 2.2 GHz Xeon processor with 3GB RAM running Linux.

The first experiment highlights the importance of the depth-first search. We
consider the constraint addressing patterns having an area ≥ 70 (the minimal
area constraint has been introduced in Section 2) and appearing at least 4 times
in the dataset. Music-dfs only spends 7sec to extract 212 constrained patterns. In
comparison, for the same binary dataset, the levelwise approach1 presented in [20]
fails after 963sec whenever the dataset contains more than 3500 genes. Indeed, the
candidate patterns necessary to build the output do not fit in memory.

Comparison with prototypes coming from the FIMI repository
(fimi.cs.helsinki.fi) shows that efficient implementations like kDCI [13],
LCM (ver. 2) [23], COFI [25] or Borgelt’s Apriori [3] fail with this binary
dataset to mine frequent patterns occuring at least 4 times. Borgelt’s Eclat [3]
and Afopt [11] which are depth-first approaches, are able to mine with
this frequency constraint. But they require a post-processing step for other
constraints than the frequency (e.g., area, similarity-based constraints).

The power of Music-dfs can also be illustrated on any large benchmark
dataset (i.e., containing many transactions). Let us consider the mushroom
dataset taken from FIMI repository . Figure 3 presents the running times for
the Music-dfs, Music, Apriori and Eclat algorithms with the constraints
freq(X) × length(X) ≥ α (on the left) and sum(X.val)/length(X) ≥ α (on
the right). The latter is applied on item values (noted val) randomly gen-
erated within the range [0, 100]. An additional minimal frequency constraint
freq(X) ≥ 100 is used in order to make running of Apriori and Eclat feasible.

As Apriori and Eclat do not push the minimal area/average constraints
into the mining, they require a post-processing step to select the right patterns

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2000 4000 6000 8000 10000

T
im

e
(s

)

Minimal area

Mushroom : minimal area constraint

Music-dfs
Music
Eclat

Apriori

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100

T
im

e
(s

)

Minimal average

Mushroom : minimal average constraint

Music-dfs
Music
Eclat

Apriori

Fig. 3. Runtime performances with minimal area/average constraint on mushroom

1 We do not use external data because this version does not deal with external data.

fimi.cs.helsinki.fi

Efficient Mining Under Rich Constraints Derived from Various Datasets 235

with respect to these constraints. Thus their curves (cf. Figure 3) do not depend
on minimal area/average threshold α and are flat. Let us note that we neglect the
time of the post-processing step therefore the total time spent by these methods is
supposed to be even higher than shown. We observe that Music-dfs clearly out-
performs Music and Apriori. Moreover, Music-dfs is often more efficient than
Eclat as it benefits from the constraint. The experimental study in [19] confirms
that Music-dfs is efficient with various constraints and various datasets.

Impact of interval pruning The next experiment shows the great role of the inter-
val pruning strategy. For this purpose, we compare Music-dfs with its modifica-
tion that does not prune. The modification, denoted Music-dfs-filter, mines
all the patterns that satisfy the frequency threshold first, the other primitives
are applied in the post-processing step. We use two typical constraints needed
in the genomic domain and requiring the external data. These constraints and
the time comparison between Music-dfs and Music-dfs-filter are given in
Figure 4. The results show that post-processing is feasible until the frequency
threshold generates reasonable pattern sets. For lower frequency thresholds, the
number of patterns explodes and large intervals to be pruned appear. The in-
terval pruning strategy decreases runtime and scales up much better than the
comparative version without interval pruning and Music-dfs becomes in the
order of magnitude faster.

 1

 10

 100

 1000

 10000

 4 5 6 7

tim
e[

s]

frequency threshold

Music-dfs
Music-dfs-filter

 1

 10

 100

 1000

 10000

 100000

 4 5 6 7

tim
e[

s]

frequency threshold

Music-dfs
Music-dfs-filter

Fig. 4. Efficiency of interval pruningwith decreasing frequency threshold. The left image
deals with the constraint freq(X) ≥ thres∧ lenght(X) ≥ 4∧sumsim(X)/svsim(X) ≥
0.9 ∧ svsim(X)/(svsim(X) + mvsim(X)) ≥ 0.9. The right image deals with the con-
straint freq(X) ≥ thres ∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) = 0.

4.3 Use of Background Knowledge to Mine Plausible Patterns

This transcriptomic case study demonstrates that constraints coming from the
BK can reduce the number of patterns, they can express various kinds of interest
and the patterns that tend to reappear are likely to be recognized as interesting

236 A. Soulet, J. Kléma, and B. Crémilleux

by an expert. One of the goals of any pattern is to generalize the individual
gene synexpressions observed in the individual situations. Although it seems
that biologists focus on individual biological situations, they follow very similar
generalization goals. The most valuable knowledge is extracted from the patterns
that concern genes with interesting common features (e.g., process, function,
location, disease) whose synexpression is observed in a homogeneous biological
context (i.e., in a number of analogous biological situations). An example of this
context is the cluster of medulloblastoma SAGE libraries discovered in one of the
constrained patterns (see the end of this section). It is obvious that to get such
patterns and to pursue the goals mentioned above, a tool dealing with external
data is needed.

Let us consider all the patterns having a satisfactory size which is translated
by the constraint area ≥ 202. We get nearly half a million different patterns
that are joined into 37852 intervals. Although the intervals prove to provide a
good condensation, the manual search through this set is obviously infeasible as
the interpretation of patterns is not trivial and asks for frequent consultations
with medical databases. The biologists prefer sets with tens of patterns/intervals
only.

Increasing the threshold of the area constraint to get a reasonable number of
patterns is rather counter-productive. The constraint area ≥ 75 led to a small
but uniform set of 56 patterns that was flooded by the ribosomal proteins which
generally represent the most frequent genes in the dataset. Biologists rated these
patterns as valid but uninteresting.

The most valuable patterns expected by biologists – denoted as meaningful or
plausible patterns – have non-trivial size containing genes and situations whose
characteristics can be generalized, connected, interpreted and thus transformed
into knowledge. To get such patterns, constraints based on the external data have
to be added to the minimal area constraint just like in the constraint q given
in Section 2. It joins the minimal area constraint with background constraints
coming from the NCBI textual resources (gene summaries and adjoined PubMed
abstracts). There are 46671 patterns satisfying the minimal area constraint (the
part (a) of the constraint q), but only 9 satisfy q. This shows the efficiency of
reduction of patterns brought by the BK.

A cross-fertilization with other external data is obviously favourable. So, we
use the constraint q′ which is similar to q, except that the functional Gene
Ontology is used instead of NCBI textual resources and a similarity constraint
is added (part (e) of q′).

q′(X) ≡ area(X) ≥ 24 (a)
∧ length(regexp(X,′ ∗ribosom∗′, GO terms)) ≤ 1 (b)
∧ svsim(X, GO)/(svsim(X, GO) + mvsim(X,GO)) ≥ 0.7 (c)
∧ sumsim(X,GO)/svsim(X, GO) ≥ 0.025 (d)
∧ insim(X, 0.5, 1, GO)/svsim(X,GO) ≥ 0.6 (e)

2 This threshold has been settled by statistical analysis of random datasets having the
same properties as the original SAGE data. First spurious patterns start to appear
for this threshold area.

Efficient Mining Under Rich Constraints Derived from Various Datasets 237

Only 2 patterns satisfy q′. A very interesting observation is that the pattern3

that was identified by the expert as one of the “nuggets” provided by q is also
selected by q′. This pattern can be verbally characterized as follows: it consists
of 4 genes that are over-expressed in 6 biological situations, it contains at most
one ribosomal gene, the genes share a lot of common terms in their descriptions
as well as they functionally overlap, at least 3 of the genes are known (have
a non-empty record) and all of the biological situations are medulloblastomas
which are very aggressive brain tumors in children. The constraints q and q′

demonstrate two different ways to reach a compact and meaningful output that
can be easily human surveyed.

5 Conclusion

Knowledge discovery from a large binary dataset supported by heterogeneous
BK is an important task. We have proposed a generic framework to mine pat-
terns with a large set of constraints linking the information scattered in various
knowledge sources. We have presented an efficient new algorithm Music-dfs

which soundly and completely mines such constrained patterns. Effectiveness
comes from an interval pruning strategy based on prefix free patterns. To the
best of our knowledge, there is no other constraint-based tool able to solve such
constraint-based tasks.

The transcriptomic case study demonstrates that our approach can handle
large datasets. It also shows practical utility of the flexible framework integrating
heterogeneous knowledge sources. The language of primitives applied to a wide
spectrum of transcriptomic data results in constraints formalizing a viable notion
of interestingness.

Acknowledgements. The authors thank the CGMC Laboratory (CNRS UMR
5534, Lyon) for providing the gene expression database and many valuable com-
ments. This work has been partially funded by the ACI “masse de données”
(French Ministry of research), Bingo project (MD 46, 2004-07).

References

[1] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pp. 432–444 (1994)

[2] Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining.
In: Ho et al. [7] pp. 114–124

[3] Borgelt, C.: Efficient implementations of Apriori and Eclat. In: Goethals, Zaki [6]
[4] Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation

of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal 7(1), 5–22 (2003)

3 The pattern consists of 4 genes KHDRBS1 NONO TOP2B FMR1 over-expressed in
6 biological situations BM P019 BM P494 BM P608 BM P301 BM H275 BM H876.
BM stands for brain medulloblastoma.

238 A. Soulet, J. Kléma, and B. Crémilleux

[5] Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: A dual-pruning al-
gorithm for itemsets with constraints. Data Min. Knowl. Discov. 7(3), 241–272
(2003)

[6] Goethals, B., Zaki, M.J. (eds.): FIMI ’03, Frequent Itemset Mining Implemen-
tations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining
Implementations, 19 December 2003, Melbourne, Florida, USA, CEUR Workshop
Proceedings, vol. 90 (2003) CEUR-WS.org

[7] Ho, T.-B., Cheung, D., Liu, H. (eds.): Advances in Knowledge Discovery and Data
Mining, PAKDD 2005. LNCS (LNAI), vol. 3518. Springer, Heidelberg (2005)

[8] Hébert, C., Crémilleux, B.: Mining frequent δ-free patterns in large databases. In:
Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735,
pp. 124–136. Springer, Heidelberg (2005)

[9] Jeudy, B., Rioult, F.: Database transposition for constrained (closed) pattern
mining. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 89–
107. Springer, Heidelberg (2005)

[10] Kléma, J., Soulet, A., Crémilleux, B., Blachon, S., Gandrillon, O.: Mining plau-
sible patterns from genomic data. In: Lee, D., Nutter, B., Antani, S., Mitra, S.,
Archibald, J. (eds.) CBMS 2006, the 19th IEEE International Symposium on
Computer-Based Medical Systems, Salt Lake City, Utah, pp. 183–188. IEEE Com-
puter Society Press, Los Alamitos (2006)

[11] Liu, G., Lu, H., Yu, J.X., Wei, W., Xiao, X.: AFOPT: An efficient implementation
of pattern growth approach. In: Goethals, Zaki [6]

[12] Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

[13] Orlando, S., Lucchese, C., Palmerini, P., Perego, R., Silvestri, F.: kDCI: a multi-
strategy algorithm for mining frequent sets. In: Goethals, Zaki [6]

[14] Pan, F., Cong, G., Tung, A.K.H., Yang, Y., Zaki, M.J.: CARPENTER: find-
ing closed patterns in long biological datasets. In: Proceedings of the 9th ACM
SIGKDD international conference on Knowledge discovery and data mining
(KDD’03), Washington, DC, USA, pp. 637–642. ACM Press, New York (2003)

[15] Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

[16] Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible
constraints. In: ICDE, pp. 433–442. IEEE Computer Society, Los Alamitos (2001)

[17] Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut,
J.-F.: Mining concepts from large sage gene expression matrices. In: Boulicaut,
J.-F., Dzeroski, S. (eds.) KDID, pp. 107–118. Rudjer Boskovic Institute, Zagreb,
Croatia (2003)

[18] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing Management 24(5), 513–523 (1988)

[19] Soulet, A.: Un cadre générique de découverte de motifs sous contraintes fondées
sur des primitives. PhD thesis, Université de Caen Basse-Normandie, France, 2006
(to appear)

[20] Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints.
In: Ho” et al. (eds.), [7] pp. 661–671 (2005)

[21] Soulet, A., Crémilleux, B.: Exploiting Virtual Patterns for Automatically Prun-
ing the Search Space. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS,
vol. 3933, pp. 98–109. Springer, Heidelberg (2006)

[22] Stadler, B.M.R., Stadler, P.F.: Basic properties of filter convergence spaces (2002)

CEUR-WS.org

Efficient Mining Under Rich Constraints Derived from Various Datasets 239

[23] Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets. In: Bayardo Jr., R.J., Goethals, B., Zaki, M.J.
(eds.) FIMI. CEUR Workshop Proceedings, vol. 126 (2004), CEUR-WS.org

[24] Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene ex-
pression. Science 270, 484–487 (1995)

[25] Zäıane, O.R., El-Hajj, M.: COFI-tree mining: A new approach to pattern growth
with reduced candidacy generation. In: Goethals, Zaki [6]

CEUR-WS.org

Using a Reinforced Concept Lattice to
Incrementally Mine Association Rules from

Closed Itemsets

Arianna Gallo and Rosa Meo

Dipartimento di Informatica, Università di Torino, Italy
gallo,meo@di.unito.it

Abstract. In the Data Mining area, discovering association rules is one
of the most important task. It is well known that the number of these
rules rapidly grows to be unwieldy as the frequency requirements become
less strict, especially when collected data is highly correlated or dense.
Since a big number of the frequent itemsets turns out to be redundant,
it is sufficient to consider only the rules among closed frequent itemsets
or concepts. In order to efficiently generate them, it is often essential to
know the Concept Lattice, that also allows the user to better understand
the relationships between the closed itemsets. We propose an incremental
algorithm that mines all the closed itemsets, reading the data only once.
The Concept Lattice is incrementally updated using a simple but essen-
tial structure directly connected to it. This structure allows to speed up
the execution time and makes the algorithm applicable on both static
and dynamic stream data and very dense datasets.

1 Introduction

In the last years, the problem of discovering association rules has been widely
investigated [1,2,3,4,5]. Its aim is to find relationships between itemsets in large
databases. These researches addressed both the efficiency of the extraction algo-
rithms, and the exploitation of user preferences (constraints) about the patterns
to be extracted. A frequent itemset is one that occurs in a user-specified per-
centage of the database, i.e. the number of its occurrences (the support value)
is higher than a user-defined threshold. In general, an association rule is an
expression X → Y , where X and Y are sets of itemsets.

Several methods were proposed to mine frequent itemsets, most of them are a
variant of Apriori [1]. The property that is at the heart of Apriori and forms the
foundation of most algorithms simply states that for an itemset to be frequent
all its subsets have to be frequent. This anti-monotone property reduces the
candidate itemset space drastically.

Most of the well studied frequent pattern mining algorithms (such as Apriori,
FP-growth, H-mine, and OP) mine the complete set of frequent itemsets. These
algorithms may have good performance when the support threshold is high and
the search space of the patterns is sparse. However, it is well known that when

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 97–115, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

98 A. Gallo and R. Meo

the support threshold decreases, the number of frequent itemsets increases dra-
matically. Moreover, the number of association rules exponentially grows with
the number of items.

The last decade witnessed a particular interest in the definition of condensed
representations, e.g. closed itemsets [6,7,8,9,10], maximal itemsets [11,12,13], ap-
proximate itemsets [14]. Among these methods, the algorithms for closed item-
sets (or concepts) mining, which mine only those frequent itemsets having no
proper superset with the same support, limit the number of itemsets (patterns)
produced without information loss. The result of such a reduction is a reasonably-
sized subset of association rules that can be seen as an irreducible nucleus of as-
sociation rules [15,16]. Finding only this condensed set is necessary and sufficient
to capture all the information about frequent itemsets. For these reasons, mining
the frequent closed itemsets instead of frequent itemsets has great advantages.
For instance, when the data are dense and highly correlated, the condensed rep-
resentation of frequent itemsets is greatly reduced. Then, from this set of closed
itemsets, all the frequent itemsets and their frequencies can be derived without
accessing the data [17,6,8]. In order to efficiently generate the association rules
from the closed itemsets, it is often essential to know also the Concept Lattice
(i.e. superset-subset relationships between the closed itemsets found) [18]. Fur-
thermore, the Concept Lattice could allow the user to better understand the
relationships between sets, being a condensed visualization of them.

Formal Concept Analysis (FCA) arose as a mathematical theory for the for-
malization of the “concept” in the early 80ies by Wille [19]. It is nowadays con-
sidered as an AI theory, and in last years became attractive also as a knowledge
representation method for computer science[20]. It has been applied in many
different realms like psychology, sociology, anthropology, medicine, biology, lin-
guistics, computer science, mathematics and industrial engineering. Formal Con-
cept Analysis allows an understanding of an important technique of graphical
knowledge representation namely the line diagrams of Concept Lattices.

The Association Rules framework has first been studied in terms of Formal
Concept Analysis independently in [21,22,23], and Close [21] is the first algorithm
based in this approach. Relationship between FCA (concepts) and association
rules (in the exact case) can be traced to the work of [24] and other works on
minimal covers for functional dependencies in database systems such as [25]. In
order to extract association rules from concepts, two steps must be computed.
The first one builds the so called iceberg Concept Lattice[26]. The second step
derives the bases [27] for association rules. In [27] the result of Duquenne and
Guigues [28] and Luxenburger [29] are adopted, and Duquenne-Guigues basis
for exact association rules (i.e., rules with 100% confidence) and Luxenburger
basis for approximate association rules (i.e., rules with confidence≤ 100%) are
introduced.

The Concept Lattice can be generated either during the closed itemsets gener-
ation steps, or in a second step, after the complete set of closeds has been mined.
In the last decade, several algorithms were proposed to build the Concept Lattice
[30,31,32,28,11,33,34,10]. Some of them (e.g. CHARM-L [34] and DCI-CLOSED

Using a Reinforced Concept Lattice 99

[10]), although their undisputed efficiency in computational time and memory
consumption, turn out to be not applicable to data streams, a context in which
only one access to the data is allowed.

Contributions. In this paper, we introduce a new on-line approach for the
discovery of closed itemsets. Differently to most previous approaches, we make
use and fully exploit the properties of the Concept Lattice [28]. Moreover, we
make use of two further very useful structures, called AMap and IMap which
allow to speed up the overall execution time. The proposed incremental algorithm
builds incrementally the Lattice with only one scan of the dataset. It takes a
database transaction at a time as input, and updates immediately the Concept
Lattice, exploring simultaneously both the itemset space and the transaction
space.

The incremental nature of the algorithm makes it applicable to both static and
dynamic (stream) datasets. It also can take advantages to cope the problem of
continuous querying during a data stream processing, one of the currently hottest
topics among database researchers. The algorithm is conceived to deal with
very dense datasets, where the transactions are usually longer, closed itemsets
equivalence classes [35] are larger and the number of duplicates is higher. Dealing
with dense datasets, most of the state-of-the-art mining algorithms encounter
difficulties since there could be many candidates and the searches need to scan
the database more than once. Instead of generating candidates in a generate
and test fashion (like in level-wise algorithms), our algorithm keeps always only
the closed itemsets. The algorithm outputs all the closed itemsets without a
support threshold. This means that it is able to mine closed itemsets from very
dense datasets with a threshold equal to zero, for which the performance of many
mining algorithms quickly deteriorates [34].

Using our algorithm, since the updating of the Concept Lattice is incremen-
tally made transaction by transaction, the system can always immediately dis-
play to the user the Lattice (and all the closed itemsets) representing the portion
of dataset that has just been read. Hence, each time, using this such “partial”
Lattice as input, all the association rules in that portion of the dataset can be
computed, updated, and becomes available to the user. This allows a real time
interactivity between the end-user and the whole knowledge discovery process,
dealing with both static and dynamic datasets.

The proposed method is based on an intersection-based pruning strategy,
already proven to be very helpful in the closed itemset selection concerning both
memory consumption and run time [36,37,38,39]. The originality of our algorithm
lies on the fully exploitation of both the intersection-pruning strategy and the
two structures introduced above to build the Concept Lattice in an incremental
fashion. In order to efficiently build the Lattice, also the closed itemset tidset
(IDs of transactions in which the itemset occurs) is required. Unlike [36] which
does not build the Lattice and only counts the support of each closed itemset (i.e.
the cardinality of its tidset), the proposed method exploits the two structures
to update the Lattice after each transaction is read (See algorithmic details in
Section 5).

100 A. Gallo and R. Meo

Motivations. In applications such as network monitoring, telecommunications
data management, web personalization, manufacturing, sensor networks, ubiq-
uitous computing, monitoring of atmospheric, astronomical, financial data, and
others, data takes the form of continuous data streams rather than finite stored
data sets. The Internet has scaled up the rate of transactions generating multiple
streams: browser clicks, user queries, email data and traffic logs, web downloads
etc. Internet also makes it easier to deploy special purpose, continuous obser-
vation points that get aggregated into vast data streams. Furthermore, wireless
access networks are now in the threshold of scaling this phenomenon even more.

For the above reasons, in recent years, stream processing and in particular
sensor networks has attracted much research interest. In particular, mining data
streams for knowledge discovery which allows fraud detection, intrusion detec-
tion, trend learning, etc. These are of course time critical tasks and need to
be completed in near-real time to accurately keep pace with the rate of stream
updates and accurately reflect rapidly changing trends in the data. As a conse-
quence, stream processing poses challenging research problems due to the large
volumes of data involved and the presence of on-line processing requirements.
The data is used for detecting congestion, balancing load, and signaling alarms
when abnormal conditions arise. Since many applications, such as monitoring
systems, are reactive in nature, data analysis algorithms are preferably online.
In this framework, due to large data volumes (e.g. hundred Gb per hour), algo-
rithms are preferably one-pass. That is, multiple scans over the dataset simply
cannot be afforded. In this paper we propose an on-line, one-pass algorithm
specifically designed to analyze frequent itemsets in data streams.

2 Formal Concept Analysis: Definitions and Notations

Formal Concept Analysis allows to formalize the notion of “concept” [19] as
established in the international standard ISO. From a philosophical point of
view, a concept is a unit of thoughts consisting of two parts, the extension and
the intension. The extension covers all objects belonging to this concept and the
intension comprises all attributes valid for all those objects. It combines objects,
attributes and an incidence relation in the mathematical definition of a formal
context and formal concept for a given formal context.

Let us recall from [28] some notations and the definitions of formal context
and formal concept.
A formal context is a triple K := (G, M, R), where G is a set of objects, M is a
set of items, and R ⊆ G × M is a binary relation (the incidence of the context)
between G and M. In this setting, we call itemset each subset of M.
A formal concept is a pair C = (O, I) where:

– O ⊆ G is the extent of C
– f(O) := {i ∈ M|∀o ∈ O : (o, i) ∈ R)} = I

f is a function that returns all the attributes valid for all the objects in O

– I ⊆ M is the intent of C

Using a Reinforced Concept Lattice 101

– g(I) := {o ∈ G|∀i ∈ I : (o, i) ∈ R)} = O

g is a function that returns all the objects for which all the attributes in I

are valid.
I is a closed itemset : I = f(g(I)).

We can note that f and g functions establish a Galois connection between
the power set Lattices on G and M. In fact, we define as h = f ◦ g : dom(M) →
dom(M) the closure operator on M. Let us note that the related closure system
CS (i.e., the set of all I ∈ M with h(I) = I) is the set of all intents which are
common to all concepts in the context.

Let us note also that concepts are naturally ordered by the subconcept-
superconcept relation defined by: (O1, I1) ≤ (O2, I2) ⇔ O1 ⊆ O2 ⇔ I2 ⊆ I1.

The ordered set of all formal concepts for a given context is called Concept
Lattice of the context.

3 Association Rule and Closed Itemset Mining in Formal
Concept Analysis

Intuitively, while Association Rule Mining (ARM) discovers dependencies among
values of an attribute grouped by some other attributes in a given relation, For-
mal Concept Analysis (FCA) deals with formal mathematical tools and tech-
niques to develop and analyze relationships between concepts and to develop
concept structures.

For a given context K := (G, M, R) (i.e. the database instance D in ARM),
Formal Concept Analysis starts with the same type of data as Association Rule
Mining: a context consists of a set of objects G (i.e. transactions in ARM), a set
of attributes M, and a binary relation R between G and M.

The closure operator h of the Galois connection associates with an itemset I
the maximal set of items common to all the objects containing I. In other terms,
the closure of I is the intersection of the sets of items of these objects. Using
this closure operator, the frequent closed itemsets are defined.

Definition 1. An itemset I ⊆ I (with I the items domain) is a closed itemset
iff h(I) = I.

We can easily verify that the intent I of a concept C is a closed itemset in the
given context, and that the extent O is the set of transactions in which that
closed occurs (i.e. the tidset).

As mentioned above, the frequent closed itemsets constitute, together with
their support frequencies, a generating set for all frequent itemsets and their
supports and thus form the basis for all association rules, their supports and
their confidences.

4 The Line Diagram

A line diagram is a graphical visualization of the Concept Lattice. A line dia-
gram consists of circles (nodes), lines (arches) and names of all objects and all

102 A. Gallo and R. Meo

attributes of the given context. It allows the investigation and interpretation of
relationships between concepts, objects and attributes. This includes attribute
and object hierarchies, if they exist in the given context. A line diagram con-
tains the relationships between objects and attributes and thus is an equivalent
representation of a context. As a difference to Hasse diagrams, the labeling in
line diagrams is reduced: the nodes in the diagram are not annotated by their
complete extent and intent, i.e. each object and each attribute is only entered
once. This fact can be noticed in Figure 1 in which two Lattice diagrams repre-
senting the same set of concepts are represented. The diagram on the left does
not contain any reduction in nodes labelling (the complete sets of attributes and
objects for each concept are shown). In the diagram on the right, nodes labelling
is reduced since the complete set of attributes of each node can be obtained by
considering the attributes inherited from the upper nodes; conversely, the com-
plete set of objects can be obtained by considering the objects inherited from
the lower nodes. Thus, the inherited attributes and objects are not explicitly
represented.

As we will see in the next sections, this property is of fundamental importance
in the proposed algorithm. In fact, one of the further structures connected to
the Concept Lattice is a hash map (AMap) on the attributes that returns for
each attribute the correspondent diagram node. Since each attribute univocally
identifies a node in the diagram, each entry in AMap corresponds to a single
node. Note that the contrary is not true, i.e. since a node in the diagram can be
labelled by more than one attribute, there could exist more attribute entries in
AMap whose diagram node is the same.

Let us recall the main properties of each node belonging to a line diagram:

1. an object o ∈ G labels the node representing the smallest concept (most
specific) with o in its extent;

2. an attribute a ∈ M labels the node representing the largest concept (most
general) with a in its intent.

Let us note that higher nodes in the diagram represent more general concepts
w.r.t. concepts associated the nodes in the bottom of the diagram.

Fig. 1. Two different notations for representing nodes in a Lattice: with the complete
extension and the intension sets, in the Concept Lattice (a); with the labels, in the Line
Diagram (b)

Using a Reinforced Concept Lattice 103

In order to extract information of the contexts (i.e., its extension and inten-
sion), the line diagram can be read following these two simple reading rules :

1. An object o has an attribute a if and only if there is an upwards leading path
from the diagram node labelled by object o to the node labelled by attribute a.

2. An attribute a belongs to an object o if and only if there is a downwards
leading path from the diagram node labelled by attribute a to the node
labelled by object o.

A more detailed description of line diagrams can be found in [40].
Let us denote with n(labelsG, labelsM) a node of the diagram LD of the

context K := (G, M, R), where labelsG ⊆ G, and labelsM ⊆ M. n.labelsG and
n.labelsM define, respectively, the object and attribute labels associated to the
node n. Let us recall that since a label appears in a diagram only once, it can
uniquely identify a node.

A node could have no labels. As shown in Figure 1, the absence of (attributes
or objects) labels is denoted by “ ”.

n.intent and n.extent denote respectively the intent and the extent of the
node n. n.parenti denotes a parent of the node n in the Lattice. Using this
notation, we can define two main properties of the line diagram:

Definition 2. n.labelsG =
⋂k

i=1{(n.parenti).extent} where k is the number of
parents of n.

Definition 3. n.labelsM = n.intent \
⋃k

i=1{(n.parenti).intent} where k is the
number of parents of n.

As we will see in Section 5, the algorithm totally exploits these very useful
properties.

5 The Incremental Algorithm

In this section we present a new incremental algorithm, called CLearner, aiming
at “learning concepts” for a given context. The algorithm takes in each step an
itemset Ik as input (i.e. the set of items in transaction k), and outputs all the
closed itemsets and the Concept Lattice of the given context (i.e. the dataset). Ik

represents a new information to be “pushed” into the diagram in order to “extend
the knowledge” of the context by updating the Lattice in an incremental way.
Indeed, during the execution of the algorithm, the Concept Lattice represents a
“partial knowledge” of the context. At the end of the algorithm, the line diagram
(the Concept Lattice) represents all the concepts of the given context.

In order to efficiently update the Lattice, CLearner uses two very useful and
simple structures (hash maps) , AMap and IMap. AMap(M, P) is an hash map
on the attributes aj ∈ M, j = {1, .., |M|}. To each attribute aj in AMap is
associated a pointer paj ∈ P to a node in the Lattice. More in particular, paj is
a pointer to the node n having aj in its set of attribute labels (aj ∈ n.labelsM).

104 A. Gallo and R. Meo

Fig. 2. Example DB

The intension of this node (n.intent) is the minimal closed itemset containing
aj . We can define this such node as the “root node” of the sub-Lattice of all the
closed itemsets containing aj . For this reason, AMap constitutes a very useful
structure that allows to quickly identify the sub-Lattice of concepts in which
a given attribute is present. As we can see in the sketch of CLearner below
(function FindNodesToSplit), this map is used during all the execution of the
algorithm. Let us recall from Section 4 that n(a) is a node with the attribute a
in its set of attribute labels. All the nodes are directly reachable by using AMap.
We denote in pseudo-code a node by n(a): this specifies that the node is “directly
reachable by the pointer pa associated to the attribute a in AMap”. Note that
X in the notation n(X) identifies a set of attributes labels. However, since a
node can be directly reachable by more than one pointer in AMap (Section 4),
searching for X in AMap means searching for any one of the attributes a ∈ X .
Figure 3 presents the construction of the concepts relative to the database of
Figure 2 by a line diagram with a step for each database transaction read. The
unique node created in the first step, representing the result of reading of the
first transaction, is reachable by attributes a1, a2, a4 and a5, and we could thus
denote it with n(a1), n(a2), n(a4) or n(a5).

The second hash map, IMap(CS, P), is built on the closed itemsets (inten-
sions) I ∈ CS, i.e. each closed itemset in IMap is associated (has a link to) a
node in the Lattice. Since each node in the Lattice represents a concept, and the
intent of a concept is a closed itemset, using IMap each node in the Concept
Lattice is directly reachable by using its intent. This structure is very useful to
verify if a closed itemset was already generated from the past transactions. If
so, the algorithm can directly find the respective node (concept) in the Lattice.
Let us recall that such a map is very useful when the dataset is very dense, with
strongly correlated data and, as a consequence, most of the closed itemsets occur
frequently. Furthermore, since this map contains all the closed itemsets and it
is updated transaction by transaction, it is easy for the user to quickly see the
result set w.r.t. the transactions that have just been read.

Let us note that while not all the nodes in the Lattice are directly reachable
by a pair (a, pa) in AMap, all the nodes are directly reachable by an entry (I, p)
in IMap.

Using a Reinforced Concept Lattice 105

Fig. 3. Concept Lattice evolution for the context in Figure 2

106 A. Gallo and R. Meo

The pseudo-code for CLearner algorithm appears as Algorithm 1 below.

Algorithm 1. CLearner.
1: for all transactions Ik ∈ dataset D do
2: W := FindNodesToSplit(Ik)
3: for all (a, wa) ∈ W do
4: Split(a, wa, Ik)
5: Insert(Ik, W)

As mentioned above, CLearner takes a transaction as input, and directly
updates the Lattice. At least one node is added into the Lattice after each trans-
action if a node having, as its intent, exactly the attributes of that transaction
does not already exist in the Lattice (i.e. as soon as the current transaction is
not identical to an already read one).

The first step (Line 2 in CLearner) finds the nodes (if any) which need to be
splitted in the Lattice in order to insert the node reflecting the current transac-
tion. A node needs to be splitted if the concept that it represents does not hold
for the concept represented by the current transaction. For example, let assume
the Lattice is the one in step 2 of Figure 3, and the current transaction is I3,
i.e. a2, a3, a5. Before reading I3, the attributes a1, a2 and a5 always appeared
together in the past transactions. Reading I3, the algorithm “learns” that a2
and a5 can appear without a1, and it splits the node n(a1, a2, a5) to generate
a new node n(a2, a5) from n(a1). The new node will be a parent of the node
representing the current transaction a2, a3, a5.

The sketch of the FindNodesToSplit procedure is given in the following.

function FindNodesToSplit(I)
1: for all a ∈ I
2: if a does not already exist in AMap then
3: insert a in AMap
4: else wa := n(a).intent \ I
5: if wa �= ∅ ∧ �(a′, w′

a) ∈ W |wa = w′
a then

6: W := W ∪ (a,wa)
7: else if a is not a label of n(a′) then
8: W := W ∪ (a,wa)
9: return W

This procedure takes transaction I as input, and uses AMap to find the node
that has to be splitted. For all a ∈ I, nodes n(a) are those ones containing some
attributes in common with I and some not. wa corresponds to the set of items
that n(a) does not share with the current transaction. FindNodesToSplit builds
the set W containing pairs (a, wa). For each pair (a, wa) in W the Split proce-
dure can be executed. The pseudo-code of the Split procedure is given below.

Using a Reinforced Concept Lattice 107

procedure Split(a, wa, Ik)
1: X := n(a).labelsM ∩ Ik

2: add the node n(X) to the Lattice
3: n(a).labelsM := n(a).labelsM \ X
4: update AMap
5: {n(a).parent} := {n(a).parent} ∪ n(X)
6: n(X).parents := n(a).parents.parents
7: add closed itemset IMap(n(a).intent \ wa, n(X))
8: n(X).extent := n(a).extent ∪ k

The Split procedure adds a new node to the Lattice and connects it to n(a).
More specifically, for a given pair (a, wa), it uses the intersection X between the
intent of n(a) and I (Line 1) to set the labels of a new node (Line 1). Obviously,
AMap has to be updated (Line 4). The new node n(X) is a new parent of n(a)
(since n(X).intent = n(a).intent\wa ⇒ n(X).intent ⊂ n(a).intent). Since X is
the set of attributes in common with the current transaction, each parent of n(a)
is also a parent of the new node (Line 5). Note that each of these n(X) will be
parents of the new node representing the current transaction. In this procedure
also the tidsets of the involved closeds (i.e. the extent of each concept) are
updated, a fundamental information to update the Lattice.

After the execution of this procedure, the Lattice is ready to be updated with
the new concept representing the current transaction. The Insert procedure
inserts this concept into the Lattice if it does not already exist in the Lattice.
This check is immediately performed because one of the nodes generated in
the Split procedure could represent the concept of the current transaction. For
example, let assume the second transaction I2 is a1, a2, a5 instead of a1, a2, a3, a5
in Figure 3. The split of node n(a1, a2, a4, a5) generates node n(a1, a2, a5) that
already represents the current transaction. In this case, no further nodes are
added to the Lattice. The pseudo-code of this procedure is presented below.

procedure Insert(I ,W)
1: if already exists IMap(Ik,n′) then
2: add k to both n′.labelsG and n′.extent
3: else add node n(k) to the Lattice
4: SetParents(n, Ik)
5: SetAsParent(n)
6: add closed itemset IMap(I, n(k))
7: n.labelsG :=

⋂
i{n.parenti.extent} ∪ k

8: n.labelsM := CreateLabelM(Ik , W)
9: add k to the extent of all nodes above n

Insert procedure searches in IMap if there already exists a concept (a node)
with I as intent (Line 1-2). If so, it simply updates IMap and the object labels of
that node. Otherwise, it adds a new node and sets the parents and the children
accordingly (Line 4-5). Then, it sets the object (Line 7) and the attribute labels

108 A. Gallo and R. Meo

(Line 8, CreateLabelM function). To this aim, Definition 4 and 5 in Section 4
are exploited respectively. In the following, the pseudo-code of CreateLabelM
function is given.

function CreateLabelM(Ik , W)
1: S := ∅
2: for all (a,wa) ∈ W
3: S := S ∪ n(a).intent
4: L := I \ S
5: return L

Let us note that SetParents and SetAsParent procedures presented here are
not described in their optimized version, due to space limitations. For example,
as mentioned above, a set of parents of the new node representing the current
transaction was already found during the FindNodesToSplit procedure. The
pseudo-code (with capital letters because of the non-optimized version) of a non
optimized version of the two procedures is given below. Let us note that in Line
2 of SetAsParent procedure, n(o) identifies a node containing the object o as
object label. No map is used for the search of n(o) nodes. However, these nodes
were already found in the FindNodesToSplit procedure.

Figure 3 shows the Concept Lattice evolution during the execution of the
algorithm for the context in Figure 2. Due to lack of space, IMap is not visualized
in Figure 2. In each step, Figure 3 shows both AMap and the Lattice with the
respective links between the two structures. Different shadows are used (Figure 3)
in order to better visualize the evolution of the Lattice. Note that each node is
represented with the notation n(labelsG, labelsM). As we can see, one node does
not have object and/or attribute labels (because they are inherited by other
nodes). For example, node n(, a1, a2, a5) and node n(2,) in the second and
third step (i.e. reading I2 and I3 respectively) do not have object labels and
attribute labels respectively. Although the two nodes n(,) in the seventh step
do not contain both object and attribute labels, we can easily distinguish them
thanks to their intension (stored in IMap). Most of the incremental algorithms
that build the Concept Lattice start each search from the bottom concept, i.e. a
concept containing all the attributes in the context. Instead, unless a transaction
in the context contains all the attributes in M , the Lattice built by our algorithm
does not contain the bottom concept. Instead of starting from such a node, using
AMap we can easily prune the search of a node. As we can see in Figure 3, each
node is reachable using AMap: while some of the nodes (at most |M |) are directly
reachable (those containing an attribute label), the others can be found following
(one of) the subLattice(s) of the respective root(s).

An Example. Let us describe some steps of the algorithm for the context in
Figure 2. Initially, the Lattice, AMap and IMap are empty. CLearner takes
the first transaction I1 = (1, a1 a2 a4 a5) as input. Since none of these at-
tributes hold in AMap, (a1, a1 a2 a4 a5), are inserted in AMap (Lines 2-3 of

Using a Reinforced Concept Lattice 109

procedure SetParents(node, I)
Parents := ∅
for all n(a) s.t. a ∈ I

find the set {n′} of nodes below n(a) for which n′.intent ⊂ I
Parents := Parents ∪ {n′}

{node.parenti} := Parents
end procedure
procedure SetAsParent(node)

Children := ∅
for all n(o) s.t. o ∈

⋂
i{node.parenti.extent}

if ∃n′ ∈ Children s.t. n(o).extent ⊂ n′.extent then
Children := Children \ n′

Children := Children ∪ n(o)
for all n′ ∈ Children set node node as a parent

end procedure

the FindNodesToSplit function). Then, a new node n1(1, a1 a2 a4 a5) in the
Lattice is inserted (Line 5 of Algorithm 1). Then, CLearner takes I2 = (1, a1
a2 a3 a5) as input. Intuitively, this transaction suggests that the concept C1
is not always true in the context. The algorithm adds a3 in AMap. Then it
builds the set W (Lines 4-8 of FindNodesToSplit function) containing pairs of
(a, wa). Let us recall that wa is a set of attributes that must be removed from
n(a) in order to build a new node (Split procedure). In Figure 3, the splitted
node is shaded in grey, and the new node generated from it is striped. In the
second step of the example (i.e. reading I2) , W = (a1, a4). After building the
W set, the Split procedure is called to create a new node with the intersection
x := n(a).M ∩ Ik = (a1, a2, a5). This intersection represents the portion of a
closed itemset that is still always true for the given context. Finally, the node
containing the new object k (the black one) is inserted (Insert procedure). For
transaction I7, before inserting n(7,), these such steps are made three times,
i.e. three nodes are splitted to generate three new nodes. For the transactions
I5 and I8, instead, since there already exists in the Lattice (in IMap, actually)
the respective closed itemset, the algorithm only updates both the extension (in
IMap), and the object labels of the respective node. Note that these steps can
be directly made using IMap to both find the closed itemset (in order to update
the extent) and reach the respective node (in order to update its object labels).

Let us emphasize that CLearner does not use any set of frequent items early
mined in order to find the closed ones, i.e. it does not need any pre-preprocessing.

Furthermore, our algorithm can generate all the closed itemsets, i.e. it can be
executed without a support threshold (or with this threshold equal to zero), for
which the performance of the most of the algorithms quickly deteriorates. In fact,
these algorithms can be applicable only in some domains, where rarely applicable
rules are not of interest and may not be applicable. For example, in the market
basket analysis it probably does not make sense to decide upon special adver-
tisements based on items bought only by a very small fraction of supermarket

110 A. Gallo and R. Meo

customers. However, there are some domains in which especially rare rules are
of interest for the user. For example, in the medical domain the death or severe
illness of a patient may also be quite rare but obviously is nevertheless of interest
[41]. As pointed out in [42], the support as a rule quality measure is commonly
overestimated, and support is seen as an unavoidable means to make the com-
plexity of the mining problem manageable for current algorithms. However, rules
at very low support may be interesting. Let us consider for example two items, a
and b, rather infrequent in the data. This means that also the support of the rule
a → b is quite low. Nevertheless if such a rule with reasonable confidence exists,
it will be of interest because the implied co-occurrence in the same transactions
of two such infrequent items is probably not by accident.

The current best estimate for the above version of the algorithm’s upper
bound complexity to construct the Lattice L whose context has a set of ob-
jects G, each of which possesses at most max(|m′|) attributes (or items) is
O(|G|(|L| + max(|m′|))) [43]. Indeed, the complexity depends on the number
|G| of transactions, on the number |M | of attributes, and on the number |L| of
nodes in the Lattice. The procedure FindNodesToSplit takes O(|M |) building
the W set, considering the intent of each attribute of the current transaction.
The for cycle in the algorithm 1 (Lines 3-4) is executed for each element in
W . Actually, since a node to be splitted contains at least two items (otherwise
we have no reason to split it), the Split procedure is executed at most |M

2 |
times. Finally, the complexity of a single invocation of Insert procedure can
be estimated as O(|G||M |). At each call of the Insert procedure, SetParents
and SetAsParent are executed once. Let us recall that the given pseudo-code
of these procedures was simplified for the sake of simplicity, and does not cor-
respond to the optimized version. The optimized versions of these procedures
avoid to consider a node more than once in the Lattice. Hence, in the worst
case, both SetParents and SetAsParent procedures need to reach each node in
the Lattice (|L|). Hence, the complexity of a single step of the first for cycle in
1 (Lines 1-5) can be estimated as O(|M |+ |M

2 |+2|L|), that leads us to the total
complexity of O(|G|(|M | + |L|)) as stated above.

The algorithm was encoded in C++. Preliminary experimental results reveal
our algorithm to be competitive also with algorithms that need to pre-process
the data and that do not build the Lattice (e.g., CHARM [34] and DCI-CLOSED
[10]) and, certainly, the construction of the Concept Lattice requires much com-
putation effort w.r.t. algorithms which generate only the concepts set. Of course,
dealing with real dense dataset, such as connect1, the choice to mine all the
closed itemsets could be an issue. However, as showed in [33], the situation with
real dataset is apparently different. A deeper comparison between our algorithm
and AddIntent [33] and that in [44] has not yet been conducted. These two algo-
rithms extract both the closed itemsets together with the Lattice, with similar
methodologies. While the algorithm in [44] uses a stack and item-trie as utility
data structures facilitating lookup of concepts, AddIntent uses a recursion and
the diagram itself for the search. Moreover, in [44], the concepts are first sorted

1 http://fimi.cs.helsinki.fi/data

Using a Reinforced Concept Lattice 111

in increasing order with respect to the corresponding intent sizes, and then each
of them is examined. In our algorithm, instead, only supersets (to be splitted)
or subsets of the current transaction are considered. Indeed, a direct comparison
of our algorithm and these ones may reveal potential trade-offs between specific
issues in which the algorithms differ. Detailed experiments and comparisons be-
tween our algorithms and these mining algorithms is of course a topic of further
research.

6 Experimental Evaluation

We compared the performance of CLearner with existing state of the art algo-
rithms, i.e. CHARM [9] and the algorithm proposed by T.Mielikainen in [45].
Let us note that CHARM algorithm does not build the Lattice of concepts, but
just outputs the set of closed itemsets. We thus compared our algorithm also
with an approach that reconstructs the Lattice in a second step, using the result
of CHARM as input. We labeled this approach as Second-Step in the experi-
ments. For testing the performances of the above algorithms, we chose two very
dense datasets, i.e. mushroom and connect, both taken from the FIMI repository
(http://fimi.cs.helsinki.fi/data). Mushroom dataset contains 8,124 transactions,
with an average number of items per transaction equal to 23. Connect dataset
contains 675,570 transactions, and each transaction has an average number of
43 items. All tests were performed on an Intel(R) Pentium(R)M with 512MB of
memory, running Debian Linux 3.0. Algorithms were coded in C++.

Since running time and the usage memory of the proposed algorithm (as each
closed corresponds to a node in the Lattice and viceversa) depend foremost on
the total number of closeds computed, we tested how the number of closeds
grows during the reading of the dataset. Figure 4 shows, for both mushroom
4(a) and connect 4(b), how the total number of closed itemsets grows as the
transactions are read.

(a) (b)

Fig. 4. Number of closed itemsets by number of seen transactions

112 A. Gallo and R. Meo

(a) (b)

Fig. 5. CLearner performance

Figure 5 shows the performance of CLearner, CHARM, Mielikainen’s algo-
rithm and Second-Step, i.e. the approach that builds the Lattice in a second
step. Let us recall that CHARM does not build the concept Lattice, but it was
introduced in these experiments in order to emphasize how the constructing of
the concept Lattice, though its already mentioned usefulness in the understand-
ing of the final result, burdens the overall running time. As shown in Figure 5,
CLearner outperforms both Mielikainen’s algorithm, and Second-Step. As it was
expected, it does not outperform CHARM, which, however, does not build the
Lattice and reads the dataset more than once.

7 Conclusions and Future Work

In this paper we introduced CLearner, an incremental algorithm that generates
closed itemsets together with the Concept Lattice. These closed itemsets and
the Lattice allow to efficiently generate bases for association rules. CLearner
builds the Concept Lattice for a given context (dataset) scanning it only once.
Two further data structures are used to speed up the search in the Lattice,
called AMap and IMap. These structures allow the algorithm to directly and
automatically find a particular node. Our approach has a great advantage: it
allows the user to see at each step the set of closed itemsets of the partial
dataset that has just been read. Moreover, at the end of the algorithm, all
the concepts together with the Lattice can be presented to the user without
additional execution time.

It is well known that without any threshold on the support values, the num-
ber of closet sets becomes prohibitively large. In order to cope with very large
datasets, some pruning techniques should be introduced. In Mielikainen’s paper,
some (although quite simplistic) efforts into this direction are being described.
However, when the characteristics of the dataset are not apriori known, intro-
ducing items statistics (such as the number of remaining occurrences of each

Using a Reinforced Concept Lattice 113

item) it is not affordable. Moreover, if all the transactions can be seen just once,
they can not be reordered (for instance by cardinality).

Moreover, in order to reduce memory usage, we could decide to select nothing
but frequent itemsets, choosing a threshold t1 on the support values. However,
if the frequency of a non-frequent itemset is not monitored, we will never know
when it becomes frequent. A naive approach is to monitor all itemsets whose
support is above a reduced threshold t2, so that we will not miss itemsets whose
current support is within t1 and t2 when they become frequent. However, this
approach is apparently not general enough.

This work will be further extended in the following directions:

Dealing with constraints. The proposed version of the algorithm does not
consider constraints (e.g. aggregate functions) over the attributes values, but
we believe that most constraints can be “pushed” into the Lattice during the
execution of the algorithm, thus playing a central role whether to add new nodes
in the Lattice or not.

Sliding window. Especially dealing with real dense datasets, it is well known
that the choice to mine all closed itemsets without a support threshold could
be an issue. As the current implementation of the proposed method is still pre-
liminary, there is plenty of room for improvements. One of topic for further
improvements will be the introduction of a sliding window in our structures.
Indeed, in [7], this method was already proven to be a winning choice (especially
dealing with stream data). Our incremental algorithm can be easily extended
with the use of a sliding window, that would be simply implemented as a thresh-
old on the size of IMap. For this reason, this algorithm would turn out to be able
to cope the problem of continuous querying over data streams [46]. Moreover,
as regards memory usage, it was estimated to be linear in the number of closed
itemsets in algorithm Moment. However, comparing our incremental algorithm
with Moment is a topic of further research.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discov-
ery of association rules. In: Advances in knowledge discovery and data mining,
Menlo Park, CA, USA. American Association for Artificial Intelligence, pp. 307–
328 (1996)

2. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints.
In: Proceedings of 1997 ACM KDD, pp. 67–73. ACM Press, New York (1997)

3. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and prun-
ing optimizations of constrained associations rules. In: Proceedings of 1998 ACM
SIGMOD International Conference Management of Data, pp. 13–24. ACM Press,
New York (1998)

4. Chaudhuri, S., Narasayya, V., Sarawagi, S.: Efficient evaluation of queries with
mining predicates. In: Proc. of the 18th ICDE, San Jose, USA (2002)

5. Perng, C.S., Wang, H., Ma, S., Hellerstein, J.L.: Discovery in multi-attribute data
with user-defined constraints. ACM SIGKDD Explorations 4(1), 56–64 (2002)

6. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Information Systems 24(1), 25–46 (1999)

114 A. Gallo and R. Meo

7. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Moment: Maintaining closed frequent
itemsets over a stream sliding window. In: Perner, P. (ed.) ICDM 2004. LNCS
(LNAI), vol. 3275, Springer, Heidelberg (2004)

8. Pei, J., Han, J., Mao, R.: CLOSET: An efficient algorithm for mining frequent
closed itemsets. In: ACM SIGMOD 2000 Workshop on Research Issues in DMKD,
pp. 21–30. ACM Press, New York (2000)

9. Zaki, M.J., Hsiao, C.J.: CHARM: An efficient algorithm for closed itemsets mining.
In: Proceedings of the second SIAM International Conference on Data Mining,
Arlington, VA, USA (2002)

10. Lucchese, C., Orlando, S., Perego, R.: Dci-closed: A fast and memory efficient
mining of frequent closed itemsets. IEEE Journal Transactions on Knowledge and
Data Engineering (TKDE) 18(1), 21–36 (2006)

11. Norris, E.: An algorithm for computing the maximal rectangle in a binary relation.
Revue Roumaine de Mathematiques Pures et Appliquees 23, 243–250 (1978)

12. Gouda, K., Zaki, M.J.: Efficiently mining maximal frequent itemsets. In: Int. Conf.
on Data Mining (ICDM), pp. 163–170 (2001)

13. Bayardo, R.: Efficiently mining long patterns from databases. In: Proceedings of
the ACM-SIGMOD International Conference on the Management of Data, Seattle,
Washington, USA (1998)

14. Pei, J., Dong, G., Zou, W., Han, J.: On computing condensed frequent pattern
bases. In: Int. Conf. on Data Mining (ICDM), pp. 378–385 (2002)

15. Pasquier, N.: Mining association rules using formal concept analysis. In: Ganter,
B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 259–264. Springer, Hei-
delberg (2000)

16. Kryszkiewicz, M.: Concise representations of association rules. In: Hand, D.J.,
Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI),
vol. 2447, pp. 92–109. Springer, Heidelberg (2002)

17. Boulicaut, J., Bykowski, A., Rigotti, C.: Approximation of frequency queries by
means of free-sets. In: Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD
2000. LNCS (LNAI), vol. 1910, pp. 75–85. Springer, Heidelberg (2000)

18. Zaki, M., Phoophakdee, B.: Mirage: A framework for mining, exploring, and visu-
alizing minimal association rules. Technical Report 03-4, Computer Science Dept.
Rensselaer Polytechnic Inst. (2003)

19. Wille, R.: Restructuring lattice theory: an approaches based on hierarchies of con-
cepts. In: Ordered Sets, pp. 445–470, Dordrecht-Boston, Reidel (1982)

20. Stumme, G.: Formal concept analysis on its way from mathematics to computer
science. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI),
vol. 2393, pp. 2–19. Springer, Heidelberg (2002)

21. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning closed itemset lattices
for association rules (1998)

22. Stumme, G.: Conceptual knowledge discovery with frequent concept lattices (1999)
23. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Pro-

ceedings of 3rd SIGMOD 1998 Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD 1998), Seattle, WA (1998)

24. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives re-
sultant d’un tableau de donnees binaires. Math. Sci. hum. 24(95), 5–18 (1986)

25. Armstrong, W.: Dependency structure of database relationships. In: IFIP congress,
pp. 580–583 (1974)

26. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with titanic. Data Knowledge Engineering 42, 189–222 (2002)

Using a Reinforced Concept Lattice 115

27. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent structur-
ing and reducing of association rules with formal concept analysis. In: Baader, F.,
Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, p. 335. Springer,
Heidelberg (2001)

28. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations
(Translator-C. Franzke). Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997)

29. Luxenburger, M.: Implications partielles dans un contexte. Mathematiques, Infor-
matique and Sciences Humaines 29, 35–55 (1991)

30. Lindig, C.: Fast Concept Analysis. In: Stumme, G., ed (eds.) ICCS 2000, Shaker
Verlag, Aachen, Germany (2000)

31. Nourine, L., Rynaud, O.: A fast algorithm for building lattices. Information Pro-
cessing Letters 71, 199–204 (1999)

32. Valtchev, P., Missaui, R., Lebrun, P.: A partition-based approach towards con-
structing galois (concept) lattices. Discrete Mathematics 256(3), 801–829 (2002)

33. der Merwe, D., Obiedkov, S.A., Kourie, D.G.: Addintent: A new incremental algo-
rithm for constructing concept lattices. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS
(LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)

34. Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their
lattice structure. IEEE Transactions on Knowledge and Data Engineering 17, 4,
462–478 (2005)

35. Zaki, M.J.: Scalable algorithms for association mining. Knowledge and Data Engi-
neering 12, 372–390 (2000)

36. Mielikainen, T.: Finding all occurring sets of interest. In: 2nd International Work-
shop on Knowledge Discovery in Inductive Databases, pp. 97–106 (2003)

37. Moonesinghe, H., Fodeh, S., Tan, P.N.: Frequent closed itemset mining using prefix
graphs with an efficient flow-based pruning strategy. In: Perner, P. (ed.) ICDM
2006. LNCS (LNAI), vol. 4065, pp. 426–435. Springer, Heidelberg (2006)

38. Yahia, S.B., Hamrouni, T., Nguifo, E.M.: Frequent closed itemset based algorithms:
a thorough structural and analytical survey. SIGKDD Explor. Newsl. 8(1), 93–104
(2006)

39. Bodon, F., Schmidt-Thieme, L.: The relation of closed itemset mining, complete
pruning strategies and item ordering in apriori-based fim algorithms. In: 9th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD) (2005)

40. Wolff, K.E.: A first course in formal concept analysis. In: Faulbaum, F. (ed.) Soft-
Stat 1993, pp. 429–438 (1993)

41. DuMouchel, W., Pregibon, D.: Empirical bayes screening for multi-item associa-
tions. In: Proc. of ACM SIGKDD, San Francisco, USA, pp. 67–76 (2001)

42. Hipp, J., Güntzer, U.: Is pushing constraints deeply into the mining algorithms re-
ally what we want? – an alternative approach for association rule mining. SIGKDD
Explorations 4, 50–55 (2002)

43. Merwe, F.V.D.: Constructing concept lattices and compressed pseudo-lattices.
M.Sc. dissertation, University of Pretoria, South Africa (2003)

44. Valtchev, P., Missaoui, R., Godin, R., Meridji, M.: Generating frequent itemsets
incrementally: Two novel approaches based on galois lattice theory. J. Expt. Theor.
Artif. Intelligence 14, 115–142 (2002)

45. Mielikainen, T.: Intersecting data to closed sets with constarints. Goethals, B.,
Zaki, M. (eds.) Workshop on Frequent Itemset Mining Implementations (FIMI
2003). CEUR Workshop Preoceedings (2003)

46. Babu, S., Widom, J.: Continuous queries over data streams. In: SIGMOD 2001
Rec., pp. 109–120 (2001)

Extending the Soft Constraint Based
Mining Paradigm

Stefano Bistarelli1,2 and Francesco Bonchi3

1 Dipartimento di Scienze, Università degli Studi “G. D’Annunzio”, Pescara, Italy
2 Istituto di Informatica e Telematica, CNR, Pisa, Italy

3 Pisa KDD Laboratory, ISTI - C.N.R., Pisa, Italy
bista@sci.unich.it, francesco.bonchi@isti.cnr.it

Abstract. The paradigm of pattern discovery based on constraints has
been recognized as a core technique in inductive querying: constraints
provide to the user a tool to drive the discovery process towards po-
tentially interesting patterns, with the positive side effect of achieving
a more efficient computation. So far the research on this paradigm has
mainly focussed on the latter aspect: the development of efficient algo-
rithms for the evaluation of constraint-based mining queries. Due to the
lack of research on methodological issues, the constraint-based pattern
mining framework still suffers from many problems which limit its prac-
tical relevance. In our previous work [5], we analyzed such limitations
and showed how they flow out from the same source: the fact that in the
classical constraint-based mining, a constraint is a rigid boolean func-
tion which returns either true or false. To overcome such limitations we
introduced the new paradigm of pattern discovery based on Soft Con-
straints, and instantiated our idea to the fuzzy soft constraints. In this
paper we extend the framework to deal with probabilistic and weighted
soft constraints: we provide theoretical basis and detailed experimental
analysis. We also discuss a straightforward solution to deal with top-k
queries. Finally we show how the ideas presented in this paper have been
implemented in a real Inductive Database system.

1 Introduction

The paradigm of pattern discovery based on constraints was introduced with
the aim of providing to the user a tool to drive the discovery process towards
potentially interesting patterns, with the positive side effect of achieving a more
efficient computation. So far the research on this paradigm has mainly focused
on the latter aspect: the study of constraint properties and, on the basis of
these properties, the development of efficient algorithms for the evaluation of
constraint-based mining queries. Despite such algorithmic research effort, and
regardless some successful applications, e.g., in medical domains [13,18], or in
biological domains [4], the constraint-based pattern mining framework still suf-
fers from many problems which limit its practical relevance. In our previous
work [5], we analyzed such limitations and showed how they flow out from the

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 24–41, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extending the Soft Constraint Based Mining Paradigm 25

same source: the fact that in the classical constraint-based mining, a constraint
is a rigid boolean function which returns either true or false. Indeed, interesting-
ness is not a dichotomy. Following this consideration, we introduced in [5] the
new paradigm of pattern discovery based on Soft Constraints, where constraints
are no longer rigid boolean functions. In particular we adopted a definition of
soft constraints based on the mathematical concept of semiring. Albeit based
on a simple idea, our proposal has the merit of providing a rigorous theoretical
framework, which is very general (having the classical paradigm as a partic-
ular instance), and which overcomes all the major methodological drawbacks
of the classical constraint-based paradigm, representing a step further towards
practical pattern discovery.

While in our previous paper we instantiated the framework to the fuzzy semi-
ring, in this paper we extend the framework to deal with the probabilistic and the
weighted semirings: these different constraints instances can be used to model dif-
ferent situations, depending on the application at hand. We provide the formal
problemdefinition and the theoretical basis to develop concrete solvers for the min-
ing problems we defined. In particular, we will show how to build a concrete soft-
constraint basedpatterndiscovery system, bymeans of a set of appropriatewrappers
around a crisp constraint pattern mining system. The mining system for classical
constraint-based pattern discover that we adopted is ConQueSt, a system which
we have developed at Pisa KDD Laboratory [8]. Such a system is based on a mining
engine which is a general Apriori-like algorithm which, by means of data reduction
and search space pruning, is able to push a wide variety of constraints (practically
all possible kinds of constraintswhichhave been studied and characterized) into the
frequent itemsets computation. Finally, we discuss how to answer to top-k queries.

2 Soft Constraint Based Pattern Mining

Classical constraint (or crisp constraints) are used to discriminate admissible
and/or non-admissible values for a specific (set of) variable. However, sometimes
this discrimination does not help to select a set of assignments for the variable
(consider for instance overconstrained problems, or not discriminating enough
constraints). In this case is preferable to use soft constraints where a specific
cost/preference is assigned to each variable assignments and the best solution is
selected by looking for the less expensive/more preferable complete assignment.

Several formalizations of the concept of soft constraints are currently available.
In the following, we refer to the formalization based on c-semirings [7]. Using
this framework, classical/crisp constraints are represented by using the boolean
true and false representing the admissible and/or non-admissible values; when
cost or preference are used, the values are instead instantiations over a partial
order set (for instance, the reals, or the interval [0,1]).

Moreover the formalism must provide suitable operations for combination (×)
of constraints satisfaction level, and comparison (+) of patterns under a combi-
nation of constraints. This is why this formalization is based on the mathematical
concept of semiring.

26 S. Bistarelli and F. Bonchi

Definition 1 (c-semirings [7]). A semiring is a tuple 〈A, +, ×,0,1〉 such that:
A is a set and 0,1 ∈ A; + is commutative, associative and 0 is its unit el-
ement; × is associative, distributes over +, 1 is its unit element and 0 is its
absorbing element. A c-semiring (“c” stands for “constraint-based”) is a semi-
ring 〈A, +, ×,0,1〉 such that + is idempotent with 1 as its absorbing element
and × is commutative.

Definition 2 (soft constraint on c-semiring [7]). Given a c-semiring S =
〈A, +, ×,0,1〉 and an ordered set of variables V over a finite domain D, a con-
straint is a function which, given an assignment η : V → D of the variables,
returns a value of the c-semiring. By using this notation we define C = η → A
as the set of all possible constraints that can be built starting from S, D and V .

In the following we will always use the word semiring as standing for c-semiring.

Example 1. The following example illustrates the definition of soft constraints
based on semiring, using the example mining query:

Q : suppD(X) ≥ 1500 ∧ avg(X.weight) ≤ 5 ∧ sum(X.price) ≥ 20

which requires to mine, from database D, all patterns which are frequent (have
a support at least 1500), have average weight at most 5 and a sum of prices
at least 20. In this context, we have that the ordered set of variables V is
〈suppD(X), avg(X.weight), sum(X.price)〉; the domain D is: D(suppD(X)) =
N, D(avg(X.weight)) = R

+, and D(sum(X.price)) = N. If we consider the
classical crisp framework (i.e., hard constraints) we are on the boolean semi-
ring: SBool = 〈{true, false}, ∨, ∧, false, true〉. A soft constraint C is a function
V → D → A; e.g., suppD(X) → 1700 → true.

The + operator is what we use to compare the level of constraints satisfac-
tion for various patterns. Let us consider the relation ≤S (where S stands for
the specified semiring) over A such that a ≤S b iff a + b = b. It is possible
to prove that: ≤S is a partial order; + and × are monotone on ≤S ; 0 is its
minimum and 1 its maximum, and 〈A, ≤S〉 is a complete lattice with least
upper bound operator +. In the context of pattern discovery a ≤S b means
that the pattern b is more interesting than a, where interestingness is defined
by a combination of soft constraints. When using (soft) constraints it is nec-
essary to specify, via suitable combination operators, how the level of inter-
est of a combination of constraints is obtained from the interest level of each
constraint. The combined weight (or interest) of a combination of constraints
is computed by using the operator ⊗ : C × C → C defined as (C1 ⊗ C2)η =
C1η ×S C2η.

Example 2. In this example, and in the rest of the paper, we use for the pat-
terns the notation p : 〈v1, v2, v3〉, where p is an itemset, and 〈v1, v2, v3〉 denote
the three values 〈suppD(p), avg(p.weight), sum(p.price)〉 corresponding to the
three constraints in the conjunction in the query Q of Example 1. Consider, for
instance, the following three patterns: p1 : 〈1700, 0.8, 19〉, p2 : 〈1550, 4.8, 54〉, p3 :

Extending the Soft Constraint Based Mining Paradigm 27

〈1550, 2.2, 26〉. If we adopt the classical crisp framework, in the mining query Q
we have to combine the three constraints using the ∧ operator (which is the × in
the boolean semiring SBool). Consider for instance the pattern p1 : 〈1700, 0.8, 19〉
for the ordered set of variables V = 〈suppD(X), avg(X.weight), sum(X.price)〉.
The first and the second constraint are satisfied leading to the semiring level true,
while the third one is not satisfied and has associated level false. Combining the
three values with ∧ we obtain true ∧ true ∧ false = false and we can conclude
that the pattern 〈1700, 0.8, 19〉 is not interesting w.r.t. our purposes. Similarly,
we can instead compute level true for pattern p3 : 〈1550, 2.2, 26〉 corresponding
to an interest w.r.t. our goals.

However, dividing patterns in interesting and non-interesting is sometimes not
meaningful nor useful. Most of the times we want to say that each pattern is
interesting with a specific level of preference. This idea is at the basis of the soft
constraint based pattern mining paradigm [5].

Definition 3 (Soft Constraint Based Pattern Mining). Let P denote the
domain of possible patterns. A soft constraint on patterns is a function C : P → A
where A is the carrier set of a semiring S = 〈A, +, ×,0,1〉. Given a combination
of soft constraints ⊗C, i.e., a description of what is considered by the user an
interesting pattern, we define two different problems:

λ-interesting: given a minimum interest threshold λ ∈ A, it is required to mine
the set of all λ-interesting patterns, i.e., {p ∈ P| ⊗ C(p) ≥S λ}.

top-k: given a threshold k ∈ N, it is required to mine the top-k patterns p ∈ P
w.r.t. the order ≤S.

In the rest of the paper we adopt the notation intPS (λ) to denote the problem of
mining λ-interesting patterns (from pattern domain P) on the semiring S, and
similarly topPS (k), for the corresponding top-k mining problem. Note that the
Soft Constraint Based Pattern Mining paradigm just defined, has many degrees
of freedom. In particular, it can be instantiated:

1. on the domain of patterns P in analysis (e.g., itemsets, sequences, trees or
graphs),

2. on the semiring S = 〈A, +, ×,0,1〉 (e.g., boolean, fuzzy, weighted or proba-
bilistic), and

3. on one of the two possible mining problems, i.e., λ-interesting or top-k mining.

In other terms, by means of Definition 3, we have defined many different
mining problems: it is worth noting that the classical constraint based frequent
itemsets mining, is just a particular instance of our framework. In particular,
it corresponds to the mining of λ-interesting itemsets on the boolean semiring,
where λ = true, i.e., intIb (true). In our previous paper [5] we have shown how to
deal with the mining problem intIf (λ) (i.e., λ-interesting Itemsets on the Fuzzy
Semiring), in this paper we show how to extend our framework to deal with (i)
intIp (λ) (i.e., λ-interesting Itemsets on the Probabilistic Semiring), (ii) intIw(λ)

28 S. Bistarelli and F. Bonchi

(i.e., λ-interesting Itemsets on the Weighted Semiring), and (iii) mining top-k
itemsets on any semiring.

The methodology we adopt is based on the property that in a c-semiring
S = 〈A, +, ×,0,1〉 the ×-operator is extensive [7], i.e, a× b ≤S a for all a, b ∈ A.
Thanks to this property, we can easily prune away some patterns from the set
of possibly interesting ones. In particular this result directly applies when we
want to solve a λ-interesting problem. In fact for any semiring (fuzzy, weighted,
probabilistic) we have that [7]:

Proposition 1. Given a combination of soft constraints ⊗C = C1 ⊗ . . . ⊗ Cn

based on a semiring S, for any pattern p ∈ P:

⊗C(p) ≥S λ ⇒ ∀i ∈ {1, . . . , n} : Ci(p) ≥S λ.

Proof. Straightforward from the extensivity of ×.

Therefore, computing all the λ-interesting patterns can be done by solving a
crisp problem where all the constraint instances with semiring level lower than
λ have been assigned level false , and all the instances with semiring level greater
or equal to λ have been assigned level true. In fact, if a pattern does not satisfy
such conjunction of crisp constraints, it will not be neither interesting w.r.t. the
soft constraints. Using this theoretical result, and some simple arithmetic we can
transform each soft constraint in a corresponding crisp constraint, push the crisp
constraint in the mining computation to prune uninteresting patterns, and when
needed, post-process the solution of the crisp problem, to remove uninteresting
patterns from it.

3 Mining intI
p(λ) (λ-Interesting Itemsets on the

Probabilistic Semiring)

Probabilistic CSPs (Prob-CSPs) were introduced to model those situations where
each constraint c has a certain probability p(c), independent from the probability
of the other constraints, to be part of the given problem (actually, the probability
is not of the constraint, but of the situation which corresponds to the constraint:
saying that c has probability p means that the situation corresponding to c
has probability p of occurring in the real-life problem). Using the probabilistic
constraints framework [14] we suppose each constraint to have an independent
probability law, and combination is computed performing the product of the
semiring value of each constraint instantiations. As a result, the semiring corre-
sponding to the probabilistic framework is SP = 〈[0, 1], max,×, 0, 1〉.

Consider the constraints graphical representations in Figure 1, where the
semiring values between 0 and 1 are this time interpreted as probabilities. In
this situation for the pattern p1 = 〈1700, 0.8, 19〉 we obtain that: C1(p1) =
0.83, C2(p1) = 1 and C3(p1) = 0.45. Since in the probabilistic semiring the

Extending the Soft Constraint Based Mining Paradigm 29

combination operator × is the arithmetic multiplication, we got that the interest
level of p1 is 0.37. Similarly for p2 and p3:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = ×(0.83, 1, 0.45) = 0.37
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = ×(0.58, 0.6, 1) = 0.35
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = ×(0.58, 1, 0.8) = 0.46

Therefore, with this particular instance we got that p2 <SP p1 <SP p3, i.e., p3
is the most interesting pattern among the three. Dealing with the probabilistic
semiring, we can readapt most of the framework developed for the fuzzy semiring.
In fact the two semirings are based on the same set [0, 1] and on the same
+ operator which is max. The only distinguishing element is the × operator
which is min for the fuzzy semiring, while it is the arithmetic times for the
probabilistic semiring. This means that we can straightforwardly readapt the
problem definition, the way of defining the behaviour of soft constraints, and
the crisp translation.

Definition 4. Let I = {x1, ..., xn} be a set of items, where an item is an ob-
ject with some predefined attributes (e.g., price, type, etc.). A soft constraint on
itemsets, based on the probabilistic semiring, is a function C : 2I → [0, 1]. Given
a combination of such soft constraints ⊗C ≡ C1 ⊗ . . .⊗Cn, we define the interest
level of an itemset X ∈ 2I as ⊗C(X) = C1(X)× · · ·× Cn(X). Given a minimum
interest threshold λ ∈]0, 1], the λ-interesting itemsets mining problem, requires
to compute intIp (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ}.

Definition 5. A soft constraint C on itemsets, based on the probabilistic semi-
ring, is defined by a quintuple 〈Agg, Att, θ, t, α〉, where:

– Agg ∈ {supp, min, max, count, sum, range, avg, var, median, std, md};
– Att is the name of the attribute on which the aggregate agg is computed (or

the transaction database, in the case of the frequency constraint);
– θ ∈ {≤, ≥};
– t ∈ R corresponds to the center of the interval and it is associated to the

semiring value 0.5;
– α ∈ R

+ is the softness parameter, which defines the inclination of the pref-
erence function (and thus the width of the interval).

suppD(X)

1000 1200 1400 1600 1800 2000
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

avg(X.weight)

2 3 4 5 6 7 8
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

sum(X.price)

0 10 20 30 40
0,0

0,2

0,4

0,6

0,8

1,0

1,2 fuzzy
crisp

(C1) (C2) (C3)

Fig. 1. Graphical representation of possible probabilistic instance of the constraints in
the mining query Q in Example 1

30 S. Bistarelli and F. Bonchi

In particular, if θ = ≤ (as in Figure 1(C2)) then C(X) is 1 for X ≤ (t − αt), is
0 for X ≥ (t + αt), and is linearly decreasing from 1 to 0 within the interval
[t−αt, t+αt]. The other way around if θ = ≥ (as, for instance, in Figure 1(C3)).
Note that if the softness parameter α is 0, then we obtain the crisp (or hard)
version of the constraint.

Example 3. Consider again the query Q given in Example 1, and its probabilistic
instance graphically described by Figure 1. Such query can be expressed in our
constraint language as:

〈supp, D, ≥, 1500, 0.2〉, 〈avg, weight,≤, 5, 0.2〉, 〈sum, price,≥, 20, 0.5〉

Definition 6. Given a probabilistic soft constraint C ≡ 〈Agg, Att, θ, t, α〉, and a
minimum interest threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≥ t − αt + 2λαt, if θ = ≥
Agg(Att) ≤ t + αt − 2λαt, if θ = ≤

In [5] we proved that, on the fuzzy semiring, given a combination of soft con-
straints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a minimum interest threshold λ, if we consider
the conjunction of crisp constraints obtained by conjoining the crisp translation
of each constraint in ⊗C w.r.t. λ (i.e., C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp), it holds that

intIf (λ) = {X ∈ 2I | ⊗ C(X) ≥ λ} = Th(C′)

Similarly, the following property holds:

Proposition 2. Given the vocabulary of items I, a combination of soft con-
straints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a minimum interest threshold λ. It holds that:

intIp (λ) ⊆ intIf (λ)

Proof. Consider two real numbers x1, x2 in the interval [0, 1]. It holds that x1 ×
x2 ≤ min(x1, x2). Therefore, for a given pattern i, if in the probabilistic semiring
⊗C(i) ≥p λ, then also in the fuzzy semiring ⊗C(i) ≥f λ.

〈supp, D, ≥, t, α〉 〈avg,weight,≤, t, α〉 〈sum, price, ≥, t, α〉
D t α t α t α

Q1 retail 20 0.8 10000 0.5 20000 0.5
Q2 retail 20 0.5 10000 0.5 20000 0.5
Q3 retail 20 0.2 10000 0.5 20000 0.5
Q4 retail 20 0.8 5000 0.2 20000 0.5
Q5 retail 20 0.8 5000 0.8 20000 0.5
Q6 T40I10D100K 800 0.75 15000 0.2 100000 0.5
Q7 T40I10D100K 800 0.75 15000 0.9 100000 0.5
Q8 T40I10D100K 800 0.25 15000 0.2 100000 0.2

Fig. 2. Description of queries experimented

Extending the Soft Constraint Based Mining Paradigm 31

0,0 0,2 0,4 0,6 0,8 1,0

nu
m

be
r

of
 s

ol
ut

io
ns

0

100

200

300

400

Q1

Q2

Q3

Q4

Q5

0,0 0,2 0,4 0,6 0,8 1,0

ra
tio

0,70

0,75

0,80

0,85

0,90

0,95

1,00

Q1
Q2
Q3
Q4
Q5

(a) (b)

Fig. 3. Experimental results on the retail dataset with λ ranging in]0, 1] in the
probabilistic semiring: number of solutions (a), and ratio with the number of solutions
in the fuzzy semiring (b)

When dealing with the probabilistic semiring, we translate the given query to
a crisp one. But afterwards, we need a post-processing step in which we select,
among the solutions to the crisp query, the λ-interesting patterns. It is natural
to ask ourselves how much selective is this post-processing. This could provide a
measure of the kind of improvement that one could get by studying and devel-
oping ad-hoc techniques, to push probabilistic soft constraints into the pattern
extraction computation.

In Figure 3, for the retail dataset and the queries of Figure 2, we report:
in (a), the number of λ-interesting patterns in the probabilistic semiring, while
in (b) the ratio of this number with the number of solutions in the fuzzy semi-
ring, i.e., |intIp (λ)| / |intIf (λ)|. The execution time of the post-processing is not
reported in the plots, because in all the experiments conducted, it was always in
the order of few milliseconds, thus negligible w.r.t. the mining time. Observing
the ratio we can note that it is always equals to 1 for λ = 0 and λ = 1. In
fact a pattern having at least a constraint for which it returns 0, will receive
a semiring value of 0 in both the fuzzy semiring (min combination operator),
and the probabilistic semiring (× combination operator). Similarly, for λ = 1,
to be a solution a pattern must return a value of 1 for all the constraints in the
combination, in both the semirings. Then we can observe that this ratio is quite
high, always larger than 0.7 in the retail dataset. This is no longer true for the
queries on the T40I10D100K dataset, reported in Figure 4 (a) and (b): the ratio
reach a minimum value of 0.244 for query Q7 when λ = 0.2.

What we can observe is that the ratio does not depend neither on the num-
ber of solutions nor on λ (apart the extreme cases 0 and 1). The ratio de-
pends on the softness of the query: the softer the query the lower the ratio, i.e.,
more patterns discarded by the post-processing. This can be observed in both
Figure 3(b) and 4(b): for instance, among the first three queries Q1 is softer
than Q2 which in turns is softer than Q3, and this is reflected in the ratio

32 S. Bistarelli and F. Bonchi

0,0 0,2 0,4 0,6 0,8 1,0

nu
m

be
r

of
 s

ol
ut

io
ns

0

50

100

150

200

Q6
Q7
Q8

0,0 0,2 0,4 0,6 0,8 1,0

ra
tio

0,2

0,4

0,6

0,8

1,0

Q6
Q7
Q8

(a) (b)

Fig. 4. Experimental results on the T40I10D100K dataset with λ ranging in]0, 1] in the
probabilistic semiring: number of solutions (a), and ratio with the number of solutions
in the fuzzy semiring (b)

which is lower for Q1; similarly Q5 is softer than Q4 and its ratio is lower; in
4(b) Q8 is the least soft while Q7 is the most soft, and accordingly behaves the
ratio.

4 Mining intI
w(λ) (λ-Interesting Itemsets on the

Weighted Semiring)

While in the fuzzy semiring each pattern has an associated level of preference
(or interestingness) for each constraint, and in the probabilistic semiring a value
which represents a probability, in the weighted semiring they have an associated
cost. Therefore, in the weighted semiring the cost function is defined by summing
up the costs of all constraints. According to the informal description given above,
the weighted semiring is SW = 〈R+, min, sum, +∞, 0〉.

Example 4. Consider the following weighted instance for the constraints in the
query Q (graphically represented in Figure 5):

– C1(suppD(X)) =
{

1750 − suppD(X), if suppD(X) < 1750
0, otherwise.

– C2(avg(X.weight)) = 25 ∗ avg(X.weight)

– C3(sum(X.price)) =
{

5 ∗ (60 − sum(X.price)), if sum(X.price) < 60
0, otherwise.

Note how the soft version of the constraints are defined in the weighted frame-
work: C1 for instance, since bigger support is better, gives a cost of 0 when the
support is greater than 1750 and an increasing cost as the support decreases.
Similarly for constraint C3: we assign a cost 0 when the sum of prices is at least
60, while the cost increases linearly as the sum of prices shrinks. Constraint C2

Extending the Soft Constraint Based Mining Paradigm 33

instead aims to have an average weight as lower as possible, and thus larger
average weight will produce larger (worse) cost. In this situation we got that:

– p1 : C1 ⊗ C2 ⊗ C3(1700, 0.8, 19) = sum(50, 20, 205) = 275
– p2 : C1 ⊗ C2 ⊗ C3(1550, 4.8, 54) = sum(200, 120, 30) = 350
– p3 : C1 ⊗ C2 ⊗ C3(1550, 2.2, 26) = sum(200, 55, 170) = 425

Therefore, with this particular instance we got that p3 <SW p2 <SW p1 (remem-
ber that the order ≤SW correspond to the ≥ on real numbers). In other terms,
p1 is the most interesting pattern w.r.t. this constraints instance.

Since in the weighted semiring, the values correspond to costs, instead of looking
for patterns with an interest level larger than λ, we seek for patterns with a cost
smaller than λ.

Definition 7. Let I = {x1, ..., xn} be a set of items, where an item is an ob-
ject with some predefined attributes (e.g., price, type, etc.). A soft constraint on
itemsets, based on the weighted semiring, is a function C : 2I → R

+. Given a
combination of such soft constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, we define the interest
level of an itemset X ∈ 2I as ⊗C(X) =

∑
i=1,...,n Ci(X). Given a maximum

cost threshold λ ∈ R
+, the λ-interesting itemsets mining problem, requires to

compute intIw(λ) = {X ∈ 2I | ⊗ C(X) ≤ λ}.

suppD(X)

600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000 weighted
avg(X.weight)

0 2 4 6 8
0

50

100

150

200 weighted sum(X.price)

0 20 40 60 80
0

50

100

150

200

250

300 weighted

(C1) (C2) (C3)

Fig. 5. Graphical representation of possible weighted instances of the constraints in in
the mining query Q in Example 1

For sake of simplicity, we restrict to weighted constraints with a linear behavior
as those ones described in Figure 5. To describe such simple behavior, we need
a new parameter β ∈ R

+ that represents the semiring value associated to the
t point (playing the role of the implicitly given 0.5 value for the fuzzy and
probabilistic semiring). In other words we provide two points to describe the
straight line passing through them: the point (t, β) and the point (t − αt, 0) for
θ =≤ or (t+αt, 0) for θ =≥. Note that α still plays the role of the softness knob.

Definition 8. A soft constraint C on itemsets, based on the weighted semiring,
is defined by a sextuple 〈Agg, Att, θ, t, β, α〉, where: Agg, Att, θ and α are defined
as for the fuzzy/probabilistic case (Definition 5), t is a point in the carrier set
of the weighted semiring, i.e., t ∈ R

+, and β represents the semiring value
associated to t.

34 S. Bistarelli and F. Bonchi

Example 5. Consider again the query Q given in Example 1, and its weighted
instance graphically described by Figure 5. Such query can be expressed in our
constraint language as:

〈supp, D, ≥, 1500, 250,
1
6
〉, 〈avg, weight,≤, 5, 125, 1〉, 〈sum, price, ≥, 20, 200, 1〉

For the weighted semiring we can still rely on Proposition 1, which states that a
pattern in order to be λ-interesting, must return a semiring value smaller than λ
(we are dealing this time with costs; i.e., ≥W is ≤) for each single constraint in the
query: this assures us that if a pattern does not satisfy the crisp translation of the
given query, it will not be λ-interesting neither in the weighted semiring. In other
words we can always use the same methodology described for the probabilistic
semiring: translate the query to a crisp one, evaluate it, post-process the result
to select the exact solution set.

Definition 9. Given a weighted soft constraint C ≡ 〈Agg, Att, θ, t, β, α〉, and a
maximum cost threshold λ, we define the crisp translation of C w.r.t. λ as:

Cλ
crisp ≡

{
Agg(Att) ≤ t − αt + 1

β λαt, if θ = ≤
Agg(Att) ≥ t + αt − 1

β λαt, if θ = ≥

Example 6. Given the weighted soft constraint 〈sum, price, ≥, 20, 200, 1〉, its
crisp translation is sum(X.price) ≥ 24 for λ = 180, it is sum(X.price) ≥ 10 for
λ = 250.

Proposition 3. Given the vocabulary of items I, a combination of weighted soft
constraints ⊗C ≡ C1 ⊗ . . . ⊗ Cn, and a maximum interest threshold λ. Let C′ be
the conjunction of crisp constraints obtained by conjoining the crisp translation
of each constraint in ⊗C w.r.t. λ: C′ ≡ C1

λ
crisp ∧ . . . ∧ Cn

λ
crisp. It holds that:

intIw(λ) ⊆ {X ∈ 2I | ⊗ C(X) ≤ λ} = Th(C′)

where Th(C′) is the solution set for the crisp problem, according to the notation
introduced in Definition 2.

In the following we report the results of some experiments that we have con-
ducted on the same datasets used before for the fuzzy and the probabilistic
semirings. We have compared 8 different instances (described in Figure 6) of the
query Q :

〈supp, D, ≥, t, β, α〉〈avg, weight,≤, t, β, α〉, 〈sum, price, ≥, t, β, α〉

The results of the experiments are reported in Figure 7 and Figure 8. A first
observation is that, on the contrary of what happening in the probabilistic and
fuzzy semiring, here the larger is λ the larger is the number of solutions. This is
trivially because the order of the weighted semiring says that smaller is better.

Extending the Soft Constraint Based Mining Paradigm 35

〈supp, D, ≥, t, β, α〉 〈avg,weight,≤, t, β, α〉 〈sum, price, ≥, t, β, α〉
D t β α t β α t β α

Q9 retail 20 600 0.8 5000 100 0.2 20000 250 0.5
Q10 retail 20 600 0.2 5000 100 0.2 20000 250 0.5
Q11 retail 20 600 0.8 5000 100 0.8 20000 250 0.5
Q12 retail 20 600 0.8 5000 500 0.2 20000 250 0.5
Q13 retail 20 600 0.8 5000 1000 0.2 20000 500 0.5
Q14 T40I10D100K 800 500 0.8 5000 200 0.5 80000 400 0.8
Q15 T40I10D100K 600 600 0.8 15000 500 0.5 80000 400 0.8
Q16 T40I10D100K 1000 500 0.5 15000 500 0.5 100000 600 0.9

Fig. 6. Description of queries experimented

0 200 400 600 800 1000

nu
m

be
r

of
 s

ol
ut

io
ns

0

50

100

150

200

250

300

Q9
Q10
Q11
Q12
Q13

0 200 400 600 800 1000

ra
tio

0,0

0,2

0,4

0,6

0,8

1,0

Q9
Q10
Q11
Q12
Q13

(a) (b)

Fig. 7. Experimental results on the retail dataset with λ ranging in [0, 1000] in the
weighted semiring: number of solutions (a), and ratio with the number of solutions of
the crisp translation (b)

0 200 400 600 800 1000

nu
m

be
r

of
 s

ol
ut

io
ns

0

50

100

150

Q14
Q15
Q16

0 200 400 600 800 1000

ra
tio

0,0

0,2

0,4

0,6

0,8

1,0

Q14
Q15
Q16

(a) (b)

Fig. 8. Experimental results on the T40I10D100K dataset with λ ranging in [0, 1000]
in the weighted semiring: number of solutions (a), and ratio with the number of solu-
tions of the crisp translation (b)

36 S. Bistarelli and F. Bonchi

In Figure 7(a) we can observe that queries Q12 and Q13 always return a small
number of solutions: this is due to the high values of β in the constraints, which
means high costs, making difficult for patterns to produce a total cost smaller
than λ. In Figure 7(b) and Figure 8(b) we report the ratio of the number of
solution with the cardinality of the theory corresponding to the crisp translation
of the queries, i.e., |intIw(λ)| / |Th(C′)|. This gives a measure of how good is
the approximation of the crisp translation, or in other terms, the amount of
post-processing needed (which, however, has negligible computational cost). The
approximation we obtain using our crisp solver is still quite good but, as we
expected, not as good as in the probabilistic semiring. Also in this case, the
softer the query the lower the ratio, i.e., the crisp approximation is better for
harder constraints (closer to crisp). For instance in Figure 7(b) we can observe
that Q10, which is the query with smaller values for the softness parameter α,
always present a very high ratio.

5 Mining Top-k Itemsets

For sake of completeness, in this section we sketch a simple methodology to deal
with top-k queries, according to [6]. In the following we do not distinguish be-
tween the possible semiring instances, we just describe the general methodology.

The main difficult to solve top-k queries is that we can know the number of
solutions only after the evaluation of a query. Therefore, given k, the simple idea
is to repeatedly run λ-interesting queries with different λ thresholds: we start
from extremely selective λ (fast mining) decreasing in selectivity, until we do not
extract a solution set which is large enough (more than k).

Considering for instance the fuzzy semiring, where the best semiring value is
1: we could start by performing a 0.95-interesting query, and if the query results
in a solution set of cardinality larger than k, then we sort the solution according
to their semiring value and return the best k, otherwise we slowly decrease the
threshold, for instance λ = 0.9, and so on. Notice that is important to start from
a very high threshold in order to perform fast mining extractions with small
solution sets, and only if needed decrease the threshold to get more solutions at
the cost of longer computations.

6 Soft Constraints in ConQueSt

In this section we describe how the ideas presented in this paper have been
integrated within the ConQueSt inductive database system. ConQueSt is a
constraint-based querying system devised with the aim of supporting the intrin-
sically exploratory nature of pattern discovery. It provides users with an expres-
sive constraint-based query language (named SPQL) which allows the discovery
process to be effectively driven toward potentially interesting patterns. The sys-
tem is built around an efficient constraint-based mining engine which entails
several data and search space reduction techniques, and allows new user-defined

Extending the Soft Constraint Based Mining Paradigm 37

constraints to be easily added (for deeper details on the ConQueSt system, see
also other paper in this volume [10]).

In order to integrate the soft constraint based pattern mining paradigm within
ConQueSt, we first extended the SPQL query language to allow definition of
soft constraints.

Example 7. In this example we show a complex SPQL query exploiting the soft
constraint paradigm. In particular it requires to mine, in the probabilistic semi-
ring, the top 5 patterns w.r.t. a given combination of 3 soft constraint: the
frequency constraint, support larger than 5 with 0.4 softness, plus two aggre-
gate soft constraints defined over the attributes product.gross weight and
product.units per case. This is a true mining query, defined within Con-

QueSt on the famous foodmart2000 datamart.

1. MINE TOP 5.0 PROBABILISTIC PATTERNS

2. WITH SUPP>= 5.0 SOFT 0.4 IN

3. SELECT product.product_name, product.gross_weight,

product.units_per_case, sales_fact_1998.time_id,

sales_fact_1998.customer_id, sales_fact_1998.store_id

4. FROM [product], [sales_fact_1998]

5. WHERE sales_fact_1998.product_id=product.product_id

6. TRANSACTION sales_fact_1998.time_id, sales_fact_1998.customer_id,

sales_fact_1998.store_id

7. ITEM product.product_name

8. ATTRIBUTE product.gross_weight, product.units_per_case

9. CONSTRAINED BY average(product.gross_weight)<=20 SOFT 0.8 AND

sum(product.units_per_case)>=50 SOFT 0.5

(a) (b)

Fig. 9. ConQueSt window for the definition of a soft constraint (a), and another
window with the graphical representation of the soft constraint defined (b)

In line 1. we got the soft constraint query type definition (i.e., if top-k or λ-
interesting with the appropriate threshold) and the semiring in which the query
must be evaluated. In line 2 a minimum frequency constraint is defined with

38 S. Bistarelli and F. Bonchi

threshold 5 and 0.4 softness level. From line 3 to 5 we got a typical SQL select-
from-where statement defining the data source for the query. Lines from 6 to 8
contains the mining view definition, or in other terms, how transactions must
be built from the source data (pre-processing). Line 9 contains the two other
constraints with their associated softness parameters.

Fig. 10. ConQueSt soft constraints query definition

This query seems quite complex to be written, but ConQueSt offers simple
mechanisms to facilitate the definition of a query. In figure 9 we show the win-
dow for the definition of a soft constraint, and the window with the graphical
representation of the soft constraint defined.

In Figure 10 we show ConQueSt’s constraint definition module, where all
the three constraints of the query in Example 7 are reported. Note the dropdown
menus to choose among top-k or λ-interesting, and to choose the semiring.

Finally, in Figure 11 we show ConQueSt global view with the query in Exam-
ple 7 ready to be run, then the resulting top 5 patterns with two different possible
views (that can be chosen from the menu): with the actual value of each pattern
for each aggregate in a constraint, or with the respective interestingness value.

7 Related Work

Since in this paper we extend a novel paradigm that we introduced last year,
there are not many related works in a strict sense. In a larger sense, all the work
done on interestingness of extracted patterns can be considered related. In [22]
all these works are divided in four classes: objective interestingness measures
[12,3,21,15], visualization-based approaches [17], subjective domain-dependent
measures of interest [20], and constraint-based approaches. Our proposal clearly
collocates within the last class. As already stated in the introduction, a lot
of work has been done on constraint-based pattern discovery, but almost all
has been done on the development of efficient constraint-pushing algorithms.
Entering in the details of these computational techniques, for which we have
provided references in the introduction, is beyond the scope of this paper. The
reader should refer to [11,9] for un updated state-of-the-art. What we can say
here is that most of these techniques have been adopted to build ConQueSt’s
mining engine [8].

Extending the Soft Constraint Based Mining Paradigm 39

(a)

(b)

(c)

Fig. 11. ConQueSt global view with the query in Example 7 ready to be run(a); the
pattern browser showing top 5 patterns (b); the pattern browser where for each pattern
the interestingness level for each constraint is shown

40 S. Bistarelli and F. Bonchi

To the best of our knowledge only few works [16,2] have studied the constraint-
based paradigm by a methodological point of view, mainly criticizing some of its
weak points. To overcome these weak points in this paper we have introduced the
use of soft-constraints. A similar approach, based on relaxation of constraints,
has been adopted in [1] but for sequential patterns. In the context of sequential
patterns, constraints are usually defined by means of regular languages: a pattern
is a solution to the query only if it is frequent and it is accepted by the regular
language. In this case, constraint-based techniques adopt a deterministic finite
automaton to define the regular language.

The use of regular languages transforms the pattern mining process into the
verification of which of the sequences of the language are frequent, completely
blocking the discovery of novel patterns. In [1] the authors propose a new mining
methodology based on the use of constraint relaxations, which assumes that the
user is responsible for choosing the strength of the restriction used to constrain
the mining process. A hierarchy of constraint relaxations is developed.

Another recent work using softness in a inductive database context is [19].
In this paper the softness issue addressed, is mostly related to the frequency
constraint, i.e., avoiding the exact match between candidate patterns and data
instances. The work is developed for substring patterns.

Acknowledgments. The authors wish to thank Roberto Trasarti from Pisa
KDD Laboratory, for the excellent work done implementing our ideas within the
continuously growing ConQueSt system.

References

1. Antunes, C., Oliveira, A.L.: Constraint relaxations for discovering unknown se-
quential patterns. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377,
pp. 11–32. Springer, Heidelberg (2005)

2. Bayardo, R.J.: The hows, whys, and whens of constraints in itemset and rule dis-
covery. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based
Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 1–13. Springer,
Heidelberg (2006)

3. Bayardo, R.J., Agrawal, R.: Mining the most interesting rules. In: Proceedings of
the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 145–154. ACM Press, New York (1999)

4. Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based concept min-
ing and its application to microarray data analysis. Intelligent Data Analysis jour-
nal, 59–82 (2005)

5. Bistarelli, S., Bonchi, F.: Interestingness is not a dichotomy: Introducing softness
in constrained pattern mining. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho,
R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 22–33. Springer,
Heidelberg (2005)

6. Bistarelli, S., Codognet, P., Rossi, F.: Abstracting soft constraints: Framework,
properties, examples. Artificial Intelligence 139(2), 175–211 (2002)

7. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and
Optimization. Journal of the ACM 44(2), 201–236 (1997)

Extending the Soft Constraint Based Mining Paradigm 41

8. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.: Con-

QueSt: a constraint-based querying system for exploratory pattern discovery. In:
Proceedings of The 22nd IEEE International Conference on Data Engineering, pp.
22–33. IEEE Computer Society Press, Los Alamitos (2006)

9. Bonchi, F., Lucchese, C.: Extending the state-of-the-art of constraint-based pattern
discovery. Data and Knowledge Engineering (DKE) (to appear, 2006)

10. Bonchi, F., Giannotti, F., Lucchese, C., Orlando, S., Perego, R., Trasarti, R.:
On interactive pattern mining from relational databases. In: KDID 2006. LNCS,
vol. 4747, pp. 42–62. Springer, Heidelberg (2007)

11. Boulicaut, J.F., Jeudy, B.: Constraint-based data mining. In: Maimon, O., Rokach,
L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399–416.
Springer, Heidelberg (2005)

12. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: Generalizing associa-
tion rules to correlations. In: Proceedings ACM SIGMOD International Conference
on Management of Data, pp. 256–276. ACM Press, New York (1997)

13. Ordonez, C., et al.: Mining constrained association rules to predict heart disease.
In: Proceedings of the First IEEE International Conference on Data Mining, pp.
433–440. IEEE Computer Society Press, Los Alamitos (2001)

14. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilis-
tic approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS,
vol. 747, pp. 97–104. Springer, Heidelberg (1993)

15. Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest.
Kluwer Academic Publishers, Boston (2002)

16. Hipp, J., Güntzer, H.: Is pushing constraints deeply into the mining algorithms
really what we want?: an alternative approach for association rule mining. SIGKDD
Explorations 4(1), 50–55 (2002)

17. Hofmann, H., Siebes, A., Wilhelm, A.F.X.: Visualizing association rules with in-
teractive mosaic plots. In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 227–235. ACM Press,
New York (2000)

18. Lau, A., Ong, S., Mahidadia, A., Hoffmann, A., Westbrook, J., Zrimec, T.: Mining
patterns of dyspepsia symptoms across time points using constraint association
rules. In: Whang, k-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003.
LNCS (LNAI), vol. 2637, pp. 124–135. Springer, Heidelberg (2003)

19. Mitasiunaite, I., Boulicaut, J.-F.: About softness for inductive querying on sequence
databases. In: Proceedings 7th International Baltic Conference on Databases and
Information Systems DB IS 2006, July 3-6 2006, Vilnius (Lithuania) (2006)

20. Silberschatz, A., Tuzhilin, A.: On subjective measures of interestingness. In: Pro-
ceedings of the First International Conference on Knowledge Discovery and Data
Mining, pp. 275–281 (1995)

21. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure
for association patterns. In: Proc. of the Eighth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD’2002), ACM Press,
New York (2002)

22. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley, Reading (2005)

Value, Cost, and Sharing:
Open Issues in Constrained Clustering

Kiri L. Wagstaff

Jet Propulsion Laboratory, California Institute of Technology,
Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena CA 91109, USA

kiri.wagstaff@jpl.nasa.gov

Abstract. Clustering is an important tool for data mining, since it can
identify major patterns or trends without any supervision (labeled data).
Over the past five years, semi-supervised (constrained) clustering meth-
ods have become very popular. These methods began with incorporating
pairwise constraints and have developed into more general methods that
can learn appropriate distance metrics. However, several important open
questions have arisen about which constraints are most useful, how they
can be actively acquired, and when and how they should be propagated
to neighboring points. This position paper describes these open questions
and suggests future directions for constrained clustering research.

1 Introduction

Clustering methods are used to analyze data sets that lack any supervisory
information such as data labels. They identify major patterns or trends based
on a combination of the assumed cluster structure (e.g., Gaussian distribution)
and the observed data distribution. Recently, semi-supervised clustering methods
have become very popular because they can also take advantage of supervisory
information when it is available. This supervision often takes the form of a set of
pairwise constraints that specify known relationships between pairs of data items.
Constrained clustering methods incorporate and enforce these constraints. This
process is not just a fix for suboptimal distance metrics; it is quite possible for
different users to have different goals in mind when analyzing the same data set.
Constrained clustering methods permit the clustering results to be individually
tailored for these different goals.

The initial work in constrained clustering has led to further study of the
impact of incorporating constraints into clustering algorithms, particularly when
applied to large, real-world data sets. Important issues that have arisen include:

1. Given the recent observation that some constraint sets can adversely impact
performance, how can we determine the utility of a given constraint set, prior
to clustering?

2. How can we minimize the effort required of the user, by active soliciting only
the most useful constraints?

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 K.L. Wagstaff

3. When and how should constraints be propagated or shared with neighboring
points?

This paper begins with a description of the constrained clustering problem
and surveys existing methods for finding satisfying solutions (Section 2). This
overview is meant to be representative rather than comprehensive. Section 3
contributes more detailed descriptions of each of these open questions. In identi-
fying these challenges, and the state of the art in addressing them, we highlight
several directions for future research.

2 Constrained Clustering

We specify a clustering problem as a scenario in which a user wishes to obtain
a partition P of a data set D, containing n items, into k clusters or groups. A
constrained clustering problem is one in which the user has some pre-existing
knowledge about their desired P∗. Usually, P∗ is not fully known; if it were,
no clustering would be necessary. Instead, the user is only able to provide a
partial view V(P∗). In this case, rather than returning P that best satisfies the
(generic) objective function used by the clustering algorithm, we require that
the algorithm adapt its solution to accommodate V(P∗).

2.1 Pairwise Constraints

A partition P can be completely specified by stating, for each pairwise relation-
ship (di, dj) where di, dj ∈ D and di �= dj , whether the pair of items is in the
same cluster or split between different cluster. When used to specify require-
ments about the output partition, we refer to these statements as must-link and
cannot-link constraints, respectively [1,2]. The number of distinct constraints
ranges from 1 to 1

2n(n − 1), since constraints are by definition symmetric. It is
often the case that additional information can be automatically inferred from
the partial set of constraints specified by the user. Cluster membership is an
equivalence relation, so the must-link relationships are symmetric and tran-
sitive. Cannot-link relationships are symmetric but not necessarily transitive.
When constraints of both kinds are present, an entailment relationship permits
the discovery of additional constraints implied by the user-specified set [2,3].

The first work in this area proposed a modified version of COBWEB that
enforced pairwise must-link and cannot-link constraints [1]. It was followed by
an enhanced version of the widely used k-means algorithm that could also ac-
commodate constraints, called cop-kmeans [2]. Table 1 reproduces the details
of this algorithm. cop-kmeans takes in a set of must-link (Con=) and cannot-
link (Con �=) constraints. The essential change from the basic k-means algorithm
occurs in step (2), where the decision about where to assign a given item di is
constrained so that no constraints in Con= or Con �= are violated. The satisfy-
ing condition is checked by the violate-constraints function. Note that it is
possible for there to be no solutions that satisfy all constraints, in which case
the algorithm exits prematurely.

Value, Cost, and Sharing: Open Issues in Constrained Clustering 3

Table 1. Constrained K-means Algorithm for hard, pairwise constraints [2]

cop-kmeans(data set D, number of clusters k, must-link constraints Con= ⊂ D × D,
cannot-link constraints Con�= ⊂ D × D)

1. Let C1 . . . Ck be the k initial cluster centers.
2. For each point di ∈ D, assign it to the closest cluster Cj such that violate-

constraints(di, Cj , Con=, Con�=) is false. If no such cluster exists, fail (return
{}).

3. For each cluster Ci, update its center by averaging all of the points dj that have
been assigned to it.

4. Iterate between (2) and (3) until convergence.
5. Return {C1 . . . Ck}.

violate-constraints(data point d, cluster C, must-link constraints Con= ⊂ D × D,
cannot-link constraints Con�= ⊂ D × D)

1. For each (d, d=) ∈ Con=: If d= /∈ C, return true.
2. For each (d, d �=) ∈ Con�=: If d �= ∈ C, return true.
3. Otherwise, return false.

A drawback of this approach is that it may fail to find a satisfying solution
even when one exists. This happens because of the greedy fashion in which items
are assigned; early assignments can constrain later ones due to potential conflicts,
and there is no mechanism for backtracking. As a result, the algorithm is sensitive
to the order in which it processes the data set D. In practice, this is resolved by
running the algorithm multiple times with different orderings of the data, but for
data sets with a large number of constraints (especially cannot-link constraints),
early termination without a solution can be a persistent problem. We previously
assessed the hardness of this problem by generating constraint sets of varying sizes
for the same data set and found that convergence failures happened most often for
problems with an intermediate number of constraints, with respect to the number
of items in the data set. This is consistent with the finding that 3-SAT formulas
with intermediate complexity tend to be most difficult to solve [4].

In practice, however, this algorithmhas provenvery effective on a variety of data
sets. Initial experiments used several data sets from the UCI repository [5], using
constraints artificially generated from the known data labels. In addition, experi-
mental results on a real-world problem showed the benefits of using a constrained
clustering method when pre-existing knowledge is available. In this application,
data from cars with GPS receivers were collected as they traversed
repeatedly over the same roads. The goal was to cluster the data points to identify
the road lanes, permitting the automatic refinement of digital maps to the indi-
vidual lane level. By expressing domain knowledge about the contiguity of a given
car’s trajectory and a maximum reasonable separation between lanes in the form
of pairwise constraints, lane-finding performance increased from 58.0% without
constraints to 98.6% with constraints [2]. A natural follow-on to this work was the
development of a constrained version of the EM clustering algorithm [6].

4 K.L. Wagstaff

Soft Constraints. When the constraints are known to be completely reliable,
treating them as hard constraints is an appropriate approach. However, since the
constraints may be derived from heuristic domain knowledge, it is also useful to
have a more flexible approach. There are two kinds of uncertainty that we may
wish to capture: (1) the constraints are noisy, so we should permit some of them
to be violated if there is overwhelming evidence against them (from other data
items), and (2) we have knowledge about the likelihood that a given constraint
should be satisfied, so we should permit the expression of a probabilistic con-
straint. The scop-kmeans algorithm is a more general version of cop-kmeans

algorithm that treats constraint statements as soft constraints, addressing the
issue of noise in the constraints [7]. Rather than requiring that every constraint
be satisfied, it instead trades off the objective function (variance) against con-
straint violations, penalizing for each violation but permitting a violation if it
provides a significant boost to the quality of the solution. Other approaches,
such as the MPCK-means algorithm, permit the specification of an individual
weight for each constraint, addressing the issue of variable per-constraint con-
fidences [3]. MPCK-means imposes a penalty for constraint violations that is
proportional to the violated constraint’s weight.

Metric Learning. It was recognized early on that constraints could provide
information not only about the desired solution, but also more general informa-
tion about the metric space in which the clusters reside. A must-link constraint
(di, dj) can be interpreted as a hint that the conceptual distance between di and
dj is small. Likewise, a cannot-link constraint implies that the distance between
di and dj is so great that they should never be clustered together. Rather than
using a modified clustering algorithm to enforce these individual constraints, it
is also possible to use the constraints to learn a new metric over the feature
space and then apply regular clustering algorithms, using the new metric. Sev-
eral such metric learning approaches have been developed; some are restricted
to learning from must-link constraints only [8], while others can also accommo-
date cannot-link constraints [9,10]. The MPCK-means algorithm fuses both of
these approaches (direct constraint satisfaction and metric learning) into a single
architecture [3].

2.2 Beyond Pairwise Constraints

There are other kinds of knowledge that a user may have about the desired par-
tition P∗, aside from pairwise constraints. Cluster-level constraints include exis-
tential constraints, which require that a cluster contain at least cmin items [11,12]
and capacity constraints, which require that a cluster must have less than cmax

items [13].
The user may also wish to express constraints on the features. Co-clustering

is the process of identifying subsets of items in the data set that are similar
with respect to a subset of the features. That is, both the items and the features
are clustered. In essence, co-clustering combines data clustering with feature
selection and can provide new insights into a data set. For data sets in which the

Value, Cost, and Sharing: Open Issues in Constrained Clustering 5

features have a pre-defined ordering, such as a temporal (time series) or spatial
ordering, it can be useful to express interval/non-interval constraints on how the
features are selected by a co-clustering algorithm [14].

3 Open Questions

The large body of existing work on constrained clustering has achieved several
important algorithmic advances. We have now reached the point where more fun-
damental issues have arisen, challenging the prevailing view that constraints are
always beneficial and examining how constraints can be used for real problems, in
which scalability and the user effort required to provide constraints may impose
an unreasonable burden. In this section, we examine these important questions,
including how the utility of a given constraint set can be quantified (Section 3.1),
how we can minimize the cost of constraint acquisition (Section 3.2), and how we
can propagate constraint information to nearby regions to minimize the number
of constraints needed (Section 3.3).

3.1 Value: How Useful Is a Given Set of Constraints?

It is to be expected that some constraint sets will be more useful than others, in
terms of the benefit they provide to a given clustering algorithm. For example,
if the constraints contain information that the clustering algorithm is able to
deduce on its own, then they will not provide any improvement in clustering
performance. However, virtually all work to date values constraint sets only in
terms of the number of constraints they contain. The ability to more accurately
quantify the utility of a given constraint set, prior to clustering, will permit
practitioners to decide whether to use a given constraint set, or to choose the
best constraint set to use, when several are available.

The need for a constraint set utility measure has become imperative with
the recent observation that some constraint sets, even when completely accurate
with respect to the evaluation labels, can actually decrease clustering perfor-
mance [15]. The usual practice when describing the results of constrained clus-
tering experiments is to report the clustering performance averaged over multiple
trials, where each trial consists of a set of constraints that is randomly generated
from the data labels. While it is generally the case that average performance does
increase as more constraints are provided, a closer examination of the individual
trials reveals that some, or even many, of them instead cause a drop in accuracy.
Table 2 shows the results of 1000 trials, each with a different set of 25 randomly
selected constraints, conducted over four UCI data sets [5] using four different
k-means-based constrained clustering algorithms. The table reports the fraction
of trials in which the performance was lower than the default (unconstrained)
k-means result, which ranges from 0% up to 87% of the trials.

The average performance numbers obscure this effect because the “good”
trials tend to have a larger magnitude change in performance than the “bad”
trials do. However, the fact that any of the constraint sets can cause a decrease in

6 K.L. Wagstaff

Table 2. Fraction of 1000 randomly selected 25-constraint sets that caused a drop
in accuracy, compared to an unconstrained run with the same centroid initialization
(table from Davidson et al. [15])

Algorithm
CKM [2] PKM [3] MKM [3] MPKM [3]
Constraint Constraint Metric Enforcement and

Data Set enforcement enforcement learning metric learning
Glass 28% 1% 11% 0%

Ionosphere 26% 77% 0% 77%
Iris 29% 19% 36% 36%

Wine 38% 34% 87% 74%

performance is unintuitive, and even worrisome, since the constraints are known
to be noise-free and should not lead the algorithm astray.

To better understand the reasons for this effect, Davidson et al. [15] defined
two constraint set properties and provided a quantitative way to measure them.
Informativeness is the fraction of information in the constraint set that the al-
gorithm cannot determine on its own. Coherence is the amount of agreement
between the constraints in the set. Constraint sets with low coherence will be
difficult to completely satisfy and can lead the algorithm into unpromising areas
of the search space. Both high informativeness and high coherence tend to re-
sult in an increase in clustering performance. However, these properties do not
fully explain some clustering behavior. For example, a set of just three randomly
selected constraints, with high informativeness and coherence, can increase clus-
tering performance on the iris data set significantly, while a constraint set with
similarly high values for both properties has no effect on the ionosphere data
set. Additional work must be done to refine these measures or propose additional
ones that better characterize the utility of the constraint set.

Two challenges for future progress in this area are: 1) to identify other con-
straint set properties that correlate with utility for constrained clustering al-
gorithms, and 2) to learn to predict the overall utility of a new constraint set,
based on extracted attributes such as these properties. It is likely that the latter
will require the combination of several different constraint set properties, rather
than being a single quantity, so using machine learning techniques to identify
the mapping from properties to utility may be a useful approach.

3.2 Cost: How Can We Make Constraints Cheaper to Acquire?

A single pairwise constraint specifies a relationship between two data points. For
a data set with n items, there are 1

2n(n − 1) possible constraints. Therefore, the
number of constraints needed to specify a given percentage of the relationships
(say, 10%) increases quadratically with the data set size. For large data sets, the
constraint specification effort can become a significant burden.

Value, Cost, and Sharing: Open Issues in Constrained Clustering 7

There are several ways to mitigate the cost of collecting constraints. If con-
straints are derived from a set of labeled items, we obtain L(L−1) constraints for
the cost of labeling only L items. If the constraints arise independently (not from
labels), most constrained clustering algorithms can leverage constraint properties
such as transitivity and entailment to deduce additional constraints automati-
cally. A more efficient way to obtain the most useful constraints for the least
effort is to permit the algorithm to actively solicit only the constraints it needs.
Klein et al. [9] suggested an active constraint acquisition method in which a
hierarchical clustering algorithm can identify the m best queries to issue to the
oracle. Recent work has also explored constraint acquisition methods for par-
titional clustering based on a farthest-first traversal scheme [16] or identifying
points that are most likely to lie on cluster boundaries [17]. When constraints are
derived from data labels, it is also possible to use an unsupervised support vector
machine (SVM) to identify “pivot points” that are most useful to label [18].

A natural next step would be to combine methods for active constraint acqui-
sition with methods for quantifying constraint set utility. In an ideal world, we
would like to request the constraint(s) which will result in the largest increase
in utility for the existing constraint set. Davidson et al. [15] showed that when
restricting evaluation to the most coherent constraint sets, the average perfor-
mance increased for most of the data sets studied. This early result suggests that
coherence, and other utility measures, could be used to guide active constraint
acquisition.

Challenges in this area are: 1) to incorporate measures of constraint set utility
into an active constraint selection heuristic, akin to the MaxMin heuristic for
classification [19], so that the best constraint can be identified and queried prior
to knowing its designation (must/cannot), and 2) to identify efficient ways to
query the user for constraint information at a higher level, such as a cluster
description or heuristic rule that can be propagated down to individual items to
produce a batch of constraints from a single user statement.

3.3 Sharing: When and How Should Constraints Be Propagated to
Neighboring Points?

Another way to get the most out of a set of constraints is to determine how
they can be propagated to other nearby points. Existing methods that learn
distance metrics use the constraints to “warp” the original distance metric to
bring must-linked points closer together and to push cannot-linked points far-
ther apart [9,10,8,3]. They implicitly rely on the assumption that it is “safe” to
propagate constraints locally, in feature space. For example, if a must be linked
to b, and the distance dist(a, c) is small, then when the distance metric is warped
to bring a closer to b, it is also likely that the distance dist(b, c) will shrink and
the algorithm will cluster b and c together as well. The performance gains that
have been achieved when adapting the distance metric to the constraints are a
testament to the common reliability of this assumption.

However, the assumption that proximity can be used to propagate constraints
is not always a valid one. It is only reasonable if the distance in feature space is

8 K.L. Wagstaff

x x x
x o o
o

x x o
x o x
o

Board A Board B

Win for X Loss for X

Board C

Win for X

o o x
o x x
x x o

dist(A,B)
dist(B,C)
dist(A,C)

2
8
8

Hamming distances

Fig. 1. Three items (endgame boards) from the tic-tac-toe data set. For clarity,
blanks are represented as blanks, rather than spaces marked ‘b’. The Hamming dis-
tances between each pair of boards are shown on the right.

consistent with the distances that are implied by the constraint set. This often
holds true, since the features that are chosen to describe the data points are
consistent with the data labels, which are commonly the source of the constraints.
One exception is the tic-tac-toe data set from the UCI archive [5]. In this data
set, each item is a 3x3 tic-tac-toe board that represents an end state for the game,
assuming that the ‘x’ player played first. The boards are represented with nine
features, one for each position on the board, and each one can take on a value
of ‘x’, ‘o’, or ‘b’ (for blank). The goal is to separate the boards into two clusters:
one with boards that show a win for ‘x’ and one with all other boards (losses
and draws).

This data set is challenging because proximity in the feature space does not
correlate well with similarity in terms of assigned labels. Consider the examples
shown in Figure 1. Hamming distance is used with this data set, since the features
have symbolic values. Boards A and B are very similar (Hamming distance of
2), but they should be joined by a cannot-link constraint. In contrast, boards A
and C are very different (Hamming distance of of 8), but they should be joined
by a must-link constraint. In this situation, propagating constraints to nearby
(similar) items will not help improve performance (and may even degrade it).

Clustering performance on this data set is typically poor, unless a large num-
ber of constraints are available. The basic k-means algorithm achieves a Rand
Index of 51%; COP-KMEANS requires 500 randomly selected constraints to
increase performance to 92% [2]. COP-COBWEB is unable to increase its per-
formance above the baseline of 49% performance, regardless of the number of
constraints provided [1]. In fact, when we examine performance on a held-out
subset of the data1, it only increases to 55% for COP-KMEANS, far lower than
the 92% performance on the rest of the data set. For most data sets, the held-out
performance is much higher [2]. The low held-out performance indicates that the
algorithm is unable to generalize the constraint information beyond the exact
items that participate in constraints. This is a sign that the constraints and the
features are not consistent, and that propagating constraints may be dangerous.
The results of applying metric learning methods to this data set have not yet

1 The data subset is “held-out” in the sense that no constraints were generated on
the subset, although it was clustered along with all of the other items once the
constraints were introduced.

Value, Cost, and Sharing: Open Issues in Constrained Clustering 9

been published, probably because the feature values are symbolic rather than
real-valued. However, we expect that metric learning would be ineffective, or
even damaging, in this case.

Challenges to be addressed in this area are: 1) to characterize data sets in
terms of whether or not constraints should be propagated (when is it “safe”
and when should the data overrule the constraints?), and 2) to determine the
degree to which the constraints should be propagated (e.g., how far should the
local neighborhood extend, for each constraint?). It is possible that constraint
set coherence [15] could be used to help estimate the relevant neighborhood for
each point.

4 Conclusions

This paper outlines several important unanswered questions that relate to the
practice of constrained clustering. To use constrained clustering methods effec-
tively, it is important that we have tools for estimating the value of a given
constraint set prior to clustering. We also seek to minimize the cost of acquir-
ing constraints. Finally, we require guidance in determining when and how to
share or propagate constraints to their local neighborhoods. In addressing each
of these subjects, we will make it possible to confidently apply constrained clus-
tering methods to very large data sets in an efficient, principled fashion.

Acknowledgments. I would like to thank Sugato Basu and Ian Davidson for
ongoing discussions on constrained clustering issues and their excellent tutorial,
“Clustering with Constraints: Theory and Practice,” presented at KDD 2006.
The research described in this paper was funded by the NSF ITR Program
(award #0325329) and was carried out at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with the National Aeronautics
and Space Administration.

References

1. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proceedings
of the Seventeenth International Conference on Machine Learning, pp. 1103–1110
(2000)

2. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means cluster-
ing with background knowledge. In: Proceedings of the Eighteenth International
Conference on Machine Learning, pp. 577–584 (2001)

3. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: Proceedings of the Twenty-First International
Conference on Machine Learning, pp. 11–18 (2004)

4. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artificial Intelligence 81, 17–29 (1996)

5. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

10 K.L. Wagstaff

6. Shental, N., Bar-Hillel, A., Hertz, T., Weinshall, D.: Computing Gaussian mixture
models with EM using equivalence constraints. In: Advances in Neural Information
Processing Systems 16 (2004)

7. Wagstaff, K.L.: Intelligent Clustering with Instance-Level Constraints. PhD thesis,
Cornell University (2002)

8. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a Mahalanobis metric
from equivalence constraints. Journal of Machine Learning Research 6, 937–965
(2005)

9. Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-
level constraints: Making the most of prior knowledge in data clustering. In: Pro-
ceedings of the Nineteenth International Conference on Machine Learning, pp.
307–313 (2002)

10. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems 15 (2003)

11. Bradley, P.S., Bennett, K.P., Demiriz, A.: Constrained k-means clustering. Tech-
nical Report MSR-TR-2000-65, Microsoft Research, Redmond, WA (2000)

12. Tung, A.K.H., Ng, R.T., Lakshmanan, L.V.S., Han, J.: Constraint-based clustering
in large databases. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 405–419. Springer, Heidelberg (2000)

13. Murtagh, F.: A survey of algorithms for contiguity-constrained clustering and re-
lated problems. The Computer Journal 28(1), 82–88 (1985)

14. Pensa, R.G., Robardet, C., Boulicaut, J.F.: Towards constrained co-clustering in
ordered 0/1 data sets. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.)
ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 425–434. Springer, Heidelberg (2006)

15. Davidson, I., Wagstaff, K.L., Basu, S.: Measuring constraint-set utility for parti-
tional clustering algorithms. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.)
PKDD 2006. LNCS (LNAI), vol. 4213, pp. 115–126. Springer, Heidelberg (2006)

16. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: Proceedings of the SIAM International Conference on Data
Mining, pp. 333–344 (2004)

17. Xu, Q., DesJardins, M., Wagstaff, K.L.: Active constrained clustering by examining
spectral eigenvectors. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005.
LNCS (LNAI), vol. 3735, pp. 294–307. Springer, Heidelberg (2005)

18. Xu, Q.: Active Querying for Semi-supervised Clustering. PhD thesis, University of
Maryland, Baltimore County (2006)

19. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2, 45–66 (2002)

Extracting Trees of Quantitative Serial Episodes

Mirco Nanni1 and Christophe Rigotti1,2

1 KDD Laboratory, University of Pisa and ISTI-CNR Pisa, Italy
2 INSA-LIRIS UMR 5205 CNRS, Lyon, France

Abstract. Among the family of the local patterns, episodes are com-
monly used when mining a single or multiple sequences of discrete events.
An episode reflects a qualitative relation is-followed-by over event types,
and the refinement of episodes to incorporate quantitative temporal
information is still an on going research, with many application op-
portunities. In this paper, focusing on serial episodes, we design such
a refinement called quantitative episodes and give a corresponding ex-
traction algorithm. The three most salient features of these quantitative
episodes are: (1) their ability to characterize main groups of homoge-
neous behaviors among the occurrences, according to the duration of the
is-followed-by steps, and providing quantitative bounds of these dura-
tions organized in a tree structure; (2) the possibility to extract them
in a complete way; and (3) to perform such extractions at the cost of a
limited overhead with respect to the extraction of standard episodes.

1 Introduction

Sequential data is a common form of information available in several applica-
tion contexts, thus naturally inducing a strong interest for them among data
analysts. A decade-long attention has been paid by researchers in data mining
to study forms of patterns appropriated to this kind of data, such as sequential
patterns [1] and episodes [9,7]. In particular, in this paper we will focus on serial
episodes, that are sequences of event types extracted from single or multiple in-
put sequences, and that reflect a qualitative relation is-followed-by between the
event types.

Episodes have natural applications into several domains, including for instance
the analysis of business time series [2], medical data [10], geophysical data [11]
and also alarm log analysis for network monitoring (especially in telecommunica-
tions) [5]. However, in many applications episodes clearly show some limitations,
due to the fact that the information provided by the is-followed-by relation is
not always enough to properly characterize the phenomena at hand. This, in
particular, pulls our research toward the refinement of episodes to incorporate
quantitative temporal information, able to describe the time intervals observed
for the is-followed-by relation.

In this paper, we propose a refinement of episodes called quantitative episodes,
that provides quantitative temporal information in a readable, tree-based graph-
ically representable form. These quantitative episodes describe the main groups

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 170–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extracting Trees of Quantitative Serial Episodes 171

of homogeneous behaviors within the occurrences of each episode, according to
the elapsed times between the consecutive event types of the episode. Moreover,
they are not provided in an isolated way, but in trees giving a global view of
how the occurrences of the corresponding episode differentiate in homogeneous
groups along the elements of the pattern. From a computational point of view,
the main interest of the quantitative episodes is that they can be mined in a
sound and complete way without increasing the cost of extractions significantly
when compared to extractions of episodes alone. This is achieved through an
extraction algorithm that tightly integrates episode extraction with a computa-
tionally reasonable analysis of temporal quantitative information.

This paper is organized as follows: in Section 2 some preliminary definitions
needed concerning episodes are recalled from the literature; Section 3, then,
introduces quantitative episodes; Section 4 presents the principle of an algorithm
for efficiently extracting quantitative episodes, which is evaluated experimentally
in Section 5; finally, in Section 6 we briefly review the related literature and
conclude with a summary in Section 7.

2 Preliminary Definitions

We briefly introduce standard notions [8], or give equivalent definitions when
more appropriated to our presentation.

Definition 1 (event, event sequence,operator �). Let E be a set of event
types and ≺ a total order on E. An event is a pair denoted (e, t) where e ∈ E
and t ∈ N. The value t denotes the time stamp at which the event occurs. An
event sequence S is a tuple of events S = 〈(e1, t1), (e2, t2), . . . , (el, tl)〉 such that
∀i ∈ {1, . . . , l − 1}, ti < ti+1∨ (ti = ti+1 ∧ ei ≺ ei+1). Given two sequences of
events S and S′, S′ is a subsequence of S, denoted S′ � S, if S′ is equal to S or
if S′ can be obtained by removing some elements in S.

Definition 2 (episode, occurrence, minimal occurrence, support). An
episode is a non empty tuple α of the form α = 〈e1, e2, . . . , ek〉 with ei ∈ E for
all i ∈ {1, . . . , k}. In this paper, we will use the notation e1 → e2 → . . . → ek

to denote the episode 〈e1, e2, . . . , ek〉 where ’→’ may be read as ’is followed by’.
The size of α is denoted |α| and is equal to the number of elements of the tuple
α, i.e., |α| = k. The prefix of α is the episode 〈e1, e2, . . . , ek−1〉. We denote it
as prefix(α). An episode α = 〈e1, e2, . . . , ek〉 occurs in an event sequence S if
there exists at least one sequence of events S′ = 〈(e1, t1), (e2, t2), . . . , (ek, tk)〉
such that ∀i ∈ {1, . . . , k − 1}, ti < ti+1 and S′ � S. The pair 〈t1, tk〉 is called an
occurrence of α in S. Moreover, if there is no other occurrence 〈t′1, t′k〉 such that
[t′1, t

′
k] ⊂ [t1, tk], then the pair 〈t1, tk〉 is called a minimal occurrence of α. The

support of α in S, denoted support(α, S), is the number of minimal occurrences
of α in S.

Intuitively, a minimal occurrence is simply an occurrence that does not strictly
contain another occurrence of the same episode. These episodes and their occur-
rences correspond to the serial episodes of [8]. For instance, let S = 〈(a, 0), (b, 1),

172 M. Nanni and C. Rigotti

(c, 1), (b, 2)〉 be an event sequence and α = a → b be an episode. Then, α has two
occurrences in S: 〈0, 1〉 and 〈0, 2〉. The former is a minimal occurrence, while the
latter is not, since [0, 1] ⊂ [0, 2]. Notice that there is no occurrence of episode
α′ = b → c.

These definitions, and the ones introduced in the rest of the paper, are given
for a single sequence S, but they extend trivially to multiple sequences. In that
case the support is the sum of the number of occurrences in all sequences1.

3 Quantitative Episodes

In this section we introduce an extension of episodes that includes quantitative
information. The precise definitions will be preceded by an intuitive, informal
presentation of the key ideas.

3.1 Informal Presentation

The idea of quantitative episodes essentially consists in dividing the set of oc-
currences of an episode into homogeneous, significantly populated groups. Ho-
mogeneity, in particular, is obtained when on each step, made of two consecutive
elements of the episode, the occurrences in the same group show similar tran-
sition times (i.e., similar times elapsed between an element and the next one
within the episode). The result can be graphically summarized through a tree-
like structure, as the one depicted in Figure 1 that represents homogeneous
groups of occurrences of an episode α = A → B → C → D. The figure can be
read in the following way:

– The episode has 1000 occurrences in the sequence of events, and this value
is written under the first event of the episode.

– Among these 1000 occurrences, there are 2 subgroups that show homoge-
neous duration for step A → B: one (the upper branch of the split) corre-
sponds to transition times between 2 and 10, and covers 500 occurrences; the
other (lower branch) corresponds to transition times in interval [15, 20] and
covers 400 occurrences. Notice that 100 occurrences of A → B → C → D are
lost, meaning that they exhibit a rather isolated duration for step A → B
and cannot be associated with other occurrences to form a significantly pop-
ulated group.

– In the largest group obtained above, all occurrences present similar step
durations for steps B → C and C → D, and are kept together in a single
group. The other group, containing 400 occurrences, is split further into
homogeneous groups w.r.t. duration of step B → C. Notice that the resulting
homogeneous groups overlap, sharing a subset of occurrences and resulting
in non-disjoint time intervals. Indeed, we can observe that the total count of

1 Notice that here, the support is not the number of sequences containing at least
one occurrence of the pattern, as in the case of sequential patterns over a base of
sequences [1].

Extracting Trees of Quantitative Serial Episodes 173

occurrences in the two groups (205+202) is greater than the original total
amount (400), since some occurrences are counted twice.

– One of these two groups is further split into two (disjoint) groups while the
other is not.

– Each path from the root to a leaf in the tree corresponds to a group of
occurrences that shows an homogeneous behavior along all the steps of the
episode, and covers a sufficient number of occurrences (in this example, at
least 90). This homogeneous behavior can be represented by the sequence of
time intervals on the path, and can be added to the episode as a quantitative
feature to form a main grouping quantitative episode. The tree in Figure 1
depicts four such patterns (one for each path from the root to a leaf). The
tree relates these patterns together, showing how the occurrences can be
differentiated into groups along the steps of the episode.

90

490500

1000

400

205

490

100

200202

[2,10]

[15,20]

[5,20]

[10,40]

[35,60]

[10,15]

[10,30]

[30,45]

[5,20]

DCBA

Fig. 1. Tree of quantitative episodes for episode α = A → B → C → D

Example 1. In a medical context, we can assume to have recorded the sequences
of symptoms, diseases and therapies of all patients in a hospital. Then, mining
frequent quantitative episodes can yield a set of common patterns in the history
of patients in terms of sequences of symptoms, etc., together with the common
timings between pairs of consecutive events, that can help to characterize, e.g.,
the course of diseases, reactions to therapies, etc. As a fictional example, we
can consider the tree of Figure 1 with A = benign disease, B = symptom 1, C
= symptom 2, D = severe disease, and using days as time unit. In this case,
beside the interesting evolution of a disease, the tree points out the existence of
different groups of patients, each following the same evolution but with different
timings. The first differentiation occurs between the appearance of the benign
disease and the first symptom, in one case taking no more than 10 days, and
in the other case taking approximately between two and three weeks. Then, the
second group of patients further differentiate in the timings between the two

174 M. Nanni and C. Rigotti

symptoms (10 to 40 days in one case and 35 to 60 in the second one) and one
subgroup shows differences also on the last step (5 to 20 days in one case and
30 to 45 in the second one). This kind of information could be useful to domain
experts, both as ready-to-use knowledge for the daily care of patients, and as
insight for the a more general study and understanding of the diseases involved.

Some sample quantitative episode trees, obtained on real data involving the
logs of a web site, are provided in Section 5.2, Figure 10.

We notice that our approach essentially produces trees rooted on the first event
of each episode, from which all the differentiations in time develop. While this
choice looks very natural, since it follows the order of events in the episode, other
choices could be useful in specific contexts as, for example, rooting the tree on
the last event of the episode. However, such variants of the quantitative episodes
studied in this paper follow the same principles, and in some cases they can be
obtained by simply preprocessing the input data, e.g., moving the root of the
tree on the last event of episodes can be obtained by essentially reversing the
order of the input sequences.

3.2 Quantitative Episode Definition

Definition 3 (quantitative episode). A quantitative episode (q-episode) is a
pair P = 〈α, IT 〉 where α is an episode of size k > 1, and IT = 〈it1, . . . , itk−1〉,
with ∀i ∈ {1, . . . , k − 1}, iti = [ai, bi] ⊂ N

+ (i.e., iti is an interval in N
+). The

size of P , denoted |P | is defined as |P | = |α|.

The iti intervals are intended to represent values of elapsed time between the
occurrences of two consecutive event types of the episode α. For instance 〈A →
B → C → D, 〈[15, 20], [10, 40], [5, 20]〉〉 is one of the q-episodes depicted in
Figure 1.

To handle the time stamps of the events corresponding to all event types
within an episode the definition of occurrence needs to be modified as follows.

Definition 4 (occurrence). An occurrence of an episode α = 〈e1, e2, . . . , ek〉
in an event sequence S is a tuple 〈t1, t2, . . . , tk〉 such that there exists S′ =
〈(e1, t1), (e2, t2), . . . , (ek, tk)〉 satisfying ∀i ∈ {1, . . . , k − 1}, ti < ti+1 and S′ � S.

Notice that subsequence S′ in the definition above can be formed by non-
contiguous elements of sequence S.

Let us now consider the notion of minimality of occurrences. Let S = 〈(a, 1),
(b, 3), (b, 6), (c, 9)〉 be an event sequence and α = a → b → c be an episode.
Then 〈1, 3, 9〉 and 〈1, 6, 9〉 are two occurrences of α. If we consider a notion of
minimal occurrence based only on the starting date and the ending date of the
occurrences, then both are minimal. This does not fit with the intuition behind
the original notion of minimal occurrence, according to which in such a situation
there is only one minimal occurrence, i.e., the occurrence 〈1, 9〉 (only the starting
and ending dates are used to identify occurrences in the original framework).

Extracting Trees of Quantitative Serial Episodes 175

Thus, using occurrences that account for the intermediate time stamps as in
Definition 4, the notion of minimal occurrence has to be redefined, and must not
be based only on the starting and ending dates of the occurrences. Moreover,
this extension has to be made by carefully avoiding counterintuitive situations.
For instance, in the previous example, if we choose as minimal occurrences those
containing only minimal occurrences of the different parts of the episode, then
〈1, 3, 9〉 is no longer a minimal occurrence of α, since 〈3, 9〉 is not a minimal
occurrence of b → c (the minimal occurrence of this part of the episode α is
〈6, 9〉). The same arises for 〈1, 6, 9〉 because 〈1, 6〉 is not minimal for the part
a → b (the minimal occurrence of this part of the episode α is 〈1, 3〉). Whence,
α would have no minimal occurrence in S.

In the definition we retain (given as Definition 5), we use two criteria: (1) min-
imality based on the starting and ending dates, and (2) when several occurrences
start and end at the same dates we choose the occurrence containing the earli-
est possible intermediate time stamps. This second condition is expressed simply
through a minimality requirement with respect to the prefix of the episode. Intu-
itively this means that the minimal occurrence among several occurences having
the same starting and ending dates is the one formed as soon as possible, e.g.,
in the previous example the minimal occurrence of α is 〈1, 3, 9〉.

Definition 5 (minimal occurrence). An occurrence 〈t1, . . . , tk〉 of an episode
α in event sequence S is a minimal occurrence if (1) there is no other occurrence
〈t′1, . . . , t′k〉 of α such that [t′1, t

′
k] ⊂ [t1, tk], and (2) if k > 2 then 〈t1, . . . , tk−1〉 is

a minimal occurrence of prefix(α).

As we will consider only minimal occurrences of episodes, we will simply use the
term occurrence, when there is no ambiguity.

For a step ei → ei+1 in an episode α, and its durations among a set of occur-
rences of α, now we define how these duration values are grouped. Informally,
groups correspond to maximal sets of duration values that form dense inter-
vals, where dense means that any sub-interval of significant size ws contains a
significant number of values ns. More precisely, ws ∈ R, ws ≥ 1 and ns ∈ N

+

are termed the density parameters and characterize the groups in the following
definition.

Definition 6 (occurrence groups). Let O be a set of occurrences of episode α
and i be an integer parameter such that 1 ≤ i < |α| (i identifies a step ei → ei+1).
Let Δi(x) = ti+1 − ti for any occurrence x = 〈t1, . . . , t|α|〉 (i.e., the duration of
step ei → ei+1 for occurrence x). Then, the occurrence groups of O at level i,
denoted as group(O, i), are defined as follows:

group(O, i) = { g | g is a maximal subset of O s.t.:
∀a, b ∈ [minx∈g Δi(x), maxx∈g Δi(x)],

b − a ≥ ws ⇒ |{x ∈ g | Δi(x) ∈ [a, b]}| ≥ ns}

For example, consider the set of occurrences O = {x1, . . . , x8} having the re-
spective durations 3,4,6,6,8,9,15,16,16 for step ei → ei+1 (i.e., the values of Δi).

176 M. Nanni and C. Rigotti

Let the density parameters be ws = 3 and ns = 2 (i.e., at least two elements
in any sub-interval of size 3). Then group(O, i) = {{x1, . . . , x5}, {x6, x7, x8}}
(corresponding respectively to the durations 3, 4, 6, 6, 8, 9 and 15, 16, 16).

The next definition specifies the tree structure of the occurrence groups.

Definition 7 (occurrence group tree). Let O be the set of occurrences of
episode α. Then, the occurrence group tree (group tree for short) of α is a
rooted tree with labelled edges such that:

– the tree has |α| levels, numbered from 1 (the root) to |α| (the deepest leaves);
– each node v is associated with a set v.g of occurrences of α;
– the root is associated with root .g = O, i.e., with all the occurrences of α;
– if a node v at level i, 1 ≤ i < |α|, is such that group(v.g, i) = {g1, . . . , gk},

then it has k children v1, . . . , vk, with vj .g = gj, i ∈ {1, . . . , k}.
– each edge connecting node v at level i with its child vj is labelled with the

interval [minx∈vj .g Δi(x), maxx∈vj.g Δi(x)];

Notice that such tree is unique, up to permutations in the order of the children
of each node. Then, the main grouping q-episodes correspond simply to the sets
of occurrences that have not been separated from the root to a leaf and that
have a significant size.

Definition 8 (main grouping q-episode). A q-episode P = 〈α, IT 〉 is said
to be a main grouping q-episode if the group tree of α contains a path from the
root to a leaf v such that:

– the labels of the edges met along the path correspond to the intervals in IT ;
– and |v.g|, called the support of P , is greater or equal to σg, a user defined

minimum group size.

For instance, Figure 1 depicts a tree of main grouping q-episodes for α = A →
B → C → D and σg = 90 (a group tree restricted to paths forming main
grouping q-episodes).

Since a minimal occurrence of α can be obtained only by extending a minimal
occurrence of prefix (α), we have the following simple property that is used as a
safe pruning criterion in the extraction principle.

Theorem 1. Let α be an episode such that |α| > 1. If there exists a main grouping
q-episode 〈α, IT 〉, then there exists a main grouping q-episode 〈prefix (α), IT ′〉.

4 Extracting q-Episodes

In this section, we present an algorithm to extract all main grouping q-episodes,
based on the computation of the group trees. Even though the notion of group
tree is rather intuitive, the difficulties lay in the fact that we have to compute
such a tree for every episode. We describe the overall principle of the approach
and then give the corresponding abstract algorithm.

Extracting Trees of Quantitative Serial Episodes 177

4.1 Principle

A simple preliminary remark is that the tree computation can be limited to
episodes occurring at least σg times, since σg is the minimal support of a main
grouping q-episode and a q-episode cannot be more frequent than its correspond-
ing episode. However, in practice we are still facing a large number of frequent
episodes. So, we propose the algorithm Q-epiMiner that interleaves frequent
episode extraction and group tree computation in a tight efficient way.

Let α = 〈e1, . . . , en〉 be an episode. For each event type ei in α, i > 1, we
consider a list Di that collects the durations between ei−1 and ei, i.e., the values
Δi−1(x) for all occurrences x of α, and we suppose that each Di is sorted by
increasing duration value. By convention, for the sake of uniformity, D1 contains
a duration of 0 for all occurrences (there is no element before e1).

In the following, we describe how these lists D1, . . . , Dn can be used to com-
pute the group tree of pattern α, and then how they can be updated when
expanding α with an event type en+1.

Splitting one node. Splitting the group of occurrences of α associated to one node
of the tree at level i (to obtain its children at level i+1) can be done simply by a
single scan of the elements in the group if these elements are ordered by the dura-
tion between ei and ei+1. For instance, consider a node associated to the occur-
rences introduced in the previous example on page 175, corresponding to dura-
tions [3, 4, 6, 6, 8, 9, 15, 16, 16], and consider the same density parameters ws = 3
and ns = 2. Then a single scan through the list allows to find the low density
areas, as for example [10, 13] that is a sub-interval of size 3 without any element
of list [3, 4, 6, 6, 8, 9, 15, 16, 16] in it, and thus the scan leads to obtain the two
maximal sublists satisfying the density criterion: [3, 4, 6, 6, 8, 9] and [15, 16, 16].
The same principle can be applied even when the maximal sublists are overlap-
ping. For instance, if the list of durations is [3, 4, 6, 6, 8, 9, 12, 15, 16, 16], a single
scan allows to determine that for example only one element is in interval [10, 13],
while at least two are in the intervals (of size 3) [9, 12] and [12, 15]. Whence we
have the two maximal sublists satisfying the density criterion: [3, 4, 6, 6, 8, 9, 12]
and [12, 15, 16, 16].

In the following, we use a function named splitGroup performing this simple
treatment. We suppose that it takes as input a list of occurrences in a group,
sorted by duration of ei → ei+1, and gives as output a collection of all maximal
sublists satisfying the density criterion.

Computing the whole tree. Suppose that we have already computed the groups
of occurrences denoted g1, . . . , gk that are associated respectively to the nodes
v1, . . . , vk of a level i of the tree. These groups are split in the following way to
obtain the nodes of the next level. Firstly, we create for each node vj an empty
list denoted vj .sortedGroup. Then we scan Di+1 from first to last element, and
for each occurrence found in Di+1 if the occurrence is in a group gj then we insert
the occurrence at the end of vj .sortedGroup. Now, we have at hand for each vj

its group of occurrences sorted by increasing duration between ei and ei+1. Then,

178 M. Nanni and C. Rigotti

we can apply on each vj .sortedGroup the splitGroup function to compute the
children of vj and their associated groups of occurrences and thus obtain the
next level of the group tree. Repeating this process allows to build the group
tree in a levelwise way, taking advantage of the sorted lists2 D1, . . . , Dn. In the
following, we assume that such a tree is computed by a function computeT ree,
applied on a tuple 〈D1, . . . , Dn〉.

Obtaining the information needed to compute the tree. The other key operation is
the efficient computation of the sorted lists D′

1, . . . , D
′
n, D′

n+1 of a pattern α → e.
Suppose that we know the list Le of occurrences of α → e, and the sorted lists
D1, . . . , Dn of durations corresponding to the occurrences of α. Then, the main
property used is that D′

1, . . . , D
′
n are sublists of, respectively, D1, . . . , Dn, since

each occurrence of α → e comes from the expansion of an occurrence of α. So a
list D′

i can be obtained simply by scanning Di from the first to the last element
and picking (in order) the elements in Di corresponding to occurrences of α that
have been extended to form an occurrence of α → e. The result is a list D′

i

sorted by increasing duration between ei−1 and ei. The case of the list D′
n+1 is

different since it does not correspond to durations already computed. This list
is constructed by scanning Le to obtain the durations between en and en+1, and
then by sorting these durations in increasing order. It should be noticed that
while all other operations made on lists in the algorithm are reduced to simple
scans, this sort is the only operation with a non linear complexity with respect to
the size of the list. Having at hand the sorted lists D′

1, . . . , D
′
n, D′

n+1 we can then
compute the group tree of α → e by calling computeT ree(〈D′

1, . . . , D
′
n, D′

n+1〉).

Integration with the extraction of episodes. One remaining problem to be solved
is to build the occurrence list of the episode under consideration (as the list Le

for α → e). Fortunately, several approaches to extract episodes, or closely related
patterns like sequential patterns, are based on the use of such occurrence lists
(e.g., [8,11,14]), providing the information needed to update the duration lists
Di. The basic idea is that if we store in a list L the locations (positions in the
data sequence) of the occurrences of a pattern α, then for an event type e, we can
use3 L to build the list Le of occurrences of α → e. Notice that the expansion
is made using occurrences of e that are not necessarily contiguous to the last
elements of the occurrences of α. In our case, for the occurrences of an episode
α = 〈e1, . . . , en〉 the location information stored in L are simply the time stamps
of the last element en of α, sorted by increasing value. In the following, we use a
function expand that takes the input sequence S and L, and that returns a set
Lexp of tuples 〈e, Le〉. The set Lexp contains for each event type e, the list Le

of locations of occurrences of α → e. As for L, the location information in Le

2 It should be noticed that the construction starts using D2 to obtain
root.sortedGroup, and that D1 (containing only durations set to zero by conven-
tion) is not really used, but is only mentioned for the sake of the uniformity of the
notation.

3 Together with other information, like the data sequence itself, or the location of the
occurrences of e.

Extracting Trees of Quantitative Serial Episodes 179

are the time stamps of the last element of α → e and Le is sorted by increasing
location value. It should be noticed that since L is ordered by occurrence time
stamp, computing Lexp under the minimal occurrence semantics is linear with
respect to |S|.

The last important aspect is the enumeration strategy of the episodes. The
key remark is that a standard depth-first prefix-based strategy fits both with the
episode extraction and with the use of the sorted lists Di to derive the sorted lists
D′

i to compute the group trees. A depth-first approach is particularly interesting
here, since it allows to limit the amount of memory needed. So, we adopt such a
strategy, that can simply be sketched as follows: when an episode α is considered
we use it as a prefix to expand it and to obtain new episodes of the form α → e,
and then, one after the other, we consider and expand each of these α → e.

It should be noticed that these choices made for the part that extracts the
episodes (i.e., using occurrence lists together with a depth-first strategy) cor-
respond to a typical approach used to mine serial episodes under the minimal
occurrence semantics, similar for instance to the one used in [11].

Algorithm 1 (Q-epiMiner)

Extracts the main grouping q-episodes in event sequence S according
to minimum group size σg, and density parameters ws and ns.

begin
Scan S to compute the set Tfreq of event types occurring at least σg times.
for all e ∈ Tfreq

Le := empty list
for all (e, t) ∈ S from first to last, and such that e ∈ Tfreq

Generate occid a new occurrence identifier.
Append 〈occid, t, 0〉 to the end of Le.

for all e ∈ Tfreq

D1 := Le

explore(S, 〈e〉, Le, 〈D1〉)
end

Fig. 2. Algorithm Q-epiMiner

Pruning strategy and correctness. As mentioned at the beginning of the section,
if an episode α has a support strictly less than σg it cannot be used to form
any main grouping q-episode. The same holds for any expansion of α since it
cannot have a greater support. So, the expansion of α can be safely avoided.
Furthermore, consider an episode α such that all leaves at level |α| are associated
to groups of size strictly less than σg (α has no corresponding main grouping q-
episode, but α itself can have a support greater or equal to σg). By Theorem 1, we
can also safely avoid the expansion of α, since this expansion cannot correspond

180 M. Nanni and C. Rigotti

Algorithm 2 (explore)

Input: (S,α, L, 〈D1, D2, . . . , Dn〉)
where S is the event sequence, α the episode considered,
L the list of occurrences of the last element of α and
〈D1, D2, . . . , Dn〉 the duration lists associated to α with n = |α|.

begin
Lexp := expand(S,L)
for all 〈e,Le〉 ∈ Lexp such that |Le| ≥ σg

for all 〈occid, t, dt〉 ∈ L
occid.isExtended := (∃〈occid′, t′, dt′〉 ∈ Le, occid

′ = occid)
for i from 1 to n

D′
i := empty list

for all 〈occid, t, dt〉 ∈ Di from first to last
if occid.isExtended = true then

Append 〈occid, t, dt〉 to the end of D′
i.

D′
n+1 := Le sorted by increasing value of dt (third element in the tuples)

T := computeTree(〈D′
1, D

′
2, . . . , D

′
n+1〉)

if T has at least one node at level n + 1 associated to a group of size
at least σg then

Output all paths in T from the root to the nodes at level n + 1
that are associated to groups of size at least σg.

explore(S,α → e,Le, 〈D′
1, D

′
2, . . . , D

′
n+1〉))

end

Fig. 3. Function explore

to any main grouping q-episode. The exhaustive enumeration strategy of the
episodes and the safety of the pruning strategy ensure the correctness of the
general extraction principle.

4.2 Abstract Algorithm

For the sake of simplicity of the presentation we use a common data structure
for all the lists L, Le, Di, D

′
i. Each of them is represented by a list of tuples

〈occid, t, dt〉 where occid is a unique occurrence identifier, t is a time of occur-
rence, and dt is a duration between two elements in a pattern.

The extraction is performed by the Algorithm Q-epiMiner, given as Algo-
rithm 1 (Figure 2). It first considers the patterns of size 1 and constructs the
lists Le of occurrences of each event type e (the unique occurrence identifiers
are generated in any order). Then it calls explore (Algorithm 2 in Figure 3) to
expand each of these patterns of size 1.

The function explore first expands the occurrences of episode α with respect
to all event types, using expand. We required that expand preserves the occid

Extracting Trees of Quantitative Serial Episodes 181

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

N. event types = 5k
N. event types = 10k
N. event types = 20k

Fig. 4. Scalability w.r.t. number of input sequences

values4 and computes the new durations (between the two last elements of the
episode). For instance, if 〈#999, 42, 5〉 is in L and this occurrence can be extended
by event (e,50) then 〈#999, 50, 8〉 is in Le (where 8 is the duration, 8 = 50 −
42). Next, explore takes each extension that is frequent enough (first pruning
criterion), computes the lists D′

i from the lists Di (1 < i ≤ n) and then D′
n+1

by sorting Le. After having computed the group tree T of the current extension
(calling function computeT ree), it applies the second pruning criterion and if
needed makes the new pattern grow in a recursive way.

Notes on implementation. To reduce drastically the memory needed by function
explore, the copy in lists D′

1, . . . , D
′
n of the elements of lists D1, . . . , Dn (for occid

corresponding to occurrences that have been extended) is not really performed.
Instead we implement a virtual deletion in the lists Di by hiding the elements
with an occid that has not been extended (occid.isExtended = false), and
use these lists in place of the lists D′

i when calling computeT ree. The hidden
elements are then restored in the lists Di before picking the next extension in
Lexp.

5 Experiments

In this section we present the results of a set of experiments, on synthetic and real
datasets, mainly aimed at studying how the size of the input data and the value
4 Preserving the occid is possible because under the minimal occurrence semantics,

for a given event type e, an occurrence of α can be extended to form at most one
occurrence of α → e.

182 M. Nanni and C. Rigotti

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

R
un

ni
ng

 ti
m

e
[s

ec
.]

N. of input sequences [x1000]

Serial Episodes
Quantitative Episodes

Fig. 5. Scalability comparison w.r.t. serial episode extraction

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

R
un

ni
ng

 ti
m

e
[s

ec
.]

Avg. input sequence length

Serial Episodes
Quantitative Episodes

Fig. 6. Scalability w.r.t. input sequence length, with 100K sequences

of some input parameters impact on the performances of the Q-epiMiner algo-
rithm described in this paper. The experiments presented are made on datasets
containing several sequences. As mentioned previously, the definitions extended
trivially to that case (the support is simply the sum of the support in all se-
quences). The only change in the abstract algorithm is that the occurrence lo-
cations are not simply time stamps, but sequence identifiers together with time

Extracting Trees of Quantitative Serial Episodes 183

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

Fig. 7. Scalability w.r.t. min. group size σg, with 100K sequences

stamps in the sequences. The algorithm was implemented in C, and all experi-
ments were performed on a Intel Xeon 2Ghz processor with 1Gb of RAM over
a Linux 2.6.14 platform.

5.1 Performance Analysis on Synthetic Datasets

In order to collect large datasets having controlled characteristics, we randomly
generated them by means of the Quest Synthetic Data Generator from IBM5,
by varying the number of input sequences generated (from 10K to 250K), the
sequence length6 (from 5 to 70) and the number of different event types used
(from 5K to 20K). Where not specified hereafter, the following default parameter
values were adopted: 100K input sequences, sequence length equal to 25, 5K
event types, ws = 8 and ns = 4.

The curves in Figure 4 show the execution times of the prototype over datasets
of increasing size and for three different numbers of event types used in the data.
The σg parameter was set to 40 for 10K sequences and then was increased pro-
portionally, up to 1000 for 250K sequences. As we can see, the execution time al-
ways grows almost linearly, having a higher slope when fewer event types are in
the data7. A similar scalability analysis is provided in Figure 5, where Q-epiMiner
is compared against the extraction of serial episodes having at least a support of
5 http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/
data mining/mining.shtml

6 The parameter of the generator controlling the number of events per time stamp
was set to 1.

7 Fewer event types with the same number of sequences leads to higher supports for the
remaining event types and more frequent patterns of large size.

http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/data_mining/mining.shtml
http://www.almaden.ibm.com/software/projects/iis/hdb/Projects/data_mining/mining.shtml

184 M. Nanni and C. Rigotti

σg. This extraction is performed using the frequent serial episodes mining tech-
nique embedded in Q-epiMiner, (i.e., without computing the durations, groups
and trees, and implemented with the same low level optimizations). As explained
in Section 4.1, this technique corresponds to a typical approach used to extract
serial episodes under the minimal occurrence semantics. The values of σg were the
same as in the previous experiment. The two curves are very close, meaning that
the overhead introduced by the computation of main grouping q-episodes is well
balanced by the pruning it allows. Finally, similar results are obtained by vary-
ing the length of the input sequences (see Figure 6), where both curves have an
apparently-quadratic growth (σg was set to 80 for length 5 and then was increased
proportionally, up to 1120 for length 70). Obviously, for very long sequences usual
episode constraints, like maximum window size, might be used [8].

Figure 7 reports the behaviour of the prototype when the minimum size of
the groups is varied from 100 to 2000, and again its comparison to the mining of
frequent serial episodes at minimum support σg. Here also, the two algorithms
behave very similarly, this time showing a fast drop in the execution time as σg

grows – as usual for frequent pattern mining algorithms.

5.2 Experiments on a Real Dataset

In this set of experiments we used real world data consisting of the July 2000
weblog from the web server of the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley8. In a preprocessing
step, all non-HTML pages where removed and user sessions were extracted,
resulting in 90295 user sessions (used as input sequences) of average length of
13.0 with 72014 distinct pages.

The figure 8 describes the performances of the Q-epiMiner prototype on the
Berkeley dataset for different minimum group sizes with ws = 120 (time in sec.)
and ns = 15. It confirms the results obtained on synthetic data, i.e., execution
times drop very quickly as σg increases. Moreover, an additional curve is plotted
that represents a version of Q-epiMiner that does not apply any pruning based
on the absence of a main grouping q-episode, but only applies a pruning based on
the support of the episodes (an episode is not expanded only when its support is
strictly less than σg). This curve shows the effectiveness of the full pruning made
by Q-epiMiner. It should also be noticed that in these experiments, Q-epiMiner
performs even better than the serial episode miner (with minimum support set
to σg), confirming the fact that the pruning capabilities of the prototype are
able to balance its potential overhead.

Finally, Figure 9 presents the effect of varying the density parameters (with
σg = 200). It shows that, quite reasonably, the execution time decreases with
larger minimum density parameter ns (since they allow a stronger pruning), and
increases with larger window sizes ws (which acts in the opposite direction).

We conclude this section by providing in Figure 10 two sample outputs ob-
tained from the Berkeley dataset. The first one describes a navigation pattern

8 http://www.cs.berkeley.edu/logs/http

Extracting Trees of Quantitative Serial Episodes 185

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 140 160 180 200 220 240 260

R
un

ni
ng

 ti
m

e
[s

ec
.]

Min. group size σg

Serial Episodes
Quantitative Episodes

QE w/o pruning

Fig. 8. Berkely dataset: Scalability w.r.t. min. group size σg

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e
[s

ec
.]

ns

ws = 60
ws = 120
ws = 180

Serial Episodes

Fig. 9. Berkely dataset: effects of the density parameters

that starts from the web site root, visits a page about classes for students, and
ends on the general alphabetically-sorted directory of people. In particular, we
notice that the tree contains two groups that split at the first step, showing well
separated intervals of times: [1, 549] against [993, 1850] (time in sec.). Further-
more, while the first group (which was faster in performing the first step of the
episode) takes from a few seconds up to 10 minutes to move to the third page,

186 M. Nanni and C. Rigotti

Fig. 10. Examples of trees of main grouping q-episodes

the second group has a very compact behaviour, only taking between 14 and
30 seconds. The second output concerns the visit of a sequence of four pages
in some photo galleries. The tree starts with a single branch for the first two
steps, which take respectively up to 35 and up to 21 seconds, and splits only
at the third step, where three groups are formed. The first two overlap ([16, 26]
and [25, 35]), therefore showing only a weak differentiation, and represent fast
visitors, while the third one is separated from them, and corresponds to slow
visitors that take from 50 seconds up to one minute. In both the examples, each
time a group splits some of the occurrences it contains are lost, i.e., they are not
part of any subgroup (of size at least σg) created by the split.

6 Related Work

The need of quantitative temporal information in patterns over event sequences
has been pointed in recent works in the data mining literature [13,3,12,4,6,11].

An important difference between these approaches and the q-episodes intro-
duced here, is that the former provide patterns in isolation, while q-episodes are
related in tree structures. Such trees give a global view of how the occurrences of
a pattern differentiate in homogeneous groups along the sequence of event types
(from the first to the last element of the pattern).

Extracting Trees of Quantitative Serial Episodes 187

Different notions of intervals are also considered. In [6] the intervals are not
determined by the data but are fixed by the user; only the interval between the
beginning and the end of a pattern is considered in [11]; and in [3] intervals are
derived from intervals of occurrences of patterns of size two only.

The other approaches [13,12,4] compute the intervals from the data and for
all pattern lengths, as in the case of the q-episodes. However, among these ap-
proaches, only [4] considers an exhaustive extraction (at the cost of intrinsically
expensive algorithmic solutions), while the others compute only some of the
patterns using heuristics and/or non-deterministic choices.

Finally, it should be noticed that the overhead of computing the quantitative
temporal information was not assessed in these previous works.

7 Conclusion

In this paper we introduced quantitative episodes, an extension of serial episodes
that refines standard episodes by integrating quantitative temporal information.
A tight integration of episode extraction and occurrence group tree computation
allowed to obtain a complete and efficient algorithm that adds a negligible over-
head to the extraction of serial episodes, as assessed by the experimental results
on performances. These features, and the possibility of an easy-to-grasp repre-
sentation of the output into a graphical tree-like structure, make the approach
suitable for many applications. Future evolutions of this work will include its use
in place of standard episode extraction in concrete application domains, as well
as its extension to deal with quantitative aspects other than time. In particular,
we aim to treat the spatial information contained in spatio-temporal sequences
describing the trajectory of moving objects, such GPS traces and similar forms
of data.

Acknowledgments. This research is partly funded by EU contracts IQ IST-
FP6-516169, and GeoPKDD IST-FP6-014915.

References

1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Yu, P.S., Chen, A.S.P.
(eds.) Proc. of the 11th International Conference on Data Engineering (ICDE’95),
Taipei, Taiwan, pp. 3–14. IEEE Computer Society Press, Los Alamitos (1995)

2. Das, G., Lin, K., Mannila, H., Renganathan, G., Padhraic Smyth, P.: Rule discov-
ery from time series. In: Proc. of the 4th International Conference on Knowledge
Discovery and Data Mining (KDD’98), August 1998, pp. 16–22. AAAI Press, New
York (USA) (1998)

3. Dousson, C., Duong, T.V.: Discovering chronicles with numerical time constraints
from alarm logs for monitoring dynamic systems. In: Proc. of the 16th Int. Joint
Conference on Artificial Intelligence (IJCAI’99), San Francisco, CA, USA, pp. 620–
626 (1999)

4. Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally anno-
tated sequences. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165,
Springer, Heidelberg (2006)

188 M. Nanni and C. Rigotti

5. Hatonen, K., Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H.: TASA:
Telecomunications alarm sequence analyzer or: How to enjoy faults in your network.
In: 1996 IEEE Network Operations and Management Symposium (NOMS’96), Ky-
oto, Japan, April 1996, pp. 520–529 (1996)

6. Hirate, Y., Yamana, H.: Sequential pattern mining with time intervals. In: Ng,
W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI),
vol. 3918, Springer, Heidelberg (2006)

7. Mannila, H., Toivonen, H.: Discovery of generalized episodes using minimal occur-
rences. In: Proc. of the 2nd International Conference on Knowledge Discovery and
Data Mining (KDD’96), August 1996, Portland, Oregon, pp. 146–151 (1996)

8. Mannila, H., Toivonen, H., Verkamo, A.: Discovery of frequent episodes in event
sequences. Data Mining and Knowledge Discovery 1(3), 259–298 (1997)

9. Mannila, H., Toivonen, H., Verkamo, I.: Discovering frequent episodes in sequences.
In: Proc. of the 1st International Conference on Knowledge Discovery and Data
Mining (KDD’95), Montreal, Canada, August 1995, pp. 210–215. AAAI Press,
Montreal (1995)

10. Meger, N., Leschi, C., Lucas, N., Rigotti, C.: Mining episode rules in STULONG
dataset. In: Proc. of the ECML/PKDD Discovery Challenge, September 2004, Pisa,
Italy (2004)

11. Meger, N., Rigotti, C.: Constraint-based mining of episode rules and optimal win-
dow sizes. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
PKDD 2004. LNCS (LNAI), vol. 3202, pp. 313–324. Springer, Heidelberg (2004)

12. Vautier, A., Cordier, M.-O., Quiniou, R.: An inductive database for mining tem-
poral patterns in event sequences. In: ECML/PKDD Workshop on Mining Spatial
and Temporal Data (2005)

13. Yoshida, M., et al.: Mining sequential patterns including time intervals. In: Data
Mining and Knowledge Discovery: Theory, Tools and Technology II. SPIE Confer-
ence (2000)

14. Zaki, M.: Spade: an efficient algorithm for mining frequent sequences. Machine
Learning, Special issue on Unsupervised Learning 42(1/2), 31–60 (2001)

Frequent Pattern Mining and Knowledge
Indexing Based on Zero-Suppressed BDDs

Shin-ichi Minato and Hiroki Arimura

Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, 060-0814 Japan

Abstract. Frequent pattern mining is one of the fundamental tech-
niques for knowledge discovery and data mining. During the last decade,
several efficient algorithms for frequent pattern mining have been pre-
sented, but most algorithms have focused on enumerating the patterns
that satisfy the given conditions, considering the storage and indexing of
the pattern results for efficient inductive analysis to be a separate issue.
In this paper, we propose a fast algorithm for extracting all/maximal
frequent patterns from transaction databases and simultaneously index-
ing a huge number of patterns using Zero-suppressed Binary Decision
Diagrams (ZBDDs). Our method is comparably fast as existing state-of-
the-art algorithms and not only enumerates/lists the patterns but also
compactly indexes the output data in main memory. After mining, the
pattern results can be analyzed efficiently by using algebraic operations.
BDD-based data structures have previously been used successfully in
VLSI logic design, but our method is the first practical application of
BDD-based techniques in the data mining area.

1 Introduction

Frequent pattern mining is one of the fundamental techniques for knowledge
discovery and data mining. Since their introduction by Agrawal et al. [1], fre-
quent pattern mining and association rule analysis have received much attention
from researchers, and many papers have been published about new algorithms
and improvements for solving such mining problems [10,12,24]. However, most
of these pattern-mining algorithms have focused on enumerating or listing the
patterns that satisfy the given conditions, considering the storage and indexing
of the pattern results for efficient inductive analysis to be a separate issue.

In this paper, we propose a fast algorithm for extracting all/maximal frequent
patterns from transaction databases and simultaneously indexing a huge number
of result patterns in computer memory using Zero-suppressed Binary Decision
Diagrams (ZBDDs). Our method not only enumerates/lists the patterns but also
indexes the output data compactly in main memory. After mining, the pattern
results can be analyzed efficiently by using algebraic operations.

The key to our method is the use of data structures based on Binary Decision
Diagrams (BDDs) to represent sets of patterns. BDDs [5] are graph-based repre-
sentations of Boolean functions and are now widely used in the VLSI logic design
andverification area. For datamining applications, it is important to use theZBDD

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 152–169, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 153

[16], a special type of BDD, which is suited to handling large-scale sets of combina-
tions. Using ZBDDs, we can implicitly enumerate combinatorial itemset data and
efficiently compute set operations over the ZBDDs. The preliminary idea of using
ZBDDs was presented in our previous workshop paper [19]. In this paper, we pro-
pose a fast pattern mining algorithm based on this data structure. Our work is the
first practical application of the BDD-based technique to the data mining area.

In related work, the FP-tree [12] receives a great deal of attention because
it supports fast manipulation of large-scale itemset data using a compact tree
structure in main memory. Our method uses a similar approach to handling sets
of combinations in main memory but is more efficient in these respects:

– A ZBDD is a kind of Directed Acyclic Graph (DAG) for representing item-
sets, while the FP-tree is a tree representation. In general, DAGs can be
more compact than trees.

– Our method uses ZBDDs not only as the internal data structure but also
as the output data structure. This provides an efficient knowledge index for
subsequent inductive analysis.

Our mining algorithm is based on a recursive depth-first search of the database
represented by ZBDDs. We show two versions of the algorithm, generating all fre-
quent patterns and generating maximal frequent patterns. Experimental results
show that our method is comparably fast as existing state-of-the-art algorithms,
such as those based on FP-trees. Especially for cases where the ZBDD nodes are
well shared, exponential speed-up is observed compared with existing algorithms
based on explicit table/tree representations.

Recently, data mining methods have often been discussed in the context of In-
ductive Databases [3,14], the integrated processes of knowledge discovery. In this
paper,we also showa number of examples of postprocessing following frequent pat-
tern mining. We place the ZBDD-based method at the core of integrated discovery
processes that efficiently execute various operations to find interest patterns and
analyze the information included in large-scale combinatorial itemset databases.

2 BDDs and Zero-Suppressed BDDs

Here we briefly describe the basic techniques of BDDs and Zero-suppressed BDDs
for representing sets of combinations efficiently.

2.1 BDDs

A BDD is a directed graph representation of a Boolean function, as illustrated in
Fig. 1(a). It is derived by reducing a binary tree graph representing the recursive
Shannon’s expansion, shown in Fig. 1(b). The following reduction rules yield a
Reduced Ordered BDD (ROBDD), which can efficiently represent the Boolean
function (see [5] for details).

– Delete all redundant nodes whose two edges point to the same node. (Fig. 2(a))
– Share all equivalent subgraphs. (Fig. 2(b))

154 S. Minato and H. Arimura

0

c

b

a

c cc

b

1 001 1 1 1

10 0 0 0

0 0

0

1 1 1

1 1

1

F

c

b

a

0 1

0

0

0

1

1

1

F

(a) BDD. (b) Binary tree.

Fig. 1. BDD and binary tree: F = (a ∧ b) ∨ c

0
x

1

f

jump

f f1f0

xx
00 11

f1f0

x
0 1

share

(a) Node deletion. (b) Node sharing.

Fig. 2. Reduction rules of ordinary BDDs

b

a

0 1

00

0

11

1

b

aa
0 01

1

F1 F2 F3 F4

F1 = a ∧ b
F2 = a ⊕ b
F3 = b
F4 = a ∨ b

Fig. 3. Shared multiple BDDs

ROBDDs provide canonical forms for Boolean functions when the variable order
is fixed. Most research on BDDs is based on the reduction rules above. In the
following sections, ROBDDs will be referred to as BDDs (or ordinary BDDs) for
the sake of simplicity.

As shown in Fig. 3, a set of multiple BDDs can share their subgraphs with
each other under the same fixed variable ordering. In this way, we can handle a
number of Boolean functions simultaneously in a monolithic memory space.

Using BDDs, we can uniquely and compactly represent many practical Boolean
functions including AND, OR, parity, and arithmetic adder functions. Using
Bryant’s algorithm [5], we can efficiently construct a BDD for the result of a bi-
nary logic operation (e.g. AND, OR, XOR) on a given pair of operand BDDs. This

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 155

0

0

x
1

Jump

f f

Fig. 4. ZBDD reduction rule

algorithm is based on hash table techniques, and the computation time is almost
linearly related to the data size unless there is data overflow in main memory (see
[5] or [17] for details).

Based on these techniques, several BDD packages were developed in the 1990s
and are widely used for large-scale Boolean function manipulation, especially in
the VLSI CAD area.

2.2 Sets of Combinations and ZBDDs

BDDs were originally developed for handling Boolean function data. However,
they can also be used for the implicit representation of sets of combinations.
Here we use the term “sets of combinations” for a set of elements each of which
is a combination of n items. This data model often appears in real-life problems,
such as combinations of switching devices (ON/OFF), fault combinations, and
sets of paths in networks.

A combination of n items can be represented by an n-bit binary vector,
(x1x2 . . . xn), where each bit, xk ∈ {1, 0}, expresses whether the item is in-
cluded in the combination or not. A set of combinations can be represented by a
list of the combination vectors. In other words, a set of combinations is a subset
of the power set of n items.

A set of combinations can be mapped into Boolean space by using n-input
variables for each bit of the combination vector. If we choose any particular
combination vector, a Boolean function determines whether the combination is
included in the set of combinations. Such Boolean functions are called char-
acteristic functions. For example, the left side of Fig. 5 shows a truth table
representing a Boolean function (abc) ∨ (bc) but also represents a set of com-
binations {ab, ac, c}. Using BDDs for characteristic functions, we can implicitly
and compactly represent sets of combinations. The logic operations AND/OR for
Boolean functions correspond to the set operations intersection/union for sets
of combinations. By using BDDs for characteristic functions, we can manipulate
sets of combinations efficiently. They can be generated and manipulated within
a time roughly proportional to the BDD size. When we handle combinations
that include many similar patterns (subcombinations), the BDDs are greatly
reduced by the node-sharing effect, and sometimes an exponential reduction in
processing time and space can be obtained.

156 S. Minato and H. Arimura

Fig. 5. Effect of ZBDD reduction rule

The ZBDD [16,18] is a special type of BDD, used for the efficient manipula-
tion of sets of combinations. ZBDDs are based on the following special reduction
rules.

– Delete all nodes whose 1-edge directly points to the 0-terminal node, and
jump through to the 0-edge’s destination, as shown in Fig. 4.

– Share equivalent nodes, similarly to ordinary BDDs.

Note that we do not delete the nodes whose two edges point to the same node,
which would have been deleted by the original rule. The zero-suppressed deletion
rule is asymmetric for the two edges, as we do not delete the nodes whose 0-edge
points to a terminal node. It is proved that ZBDDs also give canonical forms as
do ordinary BDDs under a fixed variable ordering.

Here we summarize the features of ZBDDs:

– In ZBDDs, the nodes of irrelevant items (i.e. never chosen in any combi-
nation) are automatically deleted by the ZBDD reduction rule. In ordinary
BDDs, irrelevant nodes remain and may compromise the reduction available
by sharing nodes. An example is shown in Fig. 5. In this case, the item d is
irrelevant, but the ordinary BDDs for characteristic functions Fz(a, b, c) and
Fz(a, b, c, d) have different forms. On the other hand, ZBDDs for Fz(a, b, c)
and Fz(a, b, c, d) have identical forms and are therefore completely shared.

– Each path from the root node to the 1-terminal node corresponds to each
combination in the set. That is, the number of such paths in the ZBDD equals
the number of combinations in the set. In ordinary BDDs, this property does
not always hold.

– When no equivalent nodes exist in a ZBDD, i.e. the worst case, the ZBDD
structure explicitly stores all items in all combinations while also using an
explicit linear linked list data structure. That is, (the order of) the ZBDD size
never exceeds that of the explicit representation. If more nodes are shared,
the ZBDD is more compact than the linear list.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 157

Table 1. Primitive ZBDD operations

“∅” Returns the empty set. (0-terminal node)
“1” Returns a null-combination. (1-terminal node)
P .top Returns the item-ID at the root node of P .
P .offset(v) Subset of combinations not including item v.
P .onset(v) Gets P − P .offset(v) and then deletes v from each combination.
P .change(v) Inverts existence of v (add / delete) on each combination.
P ∪ Q Returns union set.
P ∩ Q Returns intersection set.
P − Q Returns difference set. (in P but not in Q.)
P .count Counts number of combinations.

Table 1 shows most of the primitive operations for ZBDDs. In these opera-
tions, The execution time for ∅, 1, and P.top is a constant, and those for the
remainder are almost linearly to the size of the graph. We can describe a va-
riety of processing operations on sets of combinations by compositions of these
primitive operations.

2.3 ZBDD-Based Database Analysis

In this paper, we discuss a method for manipulating large-scale transaction
databases using ZBDDs. Here we consider binary transaction databases, each
record of which holds a combination of items chosen from a given item list. Such
a combination is called a itemset.

For analyzing these large-scale transaction databases, frequent pattern min-
ing [2] and maximum frequent pattern mining [6] are especially important and
have been discussed actively during the last decade. Since their introduction
by Agrawal et al. [1], many papers have been published about new algorithms
and improvements for solving such mining problems [10,12,24]. Recently, graph-
based methods, such as FP-growth [12], have received a great deal of attention,
because they can quickly manipulate large-scale itemset data by constructing
compact graph structures in main memory.

The ZBDD-based method is a similar approach to handling sets of combina-
tions in main memory but is more efficient because ZBDD is a kind of DAG for
representing itemsets, while FP-growth uses a tree representation for the same
objects. In general, DAGs can be more compact than trees.

Another important point is that ourmethoduses ZBDDsnot only as the internal
data structure but also as the output data structure. Most of the existing state-
of-the-art pattern mining algorithms focus on enumerating or listing the patterns
that satisfy the given conditions, and they consider the storage and indexing of
the pattern results for efficient data analysis to be a separate issue. In this paper,
we present a fast algorithm for pattern mining and simultaneously indexing a huge
number of patterns compactly inmainmemory for subsequent analysis.The results
can be analyzed flexibly by using algebraic operations implemented via ZBDDs.

In addition, we will now explain why we use ZBDDs instead of ordinary BDDs
for this application. Table 2 lists the basic statistics of a typical data mining

158 S. Minato and H. Arimura

Table 2. Statistics of typical benchmark data

Data name #I #T total|T |avg|T | avg|T |/#I
T10I4D100K 870 100,000 1,010,228 10.1 1.16%
mushroom 119 8,124 186,852 23.0 19.32%
pumsb 2,113 49,046 3,629,404 74.0 3.50%
BMS-WebView-1 497 59,602 149,639 2.5 0.51%
accidents 468 340,183 11,500,870 33.8 7.22%

Fig. 6. Example of itemset-histogram Fig. 7. ZBDD vector for itemset-histogram

benchmark data [10]. #I shows the number of items used in the data, #T is the
number of itemsets included in the data, avg|T | is the average number of items
per itemset, and avg|T |/#I is the average appearance ratio of each item. From
this table, we can observe that the item’s appearance ratio is very small in many
cases. This observation means that we often handle very sparse combinations
in many practical data mining/analysis problems, and in such cases, the ZBDD
reduction rule is extremely effective. If the average appearance ratio of each item
is 1%, ZBDDs are potentially more compact than ordinary BDDs by a factor of
up to 100. In the literature, there is an early report by Jiang et al. [13] applying
BDDs to data mining problems, but the results seem less than excellent because
of the overhead of using ordinary BDDs. Therefore, we should use ZBDDs instead
of ordinary BDDs for success in many practical data mining/analysis problems.

3 A ZBDD-Based Pattern-Mining Algorithm

In this section, we first introduce the data structure of the itemset-histogram
and ZBDD vectors [19], and then present our new algorithm, ZBDD-growth,
which extracts all frequent patterns from a given transaction database using a
ZBDD-based data structure.

3.1 Itemset-Histograms and ZBDD Vectors

An Itemset-histogram is a table that lists the number of appearances of each
itemset in the given database. An example of itemset-histogram is shown in

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 159

Fig. 6. This is essentially a compressed table for the database that combines the
itemsets appearing more than once into one line, together with the frequency of
occurrence.

Our pattern mining algorithm uses a ZBDD-based itemset-histogram repre-
sentation as the internal data structure, as presented in our previous paper [19].
Here we describe how to represent itemset-histograms using ZBDDs. Because
ZBDDs are representations of sets of combinations, a simple ZBDD distinguishes
only the existence of each itemset in the database. In order to represent the num-
ber of appearances of itemsets, we decompose the number into the m digits of a
ZBDD vector {F0, F1, . . . , Fm−1} to represent integers up to (2m − 1), as shown
in Fig. 7. That is, we encode the appearance numbers into binary digital code,
with F0 representing the itemsets appearing an odd number of times (LSB = 1),
F1 representing the itemsets whose appearance number’s second lowest bit is 1,
and similarly for each digit up to Fm−1.

In the example of Fig. 7, the frequencies of itemsets are decomposed as:
F0 = {abc, ab, c}, F1 = {ab, bc}, F2 = {abc}, following which each digit can
be represented by a simple ZBDD. The three ZBDDs share their subgraphs with
each other.

Now we explain the procedure for constructing a ZBDD-based itemset-
histogram from an original database. We read the itemset data one by one from
the database and accumulate the single itemset data into the histogram. More
precisely, we generate a ZBDD of T for a single itemset picked up from the
database and accumulate it into the ZBDD vector. The ZBDD of T can be
obtained by starting from “1” (a null combination), and applying “Change” op-
erations several times to join the items in the itemset. Next, we compare T and
F0, and if they have no common parts, we just add T to F0. If F0 already contains
T , we eliminate T from F0 and carry T up to F1. This ripple-carry procedure
continues until T and Fk have no common part. After finishing accumulations
for all data records, the itemset-histogram is complete.

Using the notation F .add(T) for the addition of an itemset T to the ZBDD
vector F , we can describe the procedure for generating the itemset-histogram H
for a given database D.

H = 0
forall T ∈ D do
H = H .add(T)
return H

When we construct a ZBDD vector for an itemset-histogram, the number of
ZBDD nodes in each digit is bounded by the total appearance of items in all
itemsets. If there are many partially similar itemsets in the database, the sub-
graphs of ZBDDs will be well shared, and a compact representation is obtained.
The bit-width of the ZBDD vector is bounded by log Smax, where Smax is the
appearance of the most frequent items.

160 S. Minato and H. Arimura

Fig. 8. Example of FP-tree

Once we have generated a ZBDD vector for the itemset-histogram, various
operations can be executed efficiently. These are instances of operations used in
our pattern mining algorithm:

– H .factor0(v): Extracts sub-histogram of itemsets without item v.
– H .factor1(v): Extracts sub-histogram of itemsets including item v and then

deletes v from the itemsets (also considered as the quotient of H/v).
– v · H : Attaches an item v to each itemset in the histogram F .
– H1+H2: Generates a new itemset-histogram with the sum of the frequencies

of corresponding itemsets.
– H .count: The number of itemsets appearing at least once.

These operations can be composed as a sequence of ZBDD operations. The result
is also compactly represented by a ZBDD vector. The computation time bound
is approximately linearly related to the total ZBDD size.

3.2 ZBDD Vectors and FP-Trees

FP-growth [12], one of the state-of-the-art algorithms, constructs an “FP-tree”
for a given transaction database and then searches frequent patterns using this
data structure. An example of an FP-tree is shown in Fig. 8. We can see that
the FP-tree is a trie [9] of itemsets with their frequencies. In other words, FP-
growth is based on the tree representation of itemset-histograms. That
is, ZBDD-growth is logically based on the same internal data structure as FP-
growth. This is the reason for calling this algorithm ZBDD-growth. However, the
ZBDD-based method will be more efficient because ZBDDs can share equivalent
subgraphs and the computation time is bounded by the ZBDD size. The benefit
of ZBDDs is especially noticeable when large numbers of patterns are produced.

3.3 A Frequent Pattern Mining Algorithm

Our new algorithm, ZBDD-growth, is based on a recursive depth-first search
over the ZBDD-based itemset-histogram representation. The basic algorithm is
shown in Fig. 9.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 161

ZBDDgrowth(H,α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowth(H1, α) ;
F0 ←ZBDDgrowth(H0 + H1, α) ;
F ← (v · F1) ∪ F0 ;
Cache(H) ← F ;
return F ;

}

Fig. 9. ZBDD-growth algorithm

ZBDDgrowthMax(H,α)
{

if(H has only one item v)
if(v appears more than α)

return v ;
else return “0” ;

F ← Cache(H) ;
if(F exists) return F ;
v ← H.top ; /* Top item in H */
H1 ← H .factor1(v) ;
H0 ← H .factor0(v) ;
F1 ←ZBDDgrowthMax(H1, α) ;
F0 ←ZBDDgrowthMax(H0 + H1, α) ;
F ← (v · F1) ∪ (F0 − F0.permit(F1)) ;

Cache(H) ← F ;
return F ;

}

Fig. 10. ZBDD-growth-max algorithm

In this algorithm, we choose an item v used in the itemset-histogram H and
compute the two sub-histograms H1 and H0 (i.e. H = (v ·H1)∪H0). As v is the
top item in the ZBDD vector, H1 and H0 can be obtained simply by referring
to the 1-edge and 0-edge of the highest ZBDD-node, so the computation time is
constant for each digit of ZBDD.

The algorithm consists of the two recursive calls, one of which computes the
subset of patterns including v, while the other computes the patterns excluding
v. The two subsets of patterns can be obtained as a pair of pointers to ZBDDs,
and then the final ZBDD is computed. This procedure may theoretically require
an exponential number of recursive calls. However, we can prepare a hash-based
cache to store the result of each recursive call. Each entry in the cache is formed
as pair (H, F), where H is the pointer to the ZBDD vector for a given itemset-
histogram, and F is the pointer to the result of the ZBDD. On each recursive
call, we check the cache to see if the same histogram H has already appeared,
and if so, we can avoid duplicate processing and return the pointer to F directly.
By using this technique, the computation time becomes almost linearly related
to the total ZBDD size.

In our implementation, we include some simple techniques for pruning the
search space. For example, if H1 and H0 are equivalent, we may skip the com-
putation of F0. In other cases, we can halt the recursive calls when the total of
frequencies in H is no more than α. Other more elaborate pruning techniques
exist, but they need additional computation cost for checking conditions, so they
are sometimes but not always effective.

3.4 Extension for Maximal Pattern Mining

We can extend the ZBDD-growth algorithm to extract only the maximal frequent
patterns [6], each of which is not included in any other frequent patterns. The
algorithm is shown in Fig. 10.

162 S. Minato and H. Arimura

P .permit(Q)
{

if(P =“0” or Q =“0”) return “0” ;
if(P = Q) return F ;
if(P =“1”) return “1” ;
if(Q =“1”)

if(P include “1”) return “1” ;
else return “0” ;

R ← Cache(P, Q) ;
if(R exists) return R ;
v ←TopItem(P, Q) ; /* Top item in P, Q */
(P0, P1) ←factors of P by v ;
(Q0, Q1) ←factors of Q by v ;
R ← (v · P1.permit(Q1)) ∪ (P0.permit(Q0 ∪ Q1)) ;
Cache(P, Q) ← R ;
return R ;

}

Fig. 11. Permit operation

The difference from the original algorithm is in only one line, shown in the
frame box. Here, we check each pattern in F0 and delete it if the pattern is
included in one of the patterns of F1. In this way, we generate only maximal
frequent patterns. This is a similar approach to that used in MAFIA [6].

The process of deleting non-maximal patterns is a very time-consuming task.
However, we found that one ZBDD-based operation, called the permit operation
by Okuno et al. [21], can be used to solve this problem1. P .permit(Q) returns
a set of combinations in P each of which is a subset of some combination in
Q. For example, when P = {ab, abc, bcd} and Q = {abc, bc}, then P .permit(Q)
returns {ab, abc}. The permit operation is efficiently implemented as a recursive
procedure of ZBDD manipulation, as shown in Fig. 3.4. The computation time
of the permit operation is almost linearly related to the ZBDD size.

4 Experimental Results

Here we show the experimental results for evaluating our new method. We used
a Pentium-4 PC, 800MHz, 1.5GB of main memory, with SuSE Linux 9. We
can deal with up to 20,000,000 ZBDD nodes in this machine. In these experi-
ments, our implementation of the ZBDD-growth algorithm does not print out
the pattern list but constructs the ZBDD results in main memory and counts
the number of patterns included in the ZBDD. Counting patterns requires only a
time linearly related to the ZBDD size, even if an exponential number of patterns
are contained.

For comparison, we also executed the FP-growth algorithm [12], using an
implementation by Goethals [11]. This implementation also does not print out
the pattern list, only counts the number of patterns.

1 The Permit operation is similar to the SubSet operation of Coudert et al. [8], defined
for ordinary BDDs.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 163

Table 3. “One-pair-missing”

a2b2a3b3· · ·an−1bn−1anbn

a1b1 a3b3· · ·an−1bn−1anbn

a1b1a2b2 · · ·an−1bn−1anbn

...
. . .

...
a1b1a2b2a3b3· · · anbn

a1b1a2b2a3b3· · ·an−1bn−1

Table 4. Results for “one-pair-missing”

n #Patterns (output) ZBDD-growth FP-growth [12]
|ZBDD| Time(sec) Time(sec)

8 58,974 35 0.01 0.11
10 989,526 45 0.01 1.93
12 16,245,774 55 0.01 32.20
14 263,652,486 65 0.02 518.90
15 1,059,392,916 70 0.02 1966.53
16 4,251,920,574 75 0.02 (timeout)

Table 5. Generation of itemset-histograms [19]

Data name #T total|T | |ZBDD Vector| Time(s)
T10I4D100K 100,000 1,010,228 552,429 43.2
mushroom 8,124 186,852 8,006 1.2
pumsb 49,046 3,629,404 1,750,883 188.5
BMS-WebView-1 59,602 149,639 46,148 18.3
accidents 340,183 11,500,870 3,877,333 107.0

4.1 Experiment with a Mathematical Example

First, we present an experiment for a set of artificial examples where ZBDD-
growth is extremely effective. The database, named “one-pair-missing,” has the
form shown in Table 3. That is, this database has n records, each of which
contains (n − 1) pairs of items with only one pair missing. It may produce an
exponentially increasing number of frequent patterns.

The experimental results with frequency threshold α = 1 are shown in Table 4.
We observe the exponential explosion of the number of patterns, compared with
the linearly increasing sizes of the ZBDDs needed to represent such a large
number of patterns. In such cases, ZBDD-growth runs extremely fast, while FP-
growth requires a time exponentially related to the output data size.

4.2 Experiments for Benchmark Examples

Next, we show the results for the benchmark examples [11]. Table 5 shows the
time and space required to generate ZBDD vectors of itemset-histograms [19] as
the preprocessing of the ZBDD-growth algorithm. In this table, #T shows the
number of itemsets, total|T | is the total of itemset sizes (total appearances of
items), and |ZBDD| is the number of ZBDD nodes for the itemset-histograms.
We see that itemset-histograms can be constructed for all cases within a feasible
time and space. The ZBDD sizes are similar to or less than total|T |.

After generating ZBDD vectors for the itemset-histograms, we applied the
ZBDD-growth algorithm to generate frequent patterns. Table 6 shows the re-
sults for the selected benchmark examples, “mushroom”, “T10I4D100K”, and
“BMS-WebView-1”. The execution time includes the time for generating the
initial ZBDD vectors for itemset-histograms. The results show that ZBDD-
growth is much faster than FP-growth for “mushroom” but is not as effective for
”T10I4D100K”. This is a reasonable result because ”T10I4D100K” is known to

164 S. Minato and H. Arimura

Table 6. Results for benchmark examples

Data name: #Frequent (output) ZBDD-growth FP-growth [11]
Min. freq. α patterns |ZBDD| Time(s) Time(s)

mushroom: 5,000 41 11 1.2 0.1
1,000 123,277 1,417 3.7 0.3

200 18,094,821 12,340 9.7 5.4
16 1,176,182,553 53,804 7.7 244.1
4 3,786,792,695 59,970 4.3 891.3
1 5,574,930,437 40,557 1.8 1,322.5

T10I4D100K: 5,000 10 10 81.3 0.7
1,000 385 382 135.5 3.1

200 13,255 4,288 279.4 4.5
16 175,915 89,423 543.3 13.7
4 3,159,067 1,108,723 646.0 38.8
1 2,217,324,767 (mem.out) − 317.1

BMS-WebView1: 1,000 31 31 27.8 0.2
200 372 309 31.3 0.4
50 8,191 3,753 49.0 0.8
34 4,849,465 64,601 120.8 8.3
32 1,531,980,297 97,692 133.7 345.3
31 8,796,564,756,112 117,101 138.1 (timeout)
30 35,349,566,550,691 152,431 143.9 (timeout)

be an artificial database comprising completely random combinations, so there
are very few relationships between the itemsets. In such cases, the compression
of ZBDDs is not effective, and only the overhead factor is revealed. For “BMS-
WebView-1”, ZBDD-growth is slower than FP-growth when the output size is
small. However, an exponential factor of reduction is observed in cases that
generate many patterns. Especially for α = 31 and 30, more than one trillion
patterns are generated and compactly stored in memory, which has not been
possible when using conventional data structures.

4.3 Maximal Frequent Pattern Mining

We also show the experimental results for maximal frequent pattern mining using
the ZBDD-growth-max algorithm. In Table 7, we show the results for the same ex-
amples used in the original ZBDD-growth experiment. The last column
T ime(max)/T ime(all) shows the ratio of computation time between ZBDD-
growth-max and the original ZBDD-growth algorithm. We observe that the com-
putation time is almost the same (within a factor of two) for the two algorithms. In
other words, the additional computation cost for ZBDD-growth-max is almost the
same order as the original algorithm. Our ZBDD-based ”permit” operation can
efficiently filter the maximal patterns within a time that depends on the ZBDD
size, which is almost the same cost as manipulating ZBDD vectors of itemset-
histograms.

In many conventional methods, maximal pattern mining is less time consum-
ing than generating all patterns because there are many fewer maximal patterns
than all patterns. However, the complexity of ZBDD-growth does not directly
depend on the number of patterns. We observe that ZBDD size is not signifi-
cantly different between the maximal and all-pattern cases, so the computation
time is also not significantly different.

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 165

Table 7. Results of maximal pattern mining

Data name: #Maximal (output) ZBDD-growth-max T ime(max)
Min. freq. α freq. patterns |ZBDD| Time(s) /T ime(all)

mushroom: 5,000 3 10 1.2 1.00
1,000 467 744 4.1 1.10

200 3,111 4,173 10.7 1.10
16 24,060 13,121 8.1 1.06
4 39,456 14,051 4.2 0.98
1 8,124 8,006 1.2 0.70

T10I4D100K: 5,000 10 10 107.1 1.32
1,000 370 376 203.1 1.50

200 1,938 2,609 462.8 1.66
16 68,096 66,274 922.4 1.70
4 400,730 372,993 1141.2 1.77
1 77,443 532,061 140.5 −

BMS-WebView1: 1,000 29 30 34.9 1.25
200 264 289 41.2 1.32
50 3,546 3,064 71.2 1.45
34 15,877 16,854 173.1 1.43
32 15,252 17,680 196.6 1.47
31 13,639 17,383 208.7 1.51
30 11,371 16,323 219.7 1.53

5 Postprocessing for Generated Frequent Patterns

Our ZBDD-based method features an algorithm that uses ZBDDs not only as the
internal data structure but also as the output data structure, indexing a large
number of patterns compactly in main memory. The results can be analyzed
flexibly, by using algebraic operations implemented in ZBDDs. Here we show
several examples of postprocessing operations on the output data.

(Subpattern matching for the frequent patterns): From the frequent-
pattern results F , we can efficiently filter a subset S, such that each pattern in
S contains a given sub-pattern P .

S = F
forall v ∈ P do:
S = S.onset(v).change(v)
return S

Conversely, we can extract a subset of patterns not satisfying the given condi-
tions. This is easily done by computing F − S. The computation time for the
sub-pattern matching is much smaller than the time for frequent pattern mining.

The above operations are sometimes called constraint pattern mining. In con-
ventional methods, it is too time consuming to generate all frequent patterns be-
fore filtering. Therefore, many researchers consider direct methods of constraint
pattern mining without generating all patterns. However, using the ZBDD-based
method, a large number of patterns can be stored and indexed compactly in main
memory. In many cases, therefore, it is possible to generate all frequent patterns
and then process them using algebraic ZBDD operations.

(Extracting Long/Short Patterns): Sometimes we are interested in the
long/short patterns, comprising a large/small number of items. Using ZBDDs,

166 S. Minato and H. Arimura

all combinations of less than k out of n items are efficiently represented in poly-
nomial size, bounded by O(k · n). This ZBDD represents a length constraint on
patterns. We then apply an intersection (or difference) operation to the frequent
patterns that meet the length constraint of the ZBDD. In this way, we can easily
extract a set of long/short frequent patterns.

(Comparison between Two Sets of Frequent Patterns): Our ZBDD
manipulation environment can efficiently store more than one set of results of
frequent pattern mining. Therefore, we can compare two sets of frequent pat-
terns generated under different conditions. For example, if a database gradually
changes over time, the itemset-histograms and frequent patterns do not stay the
same. Our ZBDD-based method can store and index a number of snapshots of
pattern sets and easily show the intersection, union, and difference between any
pair of snapshots. When many similar ZBDDs are generated, their ZBDD nodes
are effectively shared within a monolithic multi-rooted graph, requiring much
less memory than that required to store each ZBDD separately.

(Calculating Statistical Data): After generating a ZBDD for a set of pat-
terns, we can quickly count the number of patterns by using a primitive ZBDD
operation S.count. The computation time is linearly bounded by the ZBDD
size, not depending on the pattern count. We can also efficiently calculate other
statistical measures, such as Support and Confidence, which are often used in
probabilistic analysis and machine learning.

(Finding Disjoint Decompositions in Frequent Patterns): In a recent
paper [20], we presented an efficient ZBDD-based method for finding all possible
simple disjoint decompositions in a set of combinations. If a given set of patterns
f can be decomposed as f(X, Y) = g(h(X), Y), with X and Y having no common
items, then we call it a simple disjoint decomposition. The decomposition method
can be applied to the result of our ZBDD-growth algorithm, and we can extract
other aspects of hidden structures from the complex itemset data. This will be
a powerful tool for database analysis.

6 Related Works

A ZBDD can be regarded as a compressed representation of a trie [9] for a set of
patterns, by sharing subgraphs of the tree structure. From this viewpoint, it can
be compared with the existing state-of-the-art condensed representations, such
as closed sets [22], free sets [4], and non-derivable itemsets [7].

Recently, Mielikäinen et al. [15] reported a fast method of answering item-
set support query for frequent itemsets using a condensed representation. Their
data structure is based on a trie with a frequency number on each node. Us-
ing this data structure, they represent a histogram of the frequent patterns
occurring more than α times. In this way, counting the occurrence number for
a given pattern can extremely be accelerated. In addition, they also proposed
some techniques not to store all frequent patterns in the trie, by only storing a

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 167

Table 8. Comparison with a condensed representation [15]

Data name (min. freq.) #freq. condensed rep. [15] (in KB) ZBDD (in KB)
patterns all-freq-hist closed-freq-hist all-freq-set all-freq-hist

mushroom (α: 500) 1,442,503 56,348 420 160 1,513
pumsb (α: 35,000) 1,897,479 74,120 10,416 250 16,293
BMS-WebView-1 (α: 35) 1,177,607 46,000 3,308 1,898 10,014

part of patterns (e.g. closed patterns) to save the memory requirement without
information loss.

Here we show an experiment to compare our ZBDD-based method with
Mielikäinen’s results. In the Table 8, the first column shows the data name
with the minimum frequency α. The second column shows the total amount of
all frequent patterns for α. In the columns of condensed representations, “all-
freq-hist” shows the memory requirement in KByte to represent a histogram of
all frequent patterns in the trie, and “closed-freq-hist” shows the results only
storing closed patterns in the trie. In the columns of our ZBDD-based repre-
sentation, “all-freq-set” shows the ZBDD size in KByte to represent a set of all
frequent patterns (without counting frequency number for each patterns), and
“all-freq-hist” shows the size of a ZBDD vector to represent the histogram of
frequent patterns. Here we assume that one ZBDD node consumes 40 Byte in
average.

In general, ZBDD-based “all-freq-set” is much more compact than using a trie,
since the equivalent subgraphs are shared in a ZBDD. Notice that a simple ZBDD
represents just a set of frequent patterns, but not representing a histogram.To store
the occurrence numbers exactly, we have to use ZBDD vectors, shown as “all-freq-
hist” in the table. This is still more compact than trie-based “all-freq-hist”.

The condensed representation “closed-freq-hist” would be more powerful than
using ZBDDs in terms of memory reduction. They use a domain-specific property
of frequent itemsets, i.e. monotonous relation. However, if we consider more
various inductive queries after generating frequent patterns, it would not work
well because such a beautiful property of itemsets may be broken. ZBDDs can
be used more robustly as they are based on more general data compression
principles. The results may depend on what kind of operations are performed
after generating patterns. Analysis of those data efficiencies will be an interesting
future work.

7 Conclusion

In this paper, we have presented a new ZBDD-based frequent pattern-mining
algorithm. Our method generates a ZBDD for a set of frequent patterns from
the ZBDD vector for the itemset-histogram of a given transaction database. Our
experimental results show that our ZBDD-growth algorithm is comparably fast
as existing state-of-the-art algorithms such as FP-growth. Especially for the cases

168 S. Minato and H. Arimura

where the ZBDD nodes are well shared, an exponential speed-up is observed,
compared with existing algorithms based on explicit table/tree representation.

On the other hand, for the cases where ZBDD nodes are not well shared, or
the number of patterns is very small, the ZBDD-growth method is not effective
and the overhead factors dominate. However, we do not have to use the ZBDD-
growth algorithm in all cases. We may use existing methods for cases where they
are more effective than ZBDD-growth. In addition, we could develop a hybrid
program that uses an FP-tree or a simple array for the internal data structure
but with the output constructed as a ZBDD.

TheZBDD-basedmethodwill be useful as a fundamental technique for database
analysis and knowledge indexing, and will be utilized for various applications in
inductive data analysis.

Acknowledgments. This research was partially supported by Grant-in-Aid for
Specially Promoted Research on “Semi- Structured Data Mining,” 17002008,
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association Rules between Sets
of Items in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the
1993 ACM SIGMOD International Conference on Management (Data of SIGMOD
Record), vol. 22(2), pp. 207–216. ACM Press, New York (1993)

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery
of Association Rules. In: Advances in Knowledge Discovery and Data Mining, pp.
307–328. MIT Press, Cambridge (1996)

3. Boulicaut, J.-F.: Proc. 2nd International Workshop on Knowledge Discovery in
Inductive Databases (KDID’03), Cavtat-Dubrovnik (2003)

4. Boulicaut, J.-F., Bykowski, A., Rigotti, C.: Free-sets: A Condensed Representation
of Boolean Data for the Approximation of Frequency Queries. Journal of Data
Mining and Knowledge Discovery (DMKD) 7(1), 5–22 (2003)

5. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

6. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: A Maximal Frequent Itemset Al-
gorithm for Transactional Databases. In: Proc. ICDE 2001, pp. 443–452 (2001)

7. Calders, T., Goethals, B.: Mining All Non-derivable Frequent Itemsets. In: Elomaa,
T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp.
74–85. Springer, Heidelberg (2002)

8. Coudert, O., Madre, J.C., Fraisse, H.: A New Viewpoint on Two-level Logic Mini-
mization. In: Proc. of 30th ACM/IEEE Design Automation Conference, pp. 625–
630 (1993)

9. Fredkin, E.: Trie Memory. CACM 3(9), 490–499 (1960)
10. Goethals, B.: Survey on Frequent Pattern Mining, Manuscript (2003),

http://www.cs.helsinki.fi/u/goethals/publications/survey.ps
11. Goethals, B., Javeed Zaki, M. (eds.): Frequent Itemset Mining Dataset

Repository, Frequent Itemset Mining Implementations (FIMI’03) (2003),
http://fimi.cs.helsinki.fi/data/

http://www.cs.helsinki.fi/ u/goethals/publications/survey.ps
http://fimi.cs.helsinki.fi/data/

Frequent Pattern Mining and Knowledge Indexing Based on ZBDDs 169

12. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Dis-
covery 8(1), 53–87 (2004)

13. Jiang, L., Inaba, M., Imai, H.: A BDD-based Method for Mining Association Rules.
In: Proceedings of 55th National Convention of IPSJ, IPSJ, September 1997, vol. 3,
pp. 397–398 (1997)

14. Mannila, H., Toivonen, H.: Multiple Uses of Frequent Sets and Condensed Repre-
sentations. In: Proc. KDD, pp. 189–194 (1996)

15. Mielikäinen, T., Panov, P., Dzeroski, S.: Itemset Support Queries using Frequent
Itemsets and Their Condensed Representations. In: Todorovski, L., Lavrač, N.,
Jantke, K.P. (eds.) DS 2006. LNCS (LNAI), vol. 4265, pp. 161–172. Springer,
Heidelberg (2006)

16. Minato, S.: Zero-suppressed BDDs for Set Manipulation in Combinatorial Prob-
lems. In: Proc. 30th ACM/IEEE Design Automation Conf (DAC-93), pp. 272–277
(1993)

17. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer
Academic Publishers, Dordrecht (1996)

18. Minato, S.: Zero-suppressed BDDs and Their Applications. International Journal
on Software Tools for Technology Transfer (STTT) 3(2), 156–170 (2001)

19. Minato, S., Arimura, H.: Efficient Combinatorial Itemset Analysis Based on Zero-
Suppressed BDDs. In: Proc. of IEEE/IEICE/IPSJ International Workshop on
Challenges in Web Information Retrieval and Integration (WIRI-2005), pp. 3–10
(2005)

20. Minato, S.: Finding Simple Disjoint Decompositions in Frequent Itemset Data Us-
ing Zero-suppressed BDD. In: Proc. of IEEE ICDM 2005 workshop on Compu-
tational Intelligence in Data Mining, November 2005, pp. 3–11. IEEE Computer
Society Press, Los Alamitos (2005)

21. Okuno, H., Minato, S., Isozaki, H.: On the Properties of Combination Set Opera-
tions. Information Processing Letters 66, 195–199 (1998)

22. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Journal of Information Systems 24(1), 25–46
(1999)

23. Baeza-Yates, R., Ribiero-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

24. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data
Eng. 12(2), 372–390 (2000)

Integrating Decision Tree Learning into
Inductive Databases

Élisa Fromont, Hendrik Blockeel, and Jan Struyf

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{elisa.fromont,hendrik.blockeel,jan.struyf}@cs.kuleuven.be

Abstract. In inductive databases, there is no conceptual difference be-
tween data and the models describing the data: both can be stored and
queried using some query language. The approach that adheres most
strictly to this philosophy is probably the one proposed by Calders et
al. (2006): in this approach, models are stored in relational tables and
queried using standard SQL. The approach has been described in detail
for association rule discovery. In this work, we study how decision tree
induction can be integrated in this approach. We propose a represen-
tation format for decision trees similar to the format proposed earlier
for association rules, and queryable using standard SQL; and we present
a prototype system in which part of the needed functionality is imple-
mented. In particular, we have developed an exhaustive tree learning
algorithm able to answer a wide range of constrained queries.

1 Introduction

An inductive database (IDB) [11] is a database that contains not only data, but
also generalizations (patterns and models) valid in the data. In an IDB, ordinary
queries can be used to access and manipulate data, while inductive queries can
be used to generate (mine), manipulate, and apply patterns.

Two approaches have been studied to represent and query patterns and models
in IDBs. First, depending on the models that will be stored, a special-purpose
storage and query language can be created. In this context, several researchers
have proposed extensions to the popular relational query language SQL. For
example, Meo et al. [15] and Imielinski & Virmani [12] present extensions to
SQL specifically designed for mining association rules. Kramer et al. [14] and
Han et al. [10] extend this approach to other models such as classification rules,
but they do not give any details about how to actually store those models in the
IDB. ATLaS [24] defines new table functions and aggregates in SQL, such that
writing data mining algorithms (e.g., decision tree learners) in SQL becomes
convenient. This approach has the closure property due to the use of SQL in the
whole data mining process, but requires a deep understanding of SQL and data
mining algorithm implementation to be used in practice. De Raedt [6] proposes a
query language based on first order logic, which is especially suited for relational

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 81–96, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

82 É. Fromont, H. Blockeel, and J. Struyf

data. Michalski & Kaufman [16] propose to use a knowledge generation meta-
language (KGL) that combines conventional database operators with operators
for conducting a large number of inductive inference tasks and operators for
managing knowledge.

The second approach consists of storing the patterns and models in standard
relational database tables, which are provided by any relational database man-
agement system (RDBMS), and using the standard SQL language, to represent,
store, and query the generalizations made on the data. This approach is being
investigated by members of the ADReM group in Antwerp1 for frequent itemset
and association rule mining [4]; we will refer to it in the rest of the paper as
“the ADReM approach”. This approach has a number of advantages over other
approaches with respect to extensibility and flexibility. In this paper, we inves-
tigate how the ADReM approach can be used for learning global models, such
as decision trees, and to which extent its advantages carry over to this new set-
ting. In particular, while support and confidence constraints are obvious when
querying association rules, it is much less clear which constraints are useful for
decision trees. We propose some interesting constraints for decision trees and
show how they can be enforced by means of two different decision tree learning
algorithms.

Section 2 presents the basic ideas behind the ADReM approach and shows
how they apply in the context of association rule discovery. Section 3 extends
the ADReM approach to decision tree learning. We first discuss how a standard
greedy decision tree learner can be used in this context (Section 4.1). Because
this approach has a number of disadvantages, we propose a new decision tree
learning algorithm that employs exhaustive search (Section 4.2). The latter is
more suitable for answering certain inductive queries for decision trees. Section 5
presents the perspectives of this work and Section 6 states the main conclusions.

2 The ADReM Approach to Association Rule Mining

The basic idea behind the ADReM approach is that models are stored in a rela-
tional database in the same way that other information is stored: as a collection
of tuples in relational tables. While applicable to a wide range of models, this
idea has primarily been studied in the context of association rules [1]. Below, we
briefly review the proposed representation for association rules, the conceptual
view on association rule mining that it leads to, and some implementation issues.
More information can be found in [4].

2.1 The Conceptual View

Consider a set of transactions D. The set is often represented as a table with one
row per transaction and one Boolean attribute per item, but conceptually it can
also be represented as a binary relational table with, for each transaction, a set

1 {toon.calders,bart.goethals,adriana.prado}@ua.ac.be

Integrating Decision Tree Learning into Inductive Databases 83

Sets
isid item
i1 p3
i1 p5
i1 p6
i2 red
i3 p3
i3 p5
i3 p6
i3 red
.

Supports
isid support
i1 10
i2 20
i3 8
.

Rules
rid isida isidc isid conf
r1 i1 i2 i3 0.8
r2 i4 i5 i6 0.4
.

Fig. 1. Storing association rules in a relational database. For example, the rule
“p3,p5,p6 ⇒ red” is represented by r1.

of tuples of the form (tid,item), where tid is the transaction identifier and item is
an item name. The crucial difference between the first and second representation
is that in the second, the item names are values instead of attributes. A query
can therefore return an item name as part of its result set. Note that we are
talking about the conceptual representation here; how the transaction table is
really implemented is not important.

Itemsets can be represented in a similar way. Figure 1 shows the ADReM rep-
resentation of frequent itemsets and association rules. The Sets table represents
all itemsets. A unique identifier (isid) is associated to each itemset IS (isid), and
for each itemset of size n, there are n rows (isid, itemj)1≤j≤n where itemj is the
jth item of IS (isid). The Supports table stores the support of each itemset. The
Rules table stores the computed association rules. For each rule X ⇒ Y , there
is a row (rid, isida, isidc, isid, conf) in the IDB where rid is the association rule
identifier, isida (resp. isidc) is the identifier of the itemset used in the antecedent
(resp. consequent) of the rule, IS (isid) = IS (isida) ∪ IS (isidc) and conf is the
confidence of the rule.

With this representation, finding association rules subject to certain con-
straints can be done easily using an SQL query. For instance, the query

select rid
from rules r
where r.conf >= 0.8 and

r.isidc in (select isid from sets where item = ‘‘red’’)

finds all association rules with a confidence of at least 0.8 that contain the item
“red” in the consequent of the rule.

2.2 The Implementation

Conceptually, the database has tables that contain all itemsets and all association
rules. But in practice, obviously, the large number of patterns may make it

84 É. Fromont, H. Blockeel, and J. Struyf

impractical to explicitly store them all in the database. This problem can be
solved by making these tables virtual. As far as the user is concerned, these tables
or virtual mining views contain all the tuples needed to answer the user query.
In reality, each time such a table is queried, a efficient data mining algorithm is
triggered by the DBMS to populate the views with the tuples that the DBMS
needs to answer the query.

More specifically, the procedure works as follows: given a query, an execution
plan is created; on the highest level this is a regular relational algebra tree with
tables as leaves. Standard query optimization procedures push projection and
selection conditions down this tree as far as possible, thus reducing the size of
intermediate results and making the overall computation more efficient. In the
ADReM approach, the leaves may be the result of a data mining process, and
the projection/selection conditions may be pushed further down into the data
mining algorithm. Calders et al. [4] describe this optimization process in detail.

2.3 Advantages of the Approach

The ADReM approach has several advantages over other approaches to inductive
querying. The main point is that the data mining processes become much more
transparent. From the user’s point of view, tables with itemsets and rules etc.
exist and can be queried like any other table. How these tables are filled (which
data mining algorithm is run, with which parameter values, etc.) is transparent
to the user. The user does not need to know about the many different imple-
mentations that exist and when to use which implementation, nor does she need
to familiarize herself with new special-purpose query languages. The whole ap-
proach is also much more declarative: the user specifies conditions on the models
that should result from the mining process, not on the mining process itself.

In the light of these advantages, it seems useful to try a similar approach
for other data mining tasks as well. In this paper, we focus on decision tree
induction.

3 Integration of Decision Tree Learning

A decision tree classifies instances by sorting them down the tree from the root
to a leaf node that provides the classification of the instance [17] (Figure 2). Each
internal node of the tree specifies a test on the value of one of the attributes of
the instance, and each branch descending from the node corresponds to one of
the possible outcomes of the test. In this paper, for simplicity reasons, we focus
on decision trees with Boolean attributes. Each attribute can then be seen as an
item in a transaction table and transactions are instances to classify.

In this section, we discuss the motivations for integrating decision trees into
an IDB and propose a representation for decision trees that will enable the user
to pose queries supporting several types of useful constraints.

Integrating Decision Tree Learning into Inductive Databases 85

3.1 Motivation

To see the motivation behind using the ADReM approach for decision tree learn-
ing, consider the current practice in decision tree induction. Given a data set,
one runs a decision tree learning algorithm, e.g., C4.5 [20], and obtains one par-
ticular decision tree. It is difficult to characterize this decision tree in any other
way than by describing the algorithm. The tree is generally not the most accu-
rate tree on the training set, nor the smallest one, nor the one most likely to
generalize well according to some criterion; all one can say is that the learning
algorithm tends to produce relatively small trees with relatively high accuracy.
The algorithm usually has a number of parameters, the meaning of which can
be described quite precisely in terms of how the algorithm works, but not in
terms of the results it yields. To summarize, it is difficult to describe exactly
what conditions the output of a decision tree learner fulfills without referring to
the algorithm.

This situation differs from the discovery of association rules, where the user
imposes constraints on the rules to be found (typically constraints on the confi-
dence and support) and the algorithm yields the set of all rules satisfying these
conditions. A precise mathematical description of the result set is easy to give,
whereas a similar mathematical description of the tree returned by a decision
tree learner is quite difficult to give.

Are people using decision tree learners interested in having a precise specifi-
cation of the properties of the tree they obtain? Aren’t they only interested in
finding a tree that generalizes the training instances well, without being inter-
ested in exactly how this is defined? This may often be the case, but certainly
not always. Many special versions of decision tree learners have been developed:
some use a cost function on attributes and try to find trees that combine a high
accuracy with a low cost of the attributes they contain [22]; some take different
misclassification costs into account while building the tree [7]; some do not aim
for the highest accuracy but for balanced precision-recall [25]; etc. The fact that
researchers have developed such learning algorithms shows that users sometimes
do have more specific desiderata than just high predictive accuracy.

By integrating decision tree learning into inductive databases, we hope to
arrive at an approach for decision tree learning that is just as precise as asso-
ciation rule learning: the user specifies what kind of trees she wants, and the
system returns such trees.

Here are some queries the user might be interested in:

1. find {T |size(T) < 8 ∧ acc(T) > 0.8 ∧ cost(T) < 70}
2. find one element in {T |size(t) < 8 ∧ acc(t) > 0.8 ∧ cost(t) < 70}
3. find {T |size(T) < 8 ∧ (∀T ′|size(T ′) < 8 ⇒ acc(T ′) < acc(T))}
4. find {T |T = (t(X, t(Y, l(+), l(−)), t(Z, l(C1), l(C2)),

X ∈ [A, B, C], Y ∈ [D, E], acc(T) > 0.8}

In the first query, the user asks for all decision trees T with a size smaller than
8 nodes, a global accuracy greater than 0.8 and a cost less than 70 (assuming
that each item has a given cost). To describe the tree of interest, other criteria

86 É. Fromont, H. Blockeel, and J. Struyf

such as the number of misclassified examples (error), the accuracy computed
for a particular class, the precision, the recall, or the area under the ROC curve
(AUC) might also be interesting.

Since the user is interested in all the trees that fulfill the given criteria, the
query cannot be answered by triggering a standard greedy decision tree learning
algorithm. Instead, a decision tree learner is needed that can search the space of
all possible trees exhaustively for trees that satisfy the constraints. The number
of such trees might be huge and as a result executing the query might not be
tractable. Note that without constraints, the number of decision trees that can
be constructed from a database with d attributes and a possible values for each
attribute is lower-bounded by

∏d−1
i=0 (d − 1)ai

. As in the association rule case
presented in Section 2, we assume that the queries are sufficiently constrained so
that a realistic number of trees is returned and stored. Which kind of constraints
are adequate here is still an open question.

In the second query, the user asks for one tree that fulfills some criteria. This
tree can normally be computed by a regular greedy tree learner. Note, however,
that for greedy learners, given that at least one tree satisfying the constraints
exists in the search space, there is usually no guarantee that the learner will find
one.

With the third query, the user looks for the set of trees of size smaller than 8
nodes with maximal accuracy. Again, this means that the search space of trees
smaller than 8 nodes must be searched exhaustively to ensure that the accuracy
of the returned trees are maximal.

In the last query, the user provides syntactic constraints on the shape of the
tree and provides some attributes that must appear in it.

More generally, we are interested in queries of the form {t ∈ T |C(t)} where
C(t) is “any conjunction of constraints on a particular tree”. This does not
include the whole range of possible queries. In particular, queries that specify
constraints on a set of trees such as “find the k best trees as different as possible
that fulfill some constraints” [13] are out of the scope of this paper.

3.2 Representing Trees in a Relational Database

The virtual mining view that holds the predictive models should be precise
enough to enable the user to ask SQL queries as easily as possible without
having to design new keywords for the SQL language. We use the same data
representation (transactions) as in Section 2, and assume that each transaction
contains either the ‘+’ item or the ‘-’ item, which indicate the class of the
transaction. We further assume that all the data-dependent measures (such as
accuracy) are referring to these transactions.

Note that due to the well-known correspondence between trees and rule sets,
a tree can be represented as a set of association rules: each leaf corresponds to
one association rule, with as antecedent the conditions on the path from the root
to that leaf and as consequent the class label of that leaf. However, while the
representation with one rule per leaf is interesting for prediction purposes, the
structure of the tree gives more information: e.g., the higher an attribute occurs

Integrating Decision Tree Learning into Inductive Databases 87

in the tree, the more informative it is for the prediction. Such information is lost
if we represent a tree as a set of association rules. We therefore choose a slightly
different representation.

The decision trees generated from the data D can be stored in the same
database as D and the association rules computed from D, by using the following
schema (Figure 2):

1. The Tree sets table is inspired by the Sets table used for representing asso-
ciation rules. We choose to represent a node of a tree by the itemset that
characterizes the examples that belong to the node. For instance, if the
itemset is AB, the examples in this node must fulfill the criteria A=true
and B=false. In association rules, only the presence of certain items is indi-
cated: there is no condition that specifies the absence of an item. To cope
with association rules derived from trees such as the one corresponding to
leaf L2 of the tree in Figure 2 (AB ⇒ −), we add a sign attribute to the
Tree sets table indicating whether the presence (1) or the absence (0) of the
item is required.

As in the Sets table, a unique identifier (isid) is associated to each itemset
and, for each itemset of size n, there are n rows (isid, itemj, signj)1≤j≤n

A

true false

B

true false

C

true false

+

L1

-

L2

+

L3

-

L4

Trees charac
treeID size error accuracy AUC cost ...

T1 7

T2

. .

Tree sets
isid item sign
i0 ∅ 1
i1 A 1
i2 A 1
i2 B 1
L1 A 1
L1 B 1
L1 + 1
i3 A 1
i3 B 0
L2 A 1
L2 B 0
L2 - 1
.

All trees
treeID isid leaf

T1 i1 0
T1 i2 0
T1 L1 1
.

T1 L2 1
.

T1 L3 1
.

T1 L4 1
T2

T3

.

Greedy trees
treeID isid leaf

T1 i1 0
T1 i2 0
T1 L1 1
.

T1 L2 1
.

T1 L3 1
.

T1 L4 1

Fig. 2. Storing decision trees in a relational database

88 É. Fromont, H. Blockeel, and J. Struyf

where itemj is the jth item of the itemset identified by isid and signj is its
sign. i0 stands for the empty itemset.

2. The All trees and Greedy trees tables give a precise description of each tree
in terms of the itemsets from Tree sets. Each tree has a unique identifier
treeID and each itemset corresponding to one of its nodes is associated with
this treeID. A Boolean attribute leaf distinguishes the internal nodes of the
tree (leaf = 0) from its leaves (leaf = 1). The nodes at level k of the tree,
are defined in terms of k-itemsets. The All trees table holds all possible
trees, whereas the Greedy trees table can be queried for an implementation-
dependent subset of all trees (the trees that may be found by a greedy learner
under certain conditions and constraints).

3. The Trees charac table lists all the tree characteristics where the user might
be interested in. The table contains for each tree identified by treeID, a row
with all characteristics (size, error, accuracy, cost, AUC) computed for the
tree (see Section 3.1).

The All trees and Greedy trees tables correspond, as discussed before, to the
ideal approach and the current and practically feasible approach to compute
decision trees. Both tables are thus relevant in our framework.

Note that the semantics of the SELECT operator applied to the Greedy trees
table is different from the standard relational algebra definition of this operator.
For example, querying the Greedy trees table for a tree will yield a particular
decision tree as result. If we subsequently add a certain constraint to the query,
then the system will return a different tree (a tree satisfying this constraint).
This is different from what happens when querying a regular database table
because the answer set of the query with the additional constraint is not a
subset of the answer to the original query. In our framework, the SELECT
operator applied to the Greedy trees table only outputs a single tree that fulfills
the user’s constraints.

3.3 Querying Decision Trees Using Virtual Views

The database schema of Section 3.2 is sufficient to be able to answer interesting
queries, provided that the data mining algorithms connected to the database
compute the different characteristics of the trees that hold in the IDB. We con-
tinue by presenting a number of example queries.

SELECT trees_charac.* FROM trees_charac, all_trees
WHERE trees_charac.treeID = all_trees.treeID AND
accuracy >= 0.8 and size <= 8;

This query selects the characteristics of all trees that can be computed from the
database, that have an accuracy of at least 0.80, and that contain at most 8
nodes.

SELECT treeID FROM trees_charac, greedy_trees
WHERE trees_charac.treeID = greedy_trees.treeID
and trees_charac.error < 10;

Integrating Decision Tree Learning into Inductive Databases 89

This query selects a tree constructed with a greedy algorithm that misclassifies
fewer than 10 instances.

SELECT trees_charac.* FROM trees_charac, all_trees
WHERE trees_charac.treeID = all_trees.treeID
AND accuracy = (select max(accuracy) from trees_charac);

This query selects the characteristics of the most accurate tree(s).

SELECT treeID FROM greedy_trees, tree_sets
WHERE greedy_trees.isid = tree_sets.isid
AND (tree_sets.isid

IN (select isid from tree_sets where item = ‘‘A’’));

This query selects a tree constructed with a greedy algorithm that contains the
item “A”.

3.4 User Defined Virtual Views

The framework is flexible enough to allow queries with constraints on metrics
that were not included in the virtual view from the beginning. The user can
create his own virtual mining view using information such as the support of the
itemsets. We illustrate this by providing definitions for “accuracy” and “size”.

The accuracy of a specific leaf in the tree can be computed from the support
of the itemsets that belong to the leaf [19] as follows (for the tree in Figure 2):

acc(L1) =
support(+AB)
support(AB)

, acc(L2) =
support(−AB)
support(AB)

, . . .

The global accuracy of the tree is the weighted mean of the accuracies of its
leaves. This can be computed without any information on the actual structure
of the tree as follows:

acc(T) = acc(L1) · support(AB)
support(∅)

+ acc(L2) · support(AB)
support(∅)

+ . . .

=
support(+AB) + support(−AB) + . . .

support(∅)
.

Itemsets that include a “negative” item usually do not have their support com-
puted. In this case, formulas based on the inclusion-exclusion principle, such
as:

support(AB−) = support(A−) − support(AB−)

can be used to compute the support of all itemsets from the support of the
“positive” itemsets [3].

These formulas can be translated into the SQL language to compute all the
characteristics in the Tree charac table. As in Section 2, we assume that we have
a Supports table that contains the support of all itemsets.

90 É. Fromont, H. Blockeel, and J. Struyf

acc(T1)= SELECT SUM(Supports.support) /
(SELECT Supports.support
FROM Supports WHERE Supports.isid = ‘‘I0’’)
as accuracy

FROM Supports, all_trees
WHERE Supports.isid = all_trees.isid
AND all_trees.treeID = T1
GROUP BY all_trees.treeID

size(T1) = SELECT COUNT(*) FROM all_trees
WHERE all_trees.treeID = T1

4 Implementation

The ADReM group connected an Apriori-like algorithm for association rule min-
ing to a standard Oracle database. The resulting system can answer inductive
queries for association rules including constraints on the support of the itemsets
and the confidence of the rules, and constraints requiring the presence or ab-
sence of some item in the resulting rules. We extend this system by interfacing
it to a decision tree learner named Clus

2. Clus is a predictive clustering tree
[2] learner that uses a standard greedy recursive top-down induction algorithm
to construct decision trees. Clus can be used to answer queries with regard to
the Greedy trees table. To support queries on the All trees table, we propose
a new algorithm Clus-EX that performs an exhaustive search for all decision
trees satisfying a set of constraints. We first discuss in more detail queries on
the Greedy trees table (Section 4.1) and then present Clus-EX (Section 4.2).

4.1 Greedy Tree Learning

For this task we use the standard implementation of Clus, which is a greedy
recursive top-down induction algorithm similar to C4.5 [20]. First, a large tree
is built based on the training data and subsequently this tree is pruned such
that the constraints in the query are satisfied. Following the precursor work by
Garofalakis et al. [8], a number of constraints were implemented in Clus [21].
It currently supports constraints on the size of the tree (i.e., an upper-bound
on the number of nodes), on the error of the tree, and on the syntax of the
tree. The error measure used for classification tree learning is the proportion of
misclassified examples (i.e., 1.0-accuracy). The syntactic constraints allow the
user to introduce expert knowledge in the tree. This expert knowledge takes the
form of a partial tree (including the root) that must appear in the resulting tree.
Essentially, this subtree specifies the important attributes in the domain. Other
constraints discussed in Section 3.1 still have to be implemented in the system.
Currently, queries such as the following can be used:

2 http://www.cs.kuleuven.be/∼dtai/clus/

http://www.cs.kuleuven.be/~dtai/clus/

Integrating Decision Tree Learning into Inductive Databases 91

SQL> select * from trees_charac c, greedy_trees g
where c.tree_id = g.tree_id and c.err <= 0.2 and c.sz= 9;

TREE_ID SZ ERROR ACCURACY
------- -- ----- --------

0 9 0.02 0.98 1 rows selected.

SQL> select * from trees_charac c, greedy_trees g
where c.tree_id = g.tree_id and c.err <= 0.2 and c.sz <= 8;

TREE_ID SZ ERROR ACCURACY
------- -- ----- --------

1 7 0.027 0.973 1 rows selected.

SQL> select * from trees_charac c, greedy_trees g
where c.tree_id = g.tree_id and c.sz< 4;

TREE_ID SZ ERROR ACCURACY
------- -- ----- --------

2 3 0.333 0.667 1 rows selected.

The trees computed for the different queries can be stored in a “log” table that
can be queried just as easily. After the session above, this table would contain:

TREE_ID SZ ERROR ACCURACY
------- ----- ------- ----------

0 9 0.02 0.98
1 7 0.027 0.973
2 3 0.333 0.667

4.2 Exhaustive Tree Learning

This section proposes the exhaustive tree learner Clus-EX. Clus-EX searches
the space of all possible trees of at most MaxSize (a parameter) nodes in a
depth-first fashion. Basically, a queue of trees is kept; a search step consists of
taking the first tree of the queue, computing refinements for it, and adding
those refinements to the front of the queue. A refinement consists of split-
ting one leaf of the tree according to one of the available attributes. Gener-
ating all possible refinements in this way is not optimal because the same tree
may be generated multiple times. To avoid identical trees from being gener-
ated, it is sufficient to restrict the refinements as follows. Clus-EX only splits
leaves that are below or to the right of the last node on the right-most path
of internal nodes (or, more formally: the ones that come after the last inter-
nal node of the current tree when it is written in pre-order notation). In the
example in Figure 3.a, only the dark gray leaves will be refined. The com-
pleteness and optimality of this method follow from a result by Chi et al. [5].

92 É. Fromont, H. Blockeel, and J. Struyf

A

true false

B

true false

C

true false

(a)
A

true false

B

true false

2

C

true false

D

true false

1 5 3 4

(b)

Fig. 3. (a) Example tree being refined by Clus-EX. The right-most path of internal
nodes is A, B, C. Only the leaves below or to the right of C are refined (indicated in
dark gray). (b) An illustration of exploiting constraints on both the size and the error
of the tree.

As discussed in Section 3.1, finding all possible trees that can be constructed
on a data set is intractable in the general case. However, if the user specifies suf-
ficiently restrictive constraints, and these constraints can be used for pruning,
then the search becomes practically feasible. (This is similar to itemset mining,
where a sufficiently high support threshold must be set so that the search be-
comes tractable.) In our case, including a size constraint in the inductive query
is crucial to prune the search, that is, the search can stop as soon as the given
size limit is reached. But a combination of size and error constraints can also
be exploited for pruning. Assume that the constraints state that there can be at
most Emax misclassified examples and that the size of the tree (internal nodes
plus leaves) can be at most S. Take a tree of size S′. Splitting a leaf increases the
size of the tree by at least 2, so at most m = (S − S′)/2 (integer division) leaves
of the current tree can be split before the maximum size is reached. Observe that
the greatest error reduction occurs when the leaves with the largest number of
errors (i.e., number of examples not belonging to the majority class in the leaf)
are split, and all these splits yield pure leaves. Assume that the current tree
has E0 errors in leaves that cannot be split anymore by the optimal refinement
operator, and k leaves Li that still can be split (the gray leaves in Figure 3.a).
Assume further that the Li are sorted such that e1 ≥ e2 ≥ . . . ≥ ek, with ei the
number of errors of Li. Then any valid extension of this tree has a total error of
at least E0 +

∑k
i=m+1 ei. If this sum is greater than Emax, then we can safely

prune the search at this point.
Consider the example in Figure 3.b, and assume that the five leaves have

(from left to right) 2, 1, 5, 3, and 4 errors. Let MaxSize = 11. The current size is
9, so we can do at most one more split. Given the refinement strategy described
above, we know that only the two right-most leaves can be split in the current
situation (the two leaves below node D). Therefore, E0 = 2 + 1 + 5 = 8 errors,
and the best possible split occurs when the leaf with 4 errors is replaced by two
pure leaves. The lower bound on the error is therefore 3 + 8 = 11.

Integrating Decision Tree Learning into Inductive Databases 93

Table 1. The performance of Clus-EX on UCI data sets. We consider for each data
set different values for the MaxSize and MaxError constraints. For each constraint pair,
the size of the search space (number of trees searched) without and with error based
pruning is reported together with the reduction factor due to pruning (Red.). The last
column is the number of trees that satisfy the constraints.

Search space (# trees searched)
Data set MaxSize MaxError No pruning Pruning Red. # Result
soybean 7 0.3 177977 86821 2.0 0
soybean 9 0.3 8143901 4053299 2.0 0
soybean 7 0.6 177977 125055 1.4 848

zoo 7 0.2 13776 9218 1.5 214
zoo 7 0.3 13776 11908 1.2 2342
zoo 9 0.3 345388 276190 1.3 95299
zoo 11 0.2 7871768 4296549 1.8 708026
zoo 11 0.1 7871768 1637934 4.8 16636

audiology 7 0.3 415704 380739 1.1 0
audiology 7 0.5 415704 406290 1.0 2326

Table 1 presents the results of Clus-EX on different symbolic UCI [18] data
sets. The third and the fourth columns show the number of nodes evaluated
during the search, i.e, they give an idea of the size of the search space and of
the efficiency of the pruning method. The table shows that when the maximum
error (resp. minimum accuracy) is sufficiently low (resp. high) compared to the
size constraint, the combination of the constraints can be used to efficiently
prune the search space. The table shows that restrictive constraints are crucial
to restrict the search space and the number of resulting trees. The soybean and
the audiology data sets contain many classes, therefore, the combination of strict
error and size constraints can easily lead to an empty result set.

Currently, queries such as the following can be used with the prototype:

SQL> select c.tree-id,sz,accuracy,err from trees_charac c, all_trees a
where c.tree_id = a.tree_id and sz <= 7 and accuracy > 0.8’);

TREE_ID SZ ERR ACCURACY
---------- ---------- ---------- ----------

0 7 0.125 0.875
1 7 0.125 0.875
2 7 0.125 0.875
3 7 0.125 0.875
4 7 0.125 0.875
5 7 0.125 0.875
6 7 0.125 0.875
7 7 0.125 0.875
8 5 0 1
9 5 0 1

94 É. Fromont, H. Blockeel, and J. Struyf

SQL> select * from all_trees a, trees_sets t
where a.set_id = t.set_id and tree_id = 0;

TREE_ID SET_ID NODE SET_ID ITEM SIGN
---------- ---------- ---------- ---------- -------- ----

0 0 1 0 null 1
0 1 1 1 null 1
0 1 1 1 B = F 1
0 2 1 2 null 1
0 2 1 2 B = F 1
0 2 1 2 A = F 1
0 3 0 3 null 1

....

5 Perspectives

There are many open problems related to the proposed approach. For instance,
for efficiency reasons, the system should be able to look at the “log” table that
contains the previously computed trees to check if the answer of the current query
has not already been computed, before triggering a data mining algorithm. If the
user asks for all trees of size smaller than 8, and later for all trees of size smaller
than 6, the results computed from the first query should be reusable for the second
query. The “log” table should also contain the previous queries together with the
computed trees, which raises the question of how to store the queries themselves
in the database. This entire problem, called interactive mining because it refers
to the reutilisation of queries posed within the same working session, has been
investigated for association rules [9], but not for decision tree learning.

If the database is modified between two queries, then it might be interesting to
reuse the previously computed predictive models to more efficiently compute new
predictive models for the modified database. This problem known has incremental
learning has already been studied for decision trees [23] when a new example is
added to the database.

These functionalities have to be integrated into the prototype along with the
extension of the framework to multi-valued attributes.

Because predictive models ultimately aim at predicting the class of new exam-
ples, it would be interesting to include that possibility in the IDB. This is currently
non-trivial in our approach; it requires complicated queries. More generally, the
limitations of our approach with respect to what can be expressed, and how diffi-
cult it is to express it, require further investigation.

Another perspective is the integration of other predictive models such asBayesian
Networks in the same IDB framework already designed for association rule and
decision tree mining. The user might be interested in queries such as “find the
Bayesian network of size 10 with maximal likelihood”. Again, a structure to store
Bayesian networks has to be designed and an algorithm that can build Bayesian
networks under constraints has to be implemented.

Integrating Decision Tree Learning into Inductive Databases 95

6 Conclusion

In this paper we have studied how decision tree induction can be integrated in in-
ductive databases following the ADReM approach. Considering only Boolean at-
tributes, the representation of trees in a relational database is quite similar to that
of association rules, with this difference that the conjunctions describing nodes
may have negated literals whereas itemsets only contain positive literals. A more
important difference is that a decision tree learner typically returns one tree that
is “optimal” in some “not very precisely” defined way, whereas the IDB approach
lends itself more easily to mining approaches that return all results fulfilling cer-
tain well-defined conditions. It is therefore useful to introduce both a Greedy trees
table and an All trees table, where queries to Greedy trees trigger the execution
of a standard tree learner and queries to All trees trigger the execution of an ex-
haustive tree learner. We have described a number of example queries that could
be used, and proposed a new algorithm that is able to exhaustively search for de-
cision trees under constraints. We presented a preliminary implementation of this
algorithm, and discussed open questions and perspectives of this work.

The approach presented in this paper focused on the representation of the
models, the querying mechanism and the constrained based mining of the models.
We believe that the simplicity of this approach makes it easier to be included as
a brick in a larger system able to support the whole KDD process, which is the
ultimate aim of an inductive database.

Acknowledgments. Hendrik Blockeel and Jan Struyf are post-doctoral fellows
of the Fund For Scientific Research of Flanders (FWO-Vlaanderen). This work
is funded through the GOA project 2003/8, “Inductive Knowledge Bases”, and
the FWO project “Foundations for inductive databases”. The authors thank
Siegfried Nijssen, Sašo Džeroski, and the ADReM group for the many interesting
discussions, and in particular Adriana Prado for her help with the IDB prototype
implementation.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
the 20th Int. Conf. on Very Large Databases VLDB, pp. 487–499 (1994)

2. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In:
15th Int’l Conf. on Machine Learning, pp. 55–63 (1998)

3. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In: Elomaa,
T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp.
74–85. Springer, Heidelberg (2002)

4. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational data-
bases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS
(LNAI), vol. 4213, pp. 454–461. Springer, Heidelberg (2006)

5. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - An
overview. Fundamenta Informaticae 66(1-2), 161–198 (2005)

6. De Raedt, L.: A logical database mining query language. In: Cussens, J., Frisch,
A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 78–92. Springer, Heidelberg
(2000)

96 É. Fromont, H. Blockeel, and J. Struyf

7. Domingos, P.: MetaCost: A general method for making classifiers cost-sensitive.
In: Knowledge Discovery and Data Mining, pp. 155–164 (1999)

8. Garofalakis, M., Hyun, D., Rastogi, R., Shim, K.: Building decision trees with
constraints. Data Mining and Knowledge Discovery 7(2), 187–214 (2003)

9. Goethals, B., Van den Bussche, J.: On supporting interactive association rule min-
ing. In: Kambayashi, Y., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2000. LNCS,
vol. 1874, pp. 307–316. Springer, Heidelberg (2000)

10. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query
language for relational databases. In: SIGMOD 1996 Workshop on Research Issues
in Data Mining and Knowledge Discovery (DMKD 1996) (1996)

11. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Comm.
of the ACM 39, 58–64 (1996)

12. Imielinski, T., Virmani, A.: MSQL: A query language for database mining. Data
Mining and Knowledge Discovery 3(4), 373–408 (1999)

13. Kocev, D., Džeroski, S., Struyf, J.: Similarity constraints in beam-search induction
of predictive clustering trees. In: Proc. of the Conf. on Data Mining and Data
Warehouses (SiKDD 2006) at the 9th Int’l Multi-conf. on Information Society (IS-
2006), pp. 267–270 (2006)

14. Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive databases in the relational model: The data as
the bridge. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933,
pp. 124–138. Springer, Heidelberg (2006)

15. Meo, R., Psaila, G., Ceri, S.: An extension to SQL for mining association rules.
Data Mining and Knowledge Discovery 2(2), 195–224 (1998)

16. Michalski, R.S., Kaufman, K.A.: Building knowledge scouts using KGL metalan-
guage. Fundamenta Informaticae 41(4), 433–447 (2000)

17. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
18. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine

learning databases (1998)
19. Pance, P., Dzeroski, S., Blockeel, H., Loskovska, S.: Predictive data mining us-

ing itemset frequencies. In: Zbornik 8. mednarodne multikonference Informaci-
jska druzba. Ljubljana: Institut “Jožef Stefan”, pp. 224–227. Informacijska Druzba
(2005)

20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

21. Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression
trees. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
222–233. Springer, Heidelberg (2006)

22. Turney, P.: Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research 2,
369–409 (1995)

23. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4, 161–186
(1989)

24. Wang, H., Zaniolo, C.: ATLaS: A native extension of SQL for data mining. In:
SIAM Int’l Conf. Data Mining, pp. 130–144 (2003)

25. Xiaobing, W.: Knowledge representation and inductive learning with XML. In:
Proc. of the IEEE/WIC/ACM Int’l Conf. on Web Intelligence (WI 2004), pp. 491–
494. IEEE Computer Society Press, Los Alamitos (2004)

IQL: A Proposal for an Inductive Query
Language

Siegfried Nijssen and Luc De Raedt

Institut für Informatik, Albert-Ludwidgs-Universität,
Georges-Köhler-Allee, Gebäude 097, D-79110, Freiburg im Breisgau, Germany

Departement Computerwetenschappen, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001, Leuven, Belgium

siegfried.nijssen@cs.kuleuven.be

Abstract. The overall goal of this paper is to devise a flexible and
declarative query language for specifying or describing particular knowl-
edge discovery scenarios. We introduce one such language, called IQL.
IQL is intended as a general, descriptive, declarative, extendable and
implementable language for inductive querying that supports the min-
ing of both local and global patterns, reasoning about inductive queries
and query processing using logic, as well as the flexible incorporation of
new primitives and solvers. IQL is an extension of the tuple relational
calculus that includes functions as primitives. The language integrates
ideas from several other declarative programming languages, such as pat-
tern matching and function typing. We hope that it will be useful as an
overall specification language for integrating data mining systems and
principles.

1 Introduction

The area of inductive databases [8], inductive query languages, and constraint-
based mining [1] has promised a unifying theory and framework for reasoning
about data mining principles and processes, which should also result in powerful
inductive query languages for supporting complex data mining tasks and scenar-
ios. The key idea is to treat patterns and models as first-class citizens that can
be queried and manipulated. The slogan: “From the user point of view, there
is no such thing as real discovery, just a matter of the expressive power of the
available query language” has been advocated.

There has been a lot of progress in the past few years witnessed by the intro-
duction of several inductive query languages, such as MINE RULE [12], MSQL
[9], DMQL [7] and XMine [3]; Microsoft’s Data Mining Extensions (DMX) of
SQL Server [16]; the algebra of the 3W model [10]; the query language of the
SINDBAD project [11]; the logic based query languages of MolFEA [13] and
LDL-Mine [6], which all have contributed new insights: MINE RULE, MSQL,
DMQL and XMine focus on the derivation of either frequent itemsets or associa-
tion rules; notation wise, these languages are extensions of the industry standard
SQL language. Microsoft’s SQL server includes a larger set of algorithms, and

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 189–207, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 S. Nijssen and L. De Raedt

provides an interface for learning, clustering and applying a wider range of data
mining algorithms, including association rules, decision trees and Bayesian net-
works; however, it does not provide a framework for reusing frequent itemsets,
or for specifying additional constraints. Similar to Microsoft’s SQL server, also
SINDBAD provides an extension of SQL, in which data mining algorithms are
included as functions that transform relations into relations, but only little at-
tention is devoted to the use of constraints. The approach of Calders et al. [4],
on the other hand, concentrates mainly on the specification of constraints. The
algebra of the 3W model supports association rule discovery as well as learning
rule based classifiers, but focuses more on postprocessing than on the specifica-
tion of constraints. The language of MolFEA allows for the discovery of patterns
under constraints, and is more abstract, but does not integrate classification or
clustering algorithms. LDL-Mine is similar in spirit to our proposal, but takes
Datalog as its starting point and is less focused on the representation of con-
straints. The data mining algebra and the Datalog++ foundations of LDL-Mine
are sufficiently complete to represent data mining algorithms themselves. Rele-
vant is finally also the study of Siebes [15] concerned with upgrading relational
algebra operators, such as selection and projection, to data mining models.

Despite this plethora of languages, there is still no comprehensive theory of
inductive querying or a unifying query language that is powerful yet simple. In
this paper, we propose the inductive query language IQL, which addresses some
of the limitations of existing approaches, and integrates many of the ideas that
have been proposed in the aforementioned papers, such as the use of data as
a bridge [11], the conception of domains as virtual relations [4], and the use of
logic as a query language [13]. In contrast to earlier work, the overall goal of
this research is to devise a flexible and declarative query language for specifying
KDD scenarios.

We designed IQL with the following goals with in mind:

– to provoke discussion on inductive query languages;
– to encompass a rich variety of data mining tasks, including: local pattern

mining over different domains, clustering, classification, regression as well as
probabilistic modeling;

– to integrate models as first-class citizens of the database;
– to support reasoning about queries, their execution and their optimization;
– to integrate data mining primitives in a database language; as database

language we employ an extension of the tuple relational calculus rather than
SQL because this allows us to focus more on the principles of the language
than on the syntax, but our ideas extend to many other languages;

– to design an extendable language, in which other researchers can describe
and possibly implement their constraints, primitives and approaches; if this
succeeds, IQL might become a unifying description or specification language
for data mining;

– to design an implementable language, even though we wish to stress that –at
this point– we are not concerned with the efficiency of the resulting system
but rather with the underlying principles.

IQL: A Proposal for an Inductive Query Language 191

The final language that we have in mind is very general, and includes for instance
existentially and universally quantified formulas. At this point it is an open
question if this very general language is implementable. For restrictions that
we will point out throughout the paper, we will show that it can indeed be
implemented. IQL under these restrictions will be referred to as simplified IQL
(sIQL).

The paper is organized as follows: Section 2 provides an intuitive introduction
to our query language; Section 3 introduces IQL in more detail. We discuss
how IQL can be implemented in Section 4. Within IQL we believe that certain
primitives should be supported. These are provided in Section 5. We sketch what
kind of reasoning is supported by IQL in Section 6. A scenario is described in
Section 7. A brief investigation of the possibilities to integrate IQL in other query
languages is provided in Section 8. Finally we conclude in Section 9.

Given that IQL is a query language, there are many similarities between IQL
and other languages for writing programs or queries. We choose to point out
these relations throughout the whole paper, instead of including an additional
section for related work.

2 Some Example Queries

The best way to introduce the ingredients of a language, and hence also those of
IQL, is by providing some examples. IQL is derived from and extends the query
language we introduced earlier [13]. An example inspired on that language, but
rewritten in IQL is:

create table R as

{< pattern : S, freq1 : freq(S, D1), freq2 : freq(S, D2) > | S ∈ Sequence ∧
S � “C − H − 0 − n” ∧ freq(S, D1) = 0 ∧ freq(S, D2) ≥ 1 }.

This query generates a relation in which the tuples consist of sequential patterns
and their frequency in datasets D1 and D2. Furthermore, all patterns must occur
at least once in dataset D2, must not occur in D1 and must be more general than
(i.e., a substring of) “C −H −O −n” . This query thus corresponds to a typical
local pattern mining step. By convention, we write variables and relations with
capitals.

As a second example, consider

create view R′ as { T + < target : apply(D, T) > |
D ∈ DecisionTree[< A : integer, B : integer >, < C : string >] ∧

C4.5(D, R) ∧ T ∈ R }.

This query creates a view R′, which extends the relation R with the attribute
target. The value of target is the prediction made by a decision tree generated
by C4.5 on the projection of R on the attributes A, B and C (as the class

192 S. Nijssen and L. De Raedt

attribute). So, this query does not only generate a decision tree but also applies
it to a data set, which corresponds – in part – to a cross-over operation.

These two examples illustrate the following key ingredients of IQL:

– queries are generating relations of the form { tuple | condition (tuple) };
– IQL is an extension of the relational tuple calculus;
– the result of a query is a relation, hence, the closure property is satisfied;
– the values of the tuples can be complex, e.g. sequences, functions, etc.; we also

allow for operations such as “+” and “-” on tuples, which add, respectively
remove attributes from tuples;

– the logical connectives ∧, ∨, ¬ are permitted; (in sIQL, we do not allow ∨;)
– IQL is able to employ functions; for instance, freq(P, D), which computes

the frequency of the pattern P in the dataset D;
– IQL employs a typing system; for instance, the decision tree D maps tuples

with attributes A and B onto their classes C;
– as in [4] a virtual relation represents a domain, for instance, DecisionTree;
– as in the language by [13], there are some built-in predicates such as �,

which denotes generality, and freq(P, D);
– calls to specific algorithms, such as C4.5, can be integrated; this may be

realized using pattern matching, cf. Section 5.

Let us now define these ingredients in a more formal manner.

3 Manipulation of Data

To manipulate data as well as pattern and functions, we shall employ an exten-
sion of the tuple relational calculus. The tuple relational calculus is a standard
theoretical query language for relational databases [5,14]. By using the relational
calculus, we keep the desirable closure property: the result of each query is a re-
lation. Furthermore, the relational calculus is based on logic and is therefore
declarative.

Essential in the relational model is that data is stored in relations, each of
which consists of a set of tuples. A tuple is an expression of the form < n1 :
v1, . . . , nk : vk > where ni is an attribute, and vi a value out of the domain Di

of the attribute ni, e.g. the tuple < a : 0, b : 1 >. For reasons of convenience,
we allow tuples to be joined or subtracted using the + and − symbols 1. The
schema of a tuple is denoted by < n1 : D1, . . . , nk : Dk >. For instance, in the
above example, this is < a : boolean, b : boolean >. A relation is then a set of
tuples over a particular schema, e.g. R = { < a : 0, b : 1 >, < a : 1, b : 0 > }.
We will also say that the type of a relation is {< n1 : D1, . . . , nk : Dk >}. In
tuple relational calculus, variables range over tuples in relations.

The syntax of the tuple relational calculus is then defined as follows. A query
is an expression of the form {T |q}, where T is a tuple and q is a formula.

1 For simplicity we shall assume that no clashes occurs (as e.g. in < temp : 5 > + <
temp : 6 >).

IQL: A Proposal for an Inductive Query Language 193

A formula is usually built from the traditional connectives ∧, ∨ and ¬, and
contains variables that can be quantified using the ∃ and ∀ quantifiers. In sIQL,
we restrict ourselves to formulas without the ∀ quantifier and ∨ connective. The
following atoms are allowed:

– atoms of the form e1θe2, where θ ∈ {≥, ≤, >, <, =,
=} and ei is a term.
Constants, attributes a of tuples T (denoted by T.a) and tuples with one
attribute can be used as terms;

– T ∈ R, where T is a tuple variable, and R is a relation.

From a data mining perspective, a dataset is conceived as a set of tuples, each
of which contains information about an example. One crucial aspect of IQL is
that we allow for arbitrary domains. For instance, we shall consider the domain
of graphs, sequences, . . . For such domains, there will typically be special built-in
operators such as for instance the generality or covers relation � stressed by [13].
Similarly, we can conceive a pattern set as a set of tuples, each of which contains
a pattern.

Even though we assume that the inductive database conceptually deals with
domains such as graphs or sequences, this does not mean that we claim that
an inductive database should be able to store such structures entirely in an
attribute. For instance, an attribute in the graph domain could also be imple-
mented as an identifier pointing to another relation storing the real graphs. At
this point, we abstract from implementation details, such as how objects are
incorporated or implemented, and essentially only assume that they can be ma-
nipulated and passed on using IQL calculus.

A crucial extension is that we allow for functions. To achieve this, we propose
the use of a typing system which includes the following types:

– basic types;
Examples: integer, float, boolean

– complex types;
Examples: decisionTree, itemset

– a tuple type <>, which is taken on by every tuple. We can specialize this
type; if τ1, . . . , τn are types, and λ1, . . . λn are identifiers,

< λ1 : τ1, . . . , λn : τn >

specifies tuples that contain at least the given attributes; so, we constrain
tuples to a certain schema;
Examples: < pattern:itemset,support:integer >, < tree:decisiontree,
acc : float >

– if τ is the type of a tuple, then
{τ}

is the type of a relation of tuples of this type;
Examples: {<>}, {< pattern:itemset,support:integer >}

– a schema type, which allows one to pass on a list of attribute identifiers to
a function; so, the expression < A : integer, B : integer > is of type schema.
Example: schema

194 S. Nijssen and L. De Raedt

– if τ is a complex type and θ1, . . . , θn are tuple types, then

τ [θ1, . . . , θn]

is a parameterized type; in contrast to functional programming languages,
the parameter types are not intended to allow for generic programming;
θ1, . . . , θn are intended to associate to a model the schema of the data it was
learned from, which could be used later on to constrain the applications of
the model;
Example: decisionTree[< A:integer,B:integer >, < C:string >]
In this example, < A:integer,B:integer > is the set of attributes that are
used to perform predictions by the decision tree, and < C:string > is the
attribute that is predicted by the tree.

Using these types, we can now specify what the signature of a function is:

(σ1, . . . , σn) → θ,

where σi is an input parameter type and θ is a return value type. In addition
to the <> type, we will also allow variables in signatures, denoted by α, β,
These variables represent the type <>, but take on the schema of the tuple or
relation that is passed to the function. The idea is that they can be used to
express further constraints on the schemas of relations that are passed on to a
function.
Examples

– apply : (decisionT ree[α, β], γ) → integer (α ⊆ γ)
This signature defines a function that applies a decision tree to a tuple in a
relation. The variables α, β and γ in this signature, which are used in stead
of the general <> type, can be used to express additional constraints. In
this case, it is required that the input attributes of the decision tree should
occur in the relation to which it is applied.

– join : ({α}, {β}, schema[γ]) → {α + β} (γ ⊆ α, γ ⊆ β)
This signature defines a function that takes two relations as input, and a
set of attribute identifiers that are common to both relations, and produces
a relation in which tuples are joined on these common attributes. In this
notation, γ takes on the tuple schema that is passed as parameter to the
function.

As we allow for functions, we can also easily deal with predicates, by conceiv-
ing predicates as functions with boolean return type. Functions and predicates
are incorporated in IQL by allowing expressions of the form f(e1, . . . , en) where
f is a function and the ei are expressions with types that should satisfy the con-
straints specified in the signature of the function. These expressions can occur
in atoms, as well as in tuples, as they denote particular values.

IQL: A Proposal for an Inductive Query Language 195

As illustrated by the join function, the inclusion of functions in IQL means
that many common operations of the relational algebra can be implemented.
IQL is however more powerful than the traditional relational algebra to which
additional operators are added. A query which can be expressed in IQL is

{D + T |D ∈ R ∧ T ∈ f(D)},

for some relation R and function f that returns a relation. In this query, we
iterate over one relation, and apply an operator on each tuple in the relation,
resulting in a relation for that particular tuple.

The final elements of IQL are:

– in addition to types, we also allow for the definition of type classes, which are
similar to those found, for instance, in the functional programming language
Haskell. Concretely, a type class specifies a set of function headers in which
the class is a parameter. A type can only be an instance of a class iff all
these functions are implemented for the type.
Examples: For the class classifier, we can require that the function apply :
(classifier[α, β], γ) → integer
exists. The classifier type can be used for instance for relations containing
multiple types of classifiers; still, we can apply the common operation apply
to all of them.

– we introduce a virtual relation of schema {< element:τ >} for every complex
type τ (similar to [4]). These relations are necessary to define the pattern
type or model type of interest;
Example: {T |T ∈ Itemset ∧ freq(T, D) ≥ 10}
Here, the schema of Itemset is {< element:itemset >}. Observe that we
capitalize the first letter of the type name when used as a relation.

– we allow new relations to be created that contain the result of a query, and
we allow for the definition of functions; views are special functions without
arguments.
Examples
create function f(id : Int) as { t − < id > | t ∈ D ∧ t.id = id }
create table F as { < pattern : S, id : V.id, freq : freq(S, f(V.id)) > |

V ∈ ID ∧ S ∈ Sequence ∧ freq(S, f(V.id)) ≥ 10 };
Here ID and D are relations in the database.

4 Evaluation of Queries

Given that our language supports statements such as ‘create table’ that modify
the state of the inductive database, our language can be considered imperative.
Still, the queries themselves are more declarative in nature, and the question
rises as to how we can evaluate them. An important property of our language
is that it supports both declarative and procedural mechanisms for specifying

196 S. Nijssen and L. De Raedt

queries. Assume that we have an algorithm for learning decision trees2, then we
can represent this using a function

dtLearner : ({α}, schema[β], schema[γ]) → {< tree : decisionT ree[β, γ] >}
(β ⊆ α, γ ⊆ α);

the decision tree learner takes as input the relation for which a decision tree is to
be learned, and furthermore, the identifiers of attributes that are used as inputs
and class attribute, respectively. It produces a relation containing decision trees
(in most cases, only one decision tree). This function can be used in a query such
as

create table T as dtLearner(R, < A : integer >, < B : string >)

Alternatively, we could also define a function

isLearnedTree : ({α}, decisionT ree[β, γ]) → boolean (β ⊆ α, γ ⊆ α),

which succeeds if a decision tree has been learned from certain data by an algo-
rithm. This function can be used to allow for the query

create table T as
{T |T ∈DecisionTree[< A : integer >, < B : string >]∧isLearnedTree(D, T)}.

The main idea behind the evaluation of our query language is to rewrite the
declarative query into its procedural form, not unlike the way that relational
calculus is rewritten in relational algebra. We can achieve this through the pat-
tern matching principle that is common in many declarative programming lan-
guages, such as Prolog and Haskell, but clearly, the pattern matching system of
IQL must be more powerful than the systems used in these languages. It is an
open question as to how powerful the pattern matching system for (full) IQL
should be, but to illustrate that evaluation by pattern matching is possible, we
will show this for the simplified IQL in the remainder of this section.

In sIQL, we propose to drive the pattern matching system by declarations of
the following form:

{T1 + · · · + Tn|φ} ≡ f,

where φ is a conjunctive formula of the form φ = {T1 ∈ R1 ∧ . . .∧Tn ∈ Rn ∧a1 ∧
. . . ∧ am}; R1, . . . , Rn are relations and a1, . . . , am are atoms; on the righthand
side of the declaration a function call f is given. As an example, we can have
the following declaration:

{T |T ∈ decisionTree[B, G], isLearnedTree(D, T)} ≡ dtLearner(D, B, G), (1)

In this declaration, somevariables areunderlined.Thesevariables are substitutable.
A substitution for a pattern is a set θ = {V1/T ′

1, . . . , Vn/T ′
n}; when the substitution

2 For reasons of simplicity, we assume that this algorithm does not have additional
parameters.

IQL: A Proposal for an Inductive Query Language 197

is applied to the pattern, all substitutable variables Vi are simultaneously replaced
with corresponding new terms T ′

i as defined in the substitution set θ.
The declarations are used to guide the rewriting of queries. If the formula φ

of a pattern equals part of a query after a substitution, the matched atoms in
the query are replaced with the righthand side of the declaration that matched.

For instance, for the query:

{C|C ∈ decisionTree[< a : integer >, < b : integer >]∧
isLearnedTree(R, C) ∧ acc(C, R) ≥ 10},

we can apply substitution θ={T/C, B/ < a : integer >, G/ < b : integer >, D/R}
to the formula of Equation 1 to obtain a match.

The rewriting proceeds as follows. First, we compute the atoms that were
not matched with the pattern, q − φθ, to make sure that they reoccur in the
rewritten query. Then, we add a new atom (T ∈ fθ) to this set of atoms, which
ranges over the result of a function call as defined by the righthand side of
the matched declaration (we abort the pattern matching if we detect a type
mismatch). Finally, we have to make sure that all variables that ranged over
relations that disappeared in the new query, range over the result of the function
call. This can be achieved by applying a final substitution3.

In our example, after applying substitution θ, we can rewrite the query into

{T |T ∈ dtLearner(R, < a : integer >, < b : integer >) ∧ acc(T, R) ≥ 10}.

For a query that does not contain virtual relations, and for which all functions
are implemented, we can use a straightforward evaluation method, similar to the
evaluation of list comprehensions in programming languages such as Haskell or
Python: first, the atoms are ordered. Then, for every atom T ∈ R (‘generator
expressions’), if R is function call, it is evaluated; for every possible value in
the resulting relation, the remainder of the atoms is evaluated. Other atoms
(‘guard expressions’) are evaluated by performing the necessary function calls
first, and testing the results of the function calls. The lefthand side of the query
is evaluated for every combination of tuples that survives all guards.

5 Primitives and Extensions

In this section, we study a list of possible queries, and investigate how they can
be represented in our language. In this discussion, we will point out whether the
queries are already supported by the sIQL or if the full IQL is required.

Condensed representations. We have seen already that frequent pattern miners
in general can be represented by introducing a type class pattern. Algorithms
3 For reasons of simplicity, we assume there are no name clashes between the attributes

of relations; we assume that the function that is called, returns a tuple that contains
all attributes of the matched relations.

198 S. Nijssen and L. De Raedt

for mining using condensed representations, such as closed itemsets, can be rep-
resented by including functions

isClosed : (itemset, {itemset}) → boolean,

which checks if an itemset is closed within a certain database, and

closedMiner : ({itemset}, integer) → {itemset},

which returns the set of frequent closed itemsets for a given database and support
threshold. These functions are used in the declaration

{I|I ∈ Itemset, freq(I, R) ≥ T , isClosed(I, R)} ≡ closedMiner(R, T).

This procedure can be repeated for every kind of condensed representation and
type of pattern. Observe that if the isClosed function is implemented separately,
we have two different ways to evaluate a closed itemset mining query: one option
is to call a closed itemset miner; another option is to call a frequent itemset miner,
and to postprocess the results. It is a matter of optimization which of these two
options is chosen.

A useful feature of IQL could be to introduce templates. It can then be speci-
fied that for a condensed representation, the above mentioned set of two functions
types and one declaration should be provided.

Miners under multiple constraints. Some data mining algorithms are able to
deal with conjunctions of constraints of arbitrary size, for instance, the MolFEA
algorithm [13]. It is obvious that such algorithms are straightforwardly repre-
sented in IQL. Evaluation within the sIQL setting is however difficult, as every
pattern in the pattern matching system has a fixed size. Both a more complicated
pattern matching system and a more complicated typing system are required to
pass variable numbers of constraints to an algorithm.

Top-k pattern miners. A recent branch of research involves that of mining top
k patterns, where the top k patterns are determined according to some convex
measure, such as the χ2 test. One way that a user could specify such a query is

create view V = {< itemset : I, value : χ2(I, D) > |I ∈ Itemset}

{I|I ∈ Itemset ∧ rank(I, V) ≤ 10}.

Here, χ2 is a function with signature

χ2 : (itemset, {< itemset : itemset, class : string >}) → float;

this function computes the correlation of an itemset in a dataset that contains at
least an itemset attribute and a class attribute. The rank function has signature

rank : (itemset, {< itemset : itemset, value : float >}) → integer

IQL: A Proposal for an Inductive Query Language 199

and returns the position of an itemset in a set of itemsets that is sorted according
to associated floating point values.

The link between a top k pattern miner and a declarative query is formalized
by the declaration

{I|I ∈ Itemset, rank(I, V) ≤ T} ≡ TopKChi2Miner(D, T)

under the constraint that V is a view of the form {< itemset : I, value :
χ2(I, D) > |I ∈ Itemset}.

A variation of this approach, which allows us to deal with a larger number of
convex measures, is to replace the χ2 function with a general function

applyconvex : (measure, itemset, {< itemset : itemset, class : string >}) → float.

A benefit of using views, is that it is easy to incorporate additional constraints
on top k patterns. For instance, if we are interested in the top k free itemsets,
this can be expressed by modifying the view into

create view V =
{< itemset : I, value : χ2(I, D) > |I ∈ Itemset ∧ isFree(I, D)}

As soon as the user introduces a minimum frequency constraint in the view,

create view V =
{< itemset : I, value : χ2(I, D) > |I ∈ Itemset ∧ freq(I, D) ≥ 10},

a different query evaluation plan can emerge in which the view is first material-
ized; the end result can be obtained by postprocessing the materialized view.

Classification algorithms. We have already seen how a decision tree can be in-
tegrated in IQL. It is easy deal to with further constraints on decision trees.
For instance, if we define the function size : decisiontree[α, β] → integer, this
function can be used in a declaration:

{T |T ∈ DecisionTree[B, G], isLearnedTree(D, T), size(T) ≤ M} ≡
dtMaxLearner(D, B, G, M)},

for an appropriate decision tree learner dtMaxLearner.
Observe that if we have two decision tree learners, this query may be evaluated

in two ways:

– the specialized decision tree learner can be used;
– a general decision tree learner can be used, whose output is postprocessed.

In the second approach, the result of the query may be empty if by default
a heuristic decision tree learner is used, and this algorithm finds a tree that
is too large. It is an essential property of many data mining algorithms that
their output is not defined otherwise than through the implementation of the
algorithm itself, while in ordinary databases, the outcome of a query does not
depend on the evaluation strategy (see, for instance, also [15] about this issue). If

200 S. Nijssen and L. De Raedt

one believes that deterministic behavior is also desirable in inductive databases,
there are several possible solutions:

– we can disallow predicates and declarations that could lead to alternative
query execution plans for heuristic algorithms; for instance, in the case of
decision trees, we could forbid the use of predicates such as isLearnedTree in
favor of predicates such as C4.5;

– if multiple query evaluation plans exist within the database, we execute them
all; the result of the query is the union of all executions.

Our query language also shows that for several kinds of queries on classifica-
tion models currently no solvers exist, for instance:

create view V = {< model : T, value : accuracy(T, D), value2 : size(T) > |
T ∈ DecisionTree[< A : integer, B : integer >]∧leafsup(T, D) ≥ 2}

{T |T ∈ V ∧ rank(T, V) ≤ 2}.

This query asks for all decision trees for which the accuracy is maximal and
ties are cut by taking the smallest possible tree. The search space is restricted
to those trees in which each leaf contains at least two examples of the training
data. Similar queries can also be posed for other types of models.

Probabilistic Models. In contrast to classifiers, probabilistic models do not output
a single class, but a probability distribution over a set of target attributes. The
type of the apply function is

apply : (probmodel[α, β], γ) → {< string,float >} (α ⊆ γ, β ⊆ γ >),

and reflects that for every example, a distribution over the class attributes is
returned. The approach for learning probabilistic models is similar to that for
classification models.

Clustering. Clustering algorithm do not target a specific class attribute, but
rather try to find meaningful groups within the data, and can easily be integrated
in IQL. For instance, assume that we have a k-means clustering algorithm that
puts examples into multiple clusters and assigns a degree of membership for each
cluster (for example, according to the distance to the cluster centre). Then the
following declaration formalizes such an algorithm:

{T + L + C | C ∈ KMeansClustering[X],
isClustering(C, R), size(C) = N, T ∈ R, L ∈ apply(C, T)} ≡

kMeansLearner(T , N, X),

where we assume the following function types:

isClustering : (kMeansClustering[α], {β}) → boolean (α ⊆ β)
size : (kMeansClustering[α]) → integer
apply : (kMeansClustering[α], β) →

β ∪ < cluster : integer,membership : float > (α ⊆ β)

IQL: A Proposal for an Inductive Query Language 201

This query attaches to every example the clusters that it is part of, and the
degree of this membership. Observe that in this pattern, learning and prediction
are combined. For many clustering algorithms, it is difficult to separate these
operations. However, if a clustering algorithm generates a model for assigning
clusters to unseen examples, then it can be handled as a classifier or a proba-
bilistic model.

Feature Construction. Once a set of local patterns has been mined, a common
operation is to use the patterns for creating new features for a set of examples.
For instance, for a frequent itemset {A, B} in a relation R, one could add an
attribute AB to R which is true for every tuple that contains {A, B}, and false
otherwise.

To support this operation, we require that two types of functions are supported
by the inductive database. First, a function

name : (type) → string,

is required for every type, which assigns names to data mining objects. We leave
it unspecified whether this name should be interpretable; important is that it if
two objects are not equivalent, they should never be given the same name.

Then, a function

transpose : ({α}, boolean)→{α−β} (β =< name : string, value : boolean>, β ⊆α)

is required. This function groups all tuples in the input relation according to all
attributes other than name and value, and creates a new relation in which new
attributes are added for every name, of which the values are obtained from the
value fields; if no value is available, the default value is used that is a parameter
of the function. An example of the application of the transpose function is given
below.

Id Name Value
1 A true
1 B true
2 A true
2 B false

⇒
Id A B
1 true true
2 true false

Only after a table is created using this function, and the query is finished, its
schema is known.

To be able to create a binary value from a pattern, we assume that a function

covers : (pattern, pattern) → boolean

is provided for patterns. Alternatively, the “⊆” symbol can be used in an infix
notation.

202 S. Nijssen and L. De Raedt

6 Reasoning

IQL allows one to reason about queries, as [13]. For instance, consider the
sequence:

create table R as { < pattern : S, freq : freq(S, union(D1, D2)) > |
S ∈ Sequence ∧ freq(S, union(D1, D2)) ≥ 5 };

create table R′ as {< pattern : S, freq : freq(S, D1) > |
S ∈ Sequence ∧ freq(S, D1) ≥ 5};

and assume that the queries are posed sequentially. If the inductive querying
system has the following background knowledge,

D1 ⊆ union(D1, D2)
D2 ⊆ union(D1, D2)
D1 ⊆ D2 =⇒ ∀T : freq(T, D1) ≤ freq(T, D2)

Then one can actually see that the answer to the first query is a superset of that
of the second one. Therefore, rather than calling the frequent pattern miner
again for the second query, one might simply go through the result of the first
one to verify which patterns satisfy the second frequency constraint. Examples
of this kind of reasoning, and a deeper discussion of these issues, is provided in
[13]. Observe, however, that the frequencies of all frequent sequences have to be
computed to finally answer the second query, as the frequencies in the second
query may be smaller than in the first.

In IQL, this type of reasoning can be extended to constraints on other do-
mains. For instance, a decision tree with minimum accuracy 0.9 on a dataset R
is also a decision tree with minimum accuracy 0.8 on the same dataset.

Due to its close connection to relational calculus, there are similar optimiza-
tion possibilities in IQL as in relational calculus. For instance, consider this
query:

{T+ < prediction : apply(C, T) > |
T ∈R∧C ∈DecisionTree[<A : Int>, < B : Int>]∧isLearnedTree(C, R)};

to evaluate this query, the query optimizer should first construct the decision
tree, and then apply it to all examples; it should not choose to construct the
decision tree repeatedly for every example again.

We already pointed out that there can be multiple execution plans if multiple
matching patterns and algorithms are provided. It is possible to perform query
optimization by comparing execution plans.

7 Scenario

IQL should support the description of scenarios [2]. In this section we will demon-
strate a typical scenario, in which a pattern miner is used to find frequent pat-
terns, these frequent patterns are then used to create features, and finally a
classification model is learned.

IQL: A Proposal for an Inductive Query Language 203

The first step in this scenario is easily described. Assume that we have a
database of molecules HIV, and we are looking for subgraphs with a high sup-
port in active molecules, but a low support in the inactive molecules:

create function hiv(d : string) as
{ T− < activity > | T ∈ HIV ∧ T.activity = d }

create table R as
{ S | S ∈ Graph ∧ freq(S, hiv(“active”)) ≥ 10 ∧ freq(S, hiv(“inactive”)) ≤ 10 }

Next, we use the local patterns to create features.

create function f(Data : {< id : integer, graph : graph, activity : string >}) as
transpose(
{< id : T.id, activity : T.activity,name : name(G), value : covers(G, T.graph) > |

T ∈ Data ∧ G ∈ R}, false)

create table Features as f(HIV)

The result of this query is a relation in which columns denote whether a graph
contains a certain subgraph or not. We can build a decision tree for this relation.

create table R′ as
{D|D ∈ DecisionTree[schema(Features)−< id, activity >, < activity : boolean >]

∧ isLearnedTree(D,Features)}.

Here, schema returns the schema of relation Features; the classifier should use
the features in this relation, excluding the id and activity attributes. Finally, we
can use this decision tree to predict the activity of molecules in a dataset HIV′.

create table HIVPredictions as
{T ′+ < pred : apply(D, T) > |T ∈ f(HIV′)∧D ∈ R′∧T ′ ∈ HIV′ ∧T.id = T ′.id}.

This query shows how using traditional data manipulation operations, we can
associate the prediction of a molecule to its original representation, instead of
its binary feature representation.

8 Extensions of Other Query Languages

In this paper we concentrated on an extension of the tuple relational calculus.
The tuple relational calculus has the advantage that, when writing queries, we do
not need to be concerned with the exact schema of relations. An open question
is to what extent the principles of the IQL can be integrated in other query
languages. In this section, we preliminarily investigate the issues that rise if
we extend other query languages to obtain the same expressive power as the
simplified version of the IQL.

204 S. Nijssen and L. De Raedt

Domain Relational Calculus. In domain relational calculus, the variables do not
range over tuples in relations, but over values of attributes. Furthermore, it is
common that attributes are identified by their position in tuples, and not by their
names. Our example query for learning a decision tree would be formulated in
domain relational calculus as follows:

create view R′ as { < X1, X2, X3, apply(D, < X1, X1, X3 >) > |
< D >∈ DecisionTree[{1, 2}, {3}] ∧

C4.5(< D >, R)∧ < X1, X2, X3 >∈ R }.

We do not expect many problems to extend sIQL towards domain relational
calculus. More complications can be expected when additional quantifiers and
negations are allowed.

Datalog and Prolog. Datalog differs from domain relational calculus in several
aspects. First, notation wise, the infix predicate ∈ is not used. Second, more
importantly, queries can define new relations recursively. Datalog is therefore
more expressive than either tuple or domain relational calculus.

Our most important extension of the tuple relational calculus consists of
adding functions. One might therefore think that our query language is very
similar to Prolog. Our functions play however a slightly different role than the
functions in Prolog. The functions in our language act as predicates in Prolog,
and transform input into output. Furthermore, our functions can take relations
as input and produce new relations as output. The main point of our pattern
matching mechanism is to rewrite queries such that they use functions that
are implemented in an arbitrary language. In Prolog, this behavior can only be
achieved through the use of meta-predicates (such as call) that can be used to
emulate higher order logics. To illustrate this issue, consider the query which
creates a new table through a function:

create function f(id : Int) as { t − < id > | t ∈ D ∧ t.id = id }
create table F as { < pattern : S, id : V.id, freq : freq(S, f(V.id)) > |

V ∈ ID ∧ S ∈ Sequence ∧ freq(S, f(V.id)) ≥ 10 };

This function repeatedly creates a temporary relation that is passed to another
predicate. A Prolog freq predicate would have to take a formula (query) as
argument and materialize this formula in order to compute the frequency.

Overall, it is already feasible to integrate principles of sIQL in Datalog, but
additional research is required to make this integration smoother.

Algebra. To give relational algebra the same expressive power as sIQL, we face
similar problems as with Datalog. The most obvious way to integrate functions
into the algebra, is to conceive functions as additional operators in the algebra;
after all, we have already pointed out that queries expressed in relational algebra
can be conceived as repeated applications of functions in sIQL. Still, we need
additional formalisms to deal with functions that do not act on relations, or
functions that are repeatedly applied to relations created by another function.

IQL: A Proposal for an Inductive Query Language 205

One way to address this problem is to add a loop operator ι to the relational
algebra. Given a function f(σ1, σ2, . . . , σn), we can define that

operator ιf (R0, R1, . . . , Rn) :
Let < λ1 : τ1, . . . , λm : τm > be the schema of R0
R′ = ∅
for each T ∈ R0 do

for 1 ≤ i ≤ n do
select tuples from Ri such that Ri.λ1 = T.λ1 ∧ . . .∧Ri.λm = T.λm,

for those attributes of T that also occur in Ri

project λ1, . . . , λm away from the selected tuples
store the resulting relation in xi

Let x′ = f(x1, . . . , xn)
R′ = R′ ∪ (T × x′)

return R′

The main idea behind this loop operator is that R0 contains the values of an
iterator, and the relations Ri (i ≥ 1) contain the parameters with which the
function is called for each value of the iterator. For each value of the iterator a
call is performed; the result is stored. If a relation Ri contains multiple rows for
the same iterator value, a relation with multiple tuples is passed to the function.

Given the function f which selects tuples based on their class attribute, we
can now formulate the following query:

σfreq≥10(ιfreq(Sequence × ID, I(Sequence), ιf(ID, V))),

In this query ιf (ID, V) creates a relation which for every identifier in ID, stores
the selected part of the dataset V . Relation I(Sequence) is the relation that
associates every sequence with itself. Next ιfreq associates to every combination
of a sequence and an identifier the corresponding frequency. Only those sequences
with a frequency greater than 10 end up in the resulting relation. As this relation
cannot be evaluated due to the infinity of Sequence, it would have to be rewritten
into

ιfrequentSequenceMiner (ID, 10, ιf(ID, V)).

How such rewriting can be achieved, and if there is an automatic way of rewriting
sIQL in a well-specified relational algebera, is an open question which we will
not address further in this paper.

9 Conclusions

We presented a relational calculus for data mining. A key ingredient was the
inclusion of functions. This allowed us to integrate a large set of algorithms into
IQL, including classification algorithms and clustering algorithms.

The inclusion of functions in the calculus has major other consequences. Com-
mon operators in relational algebra, such as join and project, can also be con-
ceived as functions. We have seen that our language is more powerful than a
relational algebra to which functions are added.

206 S. Nijssen and L. De Raedt

To evaluate queries, we proposed the use of pattern matching, which is common
in many other declarative programming languages. We investigated how several
common data mining operations can be expressed as queries in our calculus, and
found that most algorithms can be integrated by making the pattern matching
language more powerful. One could argue that the power of the declarative
languages is determined by the power of its pattern matching language. We
provided a concrete evaluation strategy for a simplified version of the IQL.

Even though IQL was presented in a rather informal way, we believe that IQL
can already be used as a description language and interface to a wide variety of
data mining algorithms and techniques in a uniform and theoretically appealing
way. The authors would also like to herewith invite other groups interested in the
development of inductive query languages to describe their favorite constraint
based mining tools within IQL.

Acknowledgments. This work was supported by the EU FET IST project IQ
(“Inductive Querying”), contract number FP6-516169. The authors would like
to thank John Lloyd for interesting discussions, and visitors of the workshop for
their comments.

References

1. Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, Springer, Heidel-
berg (2006)

2. Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006)

3. Braga, D., Campi, A., Ceri, A., Lanzi, S., Klemetinen, M.: Mining association rules
from XML data. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK
2002. LNCS, vol. 2454, Springer, Heidelberg (2002)

4. Calders, T., Goethals, B., Prado, A.: Integrating pattern mining in relational
databases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, Springer, Heidelberg (2006)

5. Date, C.J.: An introduction to database systems. Addison-Wesley, Reading (2000)
6. Giannotti, F., Manco, G., Turini, F.: Specifying mining algorithms with iterative

user-defined aggregates. IEEE Transactions Knowledge and Data Engineering ,
1232–1246 (2004)

7. Han, J., Fu, Y., Koperski, K., Wang, W., Zaiane, O.: DMQL: A data mining query
language for relational databases. In: Proceedings of the ACM SIGMOD Workshop
on research issues on data mining and knowledge discovery, ACM Press, New York
(1996)

8. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of the ACM 39(11), 58–64 (1996)

9. Imielinski, T., Virmani, A.: MSQL: A query language for database mining. Data
Mining and Knowledge Discovery 2(4), 373–408 (1999)

10. Johnson, T., Lakshmanan, L.V., Ng, R.: The 3w model and algebra for unified
data mining. In: Proc. VLDB Int. Conf. Very Large Data Bases, pp. 21–32 (2000)

IQL: A Proposal for an Inductive Query Language 207

11. Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S.,
Wicker, J., Richter, L.: Inductive databases in the relational model: The data as
the bridge. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp.
124–138. Springer, Heidelberg (2006)

12. Meo, R., Psaila, G., Ceri, S.: An extension to SQL for mining association rules.
Data Mining and Knowledge Discovery 2(2), 195–224 (1998)

13. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2),
69–77 (2003)

14. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill, New
York (2004)

15. Siebes, A.: Data mining in inductive databases. In: Bonchi, F., Boulicaut, J-F.
(eds.) KDID 2005. LNCS, vol. 3933, Springer, Heidelberg (2006)

16. Tang, Z., MacLennan, J.: Data Mining with SQL Server 2005. Wiley, Chichester
(2005)

Mining Bi-sets in Numerical Data

Jérémy Besson1,2, Céline Robardet1,
Luc De Raedt3, and Jean-François Boulicaut1

1 LIRIS UMR 5205 CNRS/INSA Lyon
Bâtiment Blaise Pascal, F-69621 Villeurbanne, France

2 UMR INRA/INSERM 1235
F-69372 Lyon cedex 08, France

3 Albert-Ludwigs-Universitat Freiburg
Georges-Kohler-Allee, Gebaude 079 D-79110 Freiburg, Germany

celine.robardet@insa-lyon.fr

Abstract. Thanks to an important research effort the last few years,
inductive queries on set patterns and complete solvers which can evaluate
them on large 0/1 data sets have been proved extremely useful. However,
for many application domains, the raw data is numerical (matrices of real
numbers whose dimensions denote objects and properties). Therefore,
using efficient 0/1 mining techniques needs for tedious Boolean property
encoding phases. This is, e.g., the case, when considering microarray
data mining and its impact for knowledge discovery in molecular biology.
We consider the possibility to mine directly numerical data to extract
collections of relevant bi-sets, i.e., couples of associated sets of objects
and attributes which satisfy some user-defined constraints. Not only we
propose a new pattern domain but also we introduce a complete solver
for computing the so-called numerical bi-sets. Preliminary experimental
validation is given.

1 Introduction

Popular data mining techniques concern 0/1 data analysis by means of set pat-
terns (i.e., frequent sets, association rules, closed sets, formal concepts). The huge
research effort of the last 10 years has given rise to efficient complete solvers, i.e., al-
gorithms which can compute complete collections of the set patterns which satisfy
user-defined constraints (e.g., minimal frequency, minimal confidence, closeness
or maximality). It is however common that the considered raw data is available as
matrices where we get numerical values for a collection of attributes describing a
collection of objects. Therefore, using the efficient techniques in 0/1 data has to
start by Boolean property encoding, i.e., the computation of Boolean values for
new sets of attributes. For instance, raw microarray data can be considered as a
matrix whose rows denote biological samples and columns denote genes. In that
context, each cell of the matrix is a quantitative measure of the activity of a given
gene in a given biological sample. Several researchers have considered how to en-
code Boolean gene expressionproperties like, e.g., gene over-expression [1,7,12,11].
In such papers, the computed Boolean matrix has the same number of attributes

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 11–23, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

12 J. Besson et al.

than the raw data but it encodes only one specific property. Given such datasets,
efficient techniques like association rule mining (see, e.g., [1,7]) or formal concept
discovery (see, e.g., [4]) have been considered.

Such a Boolean encoding phase is however tedious. For instance, we still lack
a consensus on how the over-expression property of a gene can be specified or as-
sessed. As a result, different views on over-expressionwill lead to different Boolean
encoding and thus potentially quite different collections of patterns. To overcome
these problems, we investigate the possibility to mine directly the numerical data
to find interesting local patterns. Global pattern mining from numerical data, e.g.,
clustering and bi-clustering, has been extensively studied (see [10] for a survey).
Heuristic search for local patterns has been studied as well (see, e.g., [2]). How-
ever, very few researchers have investigated the non heuristic, say complete, search
ofwell-specified local patterns from numerical data. In this paper, we introduce the
Numerical Bi-Sets as a new pattern domain (NBS). Intuitively, we specify collec-
tions of bi-sets, i.e., associated sets of rows and columns such that the specified cells
(for each row-column pair) of the matrix contain similar values. This property is
formalized in terms of constraints, and we provide a complete solver for computing
NBSpatterns. We start from a recent formalizationof constraint-basedbi-setmin-
ing from 0/1data (extension of formal concepts towards fault-tolerance introduced
in [3]) both for the design of the pattern domain and its associated solver. The next
section concerns the formalization of the NBS pattern domain and its properties.
Section 3 sketches our algorithm and Section 4 provides preliminary experimental
results. Section 5 discusses related work and, finally, Section 6 concludes.

2 A New Pattern Domain for Numerical Data Analysis

Let us consider a set of objects O and a set of properties P such that |O| = n
and |P| = m. Let us denote by M a real valued matrix of dimension n × m
such that M(i, j) denotes the value of property j ∈ P for the object i ∈ O (see
Table 1 for an example). Our language of patterns is the language of bi-sets,
i.e., couples made of a set of rows (objects) and a set of columns (properties).
Intuitively, a bi-set (X, Y) with X ∈ 2O and Y ∈ 2P can be considered as a
rectangle or sub-matrix within M modulo row and column permutations.

Definition 1 (NBS). Numerical Bi-Sets (or NBS patterns) in a matrix are
the bi-sets (X, Y) such that |X | ≥ 1 and |Y | ≥ 1 (X ⊆ O, Y ⊆ P) which satisfy
the constraint Cin ∧ Cout:

Cin(X, Y) ≡ | max
i∈X, j∈Y

M(i, j) − min
i∈X, j∈Y

M(i, j)| ≤ ε

Cout(X, Y) ≡ ∀y ∈ P \ Y, | max
i∈X, j∈Y ∪{y}

M(i, j) − min
i∈X, j∈Y ∪{y}

M(i, j)| > ε

∀x ∈ O \ X, | max
i∈X∪{x}, j∈Y

M(i, j) − min
i∈X∪{x}, j∈Y

M(i, j)| > ε

where ε is a user-defined parameter.

Each NBS pattern defines a sub-matrix S of M such that the absolute value of
the difference between the maximum value and the minimum value on S is less

Mining Bi-sets in Numerical Data 13

Table 1. A real valued matrix; the bold rectangles indicate two NBS patterns

p1 p2 p3 p4 p5

o1 1 2 2 1 6
o2 2 1 1 0 6
o3 2 2 1 7 6
o4 8 9 2 6 7

or equal to ε (see Cin). Furthermore, no object or property can be added to the
bi-set without violating this constraint (see Cout). This ensures the maximality
of the specified bi-sets.

In Figure 1 (left), we can find the complete collection of NBS patterns which
hold in the data from Table 1 when we have ε = 1. In Table 1, the two bold
rectangles are two examples of such NBS patterns (i.e., the underlined patterns
of Figure 1 (left)). Figure 1 (right) is an alternative representation for them: each
cross in the 3D-diagram corresponds to an element in the matrix from Table 1.

The search space for bi-sets can be ordered thanks to a specialization relation.

Definition 2 (Specialization and monotonicity). Our specialization rela-
tion on bi-sets denoted 	 is defined as follows: (⊥O, ⊥P) 	 (�O, �P) iff ⊥O ⊆
�O and ⊥P ⊆ �P . We say that (�O, �P) extends or is an extension of (⊥O, ⊥P).
A constraint C is anti-monotonic w.r.t. 	 iff ∀B and D ∈ 2O × 2P s.t. B 	
D, C(D) ⇒ C(B). Dually, C is monotonic w.r.t. 	 iff C(B) ⇒ C(D).

Assume Wε denotes the whole collection of NBS patterns for a given threshold
ε. Let us now discuss some interesting properties of this new pattern domain:

– Cin and Cout are respectively anti-monotonic and monotonic w.r.t. 	 (see
Property 1).

– Each NBS pattern (X, Y) from Wε is maximal w.r.t. 	 (see Property 2).
– If there exists a bi-set (X, Y) with similar values (belonging to an interval of

size ε), then there exists a NBS (X ′, Y ′) from Wε such that (X, Y) 	 (X ′, Y ′)
(see Property 3).

– When ε increases, the size of NBS pattern increases too, whereas some new
NBS patterns which are not extensions of previous one can appear (see
Property 4).

– The collection of numerical bi-sets is paving the dataset (see Corollary 1),
i.e., any data item belongs to at least one NBS pattern.

Property 1 (Monotonicity). The constraint Cin is anti-monotonic and the con-
straint Cout is monotonic.

Proof. Let (X, Y) a bi-set s.t. Cin(X, Y) is true, and let (X ′, Y ′) be a bi-set s.t.
(X ′, Y ′) 	 (X, Y). This implies that Cin(X ′, Y ′) is also true:

| max
i∈X′, j∈Y ′

M(i, j) − min
i∈X′, j∈Y ′

M(i, j)|

≤ | max
i∈X, j∈Y

M(i, j) − min
i∈X, j∈Y

M(i, j)| ≤ ε

14 J. Besson et al.

((o1, o2, o3, o4), (p5))
((o3, o4), (p4, p5))

((o4), (p1, p5))
((o1, o2, o3, o4), (p3))

((o4), (p1, p2))
((o2), (p2, p3, p4))

((o1, o2), (p4))
((o1), (p1, p2, p3, p4))

((o1, o2, o3), (p1, p2, p3))

p1
p2

p3
p4

p5

o1

o2

o3

o4

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Data
NBS 1
NBS 2

Fig. 1. Examples of NBS

If (X, Y) satisfies Cout and (X, Y) 	 (X ′, Y ′), then Cout(X ′, Y ′) is also true:

∀y ∈ P \ Y, | max
i∈X, j∈Y ∪{y}

M(i, j) − min
i∈X, j∈Y ∪{y}

M(i, j)|

> ∀y ∈ P \ Y ′, | max
i∈X′, j∈Y ′∪{y}

M(i, j) − min
i∈X′, j∈Y ′∪{y}

M(i, j)| > ε

Property 2 (Maximality). The NBS patterns are maximal bi-sets w.r.t. our spe-
cialization relation 	, i.e., if (X, ⊥P) and (X, �P) are two NBS patterns from
Wε, then ⊥P �⊆ �P and �P �⊆ ⊥P .

Proof. Assume ⊥P ⊆ �P . (X, ⊥P) does not satisfy Equation 2, because for
y ∈ �P \ ⊥P , | maxi∈X M(i, y) − mini∈X M(i, y)| ≤ ε.

Property 3 (NBS patterns extending bi-sets of close values). Let I1, I2 ∈ R, I1 ≤
I2, and (X, Y) be a bi-set such that ∀i ∈ X, ∀j ∈ Y, M(i, j) ∈ [I1, I2]. Then,
there exists a NBS (U, V) with ε = |I1 − I2| such that X ⊆ U and Y ⊆ V .

Thus, if there are bi-sets of which all values are within a small range, there
exists at least one NBS pattern which extends it.

Mining Bi-sets in Numerical Data 15

Proof. V can be recursively constructed from Y ′ = Y by adding a property y
s.t. y ∈ P \Y ′ to Y ′ if | maxi∈X, j∈Y ′∪{y} M(i, j)−mini∈X, j∈Y ′∪{y} M(i, j)| ≤ ε,
and then continue until no further property can be added. At the end, Y ′ = V .
After that, we extend in a similar way the set X towards U . By construction,
(U, V) is a NBS pattern with ε = |I1 − I2|. Notice that we can have several
(U, V) which extend (X, Y).

When ε = 0, the NBS pattern collection contains all maximal bi-sets of identical
values. As a result, we get a paving (with overlapping) of the whole dataset.

Property 4 (NBS pattern size is growing with ε). Let (X, Y) be a NBS pattern
from Wε. There exists (X ′, Y ′) ∈ Wε′ with ε′ > ε such that X ⊆ X ′ and Y ⊆ Y ′.

Proof. Proof is trivial given Property 3.

Corollary 1. As W0 is paving the data, then Wε is paving the data as well.

3 Algorithm

The whole collection of bi-sets ordered by 	 forms a lattice whose bottom is
(⊥O, ⊥P) = (∅, ∅) and top is (�O, �P) = (O, P). Let us denote by B the
set of sublattices1 of ((∅, ∅), (O, P)): B = {((⊥O, ⊥P), (�O, �P)) s.t. ⊥O, �O ∈
2O, ⊥P , �P ∈ 2P and ⊥O ⊆ �O, ⊥P ⊆ �P } where the first (resp. the second)
bi-set is the bottom (resp. the top) element.

Property 5. Let NBSF = ((⊥O, ⊥P), (�O, �P)) ∈ B, for all (X, Y) ∈ NBSF we
have the following properties:

– e ∈ ⊥O ⇒ e ∈ X
– e ∈ ⊥P ⇒ e ∈ Y
– e /∈ �O ⇒ e �∈ X
– e �∈ �P ⇒ e �∈ Y

NBSF = ((⊥O, ⊥P), (�O, �P)) is the set of all the bi-sets (X, Y) s.t. ⊥O ⊆ X ⊆
�O and ⊥P ⊆ Y ⊆ �P . A sublattice represents explicitly a search space for bi-sets.

Our algorithm NBS-Miner explores some of the sublattices of B built by
means of three mechanisms: enumeration, pruning and propagation. It starts
with the sublattice ((∅, ∅), (O, P)), i.e., the lattice containing all the possible
bi-sets. Table 2 introduces the algorithm NBS-Miner. We now provide details
about the three mecanisms.

3.1 Candidate Enumeration

The enumeration function splits recursively the current sublattice (the candi-
date), say NBSF , in two new sublattices containing all the bi-sets of NBSF .

1 X is a sublattice of Y if Y is a lattice, X is a subset of Y and X is a lattice with
the same join and meet operations than Y .

16 J. Besson et al.

Property 6. Let NBSF = ((⊥O, ⊥P), (�O, �P)) ∈ B and e ∈ �O \ ⊥O, then
NBS1 = ((⊥O ∪ {e}, ⊥P), (�O, �P)) and NBS2 = ((⊥O, ⊥P), (�O \ {e}, �P))
is a partition of NBSF . NBS1 contains all the bi-sets of NBSF which contain e
and NBS2 contains all the bi-sets of NBSF which do not contain e. If e ∈ �P \
⊥P , NBS1 = ((⊥O, ⊥P ∪{e}), (�O, �P)) and NBS2 = ((⊥O, ⊥P), (�O, �P \e))
is a partition of NBSF as well.

The enumeration function selects an element of the set e ∈ �O\⊥P ∪�P \⊥P and
its generates two new sublattices. More formally, we use the following functions
Enum and Choose.

Let Enum : B × O ∪ P → B2 such that

Enum(((⊥O, ⊥P), (�O, �P)), e)

=
{

(((⊥O ∪ {e}, ⊥P), (�O, �P)), ((⊥O, ⊥P), (�O \ {e}, �P))) if e ∈ O
(((⊥O, ⊥P ∪ {e}), (�O, �P)), ((⊥O, ⊥P), (�O, �P \ {e}))) if e ∈ P

where e ∈ �O \ ⊥O or e ∈ �P \ ⊥P . Enum generates two new sublattices which
are a partition of its input parameter.

Let Choose : B → O ∪ P be a function which returns one of the element
e ∈ �O \ ⊥O ∪ �P \ ⊥P .

3.2 Candidate Pruning

Obviously, we do not want to explore all the bi-sets. We want either to stop the
enumeration when one can ensure that none bi-set of NBSF is a NBS (Pruning)
or to reduce the search space when a part of NBSF can be removed witout loos-
ing any NBS pattern (Propagation). The sublattice allows to compute bounds
of any (anti-)monotonic constraints w.r.t. 	. For instance, Cmin area(X, Y) ≡
#X ×#Y > 20 is a monotonic constraint and Cmax area(X, Y) ≡ #X ×#Y < 3
is an anti-monotonic constraint, when #E denotes the size of the set E. If
NBSF = (({o1, o3}, {p1, p2}), ({o1, o2, o3, o4}, {p1, p2, p3, p4})) then none of the
bi-sets of NBSF satisfy Cmin area and Cmax area. Actually, we have #{o1, o3} ×
#{p1, p2} > 3 and #{o1, o2, o3, o4}×#{p1, p2, p3, p4} < 20. None bi-set satisfies
Cmin area and Cmax area, whatsoever the enumeration. Intuitively, the monotonic
constraints use the top of the sublattice to compute a bound whereas the anti-
monotonic constraints use its bottom.

For the pruning, we use the following function:
Let Prunem

C : B → {true,false} be a function which returns True iff the
monotonic constraint Cm (w.r.t.) is satisfied by the top of the sublattice.

Prunem
C ((⊥O, ⊥P), (�O, �P)) ≡ Cm(�O, �P)

If Prunem
C ((⊥O, ⊥P), (�O, �P)) is false then none of the bi-sets contained in

the sublattice satisfies Cm.
Let Pruneam

C : B → {true,false} be a function which returns True iff
the anti-monotonic constraint Cam (w.r.t) is satisfied by te bottom of the
sublattice:

Pruneam
C ((⊥G, ⊥M), (�G, �M)) ≡ Cam(⊥G, ⊥M)

Mining Bi-sets in Numerical Data 17

If Pruneam
C ((⊥O, ⊥P), (�O, �P)) is false then none of the bi-sets contained in

the sublattice satisfies Cam.
Let PruneCNBS : B → {true,false} be the pruning function. Due to Prop-

erty 1, we have

PruneCNBS((⊥O, ⊥P), (�O, �P)) ≡ Cin(⊥O, ⊥P) ∧ Cout(�O, �P)

When PruneCNBS((⊥O, ⊥P), (�O, �P)) is false then no NBS pattern is con-
tained in the sublattice ((⊥O, ⊥P), (�O, �P)).

3.3 Propagation

The propagation plays another role. It enables to reduce the size of the search
space, i.e., it does not consider the entire current sublattice NBSF but a smaller
sublattice NBSP ∈ B such that NBSP ⊂ NBSF . For instance, if ((⊥O ∪
{e1}, ⊥P), (�O, �P)) and ((⊥O, ⊥P), (�O, �P \ {e2})) do not contain any NBS
pattern, then we can keep going the enumeration process with ((⊥O, ⊥P ∪
{e2}), (�O \ e1, �P)) instead of NBSF . Cin and Cout can be used to reduce
the size of the sublattices by moving objects of �O \⊥O into ⊥O or outside �O,
and similarly on attributes. The following function is used to reduce the size of
the sublattice:

The function Propin B → B and Propout B → B are used to do it as follow:

Propin((⊥O, ⊥P), (�O, �P)) = {((⊥1
O, ⊥1

P), (�O, �P)) ∈ B |
⊥1

O = ⊥O ∪ {x ∈ �O \ ⊥O | Cout((⊥O, ⊥P), (�O \ {x}, �P)) is false}
⊥1

P = ⊥P ∪ {x ∈ �P \ ⊥P | Cout((⊥O, ⊥P), (�O, �P \ {x})) is false}}

Propout((⊥O, ⊥P), (�O, �P)) = {((⊥O, ⊥P), (�1
O, �1

P)) ∈ B |
�1

O = �O \ {x ∈ �O \ ⊥O | Cin((⊥O ∪ {x}, ⊥P), (�O, �P)) is false}
�1

P = �P \ {x ∈ �P \ ⊥P | Cin((⊥O, ⊥P), (�O, �P ∪ {x})) is false}}

Let Prop B → B s.t. Propin(Propout(L)) is recursively applied as long as its
result changes.

We call a leaf a sublattice L = ((⊥O, ⊥P), (�O, �P)) which contains only one
bi-set i.e., (⊥O, ⊥P) = (�O, �P). NBS are these leaves.

Example 1. Here are examples of the function Prop with the data of Table 1.

– ((⊥O, ⊥P), (�O, �P)) = (({o1}, {p1}), ({o1, o2, o3, o4}, {p1, p2, p3, p4, p5}))
Prop((⊥O, ⊥P), (�O, �P)) = ((⊥O, ⊥P), (�O \ {o4}, �P \ {p5}))

– ((⊥O, ⊥P), (�O, �P)) = (({o1, o2}, {p1}), ({o1, o2, o3}, {p1, p2, p3, p4}))
Propout((⊥O, ⊥P), (�O, �P)) = ((⊥O, ⊥P), (�O, �P \ {p4}))
Propin((⊥O, ⊥P), (�O, �P \ {p4})) =
(({o1, o2, o3}, {p1, p2, p3}), ({o1, o2, o3}, {p1, p2, p3}))

18 J. Besson et al.

Table 2. NBS-Miner pseudo-code

M is a real valued matrix, C a conjunction of monotonic
and anti-monotonic constraints on 2O × 2P and ε is a
positive value.

NBS-Miner

Generate((∅, ∅), (O, P))

End NBS-Miner
Generate(L)

Let L = ((⊥O, ⊥P), (�O, �P))
L ← Prop(L)
If Prune(L) then

If (⊥O, ⊥P) �= (�O, �P) then
(L1, L2) ← Enum(L, Choose(L))
Generate(L1)
Generate(L2)

Else Store L
End if

End if

End Generate

4 Experiments

We report a preliminary experimental evaluation of the NBS pattern domain and
its implemented solver. We have been considering the “peaks” matrix of matlab
(30*30 matrix with values ranging between -10 and +9). We used ε = 4.5 and we
obtained 1700 NBS patterns. On Figure 2, we plot in white one extracted NBS.
The two axes ranged from 0 to 30 correspond to the two matrix dimensions and
the third one indicates their corresponding values (row-column pairs).

In a second experiment, we enforced that the values inside the extracted
patterns to be greater than 1.95 (minimal value constraint). Figure 3 shows the
228 extracted NBS patterns when ε = 0.1. Indeed, the white area corresponds
to the union of 228 extracted patterns.

To study the impact of ε parameter, we used the malaria dataset [5]. It records
the numerical gene expression value of 3 719 genes of Plasmodium falciparum
during its complete lifecycle (a time series of 46 biological situations). We used
a minimal size constraint on both dimension, i.e., looking for the NBS patterns
(X, Y) s.t. |X | > 4 and |Y | > 4. Furthermore, we have been adding a minimal
value constraint. Figure 4 provides the mean and standard deviation of the area
of the NBS patterns from this dataset w.r.t. the ε value.

As it was expected owed to Property 4, the mean area increases with ε.
Figure 5 reports on the number of NBS patterns in the malaria dataset. From

ε = 75 to ε = 300, this number decreases. It shows that the size of the NBS

Mining Bi-sets in Numerical Data 19

0
5

10
15

20
25

30

0

5

10

15

20

25

30
−8

−6

−4

−2

0

2

4

6

8

10

Fig. 2. An example of a NBS pattern

0
5

10
15

20
25

30

0

5

10

15

20

25

30
−8

−6

−4

−2

0

2

4

6

8

10

Fig. 3. Examples of extracted NBS

pattern collection tends to decrease when ε increases. Intuitively, many patterns
are gathered when ε increases whereas few patterns are extended by generating
more than one new pattern. Moreover, the minimal size constraint can explain
the increase of the collection size. Finally, when the pattern size increases with
ε, new NBS patterns can appear in the collection.

5 Related Work

[14,6,13] propose to extend classical frequent itemset and association rule def-
initions for numerical data. In [14], the authors generalize the classical notion
of itemset support in 0/1 data when considering other data types, e.g., numeri-
cal ones. Support computation requires data normalization, first translating the

20 J. Besson et al.

 0

10

20

30

40

50

60

70

80

90

 0 50 100 150 200 250 300

epsilon

mean area

Fig. 4. Mean area of the NBS w.r.t. ε

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 50 100 150 200 250 300

n
u
m
b
e
r

o
f

N
B
S

epsilon

Fig. 5. Collection sizes w.r.t. ε

values to be positive, and then dividing each column entry by the sum of the
column entries. After such a treatment, each entry is between 0 and 1, and the
sum of the values for a column is equal to 1. The support of an itemset is then
computed as the sum on each row of the minimum of the entries of this itemset. If
the items have identical values on all the rows, then the support is equal to 1, and
the more the items are different, the more the support value decreases toward 0.
This support function is anti-monotonic, and thus the authors propose to adapt
an Apriori algorithm to compute the frequent itemsets according to this new
support definition. [6] proposes new methods to measure the support of itemsets
in numerical data and categorical data. They adapt three well-known correlation
measures: Kendall’s τ , Spearman’s ρ and Spearman’s Footrule F. These
measures are based on the rank of the values of objects for each attribute, not the

Mining Bi-sets in Numerical Data 21

values themselves. They extend these measures to sets of attributes (instead of
2 variables). Efficient algorithms are proposed. [13] uses an optimization setting
for finding association rules in numerical data. The type of extracted association
rules is: “if the weighted sum of some variables is greater than a threshold then a
different weighted sum of variables is with high probability greater than a second
threshold”. They propose to use hyperplanes to represent the left-hand and the
right-hand sides of such rules. Confidence and coverage measures are used. It is
unclear wether it is possible to extend these approaches to bi-set computation.

Hartigan proposes a bi-clustering algorithm that can be considered as a spe-
cific collection of bi-sets [8]. He introduced a partition-based algorithm called
“Block Clustering”. It splits the original data matrix into bi-sets and it uses the
variance of the values inside the bi-sets to evaluate the quality of each bi-set.
Then, a so-called ideal constant cluster has a variance equal to zero. To avoid
the partitioning of the dataset into bi-sets with only one row and one column
(i.e., leading to ideal clusters), the algorithm searches for K bi-sets within the
data. The quality of a collection of K bi-sets is considered as the sum of the
variance of the K bi-sets. Unfortunately, this approach uses a local optimization
procedure which can lead to unstable results.

In [15], the authors propose a method to isolate subspace clusters (bi-sets)
containing objects varying similarly on subset of columns. They propose to com-
pute bi-sets (X, Y) such that given a, b ∈ X and c, d ∈ Y the 2 × 2 sub-matrix
entries ((a, b), (c, d)) included in (X, Y) satisfies |M(a, c)+M(b, d)− (M(a, d)+
M(b, c))| ≤ δ. Intuitively, this constraint enforces that the change of value on
the two attributes between the two objects is confined by δ. Thus, inside the
bi-sets, the values have the same profile. The algorithm first considers all pairs
of objects and all pairs of attributes, and then combines them to compute all
the bi-sets satisfying the anti-monotonic constraint.

Liu and Wang [9] have proposed an exhaustive bi-cluster enumeration algo-
rithm. They are looking for order-preserving bi-sets with a minimum number of
rows and a minimum number of columns. This means that for each extracted
bi-set (X, Y), there exists an order on Y such that according to this order and
for each element of X the values are increasing. They want to provide all the
bi-clusters that, after column reordering, represent coherent evolutions of the
symbols in the matrix. This is achieved by using a pattern discovery algorithm
heavily inspired in sequential pattern mining algorithms. These two local pat-
tern types are well defined and efficient solvers are proposed. Notice however
that these patterns are not symmetrical: they capture similar variations on one
dimension and not similar values.

Except for the bi-clustering method of [8], all these methods focus on one of
the two dimensions. We have proposed to compute bi-sets with a symmetrical
definition which is one of the main difficulties in bi-set mining. This is indeed one
of the lessons from all the previous work on bi-set mining from 0/1 data, and,
among others, the several attempts to mine fault-tolerant extensions to formal
concepts instead of fault-tolerant itemsets [3].

22 J. Besson et al.

6 Conclusion

Efficient data mining techniques tackle 0/1 data analysis by means of set pat-
terns. It is however common, for instance in the context of gene expression data
analysis, that the considered raw data is available as a collection of real numbers.
Therefore, using the available algorithms needs for a beforehand Boolean prop-
erty encoding. To overcome such a tedious task, we started to investigate the
possibility to mine set patterns directly from the numerical data. We introduced
the Numerical Bi-Sets as a new pattern domain. Some nice properties of NBS

patterns have been considered. We have described our implemented solver NBS-

Miner in quite generic terms, i.e., emphasizing the fundamental operations for
the complete computation of NBS patterns. Notice also that other monotonic
or anti-monotonic constraints can be used in conjunction with Cin ∧ Cout, i.e.,
the constraint which specifies the pattern domain. It means that search space
pruning can be enhanced for mining real-life datasets provided that further user-
defined constraints are given. The perspectives are obviously related to further
experimental validation, especially the study of scalability issues. Furthermore,
we still need for an in-depth understanding of the complementarity between
NBS pattern mining and bi-set mining from 0/1 data.

Acknowledgments. This research is partially funded by the EU contract IQ
FP6-516169 (FET arm of the IST programme). J. Besson is paid by INRA (ASC
post-doc).

References

1. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.-F., Gandrillon, O.: Strong-
association-rule mining for large-scale gene-expression data analysis: a case study
on human sage data. Genome Biology, 12 (November 2002)

2. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis
of large-scale gene expression data. Physical Review 67 (March 2003)

3. Besson, J., Pensa, R., Robardet, C., Boulicaut, J.-F.: Constraint-based mining of
fault-tolerant patterns from boolean data. In: Bonchi, F., Boulicaut, J.-F. (eds.)
KDID 2005. LNCS, vol. 3933, pp. 55–71. Springer, Heidelberg (2006)

4. Besson, J., Robardet, C., Boulicaut, J.-F., Rome, S.: Constraint-based concept min-
ing and its application to microarray data analysis. Intelligent Data Analysis 9(1),
59–82 (2005)

5. Bozdech, Z., Llinás, M., Pulliam, B., Wong, E., Zhu, J., DeRisi, J.: The transcrip-
tome of the intraerythrocytic developmental cycle of plasmodium falciparum. PLoS
Biology 1(1), 1–16 (2003)

6. Calders, T., Goethals, B., Jaroszewicz, S.: Mining rank correlated sets of numerical
attributes. In: Proceedings ACM SIGKDD 2006, Philadelphia, USA, August 2006,
pp. 96–105 (2006)

7. Creighton, C., Hanash, S.: Mining gene expression databases for association rules.
Bioinformatics 19(1), 79–86 (2002)

8. Hartigan, J.: Direct clustering of data matrix. Journal of the American Statistical
Association 67(337), 123–129 (1972)

Mining Bi-sets in Numerical Data 23

9. Liu, J., Wang, W.: Op-cluster: Clustering by tendency in high dimensional space.
In: Proceedings IEEE ICDM’03, Melbourne, USA, December 2003, pp. 187–194
(2003)

10. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
A survey. ACM/IEEE Trans. on computational biology and bioinformatics 1(1),
24–45 (2004)

11. Pensa, R., Boulicaut, J.-F.: Boolean property encoding for local set pattern discov-
ery: an application to gene expression data analysis. In: Morik, K., Boulicaut, J.-F.,
Siebes, A. (eds.) Local Pattern Detection. LNCS (LNAI), vol. 3539, pp. 114–134.
Springer, Heidelberg (2005)

12. Pensa, R.G., Leschi, C., Besson, J., Boulicaut, J.-F.: Assessment of discretization
techniques for relevant pattern discovery from gene expression data. In: Proceed-
ings ACM BIOKDD 2004, Seattle, USA, August 2004, pp. 24–30 (2004)

13. Ruckert, U., Richter, L., Kramer, S.: Quantitative association rules based on half-
spaces: An optimization approach. In: Proceedings IEEE ICDM 2004, November
2004, pp. 507–510, Brighton, UK (2004)

14. Steinbach, M., Tan, P.-N., Xiong, H., Kumar, V.: Generalizing the notion of sup-
port. In: Proceedings ACM SIGKDD 2004, Seatle, USA, pp. 689–694 (2004)

15. Wang, H., Wang, W., Yang, J., Yu, P.S.: Clustering by pattern similarity in large
data sets. In: Proceedings ACM SIGMOD 2002, Madison, USA, June 2002, pp.
394–405 (2002)

S. Džeroski and J. Struyf (Eds.): KDID 2006, LNCS 4747, pp. 116–133, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Integrated Multi-task Inductive Database
VINLEN: Initial Implementation and Early Results

Kenneth A. Kaufman, Ryszard S. Michalski,
Jarosław Pietrzykowski, and Janusz Wojtusiak

Machine Learning and Inference Laboratory, George Mason University
{kaufman,michalski,jarek,jwojt}@mli.gmu.edu

Abstract. A brief review of the current research on the development of the
VINLEN multitask inductive database and decision support system is pre-
sented. The aim of this research is to integrate a wide range of knowledge gen-
eration operators in one system that given input data and relevant domain
knowledge generates new knowledge according to the user’s goal. The central
VINLEN operator is natural induction that generates hypotheses from data in
the form of attributional rules that resemble natural language expressions, and
are easy to understand and interpret. This operator is illustrated by an applica-
tion to discovering relationships between lifestyles and diseases of men age
50-65 in a large database created by the American Medical Association. The
conclusion outlines plans for future research.

1 Introduction

This chapter reviews current research on the development of VINLEN, a multi-task
inductive database and decision support system being developed at the GMU Machine
Learning and Inference Laboratory. In VINLEN, a range of inductive as well as de-
ductive inference capabilities are deeply integrated with a database and a knowledge
base. These capabilities are realized through knowledge generation operators (KGOs)
and combined with standard relational database management functions, implemented
through an SQL client, via Knowledge Query Language (KQL).

KGOs operate on knowledge segments that link components from the knowledge
base with related datasets from the database, and are used both as inputs to and out-
puts from VINLEN operators. This feature satisfies the closure principle required
from an inductive database [9, 2].

In VINLEN, a KGO must satisfy two basic conditions: 1) that its results are in a
form easy to understand and interpret by users, and (2) that they can be accepted as
input to compatible KGOs. A compatible operator is one that can use the result from
the first operator, if the result is submitted to it. This reflects the fact that the closure
principle cannot be applied to all the operators from the whole spectrum of operators
in VINLEN, as is similarly the case with SQL (as pointed out in [2]). For example, an
evolutionary computation operator being implemented in VINLEN is incompatible
with an operator that discovers attributional rules, because it can take as input only the
initial population of solutions and control parameters, rather than rules.

 An Integrated Multi-task Inductive Database VINLEN 117

The central knowledge generation operator in VINLEN is natural induction that
discovers regularities in data in forms resembling simple natural language statements
that are easy to interpret and understand. This is achieved by employing attributional
calculus as a formal representation language [14]. Attributional calculus is a logic
system that combines elements of propositional, predicate, and multiple-valued logics
for facilitating inductive inference, and serves both as a knowledge representation
formalism and an inference system.

Attributional descriptions, the primary form of knowledge representation in
VINLEN, are more expressive than forms frequently used in data mining and induc-
tive learning, such as conventional decision rules or decision trees. Conventional de-
cision rules use only <attribute-relation-value> conditions, while attributional descrip-
tions use conditions that may involve more than one attribute and relate them to a
subset of values or to other attributes. Attributional descriptions can also be in differ-
ent forms. Section 3 gives more details on this topic.

2 An Overview of VINLEN

Research on the VINLEN system grows out of our previous efforts on the develop-
ment of INLEN, an early system for integrating databases with inductive learning ca-
pabilities, e.g. [16].

VINLEN represents a step beyond the approach to inductive databases taken by
some authors, namely, it not only integrates a database and a knowledge base contain-
ing selected results of inductive inference (using the capabilities of the database), but
is also a host for a wide range of inductive and deductive inference operators and data
and knowledge management and visualization operators. It supports inferences result-
ing from a series of applications of its operators according to a script in knowledge
query language KQL. This way, it can automatically conduct experiments that in-
volve creating, storing and managing the relevant data and knowledge, laying the
groundwork for a higher level of sophistication in inductive databases’ functionality
that employs meta-learning. Therefore, it aims at being an advanced tool for deriving
knowledge from data that avoids pitfalls resulting from too limited exploration of data
or the parameters of the methods.

An important concept in VINLEN is that of a knowledge system that consists of a
specific database, which can be local or distributed, and a specific knowledge base.
The knowledge system’s purpose is to support data analysis, knowledge discovery,
and knowledge application in a specific application area. A knowledge base contains
handcrafted knowledge and results of applying knowledge generation and manage-
ment operators to data in the database and/or to prior knowledge encoded in the
knowledge base. All components of a knowledge system are stored in relational ta-
bles. All the entities utilized by the system, such as events (e.g., concept examples or
records), datasets, attributes, attribute domains, rule conditions, rules, rulesets, and
classifiers, are presented in individual tables in the database and connected via
relations.

Events are stored as tuples in an event table. The table is populated either from ex-
ternal source, manually by the user, or by a VINLEN operator, for example, by select-
ing the most representative events from an input dataset. In addition to regular

118 K.A. Kaufman et al.

attribute values, events may contain meta-values, such as “unknown”, “irrelevant”
and “not-applicable” which require special handling during the learning or knowledge
application processes [17]. The “unknown” values, denoted by a “?”, represent cases
when a regular attribute value exists, but is not known for some reason (e.g., a value
was not recorded or recorded but not stored in the database). The “irrelevant” values
are those considered irrelevant by an expert for a given task, and “not-applicable”
values are assigned to events when a regular value does not exist for a given entity
(e.g., attributes describing pregnancy do not apply to male patients).

Each event may carry additional meta-information, such as event significance and
event frequency. The event significance is a value assigned to an event by the user or
by the program to represent some form of importance of the event for problem at
hand. It may have a different meaning for different types of problems. For example,
in pattern discovery, it may represent the typicality of the event; in optimization, it
may represent the value of the fitness function for that event. Event frequency is the
number of occurrences of the given event in the training or testing data.

The prior knowledge contains definitions of the domains and types of attributes in
the database, data constraints, value hierarchies of structured attributes, known rela-
tionships binding attributes, and any other background knowledge that users may
have represented in the system. During the operation of an inductive database, the
knowledge base is populated by newly generated data descriptions, hypothetical pat-
terns, data classifications, statistical information, results from hypothesis testing, etc.

Both prior knowledge and VINLEN-generated knowledge are physically stored in
a set of relational tables. The underlying formal representation of that knowledge are
attributional descriptions that include attributional rulesets and classifiers. Attribu-
tional rulesets are sets of attributional rules with the same consequent (e.g., represent-
ing the same decision or class), and attributional classifiers are families of rulesets
used for classifying input events into a predetermined set of classes or for recognizing
instances of different patterns. An attributional rule consists of several components: a
consequent, a relational symbol, a premise, an optional exception clause, and an anno-
tation. Further details on formal representation are in Section 3.

Except for the relational symbol, these components are stored in the database in a
similar way, namely, in two relational tables linked via a 1-to-n relationship: tables of
selectors (conditions) and complexes (conjunctions of conditions). A selector is de-
scribed in the table by the attribute name, the operator represented by the relational
symbol, a list of values, its location in the complex, and by an (optional) annotation.
The annotation carries statistical information about the selector, for example, the
number of positive and negative examples covered, and the number of examples cov-
ered by it and the all the previous selectors in the complex. A complex is described by
its role (as a consequent, premise, exception clause, or as a precondition), its location
in the ruleset, and by its own annotation that may contain such parameters as the
number of positives and negatives covered by the complex, and its quality defined by
special measure that reflects a tradeoff between its coverage and confidence gain [23].

All components of classifiers, such as selectors, complexes, exception clauses, sin-
gle rules, rulesets, and alternative rulesets, are considered as individual entities, and as
such are represented by separate tables connected by relations. Parameter sets for

 An Integrated Multi-task Inductive Database VINLEN 119

individual operators are stored in method-specific tables. This storage methodology
facilitates an efficient access to all components of the classifiers through a standard
SQL interface.

Attributional rulesets are represented in a linked table, and are described by their
names, order in the classifier they belong to, and numbers of positives and negatives
covered. The highest level of the knowledge segment, a classifier, is represented in
another linked table, which stores the name and description of each classifier. In all
these tables, entities have their unique identifiers, generated automatically by the sys-
tem, which are used to link them into a hierarchy (relation). Complex and Selector ta-
bles are also used to represent conceptual clusters, with one complex describing one
cluster. Clusters are grouped into clusterings by linking the Complex table with the
Clustering table. Decision trees are stored using two tables: one that describes the
whole tree at the general level, and the second, a linked table that keeps information
about nodes of the tree, how they are organized into a hierarchy and also about split-
ting attributes and decisions associated with nodes.

VINLEN also implements the concept of the experiment, which is represented by
two tables: Experiment and ExperimentPart. Each invocation of an operator leaves its
trace with a timestamp in both of these tables. Since some experiments may involve a
number of operators (methods), the information about utilizing a particular method is
described as a part of a bigger experiment. This allows for further automation of the
inference process using additional constraints; for example, it is possible to have a
script that runs on a daily basis and performs tests of selected knowledge on a new
testing data.

A Target Knowledge Specification is a generalization of a database query; specifi-
cally, it is a user’s request for a knowledge segment to be created by the system,
based on the data and knowledge already present. The core of VINLEN consists of
Knowledge Generation Operators, which call upon various programs for knowledge
generation (e.g., rule learning, conceptual clustering, target data generation, optimiza-
tion, etc.), as well as knowledge application and data management. These operators
can be invoked by a user directly, or through KQL. To provide a general overview
and easy access to all VINLEN operators, we have developed a visual interface that
consists of VINLEN views at different abstraction levels. Fig. 1 presents the most ab-
stract view of the main panel of VINLEN.

The central part contains icons for managing database (DB), knowledge base (KB), and
knowledge systems (KS). By clicking on DB, KB, or KS, the user can select and access a
specific database, a knowledge base, or a knowledge system that is stored in VINLEN.
Each of the rectangular buttons allows the user to access a family of knowledge generation
operators of a given type. For example, the button “Learn Rules” allows one to access op-
erators that learn different attributional rules, basis rules, rules with an exception clause,
multi-head rules, and rule-trees (see Section 3). Other buttons have similar multi-function
roles, such as “Access Attributes”, “Improve Rules”, ”Learn Trees”, “Create Clusters”,
“Access Scout”, “Define Dataset”, etc.

Appropriate matching between the operand and the operator takes place at the user
interface level. When the user selects an operand – a dataset or knowledge segment –
only relevant operators (methods) are enabled. This works also conversely – for a
chosen operator, only appropriate operands become selectable. If a method requires
more than one operand, they can be selected later in the method-specific form that

120 K.A. Kaufman et al.

appears after the corresponding operator is invoked. Such forms provide additional in-
formation about the selected knowledge or data, and allow the user to specify the pa-
rameters for the method, and to actually run the method. When the method’s window
is displayed, the graphical control on the form representing the selected operand is al-
ready set to the corresponding dataset or knowledge segment that was chosen as an
operand when the operator was invoked. Of course, the user can always change
his/her mind and choose another dataset or knowledge segment.

Fig. 1. The front panel of VINLEN (this is a black and white version of the actual screen)

In order to invoke a method for testing knowledge on data, the user selects the item
representing this method from the menu, and the knowledge segment to be tested (in
either order). On the form, two controls are shown, one representing the chosen
knowledge segment, and the other one representing the dataset, which is by default set
to the training data that was used to create the knowledge. Both choices can be
changed at any time before running the method. Such capabilities of the system allow
the user a capability for data-knowledge cross-querying (e.g. [2]).

Most operators are used in the context of a knowledge system, which means that
the knowledge system needs to be opened first. Fig. 2 shows how the screen appears
when a knowledge system has been opened: available datasets are listed on the left
side of the central area, and existing knowledge components, of different types, are
presented on the opposite side. There are some operators that do not require opening
an existing Knowledge System, for example the menu allowing access to and creation
of knowledge scouts, which can possibly be used to create a new knowledge system.

 An Integrated Multi-task Inductive Database VINLEN 121

All operators are integrated through Knowledge Query Language (KQL), an exten-
sion of the SQL database query language. In addition to conventional data management
operators, KQL includes operators for conducting inductive and deductive inference,
statistical analysis, application and visualization of learned knowledge, and various sup-
port functions. KQL allows a user to define knowledge scouts that are KQL scripts for
automatically executing a series of knowledge generation operators in search for knowl-
edge of interest to the user.

Fig. 2. An opened Knowledge System (a black and white version of the actual screen)

3 Knowledge Representation and VINLEN Operators

As mentioned earlier, VINLEN aims at providing users with an extensive set of
knowledge generation and data management operators, and with a language, KQL,
used to develop scouts for executing sequences of these operators. Such scouts can
thus automatically perform knowledge discovery experiments.

The basic functionality of VINLEN allows the user to browse, edit, copy, delete,
print, define, import and export data and knowledge. More advanced functions sup-
port data selection, attribute evaluation and selection, attribute discretization, and es-
timation of parameter settings for operators to achieve a desired result, and a range of
learning and knowledge discovery functions. The rule learning module is based on the
AQ21 program for natural induction [23].

122 K.A. Kaufman et al.

As mentioned earlier, VINLEN’s knowledge representation is based on attribu-
tional calculus [14]. The basic unit of knowledge representation is an attributional rule
in the form:

Consequent <= Premise |_ Exception

where Consequent, Premise, and Exception are conjunctive descriptions, or com-
plexes, which are conjunctions of attributional conditions. An attributional condition
(a.k.a. selector) can be viewed as equivalent to a simple natural language statement.
Its general form is:

[L rel R]

where:
L (the left side or referent) contains one attribute, or several attributes joined by

“&” or “v”, called internal conjunction and disjunction, respectively. L can also be
one of the standard derived attributes: count, max, min, and avg.

R (the right side or reference) is an expression specifying a value or a subset of
values from the domain of the attribute(s) in L. If the subset contains values of a
nominal (unordered) attribute, they are joined by the symbol “v” (called internal dis-
junction); if the subset contains consecutive values of a linear attribute1, they are rep-
resented by joining the extreme values by operator “..”, called range. R can also be a
single attribute of the same type as the attribute or attributes in L.

rel is a relational symbol from the set: ||. The relational operators {=, ≠} apply to
all types of attributes. Relations {>, ≥, <, ≤} apply only to linear attributes (rank, in-
terval, ratio and absolute).

Brackets [], may be omitted if their omission causes no confusion. If brackets are
used, the conjunction of two selectors is usually written as their concatenation. If an
attribute, x, is binary, the condition [x = 1] can be written simply as the literal x, and
[x = 0] as the literal ~x. Thus, if attributes are binary, attributional conditions reduce
to propositional literals. An attributional condition is called basic, if its left side, L, is
a single attribute, its relational symbol is one of { =, >, ≥, <, ≤}, and its right side, R,
is a single value; otherwise, it is called extended.

Examples of basic conditions and their natural language interpretation:

[x1 = 1], alternatively, x1 (The value x1 is 1)
[x1 = 0], alternatively, ~ x1 (The value x1 is 0, the alternative is used when x1 is binary)
[color = red] (The color is red)
[length < 5”] (The length is smaller than 5 inches)
[temperature ≥ 32° C] (The temperature is greater than or equal to 32° C)
[tools={mallet, knife}] (The tools are the pair, mallet and knife)
[blood_type = ?} (The blood type is unknown)

Examples of extended conditions:

[color = red v blue v green] (The color is red, blue or green)
[blood-type ≠ A] (The blood type is not A)

1 The linear attributes are these with ordered domains, namely rank, interval, and ratio.

 An Integrated Multi-task Inductive Database VINLEN 123

[length= 4..12] (The length is between 4 and 12, inclusive)
[color ≠ green v red] (The color is not green, nor red)
[height > width] (The height is greater than the width)
[height v width < 3 m] (The height or the width is smaller than 3 m)
[height & width ≥ 7 cm] (The height and width are both at least 7 cm)
[height & width < length] (Both the height and the width are smaller than the length)

Operators “v” and “&”, when applied to non-binary attributes or to their values, are

called internal disjunction and internal conjunction, respectively. As mentioned ear-
lier, a set of attributional rules with the same consequent is called an attributional
ruleset. A set of attributional rulesets whose consequents span all values of an output
(dependent) variable is called an attributional classifier (a.k.a. ruleset family).

The VINLEN system integrates operators for performing the following learning
and inference functions:

• Learning complete and consistent attributional classifiers;
• Optimizing attributional classifiers;
• Discovering patterns in data (attributional rules that represent strong regularities

but may be partially inconsistent with the data);
• Generation of multi-head attributional rules (with more than one attribute in the

consequent of a rule), see [5];
• Creating attributional rule-tree (ART) classifiers, that combine tree-like and ruleset

representations, and improve learning efficiency [15];
• Deriving optimized decision trees from attributional classifiers (Rule To Trees

method, RTT), e.g. [20];
• Applying attributional classifiers to data, and evaluating the results in the case of

testing data [21];
• Discovering conceptual clusters in data e.g. [18];
• Determining the optimum of a given function using non-Darwinian evolutionary

computation [22].

To facilitate the interpretability and understandability of learned knowledge,
VINLEN includes operators that visualize knowledge in the form of concept associa-
tion graphs (e.g. [10]) and generalized logic diagrams (e.g. [19]).

An interesting operator, being a step towards extending the capabilities of the sys-
tem by meta-learning, is the Data and Parameter Selection (DPS) operator. This
method optimizes the process of rule learning and pattern discovery with respect to
execution time and the quality of the results by selecting the most relevant attributes,
most representative examples and the most appropriate parameters for the given task.
The results are stored in the database, and can later be used for current or further ex-
periments, and to support decision making.

VINLEN also offers a set of methods for manipulation of the representation space,
that allow the user to manually remove attributes from a dataset, create new ones us-
ing SQL or a discretization method, or keep only these satisfying one of the evalua-
tion criteria (e.g. PROMISE [21], GainRatio). Attributes can also take on new types,
or become a hierarchy, as specified manually (using graphical controls) by the user.

124 K.A. Kaufman et al.

Additionally, a cost can be set for each attribute, the aggregation of which is used dur-
ing rule evaluation as another constraint. Users can also freely view and edit datasets
defined in the system by adding, removing or modifying individual events.

4 Knowledge Scouts

VINLEN operators (learning and inference operators, as well as data and knowledge
management operators) can be used in developing knowledge scouts. A knowledge
scout is a KQL script that can automatically apply various operators in search of
target knowledge in the database. The target knowledge is defined abstractly by
specifying properties of pieces of knowledge that are of interest to the given user (or
specified group of users). Simple examples of target knowledge specification are “De-
termine an attributional classifier AC from the dataset DS that maximizes a given
ruleset quality criterion”, or “Determine a conceptual clustering CC of the dataset DS
that optimizes the clustering quality criterion.”

After describing a general KQL syntax, this section presents simple examples illus-
trating knowledge scouts for a sequence of steps in a data / knowledge mining proc-
ess. The examples follow the basic KQL syntax that is sketched below, but do not
include all details and possible parameters, which are beyond the scope of this paper.

The only mandatory part of a KQL scout’s knowledge generation instruction is the
CREATE keyword followed by the specification of the output type. Other parts are
optional and with default values determined automatically, e.g. the name of the result-
ing knowledge or data unit, its location, method used, etc. The clause IN specifies the
location of the result, for example, when creating a new attribute, it defines which
dataset it will belong to. The clause AS is used to specify how the results affect the
existing knowledge or data unit with the same name: e.g., it can be replaced, modified
(for example the domain of the attribute can be extended, or a rule can be added to a
ruleset) or given a new name provided interactively by the user. The keyword
ASKED specifies that this decision should be made subsequently by the user, during
the execution of the script. The FROM clause specifies the input(s) to the KQL opera-
tors. It can followed by the WITH / WITHOUT modifier that allows for selection
from only certain input set, for example, only a selection of attributes from a given
dataset. USING specifies the name of the method to be used, which may be followed
by the WHERE clause which describes the parameters of the method. Clause
HAVING allows for constraining the results according to some criteria.

The following is a sample of the syntax of knowledge scouts.

CREATE <output_type> [<output_name> [IN <target_name>
[AS NEW | MODIFICATION | REPLACEMENT | ASKED]]]

[FROM [<source_name> [AND <source_name> […]]]]

[WITHOUT | WITH [<source_name>.]<element_name>]

[USING [<method_name> [AND <method_name> […]]]]

[WHERE [[<method_name>.]<parameter_name> IS | IS NOT
| ARE | ARE NOT | HAS | HAS NOT <parameter_value> [AND
[…]]]]

[HAVING [ACCURACY HIGHEST | …] [COMPLEXITY …]

 An Integrated Multi-task Inductive Database VINLEN 125

The following sections describe examples of knowledge scouts.

Creating a new knowledge system: As a result of the shown example command, a
new knowledge system Countries (user-entered data is in italics in the following ex-
amples) is created with automatically determined attribute types, roles of the attrib-
utes as input or output and name based on the user specified input text file.

CREATE KNOWLEDGE SYSTEM Countries

FROM FILE worldfactbook2006.txt

Creating a discretized version of an attribute: The target type is linear (values are
ordered), and by default the target dataset is the same as the source dataset. The auto-
matic discretization method based on the ChiMerge algorithm is used here with the
parameter NUMBER OF INTERVALS set to 5. The second parameter provides an
ordered list of names, a subset of which is used as the set of values of the created
attribute. If there are 5 intervals created, then all the names are used, if there are 4 in-
tervals then the middle name is not used; finally, if there are only 3 intervals then pe-
ripheral names are not used.

CREATE ORDINAL ATTRIBUTE BirthRate

FROM Birth_rate

USING CHIMERGE

WHERE NUMBER OF INTERVALS IS 5

AND NAMES ARE VeryLow, Low, Medium, High, VeryHigh

Creating a structured (hierarchical) version of the attribute Country based on ge-
ography: At the bottom level are names of the countries; higher levels describe conti-
nents and oceans. The keyword ATTRIBUTE is implied in the keyword
STRUCTURED describing the type of the attribute. The ellipsis in the end of the
WHERE clause indicates that the user needs to provide the actual entire list of se-
lected countries.

CREATE STRUCTURED HierarchyOfCountries

FROM Countries

USING USER INPUT

WHERE NorthAmerica INCLUDES UnitedStates, Canada, Mex-
ico AND

CentralAmerica INCLUDES Panama, Nicaragua, Honduras, …
AND

SouthAmerica INCLUDES Colombia, Brazil, Argentina, …
AND

America INCLUDES NorthAmerica, CentralAmerica,
SouthAmerica AND

Europe INCLUDES Spain, France, Ukraine, … AND … AND

World INCLUDES America, Europe, Australia, …

126 K.A. Kaufman et al.

Selecting a subset of data using simple selection: A dataset is selected from the
whole database describing the countries in North America and Europe using the pre-
viously created hierarchy. The hierarchical information is preserved, but the hierarchy
is only a subset of the source hierarchy.

CREATE DATASET NorthAmericaAndEurope

WITHOUT ATTRIBUTE Countries

USING SIMPLE SELECT

WHERE HierarchyOfCountries IS NorthAmerica, Europe

Selecting a subset of data for training: A new dataset is being created through ran-
dom selection of 60% of the events from the default dataset in the current knowledge
system.

CREATE DATASET NAEtraining1

FROM NorthAmericaAndEurope

USING RANDOM SELECTION

WHERE DISTRIBUTION IS UNIFORM AND TRAINING VS TESTING
EVENTS RATIO IS 60%

Learning a classifier: This operation invokes a learning operator, indicated by the
<method_name> to hypothesize a complete and consistent classifier, named GDP-
NAE, for the output attribute GDP (using its all values), with search process limited
by the parameter. In the example below, the learning method is AQ21.

CREATE COMPLETE AND CONSISTENT CLASSIFIER GDP-NAE

FROM NAEtraining1

USING AQ21

WHERE CONSEQUENT IS GDP = * AND SEARCH SCOPE IS 3

Testing an attributional classifier: Here the ATEST method is used to evaluate the
performance of the GDP-NAE model with the NAEtesting1 dataset, using strict
evaluation of selectors. The results are stored in the database under the name
TestGDPInNorthAmericaAndEurope.

CREATE TEST TestGDPInNorthAmericaAndEurope

FROM GDP-NAE AND NAEtesting1

USING ATEST

WHERE SELECTOR EVALUATION IS STRICT

Visualizing knowledge: This script invokes the CAG visualization module with its
default parameter values to present the classifier in a computer window.

CREATE VISUALIZATION CAGOfGDPInNorthAmericaAndEurope

FROM GDPInNorthAmericaAndEurope

USING CAG

 An Integrated Multi-task Inductive Database VINLEN 127

Creating an attributional rule-tree classifier: Such a classifier represents knowl-
edge as a shallow (1-2 levels) tree with classes or rulesets as leaves. This method is
especially useful for problems with many (>7) classes, as it provides a more easily
comprehended representation, and also improves the learning efficiency by reducing
the number of negative examples. Let us assume that OilConsumption is a discretized
attribute with many classes.

CREATE CLASSIFIER OilConsumption

FROM NorthAmericaAndEurope

USING ART

WHERE GROUPING IS PARTITIONING

Finding the optimum of a fitness function for a certain design: The script finds an
optimal design using the learnable evolution model (LEM), the EVAP simulator to
evaluate the fitness function, and a randomly generated initial population.

CREATE OPTIMAL DESIGN HeatExchanger1

USING LEM

WHERE FITNESS IS Evap AND INITIALPOPULATION IS RANDOM

In order to synthesize target knowledge, a knowledge scout may consist of many
lines of KQL code that request an execution of a sequence of KQL operators involving
data, intermediate results, previously learned knowledge and background knowledge.
The latter may include the types of attributes, their domains (including hierarchies of
structured attributes), problem constraints, and rules for constructing derived attributes.
At every step of running the knowledge scout, an application of one operator may de-
pend on the results of previous operators, due to the inclusion of tests of properties of
data and knowledge components, of the results of their application to data, and the use
of a branching operator in KQL. For example, a condition for repeating a learning
operator may be:

“If the average consistency of attributional rules in the classifier is smaller than
.95, or the number of rules in the classifier is greater than 10, the accuracy of the clas-
sifier on the testing data is smaller than .93, and the number of learning runs is
smaller than 50, repeat the run with the search scope 15; otherwise, return the
results.”

The ultimate goal of the development of KQL is to be able to use language con-
structs in a highly declarative form that leaves the details of how the goals are to be
achieved to the program, including selection and experimentation with a number of
different methods, based on the meta-learning capabilities, as in the example below.

CREATE CLASSIFIER WorldFactbookPatterns
FROM WorldFactBook
USING DPS, AQ21 AND ART AND RTT, ATEST, CAG

WHERE TRAINING VS TESTING EVENTS RATIO IS 50%

HAVING ACCURACY HIGHEST AND COMPLEXITY LOWEST AND
EXECUTION TIME < 1.5 HRS

128 K.A. Kaufman et al.

The above code defines a knowledge scout that is asked to apply three different
learning operators (AQ21, ART and RTT) to the dataset WorldFactBook1 (describing
the countries of the world) and to determine three best classifiers that can be obtain by
AQ21, ART and RTT operators within 1.5 hour total (each operator is allocated the
same amount of time). The input dataset for the operators is to be created by the
operator DPS that selects the most relevant attributes and the most representative ex-
amples from WorldFactBook1. This obtained set is split 50%-50% (overriding default
ratio) into a training and a testing set. The classifier quality criterion first maximizes
the accuracy and then minimizes the complexity of the classifier.

Operator AQ21 will create a standard attributional classifier, ART (Attributional
Rule-Tree) will seek an attributional rule-tree, and RTT (Rule-To-Trees) will take the
learned attributional classifier and create from it the “best” decision tree according to
the default optimality measure. All operators are to be applied with default parame-
ters. The results from each method are evaluated by the ATEST method, and graphi-
cally illustrated by the.CAG operator that presents them in the form of a concept
association graph.

5 An Example of Application to a Medical Domain

This section illustrates an application of the VINLEN’s knowledge generation opera-
tor to a problem of determining relationships between lifestyles and diseases of
non-smoking males, aged 50-65, and displaying results in the form of a concept asso-
ciation graph. The study employed a database from the American Cancer Society that
contained 73,553 records of responses of patients to questions regarding their life-
styles and diseases. Each patient was described in terms of 32 attributes: 7 lifestyle
attributes (2 Boolean, 2 numeric, and 3 rank), and 25 Boolean attributes denoting dis-
eases. The learning operator determined patterns (approximate attributional rules)
characterizing the relationships between the 25 diseases and the lifestyles and other
diseases. Fig. 3 shows a slightly simplified example of the discovered patterns (HBP
stands for High Blood Pressure, and Rotundity is a discretized ratio of the patient’s
weight and height.

[Arthritis = Present] <=
[HBP = present: 432, 1765] &
[Education <= college_graduate: 940, 4529] &
[Rotundity >= low: 1070, 5578]
p = 325, n = 1156; P = 1171, N = 6240

Fig. 3. A pattern for Arthritis discovered from the medical database

The two numbers listed within each condition after the colon denote the numbers
of positive and negative examples in the training set covered by that condition, re-
spectively; p and n, are the numbers of positive and negative examples in the training
set covered by the entire rule, respectively; and P and N are the numbers of positive
and negative examples in the training data for that class (here, Arthritis), respectively.

 An Integrated Multi-task Inductive Database VINLEN 129

The pattern in Fig. 3 defines a set of conditions under which patients had arthritis
relatively frequently. These conditions include the presence of high blood pressure, no
education beyond college, and more than “very low” rotundity. In the training data,
about 16% of the patients had arthritis (P / (P + N)), but among patients satisfying the
pattern, the percentage grows to 22% (p / (p + n)). The most significant factor in the
pattern is high blood pressure, which by itself has confidence of about 19%.

The discovered attributional patterns are visualized using a concept association
graph (CAG). Fig. 4 presents one such graph that was automatically generated using
the CAG visualization operator.

Fig. 4. Concept Association Graph representing seven patterns in the medical database

A CAG should not be confused with a Bayesian network, an entirely different con-
cept. In CAG, links connected by an arch indicate a logical conjunction of the condi-
tions pointing to the consequent node. The strength of each condition measured by a
user-selected parameter, e.g., condition confidence or coverage, is indicated by the
link thicknesses. For example, in Fig, 4, the thicknesses of links are proportional to
the condition confidences. In addition, to indicate the general type of the relationship
between the condition and the consequent, links are annotated by a symbol “+”, “–“,
“v”, or “^”. Symbols “+” and “-“ indicate that higher attribute values in the condition
correspond to higher and lower values of the condition, respectively; “v” and “^”
indicate that extreme attribute values correspond to higher or lower values of the con-
sequent attribute, respectively. A CAG is thus an abstract visualization of a set of at-
tributional rules.

While no claim is made as to the medical validity and significance of the presented
relationships, this result indicates that the developed methodology is potentially capable

130 K.A. Kaufman et al.

of discovering important patterns in the data, and representing them in an understand-
able way, either as qualitative relationships in the form of attributional rules, or graphi-
cally via a concept association graph.

6 Relation to Other Work

VINLEN aims at integrating a wide range of capabilities and types of operators, many
of which are unique. The knowledge query language, KQL, that provides a mecha-
nism for invoking these operators automatically, is significantly different from other
high-level languages developed for data exploration and knowledge discovery. It em-
ploys many operators that are unavailable in other languages, and it is implemented in
C++, rather than Prolog, as are many other knowledge management languages.

Among the non-Prolog-based languages, MINE RULE [11], which was used to
analyze users’ internet activity [13], is syntactically similar to KQL, as it also builds
upon the SQL data query language. In contrast to VINLEN, which implements a wide
range of operators, it integrates, however, only one inductive operator, which creates
association rules from the data stored in the transactional format.

Another related language, KQML [3], allows the user to query for specific pieces
of knowledge, but it does not support multiple discovery operators and the abstract
templates available in KQL. The discovery operators are quite different from those
used in VINLEN.

MSQL is a language for data mining proposed in [8]. Similarly to KQL it satisfies
the closure principle, allowing results from one method to be used as inputs for an-
other one; and it allows constraint of resulting rules based on their support, confi-
dence or complexity (length in this case); as well as allowing defined discretizations.
Although VINLEN’s script language does not currsently include constructs for speci-
fying lists of alternative attributes, or for query nesting, or for selecting data confirm-
ing / contradicting given hypotheses as MSQL does, it offers richer knowledge repre-
sentation (e.g. selectors with internal disjunction, multi-head rules, counting
attributes, compound attributes, explicitly defined hierarchies) and a broader set of
available operators (e.g. for clustering, or different types of attributional classifiers).

DMQL [6] provides quite a broad scope of knowledge types and knowledge ma-
nipulation operations, including data selection and knowledge visualization. It also al-
lows for explicit specification of hierarchies, attribute discretization, definition of rule
constraints in terms of syntax templates or rule interestingness measures based on
“novelty” (usually in relation to the user’s beliefs). Currently KQL lacks the latter two
features; nevertheless, it provides different kinds of knowledge generation operators,
constraining rules based on their evaluation rankings as opposed to thresholds.

A query language that is somewhat related to KQL is described in [2]. It has the
capability for specifying the type of knowledge to search for, e.g., rules with confi-
dence levels above a given threshold. Being a Prolog-based language, it has the capa-
bility for directly expressing relational descriptions, but does not involve such a wide
range and versatile operators that VINLEN does. While VINLEN can also search for
rules with confidence levels above a certain threshold, it can also seek rules with
maximum confidence values.

 An Integrated Multi-task Inductive Database VINLEN 131

The WEKA system (available at http://www.cs.waikato.ac.nz/ml/weka/) also uses
GUI, and offers a number of operators that can be expanded by independent develop-
ers, as well as graphical tools to design the learning / testing process. It includes dif-
ferent operators than VINLEN. In particular, it does not have the ability to discover
patterns with the expression power of attributional rules. It also lacks a dedicated
script language like KQL, and outputs results into separate files for each experiment,
which is a less flexible method than storing both the data and the resulting knowledge
in the system’s database and knowledge base, respectively.

VINLEN is still under development, and at present our primary stress is on devel-
oping and implementing new capabilities, rather than on the system efficiency. There-
fore, we have not yet addressed many important aspects described in [2, 9, 12], such
as the query optimization and evaluation, caching intermediate results, keeping track
of dataset and knowledge segment relations, or updating datasets and knowledge
segments with respect to changes to other data and knowledge (data and knowledge
integrity constraints). These issues are topics are on the agenda for the future research.

7 Summary and Future Work

This paper reviewed current research on the development of VINLEN, a system that
aims at integrating a wide range of operators for data management, data analysis,
knowledge discovery and visualization, knowledge testing and its application to deci-
sion support, classification, and optimization. The advantages of such integration and
of inductive databases are now being widely recognized, as evidenced by the recent
international workshop on Inductive Databases that led to this book, and earlier ef-
forts e.g. [2, 4, 7, 9, 12]. The underlying knowledge representation used in VINLEN
is based on attributional calculus, a logic and representation system that combines as-
pects of propositional, predicate, and multi-valued logic for the purpose of facilitating
knowledge discovery.

Individual operators can be invoked by the user via the graphical user interface, or
automatically, via a knowledge scout, a script in knowledge query language KQL.
KQL is an extension of SQL that adds to it operators for knowledge generation, man-
agement, visualization, and application.

While the system is still under development, most of the operators planned for in-
clusion have already been developed and implemented as separate programs, and
some have been already integrated in it. This chapter focused on two central opera-
tors, already implemented in VINLEN, namely, learning attributional classifiers, and
visualizing the classifiers using concept association graphs. These operators have
been illustrated by an example in a medical domain.

Other operators, such as conceptual clustering, intelligent target data generation
and parameter setting, optimization of functions or systems via Learnable Evolution,
and database management through an SQL client have been developed and imple-
mented, and are in the process of being integrated in VINLEN. Various statistical op-
erators, modules for applying knowledge to data for generating decisions, and a
mechanism for creating knowledge query language scripts to guide data exploration
tasks are still under development.

132 K.A. Kaufman et al.

After gathering experience with the inter-operation of many methods integrated via
KQL, we plan to address the remaining challenges of VINLEN development, such as
KQL query evaluation and optimization, caching/reusing results of reasoning during
the user’s interaction with the system, and meta-learning. We also plan to address the
issues of efficiency and scalability of the system with very complex problems.

Summarizing, the major contributions of the current VINLEN project are the de-
velopment of a general methodology for a tight integration of a database, knowledge
base, data management operators, a range of knowledge generation operators, an ini-
tial knowledge query language, a user-oriented visual interface implementation, and
an experimental demonstration of the effectiveness of the implemented operators for
natural induction and visualization of attributional classifiers via concept association
graphs.

Acknowledgments. Research described here has been conducted in the Machine
Learning and Inference Laboratory at George Mason University, and has been sup-
ported in part by the National Science Foundation under Grants No. IIS-9906858 and
IIS-0097476, and in part by the UMBC/LUCITE #32 grant. In a few cases, presented
results have been obtained under earlier grants from the National Science Foundation,
the Office of Naval Research, or the Defense Advanced Research Projects Agency.
The findings and opinions expressed here are those of the authors, and do not neces-
sarily reflect those of the above sponsoring organizations.

References

1. Blockeel, H.: Experiment Databases: A Novel Methodology for Experimental Research.
In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 72–85. Springer,
Heidelberg (2006)

2. De Raedt, L.: A Perspective on Inductive Databases. ACM SIGKDD Explorations News-
letter 4(2), 69–77 (2002)

3. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication
Language. In: Proceedings of the Third International Conference on Information and
Knowledge Management, CIKM 1994, pp. 456–463. ACM Press, New York (1994)

4. Flach, P., Dzeroski, S.: Editorial: Inductive Logic Programming is Coming of Age. Ma-
chine Learning 44(3), 207–209 (2001)

5. Głowiński, C., Michalski, R.S.: Discovering Multi-head Attributional Rules in Large Da-
tabases. In: Tenth International Symposium on Intelligent Information Systems, Zakopane,
Poland (2001)

6. Han, J., Kamber, M.: Data Mining – Concepts and Techniques. Morgan Kaufmann, San
Francisco (2001)

7. Hätönen, K., Mika Klemettinen, M., Miettinen, M.: Remarks on the Industrial Application
of Inductive Database Technologies. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.)
Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp.
196–215. Springer, Heidelberg (2006)

8. Imieliński, T., Virmani, A.: MSQL: A query language for database mining. Data Mining
and Knowledge Discovery 3(4), 373–408 (1999)

9. Imieliński, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Communi-
cations of the ACM 39, 58–64 (1996)

 An Integrated Multi-task Inductive Database VINLEN 133

10. Kaufman, K., Michalski, R.S.: A Knowledge Scout for Discovering Medical Patterns:
Methodology and System SCAMP. In: Proceedings of the Fourth International Conference
on Flexible Query Answering Systems, FQAS’2000, Warsaw, Poland, pp. 485–496 (2000)

11. Meo, R., Giuseppe, P., Stefano, C.: An Extension to SQL for Mining Association Rules.
Data Mining and Knowledge Discovery V2(2), 195–224 (1998)

12. Meo, R., Lanzi, P.L., Klemettinen, M. (eds.): Database Support for Data Mining Applica-
tions. LNCS (LNAI), vol. 2682. Springer, Heidelberg (2004)

13. Meo, R., Vernier, F., Barreri, R., Matera, M., Carregio, D.: Applying a Data Mining Query
Language to the Discovery of Interesting Patterns in WEB Logs. In: Workshop on Induc-
tive Databases and Constraint Based Mining, Hinterzarten, Germany (2004)

14. Michalski, R.S.: ATTRIBUTIONAL CALCULUS: A Logic and Representation Language
for Natural Induction. Reports of the Machine Learning and Inference Laboratory, MLI
04-2, George Mason University, Fairfax, VA (2004)

15. Michalski, R.S.: Attributional Ruletrees: A New Representation for AQ Learning. Reports
of the Machine Learning and Inference Laboratory, MLI 02-1, George Mason University,
Fairfax, VA (October 2002) (slightly updated in May 2004)

16. Michalski, R.S., Kerschberg, L., Kaufman, K., Ribeiro, J.: Mining For Knowledge in Da-
tabases: The INLEN Architecture, Initial Implementation and First Results. Intelligent In-
formation Systems: Integrating Artificial Intelligence and Database Technologies 1(1),
85–113 (1992)

17. Michalski, R.S., Wojtusiak, J.: Reasoning with Meta-values in AQ Learning. Reports of
the Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA
(2006)

18. Seeman, W.D., Michalski, R.S.: The CLUSTER3 System for Goal-oriented Conceptual
Clustering: Method and Preliminary Results. In: Proceedings of the Data Mining and In-
formation Engineering Conference, Prague, Czech Republic (2006)

19. Śnieżyński, B., Szymacha, R., Michalski, R.S.: Knowledge Visualization Using Optimized
General Logic Diagrams. In: Proceedings of the Intelligent Information Processing and
Web Mining Conference, Gdansk, Poland (2005)

20. Szydło, T., Śnieżyński, B., Michalski, R.S.: A Rules-to-Trees Conversion in the Inductive
Database System VINLEN. In: Proceedings of the Intelligent Information Processing and
Web Mining Conference, Gdansk, Poland (2005)

21. Wojtusiak, J.: AQ21 User’s Guide. Reports of the Machine Learning and Inference Labo-
ratory, MLI 04-3, George Mason University, Fairfax, VA (2004) (updated in September
2005)

22. Wojtusiak, J., Michalski, R.S.: The LEM3 Implementation of Learnable Evolution Model
and Its Testing on Complex Function Optimization Problems. In: Proceedings of Genetic
and Evolutionary Computation Conference, Seattle, WA (2006)

23. Wojtusiak, J., Michalski, R.S., Kaufman, K., Pietrzykowski, J.: The AQ21 Natural Induc-
tion Program for Pattern Discovery: Initial Version and its Novel Features. In: Proceedings
of the 18th IEEE International Conference on Tools with Artificial Intelligence, Washing-
ton D.C., IEEE Computer Society Press, Los Alamitos (2006)

	Mining Correct Properties in Incomplete Databases
	Introduction
	k-Free Patterns and Generalized Association Rules
	Missing Values

	On Interactive Pattern Mining from Relational Databases
	Analysis of Time Series Data with Predictive Clustering Trees
	Three Strategies for Concurrent Processing of Frequent Itemset Queries Using FP-Growth
	Introduction
	Related Work
	Organization of the Paper

	Frequent Itemset Mining and Review of FP-Growth
	Multiple-Query Optimization for Frequent Itemset Queries
	Basic Definitions and Problem Statement
	Mine Merge
	Common Counting

	Common Building: Adaptation of Common Counting for FP-Growth
	Common FP-Tree: Integration of Queries’ FP-Trees into One Data Structure
	Experimental Results
	Conclusions
	References

	Beam Search Induction and Similarity Constraints for Predictive Clustering Trees
	Introduction
	Predictive Clustering Trees
	Beam Search
	Anti-monotonic Constraints
	Similarity Constraints
	Experiments
	Aims
	Setup

	Results and Discussion
	Predictive Performance

	Conclusion and Further Work

	Towards a General Framework for Data Mining
	Introduction: The Challenges for Data Mining
	Towards a Language for Data Mining and Knowledge Discovery
	Related Work

	Efficient Mining Under Rich Constraints Derived from Various Datasets
	Introduction
	Defining Constraints on Several Datasets
	MUSIC-DFS Tool
	Mining Constrained Patterns from Transcriptomic Data

	Using a Reinforced Concept Lattice to Incrementally Mine Association Rules from Closed Itemsets
	Extending the Soft Constraint Based Mining Paradigm
	Value, Cost, and Sharing: Open Issues in Constrained Clustering
	Introduction
	Constrained Clustering
	Pairwise Constraints
	Beyond Pairwise Constraints

	Open Questions
	Value: How Useful Is a Given Set of Constraints?
	Cost: How Can We Make Constraints Cheaper to Acquire?
	Sharing: When and How Should Constraints Be Propagated to Neighboring Points?

	Conclusions

	Extracting Trees of Quantitative Serial Episodes
	Frequent Pattern Mining and Knowledge Indexing Based on Zero-Suppressed BDDs
	Introduction
	BDDs and Zero-Suppressed BDDs
	A ZBDD-Based Pattern-Mining Algorithm
	Experimental Results
	Postprocessing for Generated Frequent Patterns
	Related Works

	Integrating Decision Tree Learning into Inductive Databases
	Introduction
	The ADReM Approach to Association Rule Mining
	The Conceptual View

	Integration of Decision Tree Learning
	Implementation
	Perspectives
	Conclusion

	IQL: A Proposal for an Inductive Query Language
	Introduction
	Some Example Queries
	Manipulation of Data
	Evaluation of Queries
	Primitives and Extensions
	Reasoning
	Scenario
	Extensions of Other Query Languages
	Conclusions

	Mining Bi-sets in Numerical Data
	Introduction
	A New Pattern Domain for Numerical Data Analysis
	Algorithm
	Candidate Enumeration
	Candidate Pruning
	Propagation

	Experiments
	Related Work
	Conclusion

	An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results
	Introduction
	An Overview of VINLEN
	Knowledge Representation and VINLEN Operators
	Knowledge Scouts
	An Example of Application to a Medical Domain
	Relation to Other Work
	Summary and Future Work
	References

