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Abstract. Protein families can be divided into subgroups with func-
tional differences. The analysis of these subgroups and the determina-
tion of which residues convey substrate specificity is a central question
in the study of these families. We present a clustering procedure using
the contezt-specific independence mixture framework using a Dirichlet
mixture prior for simultaneous inference of subgroups and prediction of
specificity determining residues based on multiple sequence alignments
of protein families. Application of the method on several well studied
families revealed a good clustering performance and ample biological
support for the predicted positions. The software we developed to carry
out this analysis PyMix - the Python mizture package is available from
http: //www. algorithmics.molgen.mpg. de/pymiz. html.

1 Introduction

Proteins within the same family commonly fall into sub categories which differ by
functional specificity. The categorization and analysis of these subgroups is one of
the central challenges in the study of these families. In particular it is of interest
which residues determine functional specificity of a subgroup. These functional
residues are characterized by a strong signal of subgroup specific conservation.
A number of studies have focused on the question how to detect residues which
determine functional specificity based on prior knowledge of subtype member-
ship. A review of these methods can be found in [T4]. Among the approaches
taken were relative entropy based scores [12], classification based on similarity
to a data base of functional residue templates [4], contrasting position specific
conservation in orthologues and paralogues to predict functional residues [21].
In [20] the authors use known reference protein 3D structures to find conserved
discriminatory surface residues. One major limitation of these supervised ap-
proaches is the requirement of biological expert annotation of the number of
subtypes and subtype assignments for each sequence. Which then limits useful-
ness of these methods to cases where prior biological knowledge is abundant. In
the absence of such knowledge the inference of the subgroups becomes one cen-
tral aspect of the prediction of functional residues. In many cases the subgroup
structure of a given family is a direct consequence of evolutionary divergence
of homologue sequences. As such it is not surprising that methods based on
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the phylogenetic tree of a family have been extensively and successfully used
to study protein family subgroups [IB/I6I22)25]. However, the performance of
these methods does degrade in cases where the evolutionary divergence between
subgroups is large. Moreover phylogeny does not account for situations where
functional relatedness of proteins arose from a process of convergent evolution.
As such there is a need for additional methods for detection and analysis of
the subgroups inherent in a set of related sequences. Here, we present the first
unsupervised approach to simultaneously cluster related sequences and predict
functional residues which does not rely on a phylogenetic tree. Prior work either
relies on inference of phylogenetic trees or is unsupervised.

The clustering procedure employs the Bayesian context-specific independence
mixture framework [9]. CSI mixtures have for instance been used for modeling
of transcription factor binding sites [9], clustering of gene expression data [I] or
the analysis of complex genetic diseases [I0]. The central idea of the context-
specific independence model is to adapt the number of model parameters to a
level which is appropriate for a given data set. This notion of automatic adaption
of a probabilistic model to the data has received considerable attention in the
context of Bayesian networks [3I57].

One of the challenges of clustering protein families into subgroups based on
the sequence is that the discriminating features one attempts to learn are a prop-
erty of the structure rather than the sequence. As an example, consider three
subgroups with perfect conservation of amino acids Leucine, Isoleucine and Tryp-
tophan respectively at one position. A naive application of a clustering would
consider said position to be highly discriminative for all three groups. Of course,
this would be misleading due to the great similarity in chemical properties be-
tween Leucine and Isoleucine which makes them, to some extent, synonymous
as far as structure is concerned. To adapt the CSI mixture model for this situa-
tion we apply a parameter prior in form of a mixture of Dirichlet distributions.
These Dirichlet mixture priors have been successfully used to improve generaliza-
tion properties of parameter estimates for probabilistic models for small sample
sizes [23]. In the CSI framework a suitably chosen prior additionally acts to guide
the structure learning towards distributions indicative of structural differences
between the subgroups.

2 Methods

2.1 CSI Mixture Models

In this section we briefly introduce notation for conventional mixture models
and our extension in the context-specific independence framework. For a more in
depth coverage the reader is referred to [20] and [J] respectively. Let Xy, ..., X,
be discrete random variables over the 20 amino acids and a gap symbol rep-
resenting a multiple sequence alignment (MSA) with p positions (see Fig. [Th
for an example). Given a data set D of N realizations, D = x1,...,xy with
x; = (241, ..., Tip) & conventional mixture density is given by
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where the 7, are the mixture coeflicients, Zle 7, = 1 and each component
distribution fj is a product distribution over Xj, ..., X,, parameterized by para-
meters 0 = (01, ..., Okp)
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The complete parameterization of the mixture is then given by = (7, 01, ..., 0%).
For a data set D of N samples the likelihood under mixture M is given by

N
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The way the mixture arises from a given MSA is visualized in Fig. [T} [h)
shows an example MSA with four positions and three subgroups C; — C3 within
the sequences. An abstract representation of the corresponding mixture model
is shown in [Ib). Here each position of the alignment is modelled by a discrete
random variable X; — X4 and each cell in the matrix represents a uniquely
parameterized discrete distribution with parameters estimated from the amino
acids of the sequences assigned to the subgroup at the respective positions.

The central quantity for both the parameter estimation with Fzpectation Max-
imization (EM) [6] as well as the subgroup assignment is the posterior of com-
ponent membership given by

kel ) 4
TS e fulanl0) W

i.e. 7 is the probability that a sample x; was generated by component k.
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Fig. 1. a) Example input MSA. Eight sequences with four positions each divided into
three subgroups. b) Model structure matrices for conventional mixture model and c)
structure matrix for the CSI mixture model.



82 B. Georgi, J. Schultz, and A. Schliep

The basic idea of the CSI extension to the mixture framework is to automati-
cally adapt model complexity to match the variability observed in the data. This is
visualized in Fig.[Il In[Ib) the structure matrix for a conventional mixture model
is depicted. Each cell represents a uniquely parameterized distribution for each
component and sequence position. In opposition to that a CSI model (Fig. [l ¢)
may assign the same distribution for a position to several components as indicated
by the cell spanning multiple rows in the structure matrix. In example C; and Cs
share a distribution parameters for position X;. For position X, all components
have the same distribution and for position Xy all components except Cy have the
same parameters. This not only yields a reduced model complexity, it also allows
the direct characterization of protein subgroups by the model structure matrix.
For instance it can be seen that position X4 is uniquely characterizing component
(. For a protein family data set this might indicate that position Xy is a candi-
date for functional residue with respect to subgroup Cj.

Formally the CSI mixture model is defined as follows: Given the set C =
{1,.., K} of component indexes and sequence positions Xi, ..., X,, let G =
{9j}(j=1,...,p) be the CSI structure of the model M. Then g; = (gj1,...g;z,) such
that Z; is the number of parameter subgroups for X; and each g;.,7 =1,..., Z;
is a subset of component indexes from C. Thus, each g; is a partition of C into
disjunct subsets such that each gj, represents a subgroup of components with
the same distribution for X;. The CSI mixture distribution is then obtained
by replacing fi;(zi;|0k;) With fi;(2i;|0g,(x);) in @) where g;(k) = r such that
k € gjr. Accordingly Ors = (7,0x,1g,,, s 0x,|g,,) is the model parameterization.
Ox,|g,. denotes the different parameter sets in the structure for position j. The
complete CSI model M is then given by M = (G, 0,). Note that we have covered
the structure learning algorithm in more detail in a previous publication [9].

2.2 Dirichlet Mixture Priors

In the Bayesian setting the fit of different models to the data is assessed by the
model posterior P(M|D) given by

P(M|D) oc P(M)P(D|M),
where P(D|M) is the likelihood of the data under M and P(M) is the model
prior. For P(M) = P(K)P(G) a simple factored form was used with P(K) = v
and P(G) = H§:1 a%i. vy <1 and a < 1 are hyperparameters which determine

the strength of the bias for a less complex model introduced by the prior. The
likelihood term P(D|M) is given by

P(D|M) = P(D| ) P(8 1).

Here P(D\?} ) is simply the mixture likelihood () evaluated at the mazimum
— —

a posteriori (MAP) parameters 6 5y and P( 6 5/) is a conjugate prior over the

model parameters.
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One choice of P(? ) for discrete distributions € is a mixture of Dirichlet
distributions. A Dirichlet mixture prior (DMP) over a discrete distribution 6 =
(01,...,0¢) is given by

ZQg q(Blag), (5)

where D, is the Dirichlet density parameterlzed by ag = (g1, ..., g0Q), g > 0,

D, () = F(@Z?ﬂ 0yz) 19[ goro=—1,
[L2 Ieg:) 25

The DMP has a number of attractive properties for the modeling of protein
families. Not only does the DMP retain conjugacy to the discrete distribution
which guarantees closed form solutions for the parameter estimates, it also allows
for a great degree of flexibility in the induced density over the parameter space.
This allows for the integration of amino acid similarities in the structure learning
procedure.

2.3 Parameter Estimation

As the Dirichlet distribution is conjugate to the multinomial distribution, the
MAP estimates for # can be computed conveniently.

To obtain the MAP for Dirichlet Mixture priors in case of a mixture of dis-
crete distributions we extend the update rules in [23] where the formulas for the
single distribution case have been derived in detail. The MAP solution for the
distribution over position j in component k, i = (6ij1, ..., 0kjq), where @ is
the size of the alphabet X' (21 for amino acids plus gap symbol) is given by

G
Tyj» +
Ohjz = 7 o 6
kj ;QQ Tk:+|ag‘ ( )

where the Ty; = (Tkj1, ..., Tkjq) are the expected sufficient statistics of mixture
component k in feature j with

N
Tyj> = ZTki O(eij=2.)s

i=1

Tyj = 23:1 Tyj- and gg; is the component membership posterior of 0y;, under
the DMP P(6) computed according to ().

2.4 Prior Parameter Derivation

In order to apply the DMP framework on the problem of regularizing the struc-
ture learning for protein families we have to specify the parameterization of P(8).
This includes the choice of G, the g4 and the ay.

We considered three different approaches to arrive at choices for these para-
meters,
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1. choice of parameters based on a PAM series amino acid substitution proba-
bility matrix,

2. use of previously published DMP regularizers [23] based on machine learning
techniques and

3. heuristic parameter derivation based on basic chemical properties of the
amino acids.

The latter approach proved to be most suitable for our purposes and therefore
will be described in more detail below. It should be stressed however that the
non-optimal performance of the DMPs from [23] may be caused by their focus
on providing suitable regularization to compensate for small sample sizes. While
this is certainly related, it is not quite the same as the kind of regularization we
require for the CSI structure learning. Clearly a machine learning approach for
specifying the prior parameters would be desirable. This however is not straight-
forward for two reasons: First, it is not clear how the training data for learning
a DMP for this application would have to be assembled and secondly the opti-
mization of DMPs is a difficult problem as many local minima exist [23]. In any
case, it seems appealing to use a simple heuristically specified DMP in this first
analysis in order to establish a baseline performance of the CSI mixtures in this
application.

Table 1. The twenty amino acids can be characterized by nine chemical properties. A
x in the table denotes the presence, a - the absence of a trait.

ARNDCQEGHI LKMFPS TWYV-

Hydrophobic x - -+ - X+ - X X XXX XX+ - X X X X *
Polar - XXX+ XX+ X+ X+ -+ XXXX -
Small X+ XXX+ - X+ + + + + +« XXX~ + X -
Tiny Koo v e e e X e e e e e e x
Aliphatic e XX e e x
Aromatic e e e e e X e e e e X e e e X X
Positive COX o+ e - X - - X -

Negative - - X - - X -

Charged - X+ X+ - X+ X+ o+ X -

The impact of an amino acid substitution on the fold of a protein depends
on the similarity of the chemical properties of the two amino acids. The more
dissimilar the amino acids are, the more pronounced the effect on protein struc-
ture will be. The relevant chemical properties can be arranged into a hierarchy
of more general and specific properties [I8]. The nine properties we consider and
the assignment of amino acids is summarized in Table[Il Here 'x’ and ’-* denote
presence and absence of a property respectively. Note that the gap symbol -’ is
negative for all properties.

Based on this characterization of the amino acids by their basic chemical
properties we construct a DMP as follows: To each of the properties in Table[Il we
assign a component D, in the DMP. The parameters o, are chosen such that ayg;
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is larger if amino acid j has the property. This means we construct nine Dirichlet
distributions which give high density to 6y, |, with strong prevalence of amino
acids with a certain property. The combination of all property specific D, in the
DMP then yields a density which allows the quantification of similarity between
amino acids in the probabilistic framework. In order to arrive at a scheme to
choose the parameters of the DMP the following constraints were taken into
consideration:

— The strength of a Dirichlet distribution prior D, is determined by the sum of
its parameters |ag|. The size of |ag4] is also anti-proportional to the variance
of D,. To assign equal strength to all property specific Dirichlets Dy, all |ay|
are set to be identical.

— More general properties should receive greater weights g, in the DMP.

— The strength of the prior, i.e. |ag| should depend on the size of the data set
N.

This leads to the following heuristics for choosing the DMP parameters: Let
the strength of each D, be one tenth of the data set size; i.e. |ay| = % and

b= 0'7521|a9| the base value for the parameters ;. Then ay; = b, for all amino
acids were the property is absent and

0.25 |ay|

Qg =b g
97 + Bg ’

for all amino acids where the property is present, where B, denotes the number

amino acid which have the property. Finally, the weights g, are set to

Bg
dg = a
Zg:l Bg

which means that more general properties receive proportionally higher weight
in the prior. Thus, the priors in the model introduce two types of bias’ into the
structure learning. An unspecific preference for a less complex model given by
P(M) and a specific preference for parameters €, that match the amino
acid properties encoded in the prior P(0).

2.5 Feature Ranking

To predict which features are functional residues for a given subgroup, it is
necessary to refine the information in the CSI structure matrix by ranking the
informative features. Since these features are distinguished by subgroup spe-
cific sequence conservation, the relative entropy is a natural choice to score for
putative functional residues.

In order to quantify the relevance of X; for subgroup i we assume a CSI
structure in which X is uniquely discriminative for component i, i.e. Z; = 2
with g;1 = {i} and gjo = {1,..., K} \ i. Based on this structure a component-
specific parameter set ¢;; and a parameter set for all other components Oyper
are constructed by doing a single structural EM update.
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The score for feature X; in component i is then given by S;; = K L(6,;, Oother),
where KL is the symmetric relative entropy. Note that this is somewhat similar
to the setup used in [I2]. The major difference being that in [I2] subgroup
assignments were assumed to be known and in this work the scoring is based on
the posterior distribution of component membership and parameter estimates
induced by the expected sufficient statistics in the structural EM framework.

3 Results

We evaluated the performance of CSI mixture models for protein subfamilies on
a number of data set of different sizes from families with known subtype assign-
ments and structural information. This allows for a validation of the clustering
results. Any column in the alignment with more than 33% gaps was removed
prior to the clustering. Model selection was carried out using the Normalized
entropy criterion (NEC) [2]. To assess the impact of the DMP on model per-
formance sensitivity and specificity of the clusterings with DMP were compared
to mixtures with the same number of components but a simple uninformative
single Dirichlet prior.

3.1 L-Lactate Dehydrogenase Family

We analyzed members of the L-lactate dehydrogenase family, which differ in their
substrate specificity. We analyzed two subfamilies, malate and lactate dehydro-
genases. In this family, despite substantial variance within the subfamilies and
between them, a single position is responsible for defining substrate specificity.
Taking PDB 11B6 as reference sequence, an R in position 81 confers specificity for
lactate whereas a Q in the same position would change the substrate to malate.
Clusterings were computed for the 29 sequences in the PFAM seed alignment
of that domain (PF00056). The alignment contained 16 lactate dehydrogenases
(LDH) and 13 malate dehydrogenases (MDH). NEC model selection indicated 2
components to provide the best fit for the data. The two components separated
the MDH/LDH groups without error for the DMP mixture.When using the un-
informative prior, considerably lower sensitivities and specificities of around 75%
were achieved. To assess the robustness of this result we repeatedly trained two
component models with DMP and uninformative priors. Averaged over 10 mod-
els the DMP achieved sensitivity 95% (SD 1.8) and specificity 93% (SD 2.4),
the uninformative prior yielded sensitivity 76% (SD 8.7) and specificity 75%
(SD 9.3). Thus, our method was able to identify the two subfamilies correctly
without any prior biological knowledge. The position identified as most informa-
tive for distinguishing the groups was indeed the one responsible for substrate
specificity. Many of the other highly ranked residues were arranged around the
NAD interaction site of the domain, which suggests they play a role in malate /
lactate recognition.
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3.2 Protein Kinase Family

The protein kinase super family is one of the largest and best studied protein
families. The human genome contains more than 500 protein kinases [19] with
many involved in different diseases like cancer or diabetes. The probably most
prominent classification of this key players in signal transduction is between ty-
rosine and serine/threonine kinases. These can be further subdivided according
to different regulatory mechanisms [13]. In our test case, we combined these lev-
els of classifications by joining tyrosine kinases (TK) with two groups of serine
threonine kinases, STE (Homologs of yeast Sterile 7, Sterile 11, Sterile 20 ki-
nases) and AGC (Containing PKA, PKG and PKC families). An alignment of
1221 representative sequences of the subfamilies was obtained from the Protein
kinase resource [24]. The three best NEC model selection scores were assigned
to 2, 3 and 4 components. Since the scores were too similar for a clear choice of
components, we will consider the clustering of all three models in the following.
In the three component model each family acquired its own subgroup with a sen-
sitivity of 79% and a specificity of 83%. Results for the uninformative prior were
only slightly worse (about 1% in both sensitivity and specificity) for this data
set. These results were highly robust in the repetitions with standard deviations
of 0.1%-0.6% on the sensitivities and specificities of both prior types. In the
following PDB 2cpk (cAMP-dependent protein kinase, alpha-catalytic subunit,
Mus musculus) is used as reference sequence for residue numbering. A ranking
of the informative features of the three component model with respect to the
TK subgroup yielded within the top 20 positions a region of three residues (168-
170) which has been experimentally shown to be important for kinase substrate
specificity [11]. For the two component model the TK and STE sequences were
collected in one subgroup and the second was almost exclusively AGC. The four
component model finally yielded a high specificity clustering (98%) in which the
AGC sequence got split over two components. The sensitivity was 76%.

3.3 Nucleotidyl Cyclase Family

Nucleotidyl cyclases play an important role in cellular signaling by producing
the second messengers cAMP and cGMP which regulate the activity of many
other signalling molecules. As cGMP and cAMP fulfill different biological roles,
specificity of converting enzymes is imperative. Five residues have been experi-
mentally confirmed to convey substrate specificity, namely 938, 1016, 1018, 1019,
1020 (numbering according to PDB 1ABS8) [I7]. We used this family as a test
case for families with multiple sites involved in functional classification, comple-
menting the L-lactate dehydrogenase family with a single site. We computed a
MSA from 132 GC (EC 4.6.1.2) and AC (EC 4.6.1.1) sequences obtained from
the ExPASy data base [8]. The NEC model selection indicated two components
to provide the best fit. The model with optimal NEC produced a clustering with
sensitivity of 83% and specificity 87% with respect to the GC / AC subgroups.
For the uninformative prior these values decreased to 70% and 73% respectively.
Averaged over 10 models the uninformative prior yielded a decreased perfor-
mance of 59% (SD 5.3) sensitivity and 62% (SD 5.6) respectively. The averaged
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Fig.2. Adenylyl cyclase with classifying sites highlighted - Subunit I in dark
grey, subunit II in light grey. The 10 most informative sites were selected.
Shown in black: experimentally validated identified sites, darkest grey: ad-
ditional identified sites. A colored version of the figure is available from
http://algorithmics.molgen.mpg.de/pymiz/Figure Cyclase.png

results for the DMP were sensitivity 73% (SD 4.3) and specificity 77% (SD 4.8).
Figure 2l shows the three dimensional structure of 1AB8 with the 10 most infor-
mative sites highlighted. Indeed, these contain 4 of the sites involved in substrate
specificity ( 1018 (ranked 2.), 1016 (3.), 938 (6.), 1019 (9.)). Further top ranking
positions included sites which are part of the subunit I and IT domain interface
(919, 912, 911). Position 943 is right next to a forsoklin interaction site and
position 891 interacts with magnesium. Residue 921 finally, is also a metal in-
teracting site [27]. Thus, not only known substrate specific sites were identified,
but also further functional sites. It would be interesting to experimentally test
identified sites with no functional annotation.

4 Discussion

The results of CSI mixture-based clustering on a number of different protein
families show that the approach is capable of simultaneously finding biological
relevant subgroups, as well as predicting functional residues that characterize
these groups. The functional residue prediction proved to be robust to some
degree to imperfections in the clustering. This implies that our unsupervised
approach to simultaneous clustering and determination of functional residues
is feasible. Also note that our results for the functional residue prediction are
strongly consistent with those reported by studies using supervised methods on
the same families [I2/26]. With regard to experimentally confirmed specificity
determining residues found by these studies, we found 1/1 for L-lactate dehy-
drogenase, 3/3 for protein kinases and 4/5 for nucleotidyl cyclase.

The results also show that the DMP used in this analysis, in spite of being
based on basic chemical properties and simple heuristics, consistently increases
the performance of the mixture framework for the application on protein data,
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although the degree of improvement differs considerably between the families.
This is not unexpected as one would expect differing amounts of synonymous
substitutions within the various subgroups and that is the situation where the
DMP makes the largest difference as compared to the uninformative prior. For
comparison we also applied the tree-based method SPEL [22] to our data. The
sources were obtained from the authors and run with default parameters. For the
MDH/LDH data the true functional position 81 was not among the ten positions
returned by SPEL. For the two larger data sets, there were implementation-issues
and SPEL did unfortunately not produce any results.

For future work it might be worth investigating the impact of different DMPs
on the clustering results and in particular whether customized DMPs for specific
applications yield improvement over the more general purpose prior used in this
work. Moreover, now that the usefulness of the method has been established
on families with abundant prior knowledge about subgroups and structure, the
next step must be to bring the method to bear to predict groups and functional
residues on data sets where such knowledge does not exist yet. Finally, the soft-
ware we developed to carry out this analysis PyMix - the Python Mixture Package
is available from our home page http://algorithmics.molgen.mpg.de/pymiz.hitml.
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Abstract. Recent years have seen the development of many graph clustering
algorithms, which can identify community structure in networks. The vast ma-
jority of these only find disjoint communities, but in many real-world networks
communities overlap to some extent. We present a new algorithm for discover-
ing overlapping communities in networks, by extending Girvan and Newman’s
well-known algorithm based on the betweenness centrality measure. Like the
original algorithm, ours performs hierarchical clustering — partitioning a net-
work into any desired number of clusters — but allows them to overlap. Ex-
periments confirm good performance on randomly generated networks based on
a known overlapping community structure, and interesting results have also
been obtained on a range of real-world networks.

1 Introduction and Motivation

Many complex systems in the real world can be represented abstractly as networks (or
graphs). Recently, with increasing availability of data about large networks and the
need to understand them, the study of networks has become an important topic. A
property that has been extensively studied is the existence of community structure in
networks. A cluster (or community or module) is a subgraph such that the density of
edges within it (intracluster edges) is greater than the density of edges between its
vertices and those outside it (infercluster edges). A wide range of algorithms have
been developed to discover communities in a network, including [4, 6, 11, 12, 13, 14].

Probably the best-known algorithm for finding community structure is Girvan and
Newman’s algorithm [6, 14], based on the betweenness centrality measure [5]. The
betweenness (strictly, the shortest-path betweenness) of edge e, cg(e), is defined as the
number of shortest paths, between all pairs of vertices, that pass along e. A high be-
tweenness means that the edge acts as a bottleneck between a large number of vertex
pairs and suggests that it is an intercluster edge. Although the algorithm is quite slow
and is no longer the most effective clustering algorithm, it does give relatively good
results. The algorithm works as follows:

1. Calculate edge betweenness of all edges in network.

2. Find edge with highest edge betweenness and remove it.
3. Recalculate edge betweenness for all remaining edges.
4. Repeat from step 2 until no edges remain.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 91103, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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This is a hierarchical, divisive, clustering algorithm. Initially, the n-vertex network
(if connected) forms a single cluster. After one or more iterations, removing an edge
(step 2) causes the network to split into two components (clusters). As further edges
are removed, each component again splits, until n singleton clusters remain. The re-
sult is a dendrogram: a binary tree in which the distance of nodes from the root shows
the order in which clusters were split. A cross-section of the dendrogram at any level
represents a division of the network into any desired number of clusters.

In step 3, edge betweenness need not be recalculated for the whole network, but
only for the component containing the edge removed in step 2, or for both compo-
nents if removing the edge caused the component to split. (The edge betweenness of
an edge depends only on the vertices and edges in the same component as it.)

Most algorithms assume that communities are disjoint, placing each vertex in only
one cluster. However, in the real world, communities often overlap. For example, in
collaboration networks an author might work with researchers in many groups, in bio-
logical networks a protein might interact with many groups of proteins, and so on.

In this paper we present a new algorithm to find overlapping community structure
in networks. It is a hierarchical, divisive algorithm, based on Girvan and Newman’s
but extended with a novel method of splitting vertices. We describe the design of the
algorithm in Section 2. In Section 3 we present some results on both artificial (com-
puter-generated) and real-world networks. Section 4 compares our algorithm with a
few others that can detect overlapping communities. Conclusions appear in Section 5.

2 Finding Overlapping Clusters

In any divisive hierarchical clustering algorithm, clusters are repeatedly divided into
smaller (normally disjoint) clusters that together contain the same items. To allow
overlapping clusters, there needs to be some way of splitting (copying) an item so that
it can be included in more than one cluster when the cluster divides.

In the context of network clustering, assuming it is based entirely on the network
structure, it seems reasonable to assume that each vertex should be in the same cluster
as at least one of its neighbours, unless it is in a singleton cluster or no cluster at all.
Therefore, a vertex v should be split into at most d(v) copies, where d(v) is the degree
of v. We need to decide how many times a vertex should be split, and when a vertex
should be split (e.g., at the beginning or when dividing a cluster).

Our algorithm extends Girvan and Newman’s algorithm (the “GN algorithm”) with
a specific method of deciding when and how to split vertices. As in the original work,
we only consider unipartite networks with undirected, unweighted edges. We name
our new algorithm “CONGA” (Cluster-Overlap Newman Girvan Algorithm).

Splitting Vertices. In the GN algorithm, the basic operation is removing an edge. We
introduce a second operation: splitting a vertex. If split, a vertex v always splits into
two vertices v; and v,: edges with v as an endvertex are redirected to v, or v, such that
vy and v, each has at least one edge. By splitting repeatedly, a vertex v can eventually
split into at most d(v) vertices. Vertices are split incrementally during the clustering
process. This binary splitting fits well into the GN algorithm because, like removing
an edge, splitting a vertex may cause its cluster to split into two.
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Split Betweenness. The key point of the CONGA algorithm is the notion of “split
betweenness”. This provides a way to decide (1) when to split a vertex, instead of
removing an edge, (2) which vertex to split, and (3) how to split it. Clearly, v should
only be split into v, and v, if these two vertices belong to different clusters. We could
verify this by counting the number of shortest paths that would pass between v, and v,
if they were joined by an edge. Then, if there were more shortest paths on {v,,1,} than
on any real edge, the vertex should be split; otherwise, an edge should be removed as
usual. This is the basis of our method of splitting a vertex, which is as follows.

For any split of vertex v into v; and v,, we add a new “imaginary” edge between v,
and v,. If u is a neighbour of v, and w is a neighbour of v,, all shortest paths that
passed through v along edges {u,v}, {v,w} now pass along {u,v}, {vi,v2}, {v2,w}. The
imaginary edge has zero cost: the lengths of paths traversing it are unchanged, and no
new shortest paths are created: paths beginning from v do not traverse this edge. We
then calculate the betweenness cz({vi,v,}) of the imaginary edge. In general, there are
240011 ways to split v into two. We call the split that maximizes cg({v,,}) the best
split of v, and the maximum value of cz({v,,v,}) the split betweenness of v.

We modify the GN algorithm so that, at each step, it considers the split between-
ness of every vertex as well as the edge betweenness of every edge. If the maximum
split betweenness is greater than the maximum edge betweenness, the corresponding
vertex is split, using its best split. (Note that imaginary edges are never actually added
to the network, but are used only during the calculation of the split betweenness.)

Fig. 1(a) shows a network comprising two overlapping clusters: {a,b,c} and
{a,d,e}. Labels on the edges show edge betweennesses (with shortest paths counted in
both directions). Fig. 1(b) shows a’s best split into a,. and a,., with the imaginary
edge (betweenness 8) shown as a dashed line. Fig. 1(c-d) shows the other two possi-
ble splits of a. In these, the imaginary edge has a lower betweenness, 4, proving that
the split of Fig. 1(b) is the best split and the split betweenness of a is 8. Because this
is greater than any edge betweenness, a should indeed be split.

Fig. 1. (a) Network. (b) Best split of vertex a. (c), (d) Other splits of vertex a.

Fig. 2 shows a network which does not exhibit clustering. Here, any (2+2) split of
a is a best split. The split betweenness of a is 8, which is the same as the betweenness
of each edge. Therefore, by default, we remove any edge instead of splitting a.
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Fig. 2. Best split of vertex a: split betweenness of a is 8

Our method will never split a vertex into v; and v, such that v; has only one
neighbour, u. This is because the betweenness of {v;,v,} would be the same as that of
{u,v,}, as shown in Fig. 3, so removing edge {u,v} would be preferred over splitting
v. As a consequence of this, vertices with degree less than 4 are never split. In gen-
eral, there are now only 2“V""-d(v)-1 ways to split a vertex into two.

Fig. 3. Vertex will not split into vertices with degree 1

Vertex Betweenness and Split Betweenness. The split betweenness of a vertex v is
the number of shortest paths passing between any member of n; and any member of
n, via v, where n; and n, are disjoint sets containing all neighbours of v. By definition,
this is no greater than the total number of shortest paths passing through v: the vertex
betweenness of v [5]. It is simple to calculate vertex betweenness cz(v) from edge
betweenness cg(e) [7]:

=3 Tep@=(n-D (1

eel(v)

where I'(v) is the set of edges with v as an endvertex and # is the number of vertices in
the component containing v. Therefore, as an optimization, we can use vertex be-
tweenness as an upper bound on split betweenness: if the vertex betweenness of v is
no greater than the maximum edge betweenness, there is no need to calculate v’s split
betweenness.

Calculating Split Betweenness. To calculate the split betweenness, and best split, of
a vertex v, we first compute the pair betweennesses of v. The pair betweenness of v
for {u,w}, where u and w are neighbours of v and u # w, is the number of shortest
paths that traverse both edges {u,v} and {v,w}. The vertex betweenness of v is the
sum of all of its pair betweennesses.

We can represent the pair betweennesses of v, degree k, by a k-clique in which
each vertex is labelled by one of v’s neighbours and each edge {u,w} is labelled by
the pair betweenness “score” of v for {u,w}. Then, to find the best split of v:
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1. Choose edge {u,w} with minimum score.

2. Coalesce u and w to a single vertex, uw.

3. For each vertex x in the clique, replace edges {u,x}, score by, and {w,x}, score b,
by a new edge {uw,x} with score b+b,.

4. Repeat from step 1 k-2 times (in total).

The labels on the remaining two vertices show the split, and the score on the remain-
ing edge is the split betweenness.

This algorithm is not guaranteed to find the best split. To do that, we would need to
try all edges in step 1 of each iteration, which would require exponential time. Our
“greedy” method is much more efficient and, in practice, usually finds the best split or a
close approximation to it. Fig. 4 shows how it finds the best split of vertex a of Fig. 1.
There are k-2 = 2 phases; the edge chosen in step 1 of each phase is highlighted.

'>->
)

Fig. 4. Finding the best split of vertex a of Fig. 1

Calculating Pair Betweennesses. Pair betweennesses are computed while calculating
edge betweenness, by a straightforward modification of the GN algorithm. The GN
algorithm increments the betweenness of edge {i,j} for all shortest paths beginning at
each vertex s. CONGA does this and increments the pair betweennesses of i for all
pairs {j,k} such that & is a neighbour of i on a path between s and i.

There is some overhead, in both time and space, in computing pair betweennesses
during the betweenness calculation. In most cases this information is not used because
we can often determine, from the vertex betweenness, that a vertex should not be
split. Therefore, our betweenness calculation is split into two phases, as shown below.

The CONGA Algorithm. Our complete algorithm is as follows:

1. Calculate edge betweenness of all edges in network.

2. Calculate vertex betweenness of vertices, from edge betweennesses, using Eq. (1).

3. Find candidate set of vertices: those whose vertex betweenness is greater than the
maximum edge betweenness.

4. If candidate set is non-empty, calculate pair betweennesses of candidate vertices,
and then calculate split betweenness of candidate vertices, using Eq. (1).

5. Remove edge with maximum edge betweenness or split vertex with maximum split
betweenness (if greater).

6. Recalculate edge betweenness for all remaining edges in same component(s) as
removed edge or split vertex.

7. Repeat from step 2 until no edges remain.
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Complexity and Efficiency. The GN algorithm has a worst-case time complexity of
O(mzn), where m is the number of edges and » is the number of vertices. In CONGA,
each vertex splits into an average of up to 2m/n vertices, so the number of vertices
after splitting is O(m); the number of iterations is still O(n) and the number of edges
is unchanged. This makes the time complexity O(m’) in the worst case.

In practice, the speed depends on the number of vertices that are split. If more are
split, more iterations are needed, the network becomes larger, and step 4 needs to be
performed more frequently. Conversely, vertex splitting can cause the network to de-
compose into separate components more readily, which reduces the execution time.

3 Results

In this section we compare CONGA with the GN algorithm, to assess the effect of our
extensions. We have tested both algorithms on computer-generated networks based on
a known, possibly overlapping, community structure. Each network contains n verti-
ces divided into ¢ equally-sized communities, each containing nr/c vertices. Vertices
are randomly and evenly distributed between communities such that each vertex is a
member of r (=1) communities on average. Edges are randomly placed between pairs
of vertices with probability p;, if the vertices belong to the same community and py
otherwise. In the special case where both r and p,,, are 0, the network will be discon-
nected. Apart from this, all of our experiments use connected networks, constructed
with a sufficiently high value of 7 or p or both.

We measure how well each algorithm can recover the community structure from a
network by using it to compute ¢ clusters and comparing the result with the ¢ known
communities. Admittedly, ¢ is not generally known for real-world networks, but this
is still a useful and common way to assess clustering algorithms; e.g., [6, 14].

We calculate two values (all averaged over 10 graphs):

e recall: the fraction of vertex pairs belonging to the same community that are also in
the same cluster.

e precision: the fraction of vertex pairs in the same cluster that also belong to the
same community.

First (Fig. 5), we generated networks of 256 vertices divided into 32 communities,
set poy = 0 (i.e., no intercommunity edges) and p;, = 0.5, and increased the amount of
overlap from r = 1 (i.e., no overlap) to r = 3. The number of edges (and hence the av-
erage degree) increases roughly quadratically with r, because the average community
size is proportional to r and each vertex is a member of » communities. So the average
degree is 4 for r = 1 but increases to approximately 15 for » = 2 and 32 for r = 3.

For the GN algorithm, as r increases, recall declines steadily because the (non-
overlapping) clusters are smaller than the communities; precision is quite high,
though certainly not perfect, in this range. Suddenly, at around r = 2, recall increases
and precision decreases, as most vertices are placed in a single cluster. In contrast,
CONGA behaves very well up to about r = 2 and then deteriorates gradually.
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GN —=—
CONGA —o—
1 12 14 16 18 2 22 24 26 28 3 1 12 14 16 18 2 22 24 26 28 3
Average number of communities per vertex (r) Average number of communities per vertex (r)

Fig. 5. recall (left), precision (right): n=256, ¢=32, p;,=0.5, po,=0, various r

We have repeated this experiment for various values of ¢ and p;,. The curves al-
ways show a similar shape, though the value of r at which precision drops varies.

To evaluate the algorithm on real-world networks, there is no correct solution with
which to compare, so the quality of a clustering must be assessed in a different way.
This is usually done by measuring the relative number of intracluster and intercluster
edges, for example, by the modularity measure [13, 14]. However, there is no widely
accepted alternative measure for use with overlapping clusters, but a promising can-
didate is the average degree measure [3]. We define the vertex average degree (vad)
of a set of clusters S, where each cluster is a set of vertices, as:

2) |E©C)
vad(S) = -2 2

2./
CeS
Another useful measure is the overlap of a set of clusters S: the sum of the cluster
sizes divided by the size of the union of all clusters. (We do not claim that vad and
overlap are mutually independent measures; that is outside the scope of this paper.)
We have run the CONGA and GN algorithms on several real-world examples,
listed in Table 1. Execution times are shown for a 2.4GHz Pentium 4 processor.

Table 1. Algorithm’s results on real-world networks

Name Ref. Vertices Edges Runtime (s)
Karate club [19] 34 78 0.2
Dolphins [9] 62 159 0.5
College football [6] 115 613 7.8
Network science | [12] 379 914 12.5
Blogs [18] 3982 6803 30411
Words [10] 1000 3471 6767

“Karate club” [19], discussed in [6], represents a social network based on two dis-

joint communities. The communities are not reflected clearly in the network structure:
there are eight intercommunity edges. GN finds an almost perfect (relative to the real-
world situation) two-cluster solution, misclassifying one vertex. CONGA finds a
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different solution with a small overlap, 1.03. The vad is 4.45 for CONGA and 4.0 for
GN, suggesting that the overlapping clustering is a good one (albeit incorrect).

“Dolphins” [9], discussed in [14], is a social network of dolphins, also based on
two disjoint communities. Here there are only six intercommunity edges. GN finds
the two communities correctly and CONGA finds the same division but with two ver-
tices from the larger community included in both clusters: the overlap is 1.03. The
vad is 4.91 for CONGA and 4.94 for GN.

“College football” [6] is a network based on games between teams that belong to
15 disjoint real-world communities. This network has many intercommunity edges.
Neither algorithm finds a perfect 15-cluster solution; the one found by CONGA has a
lower vad (5.87 vs. 7.18) and a large overlap: 1.75.

“Network science” [12] is a collaboration network of coauthorships. For such net-
works it is impossible to determine the number of real-world communities, and it
seems reasonable to assume they might overlap. CONGA'’s solution has a higher vad
than GN’s for 14 or more clusters, and overlap increases with the number of clusters.
CONGA'’s solution for 33 clusters is illustrated in Fig. 6: each cluster is identified by
a letter or digit and each vertex is labelled with the cluster(s) to which it belongs.

Fig. 6. Network science collaboration network divided into 33 overlapping clusters

“Blogs” [18] is a network of blogs on the MSN (now known as Windows Live™
Spaces) platform. An edge links people who have left two or more comments on each
other’s blog, and so are deemed to be acquainted. CONGA’s solution has a consis-
tently higher vad than GN’s, especially for more than 90 clusters. The overlap in-
creases with the number of clusters but levels off, reaching a maximum of 1.39.
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“Words” is a non-social network: a contiguous 1000-vertex subgraph of a word as-
sociation network from [15], converted from an original directed, weighted version
[10]. CONGA successfully groups related words. For example, dividing it into 400
clusters, the word “form” appears in four: {contract, document, form, order, paper,
signature, write}, {blank, entry, fill, form, up}, {compose, create, form, make},
{form, mold, shape}. (Related words in this network are not necessarily synonyms, as
they are in this example.) Again, the vad for CONGA'’s solution is consistently higher
than GN’s; the overlap increases and tails off, reaching a maximum of 2.23.

4 Related Work

Pinney and Westhead [16, 17] have also proposed extending the GN algorithm with
the ability to split vertices between clusters. The decision of whether to split a vertex
or remove an edge is based entirely on edge betweenness and vertex betweenness.
The highest-betweenness edge is removed only if its two endvertices have similar be-
tweenness; i.e., if their ratio is between o and 1/0, where a is a parameter with sug-
gested value 0.8 [16]. Otherwise the vertex with highest betweenness is temporarily
removed. When a component splits into two or more subcomponents, each removed
vertex is split and copied into each subcomponent, and all edges between the vertex
copy and the subcomponent are restored, including any removed in previous steps.
We have implemented this algorithm and compared it with CONGA; see below.

The clique percolation algorithm of Palla ef al. [15], implemented in CFinder [1],
finds overlapping clusters in a different way. Instead of dividing a network into its
most loosely connected parts, it identifies the most densely connected parts. The pa-
rameter is not the number of clusters to be found but their density, k. A cluster is de-
fined as the set of k-cliques that can all be reached from each other via a sequence of
adjacent k-cliques; two k-cliques are adjacent if they share k-1 vertices. Each vertex
may be in many clusters, or even none: e.g., degree-1 vertices are always ignored. We
have run CFinder (v1.21) to compare its results with CONGA'’s; see below.

Baumes et al. [2, 3] present a collection of algorithms to find overlapping clusters.
One algorithm iteratively improves a candidate cluster by adding vertices to and re-
moving vertices from it while its density improves. Another removes vertices from a
network until it breaks into disjoint components, forming initial clusters, and then re-
places each removed vertex into one or more of the clusters, which might overlap.

Li et al. [8] form overlapping clusters using both the structure of the network and
the content of vertices and edges. The first phase of their algorithm finds densely
connected “community cores”, similarly to the method of [15]. In the second phase,
clusters are formed from cores by adding further triangles and edges whose content
(assessed using keywords) is similar to that of the core.

Experiments. We have run the Pinney and Westhead (“P&W”) and CFinder algo-
rithms on computer-generated networks, to compare with CONGA. The number of
communities ¢ was input to both CONGA and P&W, but CFinder cannot make use of
this information, so CFinder is clearly disadvantaged. To compensate for this, we
show the CFinder results for all values of k (CFinder’s only parameter). For each ex-
periment we plot the F-measure: the harmonic mean of recall and precision.
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Fig. 7(a) shows results on the networks of Section 3: p;, and p,,, are fixed while r is
varied. CONGA gives the best results of all algorithms tested, but performance de-
clines for all algorithms for high r. CFinder gives its best performance for »=2, so in
fairness to CFinder we use this value in subsequent experiments. In Fig. 7(b) we fix r
and p,, and vary p;,. CONGA gives the best results, and they improve as p;, increases.
In contrast, CFinder, for each k, reaches a peak at a different value of p;,; for smaller
values its recall is reduced while for larger values its precision drops.

In Fig. 7(c) we fix r and p;, and vary po,. This time, CONGA’s performance suf-
fers as p,, increases, because of reduced precision, while CFinder’s performance is
more stable. Finally, in Fig. 7(d), we test the hypothesis that CFinder should be more
effective in cases where the number of communities is not known. We do this by gen-
erating networks in which a (varying) number, u, of the 256 individuals are placed in
singleton communities and the remainder are divided between the 32 main communi-
ties; because p,,>0 these networks are still connected. In this experiment, CFinder
with k=4 performs slightly better than CONGA. For both algorithms, recall decreases
as u increases but CFinder’s precision improves while CONGA'’s declines.

18— an CONGA —o—
------------- P&W —x—

0.8y

0.6

0.4

0.2

0

1 12 14 16 18 2 22 24 26 28 3 32 0.2 0.4 0.6 0.8 1

Average number of communities per vertex (r) Probability of intracommunity edges (p_in)

CONGA —— 1 CONGA ——
P&W —x—
CFinder, k=3 ——

0
0.02 0

10 20 40 50 60
Number of vertices not in any community (u)

0.005 0.01 0.015
Probability of intercommunity edges (p_out)
Fig. 7. F-measure for random networks with n=256, ¢=32. (a: upper left) p;,=0.5, po,=0, vari-
ous r; (b: upper right) r=2, p,,=0, various p;,; (c: lower left) r=2, p;,=0.5, various p,,; (d: lower
right) r=2, p;,=0.5, po,=0.008, various u.

Fig. 8 shows the execution times of all algorithms for the experiments of Fig. 7(a).
For CONGA and P&W these times include the generation of the complete dendro-
gram, from which the solution for any number of clusters can be quickly extracted.
The process is not stopped after the network is divided into 32 clusters. For CFinder,



An Algorithm to Find Overlapping Community Structure in Networks 101

1000 | CONGA ——
P&W —x—

CFinder —~—

"1 12 14 16 18 2 22 24 26 28 3 32
Average number of communities per vertex (r)

Fig. 8. Execution time (seconds) for n=256, ¢=32, p;,=0.5, p,,=0, various r

the times include the generation of solutions for all values of k. CONGA and P&W
were implemented by the author in Java. Each experiment was run on a machine with
dual AMD Opteron 250 CPUs (2.4GHz).

In summary, CONGA and CFinder seem to have complementary strengths and
weaknesses: each may be better for a different application. CFinder is substantially
faster than CONGA. P&W behaves in a similar way to CONGA but with worse re-
sults (for these networks); however, we have only tested it with one value of its pa-
rameter (o). The execution time of P&W is also the worst, but this may be because of
the poor implementation rather than the algorithm itself.

5 Conclusions

We have presented an algorithm that seems to be effective in discovering overlapping
communities in networks. Good results have been obtained for a range of random net-
works with overlap of more than 2, which is large relative to the number of communi-
ties: if a network has only 32 communities, an overlap of 3 means that each vertex is
in the same community as % of the whole network. As the number of communities is
increased, the algorithm can cope with a larger overlap. The algorithm is not fast, but
its speed is comparable with that of the GN algorithm from which it is derived.

Future work includes trying to improve the algorithm further and applying similar
ideas to faster clustering algorithms than the GN algorithm. It is also worth investigat-
ing alternative ways of measuring the quality of an overlapping clustering; e.g., the
vad measure. Finally, it would be interesting to study the overlapping nature of real-
world networks, a subject that has received little attention (but see [15]). For example,
it may be that the collaboration network of Fig. 6 naturally divides into a small num-
ber of disjoint clusters, possibly corresponding to research groups, but to decompose
it further requires clusters to overlap.

Further information related to this paper, including the networks analysed and
more results, can be found at http://www.cs.bris.ac.uk/~steve/networks/ .
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Abstract. While a binary classifier aims to distinguish positives from negatives,
aranker orders instances from high to low expectation that the instance is positive.
Most classification models in machine learning output some score of ‘positive-
ness’, and hence can be used as rankers. Conversely, any ranker can be turned into
a classifier if we have some instance-independent means of splitting the ranking
into positive and negative segments. This could be a fixed score threshold; a point
obtained from fixing the slope on the ROC curve; the break-even point between
true positive and true negative rates; to mention just a few possibilities.

These connections between ranking and classification notwithstanding, there
are considerable differences as well. Classification performance on n examples
is measured by accuracy, an O(n) operation; ranking performance, on the other
hand, is measured by the area under the ROC curve (AUC), an O(nlogn) oper-
ation. The model with the highest AUC does not necessarily dominate all other
models, and thus it is possible that another model would achieve a higher accu-
racy for certain operating conditions, even if its AUC is lower.

However, within certain model classes good ranking performance and good
classification performance are more closely related than suggested by the pre-
vious remarks. For instance, there is evidence that certain classification models,
while designed to optimise accuracy, in effect optimise an AUC-based loss func-
tion [[I]. It has also been known for some time that decision tree yield convex
training set ROC curves by construction [2]], and thus optimising training set ac-
curacy is likely to lead to good training set AUC. In this talk I will investigate the
relation between ranking and classification more closely.

I will also consider the connection between ranking and probability estima-
tion. The quality of probability estimates can be measured by, e.g., mean squared
error in the probability estimates (the Brier score). However, like accuracy, this
is an O(n) operation that doesn’t fully take ranking performance into account. I
will show how a novel decomposition of the Brier score into calibration loss and
refinement loss [3]] sheds light on both ranking and probability estimation perfor-
mance. While previous decompositions are approximate [4], our decomposition
is an exact one based on the ROC convex hull. (The connection between the ROC
convex hull and calibration was independently noted by [3]]). In the case of deci-
sion trees, the analysis explains the empirical evidence that probability estimation
trees produce well-calibrated probabilities [6].

* Invited speakers at ECML/PKDD are supported by the PASCAL European network of excel-
lence.
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Abstract. Modern classification techniques perform well when the num-
ber of training examples exceed the number of features. If, however, the
number of features greatly exceed the number of training examples, then
these same techniques can fail. To address this problem, we present a
hierarchical Bayesian framework that shares information between fea-
tures by modeling similarities between their parameters. We believe this
approach is applicable to many sparse, high dimensional problems and
especially relevant to those with both spatial and temporal components.
One such problem is fMRI time series, and we present a case study that
shows how we can successfully classify in this domain with 80,000 original
features and only 2 training examples per class.

1 Introduction

There are many interesting domains that have high dimensionality. Some exam-
ples include the stream of images produced from a video camera, the output of a
sensor network with many nodes, or the time series of functional magnetic reso-
nance images (fMRI) of the brain. Often we want use this high dimensional data
as part of a classification task. For instance, we may want our sensor network to
classify intruders from authorized personnel, or we may want to analyze a series
of fMR images to determine the cognitive state of a human subject.

Unfortunately, for many of these high dimensional classification tasks, the
number of available training examples is far fewer than the number of dimensions.
Using regularization can certainly help, and classifiers like logistic regression with
L, penalized weights have been shown to scale to many thousands of dimensions.
There are other techniques like PCA, ICA, and manifold learning that explicitly
try to reduce the data dimension. These methods, however, are unlikely to help
when the amount of training data is only a few examples per class.

For many of these sparse, high dimensional problems the features are not
truly independent. This is easy to imagine for time series data as features may
not change much from one time point to the next. If we assumed that our data
were temporally continuous, we could imagine smoothing each feature by other
features nearby in time. This smoothing could remove noise and improve our
estimate of the feature.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 212-[ZZ3] 2007.
© Springer-Verlag Berlin Heidelberg 2007



Classification in Very High Dimensional Problems 213

Any assumption that we make a priori introduces inductive bias into our
learning task. If the assumption is accurate then the bias will help the learning
task when the number of training examples is very limited. Thus, to build a
classifier that will perform well with small numbers of examples, we desire a
way to incorporate any inductive biases (i.e. domain knowledge) we might have
about the relationships between features.

We present such a classifier based on a hierarchical Bayesian model. Our model
is both parametric and generative, and allows us to encode assumptions about
the features a priori. We demonstrate this classifier on fMRI time series data
and show that it scales tractably (even with 80,000 features). The classifier is
robust to noise and extraneous features, and can classify with only 2 examples
per class as compared to a standard Gaussian Naive Bayes classifier that fails
completely on the same data.

1.1 Case Study: Cognitive State Classification Using Functional
Magnetic Resonance Images

Recent work has shown that it is possible to classify cognitive states from fMRI
data. For example, researchers have been able to determine the category of words
that a person is reading (e.g. fruits, buildings, tools, etc.) [I0] by analyzing fMR
images of their neural activity. Others have shown that is is possible to classify
between drug addicted persons and non-drug using controls [I5]. One study even
used fMRI data to classify whether participants were lying or telling the truth [4].

Classification in this domain is tricky. The data are very high dimensional and
noisy, and training examples are sparse. A typical experiment takes a 3D volu-
metric image of the brain every second. Each image has roughly 5,000 voxelaEl,
each of which measures the neural activity at a specific location in the brain4.

The experiments considered here are often divided into trials, with each lasting
approximately 60 seconds. A trial is repeated several times within an experiment
to collect multiple samples of the subject’s neural response to some stimulus. A
classifier may treat each voxel-timepoint as a feature, and each trial would be
one example of that voxel-timepoint. Thus, an experiment with V' voxels, T" im-
ages per trial, and N trials would have V * T features, with only N examples
per feature. A typical experiment may have V' = 5,000, T = 60, and N = 20,
yielding 300,000 features with only 20 training examples per feature (per class).
With this much data and such few examples, it is amazing that classification is
even possible.

Why reducing the number of examples for fMRI experiments is important

Although others have shown classification methods that work for this domain,
even these methods fail as we further reduce the number of training examples (to
say 2-3 examples per class). Human subjects can get fatigued after long periods

! The total number of voxels depends on the fMR scanner and particular subject.
2 fMRI technically measures blood oxygenation level which is believed to be correlated
with underlying neural activity.
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in the fMR scanner, and any movements they make reduce the usability of their
data. Reducing the number of trials needed for an experiment would improve
participant comfort, and would allow the testing of more varied stimuli within
a given allotment of time.

1.2 Related Work

Hierarchical Bayesian methods have been used for quite some time within the
statistics community for combining data from similar experiments. A good in-
troduction is given in [6]. In general, these methods fall under “shrinkage” es-
timators. If we want to estimate several quantities that we believe are related,
then in the absence of large sample sizes for the individual quantities, these
methods shrink (smooth) the estimate toward some statistic of the combined
quantities. For example, if we want to compute the mean for each of several
random variables, we could shrink the sample mean for each variable toward
the sample mean over all the variables. If the samples sizes are small and the
variables related, this can provide a better estimate of the individual means.

Shrinkage estimators are very similar in spirit to multi-task learning algo-
rithms within the machine learning community. With multi-task[3] or “lifelong”
learning, the goal is to leverage “related” information from similar tasks to help
the current learning task [I4]. The overall goal in both these communities is to
learn concepts with fewer data. A good example of using hierarchical Bayes in
a multi-task learning application is [7]. There has also been some interesting
theoretical work to explain why these methods are beneficial [2/T].

Hierarchical Bayesian methods have been applied successfully within the fMRI
domain to the task of multiple subject classification. [I3] demonstrates a hierar-
chical model that improves classification of a single human subject by combining
data from multiple subjects within the same study. Our model, by contrast, fo-
cuses on sharing information between features of a single subject.

The most similar work to ours within the fMRI domain is [TTJI2]. This work
demonstrates that sharing parameters between voxels can lead to more accurate
models of the fMRI data. Our work by comparison, does not directly couple the
parameters of shared features, but rather shares information through hyperpa-
rameters.

2 Models

2.1 Gaussian Naive Bayes

The hierarchical model we describe below is based on the Gaussian Naive Bayes
(GNB) classifier. The classifier is popular for fMRI classification tasks because
it scales to thousands of features, and is robust to noise and irrelevant features.
The model is based on Bayes rule:

P(YV|X) x P(X|YV)P(Y)

where X € R represents the example and Y € {0,1} is the class label. We
treat each component X; of the vector X as a feature in the classifier where
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1 < j < J. The classifier makes the assumption that the X; are independent
given the class variable Y. We can then model the likelihood of the ith example
for a feature j using a normal Gaussian:

Xy =c~ N0 i=1...N

J J

where N is the total number of examples. The joint likelihood then becomes the
product over all the features:

J
P (XY =c)=[[P(X;[Y =¢)

Jj=1
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Here, é;( ®) and O']( ) are just the sample mean and variance for each feature j and

class ¢, and the prior P (Y = ¢) is given simply by the relative class frequencies
in the training data. Here §(-) is the indicator function:
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2.2 Standard Hierarchical Bayesian Model

If we believe that the individual 8; are related by some distribution, then we can
incorporate that belief using a hierarchical model. For example, if we thought
that the 6; were all drawn from a common normal distribution, then we could
model that as:

Xijl0; ~ N(0;,0%)
0j ~ N(u, %)

Here p and 72 are called hyperparameters for the model. (Note that for notational
simplicity, we’ll leave out mention of the class ¢ until we return to the subject
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of classification.) Now in this hierarchical model, we want to know the posterior
distribution of 6;|u, 72, X. Intuitively, we want to know our best estimate of 6;
given not only the data, but also our prior belief about its distribution. If we
assume for the moment the sampling variance is common across features, that
is V7, O'JQ» = 02, then we can obtain the MAP estimate of §; as:

5 _ NXej+ Ly @)
R

Equation (2)) is surprisingly intuitive. It is just the weighted average of the sample
mean X.j = J{, Zfil X;; and the hypermean p, where N is the sample size. The
weights are given by the inverse of the respective variances since 02 /N is the vari-
ance of the sample mean. If the number of samples NV is large, then we see more
weight being placed on the sample mean. Similarly, if the number of samples is
small, the variance of the sample mean may be larger than that of the hypermean.
More weight would be placed on the hypermean. The beauty of this estimator is
that it automatically balances the estimate with the number of available samples.
As N grows large, the weight on the hypermean grows smaller.

Of course there are a few difficulties that we must address. One problem
is that usually we do not know the variance o. This quantity must somehow
be estimated from the data. Another problem is how to choose the hyperpa-
rameters p and 72. We could perform a fully Bayesian approach and apply a
non-informative hyperprior distribution to g and 72. This would then require
simulation to calculate the posterior for 6;. Another, more tractable approach is
to estimate the hyperparameters directly from the data. This technique is often
called empirical Bayes|9] and uses point estimates for the hyperparameters:

_ R 1 _ R
X.j T2 = J Z(X.j - /J)Q

1
,LL =
J s 1 j=1

J J
j=

Here we are just taking the sample mean and variance for all the individual sam-
ple means. We use a similar empirical approach in the method we now describe.

2.3 Feature Sharing Empirical Bayesian Model

One problem with the standard hierarchical model is the assumption that all
the parameters ¢; are drawn from the same distribution. To demonstrate this,
consider two variables that are perfectly correlated while the parameters that
characterize their distributions are wildly different. Assuming the parameters for
these two variables are drawn from a common normal distribution would lead to
poor estimates of the hyperparameters ; and 72 and subsequently the smoothed
parameter 0;. Nonetheless, the variables certainly contain information about
each other that we want to leverage when making an estimate about either one.

We address this problem by allowing each 6; to be drawn from a different
distribution. We propose an approach that uses the parameters of other related
variables, say 0 and 6;, to estimate the hyperparameters of the distribution for



Classification in Very High Dimensional Problems 217

0;. We define this formally as follows: assume we have two random variables, X
and Y, parameterized by 0x and fy. Let mx_y (0x) be a parameter transfor-
mation function that maps parameters of variable X to those of variable Y. Let
G ; be the index set of all other variables that we believe contain information
about variable j. Let G; = |G ;| be the number of variables in that set.

We define a new smoothing estimator based on the normal model in Equation
@). Rather than assume all #; come from a common distribution, we assume
that each ; has its own variance and hyperparameters 1; and 7;.

N vy 1~
=2 X.j + =2 ,U,j
9j Tj (3)

N 1
52 T 72

These hyperparameters are calculated by point estimates of the transformed
parameters of the variables in G ;:

- 1 =

A=, > mg.;(Xeg) (4)
Gj =

PSS _ _\2

762 (mg-5(Xeg) = ) (5)

Intuitively, we first compute estimates of the variable j’s parameters from the
other variables, and use these to estimate the hyperparameter p;. We then
smooth the sample mean using this hypermean as before.

Note that we still need estimates for the variances 032. Let mj_,,(-) be the
parameter transformation function for the variance parameters. We could take
the mean of these transformed parameters as before:

G,

R 1 J
5= G 2 mai(5)) (6)

J g=1

where Sg is sample variance for feature g. Empirically, we have found that pool-
ing the variance parameters together m)__;(0?) = o, and taking the median (vs.
mean) gives a estimator that is robust to extremely noisy variables:

V7, 832 = median{S?, 52, ..., S(Q;j} (7)

Given sets of sharing groups and parameter transformation functions, we can
define a feature sharing classifier using the new estimators defined in Equations
@), @), ), and (). The classifier is still based on the Gaussian Naive Bayes rule
defined in Equation (). Only now, for each class ¢ we replace the estimate for
§j with that from Equation () and 77 with either Equation (@) or Equation ().

3 Case Study of Feature Sharing with fMRI Data

We now demonstrate this feature sharing model on a real fMRI classification
task. We first show how to formulate the problem into the feature sharing
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framework described above, and then compare the feature sharing classifier
against a standard Gaussian Naive Bayes classifier for the same task.

3.1 Notation

Since fMRI data are a time series we consider each voxel-timepoint as a feature.
We index a particular example for a feature as X,y where i is the trial(example),
v is the voxel, and ¢ is the timepoint. The sample mean for a particular feature
would then be Xeyp: = J{, Zfil Xivt (where N is the number of trials) and the

sample variance would be S2, = 1 SN (Xjpr — Xayr)?

3.2 Feature Sharing Empirical Bayesian Model for f{MRI

There are two important questions we need to answer to formulate this problem
into the feature sharing framework:

1. Which of the features are related? Specifically, for a feature j, what is
the index set G ; of features that share information (parameters)?

2. How are the features related? Specifically, what are the parameter trans-
formation functions my_;(-) that map the parameters from feature k to
feature j7

To answer these questions for the fMRI domain we consider a key observation
made in [I1: the time courses for neighboring vozels are often similar up to a
scaling factor. We can see this effect by observing several correlated neighbor-
hoods (4-5 voxels) in Figure[ll We use this domain knowledge to define a feature
sharing scheme for fMRI:

1. For feature j, let the index set of shared features G ; be the immediate spatial
neighbors of a voxel. Since a voxel is indexed by integer {x,y,z} locations,
there can be a maximum of 26 neighbors per voxel.

2. We define my,—;(-) to be the mean parameter transformation function from
feature k£ to feature j. We define the function as a linear scaling factor
mkéj()f(.k) = ﬂk_q-)f(.k. We must remember, however, that each voxel-
timepoint is a feature. To simplify, we’ll assume that the parameter trans-
formation function is the same for each pair of voxels, regardless of the time-

point. Therefore, for voxels j and k at any time ¢ we have my— ¢ (Xeowt) =

Br—jXekt- We also define the variance parameter transformation mj,  ;,(-)
to be the median pooling estimator described in Equation () B.

We can solve for the (j_.; constants by assuming a linear regression model:

Xojt = ﬁk—»onkt +e€

o~

X.jt - ﬁk—)jX.kt

3 We have found empirically that for the variance parameter it is advantageous to
share over all the voxel-timepoints rather than just the immediate neighbors.



Classification in Very High Dimensional Problems 219

Fig. 1. Time series of the voxels in the visual cortex averaged over all trials. We see
that several local neighborhoods (4-5 voxels) are similar but have different amplitudes.

This allows us to find estimates akﬂj using the usual method of least squares:
T
By =min } (Xaji = B%u)”
t=1

which is given by:
2 Zt 1 othok:t
Broj =
Y X

Now that we have our sharing groups and parameter transformation functions
we can define a hierarchical model for fMRI:

(8)

Xivt‘evt ~ N(evh 02)
aut ~ N(;U’vta Tgt)

Combining all these equations together, we can now define a feature sharing
classifier for fMRI:

A Feature Sharing Classifier for fMRI:

For each class ¢, compute:

1. 52 = median(S7\7, ..., 574 520 529 53
~ x9x©
2. ﬁkéj = Zt 1 Xeji X ek For any pairs of voxels j, k that share features

Zt 1 okt)
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]*)’U ot j—v T ejt vt

Gt
3. ﬂ,ﬂ?z 3O x50 _ Z 3O %) _ 5oy

() ~(c
iVz(c) X(v)t + Az(c> H'( )

N(e)
52(c) + A2(c)
Tot

The predicted class is then:

vV T
argmaxP (Y = ¢) H H N(@(ﬁ), 52())

v=1t=1

3.3 Experimental Results

Classification Task

We consider the task of classifying whether a subject in an fMRI experiment
is “viewing a picture” or “reading a sentence”. In this fMRI datasetﬁ func-
tional images of the brain were taken every 500ms (for 8 seconds). Each image
recorded the neural activity at approximately 5,000 different locations (voxels)
in the brain. We consider each vozxel-timepoint as a feature, thus there were ap-
proximately 5,000 % 16 = 80,000 features per trial. There were 20 “viewing a
picture” trials and 20 “reading a sentence” trials. This experiment was repeated
for 13 different human subjects.

Test Method
We performed the following testing method to estimate the error of the classi-
fiers:

1. Split the dataset randomly in half. One half is used for training and one
half is used for testing. We enforce an equal number of examples per class.
Therefore, our training and test sets each have 20 examples total (10 per
class).

2. Sample, at random, 2 examples per class from the training set. These are
the training examples for this round.

3. Train on the sampled training examples in (2) and test on all examples in
the test set.

4. Repeat 1-3 ten times and report the average error.

Discussion

In Figure @ we show the results of the Feature Sharing classifier compared to
a standard Gaussian Naive Bayes classifier for the 13 human subjects available
in this study. In this experiment we used all available voxels in the brain (~
5,000 per subject) yielding ~80,000 features. Notice that there were only two
training examples per class. The standard Gaussian Naive Bayes (GNB) classifier

* The dataset used is available at: http://www.cs.cmu.edu/afs/cs/project/theo-
73/www/index.html
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Fig. 2. Accuracies of the standard Gaussian Naive Bayes classifier and the Feature
Sharing classifier for 13 human subjects with two training examples per class. The
classifier uses all voxels in the brain. Since there are two classes, random accuracy is
0.5.
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Fig. 3. Accuracies of the standard Gaussian Naive Bayes classifier and the Feature
Sharing classifier for 13 human subjects with two training examples per class. The
classifier uses only voxels in the Visual Cortex (CALC).
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performed with near random accuracy for all subjects. The Feature Sharing
classifier we described above shows considerable improvement, demonstrating
that it is possible to classify even with an extremely small number of training
examples.

In Figure [3 we show the results of the same experiment, except now we use
only the voxels located in the visual cortex of the brain (/300 per subject).
These voxels are known to contain highly discriminating signal for this partic-
ular classification task. The interesting thing to note here is that the standard
GNB classifier still fails with random accuracy on all subjects. The Feature Shar-
ing classifier, however, is able to capitalize on the extra signal in these voxels,
showing dramatic improvements for many subjects.

In the Feature Sharing classifier, we achieved the best results by sharing both
the mean and variance parameters between features. We have found empirically,
however, that sharing the variance parameter plays the larger role in improving
overall classification accuracy. While this might seem surprising at first, some
interesting theoretical work [5] shows that in the bias/variance decomposition
under 0/1 loss, the variance dominates the bias. This may suggest why sharing
the variance parameters caused the larger increase in performance.

4 Conclusion and Future Work

We have shown a feature sharing framework for classifying in very high dimen-
sional problems with only a small number of training examples. This classifier is
based on empirical Bayes and allows us to model relationships between features
by assuming each class conditional parameter has its own hyperdistribution. The
parameters for these hyperdistributions are estimated by sharing information be-
tween related groups of features.

We demonstrated this model on a fMRI classification task and showed how
we can successfully classify in a problem with 80,000 spatially and temporally
related features and only two training examples per class. We used domain knowl-
edge of fMRI to specify feature sharing over local neighborhoods with a linear
scaling factor.

An interesting future direction would be to automatically determine groups
of features that share information rather than defining each group by the set
of immediate neighbors. We could imagine learning a metric between features
directly from the data, and then using that metric to define the parameter trans-
formation functions.
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Abstract. Predictive knowledge discovery is an important knowledge acquisi-
tion method. It is also used in the clustering process of data mining. Visualiza-
tion is very helpful for high dimensional data analysis, but not precise and this
limits its usability in quantitative cluster analysis. In this paper, we adopt a
visual technique called HOV? to explore and verify clustering results with quan-
tified measurements. With the quantified contrast between grouped data distri-
butions produced by HOV?, users can detect clusters and verify their validity
efficiently.

Keywords: predictive knowledge discovery, visualization, cluster analysis.

1 Introduction

Predictive knowledge discovery utilizes the existing knowledge to deduce, reason and
establish predictions, and verify the validity of the predictions. By the validation proc-
essing, the knowledge may be revised and enriched with new knowledge [20]. The
methodology of predictive knowledge discovery is also used in the clustering process
[3]. Clustering is regarded as an unsupervised learning process to find group patterns
within datasets. It is a widely applied technique in data mining. To achieve different
application purposes, a large number of clustering algorithms have been developed [3,
9]. However, most existing clustering algorithms cannot handle arbitrarily shaped data
distributions within extremely large and high-dimensional databases very well. The very
high computational cost of statistics-based cluster validation methods in cluster analysis
also prevents clustering algorithms from being used in practice.

Visualization is very powerful and effective in revealing trends, highlighting out-
liers, showing clusters, and exposing gaps in high-dimensional data analysis [19].
Many studies have been proposed to visualize the cluster structure of databases [15,
19]. However, most of them focus on information rendering, rather than investigating
on how data behavior changes with the parameters variation of the algorithms.

" The datasets used in this paper are available from http://www.ics.uci.edu/~mlearn/Machine-
Learning.html.

J.N. Kok et al. (Eds.): PKDD 2007, LNAT 4702, pp. 3361349, 2007.
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In this paper we adopt HOV® (Hypothesis Oriented Verification and Validation by
Visualization) to project high dimensional data onto a 2D complex space [22]. By
applying predictive measures (quantified domain knowledge) to the studied data,
users can detect grouping information precisely, and employ the clustered patterns as
predictive classes to verify the consistency between the clustered subset and unclus-
tered subsets.

The rest of this paper is organized as follows. Section 2 briefly introduces the current
issues of cluster analysis, and the HOV? technique as the background of this research.
Section 3 presents our prediction-based visual cluster analysis approach with examples
to demonstrate its effectiveness on cluster exploration and cluster validation. A short
review of the related work in visual cluster analysis is provided in Section 4. Finally,
Section 5 summarizes the contributions of this paper.

2 Background

The approach reported in this paper has been developed based on the projection of
HOV?[22], which was inspired from the Star Coordinates technique. For a better under-
standing of our work, we briefly describe Star Coordinates and HOV”.

2.1 Visual Cluster Analysis

Cluster analysis includes two major aspects: clustering and cluster validation. Cluster-
ing aims at identifying objects into groups, named clusters, where the similarity of
objects is high within clusters and low between clusters. Hundreds of clustering algo-
rithms have been proposed [3, 9]. Since there are no general-purpose clustering algo-
rithms that fit all kinds of applications, the evaluation of the quality of clustering
results becomes the critical issue of cluster analysis, i.e., cluster validation. Cluster
validation aims to assess the quality of clustering results and find a fit cluster scheme
for a given specific application.

The user’s initial estimation of the cluster number is important for choosing the pa-
rameters of clustering algorithms for the pre-processing stage of clustering. Also, the
user’s clear understanding on cluster distribution is helpful for assessing the quality of
clustering results in the post-processing of clustering. The user’s visual perception of
the data distribution plays a critical role in these processing stages. Using visualiza-
tion techniques to explore and understand high dimensional datasets is becoming an
efficient way to combine human intelligence with the immense brute force computa-
tion power available nowadays [16].

Visual cluster analysis is a combination of visualization and cluster analysis. As an
indispensable aid for human-participation, visualization is involved in almost every
step of cluster analysis. Many studies have been performed on high dimensional data
visualization [2, 15], but most of them do not visualize clusters well in high dimen-
sional and very large data. Section 4 discusses several studies that have focused on
visual cluster analysis [1, 7, 8, 10, 13, 14, 17, 18] as the related work of this research.
Star Coordinates is a good choice for visual cluster analysis with its interactive adjustment
features [11].
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2.2 Star Coordinates

The idea of Star Coordinates technique is intuitive, which extends the perspective of
traditional orthogonal X-Y 2D and X-Y-Z 3D coordinates technique to a higher dimen-
sional space [11]. Technically, Star Coordinates plots a 2D plane into n equal sectors
with n coordinate axes, where each axis represents a dimension and all axes share the
initials at the centre of a circle on the 2D space. First, data in each dimension are nor-
malized into [0, 1] or [-1, 1] interval. Then the values of all axes are mapped to orthogo-
nal X-Y coordinates which share the initial point with Star Coordinates on the 2D space.
Thus, an n-dimensional data item is expressed as a point in the X-Y 2D plane. Fig.1
illustrates the mapping from 8 Star Coordinates to X-Y coordinates.

In practice, projecting high dimensional data onto
2D space inevitably introduces overlapping and ambi-
guities, even bias. To mitigate the problem, Star Co-
ordinates and its extension iVIBRATE [4] provide
several visual adjustment mechanisms, such as axis
scaling, axis angle rotating, data point filtering, etc. to
change the data distribution of a dataset interactively
in order to detect cluster characteristics and render
clustering results effectively. Below we briefly intro- Fig. 1. Positioning a point by

duce the two relevant adjustment features with this an 8-attribute vector in Star
research Coordinates [11]

= Acxis scaling

The purpose of the axis scaling in Star Coordinates (called a-adjustment in iVI-
BRATE) is to interactively adjust the weight value of each axis so that users can ob-
serve the data distribution changes dynamically. For example, the diagram in Fig.2
shows the original data distribution of Iris (Iris has 4 numeric attributes and 150 in-
stances) with the clustering indices produced by the K-means clustering algorithm in
iVIBRATE, where clusters overlap (here k=3).

A well-separated cluster
distribution of Iris is illus-
trated in Fig. 3 by a series of
random a-adjustments, where
clusters are much easier to be
recognized than those of the
original distribution in Fig 2.

For tracing data points
changing in a certain period
time, the footprint function is
provided by Star Coordinates.
It is discussed below.

Fig. 2. The initial data Fig. 3. The separated
distribution of clusters of version of the Iris data
Iris produced by k-means in  distribution in iVIBRATE
iVIBRATE
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= Footprint
We use another data set auto-mpg to demonstrate -
the footprint feature. The data set auto-mpg has 8
attributes and 398 items. Fig. 4 presents the foot-
prints of axis tuning of attributes “weight” and
“mpg”, where we may find some points with
longer traces, and some with shorter footprints.
The most prominent feature of Star Coordi-
nates and its extensions such as iVIBRATE is
that their computational complexity is only in
linear time. This makes them very suitable to be Fig_ 4. Fo()tprints of axis sca]ing of
employed as a visual tool for interactive interpre- “weight” and “mpg” attributes in
tation and exploration in cluster analysis. Star Coordinates [11]

However, the cluster exploration and refinement based on the user’s intuition in-
evitably introduces randomness and subjectiveness into visual cluster analysis, and as
a result, sometimes the adjustments of Star Coordinates and iVIBRATE could be
arbitrary and time consuming.

2.3 HOV?®

In fact, the Star Coordinates model can be mathematically depicted by the Euler for-
mula. According to the Eular formula: e™ = cosx+isinx, where z = x + i.y, and i is the
imaginary unit. Let zy=¢*™"; such that 2y, z,>, z5°,..., 20", 20" (with z" = 1) divide the
unit circle on the complex 2D plane into n equal sectors. Thus, Star Coordinates can

be simply written as:

Pj(zo):kil[(djk—mindk)/(maxdk—mindk)z(ﬁ] (1)
where mindy and maxdy represent the minimal and maximal values of the kth coordinate
respectively. In any case equation (1) can be viewed as mapping from R" -C”.

To overcome the arbitrary and random adjustments of Star Coordinates and iVI-
BRATE, Zhang et al proposed a hypothesis-oriented visual approach called HOV? to
detect clusters [22]. The idea of HOV” is that, in analytical geometry, the difference of
a data set (a matrix) D; and a measure vector M with the same number of variables as
Dj can be represented by their inner product, D;-M. HOV” uses a measure vector M to
represent the corresponding axes’ weight values. Then given a non-zero measure
vector M in [R“’ and a family of vectors Pj, the projection of P; against M, according to
formula (1), the HOV? model is presented as:

P(z,)=Y[(d, —mind,)/(maxd, —mind,)-z} -m,] )

where my is the kth attribute of measure M .

The aim of interactive adjustments of Star Coordinates and iVIBRATE is to have
some separated groups or full-separated clustering result of data by tuning the weight
value of each axis, but their arbitrary and random adjustments limit their applicability.
As shown in formula (2), HOV® summarizes these adjustments as a coeffi-
cient/measure vector. Comparing the formulas (1) and (2), it can be observed that
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HOV? subsumes the Star Coordinates model [22]. Thus the HOV® model provides
users a mechanism to quantify a prediction about a data set as a measure vector of
HOV” for precisely exploring grouping information.

Equation (2) is a standard form of linear transformation of n variables, where my is the
coefficient of kth variable of P;. In principle, any measure vectors, even in complex num-
ber form, can be introduced into the linear transformation of HOV” if it can distinguish a
data set into groups or have well separated clusters visually. Thus the rich statistical meth-
ods of reflecting the characteristics of data set can be also introduced as predictions in the
HOV® projection, such that users may discover more clustering patterns. The detailed
explanation of this approach is presented next.

3 Predictive Visual Cluster Analysis by HOV®

Predictive exploration is a mathematical description of future behavior based on his-
torical exploration of patterns. The goal of predictive visual exploration by HOV” is
that by applying a prediction (measure vector) to a dataset, the user may identify the
groups from the result of visualization. Thus the key issue of applying HOV” to detect
grouping information is how to quantify historical patterns (or users’ domain knowl-
edge) as a measure vector to achieve this goal.

3.1 Multiple HOV? Projection (M-HOV?)

In practice, it is not easy to synthesize historical knowledge about a data set into one
vector; rather than using a single measure to implement a prediction test, it is more
suitable to apply several predictions (measure vectors) together to the data set, we call
this process multiple HOV’ projection, M-HOV” in short. Now, we provide the de-
tailed description of M-HOV? and its feature of enhanced group separation. For sim-
plifying the discussion of the M-HOV® model, we give a definition first.
Definition 1. (poly-multiply vectors to a matrix) The inner product of multiplying a series
of non-zero measure vectors M;, M,,....Mg to a matrix A is denoted as
S
A HMi =AM My-x. ... xMq.
i=1
Zhang et al [23] gave a simple notation of HOV? projection as D=7 (P, M), where P is
a data set; D, is the data distribution of ¥ by applying a measure vector M. Then the

projection of M-HOV? is denoted as D=7 (P, HMa ). Based on equation (2), we
formulate M-HOV? as:
Pj(zo)zk‘z;[(djk —mind, )/(maxd, —mind, )-z" 'ilj,mik] 3)

where myy is the kth attribute (dimension) of the ith measure vector M;, and s=1. When
s=1, the formula (3) is transformed to formula (2).
We may observe that instead of using a single multiplication of my in formula (2),

it is replaced by a poly-multiplication of ]i[mik in formula (3). Formula (3) is more
i=/
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general and also closer to the real procedure of cluster detection, because it introduces
several aspects of domain knowledge together into the cluster detection.

In addition, the effect of applying M-HOV? to datasets with the same measure vec-
tor can enhance the separation of grouped data points under certain conditions.

3.2 The Enhanced Separation Feature of M-HOV>

To explain the geometrical meaning of M-HOV? projection, we use the real number sys-
tem. According to equation (2), the general form of the distance o (i.e., weighed
_Minkowski distance) between two points a and b in HOV? plane can be represented as:

o(a,bm)=43Im (a, b))l (@0 @)
k=1

If q = 1, o is Manhattan (city block) distance; and if q = 2, o is Euclidean distance.
To simplify the discussion of our idea, we adopt the Manhattan metric for the expla-
nation. Note that there exists an equivalent mapping (bijection) of distance calculation
between the Manhattan and Euclidean metrics [6]. For example, if the distance be-
tween points a and b is longer than the distance between points a’ and b’ in then Man-
hattan metric, it is also true in the Euclidean metric, and vice versa.

Then the Manhattan distance between points a and b is calculated as in formula (5).

o(a,b,m)=3|m,(a, ~b,)| s)
k=1

According to formulas (2), (3) and (5), we can present the distance of M-HOV? in
Manhattan distance as follows:

o(abIIm)=XITTm,(a, ~b,)! ©6)

Definition 2. (the distance representation of M- HOV?) The distance between two data

points a and b projected by M- HOV? is denoted as l\i/; oab . In particular, if the measure

vectors in an M-HOV” are the same, M gab can be simply written as M°crab; if each

attribute of M is 1 (no measure case), the distance between points a and b is denoted
as oab.

Thus, we have 1\:/; oab = 7. ((a,b),gM, ). For example, the distance between two points

a and b projected by M-HOV”® with the same two measures can be represented as
M?crab. Thus the projection of HOV? of ¢ and b can be written as Moab.
We now give several important properties of M- HOV? as follows.

Lemma 1. In Star Coordinates space, if o-ab#0 and M0 (AmeM | O<imyl<1), then gab >
Morab.

Proof
0'ab= i“|(ak - bk )| and M(Tab: i|mk (ak _bk)
k=1 k=1

oab- Moab= ékak —bk)|—kZi‘;|mk(ak -b,) =k“§|(ak —b)|~1m, )
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M#0 ={Im#0A meM | O<img<1, k=1...n}= (J—| m, ) >0
gab#0=>0ab >(Moab) O

This result shows that the distance Mcoab between points a and b projected by HOV?
with a non-zero M is less than the original distance o-ab between a and b.

Lemma 2. In Star Coordinates space, if oab#0 and M#0 (VmeM | O<Imyl<1), then
M"gab > M™!gab, neN.

Proof
Let M"og-ab=0"ab
Definition 1 >M™"g-ab= Mo~ ab
Lemma 1=0~ab >Mo~ab >M"gab > M™'g-ab O

In general, it can be proved that in Star Coordinates space, if cab#0 and M#0
(YmeM | Imyl<1), then M™ogab > M"c-ab, neN, meN and m<n.

Theorem 1. If the measure vector is changed from M to M’, (Imil<1,| Im,,+A<1) and
IMorab -Morac | <| M’0rab - M’ cac | then
IM'oab —M'ocac | — I M"” oab—M" cac| >|M0'ab—M0'acI—|M‘0ab—M'oac|

| M'oab —M'oac | | Moab —Moac |

Proof
M’ gab= i|mk (a, -b,)
k=1

n .
and M’cac= kZ:I|mk (a,—c,)

=>M’cab - M’oac =ilm'k [Ia, =b,)I=I(a, —c,)I]
k=1

M*%crac - M**orab= gm;z Illa, =b,)I—I(a, —c, )]

Let la-byl=x, and Iak:ckl=yk

>M’oac - M’aabzgm; Il(a, =b,)I-I(a, —c, )] =k'§rm'k I(x, —y,)
>M’0ac - M**cab= ki}lmf (X, —y,)

>IM’cac - M’gabl = M’oxy

=IM’?crac - M”*crabl= M oxy

IM"” oxy | IM" oab—M" oac|
<l=> <
|M'oxy | | M'cab—M'oac |
=IM’?rab - M**cracl<IM’ oab - M’ oac|
[Moab -Moac | <I M’cgab - M’gac |
=IM*?crab - M**cracl.IMcorab -Moacl<IM’ ocab - M’ oracl?
- IM'" oab—M" oac| <IM'oab—M'oacI
| M'cab—-M'oac | | Moab—-Moac|
L IM" oab—M" oac| o1 | M'cab—M'oac|
|M'cab—M'oac | | Moab —Moac |

Lemma 2 >M’*oxy< M’ oxy= 1
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3IM'O‘:&1b—M'0'aCI—IM'2 oab—M" gac >|M0'ab—M0'acI—|M'oab—M'oac|
| M'oab—M'oac| [ Moab -Moac|

[m]

Theorem 1 shows that if the user observes that the difference of the distance between a
and b and the distance between a and c are increased relatively (it can be observed by
the footprints of points a, b and ¢, as shown in Fig 4) by tuning weight values of axes
from M to M, then after applying M-HOV" to a, b and c, the distance variation rate of
the distances between pairs of points a, b and a, c¢ is enhanced, as presented in Fig 5.

]

Do=He({a b, ¢}, M) | Dy=He({a b ¢}, M)| D= He(fa b, ¢}, 17)

a
a

// 1

¢ c

Fig. 5. The contraction and separation effect of M-HOV?

In other words, if it is observed that several data point groups can be roughly sepa-
rated visually (there may exist ambiguous points between groups) by projecting a meas-
ure vector in HOV? to a data set, then applying M-HOV? with the same measure vector
to the data set would lead to the groups being more condensed, i.e., have a good separa-
tion of the groups.

3.3 Predictive Cluster Exploration by M-HOV?

According to the notation of HOV? projection of a dataset % as D=7 (P, M), the M-
HOV? is denoted as Dy=Hc (P, M") where neN.

We use the auto-mpg dataset again as an example to demonstrate predictive cluster ex-
ploration by M-HOV”. Fig. 6a illustrates the original data distribution of auto-mpg pro-
duced by HOV’ in MATLAB, where it is not possible to recognize any group information.
Then we tuned each axis manually and had roughly distinguished three groups, as shown
in Fig 6b. The weight values of axes were recorded as a vector M=[0.10, 0, 0.25, 0.2, 0.8,
0.85, 0.1, 0.95]. Fig. 6b shows that there exist several ambiguous data points between
groups. Then we employed M’ (inner dot) as a predictive measure vector and applied it to
data set auto-mpg. The projected distribution D, of auto-mpg is presented in Fig 6c¢. It is
much easier to identify 3 groups of auto-mpg in Fig 6¢ than in Fig 6b. To show the con-
trast between these two diagrams D, and Dy, we overlap them in Fig. 6d.

By analyzing the data of these 3 groups, we have found that, group 1 contains 70
items and with “original” value 2 (sourcing Europe); group 2 has 79 instances and
with “original” 3 (Japanese product); and group 3 includes 249 records with “origi-
nal” 1 (from USA). Actually this “natural” grouping based on the user’s intuition
serendipitously clustered the data set according to the “original” attribute of auto-
mpg. In the same way, the user may find more grouping information from the interac-
tive cluster exploration by applying predictive measurement.
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Fig. 6a. The original data distribution of Fig. 6b. D, ;=74 (auto-mpg, M)
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Fig. 6¢. D=7 (auto-mpg, M?) Fig. 6d. The overlapping diagram of D, and
Dy

Fig. 6. Diagrams of data set auto-mpg projected by HOV? in MATLAB

3.4 Predictive Cluster Exploration by HOV” with Statistical Measurements

Many statistical measurements, such as mean, median, standard deviation and etc. can
be directly introduced into HOV? as predictions to explore data distributions. In fact,
prediction based on statistical measurements is more purposefully cluster exploration,
and give an easier geometrical interpretation of the data distribution.

We use the Iris dataset as an example. As shown in Fig. 3, by random axis scaling,
the user can divide the Iris data in 3 groups. This example exhibits that cluster explora-
tion based on random adjustment may expose data groping information, but sometimes,
it is hard to interpret such groupings.

We employ the standard deviation of Iris M = [0.2302, 0.1806, 0.2982, 0.3172,
0.4089] as a prediction to project Iris by HOV® in iVIBRATE. The result is shown in
Fig. 7, where 3 groups clearly exist. It can be observed in Fig 7 that, there is a blue point
in the pink-colored cluster and a pink point in the green-colored cluster, resulting from
the K-means clustering algorithm with k=3. Intuitively, they have been wrongly clus-
tered. We re-clustered them by their distributions, as shown in Fig 8.

The contrast of clusters (Cy) produced by the K-means clustering algorithm and new
clustering result (Cy) projected by HOV? is summarized in Table 1. We can see that the
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Fig. 7. Data distribution projected by HOV? Fig. 8. Data distribution projected by HOV? in
in iVIBRATE of Iris with cluster indices iVIBRATE of Iris with the new clustering
maked by K-means indices by the user’s intuition

quality of the new clustering result of Iris is better than that obtained by K-means ac-
cording to their “Variance” comparison. Each cluster projected by HOV® has a higher
similarity than that produced by K-means. By analyzing the new grouping data points of
Iris, we have found that they are distinguished by the “class™ attribute of Iris, i.e. Iris-
setosa, Iris-versicolor and Iris-virginica. The cluster 1 generated by K-means is an
outlier.

Table 1. The statistics of the clusters in Iris” produced by HOV? with predictive measure

Ck % Radius Variance MaxDis Cu % Radius Variance MaxDis
1 1.333 1.653 2.338 3.306

2 32.667 5.754 0.153 6.115 1 33.333 5.753 0.152 6.113

3 33.333 8.196 0.215 8.717 2 33.333 8.210 0.207 8.736
4 33.333 7.092 0.198 7.582 3 33.333 7.112 0.180 7.517

With the statistical predictions in HOV the user may even expose the cluster clues
that are not easy to be found by random adjustments. For example, we adopted the 8th
row of auto-mpg’s covariance matrix as a predictive measure (0.04698, -0.07657, -
0.06580, 0.00187, -0.05598, 0.01343, 0.02202, 0.16102) to project auto-mpg by HOV® in
MATLAB. The result is shown in Fig 9. We grouped them by their distribution as in
Fig 10. Table 2 (right part) reports the statistics of the clusters generated by the pro-
jection of HOV?, and reveals that the points in each cluster have very high similarity.

As we chose the 8th row of auto-mpg’s covariance matrix as the prediction, the result
mainly depends on the 8th column of auto-mpg data, i.e., “origin” (country). Fig. 10
shows that C1, C2 and C3 are closer because they have the same “origin” value 1. The
more detailed formation of clusters is given in the right part of Table 2.We believe that a
domain expert could give a better and intuitive explanation about this clustering.

Then we chose number 5 to cluster auto-mpg by the K-means. Its clustering result is
presented in the left part of Table 2. Comparing their corresponding statistics, we can
see that according to the Variance of clusters, the quality of the clustering result by
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Fig. 9. Data distribution projected by HOV? in Fig. 10. Clustered distribution of data in Fig.
MATLAB of auto-mpg with 8" row of auto- 8 by the user’s intuition
map’s covariance matrix as prediction

Table 2. The statistical contrast of clusters in auto-mpg produced by K-means and HOV?

Clusters produced by K-means (k=5) Clusters generated by the user intuition on the data distribution
C| % Radius Variance MaxDis | Origin Cylinders % Radius Variance MaxDis
110503 681.231 963406 1362.462 1 8 25879 4129492 0.130 4129.768
2| 18.090 2649.108 0.206 2649.414 1 6 18583 3222493 0.098 3222.720
3116.080 2492388 0.139 2492.595 1 4 18.090 2441.881 0.090 2442.061
4121.608 3048532 0.207 3048.897 2 4 17.588 2427449 0.142 2427.632
5125377 3873.052 0.220 3873.670 3 3 19.849 2225465 0.093 2225.658
6| 18593 2417.804 0.148 2417.990

HOV? with covariance prediction of auto-mpg is better than that one produced by K-
means (k=5, cluster 1 produced by K-means is an outlier).

3.5 Predictive Cluster Validation by HOV?

In practice, with extremely large sized datasets, it is infeasible to cluster an entire data
set within an acceptable time scale. A common solution used in data mining is that,
clustering algorithms are first applied to the training (a sampling) subset of data from
a database to extract cluster patterns, and then the cluster scheme is assessed to see
whether it is suitable for other subsets in the database. This procedure is regarded as
external cluster validation [21]. Due to the high computational cost of statistical
methods on assessing the consistency of cluster structures between large sized sub-
sets, to achieve this goal by statistical methods is still a challenge in data mining.
Based on the assumption that if two same-sized data sets have a similar cluster
structure, by applying a linear transformation to the data sets, the similarity of the
newly produced distributions of the two sets would still be high, Zhang et al proposed
a visual external validation approach by HOV? [23]. Technically, their approach uses
a clustered subset and a same-sized unclustered subset from a database as the observa-
tion by applying the measure vectors that can separate clusters in the clustered subset
by HOV®. Thus each cluster and its geometrically covered data points (called quasi-
Cluster in their approach) are selected. Finally, the overlapping rate of each
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cluster-quasicluster pair is calculated; and if the overlapping rate approaches 1, this
means that the two subsets have a similar cluster distribution.

Compared with the statistics-based vali-
dation methods, their method is not only
visually intuitive, but also more effective in g 285,
real applications [23]. As mentioned above, - .:‘SJS&F
sometimes, it is time consuming to separate ’

1000

clusters manually in Star Coordinates or e
iVIBRATE. Thus, separation of clusters ';:"}"'

from lots of overlapping points is an aim of

this research. As we described above, the 5."*

approaches such as M-HOV’ and HOV®
with statistical measurement can be intro- Sx mm cow ¢ W mw  mw  @m  Ew
duced into external cluster validation by
HOV”. In principle, any linear transforma-
tion can be employed into HOV? if it can
separate clusters well.

We therefore introduce the complex linear transformation to this process. We again use
auto-mpg data set as an example. As shown in Fig. 6b, three roughly separated clusters ap-
pear there, where the vector M=[0.10, 0, 0.25, 0.2, 0.8, 0.85, 0.1, 0.95] was obtained from the
axes values. Then we adopt cos(M-10i ) as a prediction, where i is the imaginary unit. The
projection of HOV? with cos(M:10i ) is illustrated in Fig. 11, where three clusters are sepa-
rated very well. In the same way, many other linear transformations can be applied to differ-
ent datasets to obtain well-separated clusters. With the fully separated clusters, there will be
marked improvement of the efficiency of visual cluster validation.

Fig. 11. The data distribution of auto-mpg
projected by HOV3 with cos(M*10i ) as the
prediction

4 Related Work

Visualization is typically employed as an observational mechanism to assist users with
intuitive comparisons and better understanding of the studied data. Instead of quantita-
tively contrasting clustering results, most of the visualization techniques employed in
cluster analysis focus on providing users with an easy and intuitive understanding of the
cluster structure, or explore clusters randomly.

For instance, Multidimensional Scaling, MDS [14] and Principal Component Analy-
sis, PCA [10] are two commonly used multivariate analysis techniques. However, the
relative high computational cost of MDS (polynomial time O(N?)) limits its usability in
very large datasets, and PCA first has to find the correlated variables for reducing the
dimensionality, which makes it not suitable for unknown data exploration.

OPTICS [1] uses a density-based technique to detect cluster structure and visualizes
clusters in “Gaussian bumps”, but its non-linear time complexity makes it neither suitable
for dealing with very large data sets, nor for providing the contrast between clustering
results. H-BLOB visualizes clusters into blob manners in a 3D hierarchical structure [17].
It is an intuitive cluster rendering technique, but its 3D and two stages expression restricts
it from interactively investigating cluster structures apart from existing clusters.

Kaski el. al [13] uses Self-organizing maps (SOM) to project high-dimensional data
sets to 2D space for matching visual models [12]. However, the SOM technique is based
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on a single projection strategy and it is not powerful enough to discover all the interesting
features from the original data set.

Huang et. al [7, 8] proposed the approaches based on FastMap [5] to assist users in
identifying and verifying the validity of clusters in visual form. Their techniques work
well in cluster identification, but are unable to evaluate the cluster quality very well. On
the other hand, these techniques are not well suited to the interactive investigation of data
distributions of high-dimensional data sets. A recent survey of visualization techniques in
cluster analysis can be found in the literature [18].

5 Conclusions

In this paper, we have proposed a prediction-based visual approach to explore and
verify clusters. This approach uses the HOV? projection technique and quantifies the
previously obtained knowledge and statistical measurements about a high dimensional
data set as predictions, so that users can utilize the predictions to project the data on
2D plane in order to investigate grouping clues or verify the validity of clusters based
on the distribution of the data. This approach not only inherits the intuitive and easy
understanding features of visualization, but also avoids the weaknesses of randomness
and arbitrary exploration of the existing visual methods employed in data mining.

As a consequence, with the advantage of the quantified predictive measurement of
this approach, users can identify the cluster number in the pre-processing stage of
clustering efficiently, and also can intuitively verify the validity of clusters in the
post-processing stage of clustering.
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Abstract. In this paper, a multiagent algorithm for dynamic cluster-
ing is presented. This kind of clustering is intended to manage mobile
data and so, to be able to continuously adapt the built clusters. First
of all, potential applications of this algorithm are presented. Then the
specific constraints for this kind of clustering are studied. A multiagent
architecture satisfying these constraints is described. It combines an ants
algorithm with a cluster agents layer which are executed simultaneously.
Finally, the first experimental results of our work are presented.

1 Introduction

1.1 Agents Clustering

In this article, a dynamic technique for clustering mobile objects is proposed.
Initially, this work aims at characterizing groups of agents during the execution
of a multiagent system. A subset of agents is considered as a group if, for a given
period, the internal properties of the agents evolve similarly. Each observed agent
can be represented by a vector of properties evolving in time. For example, these
properties can represent the number of communications of the agent, its rein-
forcement value (for agents with training capacities), or its position in a located
environment (ants [I] for instance). Thus, groups of agents can be highlighted
as evolutionary clusters. More generally, we have to solve a problem of dynamic
clustering in which the cardinality of the set of data to cluster is not constant
(some agents can appear or disappear during the clustering process). Moreover,
already clustered data can be modified or reorganized according to the evolution
of the corresponding agents. These characteristics also appear in other kinds of
applications like meteorology (detection and follow-up of cyclones), road traffic
analysis, animals migrations, ... Thus, a dynamic method of clustering is nec-
essary in order to adapt the set of clusters continuously so that it reflects as
accurately as possible the current state of data (of agents in our case).

1.2 Related Works

Recently, some works are focused on particular kinds of clustering where the set
of data to cluster is not completely known by the algorithm at the beginning
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of the process. This is for instance the case of data stream clustering [2I3]. A
data stream is a sequence of numerous data such as the log of actions of a
website user. The large volume of data prevents the storage of the stream in
main memory; this is why clustering algorithms have to manage the streams
gradually. So, most of them work on subsets of streams constituted by several
consecutive data. The first disadvantage of these approaches is that the number
of clusters built remains generally constant. Moreover data already clustered
cannot evolve with time, which thus does not correspond to our specific needs.
There also exists evolutionary data streams clustering algorithms [4J5l6]. The
main difference with the previous category is that, the underlying distribution
of the data stream can evolve significantly with time. Thus, these algorithms
have to be able to modify strongly the built clusters, and even to destroy some
of them during the clustering process. This point joins one of our concerns. But,
as in the first case, these algorithms do not take into account the fact that
already clustered data can also evolve. Evolutionary clustering|7] also considers
the problem of clustering data over time, even if in this case, at time ¢ the
clustering algorithm uses all objects seen so far. The main difference with our
work is that, at time ¢, the set of clusters produced by our algorithm is expected
to only characterize the current state of objects.

The closest work to our problem relates to an algorithm for clustering mobile
data presented in [§]. This algorithm allows to cluster evolving data. It is based on
moving micro-clusters which are adapted from the micro-cluster notion defined
in [9). The location of each object to cluster is described by its location at time ¢
together with a velocity vector. Using this two components, the current location
of an object can be evaluated.

One major advantage of this algorithm is its efficiency when updating the
set of micro-clusters thanks to their profile. Indeed, if micro-clusters are stable
enough, the update can be performed using only profiles which summarize the
state of each micro-cluster. Moreover, using time velocities as additional dimen-
sions in the clustering process is very interesting.

The main disadvantage of this approach with respect to our constraints is the
need to use a standard clustering algorithm jointly. The authors have chosen
K-Means which needs to provide the number of clusters to build. Moreover, K-
Means is first used to build initial micro-clusters. This implies that the set of
all mobile objects to cluster must be known at the beginning of the clustering
process which is not always possible in our context. The other important disad-
vantage is that the algorithm does not allow to take into account new mobile
objects during the clustering process which is necessary in our agents clustering
context.

2 Owur Approach

In addition to the algorithms previously presented, there also exists in the MAS
community, ants algorithms that are able to achieve clustering tasks [10]. In
these algorithms, data are distributed in a grid on which ants agents can move.
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They can also carry data and gather them in heaps. These algorithms have
properties which seem to fit with our needs, in particular to take into account
the evolution of data, which is necessary in our context. Unfortunately, they have
a slow convergence, which is accentuated in an unstable context.

To improve the convergence of these approaches within a static framework, N.
Monmarché proposed the AntClass algorithm [T1] which successively associates
in four steps an ants algorithm and the K-Means algorithm. This approach is not
compatible with the dynamic aspect of our problem as shown in [12]. Neverthe-
less, we decided to associate a layer of cluster agents with the ants described in
AntClass to make a two layers multiagent architecture. In this architecture, each
heap created by the ants corresponds to a cluster and is encapsulated in a cluster
agent. Thereafter, we describe the grid which constitutes the environment of our
agents and the two kinds of agents : ants and clusters.

2.1 The Grid

The grid is divided into cells and allows to store non-clustered objectsEI and
heaps. There are two kinds of non-clustered objects: objects which have never
been put into a heap; objects which have been rejected from their initial heap
by Cluster agents or by Ants (this can occur when objects evolve or when ants
build inaccurate clusters).

2.2 Ants

Their behaviour is identical to the one specified in AntClass during the first
stage of the algorithm. We summarize this behaviour quickly, more details being
available in [I1IT3]. The ants move on the grid, can carry an object by picking
up an isolated object found in a cell, or by taking the most dissimilar object of a
heap. They can also drop an object o on a free cell, on an isolated object if they
are similar enough (creating a new heap), or on an existing heap if o and the
heap centre are similar enough. Similarity is evaluated with a distance measure.
These actions are based on probabilities in order to produce a partial random
behaviour which is fundamental for the effectiveness of ants algorithms.

Our architecture is based on the same ants algorithm as AntClass, yet we have
defined a new measure to evaluate objects with respect to a cluster. This measure
takes into account the dispersion of the distances of clustered objects from the
gravity centre of their heap. It also allows to reduce the number of parameters
used in AntClass while increasing the stability of the clustering. Thus, we suppose
that the distribution of data in a cluster follows a Normal law represented by a
variable R¢. So, considering the average i and the standard deviation o of R¢,
by definition, one knows that 99.7% of data are in interval I3 = [0, i+ 30]. This
led us to redefine the condition for an ant to remove the most dissimilar object
o from a heap H: if the distance between o and the centre of H does not belong
to the interval [0, u + 30, then the ant removes o from H. Moreover, we have

! From here, when we talk about a piece of data, we will also use the word object.
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also modified the mechanism used by ants to add data to heaps. Experiments
shows that the aggregation criterion used by ants of AntClass leads sometimes
to build inaccurate clusters which are difficult to remove. Thus a more restrictive
criterion was defined: our ants drop an object in a heap if its distance from the
centre of the heap is in the interval Ir = [0, u + 20].

2.3 Cluster Agents

In AntClass, after the work of ants, K-Means is used to reduce the number of
remaining isolated data. In our approach, we dedicate the management of this
problem to cluster agents.

A cluster agent encapsulates a heap C' (i.e a cluster) created by ants. This
one lives while its heap contains at least two objects. Moreover, just before its
death, a cluster agent rejects its remaining objects on the grid. C' is defined by
a 4 tuple (G, Re, Ve, Sc) where Ge is its centre, R its radius, Vi its volume
(an hypersphere specified by given by G¢ and R¢) and S¢ the set of its data.
In the following, C refers to a cluster agent and also to its encapsulated heap.

Main Behaviour. As soon as an ant drops an object in a heap or removes
an object from a heap, the associated cluster agent must update its 4 tuple.
Moreover, cluster agents can also grow by attacking other cluster agents per-
ceived as obstructing their own development. A cluster agent C\ps is considered
to obstruct an other cluster agent Coyy when Vi, intersects Vo, .. Moreover, we
suppose that C,; attacks Cops only if its size is at least equal to 20% of the size
of Cpps (to avoid too many attacks). If such an intersection of volumes occurs,
it is probably due to a misconfiguration of the clusters, maybe they could be
unified, maybe one of them could be divided into two parts. Thus, the clusters
must be updated. That is the reason why, when a conflict between two Cluster
agents occurs, one of them attacks the other one which flees. As shown in next
section, the flee mechanism allows to update the clusters.

Cluster agents must also detect the evolution of objects contained in their
heap. If an object becomes too distant from the centre of its heap, the cluster
agent rejects it into the grid and updates its 4 tuple. To determine if an object is
too far away from the centre of its heap, a cluster agent uses the same measure
as the one used by the ants (§ [22).

obs *

The Attack/Flee Behaviour. If a cluster agent called Cyy; has an obstructing
cluster agent Cyps, Cuyr attacks Cops and the former must flee. To describe the
attack/flee interaction we use the following notations:

— d(x,y) is the Euclidean distance between 2 objects x et y;
— diss(C) is the most dissimilar object of C' with respect to 4.

To manage the flight of Cpps, two kinds of situations are considered depending
on whether the intersection between Vc,,, and V¢ ,. may contain objects or
may not. In the first case, all objects located in the intersection are added to
the heap of Cyy. In the second case, Cops drops one by one its diss(Cops) until
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the intersection of volumes disappears. If §(diss(Cops), Ge,,,) < Re,,, + 20 then
diss(Cops) is put in Cyyy and on the grid if not. This aggregation mechanism of
the objects into the attacking cluster during a flight is identical to the aggregation
mechanism of data into a heap of the ants behaviour (§ 22). Here our aim is to
reinforce homogeneity of Cy;; and to avoid the construction of too large heaps
which are difficult to dissociate.

3 Experiments

3.1 Scenarios

In order to evaluate our dynamic clustering algorithm, a simulation platform is
used to generate sets of mobile objects specified by “scenarios”. A scenario allows
to describe “populations” and “trajectories”. A population is considered to be a
set of mobile objects which are supposed to evolve similarly (i.e. to have a similar
motion) and distributed inside an hyper-sphere. The description of the motion of
this hyper-sphere is called the population’s trajectory. As a consequence, at the
clustering level, each detected cluster is expected to correspond to an existing
population.

The main goal of the first experiments is to show the ability of our algorithm
to detect the population trajectories as they are evolving. In this section, we
have chosen to present three particular scenarios. The main differences between
these scenarios are the number of populations, the kind of population trajectories
used and the presence of noise. In the following, each scenario is summarized by
a graphical representation (F1G. [IJ) inside which each population is represented
by a circle. Bold and dotted circles represent respectively initial states and in-
termediate or final states of the populations. The trajectory of each population
is illustrated by arrows. In each scenario, a population contains 100 mobile ob-
jects distributed according to a normal law. It is important to notice that, for
the first experiments, only two attributes have been used for mobile objects in
order to simplify the visualisation and the results analysis. The Noisy scenario
contains a single population (FIG. and 33 additional mobile objects which
are randomly distributed to simulate a kind of noise. They also move randomly
during the scenario. The Disjoined and the Crossroad scenarios contains two dif-
ferent populations. These scenarios are rather different because in the Disjoined
one, trajectories are such that populations converge without any overlapping in
a first time and then move in two different directions. In the Crossroad scenario,
populations not only converge but also overlap, then they also continue on their
own ways.

3.2 Results

Evaluating the results produced by a dynamic clustering is a difficult problem
because usual criteria defined only on the final results of the clustering process
can not be used alone. More precisely, this implies to be able to compare, almost
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Fig. 1. Scenarios schemas

continuously, the state of the different populations of the scenario with the set of
detected clusters. Moreover, the temporal gap between what is detected by the
clustering algorithm and the different states of the populations in the simulation
must be evaluated.

For the moment, three types of temporal graphs have been used which allow
to analyse the following measures over time: the number of mobile objects put
in clusters, the number of clusters and the mean clusters purity. The purity is a
measure used in [5] and defined as follows:

K |Cf]
i=1 |Cy

. (1)
where K is the number of detected clusters at time t, |C;] is the cardinality of
cluster i and |C¢| is the number of mobile objects of cluster C; associated to the
population d which is the most represented population in cluster C;. It allows
to evaluate, at time t, the mean quality of clusters with respect to populations
in the simulation. Due to a lack of space, these graphs are not detailed in the
paper. That’s why, in the next section, results evaluation is presented using
mean measures of the clustering process. Nevertheless, they take into account
a potential evolution of the number of populations during the execution of the
scenario.

For each experiment, the following measures have been used:

purity =

— F£data: number of all mobiles objects in the scenario

— NAvgC: mean ratio between the number of detected clusters and the number
of populations in the scenario at the same moment (the closer to 1 this
measure is, the better is the clustering result)

— NAvgDC: mean number of aggregated mobile objects (i.e. the number of
mobile objects which are put in a cluster).

— TimeNbP: amount of simulation time corresponding to states in which the
number of detected clusters is equal to the number of populations in the
scenario.

— PM: mean of the mean clusters purity.

It is important to notice that for these measures, a heap containing two mobile
objects is considered as a cluster.
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Table 1. Experiments results

Test #data NAvgC NAvgDC TimeNbP PM
Noisy 133 1.5 93.0 77.0 0.97
Disjoined 200 1.15 180.0 84.9 0.99
Crossroad 200 2.5 132.6 35 0.7

Purity measures show that, generally, clusters are good ones i.e. they contain
mobiles objects associated to the same population. NAvgC values are often too
high but they show, however, that the number of detected clusters is close to the
number of populations in the scenario. Indeed, this is also entailed by the analysis
of graphs giving the number of detected clusters with time. This analysis shows
also that, at the beginning of the simulation, the clustering algorithm needs a
short adaptation period during which the number of clusters is big. The mean
number of aggregated objects shows that a little part of the mobiles objects is
not clustered at the end of the simulation. The results show that the kind of
populations trajectories does not modify the results quality. Moreover, the good
results obtained on Noisy scenario show that the clustering algorithm has not
been disturbed by noisy objects.

However, the algorithm does not provide good results on Crossroad scenario.
In this scenario, the 2 populations are temporarily superposed. At the clustering
level, the consequence is that the two corresponding clusters are merged into a
single big cluster SC' which is a normal phenomenon. But, when in the simulation
the two populations begin to move away, the clustering algorithm keeps the cluster
SC instead of splitting it. Indeed, as there exists only one big cluster, it can not be
attacked by the new little clusters built by ants. On the contrary, these last ones are
attacked by SC' and then are merged with SC. This phenomenon is a consequence
of the attack constraint described previously which is however useful in most cases.

4 Conclusion

In this paper, a dynamic clustering algorithm for mobile objects (or agents)
based on a multiagent architecture has been presented. This last one is made of
an ants layer coupled with a cluster agents layer, the two layers being executed si-
multaneously. The first experiments on scenarios corresponding to various kinds
of populations evolutions give good results. Nevertheless, new solutions must
be found, particularly to solve the problem of unsplitable “big clusters”. A first
solution to explore is to use the velocity of mobile objects in the clustering pro-
cess [8] which could avoid that two clusters corresponding to two populations
with different dynamics are merged. Further experiments have also to be per-
formed on new scenarios in which the number of populations and the size of
these populations evolve significantly during the simulation. To better evaluate
the accuracy of our results we plan to use the MONIC framework[T4] which pro-
poses an algorithm for cluster transition detection. Indeed, this framework can
help us to compare more precisely scenarios and clustering results.
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Abstract. Collaborative tagging systems allow users to assign keywords—so
called “tags”—to resources. Tags are used for navigation, finding resources and
serendipitous browsing and thus provide an immediate benefit for users. These
systems usually include tag recommendation mechanisms easing the process of
finding good tags for a resource, but also consolidating the tag vocabulary across
users. In practice, however, only very basic recommendation strategies are
applied.

In this paper we evaluate and compare two recommendation algorithms on
large-scale real life datasets: an adaptation of user-based collaborative filtering
and a graph-based recommender built on top of FolkRank. We show that both pro-
vide better results than non-personalized baseline methods. Especially the graph-
based recommender outperforms existing methods considerably.

1 Introduction

Folksonomies are web-based systems that allow users to upload their resources, and to
label them with arbitrary words, so-called tags. The systems can be distinguished ac-
cording to what kind of resources are supported. Flickr, for instance, allows the sharing
of photos, del.icio.us the sharing of bookmarks, CiteULikell and Connotedd the sharing
of bibliographic references, and Last.frf] the sharing of music listening habits. BibSon-
omyﬂ allows to share bookmarks and BIBTEX based publication entries simultaneously.

To support users in the tagging process and to expose different facets of a resource,
most of the systems offered some kind of tag recommendations already at an early
stage. Del.icio.us, for instance, had a tag recommender in June 2005 at the latestE and
also included resource recommendations[d As of today, nobody has empirically shown

!http://www.citeulike.org

% |http://www.connotea.org

3 Ihttp://www.last.fm

*http://www.bibsonomy.org

3 http://www.socio-kybernetics.net/saurierduval/archive/2005 06 01 archive.html
8 http://blog.del.icio.us/blog/2005/08/people who like.htm]
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the quantitative benefits of recommender systems in such systems. In this paper, we will
quantitatively evaluate a tag recommender based on collaborative filtering (introduced
in Sec.[3) and a graph based recommender using our ranking algorithm FolkRank (see
Sec. d)) on the two real world folksonomy datasets BibSonomy and Last.fm. We make
the BibSonomy dataset publicly available for research purposes to stimulate research in
the area of folksonomy systems (details in Section[3).

The results we are able to present in Sec. [6l are very encouraging as the graph based
approach outperforms all other approaches significantly. As we will see later, this is
caused by the ability of FolkRank to exploit the information that is pertinent to the
specific user together with input from other users via the integrating structure of the
underlying hypergraph.

2 Recommending Tags—Problem Definition and State of the Art

Recommending tags can serve various purposes, such as: increasing the chances of get-
ting a resource annotated, reminding a user what a resource is about and consolidating
the vocabulary across the users. In this section we formalize the notion of folksonomies,
formulate the tag recommendation problem and briefly describe the state of the art on
tag recommendations in folksonomies.

A Formal Model for Folksonomies. A folksonomy F describes the users U, resources
R, and tags T', and the user-based assignment of tags to resources by the ternary relation
Y C U x T x R. We depict the set of all posts by P. The model of a folksonomy we
use here is based on the definition in [9].

Tag Recommender Systems. Recommender systems (RS) in general recommend in-
teresting or personalized information objects to users based on explicit or implicit rat-
ings. Usually RS predict ratings of objects or suggest a list of new objects that the user
hopefully will like the most. In tag recommender systems the recommendations are, for
a given user u € U and a given resource € R, a set T'(u,r) C T of tags. In many
cases, T(u, r) is computed by first generating a ranking on the set of tags according to
some quality or relevance criterion, from which then the top n elements are selected.

Related work. General overviews on the rather young area of folksonomy systems and
their strengths and weaknesses are given in [ZUTT/12]]. In [13], Mika defines a model
of semantic-social networks for extracting lightweight ontologies from del.icio.us. Re-
cently, work on more specialized topics such as structure mining on folksonomies—
e.g. to visualize trends [3] and patterns [[16] in users’ tagging behavior—as well as
ranking of folksonomy contents [9], analyzing the semiotic dynamics of the tagging
vocabulary [3], or the dynamics and semantics [[6] have been presented.

The literature concerning the problem of tag recommendations in folksonomies is
still sparse. The existent approaches usually adapt methods from collabora-
tive filtering or information retrieval. The standard tag recommenders, in practice, are
services that provide the most-popular tags used for a particular resource by means of
tag clouds, i.e., the most frequent used tags are depicted in a larger font or otherwise
emphasized. These approaches address important aspects of the problem, but they still
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diverge on the experimental protocol, notion of tag relevance and metrics used, what
makes further comparisons difficult.

3 Collaborative Filtering

Due to its simplicity and promising results, collaborative filtering (CF) has been one of
the most dominant methods used in recommender systems. In the next section we recall
the basic principles and then present the details of the adaptation to folksonomies.

Basic CF principle. The idea is to suggest new objects or to predict the utility of a
certain object based on the opinion of like-minded users [13]]. In CF, for m users and n
objects, the user profiles are represented in a user-object matrix X € R"”*". The matrix
can be decomposed into row vectors:

X = [Ty, ooy @] T With By i= [Ty15 0oy T, fOru:==1,...,m,

where 2, , indicates that user u rated object o by =, , € R. Each row vector &, cor-
responds thus to a user profile representing the object ratings of a particular user. This
decomposition leads to user-based CF (see for item-based algorithms).

Now, one can compute, for a given user u, the recommendation as follows. First,
based on matrix X and for a given k, the set N]j of the k£ users that are most similar
to user u € U are computed: N := arg maxer sim(Z,, &, ) where the superscript
in the arg max function indicates the number % of neighbors to be returned, and sim is
regarded (in our setting) as the cosine similarity measure. Then, for a given n € N, the
top n recommendations consist of a list of objects ranked by decreasing frequency of
occurrence in the ratings of the neighbors (see Eq.[Ilbelow for the folksonomy case).

CF for Tag Recommendations in Folksonomies. Because of the ternary relational
nature of folksonomies, traditional CF cannot be applied directly, unless we reduce
the ternary relation Y to a lower dimensional space. To this end we consider as ma-
trix X alternatively the two 2-dimensional projections myrY € {0, 1}UIXIEl with
(myRY )u,r := 1if there exists t € T s.t. (u,t,r) € Y and 0 else and myrY €
{0, 1HUIXITI with (70Y )y, = 1 if there exists r € R s.t. (u,t,7) € Y and 0 else.
The projections preserve the user information, and lead to log-based like recommender
systems based on occurrence or non-occurrence of resources or tags, resp., with the
users. Notice that now we have two possible setups in which the k-neighborhood N*
of a user u can be formed, by considering either the resources or the tags as objects.
Having defined matrix X, and having decided whether to use 7y rY or myrY for
computing user neighborhoods, we have the required setup to apply collaborative filter-
ing. For determining, for a given user u, a given resource 7, and some n € N, the set
T (u,7) of n recommended tags, we compute first N* as described above, followed by:

T(u,r) := arg max Z sim(Zy, )6 (v, t, 1) (1)
tet vENE

where 6(v,t,r) := 1if (v,¢t,7) € Y and O else.
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4 A Graph Based Approach

The seminal PageRank algorithm reflects the idea that a web page is important if there
are many pages linking to it, and if those pages are important themselves. In [9], we
employed the same underlying principle for Google-like search and ranking in folk-
sonomies. The key idea of our FolkRank algorithm is that a resource which is tagged
with important tags by important users becomes important itself. The same holds, sym-
metrically, for tags and users, thus we have a graph of vertices which are mutually
reinforcing each other by spreading their weights.

For generating a tag recommendation for a given user/resource pair (u, ), we com-
pute the ranking as described in [9], and then restrict the result set T(u, r) to the top n
tag nodes.

5 Evaluation

In this section we first describe the datasets we used, how we prepared the data, the
methodology deployed to measure the performance, and which algorithms we used,
together with their specific settings.

Datasets. To evaluate the proposed recommendation techniques we have chosen
datasets from two different folksonomy systems: BibSonomy and Last.fim. Table [[l gives
an overview on the datasets. For both datasets we disregarded if the tags had lower or
upper case.

BibSonomy. Since three of the authors have participated in the development of Bib-
Sonomy, I we were able to create a complete snapshot of all users, resources (both
publication references and bookmarks) and tags publicly available at April 30, 2007,
23:59:59 CESTH From the snapshot we excluded the posts from the DBLP computer
science bibliographyﬁ since they are automatically inserted and all owned by one user
and all tagged with the same tag (dblp). Therefore they do not provide meaningful in-
formation for the analysis.

Last.fin. The data for Last.fl"] was gathered during July 2006, partly through the web
services API (collecting user nicknames), partly crawling the Last.fm site. Here the
resources are artist names, which are already normalized by the system.

Core computation. Many recommendation algorithms suffer from sparse data or the
“long tail” of items which were used by only few users. Hence, to increase the chances
of good results for all algorithms (with exception of the most popular tags recom-
mender) we will restrict the evaluation to the “dense” part of the folksonomy, for which

7 Ihttp://www.bibsonomy.org

8 On request to bibsonomy @cs.uni-kassel.de a snapshot of BibSonomy is available for research
purposes.

? Ihttp://www.informatik.uni-trier.de/~Tey/db/

10 http://www.last.fm


http://www.bibsonomy.org
http://www.informatik.uni-trier.de/~ley/db/
http://www.last.fm

510 R. Jdschke et al.

Table 1. Characteristics of the used datasets

dataset Ul |T| |R| Y] |P| date  kmax

BibSonomy 1,037 28,648 86,563 341,183 96,972 2007-04-30 7
Last.fm 3,746 10,848 5,197 299,520 100,101 2006-07-01 20

Table 2. Characteristics of the p-cores at level k

dataset kE |\Ul |T| |Rl Y] |P|

BibSonomy 5 116 412 361 10,148 2,522
Last.fm 10 2,917 2,045 1,853 219,702 75,565

we adapt the notion of a p-core [[I] to tri-partite hypergraphs. The p-core of level k has
the property, that each user, tag and resource has/occurs in at least & posts.

An overview on the p-cores we used for our datasets is given in Table[2l For BibSon-
omy, we used k = 5 instead of 10 because of its smaller size. The largest & for which a
p-core exists is listed, for each dataset, in the last column of Table[]

Evaluation methodology. To evaluate the recommenders we used a variant of the
leave-one-out hold-out estimation which we call LeavePostOut. In all datasets, we
picked, for each user, one of his posts p randomly. The task of the different recom-
menders was then to predict the tags of this post, based on the folksonomy F \ {p}.

As performance measures we use precision and recall which are standard in such
scenarios [8]]. With r being the resource from the randomly picked post of user v and
T(u,r) the set of recommended tags, recall and precision are defined as

- 1 |tags(u, ) N T (u, )|
recall(T (u,r)) = (2
() = 151 2 st )
. | tags(u, ) N T(u,r)|
precision T U, ) . 3)
(T IU\ Z T (u,r)|

For each of the algorithms of our evaluation we will now describe briefly the specific
settings used to run them.

Most popular tags. For each tag we counted in how many posts it occurs globally and
used the top tags (ranked by occurence count) as recommendations.

Most popular tags by resource. For a given resource we counted for all tags in how
many posts they occur together with that resource. We then used the tags that occured
most often together with that resource as recommendation.

Adapted PageRank. With the parameter d = 0.7 we stopped computation after 10
iterations or when the distance between two consecutive weight vectors was less than
1075, In p, we gave higher weights to the user and the resource from the post which
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was chosen. While each user, tag and resource got a preference weight of 1, the user
and resource from that particular post got a preference weight of 1 + |U| and 1 + |R)|,
resp.

FolkRank. The same parameter and preference weights were used as in the adapted
PageRank.

Collaborative Filtering UT. For this collaborative filtering algorithm the neighborhood
is computed based on the user-tag matrix 7Y . The only parameter to be tuned in
the CF based algorithms is the number k£ of best neighbors. For that, multiple runs
where performed where k& was successively incremented until a point where no more
improvements in the results were observed. For this approach the best values for k were
20 for the BibSonomy and 60 for the Last.fm dataset.

Collaborative Filtering UR. Here the neighborhood is computed based on the user-
resource matrix 7Y . For this approach the best values for k& were 30 for the BibSon-
omy and 100 for the Last.fm dataset.

6 Results

In this section we present and describe the results of the evaluation. We will see that
both datasets show the same overall behavior: ‘most popular tags’ is outperformed by
all other approaches; the CF-UT algorithm performs slightly better than and the CF-
UR approach approx. as good as the ‘most popular tag by resource’, and FolkRank
uniformly provides significantly better results.

The diagrams [Il and 2] show precision-recall plots as usual. A datapoint on a curve
stands for the number of tags used for recommendation (starting with the highest ranked
tag on the left of the curve and ending with ten tags on the right). Hence, the steady
decay of all curves in both plots means that the more tags of the recommendation are
regarded, the better the recall and the worse the precision will be.

BibSonomy. Figure[llshows the precision and recall of the chosen algorithms. The top-
rightmost curve depicts the performance of FolkRank and it can clearly be seen that the
graph based algorithm outperforms the other methods in both precision and recall. With
ten recommended tags the recall reaches up to 80%, while the second best results only
reach around 65% with a comparable precision. While CF-UT, CF-UR and the ‘most
popular tags by resource’ algorithms have a quite similiar performance, the adapted
PageRank is significantly worse, especially with its dropdown of precision already after
the third recommended tag. Finally, using the most popular tags as recommendation
gives very poor results in both precision and recall.

Let us now look at Table Bl We will focus here on a phenomenon which is unique
for this dataset. With an increasing number of suggested tags, the precision decrease is
steeper for FolkRank than for the collaborative filtering and the ‘most popular tags by
resource’ algorithm such that the latter two approaches for ten suggested tags finally
overtake FolkRank. The reason is that the average number of tags in a post is around 4
for this dataset and while FolkRank can always recommend the maximum number of
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Fig. 1. Recall and Precision for BibSonomy p-core at level 5

Table 3. Precision for BibSonomy p-core at level 5

Number of recommended tags 1 2 3 4 5 6 7 8 9 10

FolkRank 0.724 0.586 0.474 0.412 0.364 0.319 0.289 0.263 0.243 0.225
Collaborative Filtering UT ~ 0.569 0.483 0.411 0.343 0.311 0.276 0.265 0.257 0.243 0.235
most popular tags by resource 0.534 0.440 0.382 0.350 0.311 0.288 0.267 0.250 0.241 0.234
Collaborative Filtering UR ~ 0.509 0.478 0.408 0.341 0.311 0.285 0.267 0.252 0.241 0.234
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Fig. 2. Recall and Precision for Last.fm p-core at level 10

tags, for the other approaches there are often not enough tags available for recommen-
dation. Hence, less tags are recommended. This is because in the p-core of order 5, for
each post, often tags from only four other posts can be used for recommendation with
these approaches. Consequently this behaviour is even more noticeable in the p-core of
order 3 (which is not shown here).
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Last.fm. For this dataset, the recall for FolkRank is considerably higher than for the
BibSonomy dataset, see Figure 2l Even when just two tags are recommended, the recall
is close to 60 %. Again, the graph based approach outperforms all other methods (CF-
UT reaches at most 76 % of the recall of FolkRank). An interesting observation can
be made about the adapted PageRank: its recall now is the second best after FolkRank
for larger numbers of recommended tags. This shows the overall importance of general
terms in this dataset—which have a high influence on the adapted PageRank (cf. Sec. ).

The results clearly show that the graph based FolkRank algorithm outperforms base
line algorithms like ‘most popular tags‘ and collaborative filtering approaches.

Acknowledgement. Part of this research was funded by the EU in the Nepomu (FP6-
027705), Tagor (FP6-2005-34721), and the X-Medid 3 (IST-FP6-026978) projects.
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Abstract. CoreWar is a computer simulation devised in the 1980s where pro-
grams loaded into a virtual memory array compete for control over the virtual
machine. These programs are written in a special-purpose assembly language
called Redcode and referred to as warriors. A great variety of environments and
battle strategies have emerged over the years, leading to formation of different
warrior types. This paper deals with the problem of automatic warrior categoriza-
tion, presenting results of classification based on several approaches to warrior
representation, and offering insight into ambiguities concerning the identification
of strategic classes. Over 600 human-coded warriors were annotated, forming a
training set for classification. Several major classifiers were used, SVMs proving
to be the most reliable, reaching accuracy of 84%. Classification of an evolved
warrior set using the trained classifiers was also conducted. The obtained results
proved helpful in outlining the issues with both automatic and manual Redcode
program categorization.

1 Introduction

CoreWar was introduced by A. K. Dewdney in 1984 in an article published in Scientific
American [1]]. It was based on a game called Darwin developed in Bell Labs in 1960,
devised by Victor Vyssotsky, Robert Morris Sr. and Dennis Richie. In CoreWar, sev-
eral programs, referred to as warriors, attempt to survive in a looping memory array,
avoiding attacks and at the same time trying to eliminate the opposition. The warrior
that takes complete control of the process queue wins the battle. A match between two
warriors consists of a number of such battles, each time varying the initial positioning
in the memory array which is referred to as the core.

Several automatic warrior generators have been created so far, utilizing evolution-
ary algorithms to create functioning warriors out of sets of randomly generated code
sequences. Performance evaluation in warrior generation is usually done via testing
against some predetermined benchmark warrior set of considerable size. In evolvers,
when a lot of new warriors are being constructed in each generation, determining fit-
ness becomes a very time demanding process.

Automatic warrior categorization could be very useful in CoreWar evolutionary soft-
ware in order to design control mechanisms for mutation rate adjustment. High mu-
tation rates allow the creation of a greater variety of forms, while the low mutation

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 5895961 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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rates instigate convergence of the generation pools to the fittest among the generated
types. However, the current lack of automatic categorization renders diversity super-
vision practically impossible. Some warriors may be easy to categorize manually by
the combination of strategic components in their code, but finding clear distinctions
between warrior types is generally not an easy task.

The goal of the research presented in this paper is to explore the possibilities for
automatic warrior categorization using representations based on syntax analysis and
benchmark scores. The former may quickly and easily be calculated, while the latter
are an essential part of fitness evaluation in CoreWar evolvers. The addressed issues
include choosing warrior types from a plethora of possible distinctions depending on
the desired level of abstraction, specifying the representations, manually categorizing a
warrior set, conducting automatic classification, and testing it on both human-coded and
evolved warrior sets. Our main intention was to spot the obstacles in the categorization
process, so that further improvements to the representations could be made and, more
importantly, to assess the feasibility of automatic warrior categorization. This project is
the first attempt to achieve the above mentioned goal using supervised machine learning
methods, and also the first to introduce a fully labeled warrior dataset.

The rest of the paper is organized as follows. Section [2] explains the essentials of
CoreWar and the Redcode language, while Section [3] discusses possibilities for repre-
senting warriors in a form suitable for analysis. Section [ deals with the issues related
to both human-coded and evolved warrior datasets used in this research. The analysis
of categorization itself is given in Section[3] The last section provides a summary of the
conclusions together with plans for future work.

2 CoreWar

CoreWar is a computer simulation where programs compete in a virtual cyclic memory
array. These programs, referred to as warriors, are written in an assembly language
called Redcode. Warrior confrontation takes place in a virtual memory array called the
core which is wrapped around so that the successor of the last address in the core is
the first one. Execution of instructions and management of threads is performed by the
memory array redcode simulator (MARS).

A warrior’s goal in most competitions is to take complete control of the core by
forcing all its opponents to eliminate their threads of execution from the process queue.
Warriors can read from the core, write to the core, perform basic arithmetic instruc-
tions, create new threads, mutate, go through numerous stages in their ontogeny, copy
themselves, actively search for their opponents, etc.

Competitions are held regularly on several Internet servers. Corewar leagues are
commonly referred to as hills. There are several important parameters defining these
standard competitions, namely: core size, maximal battle duration, number of threads
allowed per warrior, warrior size restrictions, etc. The most popular hill is certainly the
94nop hill, which is the presumed setting for warriors considered in this paper.

The Redcode language. Redcode is currently the default language for writing CoreWar
warriors. It contains 19 instructions, 7 instruction modifiers and 8 addressing modes.
Each command consists of an instruction name, followed by the instruction modifier,
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A-field addressing mode, A-field value, B-field addressing mode and B-field value.
The more important instructions include DAT, which is used both to store data and
remove the thread executing it from the process queue; the copying instruction MOV;
arithmetic instructions ADD, SUB, MUL, DIV and MOD; unconditional jump instruc-
tion JMP and conditional jumps JMZ, JMN and DJN; and the thread-creating instruc-
tion SPL. There are many combinations of the mentioned elements, more precisely
8512 - CORESIZE?. The set of all possible Redcode programs in the standard setting
is of cardinality 100 - (5447680000001%°). A description of Redcode is available in [2]].

Warrior types. Contemporary warriors are highly sophisticated, a result of over two
decades of continuous improvements over the basic ideas, and occasional ascension of
new concepts. Most of them represent combinations of several strategic elements. Some
common strategic concepts are summarized below.

Imps are among the simplest of components, yet quite often used due to the fact that
disposing of them is costly in terms of time and space. Imps consist only of MOV in-
structions, copying themselves through the core, commonly forming structures known
as rings and spirals. Bombing is a process of copying some predetermined instruc-
tions throughout the core with the intention of overwriting a part of the opponent’s
code. Replication is a process performed by warrior components constantly copying
themselves and creating new threads to run the copies. Core clearing is a process of
sequential overwriting of the core with some predetermined instruction. Scanning de-
notes heuristically searching for opponent’s code by comparing pairs of instructions or
instruction fields. Bootstrapping is a process of quickly copying essential components
away from the original code to avoid detection. Quickscan is a component performing
exceptionally fast scanning at the start of the simulation, trying to locate enemy code in
an early stage and disable it before it bootstraps and activates its components.

For the purposes of categorization in this paper, a relatively modest number of 13
warrior types has been selected to represent the strategic abundance of CoreWar. The
considered warrior types are given in Table[T]

3 Warrior Representation

One of the main issues in automatic CoreWar warrior categorization is certainly repre-
senting warriors in a form suitable for analysis. The code itself can be viewed as a geno-
type, while the associated behavior in a certain core corresponds to the phenotype of a
warrior. Same warrior code can display different properties in different environments
and even belong to different warrior types in the respective core settings! Therefore, it
is the emergent behavior that outlines the category generalizing the strategic concepts
of a warrior in a certain environment. In the rest of this paper the concept of warrior
types will be regarded in this manner, only relative to the 94nop setting.

The question arises whether it is possible to draw conclusions about warrior phe-
notype given the parameters of the considered environment, based on observations of
code alone. If it were possible to classify a warrior based on a representation derived
from syntax analysis, such a process would be favorable in terms of execution time, and
therefore preferable for use in systems performing a lot of calculations, e.g. evolvers.
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Table 1. Warrior categories

Type Description

cds Clear-directing scanners

clr Warriors basing their activity on clearing the core

clrwi  Core-clearing warriors using imp components

evo Evolved warriors, a category denoting all automatically created warriors that do not

resemble human-coded warriors enough to be considered one of the other types
onesh Oneshots — a special class of scanners, focusing on the first potential threat
pap Replicators, also called papers, according to the stone/paper/scissor analogy
pwi Replicators that also use imps
pws Replicators that also use stones
sabi Stones accompanied by both A-field and B-field imps

sai Stones accompanied by A-field imps

sbi Stones accompanied by B-field imps

scn Scanners other than clear-directing scanners and oneshots. All three classes to-
gether are referred to as scissors

stn Stones are warriors utilizing a bombing strategy. Their name is derived from the

stone/paper/scissor analogy

In the first phase, a simple syntax-based representation was evaluated comprised
of frequencies of appearance of instruction names in warrior code, and also of some
characteristic instruction pairs, namely SPLMOV, MOVIJMP, MOVDIN, MOVADD,
MOVSUB, SEQSNE, SNEJMP, and SEQSLT. A boolean flag Impspec was added to
carry information about the potential imp presence within a warrior. We shall denote
this representation static. It total, it consists of 26 continuous, and one boolean attribute.

In the second phase, a representation formed by benchmark scores was used. These
data are usually available in automatic warrior generators, due to necessity of perform-
ing fitness estimation. This representation consists of win and loss percentages of the
tested warrior against each of the benchmark warriors, and will be referred to as the
score representation. The benchmark was comprised of 30 carefully chosen warriors,
accounting for 60 continuous attributes for this representation.

After both mentioned representations were tested, a hybrid representation combining
the former was used (denoted combined). It was additionally attempted to extend the
representations with another boolean feature named Qspec, indicating the presence of
a quickscan component within a warrior. This attribute will be treated separately since
we do not yet have a satisfactory means of automatically determining its value.

The static representation suffers heavily from its inability to distinguish code that
will be executed during the simulation from decoys. There was an attempt in the past to
overcome this problem by observing frequencies of command executions during simu-
lations [3]]. This may seem to be a good solution, but it has its own pitfalls. In particular,
when a warrior is placed alone in the core there is a strong possibility that some parts of
its code will never be executed because no enemy is ever detected. If, on the other hand,
a warrior is set to confront some other warriors, it will also be executing commands
that other warriors might copy over its code. Syntax analysis does not fall prey to the
described problem.
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Table 2. Class distribution of the h1c¢ dataset

cds clr clrwi evo onesh pap pwi pws sabi sai sbi scn stn Total
47 20 12 66 73 100 40 40 6 33 39 73 117 666

4 The Datasets

Two warrior sets have been used in this research. The first one, denoted h1c, represents
a subset of 94nop Konigstuhl set [4]]. All warriors were manually categorized. The
dataset consists of 666 warriors (no pun intended), which are unfortunately not evenly
distributed among the considered categories (Table[2)). The average warrior length in the
dataset disregarding data storing instructions was 35, far below the 100 instruction limit
imposed by the 94nop setting. Massive use of quickscanners as an early stage strategic
component led to the minimalistic approach in coding to avoid early detection.

The considered evolved warrior set is a subset of the output generated by the CCAI
evolver [3]], which was written by Barkley Vowk from the University of Alberta in
summer 2003. We have already subjected the complete CCAI output to clustering using
the static representation in [2]]. The respective size of that dataset is 4389 warriors.

5 Warrior Categorization

Classification was performed using the WEKA machine learning workbench [6]]. The
following classifiers were included in the experiments: SMO — an implementation of
the sequential minimal optimization algorithm for training support vector machines [7]],
performing multi-class classification using a binary classifier for each pair of classes;
MultilayerPerceptron (MLP) — a neural network classifier trained using backpropaga-
tion; J48 — a decision tree learner based on revision 8 of the C4.5 algorithm; Naive-
Bayes; BayesNet — a Bayesian network with automatically determined structure as the
maximum weight spanning tree [8]]; and IBk — which implements the classical k-nearest
neighbor algorithm. We report results for SMO with the linear kernel and C' = 1, MLP
trained in 500 epochs with one hidden layer containing 1/2 of the total number of input
and output nodes, NaiveBayes with supervised discretization used for handling contin-
uous attributes, and IBk with £ = 5 neighbors and reciprocal distance weighing.

Categorization of human-coded warriors. Figure [l summarizes the performance of
the considered classifiers in experiments involving 10 runs of 10-fold cross-validation
on the h1c dataset. The highest accuracy was exhibited by SMO, 84.26%, on the repre-
sentation including both static and score components, including specification of quick-
scanner presence. Generally, the use of the Qspec attribute only slightly improved the
performance of classification with all representations, and its contribution could not be
statistically verified using the corrected resampled t-test (p = 0.05).

Performance of all classifiers except for MLP was statistically verified as worse
when compared to SMO on the complete (combined+Qspec) representation. Naive-
Bayes proved to be the worst among the tested classifying methods, reaching accu-
racy of only 69.7%. Apparently, it had problems coping with the dependencies between
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Fig. 1. Performance of various classifiers on the h1c warrior dataset, by representation

attributes, both static (concerning co-occurrences of instructions) and score-based (re-
garding the pairwise and other dependencies between win and loss percentages), which
may be observed on the partial representations. This is corroborated by the bad perfor-
mance of BayesNet when configured to work with the “naive” network structure (its
accuracy is only slightly better than that of the the reported NaiveBayes).

The classification success rate varied respective to warrior categories in question.
Replicators were easily recognized. Some scanners belonging to the scn class had been
confused with stones. The scanners in question were mostly the less efficient ones, thus
differing in crucial benchmark scores from the rest of their group, instead scoring simi-
larly to a warrior subtype known as incendiary stones. The lowest accuracy was present
in classification of warriors belonging to those categories represented by a small num-
ber of instances in the dataset, namely clr, clrwi, and sabi. It is also worth mentioning
that most of the evolved warriors in hlc were correctly classified as evo.

Classifier accuracy on the complete representation was superior over isolated use
of static features. Also, adding the static feature vector to the score representation im-
proved classification significantly in cases of SMO, MLP, BayesNet and J48 classifiers.

Even though SMO performed best on score-based and combined representations, its
accuracy of 47.15% on the static representation was significantly inferior to the perfor-
mance of J48, BayesNet, IBk and MLP. This can be partially remedied by employing
polynomial kernels of higher degree (4—06), with the performance being able to reach
that of the best classifiers, but at the expense of worsening accuracy on score-based
representations. The highest accuracy of classification on the static representation was
achieved by MLP — 64.45%.

Regardless of the apparent advantages of both score-based and combined represen-
tations over the static representation, the obtained results indicate that classification
according to static features alone might be possible in the future if some modifications
were made. First of all, according to the current static representation, it is absolutely
impossible to distinguish A-field imps from B-field imps. That can easily be solved
by adding new imp presence indicators. Also, it appears that the use of characteristic
instruction pairs was insufficient for carrying information about the context in which
instructions were used. Some solutions to that problem will be considered in Section[6l
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Categorization of the evolved dataset. Generation 4 of the CCAI dataset was al-
ready clustered [2]], so the categorization of that warrior set was meant both as a test
of the reliability of trained classifiers and also to provide insight into the structure of
the dataset and its clusters. Clustering had been done using the static representation,
without Qspec. For purposes of classification in the current research, classifiers were
trained on hlc with the score and combined representations, and tested on a random
400-warrior sample from the CCAI dataset which was manually labeled.

Evolved warriors usually differ from their human-coded adversaries. One of the
main characteristics of evolved warriors is the presence junk code, i.e. instructions in
the source code which actually never get executed. Evolved datasets consist mainly
of mutation resistant forms — core-clearing warriors and replicators being the domi-
nant types [2]]. Also, such warriors rarely utilize advanced strategic tricks, which distin-
guishes them from analogous human-coded warrior types. However, the last generation
of the CCALI set exhibits somewhat different properties, as the evolver was aimed at
generating strong, competitive warrior forms. The final product was a famous warrior
that defeated many human-coded opponents, appropriately named Machines Will Rule.
Hence, warriors in the CCALI set tend to be stronger than typical evolved warriors and
bear more resemblance to their human-coded counterparts.

Manual inspection detected only two classes in the 400-warrior sample of the CCAI
set: pap and pwi. Papers were mostly using anti-imp core-clearing techniques, and
achieved great scores against imp-type warriors in the benchmark. Imp-containing pa-
pers, however, were not nearly as well optimized and rarely benefited from the presence
of defensive imp structures.

The following classifiers were tested: SMO, MLP, BayesNet, and IBk, with the re-
sults summarized in Table B It can be seen that the introduction of static features to
the score-based representation does not yield consistent improvements as with the hlc
dataset. On the contrary, it significantly degraded the performance of MLP and IBk clas-
sifiers. This is the result of noise introduced by junk code in the evolved warriors which
contained mostly imp-specific and arithmetic instructions, helping MLP confuse many
pap warriors with pws. The misclassification rate of most classifiers originated from
pap being interpreted as sbi. Besides junk code, this can be attributed to the high re-
sistance of the warriors in question to some common scanner attack techniques. On the
other hand, static features continue to carry useful information, which is evident from
the introduced improvement to the accuracy of SMO and BayesNet, and also from the
increase in the ability of most classifiers to detect the minority pwi class.

All of the warriors from the sample misclassified by either of the classifiers as sbi or
pwi using the combined representation were additionally examined. In 37% of instances
an interesting structure was discovered, used by the replicators as a strong anti-imp fea-
ture, but also forming a sort of imp-like structure, thus enhancing defensive capabilities.
Such pseudo-spirals were set up in a similar fashion to imp spirals, the difference being
in the instruction used, namely MOV.I #1169, }2667. Apart from this interesting
replicator subtype, core-clearing papers were quite frequent in the considered sample.

As for the syntactic clustering described in [2], we can now conclude that it was
unable to detect the subtle differences between the two classes in the dataset, being
misled by junk code within the warriors. However, this does not mean that the clustering
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Table 3. Categorization of a 400-warrior sample from generation 4 of the CCAI dataset, with
class counts and accuracy for the score and combined representations

Classifier evo pap pwi pws sabi sbi stn  Accuracy (%)
scr cmb scr cmb scr cmb scr cmb scr cmb scr cmb scr cmb - scr cmb
SMO 18 0 345 359 1 0 19 0 0 017 41 O 0 85.75 88.50

MLP 0 11322 217 1 14 63 136 2 0 12 21 O 1 79.25 53.25
BayesNet 0 0391 392 1 7 0 0 O O 8 1 0 009625 9650
IBk 0 038 359 2 3 0 0 0 012 38 0 09500 88.50
Manual 0 392 8 0 0 0 0 100.00

was not a good indicator of the diversity of warrior genotype, since junk code can also
be combined in subsequent generations to produce working warriors.

6 Conclusions and Future Work

Recently, the attention of the CoreWar community shifted from devising new tricks in
the existing strategies to exploring new settings, parameter optimization [9]], and au-
tomatic warrior generation [3]]. Quick and reliable warrior categorization would be of
great importance in many such automated optimizing systems. The results obtained
from this research indicate that automatic categorization is indeed possible to achieve,
at least in the standard 94nop environment. However, further research is necessary in
order to improve classification accuracy and possibly form a more universal categoriza-
tion model, applicable to a wider range of environments. We believe that changing the
static part of the representation alone may be enough to ensure the desired increase of
accuracy. Adding new n-grams to the representation, as well as modifying and decom-
posing the Impspec feature would certainly improve static-based categorization, and
probably the combined representation as well.
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ing algorithms that require less labeled training data by utilizing unlabeled data.
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a community-wide effort to develop a never-ending natural language learning
system.
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Abstract. User queries in search engines and Websites give valuable information
on the interests of people. In addition, clicks after queries relate those interests to
actual content. Even queries without clicks or answers imply important missing
synonyms or content. In this talk we show several examples on how to use this
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in Internet.
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Abstract. Randomized Response techniques have been empirically investigated
in privacy preserving association rule mining. However, previous research on
privacy preserving market basket data analysis was solely focused on support/
confidence framework. Since there are inherent problems with the concept of
finding rules based on their support and confidence measures, many other mea-
sures (e.g., correlation, lift, etc.) for the general market basket data analysis have
been studied. How those measures are affected due to distortion is not clear in the
privacy preserving analysis scenario.

In this paper, we investigate the accuracy (in terms of bias and variance of es-
timates) of estimates of various rules derived from the randomized market basket
data and present a general framework which can conduct theoretical analysis on
how the randomization process affects the accuracy of various measures adopted
in market basket data analysis. We also show several measures (e.g., correlation)
have monotonic property, i.e., the values calculated directly from the randomized
data are always less or equal than those original ones. Hence, some market basket
data analysis tasks can be executed on the randomized data directly without the
release of distortion probabilities, which can better protect data privacy.

1 Introduction

The issue of maintaining privacy in association rule mining has attracted considerable
attention in recent years [8/9J4/21]]. Most of techniques are based on a data perturbation
or Randomized Response (RR) approach [J3]], wherein the 0 or 1 (0 denotes absence of
an item while 1 denotes presence of an item) in the original user transaction vector is
distorted in a probabilistic manner that is disclosed to data miners.

However, previous research on privacy preserving market basket data analysis is
solely focused on support/confidence framework. In spite of the success of association
rules, there are inherent problems with the concept of finding rules based on their sup-
port and confidence. Various measures have been studied in market basket data analy-
sis. In this paper we conduct theoretical analysis on the accuracy of various measures
adopted previously in market data analysis. Our analysis is based on estimating the pa-
rameters of derived random variables. The estimated measure (e.g., Interest statistics) is
considered as one derived variable. We present a general method, which is based on the
Taylor series, for approximating the mean and variance of derived variables. We also
derive interquantile ranges of those estimates. Hence, data miners are ensured that their
estimates lie within these ranges with a high confidence.

There exists some scenario where data owners are reluctant to release the distor-
tion probabilities since attackers may exploit those distortion probabilities to recover
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individual data. In this paper, we also show that some useful information can still be
discovered directly from the randomized data without those distortion probabilities.
Specifically, we show some market basket data analysis tasks (such as correlation analy-
sis or independence hypothetical testing) can be conducted on the randomized data di-
rectly without distortion probabilities.

The remainder of this paper is organized as follows. In Section 2, we revisit the
distortion framework and discuss how the Randomized Response techniques are applied
to privacy preserving association rule mining. In Section 3, we conduct the theoretical
analysis on how distortion process affects various other measures adopted in market
basket data analysis. In Section 4, we show that some useful data mining results (e.g.,
dependence itemsets etc.) can be discovered even without the distortion values. We
discuss the related work in Section 5 and conclude our work in Section 6.

2 Distortion Framework Revisited

The authors in proposed the MASK scheme, which is based on Randomized
Response, presented strategies of efficiently estimating the original support values of
frequent itemsets from the randomized data. Their results empirically shown a high
degree of privacy to the user and a high level of accuracy in the mining results can
be simultaneously achieved. The privacy situation considered here is that perturbation
is done at the level of individual customer records, without being influenced by the
contents of the other records in the database. We also focus on a simple independent
column perturbation, wherein the value of each attribute in the record is perturbed in-
dependently.

2.1 Randomization Procedure

Denoting the set of transactions in the database D by 7 = {T4, ---,T,} and the
set of items in the database by Z = {A1,---, A, }. Each item is considered as one
dichotomous variable with 2 mutually exclusive and exhaustive categories (0 = absence,
1 = presence). Each transaction can be logically considered as a fixed-length sequence
of I’s and 0’s. For item A;, we use a 2 x 2 distortion probability matrix

(8 10
PJ—(1—91 0, )

If the original value is in absence category, it will be kept in absence category with a
probability 6y and changed to presence category with a probability 1 — 6. Similarly, if
the original value is in presence category, it will be kept in presence with a probability
01 and changed to absence category with a probability 1 — ;. In this paper, we follow
the original Warner RR model by simply setting 0y = 01 = p;.

Let 7;, ... 4, denote the true proportion corresponding to the categorical combination
(Aviy, -+ Akip ), where iy, - -+ iy € {0, 1}. Let w be vectors with elements 7;, ... 4, ,
arranged in a fixed order. The combination vector corresponds to a fixed order of cell
entries in the contingency table formed by the k-itemset. Table [I(a) shows one con-
tingency table for a pair of two variables. We use the notation A (1) to indicate that
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A (B) is absent from a transaction. The vector m = (o, To1, 710, 7711)/ corresponds
to a fixed order of cell entries 7;; in the 2 X 2 contingency table. 71 denotes the pro-
portion of transactions which contain both A and B while 1y denotes the proportion
of transactions which contain A but not B. The row sum 77 represents the support
frequency of item A while the column sum 7 represents the support frequency of
item B.

The original database D is changed to D, after randomization. Assume A, ...
is the probability of getting a response (1, - , ) and A the vector with elements
A, arranged in a fixed order(e.g., the vector A = (Moo, A1, Ao, A1)’ corre-
sponds to cell entries )\;; in the randomized contingency table as shown in Table[I(D)),
we can get

A= (PL X X Pg)m

where X stands for the Kronecker product. Let P = P} x - - - X P}, an unbiased estimate
of 7 follows as . A
F=P A= (P x--x P YA (1)

where ) is the vector of proportions observed from the randomized data corresponding
to A and Pfl denotes the inverse of the matrix P;. Note that although the distortion
matrices Py, - - - , Py are known, they can only be utilized to estimate the proportions of
itemsets of the original data, rather than the precise reconstruction of the original 0-1
data.

2.2 Accuracy of Association Rule

Recently the authors in [[T1] investigated the accuracy of support and confidence mea-
sures for each individual association rule derived from the randomized data and pre-
sented an analytical formula for evaluating their accuracy in terms of bias and variance.
From the derived variances, users can tell how accurate the derived association rules in
terms of both support and confidence measures from the randomized data are.

Table 1. 2 X 2 contingency tables for two variables A,B

(a) Original (b) After randomization
B B B ) B B
A moo o1 To+ A Xoo  Aoi Aot
A mo mn Mg A Ao A Ay
THo T4l Mg Ao Apr o Aqg

Assume item A and B are randomized using distortion matrix P; and P, respec-
tively. For a simple association rule A = B derived from the randomized data, it was
shown in [T1]] that an unbiased estimate is # = P~'A = (P! x Py ')\ with the
covariance matrix as

cov(®) = (n—1)'PHN = AN )P ! 2)

where A\? is a diagonal matrix with the same diagonal elements as those of A arranged
in the same order. The last element of 7 corresponds to the estimated support value s
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and the last element of cov(7) denotes its estimated variance. The estimated confidence
cis

o SAB _ 11
Sa4 Ty
and its variance as
/\2 /\2 A~ A
N ~ 10 ~ ~ 11 A ~ T10T1L A /A A
var(e) ~ ., var(fi) + ., var(fio) —2 ., cov(fir, Tio) 3)
usa usa usa

The above results can be straightforwardly extended to the general association rule
X = Y. Incorporating the derived estimate and variance, the (1 — «)100% interquan-
tile range for the estimated support and confidence is then derived. An (1 — «)100%
interquantile range, say o = 0.05, shows the interval where the original value lies in
with 95% probability. In other words, users shall have 95% confidence that the original
value falls into this interquantile range.

3 Accuracy Analysis of Measures

The objective interestingness measure is usually computed from the contingency table.
Table 2] shows various measures defined for a pair of binary variables [23]]. Here we
give results on how RR may affect the accuracy of those measures or analysis methods
on market basket data.

Table 2. Objective measures for the itemset {A,B}

Measure Expression Measure Expression
Support (s) T11 Confidence(c) :;jr
1 11700 —7T01710 1 11

Correlation (¢) Lo T Cosine (IS) T

Odds ratio () T Interest (I) Bk
TIOT T4 T4
Jaccard (¢) m++:111,‘7r11 (PS) Tl — T4 T41

X mijlog o .

Mutual Info(M) - E]I 7:_ Jor T Conviction (V) T4 40

i Titlogmiy o 710
i

- 11 11 : T4

J-measure (J) m11log e + mio0log o Certainty (F) 1omi

: Tij Tk T Fali 2 g Tij
Std. residues(e) Vriimes Likelihood (G*) 23, Zj mijlog -

2 {mij—mitmyj} ™

Pearson (x°) 222 Jﬂ+7f+j 77 Added Value(AV) ﬂ1+i17r+1

In this Section, we provide a general framework which can derive estimates of all
measures using randomized data and the released distortion parameters. Furthermore,
we present a general approach which can calculate the variance of those estimates in
Section 3.1. By incorporating the Chebyshev Theorem, we show how to derive their
interquantile ranges in Section 3.2.
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3.1 Variances of Derived Measures

From Table 2] we can see that each measure can be expressed as one derived ran-
dom variable (or function) from the observed variables (7;; or their marginal totals
Tit,T4;). Similarly, its estimate from the randomized data can be considered as an-
other derived random variable from the input variables (7;;, 7;4, 774 ;). Since we know
how to derive variances of the input variables (dar(7;;)) from the randomized data, our
problem is then how to derive the variance of the derived output variable.

In the following, we first present a general approach based on the delta method
and then discuss how to derive the variance of chi-square statistics (x?) as one example.

Let z be a random variable derived from the observed random variables x; (i =
1,---,m): 2z = g(x). According to the delta method, a Taylor approximation of the
variance of a function with multiple variables can be expanded as

var{g(z)} = Z{gl 2var(z;) + ZZgZ (0)cov(zi,xzj) +o(n™")

i#j=1

where 6; is the mean of z;, g(x) stands for the function g (1, 22, - -
(')g(:v) evaluated at 01, 0y, - - -, 0}..

For market basket data with 2 variables, # = (7o, 701, 710, 711)’, the estimated
chi-square is shown as

,xr), gi(0) is the

A A a9 A A A\
XQ—H(<7TOO o+ 7+0) Jr(7T01 To+T41)

0+ +0 O+ T 41
o S a2 o S a2
(10 — T1+740)° | (11 — T14741)
+ . + A
T14+T40 T14+T+1

Let x1 = 7gg, T2 = 71, £3 = W19 and x4 = 711, we have

g(xla T2, x37$4) = X2

2 2
= n] 1 n T2 +
(1 +x2)(z1 +23) (21 +22)(22 + 24)
3 3

—1]

(x3 + x4)(x3 + 1) + (x4 + x3) (24 + 22)

Partial derivatives of the function g() can be calculated respectively. By incorporat-
ing estimated expectations, variances and covariances of variables in function g(), the
variance of function g() can be estimated as

dar(g) ~ G3dar(7oo) + G3dar(fo1) + Gioar(m10) + Goar(711)
+2G1G280U(ﬁ00, 7%01) + 2G1G3&0U(ﬁ00, 7AT10) + 2G1G460U(ﬁ00, 7AT11)
+2G2G360’U(’ﬁ01, 7%10) + 2G2G4éov(ﬁ01 R ﬁ11) + 2(;3(;4601}(’/%1()7 ﬁ11)
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where

Gy = dg _ n[frgo(ﬁ01+ff120)j;2ﬁooﬁ'o1fr10 o A;”r%} _ A;"io ]

oxy 0+ 10 To4THL MMt

Go = g — n[ﬁgl(ﬁ00+fr11)+2ﬁ'ooﬁ'o1fr11 _ ®ge 4 ]

O0xa o473 Ayfro A3 Tt

G — Jg :n[ﬁfo(‘f}u-&-froo)-ﬁ-?ﬁoo‘ffmfru I T -1 ]

3 83}'3 fr%+fr3_0 ﬁ'f_'_ﬁurl friofl’0+

Gy = dg _ n[ﬁfl(‘ﬁ01+7:r120)j-227?117?01fr10 - hz‘fffp _ A;rg} ]

0x4 T g0 Ty Tot

Since x? = n¢? where ¢ denotes correlation (A proof is given in Appendix A of
22D), ¢ = /x2/n = \/g/n. As we know, gi = ngn gjﬁ. Following the same
procedure above, the variance of correlation ¢ can be approximated as

) bar(g)
var(¢p) ~
(¢) AG
where A2 " A2 Y
Gp =n? Too . Toro o, oo T gy

To+T4+0  To4T+1  T14T40 14741
Similarly we can derive variances of the estimated values of all measures shown in
Table 2l Measures such as XQ, interest factor, IS, PS, and Jaccard coefficient can be
extended to more than two variables using the multi-dimensional contingency tables.
We show the estimated chi-square statistics for k-itemset as one example.

. . o — 1] 74
C=nd Y ~ 4)

It is easy to see {2 can be considered as one derived variable from the observed

elements 7, ..., and the marginal totals fn(/]) of the 2% contingency table. Following
the same delta method, we can derive its variance.

3.2 Interquantile Ranges of Derived Measures

To derive interquantile ranges of estimates, we need to explore the distribution of those
derived variables. In [I1]], the authors have shown the estimate of support follows an
approximate normal distribution and the estimate of confidence (i.e., a ratio of two
correlated normal variables) follows a very complex F'(w) distribution. In general, we
can observe that every element (e.g., 7;;) in the derived measure expressions (shown in
Table 2) has an approximate normal distribution, however, the derived measures usually
do not have explicit distribution expressions. Hence we cannot calculate the critical
values of distributions to derive the interquantile range. In the following, we provide an
approximation to such range based on Chebyshev’s theorem.
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Theorem 1. (Chebyshev’s theorem) Let X be a random variable with expected value
w and finite variance 0. Then for any real k > 0, we have Pr(|X — u| > ko) < 1/k%

Chebyshev’s Theorem gives a conservative estimate. It provides a lower bound to the
proportion of measurements that are within a certain number of standard deviations
from the mean. The theorem can be useful despite loose bounds because it can be ap-
plied to random variables of any distribution, and because these bounds can be calcu-
lated knowing no more about the distribution than the mean and variance. For example,
the loose (1 — a))100% interquantile range of correlation ¢ between A and B can be
approximated as

(¢ — var(¢), ¢ + \/var(¢)]
\/Ol \/O[
60 T T T T T T
Original
551 Estimated H
— 4 — Lower Bound
50 — < — Upper Bound i
. —A— Chebyshev Lower Bound
451 RO Chevyshev Upper Bound |
= 4of v \\\f — v ]
§ 35t A,,,&f,‘;,,,;/,,ﬁf,; |
S - A A
3 A -

301

06 065 07 075 08 08 09 095 1
P

Fig. 1. Interquantile Range vs. varying p

From Chebyshev’s theorem, we know for any sample, at least (1 — (1/k)?) of the
observations in the data set fall within % standard deviations of the mean. When we set
a =4, wehave Pr(|X — p| > \/1&0) < a. Hence, Pr(|X — p| < \/1&0) >1-a.
The (1 — «)100% interquantile range of the estimated measure is then derived.

Note that the interquantile range based on Chebyshev’s Theorem is much larger than
that based on known distributions such as normal distribution for support estimates.
This is because that \/1& > Zzq/2 Where z, /o is the upper a/2 critical value for the
standard normal distribution. In Figure [T we show how the 95% interquantile ranges
for the estimated support of one particular rule (G = H from COIL data) change with
varied distortion p from 0.65 to 0.95. We can see the interquantile range derived based
on Chebyshev’s theorem is wider than that derived from known normal distribution. As
expected, we can also observe that the larger the p, the more accurate the estimate and
the tighter the interquantile ranges.

4 Measures Derived from the Randomized Data Without p

Randomization still runs certain risk of disclosures. Attackers may exploit the released
distortion parameter p to calculate the posterior probabilities of the original value based
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on the distorted data. It is considered as jeopardizing with respect to the original value
if the posterior probabilities are significantly greater than the a-priori probabilities [J3]].
In this section, we consider the scenario where the distortion parameter p is not released
to data miners. As a result individual privacy can be better preserved.

(a) x? Statistics (b) Interest

Fig. 2. measures from randomized data vs. varying p: and p2

Result 1. For any pair of items A, B perturbed with distortion parameter p1 and po
(p1, p2 € [0, 1)) respectively, we have

¢ran S ¢ori Mran S Mori
2 2 2 2
G S G Xran S Xori

ran ori

where Goriy Mori, G2, X2, denote Correlation, Mutual Information, Likelihood Ra-
tio, Pearson Statistics measures calculated from the original data respectively and
Grans Myan, Gfan, Xfm correspond to measures calculated directly from the random-
ized data without knowing py and pa.

All other measures shown in Table[2 do not hold monotonic relations.

Proof. we include the proof of x? in Appendix A and we skip proof of all other mea-
sures due to space limits.

Figure and 2(b)] show how the x? Statistics (G and H) and Interest measures
calculated from the randomized data varies with distortion parameters p; and ps. We
can easily observe that x2,, < x?2,, forall p;,p> € [0,1] and I,.,, > I,,; for some
p1, p2 values.

We would emphasize that Result [T is important for data exploration tasks such as
hypothesis testing. It shows useful information can still be discovered from the random-
ized data even without knowing the distortion parameters. For example, testing pairwise
independence between the original attributes is equivalent to testing pairwise indepen-
dence between the corresponding distorted attributes. From the randomized data, if we
discover an itemset which satisfies x2,, > X2, we can guarantee that dependence exists
among the original itemset since y2,,, < x2,., holds for all p[I.

! The alternative hypothesis will be accepted if the observed data values are sufficiently improb-
able under the null hypothesis. Otherwise, the null hypothesis is not rejected.
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Fig. 3. The number of dependence itemsets vs. varying p

Figure[Blshows the number of dependence itemsets discovered from the randomized
COIL data sets with varying p from 0.55 to 0.95. We can observe that the larger the
distortion parameter p, the more dependence itemsets calculated directly from the ran-
domized data. Even with p = 0.55, around 750 dependence sets can be discovered from
the randomized data, which represents about 75% of 997 dependence itemsets derived
from the original data.

5 Related Work

Privacy is becoming an increasingly important issue in many data mining applications.
A considerable amount of work on privacy preserving data mining, such as additive
randomization based [2/1]] and projection based [6U19]], has been proposed. Recently, a
lot of research has focused on the privacy aspect of the above approaches and various
point-wise reconstruction methods have been investigated.

The issue of maintaining privacy in association rule mining has also attracted con-
siderable studies [891412117120]. Among them, some work [[7/20] focused on sensitive
association rule hiding where privacy is defined in terms of the output frequent itemsets
or association rules. The work closest to our approach is that of [21/413]] based on Ran-
domization Response techniques. In [2114]], the authors proposed the MASK technique
to preserve privacy for frequent itemset mining. In [4]], the authors addressed the issue
of providing efficiency in estimating support values of itemsets derived from the ran-
domized data. Our paper focused on the issue of providing accuracy in terms of various
reconstructed measures (e.g., support, confidence, correlation, lift, etc.) in privacy pre-
serving market basket data analysis. Providing the accuracy of discovered patterns from
randomized data is important for data miners. To the best of our knowledge, this has
not been previously explored in the context of privacy preserving data mining although
defining the significance of discovered patterns in general data mining has been studied

(e.g., [1O]).



112 L. Guo, S. Guo, and X. Wu
6 Conclusion

In this paper, we have considered the issue of providing accuracy in privacy preserving
market basket data analysis. We have presented a general approach to deriving variances
of estimates of various measures adopted in market basket data analysis. We applied the
idea of using interquantile ranges based on Chebyshev’s Theorem to bound those es-
timates derived from the randomized market basket data. We theoretically show some
measures (e.g., correlation) have monotonic property, i.e., the measure values calculated
directly from the randomized data are always less than or equal to those original ones.
As a result, there is no risk to introduce false positive patterns. Hence, some market
basket data analysis tasks (such as correlation analysis or independence hypothetical
testing) can be executed on the randomized data directly without the release of distor-
tion probabilities. In the future, we are interested in exploring the tradeoff between the
privacy of individual data and the accuracy of data mining results. We will also inves-
tigate how various measures are affected by randomization, e.g., which measures are
more sensible to randomization.
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Proof of Result 1

The chi-square calculated directly from the randomized data without knowing p is

s _ n(h - Ar4As)?

&)

A1+ A 410+ Ao
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The original chi-square can be expressed as

2
2 _ n(mn — mgmy)
ot T14+T+1T0+T+0
2
n(A1 — Ai4A41)

J(P1, P2, Aoty Aty Ao, A1) + Aip A1 dor Ao

where f(p1, P2, Aot s Aigs Advo, Ady1) =
p1p2(p1 — 1)(p2 — 1) + p1(p1 — DArort1 +pa(p2 — Aoy Ay

To prove X%an < X(2)7‘i’ we need f(p17p27 )‘0+7 >\1+7 >‘+07 )‘Jrl) < 0 holds for vV
{p17p27 >‘0+7 >‘1+7 )‘+07 )‘Jrl}'

As

Ao =mop2 + (1 = m0)(1 —p2) A1 =1-Apo
Ao+ = mo4p1 + (L= 7o) (1 —p1) Ay =1 — Aot

£ () can be expressed as a function with parameters p; and ps.

We can prove f() < 0 Vpi,p2 € [1/2,1] by showing 1) f() is monotonically in-
creasing with p; and po and 2) f(py = 1,po = 1) = 0.

1) Since p; and py are symmetric and independent, f() can be expressed as

f(p1) = ap? — ap1 + mo4 (1 — 7o)
a = mp; —mps + (1 = 740)710 6)
m = —4773_0 +4myg — 477(2)+ +4mpy — 1

Note that f(p;) is monotonically increasing if @ > 0. Since 0 < w49, 7o+ < 1, we
have —1 <m < 1.

— When 0 <m <1,
A=m?—4m(l — 1y0)ms0 = —m(2mos — 1) <0

we have a > 0.
— When —1 < m < 0, since A = m? — 4m(1 — my9)mo > m? > 0 the roots for
m—VA m-+v A

o o= < 0, hence we have a > 0

Equation[@ are po; = > 1 and pyy =

forall1/2 <py <1.

Since a > 0, we have proved f() is monotonically increasing with p;. Similarly, we
can prove f() is monotonically increasing with po.

2) It is easy to check f(p1,p2) = 0 whenp; = pa = 1.

Combining 1) and 2), we have proved f() < 0 Vp1,p2 € [1/2,1]. Hence, we have

2 2
Xran S Xori:
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Abstract. The goal in domain adaptation is to train a model using
labeled data sampled from a domain different from the target domain
on which the model will be deployed. We exploit unlabeled data from
the target domain to train a model that maximizes likelihood over the
training sample while minimizing the distance between the training and
target distribution. Our focus is conditional probability models used for
predicting a label structure y given input x based on features defined
jointly over x and y. We propose practical measures of divergence be-
tween the two domains based on which we penalize features with large
divergence, while improving the effectiveness of other less deviant corre-
lated features. Empirical evaluation on several real-life information ex-
traction tasks using Conditional Random Fields (CRFs) show that our
method of domain adaptation leads to significant reduction in error.

1 Introduction

Most statistical learning techniques are based on the assumption that the train-
ing data is representative of the distribution on which the trained model is
deployed. This assumption gets routinely broken in applications like informa-
tion extraction, speech recognition, text classification, and opinion mining that
are being increasingly used at large scales. In most such applications, an offline
phase is used to collect carefully labeled data for training. However, the settings
during deployment could be highly varied with little or no labeled data for that
setting. For example, it is easy to find plenty of labeled data for named entity
recognition in news articles but our goal might be to recognize person names
from blogs. It is not easy to find labeled data for blogs but there is no dearth of
unlabeled data.

Our goal in domain adaptation is to use labeled data from some domain to
train a model that maximizes accuracy in a target domain for which we only
have unlabeled data available. We concentrate on adapting structured learning
tasks that model the conditional probability of a predicted structure y given
input x as a linear exponential function of features defined over x and y. A
logistic classifier is a special case of such models where the predicted structure
is a single discrete class label. Such conditional models allow users the flexibility
of defining features without bothering about whether they are correlated or not.

* Contact author.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 224-[Z35] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Therefore, most real-life applications of these models involve a large number of
features, contributing in varying strengths to the prediction task. With overfit-
ting avoided using a suitable regularizer, these models provide state-of-the-art
accuracy values in settings where features behave the same way in the training
and target domain [TI2I3]. However, we observed that such models are rather
brittle in that they perform very poorly on target data with even a small subset
of features distorted in spite of other highly correlated features remaining intact.

We show how to detect features with large divergence in the two domains and
penalize the more distorted features so that other less deviant correlated features
start exerting a larger influence. A challenge is designing a reliable measure
of divergence given only unlabeled data from the target domain whereas our
features are defined over function of both labels y and input x. We propose a
measure of distortion as a function of the difference in expectation over the target
samples and the trained conditional model. We formulate this as an optimization
problem and present efficient algorithms for solving it. On seven real-life datasets,
we show that our domain adapted classifier provides much higher accuracy than
an unadapted model.

The rest of the paper is organized as follows. We discuss related work in
Section 2l We describe our basic learning model in Section Bl and present our
approach to domain adaptation in Section @l We report results of an empirical
evaluation of our model in Section [l

2 Related Work

Transfer learning: In transfer learning [4U5J6l/7] the goal is to use available train-
ing data from a related domain, along with training data from the target domain,
to train the target classifier. A popular technique is to use the classifier in the
related domain to define a prior [AG[7] for the classifier trained using the in-
domain data. For example, [7] proposes to first create a classifier using training
data from the related domain. The output parameters are used as the mean of a
Gaussian prior for the second classifier trained using labeled data of the target
domain. A different type of prior is defined in [§] where the prior is used to give
more importance to features that are useful across domains. Another interesting
approach is based on replicating features so that shared features exploit labeled
data from both domains whereas domain-specific features are trained only using
in-domain data [5]. Our goal is different in that we do not have any labeled
data from the target domain. Transfer learning is supervised domain adaptation
whereas we are interested in unsupervised domain adaptation.

Structural correspondence learning: A recent proposal [QUI0] for unsupervised
domain adaptation is to define new features that capture the correspondence
between features in the two domains. The new features are weights of “mini”
classifiers that predict value of user-chosen anchor features that remain invariant
across the domains. Successful domain adaptation will require both addition and
deletion of features. Deletion is required for features that are missing or severely
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distorted, whereas when features are substituted, for example, the inter-author
separator is changed from “comma” to a “new line”, addition of features that
capture their correspondence is more useful. Given that most structured learning
tasks involve many correlated features, careful feature subsetting could lead to
significant accuracy gains, as we show in this paper.

Robust learning: A different approach to handling features that are distorted
in the test data is to learn classifiers that are robust to limited amounts of
distortion. For example, [I1] shows how to create SVM classifiers that provide
good worst case performance with the deletion of any subset of features of size
no more than k. In robust learning a model is trained once unlike in the case
of domain adaptation where the model is retrained to adapt to any systematic
difference between the two domains.

Correcting sample selection bias: In some cases, the training distribution fails
to be representative of the test distribution because of a selection bias in the
training instances, for example due to active learning. A popular strategy to
correct for the bias [T2/T3] is to weight training examples differentially. Such
methods are not likely to be useful for domain adaptation because all instances
from the train domain could have very small probability in the target domain
and the real issue is that of choosing the right representation through feature
reweighting rather than instance reweighting.

In summary, the problem of unsupervised domain adaptation is related to, but
distinct, from many problems in machine learning. To the best of our knowledge,
domain adaptation via feature subsetting has not been addressed before in the
literature.

3 Background

3.1 The Basic Learning Model

We consider conditional models of structure learning where the goal is to predict
a label y from a structured space ) given an input x. We assume a feature
vector representation F : (x,y) — R that maps any (x,y) pair to a vector
of K reals. The conditional probability model is a log-linear function over these
features. Thus, Pr(y|x) is this Gibbs distribution

Pr(ylx, w) — Zwix) expw - £(x,y) (1)

where w is the parameter vector of the model where the k** component wy
is called the weight of feature fi. The term zy(x) = Zy, expw - f(x,y’) is a
normalizing constant.

In practice, each feature fi(x,y) is defined as a sum of local features that
apply over smaller subsets of variables. When the features decompose over cliques
of an undirected graph on labels y, we get Conditional Random Fields [I]. This
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decomposition is exploited for efficient inference over the space of variables y.
For example, in information extraction, the underlying graph is a linear chain
where features decompose over pairs of adjacent variables.

During training the goal is to maximize log-likelihood over a given training
set D = {(x¢,yr)} Y, expressed as

L(w) = logPr(ye|xe, w) =Y (w-£(x¢,yr) — log 2 (x¢)) (2)
4 4

We wish to find a w that maximizes L(w). In practice, the norm of w is not
allowed to grow too large to avoid overfitting. This is achieved by subtracting a
regularization term R(w) = I With 4 = 1 or 2 and a user-provided variance
o?. The resultant objective is convex, and can thus be maximized by gradient
ascent, or one of many related methods.

During deployment, given an input x, we predict a y for which Pr(y|x) is
maximum. The justification for this step is that the test data follows the same
distribution as the training data, using which we learnt a w so as to maximize
the probability of the correct prediction.

3.2 Train and Target Data Distributions

In domain adaptation we need to deploy a model in a domain where the distri-
bution of (x,y) is different from the distribution from which the training data
was obtained. Let D denote the distribution from which the training sample D
was taken. Let D’ denote the target distribution on which we wish to deploy
the model. We do not have any labeled data from D’, instead we have lots of
unlabeled data D’. Let D' = {(x)})Y',.

In domain adaptation our goal is to use both the labeled samples D from
D and the unlabeled samples D’ from distribution D’ to train a model that
maximizes accuracy on D’. The accuracy in the D distribution is of no interest
to us. Therefore the normal goal during CRF training of maximizing likelihood of
D is not justified anymore because D is not representative of the distribution on
which the model will be deployed. This is also what makes the problem different
from semi-supervised learning where the labeled and unlabeled data come from
the same distribution.

4 Domain Adaptation

Our approach to domain adaptation is to choose a representation where the
training and test distributions are close, and once that is achieved we can justify
training a model to maximize accuracy on the labeled training domain. Our
starting representation is the user provided feature vector f(x,y). During domain
adaptation we select the subset S of features such that the distance between the
train and target distributions is small in the projected space while maximizing
likelihood on the training data. Our ideal objective of maximizing likelihood of
the target distribution D for which we have no labeled samples
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argmax, > S wefi(x,y) — log () (3)

(x,y)€D’ k

is replaced with the achievable objective

argmax, g Z Z wi fr(X,y) — log 2w(x)

(x.y)eDkeS (4)
such that dist(D,D’'|S,D,D’) <e.

where dist(D, D’|S, D, D’) is a suitable measure of distance between the two do-
mains in a representation corresponding to the features in set S and as estimated
from the labeled samples D from D and unlabeled samples D’ from D’.

4.1 Distance Function

We next discuss how to measure the distance between the two distributions. A
direct approach is to first estimate their full (x,y) distributions using sample
data and then measure the distance between the two distributions using some
function like KL distance. This is often difficult and requires a lot of training
data. One of the main reasons for the success of the conditional approach for
structured learning tasks is that they do not require the modeling of the distri-
bution over x.

Recently, [13] proposed to correct for sample selection bias in the training
data by reducing the difference in the mean of the x features in the training and
target distribution. There are several reasons why this method will not work well
in our setting. First, in structured learning settings, the feature representation is
in terms of both x and y. Even if, we consider the scalar classification problem
where we simplify the feature representation to be a cross product of features
defined over x and labels y, we can obtain more accurate distance measures
by comparing the x means of each y separately rather than collapsing them on
single means. Also, the method proposed in [I3] assumes that Pr(y|x) is the
same in the training and test distribution. In our case, we assume that there
exist some representation under which the two distributions are the same, but
this is not true for all representations. In particular, this is not true for the
starting representation used during normal training.

We propose to compare the two distributions by comparing component-wise
the means of the features in their (x,y) space. Let Eg and Eg, denote the
expected value of the k*" feature under distributions D and D’ respectively.
For the training distribution, we estimate it empirically from the sample D as
Ek = > (xuye)ED Fr (’j\‘}’y‘). For the target distribution D’ since in the sample D’
we have only x values, we use the expected value of the feature as calculated
under the Pr(y|x,w) distribution. Thus,

B = o S0 3 feloee,y) Priylxe, w) (5)

xe€D’ Yy
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Using Ep and Ep/, we replace dist(D, D’'|S, D, D) with the distance between
the above sample means as Y., ¢ d(E}, E},). The precise form of the distance
function will depend on the nature of the specific features. For example, for
sparse binary features, it is useful to interpret the mean values as probability
of occurrence of a binomial distribution. In such cases, distance measures like
cross-entropy and the log-odds ratio seem meaningful [I4]. When the features
are arbitrary real values, a L1 or square distance would be more appropriate.

4.2 Overall Objective
In terms of the new distance function, we can rewrite the objective as
argmax, ¢ > Y wife(X,y) — log zw(x)
(x,y)eD keS

such that » d(Ep, Ef,) <e.
kesS

(6)

The above objective presents a difficult combinatorial optimization problem
over the exponentially many subsets of features. We convert the discrete fea-
ture selection problem to a soft selection problem by rewriting the constraint
S pes d(EE,ER) < eas Y, lwp[Yd(EY, Ef,) < €. Also, using the Lagrange
dual formulation, we push the constraints into the objective and get the equiv-
alent objective for an appropriate value of \ as

argmax,, Z Z wi [k(X,y) —log zw(x) — A Z lwg|Yd(E, ER))  (7)
k

(xy)eD k

The above formulation has several intuitive interpretations. We can treat this
as a standard accuracy-regularized training method with the only difference that
the wy are weighted in proportional to the distance between the training and
target distribution along the k-th feature component. A feature with a large
distance should get a smaller weight. Another interpretation is in terms of prior
distributions over the parameters where the variance is not constant over all
features, as is normally the case, but is inversely proportional to the divergence
of the feature over the two distributions. When ~ is 1 the prior is a Laplace
distribution and when v = 2 the prior is a Gaussian distribution with variance
of the kth parameter as i Ele, B So when the distance is large, the parameter
is likely to stay close to its mean value of 0.

4.3 Training Algorithm

We now discuss how we solve the optimization problem in Equation [d For con-
creteness, we assume that v = 2 and the distance function is the square distance
defined as d(Ep, Ef,) = (E¥, — Ef,)%. The final objective then becomes.

L(w) = argmax,, Z (Z w fr(X,y) — log zw(x)) — /\Zwi(E’f) - E’E),)W)2

(x,y)eD k k
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where B, , = |1%/| doxien 2oy fr(xi, y) 7T wE(<.Y) The above is a smooth dif-

Zw (%4)
ferentiable function of w. We can use standard gradient descent approaches to

solve it. The gradient with respect to the k" parameter is

oL i OB,
b, = 2 0o¥) = NEb y —2\wi(Bh - B ) —Zw B =Fprw) g,
(x,y)eD
where
OE%L, . expwf(xz y) exp wf(xi,y’)
81Uk - Z Z‘fj Xy w(Xz) fk X“y ka Xy Zw(Xz) )
x;, €D’y
= Z > filxiy) Pr(ylxi) (fr(xi, y) ka xi,y') Pr(y’[x:))
xleD/ y

— Jk J k
= (ED',W - ED/’WED’,W)

where E{)k, is the expectation of the product of features j and k with respect
to the empirical x distribution from D’ and Pr(y|w,x). With respect to these
distributions, the term (E{Dk,’w - E{D,)WEBVW) represents the covariance between
features j and k. As in normal CRF training [I], we have to exploit the decom-
posability of the label space to evaluate these terms tractably.

There are two problem with the above objective.

1. The function is not convex, unlike the normal CRF objective with constant
weighting of the regularizers.

2. The gradient is expensive to compute since the covariance terms are quadratic
in the number of features. In typical structured learning tasks, for example in
information extraction, the number of features tend to be very large.

We address both these issues by following a nested iterative approach to train-
ing. In each iteration, we fix feature distances with respect to the current values
of the parameters and find the optimum value of the parameters treating the
distance values as constant. This makes the inner optimization problem convex
and linear in the number of features. We found that in practice with two or
three iterations we get most of the benefit of complete training at significantly
reduced cost.

5 Experiments

We evaluate the effectiveness of our proposed method on seven domain adapta-
tion tasks constructed from the following four entity extraction benchmarks.

CoNLL 2003 dataset. The ConLL 2003 datasel] is a well-known benchmark
for Named Entity Recognition where the goal is to extract entities like persons,
organizations, and locations from news articles.

!http://cnts.uia.ac.be/conl12003/ner/
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Cora citations. Cora citations [3] consists of citations collected from the reference
section of several academic papers. The extraction task is to find author names,
titles, venue, and year.

Cora headers. Cora headers [3] consists of headers of research papers covering
fields like the title, author names, affiliations, and abstract of a paper. Even
though headers and citations come from the same repository, the way authors
and titles appear in paper headers is very different from the way they appear in
paper citations, making it interesting for domain adaptation.

Cliteseer citations. This dataset consists of journal articles we collected from
Citeseer and therefore formatted slightly differently from the Cora dataset.
Also, unlike Cora it consists only of journal entries. The dataset is available
at http://www.it.iitb.ac.in/~sunita/data/personalBib.tar.gz.

Table 1. Description of domain adaptation tasks used in our experiments

Task Train domain Target domain  Label Train Target
F#train #test #train #test

Cite Cora Citeseer citations Cora citations Author 35 62 205 294

Cora Cite Cora citations Citeseer citations Author 155 294 39 62

Title Caps  Citeseer citations All-Caps Title 35 62 39 62
Author Caps Citeseer citations All-Caps Author 35 62 39 62
Cite Conll  Citeseer citations CoNLL Person 35 62 808 1191
Conll Cite  CoNLL Citeseer citations Person 304 1191 39 62
Hdr Cite Cora headers Citeseer citations Title 45 87 39 62

In Table [[l we provide details of seven domain adaptation tasks created using
various combination of these four datasets as the train and target domains and
the extracted label. In tasks Title Caps and Author Caps the target domain
differs from the train domain only in one respect: all words are fully capitalized
in the target domain whereas in the train domain they are normal text records
with a mix and capital and small letters. The last four columns specify for each
of the two domains, the number of records used during training and testing
respectively. For the target domain, the training documents are unlabeled.

We used a sequential CRF [II2] with L2 regularization as our baseline model
for information extraction. The package that we used is downloadable from [I5].
We used the BCEU encoding of the entities where an entity like person name
is decomposed into four labels: Begin-person, Continue-person, End-person, and
Unique-person. Each token contributed two types of features: (1) the token itself
if it was encountered in the training set and, (2) the set of regular expressions
like digit or not, capitalized or not that the token matches. For each label i,
these features where fired for the ith word and two words to the left and right
of the word.
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We evaluated our methods using F1 accuracyﬁ at the level of individual tokens.
We do not report span-level accuracy because the lack of standardization in what
defines the boundaries of an entity, makes it difficult to get useful cross-domain
comparison at the span-level. For example, in Citeseer the last punctuation (“.”)
is outside the title entity whereas in Cora it is inside. In each experiment perfor-
mance was averaged over four runs obtained by varying the subset of instances
used for training and testing. Unless otherwise stated, our default method of
domain adaptation uses v = 1, A = 1 and the square log-odd distance function
(log E% —log E¥,)?. This distance function has been shown to work well [I4] for
sparse indicator features commonly found in information extraction tasks. We
used the e-approximation trick proposed in [16] for handling the discontinuity of
the objective when v = 1.

5.1 Overall Improvement with Domain Adaptation

In TablePlwe show the accuracy of the original unadapted model and the adapted
model trained using our method respectively called “Original” and “Adapted”.
Along with the accuracy on the target domain, for comparison we also show
accuracy on the train domain. In all cases, we find that the accuracy of the
target domain improves with domain adaptation. In some cases, the accuracy
improvement is very dramatic, for example increasing from 26% to 69% on the
second task.

Table 2. F1 Accuracy before and after domain adaptation

Dataset-Name Train domain  Target domain
Original Adapted Original Adapted

Cite Cora 97.4 95.9 30.7 62.7
Cora Cite 98.2 97.6 26.0 68.6
Title Caps 94.4 93.2 41.8 90.1
Author Caps 97.4 94.3 85.8 94.0
Cite Conll 97.4 95.8 40.1 45.0
Conll Cite 90.5 85.8 40.9 41.9
Hdr Cite 85.3 76.0 12.0 27.8

For Title Caps and Author Caps where the target domain is just a fully capi-
talized version of the train domain, we find that the unadapted model performs
very poorly whereas with adaptation we get accuracy comparable to the accuracy
on the train domain. This illustrates the importance of adaptation even in do-
mains that differ only slightly from the training domain. The top few features of
the original model whose weight reduces almost to zero in the adapted model are:
IsInitCapital, IsInitCapital.left-2, IsInitCapital.right+2,
W Extract, IsAllSmallCase, IsAllSmallCase.left-2, IsAllSmallCase.
right+2. Most of these are case related features which have no importance in

2 F1 is defined as 2*precision*recall/(precision+recall.)
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the target domain. In contrast, the top few features whose weight increases
significantly are Punctuation, Punctuation.left-1, Punctuation.right+1,
W ACM.right+2. These features remain invariant in the two domains since they
are related to punctuation or fully capitalized words.

Another interesting observation from these tables is that on the train domain
while the accuracy does drop after adapting to a different domain, the drop
is only slight. This shows that in most cases, the model has other redundant
features that start playing a role when some subset of its features are penalized.

5.2 Comparison with Other Methods

In Table [f] we compare our default method of domain adaptation to a number
of other alternatives.

We compare with the recently proposed structural correspondence learning
(SCL) [@] (described in Section B]). We find that SCL also shows significant
accuracy improvements beyond the original unadapted model but the gain is
lower than our method in all except the last dataset. Since our method of feature
deletion is orthogonal to the SCL approach of feature addition, we also report
results with both methods combined in the “SCL+Our” column of Table B In
most cases, the combined method is better than either of the two.

We also compare our method to semi-supervised learning (SSL) proposed
in [I7] which adds to the training objective an additional goal of minimizing
entropy labels for the unlabeled documents. In column SSL of Table [3 we show
the results for the weight settings for which we obtained highest accuracy. Quite
predictably, SSL is not competitive as a method of domain adaptation. We show

Table 3. Comparison of our method of domain adaptation with alternatives

Task Original Adapted SCL SCL+Our SSL x-dist v = 2 Square-dist
Cite Cora 30.7 62.7 47.3 63.3 31.5 27.6 63.6 32.8
Cora Cite 26.0 68.6 68.6 67.826.0 76.2 75.9 46.0
Title Caps 41.8 90.1 80.1 90.9 46.8 90.3 77.3 46.0
Author Caps 85.8 94.0 87.1 94.7 86.4 94.3 94.2 86.4
Cite Conll 40.1 45.0 52.1 45.1 40.4 409 45.7 32.2
Conll Cite 40.9 41.9 43.9 41.1 43.0 36.8 43.6 44.1
Hdr Cite 12.0 27.8 57.9 38.9 19.7 24.3 23.7 18.5

the importance of comparing the mean of features in the joint (x,y) space instead
of means along the projected x space as proposed in [I3]. The latter is simpler to
optimize because the distance function is independent of w and we get a simple
convex objective. The results shown in column x-dist of Table [Blindicate that in
almost all cases the performance of the x-only distance function is significantly
worse than our method.

We vary our choice of v from 1 to 2, that is using weighted L2 regularizer
instead of L1 in column « = 2 of Table[3l We find that our default of L1 distance
performs much better than L2. This observation agrees with earlier reports on
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the efficacy of feature selection using L1 instead of L2 regularizers. Next, we vary
our default choice of the distance function. We chose log-odds ratio because it
has been found to perform better on sparse Bernoulli features. Instead, if we use
a regular square distance between the expected values of features, we find that
the accuracy is much worse as shown in the column marked Square-dist.

5.3 Effect of Training Data

Another interesting aspect of domain adaptation is the performance of the
adapted model with increasing training data. In Figure [l we show the accuracy
of the adapted model on the target domain and the unadapted model on the
train domain with increasing labeled training data. The y axis is the change in
error compared to the error with 10% training data. As expected with statistical
learners, with increasing training data, the error within the domain decreases. In
contrast, the error of the adapted model either stays almost the same or increases
slightly with more out-of-domain training data.

=&—Train domain (Cite) ~=#=Target domain (Cora) =#=Train domain (cora) =#=Target domain (cite)
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Fig. 1. Effect of increasing labeled training data on train and target domains for tasks
Cite Cora (left) and Cora Cite (right)

6 Conclusion

In this paper we proposed a new method of unsupervised domain adaptation
that selects a subset of features for which the distance between the train and
target distribution is minimized while maximizing likelihood of the labeled data.
The main challenge in this task is estimating distribution distance in the (x,y)
space in which the model features are defined given only unlabeled samples from
the target domain. We defined a distance measure and a method for solving
the combined optimization problem that is both efficient and leads to significant
accuracy improvements. In future, we would like to develop a theoretical analysis
of this algorithm.
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Abstract. Grid-based clustering is particularly appropriate to deal with
massive datasets. The principle is to first summarize the dataset with
a grid representation, and then to merge grid cells in order to obtain
clusters. All previous methods use grids with hyper-rectangular cells. In
this paper we propose a flexible grid built from arbitrary shaped poly-
hedra for the data summary. For the clustering step, a graph is then
extracted from this representation. Its edges are weighted by combining
density and spatial informations. The clusters are identified as the main
connected components of this graph. We present experiments indicating
that our grid often leads to better results than an adaptive rectangular
grid method.

1 Introduction

With the ever-increasing amount of storage and processing capacities, huge
datasets are now common in many areas : earth science, astronomy, or computer
networks, just to name a few. The mining of such datasets, and especially the
clustering task, calls for robust and efficient techniques. Grid-based clustering
methods have been the subject of many recent studies [TI2/3].

Fig. 1. Summaries of datasets. Left a regular rectangular grid. Right an adaptive hy-
percubic grid.

Grid-based clustering consists in clustering the space surrounding the data-
points instead of the datapoints themselves [4]. The basic idea is to cover the data
space with a grid in order to construct a spatial summary of the data. Each non-
empty cell of the grid is weighted by the number of original datapoints it contains
(see Figure[I]). The clustering is performed by aggregating adjacent dense cells
to form clusters. Grid-based methods are similar to density-based clustering, but

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 350-8517} 2007.
© Springer-Verlag Berlin Heidelberg 2007
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with local densities and neighborhood relations taking place between cells, and
no longer between individual points.

In this paper, we propose a new type of grid to build the dataset summary. The
cells of the grid are general polyhedra, and are not axis-aligned hypercubes or
hyper-rectangles like in all existing methods. The neighborhood relation between
cells is richer; hence the aggregation process (which is the base operation for
clustering) is more efficient. The clustering step is performed by extracting a
graph from the spatial summary, and identifying clusters as its main connected
components. The edges of the graph are weighted by a similarity metric which
uses both spatial and density information from the summary.

The remainder of the paper is structured as follows : Section 2] presents re-
lated work and motivations. Section [3 describes the construction of the flexible
grid. Section Ml describes the clustering step and the similarity metric. Section [
discusses complexity and sensitivity to dimensionality. Section [6 contains results
of experiments and a comparison with a hypercubic adaptive grid method.

2 Related Work and Motivation

Many grid-based clustering approaches [II3] rely on the traditional regular, hyper-
cubic grid (Figure[ left). The main drawback of these approaches is that the grid
construction requires to cover all the data space with the same precision indepen-
dently of the data density. Thus a very high resolution could be needed to obtain
a satisfying spatial summary. Another class of methods [Bl2] uses multi-resolution
grids with size-varying hypercubic or hyper-rectangular cells (Figure[ll right). The
basic idea is to cover with more precision regions with many points. Usually the
clustering step follows the hierarchy of the data structure. Both sets of methods
are parametrized by the resolution of the grid. The clustering step usually relies on
a density threshold discarding low-density cells. The complexity of these methods
is linear in the number of data points O(N). The complexity of the clustering step
depends only on the number of (non-empty) cells M.

The aggregation of neighbor cells is the basis for the clustering process. Since
the ultimate goal is to find patterns in the original data, one wants to minimize
the impact of the particular geometry of the grid on the efficiency of the aggre-
gation process. Classical grids (be they regular or multi-resolution) have their
cell borders aligned with the axes of the space; this directional bias has a strong
influence on the resulting data summaries.

In this work, we propose a multi-resolution grid whose cells have randomly
oriented borders. It is close to the Crack STIT tessellation model of stochastic
geometry [6]. The resulting spatial summary has no particular orientation and
does not suffer from the rigid geometry of hyper-rectangular tilings. The cells
are general polyhedra, allowing a spatially more flexible aggregation process. For
the clustering step, we extract a weighted graph from the spatial summary. We
propose a similarity metric to weight edges; it takes into account both spatial
and density similarities of cells. The clusters are identified as the main connected
components of the graph. The complexity of the clustering step is O(M). The
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parameters of the whole method are the size of the summary M, the number of
clusters K and the minimum number of points MinPts per cluster.

3 Flexible Grid

3.1 Hyperplanes and Polyhedra

We recall here simple facts about hyperplanes and polyhedra. A hyperplane
in a d dimensional space H = {z | (u-z) = t} is defined by its orientation
vector u € S! and its offset t € R ((-) denotes scalar product). For a given
u, a hyperplane with offset ¢ = (2o - u) passes through the point z5. A uniform
random hyperplane can be obtained by taking a random d-dimensional gaussian
random vector, and normalizing its norm to 1. A polyhedra P C R? admits
two representations : the H-representation (set of delimiting hyperplanes) and
the V-representation (convex hull of vertices). The H-representation describes P
as the intersection of halfspaces defined by a set of hyperplanes (NH;"), where
0= (01...0n) is a binary codeword locating the point in halfspaces defined by
the hyperplanes.

3.2 Construction

The principle of the construction of the multi-resolution flexible grid is simple
(see Algorithm [I]). It begins with the hypercube containing the data. At each
step, the cell containing the largest number of points is splitted into two sub-
cells by a random hyperplane. This process is iterated until a given number of
non-empty cells M (fixed by the user) is reached. The hyperplanes are chosen
with a uniform random orientation. The splitting process has a natural binary
tree structure, as depicted in Figure 2l The algorithm iteratively encodes the
data points into binary codewords. These binary codewords correspond to the
H-representation of the cells. At the end of the algorithm, the dataset has been
summarized to a set of weighted polyhedra. Each datapoint belongs to a partic-
ular cell.

The flexible grid is a particular realization of a stochastic process. It is built
iteratively during the cell refinement process and automatically adapts its reso-
lution to the local data density. Finer parts of the gird are revealed in regions

\

Fig. 2. Data domain, cell tree and hyperplane tree
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Algorithm 1. Construction of flexible grid

Inputs

X = {x1,...,xn} dataset of N points in R?

D : hyper-rectangle containing X

M : desired size (number of occupied cells) of the summary

Outputs

S ={(S1,p1),...,(Sm,pm)} set of M polyhedra along with the proportion of points
they contain

N R =neighborhood relation between the cells

Begin

So — {(D, 1,[])} initial region containing all the points
T <« empty hyperplane binary tree

NR «—empty list

While | Sp |< M
(C,p,w) < cell of Sy with the maximum p and with codeword w
Hpiie < random hyperplane passing through the center of C
T «+ Add hyperplane Hp;: to hyperplane tree at node of binary index w
{(C1,p1,w1), (C2,p2, w2)} < subcells created by splitting C with hyperplane Hp;¢
Replace (C,p,w) in So by non-empty elements of {(C1, p1,w1), (C2, p2, w2)}
N R «— Update neighborhood relations of the new cells replacing C'

End

Extract S from Sp
End

where there are many datapoints. The resulting summary has small, high-density
cells in dense regions and big, low-density cells in sparsely populated regions.

4 Clustering

4.1 Graph Clustering

Graph clustering has been the subject of numerous studies (see [7]). The idea is
to modelize the clustering problem by a weighted graph; the original clustering
problem reduces to find clusters of vertices of the graph. In this paper, we extract
the graph from the spatial summary (Figure[3)). The graph representation is well
suited to our problem since it allows to describe in a compact form the polyhedra
(the vertices), their neighborood relation (the edges) and their similarities (edge
weights). An edge links two vertices if they correspond to neighbor cells. Two
cells are neighbors if they have a (d — 1)-dimensional intersection. Edges are
weighted with a similarity metric described below. We iteratively remove edges
of the graph until we have K connected components, of at least MinPts points
each. At each step the edge with the minimum weight is chosen for removal.
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Fig. 3. (a) Flexible data summary (b) Structure of extracted graph

4.2 Similarity Metric

In the majority of previous works, the grouping of two cells is determined (im-
plicitly or explicitly) by the closeness of the densities of the two cells. This stems
from the intuitive assumption that cells at the frontier of a cluster will see a
large density variation. This is not robust since even in dense regions, important
density variations may appear. We propose a more robust cell grouping criterion
incorporating spatial closeness between cells. Because of the multi-resolution,
the distance between cell centers already conveys much information about the
density of the data. The spatial information allows a smoothing of the density
variations, thereby allowing better clustering results.

Given two cells with centers ¢;, ¢; € R?, and cell density values D; and
D; € R, we set the similarity between cells < and j to be fsim = faens: fspat, With
faens i) = eop (<5201 ) and fopur(,7) = eap (=151 with Ggons be-
ing the mean euclidean difference between their densities, abrpid Ospat the average
euclidean distance between centers of two neighbors cells of the grid. The expo-
nentiation is the most natural way to express the similarities. The density D, is
the ratio (p;/V;) where p; and V; are respectively the proportion of points and
the volume of the cell.

5 Dimensionality and Complexity

5.1 Dimensionality

Grid-based methods are well suited for small dimensional spaces. For high dimen-
sional data, the number of grid cells and of neighbor cells increases exponentially
and the methods cannot be used as such when the number of dimensions iq too
high [8]. the exponential number of grid cells, and the high number of neighbor
cells are highlighted as the main issues. Compared to regular rectangular grids,
the multi-resolution grid and our graph clustering technique partly circumvents
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this phenomenon. In our case the main limitation comes from the complex struc-
ture of polyhedra : computing the volume of the polyhedra and testing which
polyhedra are in its neighborhood rapidly becomes prohibitive. We propose here
to approximate these two steps: instead of computing the whole neighborhood
of cell, we compute the distance between all cell centers. The neighborhood of a
specific cell is then defined as the set of cells whose center is among the closest
centers according to the distance matrix. The volume of a cell of the grid is then
approximated by the volume of a ball, the diameter of which is set to the dis-
tance to the nearest cell center. These approximations are reasonable with regard
to the multi-resolution nature of the summaries and to our edge-removal graph
clustering technique. This approximation does not degrade the performance of
the method as will be seen in Section [Gl

5.2 Complexity

The construction step has linear complexity in the input data size O(N) (with
an analysis similar to [2]). All the other steps depend only on M. Neighborhood
check has complexity O(m - LP(m,d)), LP(m,d) being the complexity of a lin-
ear program with m constraints in a d-dimensional space, m depending on the
polyhedra. For the clustering step, each search for connected components has a
complexity linear in the size of the graph: O(V + E), V and E being respectively
the number of vertices and edges of the graph. It is O(M) for our problem since
the number of edges can be bounded by (nmaq - M)/2 with n,,4. the maximum
number of neighbors of a node.

6 Experiments

6.1 Experimental Setting

We implemented in C++ the construction of our flexible grid, flexible grid ap-
proximation. We also implemented the AMR-like (Adaptive Mesh Refinement)
grid (Figure [ right), which is an adaptive, axis-aligned, hypercubic grid de-
scribed in [92]. Experiments were performed with four datasets : a first complex
2D dataset of 3000 points from [10], a 3D dataset of 8000 points with five non-
convex “banana” shapes, the Pageblocks database of 5400 points (d = 10), and
a subset of 7800 points Letter Recognition database (d = 16) from the UCI
Machine Learning Repository. For the 2D and 3D datasets, we compared the
axis-aligned case ("AMR-like’), the flexible case ("flexible’) and the approxima-
tion of the flexible case described in Section [ (*flexible-approx’). For the higher
dimensional datasets we compared the flexible approximation and the AMR-
like summaries. For flexible approximations, we took respectively 3,4,11 and 17
neighbors per cell for the 2D, 3D, 10D and 16D datasets (following the simple
idea that a polyhedron in d dimensions has at least (d + 1) faces). We measured
the raw performance with respect to the full original dataset with the Normal-
ized Mutual Information criterion ([I1]). Error bars show standard deviation of
experiments for the flexible and flexible-approximation cases. Clustering para-
meters are indicated in the lower right corner of the figures.
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(c) 10D dataset (d) 16D dataset

Fig. 4. Clustering quality for growing summary sizes

6.2 Discussion

The results show that the axis-aligned summary type has a rather unpredictable
behavior. The clustering performance does not always grow with the summary
size : it may remain approximately constant (16D dataset) or even degrade (2D
and 10D datasets). The flexible grid yields better results most of the time. The
clustering performance globally grows with the resolution. Note that the flex-
ible approximation has practically the same performance than the full flexible
summary. With this approximation, the complexity of the algorithm is greatly
reduced so that it could be used reasonably for dimensions up to 50.

7 Conclusion and Future Work

We have proposed a new type of grid for data summaries in the context of
grid-based clustering methods. The grid is locally-adaptive and has a flexible
geometry. We also proposed an approximation of this method adapted to high
dimensional spaces. We have presented results indicating that the proposed grid
often yields more accurate clustering results than its axis-aligned counterpart.
In future work, we will incorporate the flexible grid into classical variations and
improvements for grid-based methods (e.g subspace clustering [12]).
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Abstract. This paper presents a novel method for multi-relational classification
via an aggregation-based Inductive Logic Programming (ILP) approach. We
extend the classical ILP representation by aggregation of multiple-features
which aid the classification process by allowing for the analysis of relationships
and dependencies between different features. In order to efficiently learn rules
of this rich format, we present a novel algorithm capable of performing
aggregation with the use of virtual joins of the data. By using more expressive
aggregation predicates than the existential quantifier used in standard ILP
methods, we improve the accuracy of multi-relational classification. This claim
is supported by experimental evaluation on three different real world datasets.

Keywords: multi-relational datamining, multi-relational classification, multi-
feature aggregation, existential quantifier.

1 Introduction

Multi-relational (MR) data mining [4] deals with gathering knowledge from multiple
related tables by exploring their own features as well as the relationships between
them. Classical mining algorithms are not applicable to MR data since tuples linked to
the table studied, referred to as the target table, and stored in directly or indirectly
related tables have potentially valuable information about target tuples which is not
expressible in single-relational (SR) data mining without loss of knowledge [1, 4, 13].

MR classification is inherently different from SR classification because all tables
have to be searched for valuable information, and relationships between the features
present in the database have to be explored. There are a few techniques extending SR
methods into the MR domain. One method of classifying MR data is to adopt the
framework of Inductive Logic Programming (ILP) [1, 3] and use it to find rules such
that they entail one of the classes. CrossMine [13] is such an ILP based MR classifier
using TuplelD propagation, propagating data into related tables through foreign key
relationships instead of performing a physical-join in the database. As the propagation
was expressed in [13], there is not enough data moved to perform aggregations over
related tables, other than the target table, since the IDs from those related tables are
missing. MDRTL-2 [2] uses selection graphs to represent rules which visually depict
the SQL statements used to describe the rules. [6] extends this technique to include

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 430 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Customer. Card Author.

CustID Name Age | Gender CardID | CustID Type | Limit AuthorID Name Age Address Wealthy
1 Jennifer Smith | 20 F 1 1 MC | 20008 1 Rita Gold 43| Vancouver, BC | Yes
2 Bob Doe 40 M | 2 1 VISA | 10008 2 Robert Xu 34 | Seattle, WA No
3 Janet Cats 30 F T3 2 AMEX 15008 3 Abbots Ford | 57 | New York. NY | Yes

Class Label _t
i ] Target Table
CustID | BookID Book Wrote
1 1 BookID Title ISBN Pages | Weekson | Genre BookID | AuthorID
1 3 ‘ bestseller list 1 1
2 4 - 1 How to discover gold 94038844332 342 8 Sci-Fi 1 5
2 2 2 10 sights to see in your lifetime | 3847722245 24 2 Travel 2 1

Fig. 1. Customers, books and their authors. (Arrows denote 1-many relationships).

single-feature aggregation functions. The approach of [9] uses virtual features to
summarize tuples not contained in the target table. It relies on discretization resulting
in information loss [5]. [11] proposes a probabilistic model to learn cluster labels.
This model results in information loss as well since the information of non-target
table tuples is aggregated into a single value. Decision trees were extended to the MR
domain while incorporating single-feature aggregation and probability estimates for
the classification labels [8]. [7] introduces a model for MR classification using
attribute values and link distributions. It requires a self-join of the target table and
hence cannot be applied to datasets used in this paper.

In this paper, we propose CLAMF (CLassification with Aggregation of Multiple
Features), a method that classifies MR data using aggregation involving single and
multiple features without physical joins of the data. As our running example we use
the database shown in Fig. 1 consisting of the target table Author with attribute
‘wealthy’ as a class label. There are three other entity tables, Book, Customer and
Card, and two relationship tables Wrote and Purchased. Our contributions are:

— selecting and using appropriate aggregation functions for different numbers of
features and different data-types,

— incorporating multi-feature aggregation predicates into MR classification rules,

— the extension of TupleID propagation [13] in order to efficiently perform single-
and multi-feature aggregation over related tables, and

— the extensive experimental evaluation of our method on three real life databases,
demonstrating that the incorporation of multi-feature aggregation predicates
substantially improves classification performance and produces meaningful rules.

2 Classification Rules with Aggregation Predicates

To build classification rules on a dataset, a target table 7; and a class label from 7, are
selected by the user. Each tuple in T, called a target tuple, has exactly one class label
assigned. The goal of the proposed MR classification method is to find rules, using
the format of Horn clauses, that predict which class a target tuple belongs to given its
own feature values, relationships to other tuples and their features. The tuples in 7,
can either be interrelated to other tuples also in 7; or related to tuples in other tables. If
they are interrelated, the class label may depend on other tuples in the same table and
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their class labels [11, 8, 7]. Our algorithm does not deal with this special case. While
we assume data to be managed in a relational database management system, we use
an ILP format, ILP clauses, to represent multi-relational classification rules.

Definition 1. ILP clauses, referred to as rules, are of the form R:head < body and are
made up of a one-literal head specifying a class assignment, and a body I, AL, A...AL,,

represented simply as L, L,,...,L, , which is a conjunction of literals ,.

In this paper, a literal is restricted to be either a predicate or a comparison between
two terms. As an example, the rule wealthy(A,'Yes') «— author(A), wrote(B,A),
book(B) states that “if an author has written a book then the author is wealthy”. Here
book B is implicitly existentially quantified. Although the rule expresses that there
does exist a book for the author, it is very likely that not all authors are rich. Hence
this rule is relatively weak. What could help is determining how many books were
written by an author but such rules cannot be expressed in classical ILP format.

2.1 Integrating Single-feature Aggregation Functions into ILP Rules

Most state-of-the-art multi-relational classification methods use only the existential
quantifier but not aggregation functions to build rules. The authors of [12] extended
the ILP formalism that allows for single-feature aggregation (SFA) functions to be
used in ILP via single-feature aggregation predicates as follows:

Definition 2. A single-feature aggregation function maps a bag of elements from the
domain of a feature to a single value from another (possibly different) domain.

Definition 3. A single-feature aggregation predicate Agg has the form Agg(input,
{conditions}, result) where input specifies the bag of feature values to be aggregated,
constrained by the conditions, and the result is a variable referencing the result of the
single-feature aggregation function corresponding to Agg.

To use an aggregation predicate, we need an additional literal, called a comparison
literal, comparing the result of the SFA predicate against a term ¢, i.e. result 6 t where
Oe {=,<,<,>,>} . For example, Avg(A, {purchased(B,C),age(A,C)},N),N<30 formulates
that “the average age of customers C who purchased a book B is less than 30”. Avg is
the aggregation function, Avg(...) the corresponding aggregation predicate, and N<30
the comparison literal. The different aggregation functions based on the different
input data-types are below:

Numerical: sum, min, average, median and standard deviation.

Date: difference between the earliest and latest date, earliest date and latest date.

Categorical: Contains a fixed set of unordered values. A category is not ‘better’ or
‘greater’ than another category, hence only the equivalency comparison can be used.
Count, most frequent and least frequent can also be performed.

Ordinal: This is ordered categorical data, hence in addition to the aggregation
functions for the categorical values, the greater/less-than operator can be applied.
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2.2 Integrating Multi-feature Aggregation Functions into ILP Rules

Analyzing and aggregating multiple features of the same table simultaneously can
yield valuable information. Using multi-feature aggregation (MFA) functions,
dependencies between features can be discovered which then aid in classification. For
example, an increasing income of a person over time could indicate wealth. We adapt
SFA predicates to MFA predicates by allowing multiple features as arguments.

Definition 4. A multi-feature aggregation function maps multiple lists of elements
from the domains of the corresponding features to a single value.

Definition 5. A multi-feature aggregation predicate Agg has the form Agg({input;,
...input;}, {conditions}, result) where {input,,...input;} specifies the lists of feature
values to be aggregated and constrained by conditions. The result is a variable
referencing the result of the multi-feature aggregation function corresponding to Agg.

As an example, if book B has features pages and ‘weeks on best seller list’ (WoBSL)
then the input to the aggregation function consists of vectors {pages(B), WoBSL(B)}
with the selection condition {wrote(B,A) pages(B)<200, WoBSL(B)>3}. The
correlation can be calculated by applying the function corr to page and WoBSL to get:

corr(<pages(B),WoBSL(B)>, {wrote(B,A),pages(B) <200,WoBSL(B) =3},R), R>0.5
Restrictions are then placed on the result R of the multi-feature aggregation, for
example, requiring that the correlation be larger than 0.5. In this paper we restrict
discussion to the case of aggregating two features only. However, the framework can
be generalized to express aggregation of any number of features, for example to see
how the age-gender distribution changes over time for each book sold.

For 2-dimensional feature analysis, the features are analyzed pair-wise by taking
into account both feature-types. Dates and numbers can be binned and analyzed as
ordinal data. The MFA functions we use are discussed below:

Numerical vs. Numerical: The slope of line of best fit, correlation, covariance or the
T-test can be applied in order to show a relationship between numerical features.

Date vs. Numerical: Slope of line-of-best-fit can illustrate a temporal trend or cycle.
Correlation, covariance and T-test can also be calculated by treating dates as numbers
(by calculating the number of days from a certain date).

Categorical/Ordinal vs. Categorical/Ordinal: Pair-wise frequency tables can be
built and analyzed to find the least and most frequent combination of values. The Chi-
Square test indicates whether there is a dependency between two variables.

3 Learning Rules with Aggregation Predicates

In this section, we show how to learn rules with SFA and MFA predicates. Our
algorithm, CLAMF (CLassification with Aggregation of Multiple Features), is an
adaptation of the sequential covering algorithm and is based on the idea of the well-
known CrossMine algorithm [13]. The task is to address the two class classification
problem by finding rules which predict the class label of a target tuple.
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3.1 Learning Rules

The building of rules is done by generating one rule at a time and refining them
incrementally until some termination condition applies. When refining a rule, a
method (GetBestLit) extends the rule by at least one literal at a time. The ‘goodness’
of a literal is determined via FOILGain [10].

GetBestLit employs a look-ahead strategy extending a given rule by possibly
multiple literals at a time. In addition to the standard cases, we allow the extension by
SFA or MFA predicates and a corresponding comparison literal. The search-space of
all allowed literals is explored by recursively searching all referenced tables 7, in the
rule being built. If 7, is referenced in the rule then the tuple IDs are propagated to the
linked table which is then explored by recursively applying GetBestLit to that table.

To illustrate further our algorithm, we give the following example. Once the IDs
have been propagated (Fig. 2), existential quantification (EQ), SFA, and MFA over
any previously referenced table can be performed since all necessary IDs are in 7,.
Using only the information in 7,, for each previously referenced table over which
aggregation is to occur, a new table is created (Fig. 3) and scanned for the best
combination of one EQ, SFA, or MFA predicate and a threshold. The overall highest
FOILGain is selected and the search for the next best literal is restarted until there are
insufficiently many tuples left which are not covered by a rule.

3.2 Extending TupleID Propagation for Aggregation

CrossMine [13] introduced the concept of TupleID propagation to efficiently mine
MR classification rules using the existential operator. The propagation appends to
each tuple of a non-target table the IDs and class labels of tuples in target table 7, that
are related to it. The following example illustrates how TuplelD, in the context of
aggregation, cannot do what we need. Using our running example, starting with the
target table Author, the data is propagated to Book. During the next iteration of
propagations, Book becomes the source table for the propagation and the related table
Customer becomes the destination. For each tuple in Customer, the related tuples
in Book are determined and the IDs, along with the class labels of Author are
appended to Customer. The result is similar to Fig. 2 but without BookID.
Aggregation of authors can now be performed to find the ‘total number of unique
customers each author has sold to’. Aggregating Customer over books to determine
the ‘number of customers each book sold to’ however is not possible since there is no
information from Book in Customer. Due to this, TupleID propagation does not
allow for aggregation over previously referenced tables but only the target table.

Customer Aggregated Customer Table
CustID Name ... | AuthorID Class BookID BookID | Class = Age Gender
Min Max | Avg |... Most
1 Jennifer Smith | ... 1,53 YAV N Common
2 Bob Doe 2,4 N, Y 4,2 1 Y, Y 20 30 25| F
3 Janet Cats 1,5 Y,Y 1,1 2 Y 18 40 29 |... M
4 Terry Wolfe 4 Y 2 3 Y 20 20 20 |... M

Fig. 2. Result of our propagation. Aggregation Fig. 3. Aggregated table can now be analy-
over Books can be done. zed for literal selection
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To allow for aggregation over all tables we extend TupleID for aggregation over
any previously referenced table in the rule being built. We do this by iteratively
propagating not just the IDs of T, but the IDs of all the previously referenced tables as
well (represented as a comma-delimited ordered string in Fig. 2). This allows the
calculation of an aggregation involving Customer and Book, such as: ‘the number
of unique customers each book sold to’. Further propagation, e.g. from Customer to
Card, takes the IDs of Customer and Book, and moves it along with the AuthorID
and class label. The resulting table would contain all information required to
aggregate over authors, books and customers. We are now able to detect, for example,
‘what is the most frequent credit-card type used to purchase a science fiction book’.

In order to perform aggregation over any previously referenced table, we simply
summarize by the ID of that table and can immediately determine which tuples of the
current table are associated to each ID. For example, from Fig. 2, book 2 is associated
to customers 2 and 4 and book 3 is associated to customer 1. Aggregation can be
performed by aggregating over each BookID. The result is shown in Fig. 3. FOILGain
is then applied to this table to determine the best combination of aggregation function,
feature(s) and threshold value.

4 Experimental Results

We performed extensive experiments on the Financial and Medical datasets from the
PKDD'99' and the Hepatitis dataset from the PKDD'02* Discovery Challenges. The
main objective of our experiments was to demonstrate the gain in classifier
performance achievable by SFA and MFA. Three classifiers were built per dataset:
the first classifier (EQ) used only the existential quantifier, the second (SFA) used
single-feature aggregation and EQ, and the third (MFA) used multi-feature
aggregation, SFA and EQ. The experiments evaluated the classification accuracy of
MFA against SFA and EQ. 5-fold cross validation was performed to evaluate the
classifier performance. The results are presented in Fig. 4.

PKDD'99 Financial Dataset. The dataset contains 606 successful and 76 not
successful loans along with their information and transactions. Bad loans were chosen
as the target class and the transaction table was pruned by removing all transactions
which occurred after a loan was approved. EQ achieved very poor precision, between
20% and 45%, similar to [5]. Adding SFA resulted in an increase to 90% in the best
case, 60% in the worst. With MFA the precision reached 100% and was still above
90% in the worst case. This gain was not at the expense of recall, as can be seen in the
F-Measure results. A sample rule that was found is:

R,:loan(L,bad") - loan(L), max(A, {transaction(T),trans_of_loan(T,L),amount(A,T)},M),M<99.6,
correlation({ B,D },{transaction(T),trans_of_loan(T,L),balance(B,T),date(D,T)},corr), corr<0.143.

According to Ry, a loan is bad if the maximum transaction amount corresponding to
this loan is smaller than 99.6 (the average transaction amount in the entire dataset is
9,101), and the correlation of the balance and date is less than 0.143. Intuitively, this

! http://lisp.vse.cz/pkdd99/
2 http://lisp.vse.cz/challenge/ecmlpkdd2002/
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PKDD'99 Financial - Precision vs. Minimum Support PKDD'99 Financial - F-Measure vs. Minimum Support
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Fig. 4. Precision and F-Measure for the three datasets from PKDD’99 and PKDD’02

indicates that the payments made on the loan are very small and there is no correlation
between the balance of the transaction and the date.

PKDD'99 Medical Dataset. Classification was done on the 41 instances of patients
with Thrombosis. 56,197 exams, dates, and results, with each exam having 33
numerical results, allowed MFA to perform numerous multi-feature analyses to detect
relationships between different features. MFA classification precision was 100% with
SFA being above 94% for all minimum support values. EQ was quite competitive for
small minimum support values, but for higher values EQ dropped to 82% precision.
The gain in classification precision of MFA was not at the expense of recall since
MFA consistently also had the highest F-Measure. As anecdotal evidence of the
meaningfulness of the rules, for example, the following rule was discovered:

R,: thrombosis(S,'bad’) < patient(P),slope({ T,H},{exams(E,P),TBIL(T,E),HCT(H,E)},S),
S<-4.5,correlation({D,B },{exams(E,P),RBC(B,E),date(D,E) },C),C<0.91

R, states that a person will have thrombosis if the relationship between the results of
the TBIL and HCT tests is negatively proportional, and the RBC test values and date
are not very highly correlated.

PKDD'02 Hepatitis Dataset. The classifier was built on 206 instances of Hepatitis B
(contrasting them against 484 cases of Hepatitis C). The inhospital table had to be
preprocessed such that each unique test was in a column and all tests for a patient on a
given date were in a single tuple. The resulting inhospital table had 12,614 tuples and
120 features. Due to the transformation, a lot of columns contained insignificant
numbers of non-NULL values, and were removed, leaving only 25 features for
classification. MFA consistently outperformed SFA and EQ both in precision and F-
Measure. Precision was up to 8% higher than SFA and up to 20% higher than EQ.
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5 Conclusions

In this paper we presented a novel method for classification of MR data using an
aggregation-based ILP approach. We proposed an ILP framework for representing
rules with multi-feature aggregation predicates. The different types of aggregations
available for different feature-types, and their combinations, were discussed. For
efficient classifier construction, we extended TuplelD propagation so that it allows for
aggregation over related tables and not only the target table. Experiments on three
real-world datasets showed substantial gains in precision and F-Measure compared to
existing approaches. Anecdotal evidence was provided to illustrate the rule meaning.
In temporal databases, classification with multi-feature aggregation could provide
very interesting rules that are much more meaningful to the end-user by allowing for
temporal trends. Another direction is to investigate spatial classification where
dependencies between features are prevalent since the spatial relationship of objects
impacts their mutual influences. We plan to explore these important applications.
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Abstract. Data collected for collaborative filtering (CF) purposes might
be split between various parties. Integrating such data is helpful for both
e-companies and customers due to mutual advantageous. However, due
to privacy reasons, data owners do not want to disclose their data. We hy-
pothesize that if privacy measures are provided, data holders might decide
to integrate their data to perform richer CF services. In this paper, we in-
vestigate how to achieve naive Bayesian classifier (NBC)-based CF tasks
on partitioned data with privacy. We perform experiments on real data,
analyze our outcomes, and provide some suggestions.

1 Introduction

With the evolution of the Internet, the number of users accessing the Internet and
the number of products available online are rapidly increasing. To find the most
interesting and useful information is imperative. Collaborative filtering (CF)
techniques are used for filtering and recommendation purposes. The goal in CF
is to predict the preferences of one user (an active user, a), based on a database
consisting of a set of votes corresponding to the ratings of users on items [TIJ6].
To provide more truthful and dependable referrals, data collected for CF
purposes should be large enough. It is impossible to produce recommendations
from insufficient data. With increasing available data, it is more likely to have
enough neighbors and matchings between users. Many online vendors, especially
those newly established ones, might not have enough data for CF purposes. If
there is a limited number of users, it becomes a challenge to form a large enough
neighborhood. Moreover, some vendors might own ratings for a limited number
of items; and that makes it harder to compute the similarities between users.
Data might be partitioned horizontally or vertically between various parties,
even competing companies. In horizontal partitioning, data owners hold disjoint
sets of users’ preferences for the same items. In vertical partitioning, they own
disjoint sets of items’ ratings collected from the same users. Combining horizon-
tally partitioned data (HPD) is helpful when CF systems own a low number of
users. Integrating vertically partitioned data (VPD) is advantageous when data
holders have ratings for a limited number of items. A referral computed from the
joint data is likely more accurate and reliable than the one calculated from one
of the disjoint data sets alone. But, due to privacy, legal, and financial reasons,
data owners do not want to collaborate and disclose their data to each other.
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We study how to provide CF services from partitioned data between two par-
ties without greatly exposing their privacy, using the NBC-based CF algorithm
proposed by [5]. Our goals are, as follows: First, data holders should not be able
to learn the true ratings and rated items in each other’s databases. Second, the
referrals calculated from partitioned data with privacy concerns should be close
to those referrals computed from combined data without privacy concerns. Fi-
nally, additional costs introduced due to privacy concerns should be negligible
and make it possible to provide referrals to many users in an acceptable time.

2 Related Work

Privacy-preserving data mining on partitioned data has been receiving increasing
attention. Vaidya and Clifton present privacy-preserving methods for association
rule mining [9], K-means clustering [I0], and NBC [II] on VPD. Although such
approaches are based on VPD, we study both VPD- and HPD-based CF with
privacy using NBC. Privacy-preserving collaborative filtering (PPCF) on VPD
problem is discussed in [7]. Unlike their study in which they show how to achieve
predictions from numerical ratings, we investigate how to provide CF tasks based
on VPD and HPD using binary ratings employing NBC.

Privacy-preserving NBC for HPD is discussed in [4]. They show that using se-
cure summation and logarithm, they can learn distributed NBC securely. Kantar-
cioglu and Clifton [3] discuss privacy-preserving association rules on HPD. They
address secure mining of association rules over HPD while incorporating crypto-
graphic techniques to minimize the shared data. Polat and Du [§] discuss PPCF
on HPD using item-based algorithms. Unlike these works, we explore partitioned
data-based CF with privacy employing NBC, where users’ preferences are rep-
resented with binary ratings. Moreover, our schemes can be easily extended to
multi-party schemes. We investigate both VPD and HPD-based CF services us-
ing NBC, where users’ preferences are represented with binary ratings.

In [5], it is proposed to employ NBC for producing recommendations. The
users rate items as like (1) or dislike (0) based on their preferences. a’s ratings for
items are class labels of the training examples. In the user ratings matrix, other
users correspond to features and the matrix entries correspond to feature values.
The probability of an item belonging to class; (c¢;), where j € {like,dislike},
given its n feature values, can be written, as follows:

P51 f1 for - fn) O<p(0j)l—‘[p(filcg% (1)

where both p(c;) and p(fi|c;) can be estimated from training data and f; corre-
sponds the feature value of the target item (q) for user i. To assign ¢ to a class,
the probability of each class is computed, and the example is assigned to the
class with the highest probability. Only known features and the data that both
users commonly rated are used for predictions.
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3 Partitioned Data-Based PPCF Using NBC

Due to privacy concerns, data owners do not want to reveal their data. We pro-
pose PPCF schemes to achieve CF tasks using NBC from partitioned data. We
assume that the parties communicate through a during providing recommenda-
tions online and one of the parties acts as a master site. To derive information,
data holders can employ different attacks and the proposed schemes should be
secure against such attacks, which can be explained, as follows:

Acting as an active user in multiple scenarios. The party acting as an
a employs the same ratings vector during the all recommendation computation
processes, manipulating only one rating value each time. Since it gets some
conditional probability values computed using its ratings and the users’ ratings
in the other party’s database, the party can easily figure out the differences
between such probabilities computed successively. Based on such differences, it
is able to find out the ratings of the item for which the rating was manipulated
or it can learn whether such item is rated or not.

Bribing. Data holders can offer some incentives or bribery to the users who
provided data for filtering services. They then can obtain some data from users
and try to derive more information about each other’s databases. Since both
parties can bribe the same users to derive data or to manipulate each other’s
data, the required data through such bribed users may not be true or trusted.
These users can employ such offers against the other party to get more discounts
or coupons. This kind of attack becomes expensive and the derived data through
this attack become questionable and doubtful. Therefore, we only consider the
“acting as an a in multiple scenarios” attack.

Privacy-Preserving HPD-based Schemes. Two vendors, A and B, hold n 4
and np users’ ratings, respectively, of the same m items, where n = ns + np
and n is the number of users. They perform CF tasks using the joint data, which
is an (na +np) X m matrix, while preserving their privacy. It would be difficult
to find out whether two users from different online vendors refer to the same
person or not. This can be solved by using some unique identities, which can be
exchanged off-line. Since data is partitioned, Eq. () can be written, as follows:

plejlfse oo fu) o ples) x Paj x Py =ple;) x [T o(files) < T p(filej)(2)

i=1 i=na+1

where P4; and Pp; represent the products of conditional probabilities computed
from data belonging to A and B, respectively. When B acts as a master site, A
computes the required data, P4; values, and sends it to B through a. HPD-based
scheme with privacy can be explained, as follows:

1. a sends her data to both A and B. B computes p(c;) values.

2. Since both A and B own the feature ratings of ¢, they can compute the
conditional probabilities for classes like and dislike.

3. A then computes P4, values and sends them to B through a, while B
computes Pp; values.
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4. Finally, B can find the probabilities of ¢ belonging to ¢; using Eq. [2]).

B will not learn the true ratings and the rated items in A’s database, because it
only gets Pa; values, which are products of n 4 values, from A. To further improve
privacy, before sending P4; values to B, A multiplies such values with the same
value r4, where r, is a random number generated by A. Since both values
are multiplied by the same number, the comparison between p(c;|fi, fo,... fn)
values will not be changed for j being like or dislike.

Privacy-Preserving VPD-based Schemes. A and B hold m4 and mp items’
ratings, respectively, where m = ma + mp. To make the data sharing possible,
the identity of the products should be established across the data holders’ data-
bases. This data exchange can be achieved between vendors off-line.

In VPD-based schemes, a sends the corresponding data to A and B. Ratings
of ¢ is held by one of the vendors because data is split vertically. Therefore, the
party, which does not have ¢, should conduct the required computations and
send the results to the company that owns g; and such party acts as a master
site. The party not having ¢ should be able to compute corresponding results
required to find the conditional probabilities in such a way to prevent the master
site deriving information from its data set. Since class probabilities are known
by the master site, it needs to compute the conditional probabilities, as follows:

L #le)
p(fz‘ ]) #(Cj) )

where #(filc;) shows the total number of similarly rated items of ¢; as the
feature value of ¢ for corresponding user; and #(c;) represents the total number
of commonly rated items as j, where j € {like, dislike}. Since data is partitioned
between A and B vertically, the master site gets the results from other party to
find the conditional probabilities. Therefore, Eq. @) can be written, as follows:

oy #alfile) + #n(filey)
p(fle) = AT

where A and B compute the corresponding parts of #(fi|c;) and #(c;) values.
Suppose that B owns ¢q. A then should compute #4(filc;) and #a(c;) values
forall ¢ = 1,2,...,n and j being like (1) or dislike (0); and sends them to B.
VPD-based scheme with privacy can be explained, as follows:

1. a sends her corresponding data to A and B. @ also computes p(c;) values
and sends them to the master site, B.

2. Since A does not know which features of ¢ are known, it computes the
corresponding parts of conditional probabilities for all features. Moreover, it
computes such values twice, for f; = 1 and f; = 0, because it does not know the
feature values of ¢. However, since p(f; = 1|¢;) + p(fi = 0l¢;) = 1, it needs to
compute # 4 (f;|c;) values for each classes for only f; being 1 or 0. After receiving
such values, B selects and/or finds the required data to find the conditional
probabilities because it knows the known features of ¢ and their values.

3. Since B gets p(c;) values from a, it then can figure out how many 1s, Os, and
empty cells are in a’s vector. Moreover, B can act as an a in multiple scenarios.

3)

(4)
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Therefore, A should compute #4(filc;) and #a(c;) values in such a way to
prevent B deriving data from its database. To do so, A employs the following
steps: It first finds the number of empty cells (mge) in corresponding part of a’s
vector. A then uniformly randomly selects a value, R4, over the range [1, 100]. A
then can fill randomly selected R4 percent of these mge empty cells (f = mge X
R .4/100) with random ratings (1s and 0s). However, with increasing randomness,
accuracy diminishes. Instead of filling empty cells with random ratings, A can fill
them with default votes (vgs) of items it holds. Therefore, A finds the vgs for ma
items it holds. Both parties own the all ratings for items they hold. Therefore,
they can compute non-personalized votes for the items they hold without the
help of each other. For each item’s column, they find the total number of 1s (1)
and 0s (d). They then compare [ and d values for each item. If [ > d, then vy for
that item is 1, it is 0 otherwise. Such ratings are computed off-line. A finally fills
empty cells with the corresponding vgs. The number of empty cells to be filled
depends on how much privacy and accuracy the parties want. With increasing
numbers of filled cells, randomness increases; thus, accuracy diminishes.

4. A then computes the corresponding parts of conditional probability val-
ues (#a(filc;) and #a4(c;) values) based on a’s new or filled ratings vector.

5. Since B does not know how many and which empty cells are selected to
be filled, it cannot derive information from the received data. Moreover, since
empty cells are filled with non-personalized ratings, which are only known by A,
B does not know such values, either.

6. After B gets the required data, it finds the final conditional probabilities,
the probabilities for ¢ belonging to c;, and finally sends the prediction to a.

4 Overhead Costs and Privacy Analysis

The extra storage cost is negligible because A and B need to store vgs into
1 x ms and 1 X mp matrices, respectively. For single predictions, in HPD-
and VPD-based schemes, additional number of communications is only 3. More-
over, the amount of data sent also increases. Our HPD-based schemes do not
introduce additional computation costs. However, VPD-based schemes intro-
duce extra computation costs due to randomly inserted non-personalized ratings.
Computing vgs is done off-line, which is not critical for overall performance. Our
HPD-based schemes are secure. B will not be able to learn the true ratings and
the rated items, because it receives two aggregate values, which are products of
n4 values. VPD-based schemes are also secure. Even if the master site knows
a’s ratings, since only commonly rated items between a and other users are used
for recommendation computations, it will not be able to derive data from other
party’s data. Finding vgs is secure because the parties do not need each other’s
data to find them. Due to randomly inserted vgs, B will not be able to derive
data from the corresponding parts of conditional probability values.

The master site can guess the randomly selected unrated items. The probabil-
ities of guessing the correct R4 and mge are 1 out of 100 and 1 out of m 4, respec-
tively. After guessing them, it can compute f. The probability of guessing the f
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randomly selected cells among m,. empty cells is 1 out of C}"”"", where CJ rep-
resents the number of ways of picking A unordered outcomes from g possibilities.
Since the master site does not know the vgs, the probability of guessing the in-
serted vy for one item is 1 out of 2. Thus, the probability of guessing the randomly
selected empty cells and their ratings is 1 out of (100 x m4 x (1/2)f x C}””"").

5 Experiments

We performed experiments using Jester and EachMovie (EM) data sets. Jester
is a web-based joke recommendation system [2]. It includes continuous ratings
ranging from -10 to 10. There are 100 jokes and 17,988 users. The DEC Systems
Research Center (www.research.compaq.com/SRC/eachmovie/) collected EM.
It contains ratings of 72,916 users for 1,628 movies. User ratings were recorded
on a numeric six-point scale, ranging from 0 to 1. We employed classification
accuracy (CA) and F-measure (FM) to measure accuracy. We also used coverage
as a metrical indicator to show the effectiveness of the NBC-based CF algorithm
with combining various amounts of data.

We first transformed the numerical ratings into binary ones as done in [5].
We randomly selected 3,000 and 2,000 users for train and test set, respectively,
among those users who have rated at least 50 and 60 items from Jester and
EM, respectively. We randomly selected 5 rated items from test users’ ratings
vectors as test items. The number of users and/or items to be selected varies
for various experiment sets. We performed CF tasks using the training sets
to provide referrals to test users for test items. We withheld the selected rated
items’ votes, replaced their entries with null, and tried to predict their values. We
compared referrals for them with their withheld votes. We ran the experiments
for split sets alone and combined data; and found average CAs and FMs.

We hypothesize that accuracy, privacy, and efficiency depend on various fac-
tors. We performed experiments using the disjoint data sets alone and the in-
tegrated data. We then compared their outcomes. We varied the number of
items (m) and users or features (n) to show how various sizes of disjoint and
integrated data sets affect our results. Moreover, since vgs are inserted randomly
selected cells, we performed trials to show how different numbers of randomly
selected cells (f) affect accuracy. We also computed computation times. We ran
our experiments using MATLAB 7.3.0 on a computer, which is Pentium 4, 3.00
GHz with 1 GB RAM. We performed the following experiments:

It is expected to increase the coverage by integrating split data. Since number
of users involving in recommendation process increases, integrating HPD im-
proves coverage. We found coverage values for data owners on data they owned
and the combined data. For Jester, when n is 50, the coverage is 99.5% and 100%
for split and combined data, respectively. When n is bigger than 100, coverage is
100% for both split and integrated data. For EM, we varied n from 50 to 1,250
to show how coverage changes with combining different sizes of split data. When
n is 125, coverage is 63% and 85% for split and combined data, respectively.

We performed experiments with varying n values to show how combining
different amounts of HPD affect accuracy and recommendation computation
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time (CT) in seconds. We randomly selected training users while varying n
from 50 to 1,250 and randomly selected 1,000 test users from train and test
sets, respectively. Using our scheme, we found referrals for randomly selected
5 rated items from each test user’s ratings vector on disjoint data sets alone
and combined data. We compared predictions with true ratings, calculated the
average outcomes and displayed them in Table[I] where combined data contains
2 x n users’ data. As seen from Table [Tl the accuracy of the referrals becomes
better both with combined data and increasing n. Although we improve accuracy
by combining HPD, time to provide recommendations increases. CTs represent
the times to produce 5,000 referrals based on various amounts of data.

Table 1. Overall Performance with Combining Varying Amounts of HPD

Jester EM
n 50 125 300 750 1,250 50 125 300 750 1,250
CA (%) 64.86 66.55 67.37 68.07 69.73 70.96 72.95 74.29 74.88 75.14
Split Data FM (%) 63.42 64.77 65.81 66.40 66.64 78.04 79.77 80.85 81.23 81.46
CT (secs) 15 35 104 345 706 48 127 315 909 1,302
CA (%) 66.14 67.22 69.16 70.15 71.40 73.12 74.62 75.28 75.50 75.86
Combined Data FM (%) 64.50 65.76 66.08 67.57 68.12 79.74 81.02 81.56 81.69 81.79
CT (secs) 21 82 277 926 1,930 83 224 582 1,680 2,986

To show how overall performance changes with integrating varying amounts of
VPD, we conducted experiments while varying m. We randomly selected 1,000
training and test users from EM. We computed referrals for randomly selected
5 test items for each test user. We compared the referrals we found with true
ratings. We calculated the CAs,the FMs, and the CTs; and showed only the
CAs and the CTs in Table Bl As seen from Table 2 accuracy improves with
both combining VPD and increasing m. Our results also change with different
f values because randomness increases with increasing f. Inserting vgys into ran-
domly selected cells affects accuracy and the times required to provide referrals.
Although accuracy worsens by inserting vgs, our results are still promising even
if all empty cells are filled with non-personalized ratings. With increasing f, ac-
curacy becomes worse and CT's increase. On the other hand, data owners protect
their privacy by adding randomness to the private data. Data holders can adjust
f to achieve required levels of privacy, accuracy, and efficiency.

Table 2. Overall Performance with Combining Varying Amounts of VPD

Split Data Combined Data
m 200 350 500 650 814 400 700 1,000 1,300 1,628
CA (%) 63.27 65.12 66.16 67.16 67.33 65.96 67.52 68.04 70.94 71.26
CT (secs) 218 452 582 667 811 561 655 896 1,093 1,260
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6 Conclusions and Future Work

We have shown that it is still possible to provide accurate recommendations
efficiently based on partitioned data between online vendors without greatly
jeopardizing their privacy. Our schemes can be easily extended to provide top-N
recommendations. We evaluated our schemes in terms of accuracy and computa-
tion costs. The experiment results have shown that our outcomes are promising
and the proposed schemes allow online vendors to provide accurate referrals ef-
ficiently on partitioned data. The proposed schemes for both HPD and VPD
can be easily extended to multi-party schemes. We will investigate multi-part
schemes in detail. We will explore more attacks and look for solutions to them.
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Abstract. Cost-sensitive learning is a key technique for addressing many
real world data mining applications. Most existing research has been fo-
cused on classification problems. In this paper we propose a framework for
evaluating regression models in applications with non-uniform costs and
benefits across the domain of the continuous target variable. Namely, we
describe two metrics for asserting the costs and benefits of the predictions
of any model given a set of test cases. We illustrate the use of our metrics
in the context of a specific type of applications where non-uniform costs
are required: the prediction of rare extreme values of a continuous target
variable. Our experiments provide clear evidence of the utility of the pro-
posed framework for evaluating the merits of any model in this class of
regression domains.

1 Introduction

In many real world applications the costs and benefits of using prediction models
are non-uniform. These observations have motivated the work on cost-sensitive
learning (e.g. [B]) and more generally on utility-based mining [9TT]. In the con-
text of applying the discovered knowledge under a non-uniform cost setup, most
works have focused on classification tasks (e.g. [BIAIEIG]). Still, within numeric
prediction problems, also know as regression, similar problems arise. As men-
tioned by Crone et. al. [2] most works on regression assume uniform costs and use
some form of average error statistic. In this context, several authors (e.g. [1I2])
have proposed new cost of error functions that try to address these issues. How-
ever, most of these works only consider one particular type of non-uniform costs
of errors: the difference between under- and over-predictions, i.e. situations where
the predicted values are above or below the true values, respectively.

This paper proposes a framework for evaluating regression models in the con-
text of arbitrarily shaped costs and benefits across the domain of the numeric
target variable of regression tasks. We propose two new evaluation metrics that
incorporate the notions of costs and benefits and thus are able to provide bet-
ter feedback on the merits of regression models in the context of the specific
biases of any numeric prediction task. These metrics use cost and benefit sur-
faces that we also formalize, which can be regarded as continuous versions of the
well-know notion of misclassification cost matrices. We illustrate the use of our
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proposed metrics in a particular class of non-uniform costs/benefits application:
the prediction of rare extreme values of a continuous variable.

2 Problem Formulation

Predictive learning tries to obtain an approximation of an unknown function
f +x — 7, based on a training data set D drawn from a distribution with
domain x X -y, where x is the domain of the set of predictor variables and = is
either a discrete domain in the case of classification tasks, or  in the case of
regression. The obtained approximation, fg, is a model with a set of parameters,
03, that are obtained by optimizing some preference criterion. For classification,
this is usually the error rate, while in the case of regression the most frequent
are the mean squared error, MSE = TlL S (g — gji)2, or the mean absolute
deviation, MAD = !} 31" | |y; — 4.

Many authors (e.g. [3/5]) have noticed the problems arising from the uni-
form cost assumption of the error rate evaluation criterion, which is unaccept-
able for many real world domains. The cost matrix formulation overcomes these
limitations by allowing the specification of the cost of misclassifying class i by
class j, and leads to the criterion of expected cost minimization, }L S C(9,y),
where C(g,y) is an entry on the pre-specified cost matrix. Regards regression
few authors have addressed the issue of differentiated costs. Most of the exist-
ing works on having non-uniform costs for regression have been addressing the
issue of differentiating the cost of under-predictions (§ < y), from the cost of
over-predictions (§ > y) (e.g. [TI2]). Although these approaches address sev-
eral important application-specific requirements, they fail to provide a means
to specify a cost function across all domain of the target variable, which was
shown to be of key importance for this type of applications [§]. In this paper we
address this issue by associating to each prediction a cost that is dependent on
an user-defined relevance of both the true and predicted values.

3 Utility-Based Regression

As mentioned by Zadrozny [I0], research on cost-sensitive learning has tradi-
tionally been formalized in terms of costs as opposed to benefits or rewards.
However, evaluating a model in terms of benefits is generally preferable because
there is a natural baseline from which to measure all benefits whether positive
(real benefits of a prediction) or negative (that are in effect costs) [5]. Our pro-
posal follows these lines, by measuring the utility of a regression model through
the total balance between the costs and benefits originated by its predictions.

3.1 Relevance Functions

We assume that for some applications the relevance (importance) of the values
of the target variable is not uniform across its domain. This domain-dependent
information shall be provided through the specification of a relevance function,
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o(Y) : ® — 0..1, that maps the domain of the target variable into a 0..1 scale of
relevance, where 1 represents maximum relevance. Our proposal is independent
of the shape of the ¢() function. We assume this function is specified by the user
using his/her domain knowledge. The specification of the relevance function is
the step of our proposal that is most challenging for the user. Given the large
range of applications where the relevance of the target variable is non-uniform, it
is virtually impossible to describe reasonable default relevance functions for all
these applications. Still, in many applications relevance is often associated with
rarity (e.g. highly profitable customers; high variations on stock prices; extreme
weather conditions, etc.). For these applications relevance can be defined as a
function that is inversely proportional to the probability density function (pdf)
of the target variable. Although obtaining the functional form of these pdf’s
is generally non trivial, reasonable approximations based on the available data
sample can be obtained with techniques like kernel density approximators. In
Section ] we propose an even simpler strategy to derive a relevance function for
a class of applications where relevance is associated with rarity: the prediction
of rare extreme values of a numeric variable.

3.2 Cost and Benefit Surfaces

Generally, the cost of a prediction depends not only on the relevance of the test
case value but also on the relevance of the predicted value. In effect, all three
following situations are penalizing in a cost-sensitive application:

1. Predict a relevant value for an irrelevant test case (false alarm);

2. Predict an irrelevant value for a relevant test case (opportunity cost);

3. Predict a relevant but very different value for a relevant test case (the most
serious mistakes: confusing relevant events).

We capture this notion of relevance of the prediction for a given test case by
means of the definition of a bi-variate relevance function, ®(Y,Y), that depends
on the relevance of both the true and predicted values,

DY,Y)=(1—m) ¢(Y)+m-(Y) (1)

This function is a weighted average of the individual relevances of ¥ and Y.
It is maximum when both are highly relevant and these are the cases where the
cost of the predictions may reach the maximum if they are not accurate enough.
The m parameter (0 < m < 1) differentiates between situations 1 (false alarms)
and 2 (opportunity costs). Setting m > 0.5 makes the latter more important.

The cost of a prediction should also depend on its precision, i.e. how near
are Y and Y from each other. Moreover, it should also be possible for the user
to establish some kind of application-specific measure of cost in whatever units
make sense for the domain. In this context, we define the cost of a prediction as,

c(V,Y)=d(Y,Y) X Crax X L(Y,Y) (2)
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where Chyax s the maximum cost that is only assigned when the relevance of the
prediction is maximum (i.e. #(Y,Y) = 1); and L(Y,Y) is a loss function that
measures the prediction error.

The term (.'15();'7 Y') x Cinax can be seen as a kind of case-specific maximum cost
value. This is the maximum penalty we get if Y is the “worst possible” prediction
for the test case under consideration. With respect to the loss function we could
use any metric function, e.g. the absolute deviation |Y — Y|. However, in order
to make the meaning of the value ¢(Y,Y) more intuitive, we recommend the
use of a percentage-type loss function that ranges from 0 to 1. Such function
will then represent the proportion of the case-specific maximum cost we get due
to our prediction. For maximum error (L()A/, Y) = 1) we get the full penalty of
the particular test case (B(Y,Y) X Cinax), while a perfect prediction (L(Y,Y) =
0) would entail no cost as expected. This means the value of ¢(Y,Y) will be
expressed in the same units as Chyax, which is provided by the user, and thus
it is more intuitive for him/her. In this context, we propose the following loss
function that ranges from 0 to 1:

LY,Y) =] max ¢(i) — min ¢(i)] 3)
ieY.Y iev.y
The use of the maximum and minimum functions is due to the fact that we
want to let the user specify any arbitrarily shaped ¢() function. This means that
we can have two quite different Y values with the same value of ¢(), which would
look like a perfect prediction if we had used the difference of relevances directly.
However, these cases are exactly the most serious mistakes we want to avoid (the
3rd case on the list presented before). With our proposal, if both values have
high relevance but are quite different then surely there will be values in between
with lower relevance and this will result in a higher value of the loss function.
The function ¢() can be seen as a continuous version of cost matrices, i.e. a
cost surface. The total cost of the predictions of a model is defined as,

TC = Z (9i> i) (4)

Our proposal also considers the benefits of the predictions of a model, with
the goal of asserting its ability to accurately predict most of the relevant values
in a test set. In the case of benefits it is only the relevance of the true value that
counts, i.e. we are interested in asserting how well a model predicts the relevant
test cases. In this context, the benefit surface is defined as,

b(Y,Y) = ¢(Y) X Bmax X (1= L(§i,yi)) (5)

where Bp.x is a user-defined maximum reward that is measured in the same
units as the Chyax constant; and L() is a loss function as before.

Our definition of benefits associates higher rewards with higher relevance. The
term @(Y') X Bax calculates the case-specific benefit, while the last term is the
proportion of this reward we get. The total benefits are given by,



Utility-Based Regression 601

TB =Y by (6)

i=1

Finally, we can define the utility of the predictions of a model as the net
balance between its total costs and benefits,

U=TB-TC (7)

4 An Illustrative Application

Modeling extreme data is very important in several application domains, like
finance, meteorology, ecology, etc.. Several of these applications involve predict-
ing a continuous variable. For these domains the extreme (high or low) values of
the target variable are much more important than the others. Moreover, these
extremes are generally quite rare, which turns this into a very hard prediction
problem with very clear non-uniform costs and benefits of predictions. In this
section we illustrate the use of our proposed framework for utility-based regres-
sion, by using it to compare quite diverse modelling techniques on a real world
data set where the prediction of rare extreme values is of primary importance.

The application we use to illustrate our proposal concerns stock market fore-
casting. Namely, the data are about the task of trying to predict the future daily
variation in closing prices of the IBM stock, using information regarding the val-
ues of these variations on the 10 previous market sessions. The data set consists
of information on 8166 daily market sessions (roughly 30 years), each being de-
scribed by 10 predictor variables (the variations on the 10 previous days) and a
target variable (the variation on the next day). This application is a very clear
example of non-uniform costs (and benefits) of predictions. In effect, any model
that is extremely accurate at predicting small price variations (the most com-
mon) is essentially useless for a trader. Profitable trading is based on being able
to capitalize on large price changes. Trades carried out over small price changes
are usually not able to cover the trading costs and thus are non-profitable or
even represent a loss of money. As such, in these applications the accuracy on
the relevant (i.e. extreme high or low) changes of prices is the key criterion.

In order to apply our evaluation method we need to specify a relevance func-
tion for this domain. In this class of applications relevance is strongly associated
with extreme and rare values of the target variable. The distribution of the tar-
get variable has a normal-like shape with very marked tails (the rare extreme
price variations). From the description of the goals of this application it should
be clear that the relevance function should have a shape that is inverse of the pdf
of the price variations. We propose to use a sigmoid-like function for establishing
a smooth relevance function. In order to define this function we use some of the
statistics provided by boxplots that summarize the distribution of the target
variable. With this strategy we are able to obtain a relevance function without
having to deal with computationally complex approximations of the unknown
pdf. Figure [l provides a graphical illustration of the quantities involved in the
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Fig. 1. A sigmoid-based relevance function for rare extreme values prediction

derivation of the relevance function we use. This figure shows the box plot of
an arbitrary normal-like distribution and the respective sigmoid-based relevance
function. The relevance function is defined using distribution properties of the
target variable (min(Y), adjr(Y), Y, adjz(Y) and max(Y)) that can be easily
estimated from the available data sample. This approach can be generally ap-
plied on problems where the target variable has a normal-like shape and where
relevance is associated to rare extremes.

The other three parameters necessary to use our U metric are Chax, Bmax
and m. Given our absence of domain expertise on stock market trading we have
set these parameters using what seemed to us reasonable settings. Namely, we
decided that the maximum benefit should be clearly higher than the maximum
cost to try to reward proactive models. In our experiments we have used Cipax =
10 and Byax = 20. With respect to the m parameter we have set it to 0.5, i.e.
equal importance to false alarms and opportunity costs.

In order to test our proposed metrics under different experimental setups
we have applied 3 quite different modeling techniques to the IBM data set.
Namely, regression trees, neural networks and support vector regression. For all
3 methods we have used their implementations freely available on the R software
environment [7], more specifically the function rpart() of the package rpart,
the function nnet () of the package nnet and the function svm() of the package
e1071. All 3 methods were used without any extensive parameter tuning as
the goal was not to achieve the best possible accuracy but instead to test an
evaluation metric under different setups.

All models were evaluated using the M AD, U, T'C' and T'B statistics, which
were described in Sections [2] and Bl The M AD statistic was selected as a “rep-
resentative” of a standard evaluation metric. The values of all statistics were
estimated using a 10-fold cross validation process. Statistical significance (95%
level) of the differences when compared to the best ranked model were asserted
by means of the non-parametric Wilcox test and signaled by “*”. The results are
shown on Table[Il For each statistic, we provide the ranking of the models and
indicate the median and inter-quartile value measured over the 10 repetitions.
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Table 1. The results/rankings on the IBM data set

MAD U TB TC
dummy dummy svm dummy
0.01205 (0.00038) 108.18427 (37.76051) 278.41357 (27.94408) 134.12127 (17.29376)
cart * rand.forest dummy * cart *
0.01206 (0.00038) 108.18248 (36.24961) 243.10776 (36.9331) 134.12645 (17.29339)
nnet * cart * cart * nnet *

0.01209 (0.00042) 108.1688 (37.75762) 243.09674 (36.92891) 134.12665 (17.29379)
rand.forest * nnet * nnet * rand.forest *

0.01235 (0.00029) 108.1674 (37.75963) 243.09523 (36.93183) 134.14339 (13.72446)
svm * svm * rand.forest * svm *

0.01447 (0.00047) 21.07661 (30.65326) 242.07468 (36.97128) 248.66908 (32.11022)

The goal of these experiments is not to check if the models are good according
to our U metric, as they were obtained optimizing other criteria. Our objective
is to check whether by using a metric tunned for giving more weight to rare
extreme values, we can spot a method that is better at predicting these cases,
particularly if that would not be found by using only standard statistics in the
comparitive study.

The results on Table [[l unveil some interesting information that could not be
observed from looking at the M AD scores. In effect, we can see that the SVM
achieves a much higher score in terms of benefits, clearly indicating that it is able
to capture more extreme values. However, this approach also has led to a higher
value of T'C, resulting of its more risky approach to this prediction problem.
This results in a poor score in terms of net balance (U score). Still, given the
fact that there was no particular tuning of the model parameters, we can say
that the SVM is probably a model where more time should be invested in the
context of this application, so that the signals it is producing get more precise.
This sort of information is only available due to the use of an evaluation metric
that is tunned towards the application goals.

5 Conclusions

This paper has described a new evaluation framework for regression tasks with
non-uniform costs and benefits of the predictions. Our proposal is based on the
specification of a relevance function over the domain of the target continuous
variable. This function is the basis of the definitions of cost and benefit surfaces
that can be regarded as continuous versions of cost/benefit matrices used in
classification tasks. The use of the relevance function relieves the user from the
heavy burden of having to specify a cost (and benefit) for all points in the bi-
dimensional space of the predicted and true target values. The total cost and
benefit of the predictions of a model provide, either individually or aggregated
on an utility measure, important insights on the predictive performance of a
model. Moreover, these insights are related to the application goals in terms of
what is really relevant.
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We have illustrated the use of our evaluation framework in the context of a
particular class of applications: the prediction of rare extreme values of a con-
tinuous variable. Namely, we have used a data set from stock market prediction
and have introduced a general relevance function for rare extremes prediction
tasks. The results of our experiments have confirmed that our proposed metric
provides a better insight on the ability of the models to accurately predict the
cases that are more important for this class of applications.
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Abstract. Access to information plays an increasingly important role in our
everyday lives and we have come to rely more and more on a variety of informa-
tion access services to bring us the right information at the right time. Recently
the traditional one-size-fits-all approach, which has informed the development of
the majority of today’s information access services, from search engines to por-
tals, has been brought in to question as researchers consider the advantages of
more personalized services. Such services can respond to the learned needs and
preferences of individuals and groups of like-minded users. They provide for a
more proactive model of information supply in place of today’s reactive models of
information search. In this talk we will consider the key challenges that motivate
the need for a new generation of personalized information services, as well as the
pitfalls that lie in wait. We will focus on a number of different information access
scenarios, from e-commerce recommender systems and personalized mobile por-
tals to community-based web search. In each case we will describe how different
machine learning and data mining ideas have been harnessed to take advantage
of key domain constraints in order to deliver information access interfaces that
are capable of adapting to the changing needs and preferences of their users. In
addition, we will describe the results of a number of user studies that highlight
the potential for such technologies to significantly enhance the user experience
and the ability of users to locate relevant information quickly and reliably.
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Abstract. In this paper we illustrate the potential of motion behaviour analysis
in assessing the wellbeing of unsupervised, vulnerable individuals. By learning
the routine motion behaviour of the subject (i.e. places visited, routes taken
between places) we show it is possible to detect unusual behaviours while they
are happening. This requires the processing of continuous sensor data streams,
and real-time recognition of the subject’s behaviour. To address privacy
concerns, analysis will be performed locally to the subject on a small computing
device. Current data mining techniques were not developed for restricted
computing environments, nor for the demands of real-time behaviour
recognition. In this paper we present a novel, online technique for discretizing a
sensor data stream that supports both unsupervised learning of human motion
behaviours and real-time recognition. We performed experiments using GPS
data and compared the results of Dynamic Time Warping.

Keywords: sensor data stream discretization; unsupervised learning; real-time
behaviour recognition.

1 Introduction

There are many factors that can limit a person’s ability to live a fully independent life,
whether as a result of their age or due to physical or mental impairments. Yet often
these people desire greater independence than they can safely be granted, such as a
young child demanding greater freedom or an elderly person wishing to remain in
their own home. The research that we describe here was conceived of with the needs
of such people in mind. We are interested in the potential of human motion behaviour
analysis in assessing the wellbeing of vulnerable individuals. We learn the routine
motion behaviour of the subject (i.e. the places visited, and the routes taken between
places) and then show it is possible to detect unusual behaviours while they are
happening. An example of unusual behaviour could be as simple as taking a wrong
turning and becoming lost. For a young child or a memory-impaired adult this could
be a frightening and potentially dangerous situation; the quicker the responsible care-
giver can be alerted, the better the outcome will likely be. This type of human motion
behaviour analysis has not thus far received much attention within the research
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community. However, other kinds of human behaviour have been studied with the
same goals of supporting vulnerable people in living independent lives. In particular,
a large body of work investigates Activities of Daily Living (ADL) monitoring [1],
where the execution of everyday tasks (such as food preparation, having a bath) is
recorded and analyzed. It is widely accepted that analysis of the tasks performed can
give an indication of a person’s wellbeing, and that changes in ADL performance can
indicate a change in the subject’s condition. Of course, once the individual leaves
their home the monitoring stops. We examine the potential of human motion
behaviour analysis for extending this kind of monitoring beyond the home.

Section 2 considers some implementation practicalities. Section 3 reviews some
data mining techniques that can be applied to the problem of learning and recognizing
motion behaviour. Section 4 presents our solution to the same problem. Section 5
discusses the experiments performed to investigate the utility of our method. Section
6 draws conclusions and presents our ideas for further work.

2 Design and Definitions

Let us consider the scenario of a child who is allowed some travel independence yet
whose parents would like to be kept aware of changes in their behaviour. If the child
starts to take a forbidden shortcut to school the parents would like to find out, as they
would if the child decided to go to the park instead of school. The nature of the
application is that sensitive data is being collected and the monitored individual may
feel that their privacy is being intruded upon. There is also concern that such data
collection could be exploited in various ways in the case of a security breach. In order
to address some of these concerns we decided that data collection and processing
should both happen locally on a small, portable computing device. This means that
the time and space complexity of the algorithms used must be kept to a minimum.
Additionally, some potential users are computer illiterate; therefore behaviour
learning should not require user interaction i.e. the learning algorithms should be
unsupervised. Data is obtained from a GPS sensor, so we must work with the inherent
coverage and accuracy constraints of the GPS system. These are all points that the
design of the system must take into account.

Now let us consider some design issues that will guide implementation. We have
decided that an individual’s motion behaviour model consists of all the places visited
and all the routes travelled; these are connected as a network. The resolution of the
model is restricted by the accuracy and availability of GPS data; for example, we will
distinguish between buildings but not between rooms in a building. A tested approach
to the modelling of places is as a [latitude, longitude] point plus a radius [2] and we
follow this example. The resolution of route modelling should support the
differentiation between multiple routes connecting the same pair of places.

We define the recognition of an individual’s behaviour to be the results of a
comparison of what he is currently doing (whether in a place or on a journey) with his
model. Real-time recognition means that this process is carried out straight away,
rather than waiting for a convenient moment (such as the end of a journey).
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3 Related Work

A large body of data mining literature is dedicated to the analysis of time series, and
in particular continuous time series, where points in the series are real-numbered
rather than discrete values (examples of discrete data are the binary values 0/1 or
letters of the alphabet). Much work is devoted to the conversion of continuous data to
a discrete representation so that discrete analysis can be carried out. This
transformation is referred to as “symbolization” or “discretization”. The efficiency of
numerical computations is greatly increased when the data set is transformed from
continuous to discrete [3]; this can lead to faster execution, which is important to real-
time monitoring and control operations, and is often less sensitive to measurement
noise [3]. It also allows the wealth of discrete data analysis techniques from fields
such as bioinformatics and text processing to be applied [4]. Most of the time series
data that is the object of data mining research consists of long-term observations of
phenomena of a periodic nature, whether this is the performance of financial markets
or a patient’s heartbeat trace. Many techniques that are suited to this kind of data do
not fit our needs. Rather, as explained by [5], the data we measure is the result of a
person’s intentions; conscious human choice affects every value collected. There are
nonetheless some common transformations that we can apply:

Piecewise Approximation (Segmentation)

The time series is decomposed into n homogeneous pieces, segments, such that the
data in each segment can be described accurately by a simple model (i.e. Piecewise
Constant Approximation, Piecewise Linear Approximation) [6]. This is also referred
to as segmentation. The distance measure used to compare two segmentations then
uses the geometry of the representation [7]. Batch algorithms require n as an input
parameter. Online versions, e.g. [13], also exist; here the input parameter is the
maximum allowable error per segment. Unfortunately, where the data does not
correspond well with the chosen model, over-fitting occurs [14].

Symbolization

SAX [4] takes as input the number of symbols and the number of sub-sequences to
decompose each time series into. The initial reduction in dimensionality is obtained
by finding the mean of each subsequence. The entire data set is then analysed in order
to define the range of values mapping to each symbol, so that symbols are equi-
probable overall. Finally the discrete representation is obtained by mapping
subsequence means to symbols. Distance between two time series is obtained using a
measure derived from Euclidean distance.

Feature Extraction

In order to extract features, some degree of prior knowledge about the data set is
required. Domain experts may be used. In [8] motion is represented as a series of
symbols, e.g. left turn, straight line. [9] quantify the maxima and minima in a data set
and then use these points as a compressed representation.

No Transformation
It is also possible to compare time series using the original, raw data without this
initial transformation. Two very common (and long-standing) approaches are [10]:
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Euclidean Distance (ED) and Dynamic Time Warping (DTW). ED can only be
calculated for equal-length time series, as every point in the candidate time series
needs to be compared to its equivalent in the query time series. Thus it may be
necessary to carry out interpolation first. ED has time complexity O(n), with
additional overhead attributable to interpolation. DTW [11] is able to compare time
series of different lengths via a non-linear mapping, also utilizing a Euclidean
distance. It is less sensitive to skewing on the time axis than ED and has time
complexity O(n”). Both DTW and ED could have very large n since no dimensionality
reduction is carried out.

These data representations and distance measures could be used with the GPS data
to perform clustering of the journeys recorded and thus learn models for the routes
followed. It is relatively straightforward to perform agglomerative hierarchical
clustering [12] once every possible pair of journeys has been compared; any of the
techniques described above could be applied to this learning task. However, we wish
to use the same techniques to then perform real-time recognition; this requires that
data transformation and comparison should be performed online, i.e. while the
journey is taking place. The data mining techniques discussed here emphasise
accuracy (and in some cases scalability). They are often implemented using batch
algorithms that were not intended to give real-time responses of the type we seek. In
the context of our application, this would mean waiting for a particular journey to be
completed before searching for it in the model. Considering the example of a
confused person becoming lost and walking for an hour in the wrong direction, this
delay is not acceptable. Real-time recognition demands immediate responses, even if
this means basing the response on incomplete information.

In summary, many data mining algorithms implement batch processing, an
approach that is unsuited to real-time recognition. Additionally, algorithms have been
designed for accurate processing of large data sets; these are not adapted to the
processing and storage limitations of small computing devices.

The remainder of this paper presents our solution to the online processing and
analysis of sensor data so that it can be used for unsupervised learning and real-time
recognition on a device with limited computing resources.

4 Online Data Stream Symbolization (ODSS)

Information relating to the subject’s position is obtained from a GPS receiver. The
GPS receiver can generate track angle data as well as [latitude, longitude]
coordinates. The track angle is the angle of travel in degrees with respect to true
north, generated by the GPS receiver from the change in [latitude, longitude]. We
decided to use track angle as the input to our behaviour model instead of [latitude,
longitude] because it efficiently encodes changes in two-dimensional position using
one-dimensional data. Fig. 1 and fig. 2 show [latitude, longitude] and track angle plots
for a single journey. Inspection of track angle data generated by a person moving
about shows frequent areas of steady (or near-steady) state corresponding to periods
of straight-line travel. The associated value is the real-numbered track angle. These
steady state sections vary in length and frequencies according to the route travelled,
but are always present to some degree.
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Fig. 2. Plot of track angle against time step for the journey in fig. 1

This characteristic is interesting because it has the potential to uniquely
characterize a journey. It can be treated as a representation of the continuous time
series to which discrete analysis techniques can be applied. We refer to this
representation as a set of symbols, where the symbols are defined in an online fashion
as the analysis proceeds. Each symbol consists of a real-numbered value and a
tolerance (this is one input to the feature extraction process) describing the degree of
variation tolerated with the region of steady state. The second input parameter is the
minimum duration of a state for it to be extracted as a symbol. This is the essence of
our Online Data Stream Symbolization (ODSS) approach. The results of applying
ODSS to the journey in fig. 1 are shown in fig. 3. The input parameters used here are:
tolerance of +/- 4 degrees and minimum duration of 12s; these values were selected
empirically and had previously been found to work well on a range of data. The
overall set of symbols is not restricted, and as more journeys are processed the total
number of symbols used by all the journeys could become quite large. In this sense it
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is different from other symbol definition processes such as that used by [4], which fix
the number and definition of the symbols in advance of performing the
transformation. The ordering of the symbols is preserved, as this reflects the
information in the time dimension of the original data. The symbols are considered to
belong to an ordered set.

400

300 ]

200 ]

1001 ]

Track Angle (degrees)

O0 50 100 150 200
Time

Fig. 3. ODSS results (tolerance = +/- 4 degrees, minimum duration = 12s) superimposed on the
track angle data seen in fig. 2. The symbol set can be expressed as the ordered set {73, 178,
270, 340}.

The ODSS approach is similar to Piecewise Constant Approximation (PCA) in that
the real-numbered input data maps to a few real-numbered symbols, where these
output values are unknown a priori. The difference lies in the fact that PCA fits a
constant model to the whole data set, even to those sections that are not constant.
Fig. 4 shows a 6-segmentation PCA that has been applied to the track angle data in
fig. 2; ODSS and PCA agree about the central 4 segments, while the poorer-fitting 2
outer segments are not identified by ODSS.

The ODSS approach also relates to feature extraction such as [9], in that the feature
sought (constant value) is established with prior knowledge of the data set, but can
take any value.

Having obtained an ODSS representation for two separate journeys (p and q), a
means of comparing the two journeys is required. This in turn depends on being able to
compare a pair of symbols. We take one symbol from each journey and compare them
using the tolerance, t. The symbols are considered to be a match if equation 1 holds true.

(pi—qj)=2% M

A discrete similarity measure can then be used to compare a pair of journeys. We
chose to use the Jaccard similarity coefficient (J). J takes a value in the range [0,1],
where high J indicates a high degree of similarity, and vice versa. Equation 2 defines J
for two sets A and B. We use equation 1 to work out which symbols are common to

both sets.

J(AB)=IANBI/IAUBI 2
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Fig. 4. The 6-segmentation produced by PCA, superimposed onto the track angle data of fig. 2

Our symbol sets are ordered sets, so the set notation in equation 2 is considered
here to apply to ordered sets. This important distinction is illustrated in table 1 using
the example sets: A={1,3,5,7}, B={7,1,5} (N.B. for the purposes of this example
only, symbol equality corresponds to standard mathematical equality).

Given a similarity measure it is then possible to proceed to clustering. The
similarity of all possible pairs of journeys is calculated, and used as the input to an
agglomerative hierarchical clustering algorithm. The output is used to identify groups
of similar journeys.

Table 1. Example showing how ordering affects J, where A={1,3,5,7}, B={7,1,5}

Ordering | ANB AUB J=IANBI/IAUBI
No {1,5,7) {1,3,5,7} 3/4=0.75
Yes {1,5} {7,1,3,5,7} 1 2/5=04

5 Experiments

5.1 Experimental Scenario

We envisaged a scenario that would provide a framework for the experiments. A
young child walks alone through the park (fig. 5) to school in the morning and is
accompanied home by a group of friends in the afternoon. In the afternoon the child is
allowed to take the direct route home through the park (C — A) that is obscured by
trees. In the morning the parents prefer the child to take the longer route to school (A
— B — C) that avoids the treed area by a large margin. In this scenario the parents
would like to know about changes in their child’s behaviour, but would like to be
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Fig. 5. Map of park where experimental data collected

flexible in setting boundaries for the child. For example, they don’t mind if the child
cuts the corner at B a bit to shorten their journey but they would like to know if the
child is starting to deviate a significant amount from the prescribed route.

5.2

Data Collection and Preparation

Data was collected while walking around the park shown in fig. 5. The data was
collected over two visits, with several journeys being walked on each occasion and
stationary pauses used to demarcate the journeys. The routes travelled are defined in

table 2.

Table 2. Definition of routes travelled

Name of route | Description

Permitted (P) A-B-C

Return (R) C-A

Forbidden (F) | A-C

Shortcut (S) A — (cut the corner at B) — C.
The degree to which the corner is cut varies from a few
meters to a route running almost parallel with Forbidden

Data was downloaded from the PDA to the PC for processing. Journeys were
isolated by identifying velocity = O (corresponding to pauses in data collection). All
the data was used and there was no attempt to exclude any noisier data from the
analysis.
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5.3 Experimental Method and Results

Aims. Obtain clusters identifying the main routes travelled. First do this using ODSS,
then perform a comparative analysis based on DTW. Investigate a working value for
the dissimilarity measure in each case.

Clustering using ODSS. ODSS was applied to each journey (31 in total) in turn. A
similarity matrix was then obtained by calculating J for every pair of journeys. This
matrix was transformed into a dissimilarity matrix by subtracting all elements from
one and then used as the input to the hierarchical agglomerative clustering linkage
routine available in Matlab. The linkage method used was average, meaning that the
inter-cluster distance between two clusters x and y is calculated to be the average
distance between all pairs of objects in cluster x and cluster y. Results are presented
graphically as a dendrogram in fig. 6.

ODSS Results. Dimensionality reduction is significant: for example, a journey
consisting of 200 data points might be reduced to 5 symbols using this method. Each
tick on the x-axis of the dendrogram represents a single journey; the tick label
consists of a letter (e.g. ‘s’ for shortcut) and a number indicating the journey instance
(e.g. ‘s5’ is the 5th shortcut). Please refer to table 2 for the meanings of other letters.
There is no hard threshold that can divide similar from dissimilar journeys; the
dendrogram can be used to ascertain a working value for the application in question.
We begin by placing a threshold at 0.5 and consider that all cluster joins below this
line are valid. This gives us: a cluster of ‘r’ journeys; a cluster of ‘f” journeys
(incorporating the most extreme shortcut that strongly resembles the forbidden route);
a cluster of ‘p’ journeys (incorporating the least extreme shortcut that strongly
resembles the permitted route); and several small clusters containing the remaining ‘s’
journeys. Journeys r2 and f2 both join their respective clusters, but above the chosen
threshold. Inspection of plots of the raw data shows that these two journeys are noisier
than the remainder of the dataset, which explains the greater apparent dissimilarity.

Clustering using DTW. Pairs of continuous time series are used as the input to the
DTW algorithm, which uses Euclidean distance to calculate the dissimilarity between
the two series. In order to generate results for comparison with ODSS, DTW was used
to calculate the distance between all pairs of journeys. This resulted in a dissimilarity
matrix that could be clustered in the same way as the one produced by ODSS. The
dendrogram is shown in fig. 7. The dissimilarity values have been rescaled so that the
values vary between 0 and 1 for this set of results; this is to facilitate comparison with
the ODSS results.

DTW Results. Again we select a threshold of 0.5 and then explore the results in the
same way as the ODSS clustering: the ‘r’ journeys form a tight cluster; the ‘f’
journeys do the same, and pull in the most similar ‘s’ journey too (s10). The next
identifiable cluster contains two ‘p’ journeys plus a fairly similar ‘s’ journey. The
remainder of the clusters are more difficult to explain since the ‘s’ and ‘p’ journeys
show strong heterogeneous links; whereas we know that some of the ‘s’ journeys are
very different from the ‘p’ journeys, and very different from each other too.
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6 Conclusions and Further Work

The results show that ODSS is able to cluster a set of unlabelled routes; it does this at
least as well as the equivalent clustering based on DTW for the real GPS data set
used. Continuous data is transformed to a discrete representation, with dimensionality
reduction of the order of 40:1 for this data set. Transformation can be performed
online and requires no batch processing, nor prior definition of symbol sets. A well-
established similarity measure, the Jaccard coefficient, can be applied to this discrete
representation; this in turn allows hierarchical clustering to be performed. ODSS
succeeds in identifying quite small changes in path followed, despite its low-
resolution representation. When analysing the behaviour of vulnerable individuals, the
ability to detect such small changes could be important.

ODSS forms the basis of our real-time recognition system, which compares partial
(ongoing) behaviours with the model of previous behaviours, again using the Jaccard
coefficient. A sliding window approach is used to adapt the methods described in this
paper to a real-time context. This allows behaviour assessments to be carried out
repeatedly, as symbols are extracted from the data stream. The significance of this is
the ability to rapidly detect unusual behaviour without waiting, for example, for a
journey to end. Initial real-time recognition results are encouraging and are the main
focus of ongoing experiments.
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Abstract. Many deployed traffic incident detection systems use algo-
rithms that require significant manual tuning. We seek machine learn-
ing incident detection solutions that reduce the need for manual adjust-
ments by taking advantage of massive databases of traffic sensor network
measurements. First, we show that a rather straightforward supervised
learner based on the SVM model outperforms a fixed detection model
used by state-of-the-art traffic incident detectors. Second, we seek further
improvements of learning performance by correcting misaligned incident
times in the training data. The misalignment is due to an imperfect inci-
dent logging procedure. We propose a label realignment model based on
a dynamic Bayesian network to re-estimate the correct position (time)
of the incident in the data. Training on the automatically realigned data
consistently leads to improved detection performance in the low false
positive region.

1 Introduction

The cost of highway accidents is significantly reduced by prompt emergency
response. With real-time traffic flow data, automated incident detection systems
promise to detect accidents earlier than human operators. Earlier response and
accident impact mitigation lead to significant savings of money and life.

The most widely deployed traffic incident detection models are fixed-structure
models that combine and threshold a set of signals such as volumes, speed and
speed derivatives [I]. Tuning of these thresholds requires extensive involvement
of traffic experts. What is worse, as the settings extracted for one site typically
do not transfer to a new site, the tuning costs are multiplied by the number of
sites in the network. Transferability of detection algorithms is a central concern
in automatic incident detection [2]. We investigate how machine learning can
help design transferable detection algorithms.

Machine learning approaches to automatic incident detection are made pos-
sible by the wealth of data collected by networks of traffic sensors installed
nowadays on many highways. Models that can be automatically tuned from
data could reduce or eliminate costly recalibrations and improve performance
[BII56]. We experiment with SVM-based detection and show it easily outper-
forms the optimally calibrated standard model (California 2).

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 236 2007.
© Springer-Verlag Berlin Heidelberg 2007
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However, the learning framework can be further improved. In particular, the
labels for incident data are imperfect; the initial time of incidents is logged with
a variable delay. Consequently, the incident label may be misaligned with the
onset of the observed changes in traffic flow caused by the incident. Training a
learner with such badly aligned data yields a suboptimal detector.

We approach the alignment problem using machine learning methods as well.
We propose a new dynamic Bayesian network [7] that models the misalignment
problem probabilistically with respect to traffic flow quantities and the label po-
sition. We train the model on the manually realigned data from a single highway
segment. Once learned, the model can be transferred to other highway segments
to correct the incident labeling. The realignment model generates new incident
labels in temporal data that are then used to train a supervised classifier such
as a SVM to obtain the detection algorithm. This approach allows us to learn,
with a limited amount of human effort, a more reliable detection model. We
demonstrate the improvement in detector quality on traffic flow and incident
data collected in the Pittsburgh highway network.

2 The Data and Detection Task

In this section, we look at the available data and define the incident detection
task together with the relevant performance metrics.

2.1 Traffic and Incident Data

The data are collected by a network of sensors that use a number of physical
principles to detect passing vehicles. Three traffic quantities are normally ob-
served and aggregated over a time period: the average speed, volume (number
of passing vehicles) and occupancy (the percentage of road taken up by cars).
Incidents that the metropolitan Traffic Management Center (TMC) was aware
of are noted in the data: their approximate location, time of accident and time
of clearing by emergency responders (Figure[Il). Short free-text accident descrip-
tions are also available.

The detection task is to continuously observe the data stream and raise an
alarm when the readings indicate an incidentl. An incident restricts the capacity
of the roadway by blocking one or more lanes, forcing drivers to slow down to
navigate around it. This will result at a temporary drop in the number and
density of vehicles passing the downstream sensor. Upstream of the accident, a
jam forms. When the tail end of the jam approaches the nearest sensor, it will
cause a drop in measured speed and and increase in vehicle density. The time
when the sensors detect the anomaly depends on the utilization of the highway,
distance to the sensors and severity of the incident.

! The term incident includes vehicular accidents as well as unscheduled emergency
roadwork, debris on the road and many other hazards. Most incidents are accidents
and we will use the terms interchangeably.
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911:1810 912:1545
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Fig.1. A section of the raw data. The red (solid), green (solid with markers) and
blue (dotted) lines represent average occupancy, average speed and total volume, re-
spectively. Time is on the horizontal axis. The vertical (orange) stripes represent the
reported accidents durations. A thin grey vertical line is drawn at midnight of each
day. The numbers at the bottom encode accident time as recorded by TMC. Some acci-
dents square with congestions perfectly (912:640 — September 12", 6:40am), some are
slightly shifted (912:1545) and some even have no observable effect on traffic (911:1810).
The incident at 912:640 is mostly obscured by morning peak traffic — compare to the
morning traffic on the previous day.

2.2 Performance Metrics

A false alarm occurs when the system raises an alarm, but no accident is present.
The false alarm rate (FAR) is the number of false alarms divided by the num-
ber of detector invocations. The detection rate (DR) is the number of correctly
detected incidents divided by the number of incidents that actually occurred.
Receiver operating characteristic (ROC) curves [§] are the standard metric de-
signed to quantify detection of one-off binary events. Because accidents affect
the traffic for a longer span of time and the detections are not equally valuable
around the beginning and the end of the span, we instead prefer the activity mon-
itor operating characteristic (AMOC) curve as the primary performance metric.
AMOC curves are used for evaluation of rare event detection performance, such
as detection of disease outbreaks [9]. AMOC curves relate false alarm rate (FAR)
to time-to-detection (TTD). TTD is defined here as the difference between the
time of the start of the first data interval that was labeled as “accident” and
the reported incident time. Note that this number can be negative because of
the delayed incident recording. As we cannot guarantee to detect all accidents,
we introduce a two-hour time-to-detection limit for accidents that remain unde-
tected. When a scalar metric is desired, we compare detectors on AUC g, the
area under the curve restricted to the (0,0.01) sub-interval of FAR. This is a
better indicator of detector performance in the usable low-false-positive region
than the area under the entire curve.

The target performance at which a system is considered useful depends chiefly
on its users. A study [5] surveying traffic managers found that they would se-
riously consider using an algorithm that achieves a DR over 88% and FAR under
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2%. For any rare event detection system, a low FAR is absolutely essential. A
system with a high FAR subjects its users to “alarm fatigue”, causing them to
ignore it.

3 The Detection Models

In this section, we present the detection models that operate on the original data
supplied by the TMC.

3.1 The California 2 Model

“California #2” is a popular model against which new detection algorithms
are often compared and runs in most deployed incident detection systems [2].
California #2 (abbreviated CA2) is a fixed-structure model that proceeds as
follows:

— Let Occ(syp) denote occupancy at the upstream sensor s, and Occ(Sgown)
the same at the downstream sensor. If Occ(syy) — Occ(Sdown) > T1, proceed
to the next step.

— If (Oce(sup) — Occ(Sdown))/Occ(sup) > Ta, proceed to the next step. The
rationale behind this step is while a capacity-reducing accident will always
produce large absolute differences in occupancy, these may also be produced
under almost stalled traffic conditions.

— If (Occ(Sup) — Occ(Saown))/Occ(Sdown) > T3, wait until the next reading. If
Ty is still exceeded, flag an alarm. The wait is introduced to cut down on
false alarms.

Thresholds 17,15, T3 need to be calibrated manually for each sensor site. With-
out access to an expert, but with plenty of data, we resorted to an exhaustive
parameter grid-search as described in Section 5.

3.2 Model Learning and Features

The CA2 algorithm uses a surprisingly limited set of features. Could a better
detection performance be achieved if the detector took advantage of multiple
features? And which features? Clearly, the readings at the upstream sensor s,
and the downstream sensor Sgoun at the time of detection should be included.
Sharp changes in traffic flow may also indicate an accident. Therefore, we include
features computed as differences and proportions of the traffic variates to their
previous value. Finally, unlike a benign congestion, an accident should cause
radically different flow characteristics at the upstream and downstream sensors.
This motivates the inclusion of features that correlate the measurements spa-
tially, as differences and proportions of the respective measurements at upstream
and downstream sensors.
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Fig. 2. Performance of the SVM model, for different feature sets. The features are:
(a) All readings for the sensor. (b) California 2 features (the occupancy ratios). (c)
All of current and previous step measurements. (d) All current measurements together
with differences and proportions of the corresponding readings at the upstream and
downstream sensors. For drawing the curves, the intercept of the SVM hyperplane
is varied in the (-1,1) range, giving a lower bound on the true performance [10]. For
each value of the detection threshold, we compute the average FAR and TTD over 10
train/test splits and draw the graph point as well as both of the corresponding error
bars. The area under the portion of the curve up to 1% FAR is reported as AUCI.

3.3 SVM Detector

Having defined the potentially informative features, we pick a learner from the
palette of learning tools. We had two reasons for choosing the SVM model [IT].
First, in preliminary experiments it outperformed logistic regression and several
variations of dynamic Bayesian network detectors [I2]. Second, the SVM is fairly
robust to irrelevant features, allowing us to include features that are weakly
informative individually, but perhaps become strong predictors in aggregate.
The SVM was learned in the straightforward way. Datapoints falling into the
intervals labeled as “incident” in the data were assigned class 1, the remaining
datapoints class —1. Misclassification cost was selected as to balance for unequal
class sizes: if there are N instances of class 1 and M instance of class —1, then
the misclassification of “—1” as “1” costs N/M and 1 vice versa.

The performance of the SVM detector using different feature sets can be seen
in the curves and the associated AUC, ¢ values in Figure[2l It appears that for
our data, the direct sensor readings (speed, volume, occupancy) provide most
of the detection leverage. Addition of the spatial difference (and proportion)
features affects the performance minimally. The temporal difference features do
bring a small improvement, albeit one that fails to confirm the perception of
temporal difference as an important feature [I]. This could be in part explained
by the fact that our data are 5 minute averages and the sharp temporal effects
important for detection are somewhat averaged out. A detector using the fea-
tures of the CA2 algorithm is included for comparison. The results confirm our
intuition: the SVM detectors using multiple features outperform that using only
CA2 features (the comparison to CA2 itself follows later).
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3.4 Persistence Checks

False alarm rate can be traded for detection time with the alarm signal post-
processing technique known as persistence check. k-persistence check requires
that the alarm condition persist for &£ additional time periods before the alarm
is raised. Note that CA2 already has a built-in 1-persistence check in its last step.
We experimented with the optimal (in the sense of minimizing AUC1¢) choice
of k for the SVM detector with the basic measurement features (on the training
site data). Best performance is attained at k = 1 and all SVM experiments are
therefore conducted using that persistence value.

4 Label Realignment Model

Our objective is to detect the accident as soon as its impact manifests in sensor
readings. This time will always lag the time the accident actually happened.
The lag amount depends, among other factors, on the capacity utilization of
the roadway and the relative position of the sensor and accident locations. The
time that the incident is reported to the TMC and logged in the database may
precede or follow the time of manifestation. Differences between these times lead
to label misalignment.

There are two things that the detector can latch onto; the short period when
the accident’s impact builds up (e.g. speed falls) around the sensor, and the
longer steady state condition with lowered speeds or jammed traffic. To opti-
mize detection time, we should focus the detector at the transient period. The
transient period is very short and any misalignment will cause the accident start
label to fall outside of it. It is therefore crucial for supervised learning that the
label is precisely aligned with the observed impact of the accident. The end-
of-incident labels are less important: by the time the incident is cleared, the
emergency response has already taken place. We do not attempt to align inci-
dent clearing times.

By definition, misalignment can only occur in positive instances, i.e. those
sequences that contain an incident. We need a method to correct the alignment
of incident labels in the training set so that the learned model accuracy may
improve.

4.1 A Model of Incident Sequences

Consider a single positive sequence S of traffic feature vectors. An incident start
label r denotes the point in sequence S where the single incident is reported
to occur. The label realignment task is to output the label £ pointing where
the incident truly began to manifest in S. For label realignment, we model the
sequence of feature vectors with a special dynamic Bayesian network model,
shown in Figure Bl In the model, A represents the true accident time and takes
on a value from {1,..., L}, where L is the sequence length. Each impact variable
I™) is a binary indicator of incident impacting the traffic flow at time k. Each I is
a part of the intra-slice Bayesian network that models the interaction between the
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Fig.3. Two slices of the temporal probabilistic model for realignment. As usual,
shaded nodes represent observed random variables; unshaded nodes correspond to la-
tent variables. There are a total of L slices; the superscript (k) denotes the variable’s
instantiation in the k-the time slice.

traffic measurement features Fi, ..., F,,. We place no restrictions on the within-
slice network in general. In order to keep the model presentation simple, we do
not draw arrows between the features in subsequent slices. However, features
may depend on values at other nearby timepoints; for instance the “occupancy
derivative” F(t) = Occ(t) — Occ(t — 1) depends on the previous measurement.

The variables A and I(®) have a special relationship, expressed in their prob-
ability distributions. First, we express the lack of prior knowledge about A by
defining the prior P(A) to be the uniform distribution on the set {1,..., L}. Sec-
ond, the conditional distribution is also fixed, expressing that once an incident
starts impacting traffic, it continues to do so:

PU® =1jA=§ 10D =1)=1
P(I® =1jA=k, 1 D =0) =1 if k=¥,
0 otherwise. (1)

We can afford this simplification because we only want to model the accident
onset and disregard the accident clearing event.

The report time R depends on the true accident time and is assumed to obey
a conditional Gaussian distribution: P(R|A = k) ~ N(k + u,0?), with u,o
identical for all k. Equivalently, the amount of misalignment has a stationary
Gaussian distribution: R — A ~ N (p, 0?).

4.2 Inference for Realignment

We perform inference in this model in its unrolled form. Basic variable elimi-
nation is the best suited inference method for the realignment model. It deals
well with the unusual distributions and is also efficient for this model, because
the special form of the inter-slice probability distribution simplifies the inference
task — there are only L indicator sequences with p([y,..., 1) > 0 to sum over.
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Using the probability distribution p defined by the above model, the label
alignment task can be formulated as a posterior mode problem. Given that the
data places the incident start label at r, we reassign the label to ¢, so that

¢ = argmaxp(A = k|R = r,FV . FE), (2)
k
where F() = (Fl(t)7 . ,Fff)) is the t-th observation vector.

4.3 Learning and Transfer to New Locations

Now, we must parameterize a separate model for each sensor pair defining a
highway segment (site). Let A denote the single calibration (training) site and
let Bj, j = 1,...,5 be the test sites. While one could learn the model in a
fully unsupervised manner with the EM algorithm [I3], there is little guarantee
that the learning would converge to the intended interpretation. Instead, we first
learn p*, the sequence model for A, from manually aligned data. Manual align-
ment gives us a fully observed dataset X4 = (F4, R4, 14, A4) and maximum
likelihood learning becomes trivial:

8]‘3& = argmaxp(XA |©) (3)
e

Then, inference in the model parameterized with @4, can be applied to
realign the labels for the B-sites where the manual annotation is unavailable.
Of course, accident impact at each site B; differs from that of the site A. The
resulting labeling will be imperfect, but it still provides a good initial estimate.
The EM-algorithm for estimation of @57 can proceed from there with a smaller
risk of converging to an undesirable local optimum. Additionally, the sufficient
statistics obtained in the estimation of @4 are stored and used to define the
conjugate prior over ©Pi. Thus the resulting parameterization of a testing site
model is a maximum a posteriori (MAP) estimate:

Oriar = argmaxp(X"/|O)p(6]6% 1) ()

In the EM algorithm that estimates Qﬁf Ap» the expectation step corresponds
to inference of the unobserved labels AP/ and I%i. The maximization step re-
estimates the parameters of the conditional distributions p(R|A) and p(F;|T). We
consider the EM converged if the labeling (the posterior modes, see Equation [2))
does not change in two consecutive iterations. For our dataset, the EM always
converges in less than 5 iterations.

5 Experimental Evaluation

In this section we describe the experimental setup and report the results. All sta-
tistics reported are averages and standard deviations across 10 cross-validation
splits, even where error bars were dropped for sake of readability. Error bars in
all graphs represent one standard deviation.
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Table 1. Sites included in the evaluation, with number of incidents

Site ST'rain STestl STestZ STest3
# incidents 145 100 97 92

5.1 Evaluation Framework

We evaluated our model on four sites with the highest numbers of accident
reports in the area. The incident reports at S7,q;n, Were manually aligned to the
incident manifestations in the data. The manual realignment was also aided by
the free-text incident descriptions from the TMC database.

We evaluate the models under the cross-validation framework. The dataset
consists of three long sequences per sensor, one for each of the three traffic
variates. We divide the data into train/test splits by incidents, making sure an
entire incident sequence makes it into one and only one of the sets. To create the
training set, we first select ;4 “incident” sequences of preset length L so that
the reported time of the incident falls in the middle of the incident sequence.
In the rare case that more than one incident should occur in or in the vicinity
of a sequence, we exclude such sequence from the data. C' “control” sequences
without an incident are selected so that no incident is recorded within additional
L/2 datapoints before and after the control sequence. This safeguards against
the imprecise accident recording. By choosing [;,.qi, and C, the class prior in
the training set can be biased towards incident occurrences. The testing set
consists of the Liest = I — Itrain incident sequences that were not selected for
the training set. Additional sequences without accidents are added so that the
testing set has class prior equal to that in the entire dataset.

To obtain the experimental statistics, we use 10 different train/test splits
using the above method, with liyqin @ Liest = 70 : 30, sequence length L = 100
and C' = 50 for training. For testing, instead of choosing a fixed C', we make
sure the proportion of positive (incident) instances approximates the proportion
observed in the entire dataset.

In each cross-validation fold, the positive training sequences are realigned and
the quality of the detection is evaluated on the testing set, using the original inci-
dent labeling. While testing on the original labeling will result in a measurement
that is somewhat off, the skew will be consistent across detectors and relative
comparisons remain valid. If we evaluated on the realigned data, we would run
the risk of having both the realignment algorithm and the detector make the
same mistake in lockstep, losing touch with the data.

5.2 Detection and Alignment Model Specifics

To represent incident impact on traffic, we use a Naive Bayes intra-slice model
with binary indicator I and two features, Fi: the difference in occupancy at
the upstream sensor in the previous and following interval and F5: the same
difference in speed. Both features are assumed to follow a conditional Gaussian
distribution.
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Table 2. Summary of the AUC¢ performance statistics for the three detection algo-
rithms and four evaluation sites. Some sites are more amenable to automatic detection,
but consistent improvement is noted from CA2 to SVM on original data to SVM on
realigned data.

Site
Detector Strain STest1 STest2 STests
CA2 0.838 0.451 1.177 1.180
SVM/orig 0.682 0.179 0.807 0.474
SVM/realign  0.547 0.149 0.763 0.389

The CA2 algorithm is normally tuned by experts who choose the three thresh-
olds. Since we did not have services of an expert, we found the parameterization
by an exhaustive procedure trying all possible settings of the three parameters
on a discrete grid covering a wide range of parameter values. The “best per-
formance” for the purpose of parameterization was defined as the best DR at
a fixed FAR of 1%. This was an extremely time-consuming procedure that is
impractical for a metropolitan network with hundreds of sensors, not to mention
uninteresting from the learning perspective.

5.3 Experimental Results

The root of the mean squared difference between the hand-labeled incident man-
ifestations and the recorded events is approximately 8.5 intervals. After auto-
matically re-aligning the recorded events with the incidents, the RMS difference
decreases to approximately 2.2 intervals. The decrease in training error affirms
that the model indeed picks up the accident effect.

The average amount of misalignment at the training site is only 2.2 minutes
(incidents are on average logged 2.2 minutes after they become observable in
data), but with a standard deviation of more than 43 minutes. This is a serious
amount of misalignment, it implies that the label position is on average off by 8
or 9 time steps.

The quality of the resulting labels is most relevantly measured by the improve-
ment in the AUC, ¢ performance metric of a classifier learned on the realigned
data. The AUC\q values for the three methods (CA2, SVM, SVM after rela-
beling) are summarized in Table Pl The standard deviation of TTD and FAR
obtained together with the 10-fold cross-validated averages are represented by
the vertical and horizontal bars, respectively, around each operating point on
the curves in Figure [ The table shows that the SVM detector learned on the
original data consistently improves over the CA2 method for every testing site.
Similarly, the SVM detector learned on the label-realigned data realizes an im-
provement over the original SVM detector. The absolute performance varies
significantly between testing sites as it depends on a number of site specifics: the
distance between the accident site and the upstream sensor, volume of traffic,
the presence of a shoulder lane where the vehicles may be removed from the flow
of traffic, etc.



246 T. Singliar and M. Hauskrecht

AMOC - TSC2, T1 = 1300, T2=0.75, T3=2.00 - 10:13:8 AMIOC - SVM usingsdown_vol s1down_spdsdown_oce... - 14:4824 AMOC - SVMrelabel usings1down_vols1down_spd,stdonn_oce.. - 15:3344
20,

00 100)

00,

80

AUC1%: 0.837587
0 60

Time to detection (min)
Time to detection (min)
Time to detection (min)

AUC1%: 0.681785
40 4 0
AUC1%: 0.546634

0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
False alarm rate (per interval) False alarm rate (per interval) False alarm rate (per interval)

(a) (b) (c)

Fig. 4. Train site A with human-labeled data. Detection performance of (a) California
2 (b) SVM learned on original labeling, (c¢) SVM learned on the relabeled data.

6 Conclusions

Learning is a viable approach to construction of incident detection algorithms.
It easily leads to detectors that outperform traditional hand-crafted detectors.
With sufficient data now available, it can do away with the problem of manual
tuning and re-tuning of the detectors to adapt to new deployment locations and
changing traffic patterns.

However, the data obtained from such complex systems is inherently noisy. We
proposed an algorithm that deals successfully with noise in event label timing
and demonstrated that it improves the data quality to allow more successful
learning of incident detectors. Of course, a number of specific questions about
our approach remain open. One could devise finer incident models and offset
distributions; relax the assumption of independence of time-to-recording and
incident impact severity — a more severe accident is perhaps more easily noticed.
Explicitly modeling time-of-day and the expected traffic pattern looks especially
promising as it permits the definition of an “unexpected” congestion, presumably
more indicative of an accident.

While the realignment algorithm was motivated by and presented in context
of incident detection, it is generally applicable to situations where events are
marked noisily in data streams. For instance, similar uncertainty in labeling
alignment accompanies detection of intonation events in speech recognition [I4].
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Abstract. Colon cancer is one of the most common cancers in developed
countries. Most of these cancers start with a polyp. Polyps are easily
detected by physicians. Our goal is to mimic this detection ability so
that endoscopic videos can be pre-scanned with our algorithm before
the physician analyses them. The method will indicate which part of
the video needs attention (polyps were detected there) and hence can
speedup the procedures. In this paper we present a method for polyp
detection in endoscopic images that uses SVM for classification. Our
experiments yielded a result of 93.16 + 0.09% of area under the Receiver
Operating Characteristic (ROC) curve on a database of 4620 images
indicating that the approach proposed is well suited to the detection of
polyps in endoscopic video.

1 Introduction

A polyp is an abnormal growth of tissue projecting from a mucous membrane.

In this paper we are concerned with polyps in the colon. An example is pre-
sented in figure [[I Polyps are important since they can, with time, turn into
colon cancer. The cumulative risk of cancer developing in an unremoved polyp
is 2.5% at 5 years, 8% at 10 years, and 24% at 20 years after the diagnosis [7].
If detected on an early stage these polyps can be easily removed.

In Portugal there are six thousands people per year diagnosed with the disease
of colon cancer[I]. However, this disease is also the most tractable of all the
digestive cancers when diagnosed at an early stage. This cancer is one of the
most fatal illness all over the world.

Our interest in the video processing approach comes from the fact that there
is a new medical examination, where the patient ingests a capsule (with the form
of a pill) that films the digestive tube (video capsule endoscopy). The video is
recorded in a device that the patient carries, usually in the belt. This video is
then screened by the physician to search for polyps (and possibly other illnesses).
Our goal is to develop a method that can be applied to the resultant video and
avoid the time necessary to completely screen these videos. The idea is that if
our systems detects polyps, the physician will focus on the signalled portions
of the video with urgency. Videos where polyps aren’t detected will be left for
latter processing by the physician (have a lower priority).

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 358-365} 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. An endoscopic image with a polyp marked by the white ellipse

Given the importance of colon polyps, some researchers have developed meth-
ods for its automatic detection. There are basically two approaches for this: video
processing and CT (Computed Tomography) image processing [4I3I5]. Although
the approaches based on CT images are able to produce a virtual representation
of the colon which can speed up the visual analysis by the physician, they also
have some disadvantages: the extensive amount of radiologist time (during CT
scanning) involved in the process, the radiation that the patient is subjected
to and the cost of such an exam. Given our motivation presented above, we are
more interested in the video based approaches. We will now briefly describe some
of the work done under this approach.

In [6] a comparative study of texture features for the detection of gastric
polyps in endoscopic video was presented. Of the four approaches tested, tex-
ture spectrum histogram, texture spectrum and color histogram statistics, local
binary pattern histogram and the color wavelet covariance, this last one pre-
sented the best results with an area under the ROC curve value of 88.6%.

In [8] the authors presented new approaches for extracting texture- and color-
based features from colonoscopic images for the analysis of the colon status. Note
that the abnormal status can be due to pathologies other than polyps. They used
Principal Component Analysis (PCA) for feature selection and Backpropagation
Neural Networks for classification. They found that using texture and color features
improved classification results when compared to using only one type of feature.

In [9] the authors were also concerned with abnormality detection from en-
doscopic images. They use a fusion approach to reach a final decision from sub-
decisions made based on associated component feature sets. They report that
the overall detectability of abnormalities using the fusion approach is improved
when compared with corresponding results from the individual methods.

In this paper we show that, given the SVM’s ability to deal with high dimen-
sional input spaces, we can produce very interesting results in terms of polyp
detection in endoscopic video images by using only color and pixel position in-
formation, without any further feature extraction or selection technique.

The paper is organized as follows: the next section presents our method for
polyp detection. Section 4 presents the experiments and the final section contains
the conclusions.



360 L.A. Alexandre, J. Casteleiro, and N. Nobre

Fig. 2. Image before and after the operation that removes the black frame

2 Polyp Detection

The goal is to detect polyps on colonoscopic images similar to the one in figure 2l

Our approach to this problem is the following: first we pre-processed the images to

retain only the image portion that contains relevant information; then we subdi-

vided each of the original images into sub-images of 40 x 40 pixels. Then we applied

the feature extraction algorithms to these sub-images. Finally a classifier (SVM)

was used to make the decision about the existence or not of a polyp in an image.
We will now describe these operations in more detail.

2.1 Pre-processing

The videos were captured with PAL (768 x 576) resolution. The frames have a
black frame around the useful region of image as in figure 2l This black frame
is removed leaving each image with a resolution of 514 x 469. This approach
discards some of the useful area, but since we are working with video, we can
recover the lost data from other video frames.

2.2 Image Division and Tagging

Our approach considered the division of the original images into smaller sub-
images, that is, we will not classify directly an input image but, we subdivide it
and classify each sub-image individually as containing a polyp or not. Then this
information is used to classify the original image.

The idea consists in processing sub-images that can sometimes be completely
contained within the polyp region. This means that ideally we should use sub-
images of the size of a single pixel. Of course this would not produce enough
data to have statistically significant results on the sub-image level. So, we define
the sub-image area with dimensions of 40 x 40 pixels. This is small enough such
that the sub-images are frequently completely contained in the polyp region but
are also big enough to produce significant feature results.
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Fig. 3. From left to right and top to bottom: original image, its subdivision, the cor-
responding manual classification mask (black means polyp) and its subdivision

The sub-images were obtained by sliding a window with a 40 pixels step, both
horizontally and vertically through the original image. This means that there is
no overlap between the sub-images.

Given the dimensions of the input images after the black frame removal, the
sub-division process generates 132 sub-images for each original image.

To simplify (automate) the manual classification of each of these sub-images
we produced a binary image that was used as a classification mask. This mask is
a manual painted image the size of the original image, that has the polyp region
painted black and the remaining portion is white (an example is shown in figure
B)). This painting was checked by a grastroentrologist.

The subdivision of the original image into sub-images is done also on the clas-
sification mask, yielding a sub-image that contains only black and white pixels.
To assign a class label to the original sub-images we look at the corresponding
classification mask sub-image and count the number of black pixels it contains.
If this number is higher than a given threshold, A, we consider that the sub-
image ‘contains’ a polyp. This process allows the automatic classification of the
sub-images.

2.3 Choosing the Sub-Image Classification Threshold A

The value of A can vary between 1 and 1600 (the total number of pixels of
the sub-image). Naturally, as A gets smaller, more sub-images are classified as
containing polyps. This might look like a good option so that the system has
a smaller false negative rate. But since these images are used for training the
system, if we choose to classify a sub-image with few black pixels as a polyp, we
are using very little real polyp information in that image to teach what a polyp
is. In fact, if we choose A smaller than 800, we may give more non-polyp than
polyp information in a sub-image.
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We studied the influence of A in the classification results. These results are
presented in the experiments section but we can say that the best results are
obtained for a larger A.

2.4 Feature Extraction

Out approach to feature extraction is quite simple and produced very interesting
results. Given the capabilities of the SVMs in dealing with high-dimensional in-
put data, we chose as features only color and position information for each pixel.
Each pixel in a sub-image is represented by five values: its RGB components and
its coordinates in the sub-image. So each sub-image is in fact represented by a
total of 8000 features: 5 features for each of the 1600 pixels.

These features were reduced and centered in the corresponding training and
test sets (see below).

3 Experiments

3.1 Dataset

The dataset consists of 35 video frames obtained with a Fuji 410 video endoscope
system at the Hospital Cova da Beira, Portugal, during the year of 2007. The
images were subdivided into smaller images after the pre-processing described in
section Il Each image produced 132 sub-images. Fach sub-image was defined
as polyp or not polyp according to the correspondent sub-image obtained from
the manual generated classification mask described in section [Z21 The resulting
data set contained 4620 images each with a dimension of 40 x 40 pixels.

The features were centered and reduced such that, for each feature, the mean
value is 0 and the standard deviation is 1.

3.2 Classifier

The classifier used was a support vector machine (LIBSVM) [2]. The kernel type
used was the radial basis function (RBF):

K (xi,x;) = exp(—7|[xi — x;{[*), v >0 (1)

where x; is an input and 7 is a parameter inversely proportional to the kernel
width. The SVM with this kernel has two free parameters to be set: C' > 0 that
corresponds to the penalty parameter of the error and . The values for these
parameters are discussed below.

A different weight can be assign to each class when the prior probabilities for
each class are not equal. This is the case in our dataset given that there are
more non-polyp images than polyp ones. The exact proportion depends on the
threshold A used. This weighting was done using the svm-train parameters wg
and wy. This is also discussed below.
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Table 1. Number of images considered polyp for each threshold A

A 100 300 500 700 900 1100 1300 1500
N. of polyps 966 900 850 809 770 716 682 609

Error [%]

. .
500 1000 1500
Lambda

Fig. 4. Error for different values of A

3.3 Evaluating the Effect of A

In this section we present the results of experiments made to evaluate the effect of
the value of \ used in the automatic classification of the sub-images, as discussed
in section

We varied A from 100 to 1500 in steps of 200. Table [l presents the number of
sub-images that are classified as polyp given the value of A considered.

For each value of A a grid search was performed using half the dataset to find
the best values of C' and ~ parameters for the SVM classifier. The search was
done by varying C from 1 to 64 in integer powers of 2, and 7 from 276 to 2716
also in (negative) integer powers of 2.

We created a subset of with 10% of the images (462) randomly selected from
the full image set. The error in this subset was evaluated with 2-fold cross-
validation method. The results obtained are shown in figure @l It can be seen
that the smallest error, 16.02%, was obtained for A = 1300. The correspondent
value of C was 32 and v = 0.0001. Given these results we decided to use A = 1300
for our subsequent experiments.

3.4 Results on the Full Dataset

We evaluated the error using the 2-fold cross-validation method on the 4630
images, using A = 1300 and C' = 32. We experimentally found that good values
for the class weights in this case are wy = 1 and w; = 5. The value of v was
varied to produce several points on the ROC curve. Figure [ contains the ROC
plot.
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Fig. 5. ROC curve for A = 1300. FP stands for False Positive and TP for True Positive.

The area under the Receiver Operating Characteristic (ROC) curve, (AUC),
is 93.16 4+ 0.09%. The results show that we can get a value of False Negative
Rate (FNR) of 6.31 £ 1.04% at 23.11 £ 0.93% of False Posite Rate (FPR).

4 Conclusions

In this paper we presented a method for polyp detection in endoscopic videos.
The goal was to be able to develop a method that could do a first automatic
screening of a endoscopic video and warn the physician of frames where attention
is needed. Videos in which the method does not detect any polyp can perhaps
be given a smaller priority then others where possible polyps are detected.

Our method subdivides each image into smaller images (with 40 x 40 pix-
els). These are the images that are searched for polyps. Of course if a subim-
age is considered a polyp, its parent image is also considered to have a polyp.
(Other approaches can be used like the need for a number of detected subim-
ages with polyp in order to consider that the parent image contains a polyp.
Our approach is the most cautious: it perhaps implies the existence of some
false positives but will minimize the false negatives). We did not analyse this
aspect in this paper though. We focused on the correct classification of the sub-
images.

We used a very simple approach for feature extraction, relying only on color
and pixel position. Although it creates many features per image (8000) the SVM
was able to deal with this high dimensionality. It can take longer for the training
phase, but may decrease the time taken when processing a new image with the
trained system since the feature extraction does not involve many computations.

The results we obtained are quite satisfactory: in a database with 4620 images
we were able to obtain an AUC value of 93.16 £ 0.09%, a sensitivity of 93.69 +
1.04 % at 23.11 + 0.93% of FPR.
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Future work will concern the application of this method to video images ob-
tained from video capsule endoscopy instead of video from a colonoscope. Other
future challenges include the identification of the type of polyp and its develop-
ment stage.
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Abstract. Frequent itemset mining assists the data mining practitioner
in searching for strongly associated items (and transactions) in large
transaction databases. Since the number of frequent itemsets is usually
extremely large and unmanageable for a human user, recent works have
sought to define condensed representations of them, e.g. closed or maxi-
mal frequent itemsets. We argue that not only these methods often still
fall short in sufficiently reducing of the output size, but they also output
many redundant itemsets. In this paper we propose a philosophically new
approach that resolves both these issues in a computationally tractable
way. We present and empirically validate a statistically founded approach
called MINI, to compress the set of frequent itemsets down to a list of
informative and non-redundant itemsets.

1 Introduction

Frequent itemsets (or patterns) mining has been a focused research theme in
data mining due to its broad applications at mining association, correlation,
sequential patterns, episodes, multidimensional-patterns, max patterns, partial
periodicity, emerging patterns, and many other important data mining tasks.

Since their introduction in 1993 in [I], hundreds of new scalable methods
have been proposed to solve the mining frequent itemsets problems. Typically,
while a too high support threshold leads to generate only commonsense patterns
(or none), mining all the itemsets having a low support, or dealing with high
correlated data, may generate an explosive number of results, often hard to ex-
amine for a user. In order to solve this problem, several methods were proposed
to compress (or summarize) the set of frequent itemsets, i.e. to find a concise
representation [2] of the whole collection of patterns. In general, a concise (or
condensed) representation must enable to regenerate not only the patterns, but
also the values of an evaluation function like the support without accessing the
data. If these regenerated values are only approximated, the condensed repre-
sentation is called approximate, exact otherwise.

Among these methods, closed [3] [], non-derivable [5], closed non-derivable
itemsets [6] (and 0-Free Sets [7]) have been suggested for finding an exact repre-
sentation of the data. However, the number of closed itemsets, non-derivable and
closed non-derivable itemsets can still be very large, thus an additional effort is
essential to allow the user to better understanding the data.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 438-[Z45] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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While most of the aforementioned state-of-the-art algorithms make use of
the restoration error to measure the accuracy of the found patterns, here we
develop a new probabilistic and objective [§ measure of interestingness. We
describe MINI, a new scalable algorithm which discovers interesting and non
redundant insights in the data. One of the novelties is that both the computation
of the interestingness measure and the redundancy reduction are carried out by
considering both the domain of the items and that of the transactions. Moreover,
MINTI does not require the user to manually choose any parameter, but a value
which allows to manage the memory consumption without affecting the quality
of the result. The experiments show the efficiency of the MINI algorithm which
outputs effectively only the informative and non redundant itemsets that matter.

2 Problem Statement

A transactional database 7 = {t;}_; consists of a set of n transactions having
an unique identifier. Let Z be a set of items {ij,is,...,1im}. A transaction is
a couple t = (tid, X') where tid is the transaction identifier and X C Z is an
itemset. A transaction t = (tid, X) contains an item (or an itemset) i, if i € X
(or I € X), and we write it i € t (or I € t) for convenience. For any itemset
1, its tidset T is defined as the set of identifiers of the transactions containing
I. For any itemset I in the database, its support is defined as the number of
transactions containing I: supp(I) := |{t = (tid, X)|I C X,t € T}|.

Similarly, we can define the support supp(T') of a tidset T" being the number
of items shared by all the transactions t € T: supp(T) := |{i | Vt = (tid, X) €
T,i€ X}

An itemset is frequent in the database if its support in is at least a certain sup-
port threshold o. According to this definition, any subset of a frequent itemset
is frequent. This Apriori property leads to an explosive number of frequent pat-
terns. For example, a frequent itemset with ¢ items may generate 2¢ sub-itemsets,
all of which are frequent. This redundancy can be solved with the introduction
of the notion of closed itemset, i.e. an itemset with no frequent superset with the
same support.

Definition 1. An itemset I is called closed if it has no frequent superset with
the same support.

Theorem 1. The support of non closed itemsets is uniquely determined by the
support of the closed itemsets.

Because of theorem [l the set of frequent closed itemsets forms a lossless repre-
sentation of all frequent itemsets. Unfortunately, real applications are often sub-
jected to noise. As long as there is a small noise on the transactions containing
an itemset I, hundreds of sub-itemsets can be still generated with different sup-
ports. Since their itemsets strongly overlap with each other, these sub-itemsets
are considered redundant. For this reason, dealing with real domains requires a
more sophisticated technique to minimize this redundancy.
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3 Measuring Surprise as an Interestingness Measure

Measuring the interestingness of discovered patterns is an active area of data
mining research, and there is no widespread agreement on a formal definition.
Most itemset summarization methods proposed so far are based on the restora-
tion error, which measures the average relative error between the estimated
support of a pattern and its true support. In this paper, we introduce a radically
different interestingness measure, and show its practical relevance and applica-
bility. In addition to that, we provide an efficient and scalable framework to
compute this measure of interestingness of frequent itemsets.

Our interestingness measure is based on hypothesis testing ideas. In particu-
lar, we formulate a model for the database that represents the “uninteresting”
situation in which no item associations are present, i.e. in which items occur
independently from each other in transactions. This model is known as the null
model. Then, for each itemset discovered, we compute its probability to be “sur-
prising” under the null model. This probability is known as the p-value of the
itemset. The smaller the p-value, the more surprising (informative, interesting)
the itemset is, and the more interesting we consider the itemset to be.

Possible Null Models for the Data. There are two possible null models
we consider appropriate. The first possible null model considers all items to be
independent random variables. By this we mean that they are contained in any
particular transaction with a certain probability fi, = Cn" for item ij (where
ci, = supp(ir) is the total item count in the database), independently from the
presence or absence of other items. The independence assumption implies that
the probability of all items i € I to be jointly present in a given transaction
is equal to pr = [[;¢; fi, the product of their individual probabilities. We can
then compute the probability that the support of an itemset is exactly supp(I)
under the null model by means of the binomial distribution:

P(supp(I);n,pr) = (sup?g([)) pj"pp(l)(l _ pl)nfsupp(f)‘ (1)

The p-value for an itemset I under this null model is then computed as the
probability to observe an itemset at least as “surprising” I, which we define here
as having a support at least as large as supp(I). Given that all items in I occur
jointly in a transaction with probability pr, we can compute the probability of
a support larger than or equal to supp(I) out of n transactions by means of the
cumulative binomial distribution function, as

= >0 (1) p v =TT )
(I)

S=supp iel

This is the p-value under the first null model we consider.

A different null model is obtained by considering the transactions as indepen-
dent random variables, containing each of the items with the same transaction-
dependent probability f, = c;f for transaction ty (where c¢¢, = supp(ty) is the
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total number of items in the transaction ty). Using a reasoning analogous to the
above, we obtain the following p-value for a transaction set T

D S (e e 1 1 )
)

s=supp(T teT

Note that, because of the Definition [Il supp(T) is equal to the cardinality |I| of
the itemset I.

The first model takes effective account of the fact that associations between
more frequent items are less surprising (even though they may be relevant in
terms of restoration error), and hence may not be as interesting to a user (the
user would expect to see these associations, even by chance). The second model
accounts for the fact that two large transactions are likely to share items, even
by mere chance, so that again such associations are less interesting. Therefore,
for any itemset I supported by transactions 7', we define our measure of inter-
estingness as the largest p-value obtained by these null two models:

p-value(I) = max(P!, PT) (4)
In accordance with Definition [ it is interesting to note the following fact:

Theorem 2. For any non-closed itemset there exists a closed itemset that has
a lower p-value, i.e. that is more significant.

Because of this theorem, we can safely restrict our attention to closed itemsets
only and sort them by their interestingness instead of considering all the frequent
itemsets. Additionally, all the p-values are efficiently and effectively updated in
a second step, described in detail in the next sections, further minimizing the
redundancy.

4 The MINI Algorithm for Mining Informative
Non-redundant Itemsets

The set of closed itemsets represent a concise representation of the set of all fre-
quent itemsets. However, it could still contains redundancy. Several solution to
this problem were proposed, such as relaxing the requirement that a supporting
transaction contains exactly all the items in the itemset [9], or applying tradi-
tional k-means clustering algorithm [I0]. In this paper we adopt a completely
different approach to address the problem. The list of closed itemsets is sorted
by increasing p-value, and then an iterative procedure to this list is applied to
updating the p-values ignoring itemsets that are redundant with more highly
listed ones. This is done by penalizing itemsets that overlap with highly ranked
itemsets by increasing their p-value in a statistically principled way, so that they
go down in the sorted list.

Let I be the itemset at position k whose p-value is going to be updated.
In our framework, all the itemsets Zy_1 = U, Ix, (k = 1,.., N — 1) are said to
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be covered, as well as their respective tidset 7j,_; = Up Tk, (k = 1,.,N —1).
Note that for each covered item i € fk_l, we can always individuate a set of
covered tids {t = (tid, X)|t € Tx_1,1 € X} = {£};, being the tids of the covered
itemsets containing i in their set of items.

An itemset [ could share some items with j covered itemsets. Its success
probability pr, is updated as follows:

[ I;) — I
p,Ik _ Z supp(I;) H it SUPP( yi supp(Ix) H fl 5)

J iel\Iy i€l \Zp_1

where for each item i € Ij already covered by some more interesting item-
sets, its probabilities of being contained in a transaction (f;) is updated to be
fl=fi — I{fn}al.

Again, using an analogous to the above, we can update the probability pr for
the other null model discussed so far.

The two p-values in Equations [2] and [B] are then computed using these two
updated probabilities as new parameters, and the new interestingness measure
for Ij, is then chosen accordingly to Equation [l

An Iterative Algorithm. The sketch of the MINI algorithm is given below.
First of all, the set R of closed itemsets is sorted in ascending order by p-values
(steps 1-3). Since there are no itemsets more interesting than it, the first itemset
is assumed to be covered.

Property 1. The p-value of the itemset Iy is updated considering only the highly
listed (i.e. most interesting) k — 1 itemsets in the set.

The algorithm starts thus from the 2nd position (step 4) and, at each step
(labeled current step), it updates the p-value of the itemset I, (accordingly to
the Property [I), using the cumulative binomial probability functions in 2l and
with the updated probabilities discussed in the last section as parameters.
This means that at each step, the iterative algorithm searches for the k-th most
interesting itemset in the set.

If after the updating of its p-value the itemset Ij still detains the same po-
sition k in R, I, it is considered to be “covered” as well as its items and tids,
and, in the next step, the algorithm will search for the (k + 1)-th most inter-
esting itemset (steps 13-14). Hence, at the end of the algorithm, the number of
covered itemsets is at most £k < 1 + max steps, where max steps is an user de-
fined parameter defining the maximum number of steps to carried out. Usually,
the user does not know apriori how many exactly interesting patterns will well
summarize the data. In our framework, instead of an exact number of interesting
patterns, the user needs to choose only the maximum number ¢ max of itemsets
that he/she wants to try to cover, and the number max steps > c max of steps
to carry out.
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Algorithm MINI(R, max steps)

1: for each T € R do

2: p-value([]) := max{PCI(supp(I); n,pr), PCT (supp(T); m, pr)}
?1: sort R by p-values in ascending order

5: current step= 1

6: while (current step<max steps) do

7 current step+=1

8 I :=1 at position k in R

9

I T
p-value(ly) := max{P.* (supp(Ix); n,p), Pe * (supp(T); m, pip)}

10: last updated itemset:= Ij

11: update ordering in R

12: I, := 1 at position k in R

13: if (I, ==1last updated itemset) do
14: E+=1

5 Experiments and Results

All the experiments were performed on a 1.60GHz Intel(R) Pentium(R)M with
512 MB of memory. We show the performance of our methods on 5 datasets. The
first 2 consist of news articles in different periods: one month (August 2006),
one year (Year2006). Another dataset, Iraq was constructed to contain news
articles with keyword query “iraq”. We will also show experiments performed on
two other different kinds of dataset, containing all the titles and titles+abstracts
of the papers published at the PKDD conferences of the last years (from 2000 to
2006), labeled TitlesPkdd and AbstractsPkdd. We run a closed itemsets min-
ing algorithm to extract all the frequent closed itemsets with different support
thresholds for each dataset. Details of the datasets are shown in Figure [l In

rows different words | min_supp closeds
Year2006 65754 43100 0.001 5103
August 2006 17085 23630 0.0018 5522
Iraq 5069 8593 0.001 45396
AbstractsPkdd 423 4693 0.012 51494
TitlesPkdd 423 1069 0.012 143

Fig. 1. Details of the datasets used in the experiments

Figure [2] are shown some experimental results. Figure Pfa) shows the number of
covered itemsets (on the left) and the number of penalized itemsets at each step
(on the right). Looking at the results, we can deduce that the ordered closed
itemsets set of August2006 contains several very disjoined (i.e. non redundant)
patterns in its first positions. On the other hand, the Year2006 initial list con-
tains a lot of redundancy. Indeed, the slope of the functions of August2006 is
higher than that of Year2006 in Figure 2la) on the left, while it is lower in
Figure P{(a) on the right.

We also evaluated the running time of MINI w.r.t. the parameters ¢ max (with
dataset Year2006) and max steps (with dataset AbstractsPkdd) (Figure 2(b)).
As we already pointed out in Section @l the number of closed itemsets is often
very large, so much so that it is hard to store entirely in the memory. One solution
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Fig. 2. Experimental Results

could be choosing a higher support threshold ¢. However, not only ¢ is a para-
meter typically hard to choose a priori by the user, but it could also delete some
interesting itemsets. In general, it is desirable to mine all closed itemsets without
any support threshold and then perform the summarization with our interesting
measure, which we claim is often more appropriate than a support threshold.

However, even if the set of closed itemsets is very large, MINE allows the
user to manage the memory consumption, reducing the running time without
affecting the summarization quality. In the experiments in Figure [Z(b) on the
left, the algorithm carries out 50 steps and covers always 17 itemsets, while the
¢ max parameter is varied. The running time grows exponentially with ¢ max,
while the summarization result does not change.

In the experiments shown in Figure 2(b) (right) we varied max steps on the
dataset AbstractsPkdd. Here, the ¢ max was chosen to be equal to 1200. Note
that, in this case, the summarization result varies, from 9 itemsets covered with
50 steps, to 53 in 750 steps. However, because of the MINI property [Il these
results differ from each other only in their size. In each of these results, at each
position the same itemset is returned, as well as its measure.

In Figure 2lc) the 8 most interesting and non redundant itemsets found in
Year2006, Iraq, AbstractsPkdd, and TitlesPkdd are shown. We included the
Iraq example to illustrate an advantage of our method over methods that fo-
cus on the restoration error. Such methods would usually be biased towards
the more frequent itemsets, which in this case are likely to include the word
iraq, perhaps even as an itemset of size 1. We argue that, in order to discover
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interesting insights, the results of such techniques are often suboptimal: arguably
the itemset iragq is not interesting considering the database we are looking at. In
our framework, this pattern is automatically considered as not interesting and
not surprising, as it occurs in each row of the dataset.

6 Conclusions

We propose MINI, a two-steps algorithm to mine interesting and non redundant
itemsets from a database. In the first step, the cumulative binomial probability
of each itemset is computed in both the items and transactions domains indepen-
dently from the other itemsets in the set. In its second step, the MINI algorithm
further reduces the redundancy updating their p-values, penalizing the itemsets
which share some items and/or tids with more interesting itemsets. The exper-
iments show that the MINI mines the interesting and non redundant itemsets
from a dataset, without requiring the user to define any parameter, but ¢ max to
reduce the memory consumption and max steps, which can be chosen arbitrarily
high without affecting the quality of the summarization. This makes MINI very
scalable and thus applicable to many other interesting real world tasks.
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Abstract. Analysis of privacy-sensitive data in a multi-party environ-
ment often assumes that the parties are well-behaved and they abide
by the protocols. Parties compute whatever is needed, communicate cor-
rectly following the rules, and do not collude with other parties for ex-
posing third party’s sensitive data. This paper argues that most of these
assumptions fall apart in real-life applications of privacy-preserving dis-
tributed data mining (PPDM). This paper offers a more realistic formula-
tion of the PPDM problem as a multi-party game where each party tries
to maximize its own objectives. It develops a game-theoretic framework
to analyze the behavior of each party in such games and presents detailed
analysis of the well known secure sum computation as an example.

1 Introduction

Advanced analysis of privacy-sensitive data plays an important role in many
multi-party, cross-domain applications. For example, the US Department of
Homeland Security-funded PURSUIT projectE| involves analysis of network traf-
fic data from different organizations. Network traffic is usually privacy sensitive
and no organization would be willing to share their information with a third
party. PPDM offers one possible solution which would allow comparing and
matching multi-party network traffic to detect common attacks and compute
various statistics for a group of organizations that are not willing to share the
raw data. However, many of the existing PPDM algorithms make strong as-
sumptions about the behavior of the participants, e.g., they are semi-honest and
not colluding with others. Unfortunately, participants of a real application like
PURSUIT may not all be ideal. Some may try to exploit the benefit of the sys-
tem without contributing much; some may try to sabotage the computation; and
some may try to collude with other parties for exposing the private data.

This paper suggests an alternate perspective for relaxing some of the assump-
tions of PPDM algorithms. It argues that large-scale multi-party PPDM can
be thought of as a game where each participant tries to maximize its benefit

! http://www.agnik.com/DHSSBIR.html
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by optimally choosing the strategies during the entire PPDM process. Applica-
tions of game theory in secure multi-party computation and privacy preserving
distributed data mining is relatively new [1I4l2]. This paper develops a game-
theoretic framework for analyzing the rational behavior of each party in such a
game, and presents detailed equilibrium analysis of the well known secure sum
computation [7I3] as an example. A new version of the secure sum is proposed.
It works based on well known concepts from game theory and economics such
as “cheap talk” and mechanism design. This paper also describes experiments
on large scale distributed games and illustrates the validity of the formulations.
The remainder of this paper is organized as follows. Section 2] describes multi-
party PPDM from a game theoretic perspective. Section [ illustrates the frame-
work using multi-party secure sum computation as an example. Section [ gives
the optimal solution using a distributed penalty function mechanism. Section
presents the experimental results. Finally, Section [ concludes this paper.

2 Multi-party PPDM as Games

A game is an interaction or a series of interactions between players, which as-
sumes that 1) the players pursue well defined objectives (they are rational) and
2) they take into account their knowledge or expectations of other players’ be-
havior (they reason strategically). For simplicity, we start by considering the
most basic game - the strategic game.

Definition 1 (Strategic Game). A strategic game consists of

— a finite set P: the set of players,

— for each player i € P a nonempty set A;: the set of actions available to
player 1,

— for each playeri € P a preference relation =; on A = x jepA;: the preference
relation of player i.

The preference relation >=; of player i can be specified by a utility function
u; : A — R (also called a payoff function), in the sense that for any a € A,b € A,
u;(a) > u;(b) whenever a »=; b. The values of such a function is usually referred
to as utilities (or payoffs). Here a or b is called the action profile, which consists
of a set of actions, one for each player. Therefore, the utility (or payoff) of player
1 depends not only on the action chosen by herself, but also the actions chosen
by all the other players. Mathematically, for any action profile a € A, let a; be
the action chosen by player ¢ and a_; be the list of actions chosen by all the
other players except i, the utility of player i is u;(a) = u;({a;, a—;}).
One of the fundamental concepts in game theory is the Nash equilibrium:

Definition 2 (Nash Equilibrium). 4 Nash equilibrium of a strategic game is
an action profile a* € A such that for every player i € P we have

w;({af,a”;}) > wi({ai,a;}) for all a; € A;.
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Therefore, Nash equilibrium defines a set of actions (an action profile) that cap-
tures a steady state of the game in which no player can do better by unilaterally
changing her action (while all other players do not change their actions).

When the game involves a sequence of interactive actions of the players, and
each player can consider her plan of action whenever she has to make a decision,
the strategic game becomes an extensive game. In that situation, the action a;
for player i, is replaced by o, the strategy for that player, which is a complete
algorithm for playing the game, implicitly including all actions of that player for
every possible situation throughout the game. The utility function also assigns
a payoff to player i for each joint strategies of all the players, i.e., u;({0;,0-;}).

Armed with the basic knowledge of game theory, we are now ready to formu-
late multi-party PPDM as a game. In a multi-party PPDM environment, each
node has certain responsibilities in terms of performing their part of the compu-
tations, communicating correct values to other nodes and protecting the privacy
of the data. Depending on the characteristics of these nodes and their objectives,
they either perform their duties or not, sometimes, they even collude with oth-
ers to modify the protocol and reveal others’ private information. Let M; denote
the overall sequence of computations node i has performed, which may or may
not be the same as what it is supposed to do defined by the PPDM protocol.
Similarly, let R; be the messages node i has received, and S; the messages it
has sent. Let G; be a subgroup of the nodes that would collude with node i.
The strategy of each node in the multi-party PPDM game prescribes the actions
for such computations, communications, and collusions with other nodes, i.e.,
o; = (M;, R;, Si, G;). Further let ¢; ,,(M;) be the utility of performing M;, and
similarly we can define ¢; »(R;), ¢ s(Si) and ¢; 4(G;). Then the overall utility of
node 7 will be a linear or nonlinear function of utilities obtained by the choice
of strategies in the respective dimensions of computation, communication and
collusion. Without loss of generality, we consider an utility function which is a
weighted linear combination of all of the above dimensions:

wi ({03,023 }) = Wi mCiom (M) + Wi rCir (Ri) + Wi 5¢i.5(Si) + wi gCi g (Gi),

where w; m, Wi, Wi s, Wi g represent the weights for the corresponding utility
factors. Note that we omitted other nodes’ strategies in the above expression
just for simplicity. In the next section, we would illustrate our formalizations
using one of the most popular PPDM algorithms, the secure sum computation.

3 Case Study: Multi-party Secure Sum Computation

Secure sum computation [7I3] computes the sum of n different nodes without
disclosing the local value of any node. It has been widely used in privacy preserv-
ing distributed data mining as an important primitive, e.g., privacy preserving
association rule mining on horizontally partitioned data [5], k-means clustering
over vertically partitioned data [§] and many else.

Secure Sum Computation. Suppose there are n individual nodes organized
in a ring topology, each with a value v;,j = 1,2,...,n. It is known that the sum
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v = >3i_,v; (to be computed) takes an integer value in the range [0, N — 1].
The basic idea of secure sum is as follows. Assuming nodes do not collude, node
1 generates a random number R uniformly distributed in the range [0, N — 1],
which is independent of its local value v;. Then node 1 adds R to its local value
vy and transmits (R + v1) mod N to node 2. In general, for ¢ = 2,...,n, node i
performs the following operation: receive a value z;_; from previous node i — 1,
add it to its own local value v; and compute its modulus N. In other words,

K2
zi = (zi—1 +v;) mod N = (R+ Zvj) mod N,
j=1
where z; is the perturbed version of local value v; to be sent to the next node
i+ 1. Node n performs the same step and sends the result z, to node 1. Then
node 1, which knows R, can subtract R from z, to obtain the actual sum. This
sum is further broadcasted to all other sites.

Collusion Analysis. It can be shown that [6] any z; has an uniform distribution
over the interval [0, N — 1] due to the modulus operation. Further, any z; and
v; are statistically independent, and hence, a single malicious node may not be
able to launch a successful privacy-breaching attack. Then how about collusion?

Let us assume that there are k (k > 2) nodes acting together secretly to
achieve a fraudulent purpose. Let v; be an honest node who is worried about
her privacy. We also use v; to denote the value in that node. Let v;_; be the
immediate predecessor of v; and v;y; be the immediate successor of v;. The
possible collusion that can arise are:

— If k =n — 1, then the exact value of v; will be disclosed.

— If £ > 2 and the colluding nodes include both v;_; and v;y1, then the exact
value of v; will be disclosed.

— If n—1 >k > 2 and the colluding nodes contain neither v;_; nor v;;1, or
only one of them, then v; is disguised by n — k — 1 other nodes’ values.

The first two cases need no explanation. Now let us investigate the third case.
Without loss of generality, we can arrange the nodes in an order such that
V1V2 . .. Up—k—1 are the honest sites, v; is the node whose privacy is at stake and
Vit1 - .. Vit form the colluding group. We have

n—k—1 i+k

2ou ot =y

N .1, v denoted by Y N jj“ v

denoted by X denoted by W

where W is a constant and is known to all the colluding nodes. Now, it is clear
that the colluding nodes will know v; is not greater than W, which is some extra
information contributing to the utility of the collusions. To take a further look,
the colluding nodes can compute the posteriori probability of v; and further
use that to launch a maximum a posteriori probability (MAP) estimate-based
attack. It can be shown that, this posteriori probability is:

_ 1 ~ i (r— ) (m+ 1)+t
Frosterior(vi) = (m 4 1) (k-1 x Z(—l) Clnk=1)Cln—t-1)4 (rei) (mt 1)+ t—17
=0
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where v; < W, r = Lvyn:ij and t =W —v; — LV:@?{ (m+1). When v; > W,
fposterior(vi) = 0. Due to space constraints, we have not included the proof of
this result here. Interested readers can find a detailed proof in [6].

Note that, when computing this posteriori probability, we model the colluding
nodes’ belief of each unknown v; (j =1,...,n—k—1) as a uniform distribution
over an interval {0,1,...,m}. This assumption has its roots in the principle of
maximum entropy, which models all that is known and assumes nothing about
what is unknown, in that case, the only reasonable distribution would be uniform.
Overall Utilities. The derived posteriori probability can be used to quantify
the utility of collusion, e.g., g(v;) = Posteriori — Prior = fposterior (Vi) — ]{,
We see here that this utility depends on W — v; and the size of the colluding
group k. Now we can put together the overall utility function for the game of
multi-party secure sum computation:

ui({0i,0-i}) = WimCiom (Mi) + wircir (Ri) + wi s¢i s(Si) + wig Z g(vj),
JEP—G;

where P is the set of all nodes and G; is the set of nodes colluding with node i.

Let us now consider a special instance of the overall utility where the node
performs all the communication and computation related activities as required
by the protocol. This results in a function: u;({os,0-i}) = wig > ;cp_g, 9(v)),
where the utilities due to communication and computation are constant and
hence can be neglected for determining the nature of the function. Figure[I(Left)
shows a plot of the overall utility of multi-party secure sum as a function of the
distribution of the random variable W — v; and the size of the colluding group
k. It shows that the utility is maximum for a value of k£ that is greater than
1. Since the strategies opted by the nodes are dominant, the optimal solution
corresponds to the Nash equilibrium. This implies that in a realistic scenario
for multi-party secure sum computation, nodes will have a tendency to collude.
Therefore the non-collusion (k = 1) assumption of the classical secure multi-
party sum is sub-optimal. Next section describes a new mechanism that leads to
an equilibrium state corresponding to no collusion.

4 Achieving Nash Equilibrium with No-Colluding Nodes

To achieve a Nash equilibrium with no collusions, the game players can adopt a
punishment strategy to threaten potential deviators. One may design a mecha-
nism to penalize colluding nodes in various ways:

1. Policy I: Remove the node from the application environment because of
protocol violation. Although it may work in some cases, the penalty may be
too harsh since usually the goal is to have everyone participate in the process
and faithfully contribute to the data mining process.

2. Policy II: Penalize by increasing the cost of computation and communication.
For example, if a node suspects a colluding group of size k' (an estimate of
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Fig. 1. Overall utility for classical secure sum computation (Left) and secure sum
computation with punishment strategy (Right). The optimal strategy takes a value of
k > 1 in the first case and k = 1 in the second case.

k), then it may split the every number used in a secure sum among ok’ dif-
ferent parts and demand ak’ rounds of secure sum computation one for each
of these ak’ parts, here o > 0 is a constant factor. This increases the compu-
tation and communication cost by ak’-fold. This linear increase in cost with
respect to k', the suspected size of colluding group, may be used to counter-
act possible benefit that one may receive by joining a team of colluders. The
modified utility function is given by @;({oy,0_;}) = wi({0s, 0-:}) —w; pxak’.
The last term in the equation accounts for the penalty due to excess com-
putation and communication as a result of collusion.

Figure[[(Right) shows a plot of the modified utility function for secure sum with
policy II. It shows that the globally optimal strategies are all for k = 1. The
strategies that adopt collusion always offer a sub-optimal solutions which would
lead to moving the global optimum to the case where k = 1.

As a toy example, consider a three-party secure sum computation with the
payoff listed in Table Il When there is no penalty, all the scenarios with two bad
nodes and one good node offer the highest payoff for the colluding bad nodes.
So the Nash equilibrium in the classical secure sum computation is the scenario
where the participating nodes are likely to collude. However, in both cases with
penalty, no node can gain anything better by deviating from good to bad when
all others remain good. Therefore, the equilibrium corresponds to the strategy
where none of the nodes collude. Note that, the three-party collusion is not very
relevant in secure sum computation since there are all together three parties and
there is always a good node (the initiator) who wants to only know the sum.

Implementing the Penalty Mechanism without Having to Detect Col-
lusion: In order to implement the penalty protocol, one may use a central me-
diator who can monitor the behavior of all nodes (see, e.g., [2]). However, this is
usually very difficult, if not impossible in a real application environment. More-
over, it requires global synchronization which might create a bottleneck in the
distributed system. Instead, we borrow the concept of cheap talk, a pre-play
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Table 1. Payoff table for three-party secure sum computation

A B C Payoff Payoff Payoff
(No Penalty) (Policy I) (Policy II)

Good Good Good  (3,3,3) (3,3,3) (3,3,3)
Good Good Bad  (3,3,3) (2,2,0) (2,2,2)
Good Bad Good (3,3,3) (2,0,2) (2,2,2)
Good Bad Bad (3,4,4) (0,0,0) (2,2,2)
Bad Good Good (3,3,3) (0,2,2) (2,2,2)
Bad Good Bad (4,3,4) (0,0,0) (2,2,2)
Bad Bad Good (4,4,3) (0,0,0) (2,2,2)
Bad Bad Bad  (0,0,0) (0,0,0) (0,0,0)

’

communication concept from game theory, to realize an asynchronous distrib-
uted control. The idea is based on the assumption that collusion requires consent
from multiple parties. So a party with intention of collusion might get caught
while sending out collusion invitation randomly in the network if those invita-
tions reach some honest parties. The new protocol will therefore have a pre-play
phase where “lobbying agents” (well-behaved nodes or advocacy groups) will
make participants aware of the fact that one will be penalized if any collusion is
detected. This “lobbying” does not affect the utility function. It simply makes
everyone aware of that. It does not require a perfect collusion detection. A real
threat with an estimated high-enough value of the collusion-size (k) will do.
The threat of a good node introducing penalty using a perceived value of k" will
push everyone toward proper behavior.

The new secure sum with penalty (SSP) protocol we proposed is as follows.
Consider a network of n nodes where a node can either be good (honest) or
bad (colluding). Before the secure sum protocol starts, the good nodes set their
estimate of bad nodes in the network ¥’ = 0 and bad nodes send invitations for
collusions randomly to nodes in the network. Every time a good node receives
such an invitation, it increments its estimate of k’. Bad nodes respond to such
collusion invitations and form collusions. If a bad node does not receive any
response, it behaves as a good node. To penalize nodes that collude, good nodes
split their local data into ok’ random shares. This initial phase of communication
is cheap talk in our algorithm. The secure sum phase consists of O(ak’) rounds
of communication for every complete sum computation. This process converges
to the correct sum in O(nak) time. Note that, the SSP protocol does not require
detecting all the colluding parties. Raising &k’ based on a perception of collusion
will do. If the threat is real, the parties are expected to behave as long they are
acting rationally to optimize their utility.

5 Experimental Results

We empirically verify our claim that the SSP protocol leads to an equilibrium
state where there is no collusion. The utility function used for the experiments
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Fig. 2. (Left) Utility vs. Collusion-size. (Right) Rate of decrease of bad nodes.

is the one described in Policy II. The penalty in this case is the excess amount of
communication and computation needed. In the first experiment we demonstrate
for different sizes of the network (500 nodes and 1000 nodes) that the utility is
maximum when the collusion is minimum, see Figure 2] (Left). The maximum
utility in the figure corresponds to the classical secure sum computation without
collusion. The second experiment shows that the number of bad nodes decreases
with successive rounds of SSP, see Figure 2l (Right). Each bad node has a random
utility threshold that is assigned during the setup. If the computed utility falls
below a node’s threshold, the node decides to change its strategy and becomes
a good node for the subsequent rounds. The time taken to have a no collusion
scenario depends on the initial number of bad nodes in the network.

6 Conclusions

This paper questions some of the common assumptions in multi-party PPDM
and shows that if nobody is penalized for cheating, rational participants tends
to behave dishonestly. This paper takes a game-theoretic approach to analyze
this phenomenon and presents Nash equilibrium analysis of a well-known multi-
party secure sum computation. A cheap-talk based protocol to implement a
punishment mechanism is proposed to offer a more robust process. The paper
illustrates the idea using the secure sum problem as an example. Future work
includes theoretical analysis of the existence of Nash equilibrium, as well as the
relationship between the amount of penalty and the payoff from collusion.
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Abstract. Most current work on classification has been focused on learning from
a set of instances that are associated with a single label (i.e., single-label classi-
fication). However, many applications, such as gene functional prediction and
text categorization, may allow the instances to be associated with multiple la-
bels simultaneously. Multi-label classification is a generalization of single-label
classification, and its generality makes it much more difficult to solve.

Despite its importance, research on multi-label classification is still lacking.
Common approaches simply learn independent binary classifiers for each label,
and do not exploit dependencies among labels. Also, several small disjuncts may
appear due to the possibly large number of label combinations, and neglecting
these small disjuncts may degrade classification accuracy. In this paper we pro-
pose a multi-label lazy associative classifier, which progressively exploits depen-
dencies among labels. Further, since in our lazy strategy the classification model
is induced on an instance-based fashion, the proposed approach can provide a
better coverage of small disjuncts. Gains of up to 24% are observed when the
proposed approach is compared against the state-of-the-art multi-label classifiers.

1 Introduction

The classification problem is to build a model, which, based on external observations,
assigns an instance to one or more labels. A set of examples is given as the training
set, from which the model is built. A typical assumption in classification is that labels
are mutually exclusive, so that an instance can be mapped to only one label. However,
due to ambiguity or multiplicity, it is quite natural that most of the applications violate
this assumption, allowing instances to be mapped to multiple labels simultaneously. For
example, a movie being mapped to action or adventure, or a song being classified as
rock or ballad, could all lead to violations of the single-label assumption.

Multi-label classification consists in learning a model from instances that may be
associated with multiple labels, that is, labels are not assumed to be mutually exclusive.
Most of the proposed approaches for multi-label classification employ heuris-
tics, such as learning independent classifiers for each label, and employing ranking and
thresholding schemes for classification. Although simple, these heuristics do not deal
with important issues such as small disjuncts and correlated labels.

* This research was sponsored by UOL (www.uol.com.br) through its UOL Bolsa Pesquisa pro-
gram, process number 20060519184000a.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 6056121 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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In essence, small disjuncts are rules covering a small number of examples, and thus
they are often neglected. The problem is that, although a single small disjunct covers
only few examples, many of them, collectively, may cover a substantial fraction of
all examples, and simply eliminating them may degrade classification accuracy [4]].
Small disjuncts pose significant problems in single-label classification, and in multi-
label classification these problems are worsened, because the search space for disjuncts
increases due to the possibly large number of label combinations. Also, it is often the
case that there are strong dependencies among labels, and such dependencies, when
properly explored, may provide improved accuracy in multi-label classification.

In this paper we propose an approach which deals with small disjuncts while ex-
ploring dependencies among labels. To address the problem with small disjuncts, we
adopt a lazy associative classification approach. Instead of building a single set of class
association rules (CARs) that is good on average for all predictions, the proposed lazy
approach delays the inductive process until a test instance is given for classification,
therefore taking advantage of better qualitative evidence coming from the test instance,
and generating CARs on a demand-driven basis. Small disjuncts are better covered, due
to the highly specific bias associated with this approach. We address the label correla-
tion issue by defining multi-label class association rules (MCARs), a variation of CARs
that allows the presence of multiple labels in the antecedent of the rule. The search space
for MCARs is huge and to avoid an exhaustive enumeration. which would be necessary
to find the best label combination, we employ a novel heuristic called progressive label
focusing, which makes feasible the exploration of associations among labels.

The proposed approach was evaluated using two different applications: text catego-
rization and gene functional prediction. It consistently achieves better performance than
the state-of-the-art multi-label classifiers, showing gains up to 24%.

2 Related Work

Typical approaches for multi-label classification are based on training an independent
binary classifier for each label. These independent classifiers are used to assign a proba-
bility of membership to each label, and then an instance is classified into the labels that
rank above a given threshold. Examples of this approach include ADTBOOST.MH [2]
(decision trees that can directly handle multi-label problems), a multi-label general-
ization of SVMs [3]], and a a multi-label lazy learning based on the kNN approach [[7].
In [6] an approach based on independent associative classifiers was proposed. However,
this approach was only evaluated in single-label problems, and thus, the performance
of multi-label associative classifiers for multi-label problems is still unknown.

The main problem with the binary approach is that it does not consider correlation
among labels. The direct multi-label approach explores this correlation by considering
a combination of labels as a new, separate label [[I]]. For instance, a multi-label problem
with 10 labels will be transformed to a single-label problem composed of potentially
1,024 labels. The problem now is that a relatively small number of examples may be as-
sociated with those new labels, specially if the combination contains many labels. While
these approaches are able to capture dependencies among labels, the poor coverage of
small disjuncts may degrade overall accuracy.
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3 Single-Label Associative Classification

A typical associative classifier, suitable for single-label classification problems, is de-
scribed in this section. An associative classification model is composed of class associ-
ation rules (CARs), which are defined in the following.

DEFINITION 1. [CLASS ASSOCIATION RULES] CARSs are rules of the form X 20, ¢,
where the set X is allowed to contain only features (i.e., X C 7, where 7 is the set of
all possible features), and ¢; is one of the n labels (i.e., ¢; € C, where C is the set of all
possible labels). A valid CAR has support (o) and confidence (¢) greater than or equal
to the corresponding thresholds, ¢, and ;.

Common approaches for associative classification employ a slightly modified algo-
rithm for mining valid CARs directly from the training data. When a sufficient number
of valid CARs are found, the model (denoted as M) is finally completed, and it is used
to predict the label of the test instances. Due to class overlapping, and since labels are
mutually exclusive, CARs may perform contradictory predictions. For example, let 7°
be a test instance, and let X and ) be two subsets of 7. Also suppose that the valid
CARs X — ¢;and Y — ¢; (with ¢ # j) are in M. These CARs are contradictory,
since they predict different labels for the same test instance, 7. To address this prob-

lem, the rule-set M is interpreted as a poll, in which CAR X i ¢; € M is a vote
of weight o x € given by X for label ¢; (note that other criteria for weighting the votes
can be used). Weighted votes for each label are then summed, and the score of label
¢; 1s given by the real-valued function s showed in Equation 1. In the end, the label
associated with the highest score is finally predicted.

sc)= > ox0 (1)
XﬂMfEM

Consider the set of instances shown in Table [T} used as a running example in this
paper. Each instance corresponds to a movie, and to each movie is assigned a set of
labels (but for this example, which refers to single-label classification, only the first
label will be considered). If we set 0,5, to 0.20 and 6,,,;,, to 0.66, then the model M
will be composed of the following CARs:
0.30,0.75

———— label=Drama
0.20,0.67

label=Drama

1. actor=T. Hanks

2. actor=L. DiCaprio
0.20,0.67
E—

3. actor=M. Damon label=Crime

Now, suppose we want to classify instance 11. In this case, only first and third
CARs are applicable, since feature actor=L. DiCaprio is not present in instance 11
(thus, second CAR is crossed out). According to Equation 1, s(Drama)=0.225 and
5(Crime)=0.134, and thus Drama will be predicted.

4 Multi-label Lazy Associative Classification

In this section we extend the basic classifier described in the previous section, allow-
ing it to predict multiple labels. We also propose an approach for exploring correlated
labels, while dealing with small disjuncts, improving the classification model.
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4.1 Independent Classifiers

A heuristic employed for multi-label classification is to build an independent classifier
for each label. This extension is natural, and it is based on assigning a probability of
membership to each label, f(c¢;). The probabilities are computed using the proportion
of scores associated with each label normalized by the highest score (i.e., max):

fley =), @)
max

Once all probabilities are computed, labels are inserted into a ranking £={l1, ..., [, },
so that f(I1)>f(l2)> ... > f(l,) . Those labels that rank above a threshold &,,;,, (i.e.,
Ig|f(lg) > 6min) are assigned to the test instance. To illustrate this process, consider
again the example shown in Table[Il but now each movie has multiple labels, which are
all considered when mining the CARs. If we set 0, to 0.20 and 6,,,;,, to 0.66, then

M will be composed of the following CARs:

0.30,1.00 .
actor=M. Damon ———— label=Action

. . 0.30,1.0 .
actor=L. DiCaprio ——— label=Crime
0.30,0.75

actor=T. Hanks = ————— label=Drama

0.20,0.6 .
actor=M. Damon W label=Crime
actor=L. DiCaprio ——— label=Drama

Dk W=

Now, suppose we want to classify instance 12 and 8,,;, is set to 0.66. Following
Equation 2, f(Action)=1.00 and f(Crime)=0.45, and therefore label Action is predicted.
Note that, although there is a strong association between feature actor=B. Pitt and la-
bel Romance, CAR actor=B. Pitt—Romance is considered a small disjunct, and is ne-
glected by the classifier, even being important to classify instance 12. We refer to this
classifier as IEAC (independent eager associative classifier).

Table 1. Training and Test Instances

1d Label Title Actors
Training 1 Comedy/Romance Forrest Gump T. Hanks
Set 2 Drama/Romance The Terminal T. Hanks
3 Drama/Crime  Catch Me If You Can T. Hanks and L. DiCaprio
4 Drama/Crime The Da Vinci Code T. Hanks
5 Drama/Crime Blood Diamond L. DiCaprio
6 Crime/Action The Departed L. DiCaprio and M. Damon
7 Crime/Action The Bourne Identity M. Damon
8  Action/Romance Syriana M. Damon
9 Romance Troy B. Pitt
10 Drama/Crime Confidence E. Burns
Test 11 ?[Drama/Action] Saving Private Rian T. Hanks, M. Damon and E. Burns
Set 12 ? [Action/Romance] Ocean’s Twelve B. Pitt and M. Damon

13?7 [Crime/Drama] The Green Mile T. Hanks
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Like most of the eager classifiers, IEAC does not perform well on complex spaces.
This is because it generates CARs before the test instance is even known, and the diffi-
culty in this case is in anticipating all the different directions in which it should attempt
to generalize its training examples. In order to perform more general predictions, com-
mon approaches usually prefer to generalize more frequent disjuncts. This can reduce
the performance in complex spaces, where small disjuncts may be important to classify
specific instances. Lazy classifiers, on the other hand, generalize the examples exactly
as needed to cover a specific test instance.

In lazy associative classification, whenever a test instance is being considered, that
instance is used as a filter to remove irrelevant features and examples from the training
data. This process automatically reduces the size of the training data, since irrelevant
examples are not considered. As a result, disjuncts that are not frequent in the original
training data, may become frequent in the filtered training data, providing a better cov-
erage of small disjuncts. To illustrate this process, suppose we want to classify instance
12. As shown in Table 2 only four examples are relevant to this instance. If we set 0,4,
to 0.20 and 6,4, to 0.66, then M will be composed of the following CARs:

0.75,1.00 .
1. actor=M. Damon “soosr label=Action
2. actor=M. Damon ———— label=Crime

. 0.25,1.00
3. actor=B. Pitt ——— label=Romance

According to Equation 2, f(Action)=1.00, f(Crime)=0.45 and f(Romance)=0.33,
and for 6,,;, = 0.66, label combination Action/Romance is predicted. We refer to this
classifier as ILAC (independent lazy associative classifier).

4.2 Correlated Classifiers

Labels in multi-label problems are often correlated, and as we will see in our experi-
ments, this correlation can be helpful for improving classification performance. In this
section we describe CLAC (correlated lazy associative classifier), which, unlike IEAC
and ILAC, explicitly explores interactions among labels. The classification model is
composed of multi-label class association rules (MCARs), which are defined next.

DEFINITION 2. [MULTI-LABEL CLASS ASSOCIATION RULES| MCARS are a special

type of association rules of the form X UF 20, ¢i, where F C (C—¢;). A valid MCAR
has o and 6 greater than or equal to the corresponding thresholds, ¢,,,;,, and 6,,,y, .

The model is built iteratively, following a greedy heuristic called progressive label
focusing, which tries to find the best label combination by making locally best choices.
In the first iteration, 7 = (3, and a set of MCARSs (M) of the form X — ¢; is generated.
Based on M, label [y is assigned to the test instance. In the second iteration, [y is
treated as a new feature and thus F = {l1 }. A set of MCARSs of the form XY U{l; } — ¢;
(M) is generated, and M is then used to assign label ls to the test instance. This
process iterates until no more MCARs are generated. The basic idea is to progressively
narrow the search space for MCARs as labels are being assigned to the test instance.

Consider again the example in Table[T]l and suppose that we want to classify instance
13. The first step is to filter the training data according to the features in instance 13.
The filtered training data is shown in Table 3] and if we set 4, to 0.20 and ,,,;, to
0.66, then the corresponding model (i.e., M) is composed of the following MCAR:
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Table 2. Filtering according to Table 3. Filtering according to Table 4. Filtering accord-

Instance 12 Instance 13 ing to Instance 13 and Label
Drama
Id Label Actors  1d Label Actors
6 Crime/Action M. Damon 1 Comedy/Romance T. Hanks Id Label Actors

7 Crime/Action M. Damon 2 Drama/Romance T.Hanks 2 Drama/Romance T. Hanks
8 Action/Romance M. Damon 3  Drama/Crime T.Hanks 3 Drama/Crime T. Hanks
9 Romance B. Pitt 4  Drama/Crime T. Hanks 4 Drama/Crime T. Hanks

1. actor=T. Hanks 0.75,0.75, label=Drama

Label Drama is assigned to instance 13, and now this label is considered a new
feature. The training data is filtered again, as shown in Table [l The corresponding
model (i.e., M3) is composed of the following MCAR:

1. actor=T. Hanks A label=Drama "%,

label=Crime

Thus, label Crime is also assigned to instance 13, and since no more MCARs can be
generated, the process stops. In summary, labels Romance and Crime are equaly related
to feature actor=T. Hanks (see Table [B). Therefore it may be difficult to distinguish
these two labels based solely on this feature. However, if we are confident that a movie
starred by T. Hanks should be classified as Drama, then it is more likely that this movie
should be classified as Crime, rather than Romance (as seen in Table H).

5 Experimental Evaluation

Three datasets were used in our experiments. The first dataset, which is called ACM-
DL (first level), was extracted from the first level of the ACM Computing Classification
System (http://portal.acm.org/dl.cfm/), comprising a set of 81,251 docu-
ments labeled using the 11 first level categories of ACM. The second dataset, ACM-DL
(second level) contains the same set of documents of ACM-DL (first level), but these
documents are labeled using the 81 second level categories. In both datasets, each doc-
ument is described by its title and abstract, citations, and authorship, resulting in a huge
and sparse feature space. The third dataset, YEAST [3], is composed of a set of 2,417
genes. Each gene is described by the concatenation of micro-array expression data and
phylogenetic profile, and is associated with a set of functional classes. There are 14
possible class labels, and the average number of labels for each gene is 4.24.

Figure [Tl shows the number of instances associated with each label combination size
for each dataset. The YEAST dataset presents very large combinations of labels (com-
binations of 11 labels). Figure 2 shows the association of each pair of labels for each
dataset (an association level of 0.8 between labels A and B, means that 80% of the
instances that belong to A, also belong to 3).

The experiments were performed on a Linux-based PC with a INTEL PENTIUM III
1.0 GHZz processor and 1.0 GB RAM. In all experiments with the aforementioned
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Table 5. Results for Different Classifiers using the YEAST Dataset

Evaluation Classifier

Criterion BOOSTEXTER ADTB0OST.MH RANK-SVM IEAC ILAC CLAC
h 0.220 0.207 0.196 0.203 0.191 0.179
r 0.186 — 0.163 0.178 0.164 0.150
0 0.278 0.244 0.217 0.232 0.213 0.213

Table 6. Results for Different Classifiers using the ACM-DL Datasets

First Level Second Level
Evaluation Classifier
Criterion RANK-SVM IEAC ILAC CLAC RANK-SVM IEAC ILAC CLAC
h 0.225 0.295 0.222 0.187 0.327 0.419 0.319 0.285
r 0.194 0.276 0.216 0.179 0.299 0.378 0.294 0.273
0 0.244 0.304 0.238 0.238 0.348 0.427 0.331 0.331

datasets, we used 10-fold cross-validation and the final results of each experiment rep-
resent the average of the ten runs. We used three evaluation criteria that were proposed
in [3]: Hamming Loss (h), Ranking Loss (r) and One-Error (0). All the results to be
presented were found statistically significant based on a t-test at 5% significance level.

The proposed classifiers, IEAC, ILAC and CLAC are compared against boosting-
style classifiers BOOSTEXTER [5]] and ADTB0OOST.MH [2]], and the multi-label ker-
nel method RANK-SVM [3]]. We believe that these approaches are representative of
some of the most effective multi-label methods available. For BOOSTEXTER and ADT-
B00OST.MH, the number of boosting rounds was set to 500 and 50, respectively. For
RANK-SVM, polynomial kernels of degree 10 were used. For [IEAC, ILAC and CLAC,
Omin» Omin and O, were set to 0.01, 0.90 and 0.25, respectively.

Best results (including statistical ties) on each criterion are shown in bold face.
Table [3] shows results obtained using the YEAST dataset, which is considered com-
plex, with strong dependencies among labels. CLAC provide gains of 24% in terms of
one-error, considering BOOSTEXTER as the baseline. The reason is that the simple de-
cision function used by BOOSTEXTER is not suitable for this complex dataset. Also, the
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classification models employed by ILAC and CLAC are able to explore many more as-
sociations than the model induced by ADTBooOST.MH. CLAC performs much better
than RANK-SVM since CLAC is able to explore dependencies between labels.

In the next set of experiments we compare IEAC, ILAC and CLAC, against RANK-
SVM using the ACM-DL dataset (first and second levels). As can be seen, CLAC
and ILAC are always superior than their eager counterpart, [EAC. RANK-SVM and
ILAC shown competitive performance, and CLAC is the best performer in the ACM-
DL datasets. To verify if the association between labels was properly explored by
CLAC, we checked if the explicitly correlated categories shown in the ACM Com-
puting Classification System (http://www.acm.org/class/1998/overview.html) were in-
deed used. We verified that some of these explicitly correlated categories often appear
together in the predicted label combination (i.e., Files and Database Management, or
Simulation/Modeling and Probability/Statistics). We further verified that some of the
associated labels appear more frequently in the predictions performed by CLAC than
was observed in the predictions of the other classifiers.

6 Conclusions and Future Work

In this paper we propose a novel associative classification approach for multi-label clas-
sification. The model is induced in an instance-based fashion, in which the test instance
is used as a filter to remove irrelevant features from the training data. Then a specific
model is induced for each test instance, providing a much better coverage of small dis-
juncts. Also, the proposed approach properly explores the correlation among labels by
employing a greedy heuristic called progressive label focusing, which allows the pres-
ence of multiple labels in the antecedent of the rule. Experimental results underscore
the benefits of covering small disjuncts (i.e., lazy model induction) and exploring cor-
related labels (i.e., progressive label focusing). As future work, we intend to further
explore correlated labels by also allowing the presence of multiple labels in the conse-
quent of the rule.
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Experiment Databases: Towards an Improved
Experimental Methodology in Machine Learning
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Abstract. Machine learning research often has a large experimental
component. While the experimental methodology employed in machine
learning has improved much over the years, repeatability of experiments
and generalizability of results remain a concern. In this paper we propose
a methodology based on the use of experiment databases. Experiment
databases facilitate large-scale experimentation, guarantee repeatability
of experiments, improve reusability of experiments, help explicitating the
conditions under which certain results are valid, and support quick hy-
pothesis testing as well as hypothesis generation. We show that they have
the potential to significantly increase the ease with which new results in
machine learning can be obtained and correctly interpreted.

1 Introduction

Experimental assessment is a key aspect of machine learning research. Indeed,
many learning algorithms are heuristic in nature, each making assumptions
about the structure of the given data, and although there may be good reason to
believe a method will work well in general, this is difficult to prove. In fact, it is
impossible to theoretically prove that one algorithm is superior to another [I5],
except under specific conditions. Even then, it may be difficult to specify these
conditions precisely, or to find out how relevant they are for real-world problems.
Therefore, one usually verifies a learning algorithm’s performance empirically, by
implementing it and running it on (real-world) datasets.

Since empirical assessment is so important, it has repeatedly been argued
that care should be taken to ensure that (published) experimental results can
be interpreted correctly [§]. First of all, it should be clear how the experiments
can be reproduced. This involves providing a complete description of both the
experimental setup (which algorithms to run with which parameters on which
datasets, including how these settings were chosen) and the experimental proce-
dure (how the algorithms are run and evaluated). Since space is limited in paper
publications, an online log seems the most viable option.

Secondly, it should be clear how generalizable the reported results are, which
implies that the experiments should be general enough to test this. In time
series analysis research, for instance, it has been shown that many studies were
biased towards the datasets being used, leading to ill-founded or contradictory
results [§]. In machine learning, Perlich et al. [10] describe how the relative
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performance of logistic regression and decision trees depends strongly on the size
of dataset samples. Similarly, Hoste and Daelemans [6] show that in text mining,
the relative performance of lazy learning and rule induction is dominated by
the effect of parameter optimization, data sampling, feature selection, and their
interaction. As such, there are good reasons for strongly varying the conditions
under which experiments are run, and projects like Statlog [12] and METAL [11]
made the first inroads into this direction.

In light of the above, it would be useful to have an environment for machine
learning research that facilitates storage of the exact conditions under which
experiments have been performed as well as large-scale experimentation under
widely varying conditions. To achieve this goal, Blockeel [I] proposed the use of
experiment databases. Such databases are designed to store detailed information
on large numbers of learning experiments, selected to be highly representative for
a wide range of possible experiments, improving reproducibility, generalizability
and interpretability of experimental results. In addition, they can be made avail-
able online, forming “experiment repositories” which allow other researchers to
query for and reuse the experiments to test new hypotheses (in a way similar to
how dataset repositories are used to test the performance of new algorithms).

Blockeel introduced the ideas behind experiment databases and discussed
their potential advantages, but did not present details on how to construct such a
database, nor considered whether it is even realistic to assume this is possible. In
this paper, we answer those questions. We propose concrete design guidelines for
experiment databases, present a specific implementation consistent with these
guidelines, and illustrate the use of this database. By querying it for specific
experiments, we can directly test a wide range of hypotheses on the covered
algorithms and verify or refine existing results. Finally, the database itself is
a contribution to the machine learning community: this database, containing
the results of 250,000 runs of well-known classification systems under varying
conditions, is publicly accessible on the web to be queried by other researchers.

The remainder of this paper is structured as follows. In Sect. 2 we summarize
the merits of experiment databases. In Sect. 3 we discuss the structure of such
a database, and in Sect. 4 methods for populating it with experiments. Section
5 presents a case study: we implemented an experimental database and ran a
number of queries in order to evaluate how easily it allows verification of existing
knowledge and discovery of new insights. We conclude in Sect. 6.

2 Experiment Databases

An experiment database is a database designed to store a (large) number of
experiments, containing detailed information on the datasets, algorithms, and
parameter settings used, as well as the evaluation procedure and the obtained
results. It can be used as a log of performed experiments, but also as a repository
of experimental results that can be reused for further research.
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The currently most popular experimental methodology in machine learning
is to first come up with an hypothesis about the algorithms under study, then
perform experiments explicitly designed to test this hypothesis, and finally in-
terpret the results. In this context, experiment databases make it easier to keep
an unambiguous log of all the performed experiments, including all information
necessary to repeat the experiments.

However, experiment databases also support a new methodology: instead of
designing experiments to test a specific hypothesis, one can design them to cover,
as well as possible, the space of all experiments that are of interest in the given
context. A specific hypothesis can then be tested by querying the database for
those experiments most relevant for the hypothesis, and interpreting the re-
turned results. With this methodology, many more experiments are needed to
evaluate the learning algorithms under a variety of conditions (parameter set-
tings, datasets,. .. ), but the same experiments can be reused for many different
hypotheses. For instance, by adjusting the query, we can test how much the ob-
served performance changes if we add or remove restrictions on the datasets or
parameter settings. Furthermore, as the query explictly mentions all restrictions,
it is easy to see under which conditions the returned results are valid.

As an example, say Ann wants to test the effect of dataset size on the com-
plexity of trees learned by C4.5. To do this, she selects a number of datasets of
varying sizes, runs C4.5 (with default parameters) on those datasets, and inter-
prets the results. Bob, a proponent of the new methodology proposed here, would
instead build a large database of C4.5 runs (with various parameter settings) on
a large number of datasets, possibly reusing a number of experiments from exist-
ing experiment databases. Bob then queries the database for C4.5 runs, selecting
the dataset size and tree size for all runs with default parameter settings (ex-
plicitly mentioning this condition in his query), and plotting them against each
other. If Ann wants to test whether her results on default settings for C4.5 are
representative for C4.5 in general, she needs to set up new experiments. Bob,
on the other hand, only has to ask a second query, this time not including the
condition. This way, he can easily investigate under which conditions a certain
effect will occur, and be more confident about the generality of his results.

The second methodology requires a larger initial investment with respect to
experimentation, but may pay off in the long run, especially if many different
hypotheses are to be tested, and if many researchers make use of experiments
stored in such databases. For instance, say another researcher is more interested
in the runtime (or another performance metric) of C4.5 on these experiments.
Since this is recorded in the experiment database as well, the experiments will not
have to be repeated. A final advantage is that, given the amount of experiments,
Bob can train a learning algorithm on the available meta-data, gaining models
which may provide further insights in C4.5’s behavior.

Note that the use of experiment databases is not strongly tied to the choice
of methodology. Although experiment databases are necessary for the second
methodology, they can also be used with the first methodology, allowing exper-
iments to be more easily reproduced and reused.
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3 Database Structure

An experiment database should be designed to store experiments in such de-
tail that they are perfectly repeatable and maximally reusable. In this section,
we consecutively discuss how the learning algorithms, the datasets, and the ex-
perimental procedures should be described to achieve this goal. This discussion
does not lead to a single best way to design an experiment database: in many
cases several options remain, and depending on the purpose of the experiment
database different options may be chosen.

3.1 Algorithm

In most cases, storing a complete symbolic description of the implementation
of an algorithm is practically impossible. It is more realistic to store name and
version of a system, together with a pointer to source code or an executable, so
the experiment can be rerun under the same conditions. Some identification of
the environment (e.g. the required operating system) completes this description.

As most algorithms have parameters that change their behavior, the values
of these parameters must be stored as well. We call an algorithm together with
specific values for its parameters an algorithm instantiation. For randomized
algorithms, we store the seed for the random generator they use also as a para-
meter. As such, an algorithm instantiation is always a deterministic function.

Optionally, a characterization of the algorithm could be added, consisting of
generally known or calculated properties [I3[7]. Such a characterization could
indicate, for instance, the class of approaches the algorithm belongs to (naive
bayes, neural net, decision tree learner,. .. ), whether it generally has high or low
bias and variance, etc. Although this characterization is not necessary to ensure
repeatability of the experiment, it may be useful when interpreting the results
or when investigating specific types of algorithms.

3.2 Dataset

To describe datasets, one can store name, version and a pointer to a represen-
tation of the actual dataset. The latter could be an online text file (possibly in
multiple formats) that the algorithm implementations can read, but it could also
be a dataset generator together with its parameters (including the generator’s
random seed) or a data transformation function (sampling instances, selecting
features, defining new features, etc.) together with its parameters and a pointer
to the input dataset. If storage space is not an issue, one could also store the
dataset itself in the database.

As with algorithms, an optional characterization of the dataset can be added:
number of examples, number of attributes, class entropy, etc. These are useful
to investigate how the performance of an algorithm is linked to properties of the
training data. Since this characterization depends only on the dataset, not on
the experiment, new features can be added (and computed for each dataset),
and subsequently used in future analysis, without rerunning any experiments.
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The same holds for the algorithm characterisation. This underlines the reusabil-
ity aspect of experiment databases.

3.3 Experimental Procedure

To correctly interpret (and repeat) the outcome of the experiment, we need to
describe exactly how the algorithm is run (e.g. on which machine) and evaluated.
For instance, in case we use a cross-validation procedure to estimate the predic-
tive performance of the algorithm on unseen data, this implies storing (a seed
to generate) the exact foldd]. Also the exact functions used to compute these
estimates (error, accuracy,...) should be described. To make the experiments
more reusable, it is advisable to compute a variety of much used metrics, or to
store the information from which they can be derived. In the case of classifiers,
this includes storing the full contingency table (i.e., for each couple of classes
(4,7), the number of cases where class ¢ was predicted as class j)Ep

Another important outcome of the experiment is the model generated by the
algorithm. As such, we should at least store specific properties of these models,
such as the time to learn the model, its size, and model-specific properties (e.g.
tree depth) for further analysis. If storage space allows this, also a full representa-
tion of the model could be stored for later visualisatior[d. For predictive models,
it might also be useful to store the individual (probabilities of) predictions for
each example in the dataset. This allows to add and compute more evaluation
criteria without rerunning the experiment.

4 Populating the Database

Next to storing experiment in a structured way, one also needs to select the right
experiments. As we want to use this database to gain insight in the behavior of
machine learning algorithms under various conditions, we need to have experi-
ments that are as diverse as possible. To achieve this in practice, we first need
to select the algorithm(s) of interest from a large set of available algorithms.
To choose its parameter settings, one can specify a probability distribution for
each different parameter according to which values should be generated (in the
simplest case, this could be a uniformly sampled list of reasonable values).
Covering the dataset space is harder. One can select a dataset from a large
number of real-world datasets, including for instance the UCI repository. Yet, one
can also implement a number of data transformation methods (e.g., sampling
the dataset, performing feature selection,...) and derive variants of real-world
datasets in this way. Finally, one could use synthetic datasets, produced by

! Note that although algorithms should be compared using the same folds, these folds
(seeds) should also be varied to allow true random sampling.

2 Demsar [3] comments that it is astounding how many papers still evaluate classifiers
based on accuracy alone, despite the fact that this has been advised against for many
years now. Experiment databases may help eradicate this practice.

3 Some recent work focuses on efficiently storing models in databases M.
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dataset generators. This seems a very promising direction, but the construction
of dataset generators that cover a reasonably interesting area in the space of all
datasets is non-trivial. This is a challenge, not a limitation, as even the trivial
approach of only including publicly available datasets would already ensure a
coverage that is equal to or greater than that of many published papers on
general-purpose machine learning techniques.

At the same time however, we also want to be able to thoroughly investigate
very specific conditions (e.g. very large datasets). This means we must not only
cover a large area within the space of all interesting experimen‘csﬂ7 but also
populate this area in a reasonably dense way. Given that the number of possible
algorithm instantiations and datasets (and experimental procedures) is possibly
quite large, the space of interesting experiments might be very high-dimensional,
and covering a large area of such a high-dimensional space in a “reasonably
dense” way implies running many experiments.

A simple, yet effective way of doing this is selecting random, but sensible,
values for all parameters in our experiments. With the term parameter we mean
any stored property of the experiment: the used algorithm, its parameters, its
algorithm-independent characterization, the dataset properties, etc.

To imagine how many experiments would be needed in this case, assume
that each of these parameter has on average v values (numerical parameters
are discretized into v bins). Running 100v experiments with random values for
all parameters implies that for each value of any single parameter, the average
outcomes of about 100 experimental runs will be stored. This seems sufficient
to be able to detect most correlations between outcomes and the value of this
parameter. To detect n-th order interaction effects between parameters, 100v™
experiments would be needed. Taking, for example, v = 20 and n =2 or n = 3,
this yields a large number of experiments, but (especially for fast algorithms)
not infeasible with today’s computation power.

Note how this contrasts to the number of experimental runs typically re-
ported on machine learning papers. Yet, when keeping many parameters con-
stant to test a specific hypothesis, there is no guarantee that the obtained re-
sults generalize towards other parameter settings, and they cannot easily be
reused for testing other hypotheses. The factor 100 is the price we pay for en-
suring reusability and generalizability. Especially in the long run, these bene-
fits easily compensate for the extra computational expense. The v" factor is
unavoidable if one wants to investigate n’th order interaction effects between
parameters. Most existing work does not study effects higher than the second
order.

Finally, experiments could in fact be designed in a better way than just
randomly generating parameter values. For instance, one could look at tech-
niques from active learning or Optimal Experiment Design (OED) [2] to fo-
cus on the most interesting experiments given the outcome of previous
experiments.

4 These are the experiments that seem most interesting in the studied context, given
the available resources.
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Fig. 1. A possible implementation of an experiment database

5 A Case Study

In this section we discuss one specific implementation of an experiment database.
We describe the structure of this database and the experiments that populate it.
Then, we illustrate its use with a few example queries. The experiment database
is publicly available on http://www.cs.kuleuven.be/“dtai/expdb.

5.1 A Relational Experiment Database

We implemented an experiment database for classifiers in a standard RDBMS
(MySQL), designed to allow queries about all aspects of the involved learning
algorithms, datasets, experimental procedures and results. This leads to the
database schema shown in Fig.[[l Central in the figure is a table of experiments
listing the used instantiations of learning algorithms, datasets and evaluation
methods, the experimental procedure, and the machine it was run on.

First, a learner instantiation points to a learning algorithm (Learner), which
is described by the algorithm name, version number, a url where it can be down-
loaded and a list of characteristics. Furthermore, if an algorithm is parameter-
ized, the parameter settings used in each learner instantiation (one of which is
flagged as default) are stored in table Learner parval. Because algorithms have
different numbers and kinds of parameters, we store each parameter value as-
signment in a different row (in Fig. [[l only two are shown). The parameters are
further described in table Learner parameter with the learner it belongs to, its
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name and a specification of sensible values. If a parameter’s value points to a
learner instantiation (as occurs in ensemble algorithms) this is indicated.

Secondly, the used dataset, which can be instantiated with a randomization of
the order of its attributes or examples (e.g. for incremental learners), is described
in table Dataset by its name, download url(s), the index of the class attribute
and 56 characterization metrics, most of which are mentioned in [9]. Information
on the origin of the dataset can also be stored (e.g. whether it was taken from a
repository or how it was preprocessed or generated).

Finally, we must store an evaluation of the experiments. The evaluation method
(e.g. cross-validation) is stored together with its (list of ) parameters (e.g. the num-
ber of folds). If a dataset is divided into a training set and a test set, this is defined
in table Testset of. The results of the evaluation of each experiment is described
in table Evaluation by a wide range of evaluation metrics for classification, in-
cluding the contingency tabledd. The last table in Fig. Mstores the (non-zero prob-
ability) predictions returned by each experiment.

5.2 Populating the Database

To populate the database, we first selected 54 classification algorithms from the
WEKA platform[I4] and inserted them together with all their parameters. Also,
86 commonly used classification datasets were taken from the UCI repository
and inserted together with their calculated characteristicdd.

To generate a sample of classification experiments that covers a wide range of
conditions, while also allowing to test the performance of some algorithms under
very specific conditions, a number of algorithms were explored more thoroughly
than others. In a first series of experiments, we ran all experiments with their
default parameter settings on all datasets. In a second series, we defined at most
20 suggested values for the most important parameters of the algorithms SMO,
MultilayerPerceptron, J48 (C4.5), 1R and Random Forests. We then varied each
of these parameters one by one, while keeping all other parameters at default. In
a final series, we defined sensible ranges for all parameters of the algorithms J48
and 1R, and selected random parameter settings (thus fully exploring their pa-
rameter spaces) until we had about 1000 experiments of each algorithm on each
dataset. For all randomized algorithms, each experiment was repeated 20 times
with different random seeds. All experiments (about 250,000 in total) where
evaluated with 10-fold cross-validation, using the same folds on each dataset.

5.3 Querying and Mining

We will now illustrate how easy it is to use this experiment database to test a
wide range of hypotheses on the behavior of these learning algorithms by simply
writing the right queries and interpreting the results, or by applying data mining

5 To help compare cpu times, a diagnostic test might be run on each machine and its
relative speed stored as part of the machine description.

5 As the database stores a ‘standard’ description of the experiments, other algorithm
(implementations) or datasets can be used just as easily.
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Fig. 2. Performance comparison of all algorithms on the Fig.3. Impact of the ~-
waveform-5000 dataset parameter on SMO

algorithms to model more complex interactions. In a first query, we compare the
performance of all algorithms on a specific dataset:

SELECT 1.name, v.pred_acc

FROM experiment e, learner_inst 1li, learner 1, data_inst di, dataset d,
evaluation v

WHERE e.learner_inst = 1li.liid and 1i.lid = 1.1id and e.data_inst =
di.diid and di.did = d.did and d.name=’waveform-5000’ and v.eid = e.eid

In this query, we select the algorithm used and the predictive accuracy regis-
tered in all experiments on dataset waveform-5000. We visualize the returned
data in Fig. 2 which shows that most algorithms reach over 75% accuracy, al-
though a few do much worse. Some do not surpass the default accuracy of 34%:
besides SMO and ZeroR, these are ensemble methods that use ZeroR by default.

It is also immediately clear how much the performance of these algorithms
varies as we change their parameter settings, which illustrates the generality of
the returned results. SMO varies a lot (from default accuracy up to 87%), while
J48 and (to a lesser extent) MultiLayerPerceptron are much more stable in this
respect. The performance of RandomForest (and to a lesser extent that of SMO)
seems to jump at certain points, which is likely bound to a different parameter
value. These are all hypotheses we can now test by querying further.

For instance, we could examine which bad parameter setting causes SMO to
drop to default accuracy. After some querying, a clear explanation is found by se-
lecting the predictive accuracy and the gamma-value (kernel width) of the RBF
kernel from all experiments with algorithm SMO and dataset waveform-5000 and
plotting them (Fig. ). We see that accuracy drops sharply when the gamma
value is set too high, and while the other modified parameters cause some vari-
ation, it is not enough to jeopardize the generality of the trend.

We can also investigate combined effects of dataset characteristics and parame-
ter settings. For instance, we can test whether the performance ‘jumps’ of
RandomForest are linked to the number of trees in a forest and the dataset size.
Therefore, we select the dataset name and number of examples, the parameter
value of the parameter named nb of trees in forest of algorithm RandomForest
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Fig. 4. The effect of dataset size and the number of trees for random forests

and the corresponding predictive accuracy. The results are returned in order of
dataset size:

SELECT d.name, d.nr_examples, lv.value, v.pred_acc

FROM experiment e, learner_inst 1li, learner 1, learner_parval 1lv,
learner_parameter p, data_inst di, dataset d, evaluation v

WHERE e.learner_inst = 1i.liid and 1i.lid = 1.1id and
1.name=’RandomForest’ and 1lv.liid = 1i.liid and 1lv.pid = p.pid and
p.alias=’nb of trees in forest’ and v.eid = e.eid

ORDER BY d.nr_examples

When plotted in Fig. [ this clearly shows that predictive accuracy increases
with the number of trees, usually leveling off between 33 and 101 trees, but with
one exception: on the monks-problems-2 test dataset the base learner performs
so badly (less than 50% accuracy, though there are only two classes) that the
ensemble just performs worse when more trees are included. We also see that as
the dataset size grows, the accuracies for a given forest size vary less, which is
indeed what we would expect as trees become more stable on large datasets.

As said before, an experiment database can also be useful to verify or refine
existing knowledge. To illustrate this, we verify the result of Holte [5] that very
simple classification rules (like 1R) perform almost as good as complex ones (like
C4, a predecessor of C4.5) on most datasets. We compare the average predictive
performance (over experiments using default parameters) of J48 with that of
OneR for each dataset. We skip the query as it is quite complex. Plotting the
average performance of the two algorithms against each other yields Fig.

We see that J48 almost consistently outperforms OneR, in many cases per-
forming a little bit better, and in some cases much better. This is not essentially
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different from Holte’s results, though the average improvement does seem a bit
larger here (which may indicate an improvement in decision tree learners and/or
a shift towards more complex datasets).

We can also automatically learn under which conditions J48 clearly outper-
forms OneR. To do this, we queried for the difference in predictive accuracy be-
tween J48 and OneR for each dataset, together with all dataset characteristics.
Discretizing the predictive accuracy yields a classification problem with 3 class
values: “draw”, “win J48” (4% to 20% gain), and “large win J48” (20% to 70%
gain). The tree returned by J48 on this meta-dataset is shown in Fig. [0 showing
that a high number of class values often leads to a large win of J48 over 1R. Inter-
estingly, Holte’s study contained only one dataset with more than 5 class values,
which might explain why smaller accuracy differences were reported.

Yet these queries only scratched the surface of all possible hypotheses that
can be tested using the experiments generated for this case study. One could
easily launch new queries to request the results of certain experiments, and gain
further insights into the behavior of the algorithms. Also, one can reuse this data
(possibly augmented with further experiments) when researching the covered
learning techniques. Finally, one can also use our database implementation to
set up other experiment databases, e.g. for regression or clustering problems.

6 Conclusions

We advocate the use of experiment databases in machine learning research. Com-
bined with the current methodology, experiment databases foster repeatability.
Combined with a new methodology that consists of running many more exper-
iments in a semi-automated fashion, storing them all in an experiment data-
base, and then querying that database, experiment databases in addition foster
reusability, generalizability, and easy and thorough analysis of experimental re-
sults. Furthermore, as these databases can be put online, they provide a detailed
log of performed experiments, and a repository of experimental results that can
be used to obtain new insights. As such, they have the potential to speed up
future research and at the same time make it more reliable, especially when
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supported by the development of good experimentational tools. We have dis-
cussed the construction of experiment databases, and demonstrated the feasibil-
ity and merits of this approach by presenting an publicly available experiment
database containing 250,000 experiments and illustrating its use.
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Abstract. There have been numerous attempts at the aggregation of
attributes for relational data mining. Recently, an increasing number of
studies have been undertaken to process social network data, partly be-
cause of the fact that so much social network data has become available.
Among the various tasks in link mining, a popular task is link-based
classification, by which samples are classified using the relations or links
that are present among them. On the other hand, we sometimes employ
traditional analytical methods in the field of social network analysis us-
ing e.g., centrality measures, structural holes, and network clustering.
Through this study, we seek to bridge the gap between the aggregated
features from the network data and traditional indices used in social
network analysis. The notable feature of our algorithm is the ability to
invent several indices that are well studied in sociology. We first define
general operators that are applicable to an adjacent network. Then the
combinations of the operators generate new features, some of which cor-
respond to traditional indices, and others which are considered to be
new. We apply our method for classification to two different datasets,
thereby demonstrating the effectiveness of our approach.

1 Introduction

Recently, increasingly numerous studies have been undertaken to process net-
work data (e.g., social network data and web hyperlinks), partly because of the
fact that such great amounts of network data have become available. Link min-
ing [6] is a new research area created by the intersection of work in link analysis,
hypertext and web mining, relational learning, and inductive logic programming
and graph mining. A popular task in link mining is link-based classification, clas-
sifying samples using the relations or links that are present among them. To date,
numerous approaches (e.g. [§]) have been proposed for link-based classification,
which are often applied to social network data.

A social network is a social structure comprising nodes (called actors) and
relations (called ties). Prominent examples of recently studied social networks

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 127 2007.
© Springer-Verlag Berlin Heidelberg 2007
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are online social network services (SNS), weblogs (e.g., [1]), and social book-
marks (e.g., [7]). As the world becomes increasingly interconnected as a “global
village” [18], network data have multiplied. For that reason, among others, the
needs of mining social network data are increasing. A notable feature of social
network data is that it is a particular type of relational data in which the target
objects are (in most cases) of a single type, and relations are defined between
two objects of the type. Sometimes a social network consists of two types of
objects: a network is called an affiliation network or a two-mode network.

Social networks have traditionally been analyzed in the field of social net-
work analysis (SNA) in sociology [I6I14]. Popular modes of analysis include
centrality analysis, role analysis, and clique and cluster analyses. These analyses
produce indices for a network, a node, or sometimes for an edge, that have been
revealed as effective for many real-world social networks over the half-century
history of social studies. In complex network studies [I7J3], which is a much
younger field, analysis and modeling of scale-free and small world networks have
been conducted. Commonly used features of a network are clustering coefficients,
characteristic path lengths, and degree distributions.

Numerous works in the data mining community have analyzed social networks
[2[13]. For example, L. Backstrom et al. analyzed the social groups and commu-
nity structure on LiveJournal and DBLP data [2]. They build eight community
features and six individual features, and subsequently report that one feature
is unexpectedly effective: for moderate values of k, an individual with k friends
in a group is significantly more likely to join if these k friends are themselves
mutual friends than if they are not. Apparently, greater potential exists for such
new features using a network structure, which is the motivation of this research.
Although several studies have been done to identify which features are useful
to classify entities, no comprehensive research has been undertaken so far to
generate the features effectively, including those used in social studies.

In this paper, we propose an algorithm to generate the various network fea-
tures that are well studied in social network analysis. We define primitive oper-
ators for feature generation to create structural features. The combinations of
operators enable us to generate various features automatically, some of which cor-
respond to well-known social network indices (such as centrality measures). By
conducting experiments on two datasets, the Cora dataset and @Qcosme dataset,
we evaluate our algorithm.

The contributions of the paper are summarized as follows:

— Our research is intended to bridge a gap between the data mining community
and the social science community; by applying a set of operators, we can
effectively generate features that are commonly used in social studies.

— The research addresses link-based classification from a novel approach. Be-
cause some features are considered as novel and useful, the finding might
be incorporated into future studies for improving performance for link-based
classification.

— Our algorithm is applicable to social networks (or one-mode networks). Be-
cause of the increasing amount of attention devoted to social network data,
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especially on the Web, our algorithm can support further analysis of the
network data, in addition to effective services such as recommendations of
communities.

This paper is organized as follows. Section 2 presents related works of this
study. In Section 3, we show details of the indices of social network analysis. In
Section 4, we propose our method for feature generation by defining nodesets,
operators, and aggregation methods. Section 5 describes experimental results for
two datasets, followed by discussion and conclusions.

2 Related Work

Various models have been developed for relational learning. A notable study
is that of Probabilistic Relational Models (PRMs) [5]. Such models provide a
language for describing statistical models over relational schema in a database.
They extend the Bayesian network representation to enable incorporation of a
much richer relational structure and are applicable to a variety of situations.
However, the process of feature generation is decoupled from that of feature se-
lection and is often performed manually. Alexandrin et al. [TT] propose a method
of statistical relational learning (SRL) with a process for systematic generation
of features from relational data. They formulated the feature generation process
as a search in the space of a relational database. They apply it to relational
data from Citeseer, including the citation graph, authorship, and publication, in
order to predict the citation link, and show the usefulness of their method.

C. Perlich et al. [I0] also propose aggregation methods in relational data.
They present the hierarchy of relational concepts of increasing complexity, us-
ing relational schema characteristics and introduce target-dependent aggregation
operators. They evaluate this method on the noisy business domain, or IPO do-
main. They predict whether an offer was made on the NASDAQ exchange and
draw conclusions about the applicability and performance of the aggregation
operators.

L. Backstrom et al. [2] analyzes community evolution, and shows that some
structural features characterizing individuals’ positions in the network are influ-
ential, as well as some group features such as the level of activity among members.
They apply a decision-tree approach to LiveJournal data and DBLP data, which
revealed that the probability of joining a group depends in subtle but intuitively
natural ways not just on the number of friends one has, but also on the ways
in which they are mutually related. Because of the relevance to our study, we
explain the individuals’ features used in their research in Table[I} they use eight
community features and six individual features. Our purpose of this research can
be regarded as generating such features automatically and comprehensively to
the greatest degree possible.

Our task is categorized into link-based object classification in the context
of link mining. Various methods have been used to address tasks such as loopy
belief propagation and mean field relaxation labeling [15]. Although these models
are useful and effective, we do not attempt to generate such probabilistic or
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Table 1. Features used in [2]

Features related to an individual v and her set S of friends in community C
Number of friends in community (|S]).

Number of adjacent pairs in S(|(u,v)|u,v € S A (u,v) € Ec|).

Number of pairs in S connected via a path in Ec.

Average distance between friends connected via a path in Fc.

Number of community members reachable from S using edges in Ec.

Average distance from S to reachable community members using edges in Ec.

statistical models in this study because it is difficult to compose such models
using these basic operations.

3 Social Network Features

In this section, we overview commonly-used indices in social network analysis
and complex network studies. We call such attributes social network features
throughout the paper.

One of the simplest features of a network is its density. It describes the general
level of linkage among the network nodes. The graph density is defined as the
number of edges in a (sub-)graph, expressed as a proportion of the maximum
possible number of edges.

Within social network analysis, the centrality measures are an extremely pop-
ular index of a node. They measure the structural importance of a node, for
example, the power of individual actors. There are several kinds of centrality
measures [4]; the most popular ones are as follows:

Degree. The degree of a node is the number of links to others. Actors who
have more ties to other actors might be advantaged positions. It is defined
as CP = Nk'_il, where k; is the degree of node i and N is the number of
nodes.

Closeness. Closeness centrality emphasizes the distance of an actor to all others
in the network by focusing on the distance from each actor to all others. It
is defined as C¢ = (L;)~! = Zigldu’ where L, is the average geodesic
distance of node ¢, and d;; is the ciistance between nodes i and j.

Betweenness. Betweenness centrality views an actor as being in a favored po-
sition to the extent that the actor falls on the geodesic paths between other

pairs of actors in the network. It measures the number of all the shortest

paths that pass through the node. It is defined as CP = Z-ja’\fcl;]ﬁg/)n" *,
where 7, denotes the number of the shortest paths between nodes j and k,

and nji(¢) is the number of those running through node 7.

A popular variation of centrality measure is the eigenvector centrality (also
known as PageRank or stationary probability). Because we do not target the
eigenvector centrality in this paper, we do not explain it here but we will discuss
it in Section 6.
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Another useful set of network indices is the characteristic path length (some-
times denoted as L) and clustering coefficient (denoted as C'), which are the most
important and frequently-invoked characteristics of complex network studies.

Characteristic path length. The characteristic path length L is the average
distance between any two nodes in the network (or a component).

Clustering coefficient. The clustering for a node is the proportion of edges
between the nodes within its neighborhood divided by the number of edges
that could possibly exist between them. The clustering coefficient C' is the
average of clustering of each node in the network.

There are other groups of indices such as structural equivalence (defined on a
pair of nodes), and structural holes (defined on a node). We do not explain all
the indices but readers can consult literature on social network analysis [I6I14].

4 Methodology

In this section, we define the elaborate operators that generate social-network
features. Using our model, we attempt to generate features that are often used
in social science. Our intuition is simple; recognizing that traditional studies in
social science have shown the usefulness of several indices, we can assume that
feature generation toward the indices is also useful.

Then, how can we design the operators so that they can effectively construct
various types of social network features? Through trial and error, we can come
up with the feature generation in three steps; we first select a set of nodes.
Then the operators are applied to the set of nodes to produce a list of values.
Finally, the values are aggregated into a single feature value. Eventually, we can
construct indices such as characteristic path length L, clustering coefficient C,
and centralities. Below, we explain each step in detail.

4.1 Defining a Node Set

First, we define a node set. We consider two types of node sets: one is based on
a network structure; the other is based on the category of a node.

Distance-based node set. Most straightforwardly, we can choose the nodes
that are adjacent to node z. The nodes are, in other words, those of distance
one from node x. The nodes with distance two, three, and so on can be defined
as well. We define a set of nodes as follows.

— C’g(gk): a set of nodes within distance k from x.

Note that C;k) does not include node x itself. C’g(f’o) means a set of nodes that
are reachable from node z.
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Table 2. Operator list

Notation Input Output Description Stage
Cg(cl) node x a nodeset adjacent nodes to = 1
C;w> node © a nodeset reachable nodes from x 2

NpN Cg(cl) node x a nodeset all positive nodes adjacent to x 3

Np N Cg(goo) node x a nodeset all positive nodes reachable from x 3

s a nodeset a list of values 1 if connected, 0 otherwise 1

t a nodeset a list of values distance between a pair of nodes 1

ta a nodeset a list of values distance between node x and other 2

nodes

[ a nodeset a list of values 1 if the shortest path includes node 2
x, 0 otherwise

Avg a list of values a value average of values 1

Sum  a list of values a value summation of values 1

Min a list of values a value minimum of values 1

Mazx a list of values a value maximum of values 1

Ratio, two values value ratio of value on positive nodes(N, N 4

C) by all nodes (C)

Category-based node set. We can define a set of nodes with a particular
value of some attribute. Although various attributes can be targeted, for link-
based classification, we specifically examine the value of the category attribute
of a node to be classified. We denote a set of positive nodes as IN,,.

Considering both distance-based and category-based node sets, we can define

the conjunction of the sets, e.g., C’;l) N Np.

4.2 Operation on a Node Set

Given a nodeset, we can conduct several calculations to the node set. Below, we
define operators to two nodes, and then expand it to a nodeset with an arbitrary
number of nodes.

The most straightforward operation for two nodes is to check whether the
two nodes are adjacent or not. A slight expansion is performed to check whether
the two nodes are within distance k or not. Therefore, we define the operator as
follows:

50 (z,y) = 1 af node‘s x and y are connected within k
0 otherwise

Another simple operation for two nodes is to measure the geodesic distance
between the two nodes on the graph. We can define an operator as follows:

t(x,y) = distance between x to y = arg mkin{s(k) (x,y) =1}

If given a set of more than two nodes (denoted as N), these two operations
are applied to each pair of nodes in N. For example, if we are given a node set
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{n1, na, n3}, we calculate s/ (ny,n2), s (n1,n3), and s (na, ny) and return
a list of three values, e.g. (1,0,1). We denote this operation as s(!) o N.

In addition to s and t operations, we define two other operations. One is
to measure the distance from node x to each node, denoted as t,. Instead of
measuring the distance of two nodes, t, o N measures the distance of each node
in N from node x. Another operation is to check the shortest path between two
nodes. Operator u,(y, z) returns 1 if the shortest path between y and z includes
node z. Consequently, u, o N returns a set of values for each pair of y € NV and
z € N. Operations t, and u, focus on node z in terms of the distance and the
shortest path, and can be considered fundamental.

4.3 Aggregation of Values

Once we obtain a list of values, several standard operations can be added to the
list. Given a list of values, we can take the summation (Sum), average (Avg),
maximum (Max), and minimum (Min). For example, if we apply Sum aggrega-
tion to a value list (1,0, 1), we obtain a value of 2. We can write the aggregation
as e.g., Sumo s o N. Although other operations can be performed, such as tak-
ing the variance or taking the mean, we limit the operations to the four described
above.

Additionally, we can take the difference or the ratio of two obtained values.
For example, if we obtain 2 by Sumos") o N and 1 by Sumo s o C,, the ratio
is 2/1 = 2.0.

We can thereby generate a feature by subsequently defining a nodeset, ap-
plying an operator, and aggregating the values. Because the number of possible
combinations is enormous, we apply some constraints on the combinations. First,
when defining a nodeset, k is an arbitrary integer theoretically; however, we limit
k to be 1 or infinity for simplicity. Operator s(*) is used only as s(!). We also limit
taking the ratio only to those two values with and without a positive nodeset.

The nodesets, operators, and aggregations are shown in Table 2l We have
4(nodesets) x 4(operators) x 4(aggregations) = 64 combinations. If we consider
the ratio, there are ratios for C{" to N, N C", and for C* to N, N C*. In
all, there are 4 x 4 x 2 more combinations, and 96 in total. Each combination
corresponds to a feature of node z. Note that some combinations produce the
same value; for example, SumotxoCél) is the same as SumosoCg®, representing
the degree of node .

The resultant value sometimes corresponds to a well-known index as we intend
in the design of the operators. For example, the network density can be denoted
as Avg o stV o N. It represents the average of edge existence among all nodes;
it therefore corresponds to the density of the network. Below, we describe other
examples that are used in the social network analysis literature.

diameter of the network: Minoto N
— characteristic path length: Avgoto N
— degree centrality: Sum o s(ml) o NT(})
node clustering: Avg o s o Nél)
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— closeness centrality: Avg o t, o O™
— betweenness centrality: Sum o u, o CJEDO)7
— structural holes: Avgoto Né”

We can generate several features that have been shown to be effective in
existing studies [2]. A couple of examples are the following

— Number of friends in community = Sum o S;,(cl) o (C,(;l) N N,) and

— Number of adjacent pairs = Sum o s o (NI N N,,) .

These features represent some of the possible combinations. Some lesser-
known features might actually be effective.

5 Experimental Result

In this section, we describe empirical results obtained using our social network
feature generation. Through the experiment, we show the usefulness of the gen-
erated features toward link-based classification problems. We classify a node into
categories using the relations around the node.

5.1 Datasets and Task

After generating features, we investigate which features are better to classify
the entities. We employ a decision tree technique following [2] to generate the
decision tree (using C4.5 algorithm [12]). We use two datasets: Cora database
and @Qcosme. We first explain the characteristics of these datasets, and then
describe the results and findings.

Cora dataset. This dataset, contributed by A. McCallum [9], contains 300,000
scientific papers related to computer science classified into 69 research areas.
About 10,000 papers include detailed information about properties such as the
title, author names, a journal name, and the year of publication. In addition,
each paper has information about its cited literature. We therefore have a citation
network in which a node is a paper and an (undirected) edge is a citation. We
do not use direction information on edges.

Training and test data are created as follows: we randomly select nodes from
among those in the target category and those which cite or are cited by a paper
in the target category. We randomly select one-fifth of the whole 69 categories
as target categories. For example, in the case of the category Neural networks
in Machine Learning in Artificial Intelligence, the number of all nodes is 1682;
the number of positive nodes (in this category) is 781. Because the negative
examples are the nodes which are not in the category but which have a direct
relation with other nodes in the category, the settings are more difficult than
those used when we select negative examples randomly.
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Fig. 1. Top three levels of the decision Fig. 2. Top three levels of the decision
tree in using up to Stage 2 operators tree using all operators

@cosme dataset. Qcosme (www.cosme.net) is the largest online community
site of “for-women” communities in Japan. It provides information and reviews
related to cosmetic products. Users of @Qcosme can post their reviews of cosmetic
products (100.5 thousand items of 11 thousand brands) on the system. Notable
characteristics of @cosme are that a user can register other users who can be
trusted, thereby creating a social network of users.

Because a user of @Qcosme can join various communities on the site, we can
classify users into communities, as was done with the Cora dataset. The nodes are
selected from among those who are the members of the community, or those who
have a relation with a user in the community. Here we target popular commu-
nities with more than 1000 memberdl. In case of I love Skin Care communities,
the number of nodes is 5730 and the number of positive nodes is 2807.

5.2 Experimental Results

We generate features defined in Table 2l for each dataset. To record the effective-
ness of operators, we first limit the operators of Stage 1, as shown in Table 2}
then we include the operators of Stage 2, those of Stage 3, and one of Stage 4.

Table @l shows the values of recall, precision, and F-value for the Cora dataset.
The performance is measured by 10-fold cross validation. As we use more opera-
tors, the performance improves. Figures[I] and Pl show the top three levels of the
decision tree when using operators of Stage 1 and 2, and all the operators. We
can see in Fig. [l that the top level node of the decision tree is Sumo s o C;,(UOO),
which is the number of edges that node z has, or the degree centrality. The
second top node is Sumot, o C’g(gl), which also corresponds to a degree centrality
(in a different expression).

If we add operators in Stage 3 and Stage 4, we obtain a different decision tree
as in Fig. Pl The top node is the ratio of the number of positive and all nodes
neighboring node z. It means that if the number of neighboring nodes in the
category is larger, the node is more likely to be in the category, which can be
reasonably understood. We can see in the third level the ratio of Avgos() OC;,(COO),
which corresponds to the density of the subgraph including node z. There are

1 Such as I love Skin Care community, Blue Base community and I love LUSH com-
munity.
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Table 3. Recall, precision, and F-value in ~ Table 4. Recall, precision, and F-value in

the @Qcosme dataset as adding operators Cora dataset as adding operators
Recall Precision F-value Recall Precision F-value
Stage 1 0.429 0.586  0.494 Stage 1 0.427 0.620  0.503
Stage 2 0.469 0.593  0.523 Stage 2 0.560 0.582  0.576
Stage 3 0.526  0.666  0.586 Stage 3 0.724 0.696  0.709
Stage 4 0.609 0.668  0.636 Stage 4 0.767 0.743  0.754

Sumots(C” AN,)
SumotoC

Sumos" oC" 0248 < 20248
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Fig. 3. Top three levels of the decision Fig.4. Top three levels of the deci-
tree using up to Stage 2 operators in sion tree using all operators in Qcosme
@Qcosme dataset dataset

also features calculating the ratio of Sumot,;oC2°, which is a closeness centrality,

and Sum o uy o C’;,(cl)7 which corresponds to a betweenness centrality.

The results of @Qcosme dataset are shown in Table. [l The trend is the same as
that for the Cora dataset; if we use more operators, the performance improves.
The decision trees when using up to Stage 2 operators and all operators are
shown in Figs. Bland [l The top level node of Fig. Blis Sumot, o C’S), which is
the number of edges among nodes adjacent to node x. The top level node in Fig.
[ is the ratio of the summation of the path length of reachable positive nodes
from node x to the summation of the path length of all reachable nodes. In the
third level, we can find Sumoto C’S). This value is not well known in social
network analysis, but it measures the distance among neighboring nodes of node
x. The distance is 1 if the nodes are connected directly, and 2 if the nodes are
not directly connected (because the nodes are connected via node x). Therefore,
it is similar to clustering of node x. Table Bl shows the effective combinations of
operators (which appear often in the obtained decision trees) in Cora datasetd.

In summary, various features have been shown to be important for classifica-
tion, some of which correspond to well-known indices in social network analysis
such as degree centrality, closeness centrality, and betweenness centrality. Some
indices seem new, but their meanings resemble those of the existing indices. Nev-
ertheless, the ratio of values on positive nodes to all nodes is useful in many cases.
The results support the usefulness of the indices that are commonly used in the

2 The score 1/r is added to the combination if it appears in the r-th level of the decision
tree, and we sum up the scores in all the case. (Though other feature weighting is
possible, we maximize the correspondence to the decision trees explained in the

paper.)
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Table 5. Effective combinations of operators in Cora dataset

Rank Combination Description

1 Sum oty o (C;l) N Np) |The number of positive nodes adjacent to node x.

2 Sum oty o CLY The number of nodes adjacent to node x.

3 |Sumos® o (Cg(fo) N Np)|The density of the positive nodes reachable from node z.

4 | Sumo sV o (C;D N Np) | The number of edges among positive nodes adjacent to
node x.

5 Maxoto (C'g(c1> N Np) |Whether there is a triad including node x and two posi-
tive nodes.

6 Sum o sM o Cg(cl) The number of edges among nodes adjacent to node .

7 Sum o sM o 0L The number of edges among nodes reachable from node
z.

8 | Mazxougo (CG(DOC) N Np) |Whether the shortest path includes node z.

9 | MazosVo (Cg(gl) N Np) [Whether there is a triad including node z and two posi-
tive nodes.

10 Aveo st o O The Density of the component.

social network literature, and illustrate the potential for further composition of
useful features.

6 Discussion

We have determined the operators so that they remain simple but cover a variety
of indices. There are other features that can not be composed in our current
setting, but which are potentially composable. Examples include

— centralization: e.g., M ax,ecn o Sumo sWo C’g(goo) — Avgpeno Sumos®o C’g(goo)
— clustering coefficient: Avg,en o Avgo s o N,

both need additional operators. There are many other operators; for example,
we can define the distance of two nodes according to the probability of attracting
a random surfer. Eigenvector centrality is a difficult index to implement using
operators because it requires iterative processing (or matrix processing). We
do not argue that the operators that we define are optimal or better than any
other set of operators; we show the first attempt for composing network indices.
Elaborate analysis of possible operators is an important future task.

One future study will compare the performance with other existing algorithms
for link-based classification, i.e., approzimate collective classification algorithms
(ACCA) [15]. Our algorithm falls into a family of models proposed in Induc-
tive Logic Programming (ILP) called propositionalization and upgrade. More
detailed discussion of the relations to them is available in a longer version of the

paper.
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7 Conclusions

In this paper, we proposed an algorithm to generate various network features
that are well studied in social network analysis. We define operators to generate
the features using combinations, and show that some of which are useful for node
classification. Both the Cora dataset and @Qcosme dataset show similar trends.
We can find empirically that commonly-used indices such as centrality measures
and density are useful ones among all possible indices. The ratio of values, which
has not been well investigated in sociology studies, is also sometimes useful.

Although our analysis is preliminary, we believe that our study shows an
important bridge between the KDD research and social science research. We
hope that our study will encourage the application of KDD techniques to social
sciences, and vice versa.
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Abstract. The K-nearest neighbor (KNN) decision rule has been a
ubiquitous classification tool with good scalability. Past experience has
shown that the optimal choice of K depends upon the data, making it la-
borious to tune the parameter for different applications. We introduce a
new metric that measures the informativeness of objects to be classified.
When applied as a query-based distance metric to measure the closeness
between objects, two novel KNN procedures, Locally Informative-KNN
(LI-KNN) and Globally Informative-KNN (GI-KNN), are proposed. By
selecting a subset of most informative objects from neighborhoods, our
methods exhibit stability to the change of input parameters, number of
neighbors(K) and informative points (). Experiments on UCI bench-
mark data and diverse real-world data sets indicate that our approaches
are application-independent and can generally outperform several popu-
lar KNN extensions, as well as SVM and Boosting methods.

1 Introduction

The K-nearest neighbor (KNN) classifier has been both a workhorse and bench-
mark classifier [TI2JATTIT4]. Given a query vector xy and a set of N labeled
instances {z;,y;}1, the task of the classifier is to predict the class label of x
on the predefined P classes. The K-nearest neighbor (KNN) classification al-
gorithm tries to find the K nearest neighbors of g and uses a majority vote
to determine the class label of zy. Without prior knowledge, the KNN classifier
usually applies Euclidean distances as the distance metric. However, this simple
and easy-to-implement method can still yield competitive results even compared
to the most sophisticated machine learning methods.

The performance of a KNN classifier is primarily determined by the choice
of K as well as the distance metric applied [I0]. However, it has been shown
in [6] that when the points are not uniformly distributed, predetermining the
value of K becomes difficult. Generally, larger values of K are more immune to
the noise presented, and make boundaries more smooth between classes. As a
result, choosing the same (optimal) K becomes almost impossible for different
applications.

Since it is well known that by effectively using prior knowledge such as the
distribution of the data and feature selection, KNN classifiers can significantly

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 248 2007.
© Springer-Verlag Berlin Heidelberg 2007
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improve their performance, researchers have attempted to propose new
approaches to augmenting the performance of KNN method. e.g., Discriminant
Adaptive NN [9] (DANN), Adaptive Metric NN [6] (ADAMENN), Weight Ad-
justed KNN [8] (WAKNN), Large Margin NN [I3] (LMNN) and etc. Despite the
success and rationale of these methods, most have several constraints in prac-
tice. Such as the effort to tune numerous parameters (DANN introduces two
new parameters, K s and ¢; ADAMENN has six input parameters in total that
could potentially cause overfitting), the required knowledge in other research
fields (LMNN applies semidefinite programming for the optimization problem),
the dependency on specific applications (WAKNN is designed specifically for
text categorization) and so on. Additionally, in spite of all the aforementioned
constraints, choosing the proper value of K is still a crucial task for most KNN
extensions, making the problem further compounded.
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Fig.1. A toy classification problem. (Left) The original distribution of two classes.
(Middle) Results of & = 7 NN method where the query point is misclassified. (Right)
One of our proposed methods, (LI-KNN), chooses one informative point for prediction.

Therefore, it is desirable to augment the performance of traditional KNN
without introducing much overhead to this simple method. We propose two
KNN methods that are ubiquitous and their performances are insensitive to the
change of input parameters. Figure 1 gives an example that shows the motivation
of our approach, in which the traditional KNN method fails to predict the class
label of the query point with K = 7. One of our proposed method (LI-KNN)
takes the same value of K, finds the most informative point (I = 1) for the query
point according to the new distance metric, and makes a correct prediction.

1.1 Owur Contribution

In this paper, we propose two novel, effective yet easy-to-implement extensions
of KNN method whose performances are relatively insensitive to the change of
parameters. Both of our methods are inspired by the idea of informativeness.
Generally, a point(object) is treated to be informative if it is close to the query
point and far away from the points with different class labels. Specifically, our
paper makes the following contributions:

(1) We introduce a new concept named informativeness to measure the im-
portance of points, which can be used as a distance metric for classification. (2)
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Based on the new distance metric, we propose an efficient locally informative
KNN (LI-KNN) method. (3) By learning a weight vector from training data, we
propose our second method that finds the globally informative points for KNN
classification (GI-KNN). (4) We perform a series of experiments on real world
different data sets by comparing with several popular classifiers including KNN,
DANN, LMNN, SVM and Boosting. (5) We discuss the optimal choice of the
input parameters (K and I) for LILKNN and GI-KNN and demonstrate that our
methods are relatively insensitive to the change of parameters.

The rest of the paper is organized as follows: Section 2 presents related work
about different approaches to improve KNN pattern classification; section 3 in-
troduces the definition of informativeness and our first algorithm LI-KNN; sec-
tion 4 continues to propose the second learning method GI-KNN; we apply the
proposed methods to both synthetic and real-world data sets in section 5 for
evaluation; finally we conclude in section 6.

2 Related Work

The idea of nearest neighbor pattern classification was first introduced by Cover
and Hart in [], in which the decision rule is to assign an unclassified sample
point to the classification of the nearest of a collection of predetermined classified
points. The authors proved that when the amount of data approaches infinity,
the one nearest neighbor classification is bounded by twice the asymptotic error
rate as the Bayes rule, independent of the distance metric applied.

Hastie and Tibshirani [9] developed an adaptive method of nearest neigh-
bor classification (DANN) by using local discrimination information to esti-
mate a subspace for global dimension reduction. They estimate between (B)
and within (W) the sum-of-squares matrices, and use them as a local metric
such as Y = W~1BW L. They showed that their work can be generalized by
applying specialized distance measures for different problems.

Weinberger et al. [I3] learned a Mahanalobis distance metric for KNN clas-
sification by using semidefinite programming, a method they call large margin
nearest neighbor (LMNN) classification. Their method seeks a large margin that
separates examples from different classes, while keeping a close distance between
nearest neighbors that have the same class labels. The method is novel in the
sense that LMNN does not try to minimize the distance between all examples
that share the same labels, but only to those that are specified as target neigh-
bors. Experimental results exhibit great improvement over KNN and SVM.

By learning locally relevant features from nearest neighbors, Friedman [7]
introduced a flexible metric that performs recursively partitioning to learn local
relevances, which is defined as I?(z) = (Ef — E[f|x; = 2])?, where Ef denotes
the expected value over the joint probability density p(x) of an arbitrary function
f(x). The most informative feature is recognized as the one giving the largest
deviation from P(z|z; = z).

Han et al. [8] proposed an application of KNN classification to text cate-
gorization by using adjusted weight of neighbors (WAKNN). WAKNN tries to
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learn the best weight for vectors by measuring the cosine similarity between

documents. Specifically, the similarity function is defined as cos(X,Y, W) =
Dier (Xe X Wi ) x (Yex W)

VErer (XexWi)2 X /3, (Yex Wy)2?
weight vector and T the set of features (terms). Optimizations are also per-
formed to speed up WAKNN. The experiments on benchmark data sets indicate
that WAKNN consistently outperforms KNN, C4.5 and several other classifiers.

where X and Y are two documents, W the

3 Locally Informative KNN (LI-KNN)

Without prior knowledge, most KNN classifiers apply Euclidean distances as
the measurement of the closeness between examples. Since it has already been
shown that treating the neighbors that are of low relevance as the same impor-
tance as those of high relevance could possibly degrade the performance of KNN
procedures [7], we believe it to be beneficial to further explore the information
exhibited by neighbors. In this section, we first propose a new distance metric
that assesses the informativeness of points given a specific query point. We then
proceed to use it to augment KNN classification and advocate our first method,
LI-KNN.

3.1 Definition of Informativeness

We use the following naming conventions. ) denotes the query point, K indicates
the K nearest neighbors according to a distance metric, and I denotes most
informative points based on equation (1). For each point, x; denotes the i’s
feature vector, x;; its j’s feature and y; its class label. Let /N represent the total
number of training points, where each point has P features.

Definition 1. Specify a set of training points {z;,y;}¥ with x; € RY and y; €
{1,...m}. For each query point x;, the informativeness of each of the remaining
N-1 points {zj,y; }Y is defined as:

I(z;|Q=x;) = —log(1 — P(z;|Q = x;))*P(x;|Q = x;), j=1,..N,j#1i (1)

where P(x;|Q = x;) is the probability that point x; is informative (w.r.t. Q),
defined as:

N

1-n
P(z|lQ@==i)= Zl Pr(z;|Q=1;)" (H (1 _Pr(mj@:xn)ﬂ[yj#yn])) (2)

v n=1

The first term Pr(z;|Q = x;)" in equation (2) can be interpreted as the likelihood
that point z; is close to the ), while the second part indicates the probability
that x; far apart from dissimilar points. The indicator I[.] equals to 1 if the
condition is met and 0 otherwise. Z; is a normalization factor and 7 is introduced
as a balancing factor that determines the emphasis of the first term. Intuitively, n

. N, L
is set to ;/ , where N, represents the number of points in the same class of x;.
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Fig. 2. An illustration of 7-NN and the corresponding i informative points for the query
point. (Left) 7-NN classification and the real class boundary. (Right) (i = {1, 2, 3,4})
informative points for the same query.

The rationale of informativeness is that two points are likely to share the same
class label when their distance is sufficiently small, assuming the points have a
uniform distribution. This idea is the same as KNN classification. On the other
hand, compared to traditional KNN classifiers that measures pairwise distances
between the query point and neighbors, our metric also calculates the closeness
between neighbor points, i.e., the informative points should also have a large
distance from dissimilar points. This further guarantees that the locations of
other informative points have the same class label maximum likelihood.

Figure 2left) gives an example for clarification, in which point 1 and point
2 (with the same class label) both have the same distance d from @ but point
1 is closer to the real class boundary. Thus, point 1 is more likely to be closer
to the points in other classes. As such we claim that point 1 is less informative
than point 2 for @ by DEFINITION 1. Again, assuming the distribution over
the concept location is uniform, it is more likely that points (e.g., 3 & 4) have
the same label as points 1 & 2 and will more likely distribute around point 2
than point 1.

3.2 Informativeness Implementation

To define Pr(z;|@Q = z;) in equation (2), we can model the causal probability of
an individual point on () as a function of the distance between them:

Pr(z;|Q = i) = f(llzi — zjlp) 3)

where ||z; — ||, denotes the p-norm distance between z; and x;. To achieve
higher probability when two points are close to each other, we require f(.) to be
a function inverse to the distance between two points. The generalized Euclidean
distance metric satisfies this requirement. Thus, equation (3) can be defined as
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|| — ;]2

Pr(w;|Q = z;) =exp(=""

) 7>0 (4)

In practice, it is very likely that the features have different importance, making
it desirable to find the best weighting of the features. Specifically, we define
|z — x;]1* = 32, wp(wip — xj)?, Where wy, is a scaling that reflects the relative
importance of feature p. Although there exists numerous functions for calculating
wp, here we specify it as follows:

1 & 1 &
T m prk T m ZVarxk (Xpk) (5)
k=1 k=1

We obtain w,, by averaging over all classes’ weights w,,,, which is calculated us-
ing the variance of all points in each class k at feature p, denoted by Vary, (x,x).

The normalization factor Z; in equation (2) ensures the well-defined proba-
bilities of neighbors for a given query point x;. Specifically,

N

N
Ji = ZPI‘(JJ”Q = l‘i), Z'P(IJ‘Q = 332) =1 (6)

j=1

so that the normalization is guaranteed.
Based on the implementation, we have the following proposition:

Proposition 1. Given a specific query xo, ¥ x;, z; that satisfies ||x; —xo||? = kd
and ||z; — xol|? = d with d € R*, k> 1, I(x;|zo) < exp((1 — k)d)"Z(x;|xo).

Proof. For simplicity, we only consider the case that x; and z; are in the same
class, i.e., y; = y;. Without loss of generality, we let v = 1 for equation (4). We
have

P(2;1Q = x0) _ Pr(x;|Q = )" H ()" "

Pz:i|Q = z0)  Pr(z;|Q = xo)"H (z;)1—7
_exp(—d)"H (x;)' "

= exp(—kd)1H ()17
— exp((k - 1)d)nggi;1 . (7)

where H(x) = N: 1—-Pr(x|Q =z,)I . Since H(+) is independent of
n=1 [y#yn]

the query point, its expected value (taken over x and each z,,) can be defined as

E(H(x)) = (H (1-Pr(x Q=wn)ﬂ[y¢yn])>

n=1

N
I (B -Pr(|Q = 2n)lyry.))

n=1
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[
=

(B = exp(=lx = @nl*)lyy,1))

3
Il
-

[
=

((1 = Eexp(=lx = zal*)Iy2y.1))

3
Il
-

Recall that z; and z; are in the same class, thus the set of dissimilar points (say
{x],,y5,}1) should be the same. The above equation can then be simplified by
removing the indicator variables:

1— Eexp(—|lx - z]*)))

N
( / exp(—|x - xnn?)dx)

with N — oo, it is easy to verify that E(H(x;)) = E(H(z;)). Applying the
results to equation (7), we have

P(z;]Q = o)
P(2i|Q = o)
Applying equation (8) to equation (1), we finally have:

I(|Q = wo) _ log(1 — P(x;]Q = z0))
I(2:|Q = x9)  log(1l —P(2i|Q = x0))

= IOg(l—’P(mﬂQ:mo)) (1 —=P(x;|Q = z0)) - exp((k — 1)d)"
> exp((k — 1)d)" O

=11
-1

=exp((k—1)d)" >1 (with k> 1) (8)

exp((k — 1)d)”

3.3 LI-KNN Classification

So far we have proposed to compute the informativeness of points in the entire
data distribution for a specific Q). However, considering the high dimensionality
and large number of data points in practice, the computational cost could be
prohibitively high. We propose to make use of the new distance metric defined
in equation (1) by restricting the computation between the nearest neighbors in
an augmented query-based KNN classifier.

Algorithm 1 gives the pseudo-code of LI-KNN classification. Instead of finding
the informative points for each x; by going over the entire data set, LI-KNN
retrieves I locally informative points by first getting the K nearest neighbors
(we consider the Euclidean distance here). It then applies equation (1) to the
K local points and the majority label between the I points are assigned to ;.
Specifically, when I = 1, LI-KNN finds only the most informative point, i.e., y; =
argmaxy, re(1,..x} Z(2x|@Q = ;). In this way the computational cost of finding
the most informative points is reduced to a local computation. Noticeably, when
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Algorithm 1. LI-KNN Classification
1: Input: (S, K,T)

target matrix: S = {z;, y; ¥
number of neighbors: K € {1,..., N — 1}
number of informative points: I € {1, ..., K}

2: Initialize err < 0

3: for each query point z; (i =1 to N) do

4:  find K nearest neighbors X'x using Euclidean distance

5:  find I most informative points among K neighbors (equation (1))

6:  majority vote between the I points to determine the class label of x;
7. if x; is misclassified

8: err «— err + 1/N

9:  end if

10: end for

11: Output: err

K equals to N, the locally informative points are exactly the optimal informative
points for the entire data distribution as in DEFINITION 1. Likewise, when I
equals to K, LI-KNN performs exactly the same as KNN rule.

At the first glance, it seems that LI-KNN introduces one more parameter [ for
the KNN method. However, by carefully checking the requirement for points to
be informative, it is not hard to figure out that LI-KNN is relatively insensitive
to both K and I. (1) Regardless of the choice of K, the points that are closest
(in Euclidean distance) to @ are always selected as neighbors, which by equation
(2) have a high probability to be informative. (2) On the other hand, given a
fixed number of K, the informativeness of the local points are fixed which insures
that the most informative ones are always chosen. For example, in Figure[2(left),
point 2 & 3 are selected as the neighbors for @) with K increasing from 3 to 7.
Meanwhile, when K equals to 7 and [ ranges from 1 to 3, the informative sets
(Figure[(right)) are {2},{2, 3} and {2, 3, 1} respectively, which include the most
informative points in all cases that ensures @) is classified correctly. In practice,
cross-validation is usually used to determine the best value of K and I.

4 GI-KNN Classification

The LI-KNN algorithm classifies each individual query point by learning infor-
mative points separately, however, the informativeness of those neighbors are
then discarded without being utilized for other query points. Indeed, in most
scenarios, different queries (Q may yield different informative points. However, it
is reasonable to expect that some points are more informative than others, i.e.,
they could be informative neighbors for several different points. As a result, it
would seem reasonable to put more emphasis on those points that are globally
informative. Since it has been shown that KNN classification [I3] can be im-
proved by learning from training examples a distance metric, in this section we
enhance the power of the informativeness metric and propose a boosting-like
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iterative method, namely a globally informative KNN (GI-KNN) that aims to
learn the best weighting for points within the entire training set.

4.1 Algorithm and Analysis

The goal of GI-KNN is to obtain an optimum weight vector A from all train-
ing points. The algorithm iterates M predefined steps to get the weight vector,
which was initially set to be uniform. In each iteration, an individual point is
classified in the same way as LI-KNN by finding I informative neighbors, with
the only exception that in GI-KNN the distance metric is a weighted Euclidean
distance whose weight is determined by A (line 5 & 6 in Algorithm 2, where
D(x;,x) denotes the Euclidean distance between x; and all the remaining train-
ing points, and D 4(x;,x) is the weighted distance). We use €, € (0,1) to denote
the weighted expected weight loss of x;’s informative neighbors during step m.
The cost function C?, is a smooth function of €, which guarantees it to be in
the range of (0,1) and positively related with ¢! . Here we use tanh function as
the cost function, depicted in Figure . The weight vector A is updated in the
manner that if z; is classified incorrectly, the weights of its informative neighbors
which have different labels from z; are decreased exponentially to the value of
Ct, (line 9, e(m, xp) = CL, if y; # ye; line 13, A(zy) «— A(mp)-exp(—e(zi, x0))).
Meanwhile, the weights remain the same for neighbors in the same class with
x; even if x; is misclassified (line 9, e(x;,z) = 0 if y; = y¢). Clearly, the
greater the weight the query point is, the higher the penalty of misclassification
will be for the selected neighbors. The vector A is then normalized before the
next iteration.

Instead of rewarding those points that classify @ correctly by increasing their
weights, the weights of neighbors remain unchanged if @ is classified correctly.
This could potentially cause accumulative effects to points whose weights that
once increased will always increase in the following steps, ending up with dom-
inant large weights. As a result, we penalize those points that give the wrong
prediction and have different labels with Q. Therefore, by updating the weight
vector before the next iteration, they will be less likely to be selected as the
neighbors for the same Q.

While GI-KNN has several parallels to Boosting such as the structure of
the algorithm, GI-KNN differs from Boosting in the way weights are updated.
Specifically, Boosting assigns high weights to points that are misclassified in the
current step, so that the weak learner can attempt to fix the errors in future
iterations. In GI-KNN classification, the objective is to find globally informative
points, thus higher weights are given to the neighbors that seldom makes wrong
predictions. Notice that the weight of the query point remains unchanged at that
time, because the weight is updated for a specific point if and only if it is chosen
to be one of the informative points for Q.

Another difference from Boosting is that the objective of the Boosting train-
ing process is to find a committee of discriminant classifiers that combines the

! In practice, we did not find much difference in performance for different 7. Therefore,
we choose 7 = 1 for our implementation.
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Algorithm 2. GI-KNN Training

1: Input: (T, K, I, M)
training set: T' = {x,y} €
number of neighbors: K € {1,..., N — 1}
number of informative points: I € {1, ..., K}
number of iterations: M € R

2: Initialization: A = {1,...,1} € RV*! [the weight vector]

3: for m=1to M do

4: for each query point z; (i =1 to N) do

RNXP

5: DA(azz,x) = D(zi’x) [calculate the weighted distance]
6: N (z:) — 1 most informative points accordmg to Da(xs,x)
7 b= A(3:) - BalNm(@2)] = Alws) - 57, AW (0))
S: C’fn = L1+ tanh(t * (e, — 3)))
Cr if yi # ye;

e(xi, xe) = {O if i = e,
10: if point z; is classified incorrectly [update the neighbors’ weights]
11: erTm < erty + 1
12: for each x¢ (£ € Nin(x:)) do
13: A(zmg) «— A(xy) - exp(—e(ws, z¢))
14: end for
15: renormalizes A so that Y1V | A(i) = N
16: end for
17: Em — errym — errm—1
18: end for

19: Output: the weight vector A

weak learners, while GI-KNN tries to learn a query-based distance metric by
focusing on finding the best weight vector for each training instance so that the
misclassification rate of training examples could be minimized.

4.2 Learning the Weight Vector

At completion, the learned vector A can be used along with Lo distance metric
for KNN classification at each testing point tg. Specifically, given the training set
T = {x;,y;}¥, the distance between to and each training point z; is defined as

V(b0 —zi)T (to — z4)
a =

D(to, z;) = A

(9)

By adding weights to data points, GI-KNN in essence is similar in effect to
learning a Mahalanobis distance metric D(z;,x;) for k-nearest neighbor classi-
fication. i.e., D(z;,2;) = Da(zi,2;) = ||lzi — zjlla = /(xi — 2;)T A(z; — x5),
where A determines the similarity between features. In our case, A measures the
importance of each training point rather than their features.
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Fig. 3. Cost function (C) used for GI-KNN

In practice, we make two modifications to Algorithm 2 to reduce the computa-
tional cost. First, the Ly distances between all training points are computed and
stored (say in matrix D) at the beginning of the program. Then, instead of updat-
ing D real-time for each query point (line 5 in Algorithm 2), we do it after each
external iteration. In another words, for each point, we update the weight vector
if necessary, but use the same A for all points in the same iteration. After each
round, D is updated with the new weight vector. Similarly, rather than normaliz-
ing A after each classification of @ (line 15 in Algorithm 2), the normalization is
performed only after each external iteration. We discover that empirically these
two modifications do not degrade the performance in most scenarios.

4.3 Complexity of GI-KNN Training

The major overhead of GI-KNN training phase is the time needed to find the
informative neighbors for each point (line 5 of Algorithm 2). Specifically, N, ()
keeps the indices of informative neighbors for point x;, whose length is controlled
by the input parameter I. Given K and I, the effort to find the nearest neighbors
is bounded by O(K P), where P denotes dimension of the input data. Calculating
and ranking the informativeness of K nearest neighbors involves computing the
pairwise distances between them and thus costs O(K?P) time to train. Thus the
total time is bounded by O(K P)+O(K?P) = O(K?P) for each point. Therefore,
the training process requires approximately O(K2PMN) time for N training
examples and M iterations. Remember that the traditional KNN classification
costs O(K PN) for the same setting, while LILKNN requires O(K2?PN). When
the K is not very large, the computational complexity is nearly the same for
KNN and LI-KNN, both of which are equal to one iteration time for GI-KINN.

5 Experiments

In this section, we present experimental results with benchmark and real-world
data that demonstrate the different merits of LI-KNN and GI-KNN. LI-KNN
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and GI-KNN are first rigorously tested by several standard UCI data sets. Then
our proposed methods are applied to text categorization using the real-world
data from CiteSeer Digital Libraryﬁ. Finally, we investigate their performance
on images by applying to image categorization on the COIL-2(A bench-marked
data sets.

For performance evaluation, several classifiers are used for comparison. The
classic KNN [4] classifier is used as the baseline algorithm. We implemented
DANN [J] as an extension of KNNI. To be more convincing, we also compare
with one of the newest KNN extensions — Large Margin Nearest Neighbor Clas-
sification (LMNNE. Two discriminant classifiers are also compared: a Support
Vector Machine (SVM) and a Boosting classifier. We use the AdaBoost.MH
[17] and the Multi-class SVM [5] software (K.Crammer et alll) for multi-class
classification.

5.1 UCI Benchmark Corpus

We evaluate our algorithms by using 10 representative data sets from UCI Ma-
chine Learning Repositoryﬂ. The size of the data sets ranges from 150 to 20,000
with dimensionality between 4 and 649, including both two classes and multi-
class data (C' = 3,26 etc). For evaluation, the data sets are split into training
sets and testing sets with a fixed proportion of 4:1. Table [Il reports the best
testing error rates for these methods, averaged over ten runs. Our methods on
these data sets exhibit competitive results in most scenarios.

Figure Ml(a) shows the stability of LI-LKNN on the testing errors rates of the
Iris data set. KNN always incurs higher error rates than our algorithms. The
performance of LI-KNN is depicted for four different values of I. It is obvious
that even with different values of I (given the same K'), the results are similar,
indicating that the performance of LI-KNN does not degrade when the number
of informative points changes. In addition, with the change of K, LI-KNN is
relatively stable regarding the error rate. The variation of LI-KNN is roughly
3%, meaning that K does not have a large impact on the results of LI-KNN.

Figure @lb) compares Boosting and GI-KNN on the Breast Cancer data for
the first 1,000 iterations. Overall, GI-KNN incurs lower error rates. From 620
to about 780 iterations GI-KNN’s error rates are slightly higher than Boost-
ing. However, the error rates of Boosting fluctuate quite a bit from 0.048 to
0.153, while GI-KNN is relatively stable and the performance varies only between
(0.043, 0.058). Moreover, our algorithm obtains the optimal results significantly
earlier.

2 http://citeseer.ist.psu.edu

3 http://wwwl.cs.columbia.edu/CAVE /software/softlib /coil-20.php

* During the experiment, we set Ky = maxz(N/5,50) and ¢ = 1 according to the
original paper.

® The code is available at http://www.seas.upenn.edu/~kilianw/lmnn/

5 See http://www.cis.upenn.edu/~crammer /code-index.html

" http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 1. Testing error rates for KNN, DANN, LMNN, SVM, Boosting, LI-KNN and
GI-KNN of 10 UCI Benchmark data sets. N, D and C' denote the number of instances,
dimensionality and number of classes respectively. Numbers in the parentheses indicate
the optimal neighbors K for KNN, DANN and LMNN, (K, I) for LI-KNN, and number
of iterations M for GI-KNN and Boosting.

Data Sets N D C KNN DANN LMNN LI-KNN GI-KNN SVM Boosting

Tris 150 4 3 0.044 (9) 0.040 (5) 0.053 (3) 0.013 (9,5) 0.010 (25) 0.042 0.038 (45)

Wine 178 13 3 0.263 (3) 0.250 (7) 0.031 (5) 0.137 (15, 1) 0.137 (13) 0.205 0.192 (135)
Glass 214 10 2 0.372(5) 0.436 (5) 0.356 (3) 0.178 (7,3) 0.198 (202) 0.222 0.178 (304)
Tonosphere 351 34 2 0.153 (5) 0.175 (7) 0.100 (5) 0.127 (5, 3) 0.127 (8)  0.090 0.092 (156)
Breast 699 9 2 0.185 (7) 0.120 (11) 0.927 (5) 0.080 (4, 1) 0.045 (48) 0.052 0.048 (657)
Heart 779 14 5 0.102 (3) 0.117 (5) 0.092 (5) 0.078 (7, 1) 0.078 (192) 0.078 0.080 (314)
Digit 2000 649 10 0.013 (3) 0.010 (3) 0.009 (3) 0.005 (19, 1) 0.005 (137) 0.010 0.005 (175)
Tsolet 7797 617 26 0.078 (11) 0.082 (11) 0.053 (5) 0.048 (13, 3) 0.042 (175) 0.044 0.042 (499)
Pendigits 10992 16 10 0.027 (3) 0.021 (5) 0.020 (3) 0.020 (9, 1) 0.020 (42) 0.033 0.038 (482)
Letter 2000016 10 0.050 (5) 0.045 (3) 0.042 (5) 0.045 (5,3) 0.040 (22) 0.028 0.031 (562)
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Fig. 4. (a) Results on Iris for K from 1 to 100. LI-KNN chooses the number of infor-
mative points (I) to be 1, 3, 5 and 7. (b) Results on Breast Cancer for AdaBoost.MH
and GI-KNN (with K = 5 and I = 1). The best result for GI-KNN is slightly better
(0.045) than that of AdaBoost.MH (0.048).

5.2 Application to Text Categorization

For text categorization experiments we use the CiteSeer data set consisting of
nearly 750,000 documents primarily in the domain of computer science. Several
types of data formats are indexed concurrently (tzt, pdf, ps, compressed files,
ete.). For the purpose of text categorization, we only make use of plain text files.
For convenience, the metadata of the documents, i.e., the titles, abstracts and
keyword fields are used in our experiments.

Document class labels are obtained from the venue impact pagcﬁ which lists
1,221 major venues whose titles are named according to the DBLPH format. We
make use of the top 200 publication venues listed in DBLP in terms of impact

8 http://citeseer.ist.psu.edu/impact.html
9 http://dblp.uni-trier.de/
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Fig. 5. (a) Box plots of macro-F error rates (100% minus Macro-F scores) on CiteSeer
data set summarizes the average F scores on 193 classes. Our algorithms have very low
error rates on average, with very small deviations. Plus(+) signs indicate the outliers.
(b) Classification Accuracies on CiteSeer data set for KNN, LI-KNN and GI-KNN with
different number of neighbors (K = {1, ...,50}). Our algorithms generally demonstrate
more stable results and higher accuracies.

rates, each of which was referred as a class label. Furthermore, we intentionally
filtered those classes that contain too few examples (i.e., less than 100 doc-
uments). Overall, the total number of documents used for the experiments is
118,058, which are divided into a training set and testing set by 10-fold cross-
validation. Meanwhile, we keep the imbalance of the classes, i.e., some classes
have more training examples than others. Documents are treated as bag-of-words
and tf-idf weights of terms are used to generate the feature space.

Figure[Bla) shows the box plots macro-F error rates. The optimal parameters
(e.g., the number of iterations M and so on) are estimated by 10-fold cross-
validation on the training set. It is evident that the spread of the error distri-
bution for our algorithms are very close to zero, which clearly indicates that
LI-KNN and GI-KNN obtain robust performance over different classes. Mean-
while, our algorithms incur lower error rates even for small classes, making them
potentially good choices for imbalanced data set classification.

We further show the stability of our algorithms by box plots of the classifica-
tion accuracies for different number of neighbors. Figure Bl(b) depicts the results
of KNN, DANN and our algorithms for K from 1 to 50 with a fixed number of
I =1 (i.e., only the most informative neighbor). The mean accuracies are higher
for LI-KNN and GI-KNN than KNN, and the variations are almost half as that
of KNN and DANN.

5.3 Object Recognition on COIL-20

We use the processed version of COIL-20 database for object recognition. The
database is made up with 20 gray-scale objects, each of which consists 72 images
with size 128 x 128. Figure[dl(a) shows a sample image of each of the 20 objects.
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Fig. 6. (a) Randomly generated images from each object in the COIL-20 database.
(b) Results on COIL-20 with different number of neighbors.

We treat each object as one class, spliting the data into training and testing set
with the proportion of 3:1. Figure [B(b) shows the classification errors regarding
the 5 algorithms, where K ranges from 1 to 11. GI-KNN and LI-KNN generally
outperform others with the best parameters, while both show stable results with
the change of K.

5.4 Discussion

Our I-KNN procedures introduce two adjustable tuning parameters K and I, it is
then desirable to automate the choice of them. Theoretically we did not prove the
optimal choices for either K or I, however, empirical studies with different ranges
of values on several data sets allow us to draw a rough conclusion. Basically, the
value of K should be reasonably big. The bigger K is, the more information can
be gathered to estimate the distribution of neighborhood for the query point.
However, with the increase of K, the effort to compute the informativeness of
neighbors (equation (2)) grows exponentially as well. In practice, we figured out
that K € (7,19) could be a good trade-off regardless of data size. Meanwhile, a
smaller [ is preferable to give the best predictions. Experimental results indicate
that I = 1 and 3 usually achieve the best results, and the performance generally
degrades with the increase of I. There is potentially another parameter to tune,
i.e., n in equation (2), to balance the contribution of the first term. However, we
only use n = "’ here.

We have observed that most influential on the running time on both algo-
rithms is the computation cost of the informativeness metric, of which the nor-
malization factor (equation (2) and (6)) takes most of the time. To further
improve the performance, we remove the normalization part in our experiments,
i.e., equation (2) and (6). This significantly reduced the complexity of our model
and did not jeopardize the performance very much.

Regarding the choice of the cost function C¥, for GI-KNN training (line 8 in
Algorithm 2), since GI-KNN has a different objective (to find the best weight
vector) than boosting and other machine learning algorithms (to minimize a
smooth convex surrogate of the 0-1 loss function), we did not compare the
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performance between different loss functions like exponential loss, hinge loss
and so on. Since we believe that the performance change will not be significant
by exhaustively searching for the best loss function. The choice of different loss
functions has already been extensively studied, interested readers can refer to
[3] for details.

6 Conclusion and Future Work

This paper presented two approaches namely LI-KNN and GI-KNN to extending
KNN method with the goal of improving classification performance. Informative-
ness was introduced as a new concept that is useful as a query-based distance
metric. LI-KNN applied this to select the most informative points and predict
the label of a query point based on the most numerous class with the neigh-
bors; GI-KNN found the globally informative points by learning a weight vector
from the training points. Rigorous experiments were done to compare the per-
formance between our methods and KNN, DANN, LMNN, SVM and Boosting.
The results indicated that our approaches were less sensitive to the change of pa-
rameters than KNN and DANN, meanwhile yielded comparable results to SVM
and Boosting. Classification performance on UCI benchmark corpus, CiteSeer
text data, and images suggests that our algorithms were application-independent
and could possibly be improved and extended to diverse machine learning areas.

Questions regarding the GI-KNN algorithm are still open for discussion. Can
we possibly prove the convergence of GI-KNN, or is there an upper-bound for
this algorithm given specific K and I7 More practically, is it possible to stop
earlier when the optimum results are achieved? As a boosting-like algorithm,
can we replace the 0-1 loss function with a smooth convex cost function to
improve the performance? Furthermore, it will be interesting to see whether the
informativeness metric can be applied to semi-supervised learning or noisy data
sets.
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Abstract. The volume and complexity of data collected by modern ap-
plications has grown significantly, leading to increasingly costly opera-
tions for both data manipulation and analysis. Sampling is an useful
technique to support manager a more sensible volume in the data reduc-
tion process. Uniform sampling has been widely used but, in datasets
exhibiting skewed cluster distribution, biased sampling shows better re-
sults. This paper presents the BBS - Biased Box Sampling algorithm
which aims at keeping the skewed tendency of the clusters from the
original data. We also present experimental results obtained with the
proposed BBS algorithm.

1 Introduction

Data reduction and sampling techniques have been employed to speed up data
mining algorithms, and the more representative a dataset sample, the better the
results obtained. Many of the data reduction techniques for multi-dimensional
data rely on uniform sampling. However, several tasks have to deal with non-
uniform data distribution, in particular clustering activities when the original
clusters have distinct properties among themselves, such as the number of el-
ements and/or the density. In such cases, density-biased sampling can provide
better results, as the probability of a point to be added to the sample depends
on the local density of its neighborhood.

Figure [Mlshows nine clusters over uniform noise (fifteen percent), one contain-
ing 50,000 points and the others containing 1000 points. Extracting a 1% uniform
sampling will produce a sample dataset containing one cluster with roughly five
hundred points, and eight containg around ten points each as well as some noise.
Since the number of clusters will be discovered only after the clustering has been
finished, this information is not available to the sampling process. Therefore, in
this example the clustering algorithm will not be able to spot the small cluster.
The problem here is that when the representation of a cluster in the dataset is
significantly lower than those of the other clusters, the clustering algorithm may
miss the small clusters, mixing it with noise. Therefore, the question posed is:

* The authors thank CNPq, Capes and FAPESP for the financial support.
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“How to sample a multi-dimensional dataset without missing the clusters, even
if they are unbalanced (that is, their number of points are quite different) and
without any previous knowledge about the clusters?”.

Fig. 1. A 20-dimensional dataset comprising 1 cluster with 50,000 points, 8 with 1000
points and 15% of noise

The problem of uniform sampling over skewed data was first treated in [I]. The
authors divided the space into equal-sized cells, storing the points in a set of hash
table. Thereafter, the cells with few points are oversampled and the cells with
many points are under sampled. In [2], the hash table is substituted by uniform
sampling to avoid collision problems. Another density-biased sampling technique
was proposed in [3], which samples points according to the local density near
each point. The authors use kernel-density based methods to estimate the local
density. However, these functions cause a significant time overhead. All of the
previously discussed techniques are sensitive to noise and dimensionality. In [4]
a density-biased sampling method based on R-Trees that can do sampling in
noisy datasets is presented. However, due to the R-Tree shortcomings for high-
dimensional data, the authors advised that the technique aimed at sampling
data in a Database Management System (DBMS) indexed by a spacial index,
and it is also sensitive to the data dimensionality.

We present a new technique for sampling based on local density. It is less
sensitive to noise and high dimensionality problems than the most of existing
techniques. We also presents the BBS - Biased Box Sampling algorithm [5],
that implements our technique with linear cost O(N - E) on the number N of
dataset points and on the number of attributes F, and can also be integrated
into a DBMS. The experimental results show that, even at a lower sampling
rate, it can generate samples that allow clustering processes to find clusters more
accurately. The remainder of the paper is organized as follows. Section[2 discusses
the technique and the algorithm developed. Section [3 discusses experimental
studies. Section H] concludes the paper.

2 Biased-Box Sampling

This section details our main contribution: a technique to sample multi-
dimensional datasets to reduce the amount of data to be submitted to clustering
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processes based on a multi-resolution mapping of the data space, aiming at re-
ducing the computational cost of such processes. We also present the BBS algo-
rithm (Biased Box Sampling) based on this technique, which enables clustering
processes to find clusters retaining their accuracy even at very low sampling rates.

The main idea of the proposed technique is to divide the data space into 2
regions, so that each attribute splits the space by half, and counting the number
of points of the dataset that lies at each region. Each region holding more than a
given threshold ¢ of points is recursively divided, generating a “hyper-quad tree”
like structure, the compact multi-resolution grid tree - MGc-tree. Whenever a
region does not hold the given threshold, it is represented in a leaf node and its
points are sampled. The leafs can be at different levels, reflecting the density of
the space at each region, so performing the sampling at a constant rate at every
leaf will in fact retrieve more points from less dense regions, reflecting accurately
the density variation over the full data space.

The BBS algorithm has three parts. The first one creates the multi-level grid,
implemented as a tree. It is similar to the LiBOC algorithm [6], the main modi-
fication being the need to store the points at each leaf node. As this new require-
ment has a computational cost constant for each point, this step has the same
complexity as LiBOC, which is O(N - E). The resulting structure is a tree (the
MG-tree) where each non-leaf node stores a counter of the number of points lying
on its corresponding region, an identification of the region, and from zero up to
2F pointers to the next higher-resolution regions that divide the current one. A
leaf node only stores the pointers for the data points lying on the correspond-
ing region. Notice that at this step, the tree has every leaf node at the highest
resolution R — 1. The value R defines the maximum number of resolutions the
algorithm must try to obtain a good sample. Its minimum is bounded by how
good the sampling must be, and its maximum is bounded by the highest density
of the sampled dataset. If R is set too high, the algorithm will require more
memory to operate (as the complexity of the memory required by the algorithm
is O(N - E- R)), but after a threshold it will not improve the sampling anymore.
Experimentally we observed that R = 5 is suitable for all the datasets evaluated.
The first part of BBS is shown as Algorithm [Il

The second part of the BBS algorithm aims at reducing the deep of the multi-
resolution grid tree at the less dense regions, transforming the M G-tree generated
by Algorithm [ into a condensed MGc-tree. This part, shown as Algorithm [2]
looks for cells in the tree where the number of points is lower than the threshold
6. When such cells are found, the index lists from the children cells are concate-
nated, transforming their parent into a leaf-node. Thus, the resulting condensed
MGc-tree has leaf nodes of approximately the same number of points.

The threshold § is set § = FE % 100/(2 * Ratio), and is evaluated in Step 5 of
Algorithm Bl The concatenation of points in Step 7 generates varying number
of elements at each leaf node. To assure none of them are under-represented we
double 6 (using 2 * Ratio). The next step is to perform the sampling. The third
(and last) part of the BBS algorithm effectively performs the multi-resolution
sampling. It retrieves each leaf node of the MGec-tree and the difference between
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the level of the node and the maximum level of the tree is used to increase the
number of points selected, performing another over sampling in lower resolution
regions (Step 7 of Algorithm [). Step 8 uses the concatenated list to choose
points for the sample.

The complete BBS algorithm shown as Algorithm [l just calls the three parts.
It receives the set of points to be sampled and creates an array indexing the
sampled points of the original dataset (Step 4). The é employed in Algorithm
and Step 7 of Algorithm [B] contributes to enlarge the number of points in the
sample. Therefore, Step 4 of Algorithm [4] generates the final sample, randomly
dropping the points selected until the desired number is achieved.

Algorithm 1. Biased Box Sampling: Create Tree - BBSCT

Input: Dataset with N points with the E attributes, number of levels R
Output: Multi-resolution grid Tree - M G-tree
1: Normalize the dataset points to a unit cube;
2: for each point t in dataset do
forr=1/27, 7=1,2,3,.., R—1do
select the cell in the next level where t lies as 1;
Increment the counter Cj ,;
if level = R — 1 then
insert point ¢ in the index list of cell ;

Algorithm 2. Biased Box Sampling: Join List - BBSJL

Input: MG-tree and sample ratio Ratio
Output: Grid structure Concatenated - M Ge-tree
1: § = E %100/(2 * Ratio)
2: while Cell # NULL do
if Next Level Cell # NULL then
4 if Actual Level < R then
5: Call BBSJL(ActualLevel + 1, Ratio);
6: else if C,.; < § then
7
8

Concatenate sibling cells index lists and make parent a leaf node;
Cell receives next level cell;

Algorithm 3. Biased Box Sampling: Extract Sample - BBSES

Input: Concatenated Grid structure - MGc — tree and sample ratio Ratio
Output: vector with indexes of sampling points
1: while Cell # NULL do
if Next Level Cell # NULL and First = NULL then

Call BBSES(Actual Level + 1, Ratio)
else if First # NULL then

samplesize = Ratio x Cy. ; /100;

if Actual Level — R # 0 then

samplesize = samplesize * 2 x (R — Actual Level);

Selected a point in the index list and insert it into the result;

Cell receives next cell;

Algorithm 4. Biased Box Sampling

Input: Dataset with N points, E attributes, number of levels R and sample ratio Ratio
Output: Dataset with the selected points

1: Call BBSCT(Dataset, R)

. Call BBSJL(MG — tree, Ratio)

. Call BBSES(MGc — tree, Ratio)

: uniformly selected N * Ratio/100 points from the sample obtained by BBSES()

= GO
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3 Experimental Results

In this section we discuss the results of experiments performed using the sampling
algorithm BBS on two synthetic and one real datasets. The “OneBig” dataset has
twenty attributes and nine clusters, one containing fifty thousand points and the
others containing one thousand points each. The remaining ten thousand points
are randomly distributed noise (fifteen percent). The “UniformClusters” has two
attributes and five clusters forming one big circle, two small ones, two ellipsoids
connected by a chain of outliers and random outliers scattered over the entire
space, as described in [3]. “UniformClusters” and “OneBig” present, respectively,
uniform and Gaussian intra-cluster distribution. The third dataset is the real
world dataset “Pendigits” Ll with sixteen attributes and ten thousand and nine
hundred ninety two points.

The same experimental methodology was applied to every dataset. In the
first step, we ran the BBS algorithm, and for comparison purposes, we also ran
the DBS sampling algorithm presented in [3], the GBS presented in ﬂIIE and the
Uniform Sample (US) algorithm, generating four sample sets for several sampling
rates of each dataset. In the second step, we evaluated the quality of the samples
regarding the preservation of original properties of the full dataset regarding
cluster distribution. Every experiment was repeated 10 times, so 10 samples
were created with the same parameters. The values presented are the averages of
processing each set of 10 samples. We tuned the parameters of DBS according to
the indications in [3]. The parameter a was set as follows: for datasets containing
noise and clusters with various densities (including small clusters) a was set to
—0.25. The other parameter is the number of kernels for DBS, set to 1000. In
the GBS algorithm the only parameter is e, set to 0.5 as indicated in [IJ.

We applied the well-known clustering algorithm DBSCAN [7] to evaluate the
precision of our techniques, over the original datasets and their corresponding
samples. DBSCAN is based on local density to discover clusters, and it can detect
noise as well. We used the WEKAR implementation of DBSCAN, which requires
the following parameters: the minimum number n of points that a cluster should
have, and the radius e that defines the maximum distance to determine if two
points are neighbors or not. The value of n was set as a proportion of the size
of the smallest cluster in the dataset. The radius e was experimentally set to
0.2 for every sample size for the “OneBig” and “UniformClusters” datasets, and
between 0.4 and 0.5 for the “Pendigits” dataset.

FigurePlshows a visualization of the “UniformClusters” dataset, both complete
(Figure 2(a)) and sampled at a 0.5 percent rate by each algorithm (Figure 2(b):
BBS,2l(c): DBS,2(d): GBS and[2(e): US). As we can see, the samples are different
but every one allowed DBSCAN to find four clusters. However, visually we can
also see that the sample generated with BBS resembles more closely the original

! UCT http://www.ics.uci.edu//mlearn /MLSummary.html

2 We would like to thank also Chris Palmer for putting his biased sampling generator
on the Web and Alexandros Nanopoulos for send to us his implementation of DBS.

3 http://www.cs.waikato.ac.nz/ml/weka/
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one data. DBSCAN found four clusters in every sample of “UniformClusters”; in
spite of the five original clusters, due to the chain of outliers between two of the
clusters, which was preserved by all sampling methods.

Fig. 2. Visualization of the “UniformClusters”. (a) Original dataset, and samples from:
(b) BBS, (c) DBS, (d) GBS; (e) US.

As the intra-cluster distribution of datasets “OneBig”(Figure[ll) and “Uniform-
Clusters” (Figure ) are distinct, the experiments with “OneBig” led to distinct
results. Table [Il shows that the number of clusters found by DBSCAN varies
for samples from “OneBig” generated by distinct algorithms. In particular, the
DBSCAN was able to find the 9 clusters from the samples generated by BBS,
even at a sampling rate as low as 0.5%. All the competing algorithms, on the
contrary, were significantly affected by noise and dataset distribution. The DBS
in special was strongly affected by the data distribution, and its samples allowed
DBSCAN to find just one cluster at any sampling rate. The GBS algorithm is
affected by noise and high dimensionality. The US algorithm is also affected by
the noise.

Table Bl presents the average amount of noise (in number of points) identified
by DBSCAN in samples from “OneBig”. As we can see, BBS can filter the noise
better than the competing algorithms. Table [ presents the average error rates
produced by DBSCAN when evaluating each sample. The error rates were mea-
sured using a class attribute (not submitted to the sampling algorithms nor to
DBSCAN), which specifies either the class of the point or whether it is noise.
As it can be noted, almost all error rates obtained by DBS is very low. How-
ever, looking at Tables [Tl B and [ we observe why DBS found just one cluster:
DBSCAN correctly classified almost every point, but DBSCAN also found that
every point in the DBS samples were from only one cluster, that is, DBS sam-
pled points almost only from the big cluster. The GBS and US algorithms led
to bigger error rates than DBS, they allowed finding more clusters than DBS.
US and GBS algorithms retrieve points from all clusters in every sample, but
several of the sampled clusters do not have enough points to allow DBSCAN to
find them. In contrast, samples from BBS allowed DBSCAN to find every cluster
in every sample, even at the lowest sampling rate, and always with the lowest
error rate.

The last experiment was carried out on “Pendigits” a well-known dataset that
illustrates the efficiency of BBS over real data. We applied a different experi-
mental methodology for this dataset, as its number of clusters was not known



372 A.P. Appel et al.

Table 1. Number of Clusters Found in the Table 2. Number of Clusters

“OneBig” dataset Found in the “Pendigits” dataset
Sample Size (%) Sample Size (%)
Algorithm 0.5% 1% 1.5% 2% 3% 4% Algorithm 3% 4% 5% 10%
BBS 9 9 9 9 9 9 BBS 7T 7 8
DBS 1 1 1 1 1 1 DBS 5 5 6 6
GBS 6 6 7 7 8 7 GBS 3 4 7 6
UsSs 5 7 7 6 8 5 Random 2 3 6 2

Table 3. Average noise in the “OneBig” Table 4. Average Error Percentage in

dataset (number of misclassified points) samples of the “OneBig” dataset
Sample Size (%) Sample Size (%)
Algorithm 0.5% 1% 1.5% 2% 3% 4% Algorithm 0.5% 1% 1.5% 2% 3% 4%
BBS 3 9 23 50 92 176 BBS 0.3 0 021008 0 0
DBS 193 292 4 6 10 7 DBS 5 43 0.38 0.43 0.48 0.26
GBS 52 113 194 257 367 479 GBS 32429 1.8 205 1.1 2.2
USs 70 113 179 241 320 584 USs 59 1.6 24 23 1.2 44

beforehand. We applied DBSCAN to the original data, setting the minimum
number of points (n) in a cluster as ten percent of the dataset. For e, several val-
ues were also evaluated, but DBSCAN was able to find a maximum of 8 clusters
in the original dataset only when setting e = 0.4, so this is the value employed in
the experiments. The results from the experiments are shown in Table 2], where
we can notice that BBS allowed the best clustering accuracy. Although BBS
required a sampling rate of 10% to allow DBSCAN to find 8 clusters, the other
algorithms did not allow finding more than 7 clusters at any sampling rate.

As expected, almost every sampling algorithms generated the samples sets
in low computational time in. Only the DBS took ~ 15 minutes while every
other algorithm took less than 8 seconds to generate a sample. On the other
hand, DBSCAN spent 3 hours to process “UniformClusters”, 11 hours to process
“OneBig” and 18 minutes to process “Pendigits”.

The experiments show that BBS is efficient for biased sampling. Furthermore,
BBS is tougher to withstand high-dimensionality drawbacks and noise in the
datasets than the other techniques. This fact supports us to conclude that the
proposed sampling approach is efficient and effective to speed up clustering al-
gorithms, yet having a small impact on their precision.

4 Conclusions

This paper presents a new technique and a corresponding algorithm, the BBS
- Biased Box Sampling, to perform sampling based on local density. The
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technique is based on a multi-dimensional multi-resolution grid structure whose
depth depends on the local density of the points in the corresponding region.
Therefore, even at low sampling rate, the points are selected such that the rep-
resentativeness of each cluster occurring in the original dataset is preserved.
Moreover, BBS is tougher to withstand high-dimensionality drawbacks and it is
less sensitive to noise in the datasets than the competing techniques.

The dataset must be read only twice: one when preparing the grid structure,
and thereafter to retrieve the points chosen to be in the sample. In fact, the
whole process is linear on both the number of points N and on the number E of
attributes in the original dataset. Therefore, the proposed technique can handle
dimensionality higher than the other methods. We performed extensive experi-
ments on both synthetic and real-world datasets. They highlighted the fact that
the BBS algorithm is a very efficient technique to select samples for clustering
algorithms with very little impact on their precision, always outperforming the
existing techniques, particularly at very low sampling rate.
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Abstract. Sensors distributed all around electrical-power distribution
networks produce streams of data at high-speed. From a data mining per-
spective, this sensor network problem is characterized by a large number
of variables (sensors), producing a continuous flow of data, in a dynamic
non-stationary environment. Companies make decisions to buy or sell
energy based on load profiles and forecast. We propose an architecture
based on an online clustering algorithm where each cluster (group of
sensors with high correlation) contains a neural-network based predic-
tive model. The goal is to maintain in real-time a clustering model and a
predictive model able to incorporate new information at the speed data
arrives, detecting changes and adapting the decision models to the most
recent information. We present results illustrating the advantages of the
proposed architecture, on several temporal horizons, and its competitive-
ness with another predictive strategy.

1 DMotivation

Electricity distribution companies usually set their management operators on
SCADA /DMS products (Supervisory Control and Data Acquisition / Distribu-
tion Management Systems). Load forecast is a relevant auxiliary tool for oper-
ational management of an electricity distribution network, since it enables the
identification of critical points in load evolution, allowing necessary corrections
within available time. In SCADA/DMS systems, the load forecast functional-
ity has to estimate, for different horizons, certain types of measures which are
representative of system’s load: active power, reactive power and current inten-
sity. Given its practical application and strong financial implications, electricity
load forecast has been targeted by innumerous works, mainly relying on the non-
linearity and generalizing capacities of neural networks (ANN), which combine a
cyclic factor and an auto-regressive one to achieve good results [4]. Nevertheless,
static iteration-based training, usually applied to train ANN, is not adequate for
high speed data streams. On current real applications, data is being produced
in a continuous flow at high speed. In this context, faster answers are usually
required, keeping an anytime model of the data, enabling better decisions. More-
over, a predictive system may be developed to serve a set of thousands of load
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sensors, but the load demand values tend to follow a restricted number of pro-
files, considerably smaller than the total set of sensors. Clustering of sensors
greatly allows the reduction of necessary predictive models. However, most work
in data stream clustering has been concentrated on example clustering and less
on variable clustering [7].

The paper is organized as follows. In the next section we present the general
architecture of the system, main goals and preprocessing problems with sensors
data, the clustering module, and the incremental predictive models. Section
presents the evaluation methodology and preliminary results using real data from
an electricity network. Last section resumes the lessons learned and future work.

2 General Description

The main objective of this work is to present an incremental system to continu-
ously predict in real time the electricity load demand, in huge sensor networks.
The system must predict the value of each individual sensor with a given tem-
poral horizon, that is, if at moment ¢ we receive an observation of all network
sensors, the system must execute a prediction for the value of each variable (sen-
sor) for the moment ¢ + k. In this scenario, each variable is a time series and
each new example included in the system is the value of one observation of all
time series for a given moment. Our approach is to first cluster the sensors using
an online data stream sensor clustering algorithm, and then associate to each
cluster a ANN trained incrementally with the centroid of the cluster. Overall,
the system predicts all variables in real time, with incremental training of ANN
and continuous monitoring of the clustering structure.

Pre-processing Data. The electrical network spreads out geographically. Sen-
sors send information at different time scales and formats: some sensors send
information every minute, others send information each hour, etc.; some send
the absolute value of the variable periodically, while others only send informa-
tion when there is a change in the value of the variable. Sensors act in adversary
weather and battery conditions. The available information is noisy. To reduce
the impact of noise, missing values, and different granularity, data is aggregated
and synchronized in time windows of 15 minutes. This is done in a server, in a
pre-processing stage, and was motivated by the fact that it allows to instantiate
sensor values for around 80% of the sensors. Data comes in the form of tuples:
< date, time, sensor, measure,value >. All pre-processing stages (agglomera-
tion and synchronization) require one single scan over the incoming data.

Incremental Clustering of Data Streams. Data streams usually consist of
variables producing examples continuously over time at high-speed. The basic
idea behind clustering time series is to find groups of variables that behave
similarly through time. Applying variable clustering to data streams, requires
to incrementally compute dissimilarities. The goal of an incremental clustering
system for streaming time series is to find (and make available at any time ¢)
a partition of the streams, where streams in the same cluster tend to be more
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alike than streams in different clusters. In electrical networks there are clear
clusters of demands (like sensors placed near towns or in countryside) which
evolve smoothly over time. We believe that a top-down hierarchical approach to
the clustering problem is the most appropriate as we do not need to define a
priori the number of clusters and allow an analysis at different granularity levels.

The system uses the ODAC clustering algorithm which includes an incremen-
tal dissimilarity measure based on the correlation between time series, calculated
with sufficient statistics gathered continuously over time. There are two main op-
erations in the hierarchical structure of clusters: expansion that splits one cluster
into two new clusters; and aggregation that aggregates two clusters. Both opera-
tors are based on the diameters of the clusters, and supported by confidence levels
given by the Hoeffding bounds. The main characteristic of the system is the mon-
itoring of those diameters. In ODAC, the dissimilarity between variables a and
b is measured by an appropriate metric, the rnome(a,b) = \/ (1 = corr(a,b))/2,
where corr(a, b) is the Pearson’s correlation coefficient. More details can be found
in [7]. For each cluster, the system chooses two variables that define the diameter
of that cluster (those that are less correlated). If a given heuristic condition is
met on this diameter, the system splits the cluster in two, assigning each of those
variables to one of the two new clusters. Afterwards, the remaining variables are
assigned to the cluster that has the closest pivot (first assigned variables). The
newly created leaves start new statistics, assuming that only the future informa-
tion will be useful to decide if the cluster should be split.

A requirement to process data streams is change detection. In electrical net-
works and for long term conditions, the correlation structure evolves smoothly.
The clustering structure must adapt to this type of changes. In a hierarchical
structure of clusters, considering that the data streams are produced by a stable
concept, the intra-cluster dissimilarity should decrease with each split. For each
given cluster Cj, the system verifies if older split decision still represents the
structure of data, testing the diameters of Cj, Cj’s sibling and C}’s parent. If
diameters are increasing above parent’s diameter, changes have occurred, so the
system aggregates the leaves, restarting the sufficient statistics for that group.

The presented clustering procedure is oriented towards processing high speed
data streams. The main characteristics of the system are constant memory and
constant time in respect to the number of examples. In ODAC, system space
complexity is constant on the number of examples, even considering the infinite
amount of examples usually present in data streams. An important feature of
this algorithm is that every time a split is performed on a leaf with n variables,
the global number of dissimilarities needed to be computed at the next itera-
tion diminishes at least n — 1 (worst case scenario) and at most n/2 (best case
scenario). The time complexity of each iteration of the system is constant given
the number of examples, and decreases with every split occurrence. Figure [I]
presents the resulting hierarchy of the clustering procedure.

Incremental Learning of ANN. In this section we describe the predictive mod-
ule of our system. Each group defined by the cluster structure has a feed-forward
MLP ANN attached, which was initially trained with a time series representing
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Fig. 1. ODAC hierarchy in the Electrical Network (~2500 sensors)

the global load of the sensor network, using only past data. The ANN is incre-
mentally trained with incoming data, being used to predict future values of all
the sensors in the cluster.

At each moment ¢, the system executes two actions: one is to predict the mo-
ment t + k; the other is to back-propagate in the model the error, obtained by
comparing the current real value with the prediction made at time t — k. The
error is back-propagated through the network only once, allowing the system to
cope with high speed streams. Although the system builds the learning model
with the centroid of the group, the prediction is made for each variable indepen-
dently. Every time a cluster is split, the offspring clusters inherit the parent’s
model, starting to fit a different copy separately. This way, a specification of the
model is enabled, following the specification of the clustering structure. When
an aggregation occurs, due to changes in the clustering structure, the new leaf
starts a new predictive model.

The goal of our system is to continuously maintain a prediction for three
time horizons: next hour, one day ahead, and one week ahead. This means that
after a short initial period, we have three groups of predictions: prediction for
the next hour, 24 predictions for the next 24 hours, and 168 predictions for the
next week. For the purposes of this application in particular, all predictions are
hourly based. For all the horizon forecasts, the clustering hierarchy is the same
but the predictive model at each cluster may be different.

The strucure of the MLP consists of 10 inputs, 4 hidden neurons (tanh-
activated) and a linear output. The input vector for next hour prediction at
time ¢ is ¢ minus {1, 2, 3,4} hours and ¢ minus {7, 14} days. As usual [6], we con-
sider also 4 cyclic variables, for hourly and weekly periods (sin and cos). The
choice of the networks topology and inputs was mainly motivated by experts sug-
gestion, autocorrelation analysis and previous work with batch approaches [4].
One implication of the chosen inputs is that we no longer maintain the property
of processing each observation oned]. Thus, we introduce a buffer (window with
the most recent values) strategy. The size of the buffer depends on the horizon
forecast and data granularity and is at most two weeks. Figure [2] presents a
general description of the procedure executed at each new example.

ANN s are powerful models that can approximate any continuous function [2]
with arbitrary small error with a three layer network. The mauvaise reputation

L A property that the clustering algorithm satisfies.
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Fig. 2. Buffered Online Predictions: 1. new real data arrives (r) at time stamp 4,
substituting previously made prediction (0); 2. define the input vector to predict time
stamp i; 3. execute prediction (t) for time stamp #; 4. compute error using predicted (t)
and real (r) values; 5. back-propagate the error one single time; 6. define input vector
to predict time stamp ¢ plus one hour; 7. execute prediction of next hour (p); 8. discard
oldest real data (d).

of ANNs comes from slower learning times. Two other known problems of the
generalization capacity of neural networks are overfitting and large variance. In
our approach the impact of overfitting is reduced due to two main reasons. First
we use a reduced number of neurons in the hidden layer. Second, each training
example is propagated and the error backpropagated through the network only
once, as data is abundant and flow continuously. This is a main advantage, allow-
ing the neural network to process an infinite number of examples at high speed.
Another advantage is the smooth adaptation in dynamic data streams where the
target function evolves over time. Craven and Shavlik [2] argue that the induc-
tive bias of neural networks is the most appropriate for sequential and temporal
prediction tasks. However, this flexibility implies an increase on error variance.
In stationary data streams the variance shrinks when the number of examples
goes to infinity. In dynamic environments where the target function changes, the
variance of predictions is problematic. An efficient variance reduction method is
the dual perturb and combine [3] algorithm. It consists on perturbing each test
example several times, adding white noise to the attribute-values, and predict-
ing each perturbed version of the test example. The final prediction is obtained
by aggregating (usually by averaging) the different predictions. The method is
directly applicable in the stream setting because multiple predictions only in-
volves test examples. We use the dual perturb and combine algorithm to reduce
the variance exhibited by neural networks and to estimate a confidence for pre-
dictions. For continuous and derivable functions over time one simple prediction
strategy, reported elsewhere to work well, consists of predicting for time ¢ the
value observed at time ¢t — k. A study on the autocorrelation in the time series
used to train the scratch neural network reveals that for next hour forecasts
k = 1 is the most autocorrelated value, while for next day and next week the
most autocorrelated one is the corresponding value one week before (k = 168).
The Kalman filter is widely used in engineering for two main purposes: for
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combining measurements of the same variables but from different sensors, and
for combining an inexact forecast of system’s state with an inexact measurement
of the state [5]. We use Kalman filter to combine the neural network forecast
with the observed value at time ¢ — k, where k depends on the horizon fore-
cast as defined above. The one dimensional Kalman filters works by considering

2
Ui = Gio1 + K(yi — §i-1), where 02 = (1—= K)o? ; and K = 7!

2 2.
oi_1toz

3 Experimental Evaluation

The electrical network we are studying contains more than 2500 sensors spreaded
out over the network, although some of them have no predictive interest. The
measure of interest is current intensity (I). There are 565 High Tension (HT)
sensors, 1629 Mean Tension (MT) sensors, and 299 Power Transformers (PT)
sensors. We consider around three years of data, aggregated in an hourly basis,
unless a fault was detected. The analysis of results were aggregated by month.
The system makes forecasts for next hour, one day ahead, and one week ahead.
At each time point ¢, the user can consult the forecast for next hour, next 24
hours and all hours for the next week. The design of the experimental eval-
uation in streams is not an easy task. For each point in time and sensor we
have an estimate of the error. This estimate evolves over time. To have insights
about the quality of the model these estimates must be aggregated. In this
particular application, there are natural time windows for aggregations: week
windows and month windows. For all time horizons, we aggregate the error es-
timates by month and type of sensor, for a one year test period. The quality
measure usually considered in electricity load forecast is the MAPE (Mean Ab-
solute Percentage Error) defined as MAPE =Y | I(gi_zi)/yi|7 where y; is the
real value of variable y at time ¢ and gy; is the corresponding predicted value.
In this work, we prefer to use as quality measure the MEDAPE (Median Ab-
solute Percentage Error) to reduce sensibility to outliers [I]. Table [l presents
global results for predicting the load over all horizons and on all sensors. We
can stress that the system is stable over time, with acceptable performance. All
experiments reported here ran in a AMD Athlon(tm) 64 X2 Dual Core Proces-
sor 3800+ (2GHz). The system processes around 30000 points per second with
a total running time for all the experiments reported here of about 1 hour. For
a 24 hours forecast, electricity load demand has a clear daily pattern, where
we can identify day and night, lunch and dinner time. For a single forecast
at time ¢, the historical inputs are: t — {24h, (168 — 24)h, 168h,169h, (168 +
24)h,336h}. The results for the 24 hours ahead forecast are also presented in
Table [ In comparison with the one hour forecast, the level of degradation
in the predictions is around 2-3%. For the one week ahead load forecast, the
standard profile is also well defined: five quite similar week days, followed by
two weekend days. As for the 24 hours forecast, several strategies could be de-
signed for one week ahead forecast. Our lab experiments pointed out consistent
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Table 1. Median of MEDAPE for all sensors by month, for three different horizons

1 Hour Ahead 1 Day Ahead 1 Week Ahead

HT MT PT Al HT MT PT All HT MT PT Al
I, % I, % I, %
Jan 4.34 4.98 4.60 4.63 Jan 6.61 6.52 6.98 6.44 Jan 5.95 6.10 6.50 5.95
Feb 4.24 5.07 4.74 4.73 Feb 6.97 6.83 7.14 6.73 Feb 6.81 6.87 6.95 6.68
Mar 4.24 5.01 4.60 4.66 Mar 7.23 7.09 7.74 7.03 Mar 7.14 7.49 7.69 7.27
Apr 4.46 5.38 5.08 4.98 Apr 8.05 7.71 9.12 7.75 Apr 7.13 7.31 8.10 7.17
May 3.90 4.77 4.45 4.38 May 6.79 6.42 7.46 6.41 May 5.57 6.17 6.32 5.97
Jun 3.93 4.91 4.58 4.55 Jun 7.23 7.21 8.56 7.21 Jun 6.22 6.79 7.02 6.58
Jul 3.87 4.62 4.25 4.26 Jul 7.13 6.98 7.77 6.95 Jul 7.02 7.38 7.40 7.11
Aug 3.68 4.30 3.89 3.98 Aug 6.97 6.20 7.06 6.22 Aug 7.99 8.11 9.10 7.96
Sep 4.33 4.93 4.42 4.59 Sep 6.99 6.83 7.46 6.80 Sep 6.14 6.69 6.86 6.46
Oct 4.50 5.19 4.67 4.84 Oct 8.03 7.38 8.25 7.41 Oct 6.41 6.40 6.94 6.31
Nov 3.89 4.66 4.32 4.37 Nov 7.17 6.87 7.86 6.87 Nov 6.39 5.97 6.49 5.91
Dec 4.34 5.18 4.65 4.84 Dec 8.62 8.02 8.73 7.96 Dec 9.02 8.58 8.85 8.48

advantages using the simplest strategy of a single forecast using the historical
inputs t—{168h, 169h, (336 —24)h, 336k, (336+24)h, (336+168)h}. The results for
the one week ahead forecast are also presented in Table[ll Again, when comparing
these results with one hour ahead forecast, one can observe a degradation of
around 2%. At this point we can state that our strategy roughly complies with
the requirements presented by the experts. To assess the quality of prediction, we
have compared with another predictive system. For the given year, the quality of
the system in each month is compared with Wavelets [ISIﬁon two precise variables
each month, chosen as relevant predictable streams (by an expert) but exhibiting
either low or high error. Results are shown on Table [ for the 24 variables,
over the three different horizons. The Wilcoxon signed ranks test was applied
to compare the error distributions, and the corresponding p-value is shown (we
consider a significance level of 5%). The relevance of the incremental system
using neural networks is exposed, with lower error values on the majority of the
studied variables. Moreover, it was noticed an improvement on the performance
of the system, compared to the predictions made using Wavelets, after failures
or abnormal behavior in the streams. Nevertheless, weaknesses arise that should
be considered by future work.

4 Conclusions and Future Issues

This paper introduces a system that gathers a predictive model for a large num-
ber of sensors data within specific horizons. The system incrementally constructs
a hierarchy of clusters and fits a predictive model for each leaf. Experimental
results show that the system is able to produce acceptable predictions for differ-
ent horizons. Focus is given by experts on overall performance of the complete
system. The main contribution of this work is the reduction of the human effort
needed to maintain the predictive models over time, eliminating the batch clus-
ter analysis and the periodic ANN training, while keeping the forecast quality
at competitive levels. Directions for future work are the inclusion of background
knowledge such as temperature, holiday, and special events, into the learning
process. Moreover, sensor network data is distributed in nature, suggesting the
study of ubiquitous and distributed computation.

2 Wavelets are the standard method used in the company we are working with.
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Table 2. MEDAPE for selected variables of current intensity (I), exhibiting low or
high error. Comparison with Wavelets is considered for the three different horizons.

1 Hour Ahead 1 Day Ahead 1 Week Ahead
Wav NN NN-Wav Wav NN NN-Wav Wav NN NN-Wav

Y% % Y% p-value % Y% % p-value Y% Y% % p-value
Low Error Low Error Low Error
Jan 1.69 2.72 1.03 <0.001 Jan 3.50 3.98 0.48 <0.001 Jan 7.07 3.81 -3.26 <0.001
Feb 2.99 2.79 -0.20 0.196 Feb 7.89 5.62 -2.27 <0.001 Feb 7.18 4.28 -2.90 <0.001
Mar 3.63 2.75 -0.88 <0.001 Mar 6.11 6.38 0.27 <0.001 Mar 5.33 3.99 -1.34 <0.001
Apr 2.05 2.58 0.53 0.002 Apr 8.04 5.45 -2.60 <0.001 Apr 14.68 4.74 -9.94 <0.001
May 2.69 2.28 -0.41 <0.001 May 19.47 7.63 -11.84 <0.001 May 14.16 4.05 -10.11 <0.001
Jun 2.33 2.52 0.29 0.051 Jun 3.68 4.26 0.58 0.002 Jun 4.41 3.40 -1.01 <0.001
Jul 2.14 2.12 -0.02 0.049 Jul 5.83 5.61 -0.22 <0.001 Jul 7.13 4.45 -2.68 <0.001
Aug 2.59 2.54 -0.05 0.537 Aug 6.14 3.64 -2.50 <0.001 Aug 4.73 5.96 1.238 0.008
Sep 2.65 2.64 -0.01 0.374 Sep 7.57 7.65 0.08 0.835 Sep 10.03 3.73 -6.30 <0.001
Oct 2.28 2.36 0.08 0.127 Oct 7.05 8.77 1.73 0.001 Oct 6.28 7.34 1.06 0.010
Nov 2.41 2.14 -0.27 0.085 Nov 4.08 4.52 0.44 0.047 Nov 3.15 4.06 0.91 0.0038
Dec 3.56 2.97 -0.59 0.029 Dec 9.92 5.70 -4.23 <0.001 Dec 14.02 7.02 -7.00 <0.001
High Error High Error High Error
Jan 9.04 10.34 1.30 <0.001 Jan 9.04 10.34 1.80 <0.001 Jan 19.73 14.91 -4.82 <0.001
Feb 8.51 9.82 1.31 0.002 Feb 8.51 9.82 1.31 0.002 Feb 9.95 10.54 0.59 0.053
Mar 11.52 11.28 -0.24 0.166 Mar 11.52 11.28 -0.24 0.166 Mar 32.18 28.95 -8.23 <0.001
Apr 9.36 12.74 1.38 <0.001 Apr 9.36 12.74 1.38 <0.001 Apr 18.22 17.93 -0.30 0.074
May 12.89 10.54 -2.35 0.035 May 12.89 10.54 -2.85 0.035 May 14.65 10.43 -4.22 <0.001
Jun 6.68 8.10 1.42 <0.001 Jun 6.68 8.10 1.42 <0.001 Jun 8.96 8.11 -0.86 0.373
Jul 14.52 10.68 -83.84 <0.001 Jul 14.52 10.68 -3.84 <0.001 Jul 32.68 21.12 -11.56 <0.001
Aug 11.11 12.27 1.16 0.034 Aug 11.11 12.27 1.16 0.034 Aug 13.19 14.28 1.09 0.062
Sep 10.52 9.81 -0.71 0.656 Sep 10.52 9.81 -0.71 0.656 Sep 30.58 21.71 -8.87 <0.001
Oct 12.45 11.25 -1.20 0.002 Oct 12.45 11.25 -1.20 0.002 Oct 29.44 24.65 -4.79 0.009
Nov 8.85 7.71 -1.14 0.356 Nov 8.85 7.71 -1.14 0.356 Nov 17.19 12.46 -4.72 <0.001
Dec 11.76 10.91 -0.85 0.040 Dec 11.76 10.91 -0.85 0.040 Dec 38.26 45.08 6.82 0.056
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Abstract. XML documents are the special kind of data having hierarchical
structure. Typical clustering algorithms do not meet requirements which may be
stated for analysis of such data. A novel, dedicated for XML documents
clustering method called Multilevel clustering of XML documents (ML) is
presented in the paper. The method clusters feature vectors encoding XML
documents on the different structure levels. Application of Conditional Fuzzy
C-Means algorithm to ML method is proposed in the paper and the advantage of
this fuzzy method over hard approach to ML algorithm is discussed and proved.
An application of ML method to accelerating query execution on XML
documents is discussed in the paper. The experimental results performed on two
data sets having different characteristics show that the proposed method of
multilevel conditional fuzzy clustering of XML documents outperforms hard
multilevel clustering.

Keywords: clustering, clustering XML documents.

1 Introduction

Popularity of XML standard (eXtensible Markup Language) and a large number of its
applications triggered an intense development of the new database systems called
native XML databases. Also the functionality of relational systems supporting XML
storage is continuously extended in order to effectively store, query and process XML
documents.

Due to flexibility of the XML document structure it is possible that some queries
will address only few documents in a large database. In order to accelerate execution
of such selective queries on XML documents it is possible to consider a method
reducing number of documents which have to be analysed. The reduced document set
must contain all the documents which are addressed by a query and shall contain as
little number of other documents as possible. It is possible to apply clustering of XML
documents according to their structure in order to determine such groups of
documents.

There are plenty of clustering algorithms which may be applied to the task
presented above [4]. These algorithms however, are not dedicated to the hierarchical
structure of XML documents and do not perform in acceptable way concerning the
specified task. A new approach called Multilevel clustering of XML documents (ML
algorithm) was proposed in [5]. ML algorithm is dedicated to a hierarchical structure
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of XML documents and may take advantage of any clustering algorithm. The paper
presented defines formally ML algorithm and describes the shortcomings of using
hard clustering in ML approach and proposes the solution of the problem by means of
Conditional Fuzzy C-Means algorithm (CFCM) [11].

The paper is organised as follows. Section 2 describes the approach to accelerating
XML queries by clustering XML documents. Section 3 presents Multilevel clustering
of XML documents algorithm and application of CFCM to ML algorithm. Datasets
which were used in the analysis and the results of the experiments which were
performed are presented in section 4. The final conclusions are drawn in section 5.

2 Accelerating XML Query Execution

Elements and attributes of XML documents which are addressed in the queries are
defined by means of path expressions. Flexibility of the structure of XML documents
stored in a database causes that occurrence of an element or attribute may be optional
and not all the documents in a collection match a path specified in a query. Assuming
that an execution of a query on a subset of documents is less time consuming then
querying the whole collection it is worth verifying the methods which could
determine the collection subsets addressing the given queries.

Occurrence of an element or an attribute is a feature of a structure of XML
document. It is possible therefore, to apply methods of clustering XML documents
according to their structure to determine such document subsets. Having a cluster of
documents it should be possible to calculate a signature of the cluster representing all
the features (elements and attributes) existing in the cluster. It should be also possible
to calculate a signature of a query representing all the features which are addressed by
the query. Comparison of the two signatures (of a cluster and a query) should show
whether the query addresses any documents in the cluster and whether the XML
documents in a cluster should be processed by the query.

3 Clustering XML Documents

In order to determine the clusters of XML documents having similar structure within
the clusters and different structure between the clusters it is needed to:

e apply one of the methods calculating similarity or distance between the XML
document structures,
e apply one of the clustering algorithms determining the clusters.

In the presented work an approach calculating structural similarity or distance on the
bases of feature vectors encoding the structure features of the documents was used.
The analysis of two encoding methods: signal encoding [3] and bit encoding [7], [13]
was performed [5] and bit encoding was chosen as the only acceptable approach. An
assumption was taken in a work presented that the query paths are fully defined and
indicate all the elements starting from a root element up to a target node.
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3.1 Clustering Algorithms Review

There is a large number of clustering algorithms [4] which can be applied to the task
of clustering bit feature vectors and supporting proposed method of accelerating XML
queries execution. Algorithms of different types like hierarchical algorithms, e.g.
Complete or Single Link [4] or partitional algorithms, e.g. Hard C-Means [4] can be
used in the presented task. However, these algorithms are not dedicated to the data
representing a structure of XML documents.

The algorithms mentioned above perform clustering in a full feature vector space.
Bit encoding produces very long feature vectors what decreases a clustering quality
[6], [8]. Additionally, the queries which may be performed on XML documents do
not traverse through the whole tree structure to the leafs very often. Concerning the
application presented reduction of the number of features cannot be performed by any
of the known methods [6], [8] because they operate on the whole feature space and
they do not differentiate features according to the document structure level.

It is also a common observation that the most general and therefore important
information is enclosed nearby the root element concerning the structure of XML
document. The features which are placed on the levels neighbouring a root element
should have therefore, a greater influence on the clustering results then the leaf nodes
what cannot be achieved by means of the algorithms mentioned above.

There are approaches to clustering XML documents concerning their structure
which take under consideration tree-like structure of XML documents and the
significance of the features depending on their level in this structure [3], [10]. These
algorithms however, introduce methods dedicated to XML structure on a level of
calculating similarity between document structures. They do not operate on bit feature
vectors encoding XML document structure which were shown to be very effective in
the presented method of accelerating XML queries.

There was therefore, a need to introduce a new clustering algorithm which would
be dedicated to XML documents and which would address all the requirements which
are not met by the clustering algorithms mentioned above. The new clustering
algorithm giving promising results was called Multilevel Clustering of XML
Documents (ML) [5].

3.2 Multilevel Clustering of XML Document Structure

Multilevel Clustering of XML Documents (ML) [5] is a method dedicated to XML
documents. Multilevel approach starts clustering at a root level and continues the
process at the following levels. In this way it differentiates features treating the
elements placed in the neighbourhood of a root element as more significant. It is
possible to stop the algorithm at a certain level of the document structure tree
reducing a number of features which are processed.

Defining a set of XML documents as D = { d;, ... , dy } and a feature vector B
encoding each document as a string of bits as B = { b/, s b,,]] s ey b,l, . b,lllj
where [ = 1, ..., Ly is a number of a level at which occurs a given feature. A hard

clustering result on a level / is a partition of a set D to a set of clusters C = {C ,’, -

CK,I J, where K; is a number of clusters determined on a level [, OC( - p»>and C,-Z N

i=1
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C/ = @, where i # j. Each cluster C/ may be partitioned on a level [+ giving a set of
new clusters. A final clustering result is a set of clusters C = C*, where L is a level of
XML structure tree which is defined by a user as a stop condition. The other input
parameters are a user defined final number of clusters K; and a distribution of the
features among the document structure levels. Clustering on each level can be
performed by means of any clustering algorithm. The definitions presented above
concern the process of hard clustering which was used in the previous analysis [5] and
which may be illustrated by the figure presented below.

a) 1 b) 1

2 2

3 3 i
Fig. 1. [llustration of a feature space of XML documents (a) and the partition created by hard
Multilevel clustering of XML documents (b)

Figure 1. illustrates a feature space of a set of XML documents (Fig. 1. a)) captured
at the three levels of XML document structures. Documents are placed on axis X,
structure levels are placed on axis Y and the existing clusters relevant to different
feature values are depicted by different shades. The result of applying hard Multilevel
clustering of XML documents (Fig. 1. b)) is marked by thick black lines separating
the clusters. The final number of clusters was set to three. Figure 1. illustrates also a
problem which may be encountered when applying hard clustering (e.g. HCM
algorithm) to ML method. The hard partitioning on the second level of the document
trees is directly transferred to the next iteration and determines the clusters on the
third level making one of them inconsistent. In order to solve the presented problem it
is needed to introduce an algorithm affecting a clustering on a level [+ by the results
of a clustering performed on a level [ but not determining them in a hard way.
Therefore, Conditional Fuzzy C-Means [11] algorithm is proposed and applied into
ML method in the presented work.

Conditional Fuzzy C-Means algorithm was introduced in [11] and generalised in
[9]. It extends Fuzzy C-Means [9], [11] algorithm by introducing conditional variable
f+- Conditional variable f; specifies what is the impact of a data object x; on the
created partition. The result of an algorithm is a pair of iteratively modified matrices:
a fuzzy partition matrix U = [uy/ defining what is the membership value of each data
object x; to each cluster C; and a prototype matrix V = [v;].

3.3 Multilevel Conditional Fuzzy C-Means

ML algorithm where CFCM algorithm is applied to perform partitioning on each level
of XML document structure trees was named Multilevel Conditional Fuzzy C-Means
(MLCFCM). The clustering results at the level / defined in paragraph 3.2 for hard
clustering must be modified and defined as a fuzzy partition having a form of a matrix
U' = [uy!] of size K; x N, where K, was defined as a number of clusters determined on
alevel /, N is a number of all documents which are analysed. The created clusters are
not separated and partitioned in the consecutive iterations as it was performed when
hard clustering was used. The partition matrix U’ calculated on a previous level -/
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of the document structure trees becomes a bases of condition matrix Fi; containing
the values of condition parameter f; used in CFCM algorithm. Condition parameters
impact a new fuzzy partition U’ on a level /. Condition matrix Fy, = g(U"") may be
calculated by means of different forms of function g. A final partition U" is binarized
what gives a hard partition defining a set of clusters C" as defined in paragraph 3.2.

The approach presented above ensures that clustering on a level closer to a root
element will impact the partition of the features placed further in the XML document
tree. At the same time, a direct transfer of cluster borders, which is performed when
hard clustering is used, is avoided what enables the algorithm to produce a correct
results for the case presented on figure 1.

Another advantage of this method is a possibility of detection of the documents
having a strongly different structure comparing to the cluster prototypes. Concerning
acceleration of the XML queries it is profitable to receive as compact clusters as
possible. The characteristic feature of the documents of this type is a very small
variance of the membership values in a partition matrix U'. The proposed MLCFCM
algorithm assigns documents strongly distinct from the cluster prototypes on each
level to the “others” cluster.

4 Experiments

Performance of ML algorithm which was presented in the previous sections was
analysed on two sets of XML documents.

Level3 dataset [2] consists of 112 XML documents which were generated by
means of ToXgene tool [1]. This dataset was used in order to verify the differences
between hard version of ML algorithm and MLCFCM method. Therefore, the
characteristics of the generated documents refer to the data illustrated on figure 1.
Additionally, twelve documents having distinct structure from the others were added
to the dataset what should enable to verify how fuzzy approach can deal with the data
of very different characteristic. Encoding the documents creating Level3 dataset gave
a feature vector containing 48 bits.

Wiki dataset consists of 989 XML documents randomly chosen from a large extract
of Wikipedia to XML format [12]. This dataset is a real life dataset of unknown
structure and it is used in order to verify how a new MLCFCM algorithm performs in
general conditions. Encoding the documents from Wiki dataset gave a feature vector
containing 6557 bits distributed among 36 levels of XML document structure trees.

4.1 Partition Consistency Verification

Section 3.2 presented a problem which may occur when hard clustering is
implemented in multilevel method and which may lead to inconsistent clusters. In
order to confirm the expected advantage (described in section 3.3) of MLCFCM
algorithm over hard multilevel approach, Level3 dataset was clustered by both kinds
of algorithms. Hard C-Means algorithm was implemented in ML method as a hard
multilevel algorithm (MLHCM). The figures presented below show the structure of
Level3 dataset (fig. 2.) and the partitions created by both algorithms (fig. 3.).
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Fig. 2. Designed structure of Level3 dataset

b)

Ilﬂﬂﬂlﬂr’

| |

Fig. 3. Partition created by MLHCM algorithm (a) and by MLCFCM algorithm (b)

Each figure presents the results of clustering of 112 XML documents placed on X
axis on three levels of XML structure placed on Y axis. Different clusters are marked
by different shades. The colour of a cluster is not important (except black colour) and
was used in order to distinguish the clusters. Documents having a strongly different
structure and assigned to “others” cluster were marked in black. Figure 2. presents the
expected result of clustering according to designed structure of XML documents.

In this experiment the following function g transforming partition matrix U™’ to
condition matrix F' Kll was used in MLCFCM algorithm:

g=05U"+05 (1)

The figures presented above show that only MLCFCM algorithm revealed the
clusters existing on the third level of document structures correctly. Hard multilevel
clustering assigned documents numbered from 53 to 112 into one inconsistent cluster.

4.2 Dataset Reduction Verification

Another experiment shows the results of accelerating XML query execution by means
of ML method. As it was presented in the section 2, it is assumed that a query should
be faster executed on a reduced set of documents containing all the documents
addressed by the query. Therefore, a reduction degree of the datasets which was
received by means of clustering algorithm was compared in the experiment.

In case of Level3 dataset an average degree of reduction was calculated for all
possible query paths. Comparison of fuzzy (MLCFCM) and hard (MLHCM)
implementation of ML method was performed and the results of the analysis are
presented in table 1.

Table 1. Average reduction degree of Level3 dataset

MLHCM MLCFCM (v=0) MLCFCM (v=0.01)
59.3 62.9 72.4

Two values of parameter v determining the maximal value of variance of partition
matrix which assigns a document as “others” were used in the implementation of
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MLCFCM algorithm. A value of v=0 means that no document was assigned to
“others” cluster. Function g was defined in the same way as in equation (1).

Presented in table 1. average numbers of documents which were reduced as not
being addressed by a query show that MLCFCM algorithm performs better
concerning the presented application to acceleration of queries on XML documents.
The difference between the reduction values for MLHCM and MLCFCM where v=0
is not very large but the analysis of the particular paths addressing the documents
which were incorrectly clustered by MLHCM algorithm (documents numbered from
53 to 83 on fig. 3.) show that the difference in reduction degree for these paths may be
significant (71 reduced documents in case of MLCFCM instead of 30 documents
reduced in case of MLHCM). It is also visible that the documents having strongly
different structure may decrease the quality of clustering. It is important therefore, to
assign that kind of documents to a separate cluster what may be performed by means
of MLCFCM algorithm.

In case of Wiki dataset a reduction degree for four queries was compared. Table 2.
presents what is a number of documents which are addressed and which are not
addressed by the queries. Table 3. presents the results of the analysis performed on
different levels of the document structure trees. In this experiment, a value of
parameter v was set to v = /0"{-13} and g function was defined as g = Ut

Table 2. Characteristics of the queries defined on Wiki dataset

Query Query path Path Documents Documents
length (no.  addressed by a which may be
of levels) query reduced
ql /article/body/section/title 4 620 369
q2 /article/body/definitionlist 3 3 986
g3 Jarticle/body/normallist 3 56 933
g4 J/article/body/figure 3 155 834

Table 3. Number of documents reduced by means of ML method

Query Level 3 Level 4
MLHCM MLCFCM MLHCM MLCFCM
ql 355 0 319 0
q2 347 553 211 508
q3 14 93 0 0
q4 0 13 0 127

The results presented in table 3. show that MLCFCM algorithm performed better
concerning queries g2, g3 and g4, where the difference received for query ¢2 is
significant. MLHCM algorithm however, performed significantly better concerning
query gl.



Multilevel Conditional Fuzzy C-Means Clustering of XML Documents 539

5 Conclusions

The new method of multilevel clustering of XML documents (ML) is presented in the
paper. The discussion presented in the paper and the results of the experiments which
were performed show that application of conditional fuzzy clustering to ML method
(MLCFCM) is able to produce more consistent clusters comparing to hard clustering
algorithm (MLHCM).

An application of clustering XML documents according to their structure to
accelerating query execution on XML document set was also presented in the paper.
An analysis of the methods encoding a structure of XML document which could be
applied to this task showed that only bit encoding meets the requirements which were
stated. The experiments comparing fuzzy (MLCFCM) and hard (MLHCM)
implementations of ML method show that multilevel conditional fuzzy c-means
clustering gives better results then HCM implementation on both generated and real
life data.
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Abstract. In this study, we present methods for comparative visualiza-
tion of DNA sequences in two dimensions. First, we illustrate a
transformation of gene sequences into numerical trajectories. The tra-
jectory visually captures the nucleotide content of each sequence, allow-
ing for fast and easy visualization of long DNA sequences. Then, we
project the relative placement of the trajectories on the 2D plane using
a spanning-tree arrangement method, which allows the efficient compar-
ison of multiple sequences. We demonstrate with various examples the
applicability of our technique in evolutionary biology and specifically in
capturing and visualizing the molecular phylogeny between species.

1 Introduction

Identification of evolutionary distances among species has always been a topic of
interest to researchers. Several different methods have been used to identify the
evolutionary relationships between species, including taxonomic, phylogenetic
analyses, geometric morphometric data analysis. In the post-genome era, more
accurate evolutionary views have been reached using DNA sequence analyses of
species [619].

In this work, we also provide a molecular vision of evolution through com-
parison and visualization of DNA sequences. Using comparative mitochondrial
DNA analysis, we illustrate the evolutionary distances among various mam-
malian species. Mitochondrial DNA (mtDNA) analyses have been proven useful
in establishing phylogeny among a wide range of species [2[78]. We achieve our
goal by mapping the DNA nucleotide sequences into 2-dimensional trajectories.
The purpose of this conversion is to facilitate the quick visual comparison be-
tween long DNA sequences. We evaluate the affinity between the resulting DNA
trajectories by employing an elastic warping distance function. Our empirical
results on mitochondrial DNA from various species, suggest that the utilized
distance measure can reflect with great accuracy the divergence point between
species. Finally, for visually comparing the evolutionary distance between the
DNA trajectories we present a spanning-tree-based mapping technique. The
technique arranges the objects on the 2-dimensional space, while retaining as
much of the original structure as possible. We depict the enhanced visualization
power that can be induced from the proposed mapping technique. All our results

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 613-[520] 2007.
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are validated with freely available genomic data obtained from Genbank El, and
corroborate the current prevalent views on evolutional biology.

Previous work on DNA visualization has appeared in [3/4], but the tech-
niques pose limitations regarding the visual comparison between multiple DNA
sequences. A technique that allows the comparison between different sequences
in terms of their common subsequences has been presented in [I]. Our method
is unique in that, it not only provides a visual representation of the nucleotide
sequences, but also it deciphers the comparative phylogenetic distances among
different species.

In the sections that follow we present a DNA conversion technique into tra-
jectories and later on we demonstrate the spanning-tree mapping technique. The
final section contains the empirical evaluation of both methods using mammalian
DNA sequences.

2 Converting DNA to Trajectories

Visual comparison of DNA symbol strings can be particularly troublesome to
perform, because typical DNA datasets contains thousands of symbols. Humans
cannot easily compare or visually represent bulk of text; our brains are much
more efficient at comparing lines or shapes. Therefore, a technique for converting
a DNA string into a low dimensional shape, can significantly enhance our ability
of interpreting and comparing very long DNA sequence data. Given a string
of length n drawn from the alphabet A,T,C,G, which we will denote as DNA,
we wish to convert it to a two-dimensional trajectory of length n + 1, which
we denote as T. We can use the following rule to build the trajectory vector:
T(@)=T( — 1)+ V, where V is a basis vector constructed as follows:

[0 1], if DNA(i) = A
v ) [10),if DNAGi) =T

[0-1], if DNA(i) = C

-1 0], if DNA(i) = G.

That is, starting from an initial reference point we will direct the trajectory
on the relevant direction (up, down, left or right) based on the currently ex-
amined symbol. For example, if the sequence contains many A symbols then it
will demonstrate a predominantly upward movement. Below, we demonstrate an
arithmetic example of the trajectory construction.

Example: Suppose that the starting position T(1) = [0 0]. Then, for the DNA
string AATCG, we get the trajectory vector {[0 0],[0 1],[0 2],[1 2],[1 1],[0 1]}.

2.1 Comparing Trajectories

In order to quantify the similarity between the resulting trajectories we utilize
a warping distance, which can allow for a flexible matching between the DNA

! http://www.ncbi.nlm.nih.gov/Genbank/
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trajectories, supporting local compressions and decompressions. The warping
distance can be seen as a real-valued counterpart of the Edit Distance, which is
customarily used for comparing DNA transcripts.

Suppose that @@ and T are the trajectories that we wish to compare. If
Q = (Q1,Q2,...,Qn) and Head(Q) = (Q1,Q2,...,Qn-1) (and similarly for
a sequence T') then the recursive equation to provide then warping distance
between () and T is:

DTW (Head(Q), Head(T))
DTW(Q,T) = D(Qn,Tn) + min { DTW (Head(Q),T)
DTW(Q, Head(T))

where D(-,-) is the distance between two points of the sequence. Typically, D
is the Euclidean distance. The warping distance can be computed using a well
known dynamic programming [I2]. In Fig. [l we can see the flexibility of match-
ing that can be achieved between trajectories when utilizing the warping dis-
tance. On the left side we demonstrate the mapping between the human and the
chimpanzee trajectories, which were derived from their respective mitochondrial
DNA. On the right side, the matching between the human and the bear mtDNA
is illustrated.

Fig. 1. Matching of DNA trajectories using DTW. Left: Human vs Chimpanzee, Right:
Humans vs Bear.

Even though the Warping distance can accommodate a flexible matching be-
tween the resulting DNA trajectories, it does not obey the triangle inequality
(unlike the Euclidean distance). We will utilize this fact to motivate extensions
on the triangulation mapping technique that is presented subsequently.

3 Spanning-Tree Visualization

Given a set of pairwise distances between objects we are seeking a way of
visualizing their relationship on two dimensions, while retaining as much of
the original structure as possible. We revisit a mapping technique proposed
by Lee, et al., in [5], which utilizes the Minimum-Spanning-Tree (MST) and a
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triangulation method for preserving 2 distances per object on the two-dimensional
space. The first distance preserved is the distance to the nearest neighbor of every
object. The second distance can either be different for every object (e.g. its 2NN),
or it can be the distance to a reference point. The latter option is the one that
we adapt, which creates a powerful visualization technique that not only allows
for preservation of Nearest Neighbors distances (local structure), but additionally
retains distances with respect a single reference point, giving the option for global
data view using that object as a pivot.

Once the MST is calculated the mapping on the 2D space can commence from
any point/object that the user designates and the MST tree is mapped either in
a breadth-first-search (BFS) or depth-first-search (DFS) manner. In this work
we utilize a BFS mapping. We illustrate how the mapping works with a running

example.
| G
'.\ ﬂ JHF Dc

& B

(a) (b) (©) (d)

Fig. 2. 2D mapping of objects using spanning-tree and triangulation

Suppose the first two points (A and B) of the MST are already mapped, as
shown in Fig. 2 (a). Let’s assume that the second distance preserved per object
is the distance with respect to a reference point which in our case is the first
point. The third point is mapped at the intersection of circles centered at the
reference points. The circles are centered at A and B with radii of D(A,C) -
the distance between points A and C- and D(B, (), respectively. Due to the
triangle inequality, the circles either intersect at 2 positions or at tangent. Any
position on the circles’” intersection will retain the original distances towards the
two reference points. The position of point C' is shown in Fig. 2] (a). The fourth
point is mapped at the intersection of circles centered at A and C (Fig. 2 (b))
and the fifth point is mapped similarly (Fig. 2l (c)). The process continues until
all the points of the MST at positioned on the 2D plane and the final result is
shown in Fig. 2 (d).

3.1 Extensions for Non-metric Distances

The triangulation method proposed by Lee, et al., is only applicable for metric
distances when the circles around the reference points are guaranteed to inter-
sect. Recall that, the Warping Distance used to quantify the distance between
the DNA trajectories does no obey the triangle inequality. This means that the
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reference circles may not necessarily intersect. We highlight necessary exten-
sions to the triangulation method that allows its proper usage under non-metric
distances.

We can identify two cases for the non-intersecting circles:

1. Case 1: One circle encloses each other,
2. Case 2: The two circles are disjoint and not enclosed within one another

For each of these cases we need to identify the position where to position an
object with respect to the two circles, so that the object is mapped as close as
possible to the circumference of both circles. In order words, we need to identify
the locus of points that minimize the sum of distances to the perimeters of two
circles.

One can show that the desired locus always lies on the line connecting the
centers of the two circles. Case 1 is shown in Figure Bl and we can identify two
sub-cases.

s 0

(a) (b)

Fig. 3. Circles enclosed within one another Fig. 4. Circles that are disjoint

— When the two circles have disjoint centers, then the point that minimizes
the sum of distances to both perimeters, is point C' on Fig. B (a), which lies
on the line L connecting the two centers, and midway on the line segment
with vertices the intersection of L with the circles’ perimeters.

— In the case when the two circles have common centers, then there exist two
points that satisfy the distance minimization property as shown in Fig.[Bl (b).

Case 2 can be resolved in a similar way, which is shown in Fig. @

With the addition of the above rules, we can now discover the mapping positions
of the objects on the two-dimensional plane, so that the original pairwise distances
are satisfied as well as possible using the spanning-tree triangulation method.

4 Experimental Results

We demonstrate the usefulness of the proposed techniques on comparative mole-
cular phylogenetic studies via visualization of mitochondrial DNA sequences.
We utilize publicly available mtDNA obtained from Genbank (see Table[]). All
datasets used in this paper along with supplementary material can be found at
the project website 2}

2 http://www.cs.ucr.edu/~mvlachos/VizDNA/
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Table 1. Example from subset of the mitochondrial DNA data used for our visualiza-
tions

Name Species mtDNA bps
Indian Elephant Elephas Manimus Indicus 16800
African Elephant Loxodonta Africana 16859
Blue Whale Balaenoptera Musculus 16402
Finback Whale Balaenoptera Physalus 16398
Hippopotamus Hippopotamus Amphibius 16407
Human Homo Sapiens 16571
Chimpanzee Pan Troglodytes 16554
Pygmy chimpanzee Pan Paniscus 16563
Dog Canis familiaris 16727
American Bear Ursus americanus 16841
Polar Bear Ursus maritimus 17017

Mitochondrial DNA is passed on only from the mother during sexual reproduc-
tion, making the mitochondria clones. This means that there are minor changes
in the mtDNA from generation to generation, unlike nuclear DNA which changes
by 50% each generation. Therefore, mtDNA has a long memory. Each mtDNA
string consists of approximately 16000 symbols (with mtDNA of humans being
16,571 nucleotides long, and all other mammals mtDNA are within plus or minus
1-3% of this).

For our first experiment we utilize mtDNA from Homo sapiens and other pri-
mates. Figure [ illustrates the spanning-tree mapping for 8 species. Our results
are in general agreement with current evolutionary views. We also observe that
not only the mapping is very accurate with regard to the evolutionary distance
of the species, but the mapping preserves the clustering between the original
groups that the various primates belong to. Specifically, Human, Pygmy chim-
panzee, Chimpanzee and Orangutan belong to the hominidae group, the Gibbon
to the hylobatae group and the Baboon and the Macaque to the cercopithicae.

Adjacent to this mapping, we provide a spanning-tree visualization that uti-
lizes the most commonly used Euclidean distance instead of the Warping dis-
tance. One can observe that the use of the Euclidean distance introduces errors,
such as mapping the gibbon closer to the human rather than to the orangutan,
which is incorrect. Human and orangutan divergence took place approximately
11 million years ago. Whereas, gibbon and human divergence occurred approxi-
mately 15 million years ago [10]. According to the same source, gorilla divergence
occurred about 6.5 million years ago and chimpanzee divergence took place about
5.5 million years ago.

For our second example in Figure [l we utilize a larger mammalian dataset
and again take the human as the referential point. On this plot we use the formal
names of the species (instead of their common names) and we also overlay on
the figure the DNA trajectory of the respective mtDNA sequence. Again, the
spanning-tree technique exhibits a very strong visualization capacity, particu-
larly in unveiling the similarities and connections between the different species.
For example, one can notice the great similarity of the hippopotamus with the
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Fig. 5. Visualization of humans and other primates. Left: Using the Warping distance,
Right: Using Euclidean distance to compare the DNA trajectories. Various mapping

errors are indicated on the figure.
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Ur: maritimus
Loxod;nta africana % :

% Canis familiaris Balaenoptera musculus

Elephas maximus indicus . %
Hippopotamus
% amphibius

Homo sapiens

Balaengptera physalus
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Fig. 6. Evolutionary visualization of mammalian species with respect to the human

whales. The hippopotami are indeed closely related to whales than to any other
mammals. Whales and hippopotami diverged 54 million years ago, whereas the
whale/hippopotamus group parted from the elephants about 105 million years
ago. The group that includes hippopotami and whales/dolphins, but excludes

all other mammals above is called Cetartiodactyla [I1].

5 Conclusions

We presented techniques that allow the effective visualization and comparison
between DNA sequences, by transforming them into trajectories and mapping
them on the two-dimensional plane. The mapping technique can have many
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biomedical applications, including advancement of diagnostic techniques for
cancer data. This technology could both be applied for distinguishing cancer
transcripts from normal ones, and for the identification of different cancer
stages. Future direction of this work, includes expansion of our technique to
transcriptome-wide screens of cancer transcripts in human and mouse transcrip-
tomes.
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Abstract. Textual patterns have been used effectively to extract information
from large text collections. However they rely heavily on textual redundancy in
the sense that facts have to be mentioned in a similar manner in order to be gener-
alized to a textual pattern. Data sparseness thus becomes a problem when trying
to extract information from hardly redundant sources like corporate intranets, en-
cyclopedic works or scientific databases.

We present results on applying a weakly supervised pattern induction algo-
rithm to Wikipedia to extract instances of arbitrary relations. In particular, we ap-
ply different configurations of a basic algorithm for pattern induction on seven
different datasets. We show that the lack of redundancy leads to the need of a
large amount of training data but that integrating Web extraction into the process
leads to a significant reduction of required training data while maintaining the ac-
curacy of Wikipedia. In particular we show that, though the use of the Web can
have similar effects as produced by increasing the number of seeds, it leads overall
to better results. Our approach thus allows to combine advantages of two sources:
The high reliability of a closed corpus and the high redundancy of the Web.

1 Introduction

Techniques for automatic information extraction (IE) from text play a crucial role in
all scenarios in which manually scanning texts for certain information is unfeasible or
too costly. Nowadays, information extraction is thus for example applied on biochemical
texts to discover unknown interactions between proteins (compare [13]]) or to texts avail-
able in corporate intranets for the purpose of knowledge management (compare [[16]). In
many state-of-the-art systems, textual patterns are used to extract the relevant informa-
tion. Textual patterns are in essence regular expressions defined over different levels of
linguistic analysis. In our approach, we rely on simple regular expressions defined over
string tokens. As the extraction systems should be easily adaptable to any domain and
scenario, considerable research has been devoted to the automatic induction of patterns
(compare [3I14[7]). Due to the fact that patterns are typically induced from a specific
corpus, any such approach is of course affected by the problem of data sparseness, i.e.
the problem that there will never be enough data to learn all relevant patterns. In the
computational linguistics community, it has been shown that the Web can in some cases
be effectively used to overcome data sparseness problems (compare [9]).

In this paper, we explore whether the Web can effectively help to overcome data
sparseness as a supplementary data source for information extraction on limited cor-
pora. In particular we build on a weakly-supervised pattern learning approach in which

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 18129, 2007.
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patterns are derived on the basis of a few seed examples. A bootstrapping approach then
induces patterns, matches these on the corpus to extract new tuples and then alternates
this process over several iterations. Such an approach has been investigated before and
either applied only to the Web (see [3/]]) or only to a given (local) corpus [11]. We thus
combine advantages of two sources: the high reliability of a closed corpus and the high
redundancy of the Web.

The idea is as follows: given seed examples (e.g. (Warsaw, Poland) and
(Paris, France)) of a specific relation (e.g. locatedIn) to be extracted (appearing in
the local corpus), we can consult the Web for patterns in which these examples appear.
The newly derived patterns, which in essence are a generalization of plain string occur-
rences of the tuples, can then be matched on the Web in order to extract new examples
which are taken into the next iteration as seeds. Then, we can search for patterns for
the increased set of examples (coming from the Web) in the corpus, thus effectively
leading to more patterns. Overall, we experiment with different variations of the basic
pattern induction algorithm on seven different relation datasets. Our experiments show
on the one hand that lack of redundancy can be definitely compensated by increasing
the number of seeds provided to the system. On the other hand, the usage of the Web
yields even better results and does not rely on the provision of more training data to the
system in the form of seeds.

In this paper, we use Wikipedi{l as local corpus and access the Web through the
Google API. In the next Section, we motivate the need for an approach to overcome
data sparseness both quantitatively and qualitatively by giving some examples. Then, in
Section 3] we present our bootstrapping approach to pattern induction which alternates
the usage of the (local) corpus and the Web and its implementation in our Pronto system.
Section [ presents our experiments and results. Before concluding, we discuss some
related work in Section 3

2 Motivation

Specialized text corpora such as company intranets or collections of scientific papers
are non-redundant by design. Yet they constitute a valuable source for information ex-
traction as they are typically more reliable and focussed than the general Web (cf. [8]]
for an analysis of structure and content of corporate intranets).

In our present experiments we use Wikipedia as a non-redundant, highly reliable and
(somewhat) specialized text collection of limited size that is freely accessible to the
entire community. As a first observation, we found that Wikipedia is hardly redundant.
We computed the number of page co-occurrences of instances of four test relations
taking the Google result count estimates for searches of individual relation instances
limited to the Wikipedia site. As a result we found that most relation instances do not
co-occur more than 100 times (median: 15). When doing the same counts on the entire
Web, hardly any instance occurs less than 100 times, the median lies at 48000. The
effect increases when considering that page co-occurrence does not suffice for a relation
instance to be extracted. Patterns only match a limited context. In our case, we match
10 tokens around each link relating it to the document title. This reduces the number

'Mttp://en.wikipedia.org
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of times, a candidate relation instance occurs in the corpus dramatically to an average
of 1.68 (derived by counting the number of times that the top 200 relation instances for
each relation occur in the index).

It is thus our goal to assess how effectively Web-based extraction can serve as back-
ground knowledge to extraction on a smaller corpus. That is, we will not use the Web
to extract additional information, but only to make up for a lack of redundancy in the
small corpus. In particular no information found on the Web goes into the result set
without being verified on the small corpus as otherwise the benefits of the smaller cor-
pus (higher quality, domain specificity, availability of further background knowledge)
would be lost. In what follows, we describe the approach in more detail.

3 Approach

Our Pronto system uses a generic pattern learning algorithm as it is typically applied on
the Web. It works analogously to many of the approaches mentioned in the introduction
implementing a similar bootstrapping-based procedure. The Pronto system has been
previously described in further detail [2]. The algorithm starts with a set of initial tuples
S’ of the relation in question — so called seeds — and loops over a procedure which starts
by acquiring occurrences of the tuples currently in S. Further, patterns are learned by
abstracting over the text occurrences of the tuples. The new patterns are then evaluated
and filtered before they are matched. From these matches, new tuples are extracted,
evaluated and filtered. The process is stopped when the termination condition DONE is
fulfilled (typically, a fixed number of iterations is set). The learning is thus inductive in
nature abstracting over individual positive examples in a bottom-up manner. Learning
essentially takes place in a generate-and-test manner.

Figure [1] describes our modification of the algorithm. It basically consists of a sub-
sequent application of the loop body on the Web and the wiki. Web matching and wiki
matching contribute to the same evolving set of tuples .S but maintain separate pattern
pools Py, and P,;;. This separation is done to allow for different types of pattern
representation for the different corpora.

An important novelty is checking each tuple ¢ derived from the Web using PRESENT-
IN-WIKI(t). This ensures that no knowledge that is actually not present in Wikipedia
goes into the set of results. Otherwise, the extraction procedure would not be able to
benefit from the higher quality in terms of precision that the wiki corpus can be assumed
to present.

3.1 Extraction from the Web

Given a number of seeds at the start of each of the algorithm’s iterations, occur-
rences of these seed tuples are searched on the Web. For example, given a tuple
(Stockholm, Sweden) for the locatedIn relation, the following query would be sent
to the Google Web Search API:

"Stockholm" "Sweden"

For each instance of the locatedIn relation a fixed number nuM yaichTuples,., Of Te-
sults is retrieved for a maximum of nuMyypieLimit instances. These occurrences

web
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WEB-WIKI PATTERN INDUCTION( PatternsP’, TuplesS")

I S5
2 Py — P
3 while not DONE
4 do
5 Occy < WEB-MATCH-TUPLES(.S)
6 Pyeb < Puwer U LEARN-PATTERNS(Occy)
7 EVALUATE-WEB-PATTERNS( Pyep )
8 Pyet < {p € Puer | WEB-PATTERN-FILTER-CONDITION(p) }
9 Occp < WEB-MATCH-PATTERNS(Pyyep)
10 S« S + EXTRACT-TUPLES(Occy)
11 S « {t € S| PRESENT-IN-WIKI(t)}
12 EVALUATE-WEB-TUPLES(S)
13 S « {t € S| TUPLE-FILTER-CONDITION(%)}
14 Occy < WIKI-MATCH-TUPLES(S)
15 Puiki < Puwiri U LEARN-PATTERNS(Occy)
16 EVALUATE-WIKI-PATTERNS( Piki)
17 Puiki < {p € Puwiri | WIKI-PATTERN-FILTER-CONDITION(p) }
18 Occp < WIKI-MATCH-PATTERNS(P)
19 S« S + EXTRACT-TUPLES(Occy)
20 EVALUATE-WIKI-TUPLES(S)

21 S « {t € S| TUPLE-FILTER-CONDITION(%)}

Fig. 1. Combined Web and wiki pattern induction algorithm starting with initial patterns P’ and
tuples S’ maintaining two pattern pools Pyep and Pix;

serve as input to pattern learning if the arguments are at most MmaZqrgpist tokens
apart. For our experiments we chose maZq,gpist = 4, MUMmatchTuples,., = 00 and
NUMmatchTuplesyep, — 200.

LEARN-PATTERNS generates more abstract versions of the patterns. We take a
generate-and-test approach to learning. LEARN-PATTERNS produces a large amount
of patterns by combining (“merging”) sets of occurrences by keeping common tokens
and replacing tokens in which the patterns differ by “*” wildcards. Thus, the general-
ization is effectively calculating the least general generalization (LGG) of two patterns
as typically done in bottom-up ILP approaches (compare [10]]).

To avoid too general patterns, a minimum number of non-wildcard tokens is en-
forced. To avoid too specific patterns, it is required that the merged occurrences reflect
at least two different tuples.

EVALUATE-WEB-PATTERNS(P,,.p) assigns a confidence score to each pattern. The
confidence score is derived as the number of different tuples from which the pattern
has been derived through merging. This measure performs better than other strategies
as shown in [2]]. Evaluation is followed by filtering applying WEB-PATTERN-FILTER-
CONDITION(p) which ensures that the top pool,,e, = 50 patterns are kept. Note that
the patterns are kept over iterations but that old patterns compete against newly derived
ones in each iteration.

EVALUATE-WEB-PATTERNS(P,,.;) matches the filtered pattern set on the Web
retrieving nUMmatch Patterns., ., fesults per pattern. A pattern like
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“flights to ARG , ARG from ANY airport”
for the locatedIn relation would be translated into a Google-query as follows:
"flights to =« * from » airport"

A subsequent more selective matching step enforces case and punctuation which
are ignored by Google. All occurrences are stored in Occ, from which EXTRACT-
TuPLES(Occ,) extracts the relevant relation instances by identifying what occurs
at the positions of ARG; and ARGs. For the present experiments we chose
NUMmatchPatternsyey, — 200.

The above-mentioned PRESENT-IN-WIKI(¢) check ensures that Web extractions for
which no corresponding link-title pair is present in the Wikipedia are eliminated. This
way, the high quality of content of Wikipedia is used to filter Web results and only those
instances are kept that could in principle have been extracted from Wikipedia. Yet, the
Web results increase the yield of the extraction process.

All parameters employed have been determined through extensive initial tests.

3.2 Extraction from Wikipedia

This section presents our approach to pattern matching for relation extraction on
Wikipedia. We describe pattern structure and index creation before going into detail
on the individual steps of the algorithm in Figure[Tl

For pattern matching on Wikipedia, we make use of the encyclopedic nature of the
corpus by limiting focussing on pairs of hyperlinks and document titles. It is a common
assumption when investigating the semantics in documents like Wikipedia (e.g. [17])
that key information on the entity described on a page p lies within the set of links on
that page [(p) and in particular that it is likely that there is a salient semantic relation
between p and p’ € I(p).

We therefore consider patterns consisting of the document title and a hyperlink
within its context. The context of 2 * w tokens around the link is taken into account
because we assume that this context is most indicative of the the nature of the semantic
relation expressed between the entity described in the article and the one linked by the
hyperlink. In addition, a flag is set to indicate whether the first or the second argument
of the relation occurs in the title. Each token can be required to be equal to a particular
string or hold a wildcard character. For our experiments we chose w = 5.

To allow for efficient matching of patterns and tuples we created an index of all
hyperlinks within Wikipedia. To this end, we created a database table with one row for
each title/link pair featuring one column for link, title and each context token position.
The link was created from the Wiki-Syntax version of the document texts using a
database dump from December 17th 2006. The table has over 42 Million records.
We omitted another 2.3 Million entries for links lying within templates to maintain
generality as templates are a special syntactic feature of Wikipedia that may not transfer
to similar corpora. Tokenization has been done based on white space. Hyperlinks are
considered one token. Punctuation characters and common sequences of punctuation
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characters as well as HTML markup sequences are considered separate tokens even if
not separated by white space. HTML comments and templates were omitted.

Tuple Matching and Pattern Learning. For each of at most numMmatchTuplesy; =
50 tuples, WIKI-MATCH-TUPLES(S) sends two queries to the index. One for each
possibility to map argument 1 and 2 to title and link. Like in the Web case there is a
maximum limit for matches numpatchTupies,; = 200 but it is hardly ever enforced
as virtually no tuple is mentioned more than three times as a link-title pair. The same
LEARN-PATTERNS(Occ;) method is applied as in the Web setting. Like in the Web
setting, EVALUATE-WIKI-PATTERNS (P,;x; ) takes into account the number of distinct
tuples which participated in the creation of a pattern. Finally, WIKI-PATTERN-FILTER-
CONDITION(p) retains the top pooly,., = 50 patterns for matching.

Pattern Matching and Tuple Generation. WIKI-MATCH-PATTERNS(P) retrieves
from the index a random sequence of NUMpatchPatterns,,; = ©0 matches of the
pattern by selecting those entries for which the non-wildcard context tokens of the pat-
terns are present in the correct positions. EXTRACT-TUPLES(Occ,) then generates a
tuple instance for each distinct title/link pair occurring in the selected index entries.
EVALUATE-WIKI-TUPLES(.S) and TUPLE-FILTER-CONDITION(¢) are currently not
enabled to maximize the yield from the wiki.

The termination condition DONE is currently implemented to terminate the process-
ing after 10 iterations.

3.3 Summary

Extraction from both the Web and the wiki index follow the same basic procedure. Pa-
rameters have been adapted to the different levels of redundancy in the text collections.
In addition, the pattern structure of the patterns have been chosen is different to allow
link-title matches in the wiki and window co-occurrences for the Web. The PRESENT-
IN-WIKI(t) check ensures that the Web only facilitates extraction but does not provide
knowledge not present in the wiki.

4 Evaluation

The goal of this study is to show how information extraction from the Web can be used
to improve extraction results on a smaller corpus, i.e. how extraction on a precise, spe-
cialized corpus can benefit from a noisy but redundant source. We do so by running
our system in two configurations employing Web extraction and an additional baseline
condition. As the assumption is that Web extraction can make up for the lack of re-
dundancy which is particularly important in the beginning of the bootstrapping process,
we compare how the different configurations behave when provided with smaller and
bigger amounts of seed examples.

4.1 Datasets

For the selection of seed instances and for automatic evaluation of results, 7 data sets
consisting of the extensions of relations have been created:
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— albumBy: 19852 titles of music albums and their artists generated from the
Wikipedia category “Albums by Artist”.

— borninYear: 172696 persons and their year of birth generated from the Wikipedia
category “Births by Year”.

— currencyOf: 221 countries and their official currency according to DAML export
of the CIA World Fact Book. Manual modifications were done to reflect the intro-
duction of the Euro as official currency in many European countries.

— headquarteredIn: 14762 names of companies and the country they are based in
generated from the Wikipedia category “Companies by Country”.

— locatedIn: 34047 names of cities and the state and federal states they are located in
generated from the Wikipedia category “Cities by Countries”. Note that a consid-
erable number of cities are contained in this data set with both their state and their
federal state.

— productOf: 2650 vehicle product names and the brand names of their makers gen-
erated from the Wikipedia category “Vehicles by Brand”.

— teamOf: 8307 soccer players and the national teams they were playing for between
1950 and 2006.

It is important to note that also the Wikipedia collections have been compiled manually
by authors who assigned the documents to the respective categories and checked by
further community members. Thus, the datasets can be regarded to be of high quality.
Further, due to the vast coverage of Wikipedia the extensions of the relations can be
assumed to be relatively complete.

Most of the above described datasets have been obtained from Wikipedia by auto-
matically resolving category membership with the help of the CatScarf] Tool by Daniel
Kinzler. CatScan was applied iteratively to also obtain members of sub-categories.

The data sets have been chosen to differ according to various dimensions, most no-
tably in size. The currencyOf dataset, for example, is relatively small and constitutes a
relation with clear boundaries. The other relations are likely not be reflected fully in the
data sets.

Small samples (size 10, 50 and 100) of the datasets were taken as input seeds. With
two exceptionsﬁ, we took the number of in-links to the Wikipedia articles mentioned in
each tuple as an indicator for their significance in the corpus and selected the top n sam-
ples with respect to the harmonic mean of these counts. Initial tests showed that taking
prominent instances as seeds strongly increases the system performance over random
seeds. It can be expected that in most real scenarios prominent seeds are available as
they should be those best known to the users.

2 http://www.daml.org/2001/12/factbook/

3 This data set is a courtesy of the SmartWeb consortium (see http://www.smartweb-
project.de/)).

‘lhttp://meta.wikimedia.org/wiki/User:Duesentrieb/CatScan

> For cities we took the average living costs as an indicator to ensure that Athens Greece was
ranked higher than Athens, New York. (Population would have skewed the sample towards
Asian cities not prominently mentioned in the English Wikipedia.) For Albums we required
titles to be at least 10 characters in length to discourage titles like “Heart” or “Friends”


http://www.daml.org/2001/12/factbook/
http://www.smartweb-project.de/
http://www.smartweb-project.de/
http://meta.wikimedia.org/wiki/User:Duesentrieb/CatScan
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4.2 Experimental Conditions

To assess the added value of Web extraction, we compare three configurations of the
above algorithm.

Dual: Exactly as formalized in Figure [T} this condition iterates the bootstrapping per-
forming both, Web and wiki extraction in every iteration.

Web once: The processing runs like in Figure[Ilbut the lines 5 to 12 are executed only
in the first iteration. Thereby, the seed set is augmented once by a set of learned relation
instances. After that, processing is left to Wikipedia extraction.

Wiki only: As a baseline condition, extraction is done on Wikipedia only. Thus line 5
to 12 in Figure[ are omitted entirely.

Figure [0 is simplified in one respect. Initial tests revealed that performing the
PRESENT-IN-WIKI(¢) filter in every iteration was too strict so that bootstrapping was
quenched. We therefore decided to apply the filter in every third iterationd. A consid-
erable number of — also correct — instances were filtered out when applying the filter.
Consequently we only present results after iteration 3, 6 and 9 for comparability rea-
sons.

We performed extraction with each of the three configurations for 10 iterations while
varying the size of the seed set. Presenting the 10, 50 and 100 most prominent relation
instances as seed sets to test how the different configurations affect the system’s ability
to bootstrap the extraction process.

4.3 Evaluation Measures

In our experiments, we rely on the widely used P(recision) and R(ecall) measures to
evaluate system output. These measures compute the ratio of correctly found instances
to overall tuples extracted (precision) or all tuples to be found (recall).

As the fixed number of iterations in our experiments poses a fixed limit on the num-
ber of possible extractions we use a notion of (R)elative (R)ecall assuming maximally
extracted number of tuples by any configuration in any iteration with the given relation.
With Y,.(i, m) being the Yield, i.e. number of extractions (correct and incorrect) at it-
eration 7 for relation r with method m and p,. (¢, m) the precision respectively, we can
formalize relative recall as
Y. (i,m) * P.(i,m)

max; , Yy (i,m)

RR,(i,m) =

The F-measure (more precisely Fi-measure) is a combination of precision and recall
by the harmonic mean.

4.4 Results

Figure [2] presents results of the extraction runs with the different configurations start-
ing with seed sets of different sizes. The figures show precision, relative recall and

® As the filter is always applied to all tuples in S this does not lead to the presence of non-wiki
patterns in the final results. Yet, the non-wiki patterns seem to help bootstrapping before they
are eliminated.
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Fig. 2. Precision, relative recall and F-measure for results derived with different configurations
and seed set sizes. Grayed columns are not very indicative as due to the low recall the results
largely consist of the seed set. The mark << is to indicate that performance is statistically sig-
nificantly worse than all other runs.
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Fig. 3. Correct yield counts after 3, 6 and 9 iterations. Triangles mark Web once results, diamonds
Dual and squares Wiki only. Strong lines indicate results with 50 seeds. Results with 10 seeds are
higher 100 are lower.

F-measure after 9 iterations of the extraction algorithm. The scores are averaged
over the performance on the seven relations from our testbed. Precision for the Web-
supported configurations ranges between 0.32 and 0.55 depending on the configuration.
We grayed the precision bars for the wiki only conditions with 10 and 50 seeds as the
output contains largely seed tuples (95% for 10 seeds, 25% for 50 seeds) which accounts
for the precision score.
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We can observe that a purely wiki-based extraction performs very bad with 10 seeds
and still far less from optimal with 50 seeds. A two-sided pairwise Student’s t-test in-
dicates in fact that the Wiki only strategy performs significantly worse than the other
Web-based configurations at a seed set size of 10 (a« = 0.05) as well as for a seed set
size of 50 (av = 0.1). This clearly corroborates our claim that the integration of the Web
improves results with respect to a Wiki-only strategy at 10 and 50 seeds.

Figure 3] shows the number of correctly extracted tuples averaged over the test re-
lations after 3, 6 and 9 iterations. 50 seeds have been provided as training. In the wiki
only configuration (square markers) the system is able to quickly derive a large num-
ber of instances but shows only slow increase of knowledge after iteration 3. The other
configurations show a stronger incline between the iterations 3 and 9. This confirms
the expected assumption that the low number of results when extracting solely from the
wiki is due to an early convergence of the process. It is interesting to observe that the
Web once condition slightly outperforms the Dual condition. This allows to assume that
the major benefit of integrating the Web into the process lies in the initial extension of
the seed set. Further investigation of this observation would require more iterations and
further modifications of the configuration.

Overall, we can conclude that in this setting using the Web as background knowl-
edge allows to produce more recall in hardly redundant corpora while maintaining the
precision level. Yet, a larger seed set can also compensate for the lack of redundancy.

5 Related Work

The iterative induction of textual patterns is a method widely used in large-scale infor-
mation extraction. Sergey Brin pioneered the use of Web search indices for this purpose
(3. Recent successful systems include KnowlItAll which has been extended to auto-
matic learning of patterns [7] and Espresso [[11]. Espresso has been tested on the typi-
cal taxonomic is-a and part-of relations, but also the (political) succession, (chemical)
reaction and productOf relations. Precision ranges between 49% and 85% for those
relations. In a setup where it uses an algorithms similar to the one described above,
KnowlItAll is able to reach around 80% when limited to the task of named entity classi-
fication.

Apart from pattern-based approaches, a variety of supervised and semi-supervised
classification algorithms has been applied to relation extraction. The methods include
kernel-based methods [I86] and graph-labeling techniques [4]. The advantage of such
methods is that abstraction and partial matches are inherent features of the learning
algorithm. In addition, kernels allow incorporating more complex structures like parse
trees which cannot be reflected in text patterns. However, such classifiers require testing
all possible relation instances while with text patterns extraction can be significantly
speeded up using search indices. Classification thus requires linear-time processing of
the corpus while search-patterns can lead to faster extraction.

In the present study, Wikipedia is used as a corpus. We used it to simulate an in-
tranet scenario which shares with Wikipedia the properties of being more acurate, less
spam-prone and much less redundant than the World Wide Web. Wikipedia is currently
widely used as a corpus for information extraction from text. One example is a study by
Suchanek et al. [T5]] who focus on high-precision ontology learning and population with
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methods specifically tailored to Wikipedia. Wikipedia’s category system is exploited as-
suming typical namings and composition of categories that allow to deduce semantic
relations from category membership. In information extraction from Wikipedia
text is done using hyperlinks as indicators for relations just like in the present study. As
opposed to the work presented here it relies on WordNet as a hand-crafted formal taxon-
omy and is thus limited to relations for which such sources exist. Precision of 61-69%
is achieved which is comparable to our results given the relative good extractability of
the hyponomy and holonymy relations on which the tests have been performed.

6 Conclusion

The results we present here indicate that Web-based information extraction can help
improving extraction results even if the task at hand requires extraction from a closed,
non-redundant corpus. In particular, we showed that with extraction based on 10 seed
examples and incorporating the Web as “background knowledge” better results could
be achieved than using 100 seeds solely on Wikipedia. The potential of the approach
lies in the fact that the additional information does not require formalization (like e.g.
in WordNet) nor is it limited to a particular domain.

In future studies one can improve results by including additional techniques like
part-of-speech tagging and named-entity tagging that have been omitted here to main-
tain generality of the study. In addition to the title-link pairs considered here, further
indicators of relatedness can be considered to increase coverage.

We see applications of the derived results in domains like e-Science in particular
fields in which research is focussed on some relations (e.g. protein interaction) and for
which large non-redundant text collections are available.
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Abstract. Nearest neighbour search (NNS) is an old problem that is
of practical importance in a number of fields. It involves finding, for
a given point g, called the query, one or more points from a given set
of points that are nearest to the query ¢. Since the initial inception of
the problem a great number of algorithms and techniques have been
proposed for its solution. However, it remains the case that many of the
proposed algorithms have not been compared against each other on a
wide variety of datasets. This research attempts to fill this gap to some
extent by presenting a detailed empirical comparison of three prominent
data structures for exact NNS: KD-Trees, Metric Trees, and Cover Trees.
Our results suggest that there is generally little gain in using Metric Trees
or Cover Trees instead of KD-Trees for the standard NNS problem.

1 Introduction

The problem of nearest neighbour search (NNS) is old [I] and comes up in
many fields of practical interest. It has been extensively studied and a large
number of data structures, algorithms and techniques have been proposed for
its solution. Although nearest neighbour search is the most dominant term used,
it is also known as the best-match, closest-match, closest-point and the post
office problem. The term similarity search is also often used in the information
retrieval field and the database community. The problem can be stated as follows:

Given a set of n points S in some d-dimensional space X and a distance
(or dissimilarity) measure M, the task is to preprocess the points in S
in such a way that, given a query point ¢ € X, we can quickly find the
point in S that is nearest (or most similar) to g.

A natural and straightforward extension of this problem is k-nearest neighbour
search (k-NNS), in which we are interested in the & (< |S|) nearest points to ¢
in the set S. NNS then just becomes a special case of k-NNS with k=1.

Any specialized algorithm for NNS; in order to be effective, must do better
than simple linear search (the brute force method). Simple linear search, for n d-
dimensional data points, gives O(dn) query timd] and requires no preprocessing.

! Time required to return the nearest neighbour(s) of a given query.

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 140-[I51] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Ideal solutions exist for NNS for d < 2, that give O(dlogn) query time, and take
O(dn) space and O(dnlogn) preprocessing time. For d = 1 it is the binary search
on a sorted array, whereas for d = 2 it is the use of Voronoi diagrams and a fast
planar point location algorithm [2]. For d > 2, all the proposed algorithms for
NNS are less than ideal. Most of them work well only in the expected case and
only for moderate d’s (< 10). At higher d’s all of them suffer from the curse-
of-dimensionality [3], and their query time performance no longer improves on
simple linear search. Algorithms that give better query time performance at
higher d’s exist but only for relaxations of NNS, i.e. for approximate NNS [4IJ5],
near neighbour search [6l7], and approximate near neighbour search [7].

KD-Trees are among the most popular data structures used for NNS. Metric
Trees are newer and more broadly applicable structures, and also used for NNS.
Recently a new data structure, the Cover Tree, has been proposed [8], which has
been designed to work well even at higher dimensions provided the data has a low
intrinsic dimensionality. This paper presents an empirical comparison of these
three data structures, as a review of the literature shows that they have not yet
been compared against each other. The comparison is performed on synthetic
data from a number of different distributions to cover a broad range of possible
scenarios, and also on a set of real-world datasets from the UCI repository.

The rest of the paper is structured as follows. Section 2 contains a brief
overview of the three data structures that are compared. Section 3 presents the
experimental comparison. It outlines the evaluation procedure employed, and
also presents the empirical results. The paper concludes with some final remarks
in Section 4.

2 Brief Overview of the NNS Data Structures

The following sub-sections give a brief overview of KD-Trees, Metric Trees and
Cover Trees. Particular emphasis has been given to Cover Trees, to provide an
intuitive description of the technique.

2.1 KD-Trees

KD-Trees, first proposed by Bentley [9], work by partitioning the point-space
into mutually exclusive hyper-rectangular regions. The partitioning is achieved
by first splitting the point-space into two sub-regions using an axis-parallel hy-
perplane, and then recursively applying the split process to each of the two
sub-regions. For a given query ¢, only those regions of the partitioned space are
then inspected that are likely to contain the k" nearest neighbour. Recursive
splitting of the sub-regions stops when the number of data points inside a sub-
region falls below a given threshold. To handle the degenerate case of too many
collinear data points, in some implementations the splitting also stops when the
maximum relative width of a rectangular sub-region (relative to the whole point-
space) falls below a given threshold. KD-Trees require points in vector form, and
use this representation very efficiently.
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Each node of a KD-Tree is associated with a rectangular region of the point-
space that it represents. Internal nodes, in addition to their region, are also asso-
ciated with an axis-parallel hyperplane that splits their region. The hyperplane
is represented by a dimension and a value for that dimension, and it conceptu-
ally sits orthogonal to that selected dimension at the selected value, dividing the
internal node’s region.

A number of different strategies have been proposed in the literature for the
selection of the dimension and the value used to split a region in KD-Trees.
This paper uses the Sliding Midpoint of Widest Side splitting strategy, which
produces good quality trees—trees that adapt well to the distribution of the
data and give good query time performance. This strategy, given in [10], splits a
region along the midpoint of the dimension in which a region’s hyper-rectangle
is widest. If, after splitting, one sub-region ends up empty, the selected split
value is slid towards the non-empty sub-region until there is at least one point
in the empty sub-region. For a detailed description, and a comparison of Sliding
Midpoint of Widest Side to other splitting strategies, see [11].

The search for the nearest neighbours of a given query ¢ is carried out by
recursively going down the branch of the tree that contains the query. On reach-
ing a leaf node, all its data points are inspected and an initial set of k-nearest
neighbours is computed and stored in a priority queue. During backtracking only
those regions of the tree are then inspected that are closer than the k*" nearest
neighbour in the queue. The queue is updated each time a closer neighbour is
found in some region that is inspected during backtracking. At the start, the
queue is initialized with k null elements and their distance to g set to infinity.

2.2 Metric Trees

Metric Trees, also known as Ball Trees, were proposed by Omohundro [12] and
Uhlmann [I3]. The main difference to KD-Trees is that regions are represented
by hyper-spheres instead of hyper-rectangles. These regions are not mutually
exclusive and are allowed to overlap. However, the points inside the regions are
not allowed to overlap and can only belong to one sub-region after a split. A split
is performed by dividing the current set of points into two subsets and forming
two new hyper-spheres based on these subsets. As in KD-Trees, splitting stops
when for some sub-region the number of data points falls below a given threshold.
A query is also processed as in KD-Trees, and only those regions are inspected
that can potentially contain the k'* nearest neighbour. Metric Trees are more
widely applicable than KD-Trees, as they only require a distance function to be
known, and do not put any restriction on the representation of the points (i.e.
they do not need to be in vector form, as in KD-Trees).

Each node of a Metric Tree is associated with a ball comprising the hyper-
spherical region that the node represents. The ball is represented by its centre,
which is simply the centroid of the points it contains, and its radius, which is
the distance of the point furthest from the centre.

A number of different construction methods for Metric Trees can be found
in the literature. This paper uses the Points Closest to Furthest Pair method
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proposed by Moore [I4]. This method first finds the point that is furthest from
the centre of a spherical region (centre of the whole point-space in the begin-
ning), and then finds another point that is furthest from this furthest point. The
method, thus, tries to find the two points in a region that are furthest from each
other. Then, points that are closest to one of these two points are assigned to
one child ball, and the points closest to the other one are assigned to the other
child ball. The method produces good quality Metric Trees that adapt well to
the distribution of the data. A detailed comparison of this method with other
construction methods for Metric Trees can be found in [IT].

2.3 Cover Trees

Cover Trees [§] try to exploit the intrinsic dimensionality of a dataset. They
are based on the assumption that datasets exhibit certain restricted or bounded
growth, regardless of their actual number of dimensions.

Cover Trees are N-ary trees, where each internal node has an outdegree < N.
Each node of the tree contains a single point p, and a ball which is centred at p.
The points are arranged in levels, such that each lower level acts as a cover for
the previous level, and each lower level has balls half the radius than the ones
at the previous level. The top level consists of a single point with a ball centred
at it that has radius 27, with an i/ big enough to cover the entire set of data
points. The next level consists of points with balls of half the radius than the
top-most ball (2il*1), which cover the points at a finer level. The bottom-most
level consists of points that have balls covering only those single points. A point
at any level 7 in the tree is also explicitly present in all the lower levels.

The structure is built by arbitrarily selecting a point from the list of data
points and creating the top-level ball. This same point is then used to build
a smaller ball at the next lower level. This creation of smaller balls from the
same point is repeated until we reach a level where a ball covers only that single
point. Then the procedure backtracks to the last higher-level cover ball that
still has unprocessed points, arbitrarily picks the next available point, and then
recursively builds cover balls for this point at lower levels. The procedure is
illustrated graphically in Figure [Tl

When searching for the nearest neighbours of a given query ¢, we go down
the levels of the tree, inspecting nodes at each level. At each level i we add only
those nodes for further inspection whose centre points are inside the query ball
(i.e. the ball centered at the query). The radius of the query ball is set to the
distance of the current best k' nearest neighbour (found from among the centre
points of the nodes so far inspected) plus the radius of the balls at the current
level i (which is 2¢). This amounts to shrinking the query ball as we go down
the levels, and inspecting children of only those nodes whose ball centres are
within the query ball. The search stops when at some level the inspected nodes
are all leaf nodes with no children. At this stage the k-nearest neighbours in our
priority queue are the exact k-nearest neighbours of the query. The procedure is
illustrated graphically in Figure[2l Note that the figure shows the final shrunken
query ball at each level.
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f—

(a) (b) (c)

Fig. 1. Tllustration of the construction method for Cover Trees. Tree at the end of (a)
the first branch of recursion, (b) the second branch of recursion, and (c) the third and
final branch of recursion.

i-1 \
e
i
I
i-3 -
I
i-4

Fig. 2. Illustration of Cover Tree query. The query ball shrinks as the search proceeds.

3 Empirical Comparison of the Data Structures

The comparison of the data structures is performed on synthetic as well as real-
world data. Synthetic data was used to experiment in controlled conditions, to
assess how they behave for increasing n (no. of data points) and increasing d
(no. of dimensions), while keeping the underlying distribution constant.

On synthetic data, the evaluation of the data structures was carried out for
d=2,4,8,16, 32,80 and n = 1000, 2000, 4000, 8000, 16000, 100000. For each com-
bination of n and d, data points were generated from the following distributions:
uniform, Gaussian, Laplace, correlated Gaussian, correlated Laplace, clustered
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Gaussian, clustered ellipsoids, straight line (not parallel to any axis), and noisy
straight line. Most of these distribution are provided in the ANN library [10], the
rest were added for this research. The correlated Gaussian and correlated Lapla-
cian distributions are designed to model data from speech processing, the line
distributions were added to test extreme cases, and the remaining distributions,
especially the clustered ones, model data that occurs frequently in real-world sce-
narios. More details on these distributions can be found in [I1].

The data structures were built for each generated set of data points, and were
evaluated first on 1000 generated query points that had the same distribution as
the data, and then on another 1000 generated query points that did not follow
the distribution of the data, but had uniform distribution. In other words, results
were obtained for increasing d for a fixed n, and for increasing n for a fixed d,
when the query did and when it did not follow the distribution of the data.
Moreover, each of these evaluations were repeated 5 times with different random
number seeds and the results were averaged. Note that for each dataset the
dimensions were normalized to the [0, 1] range.

To obtain results for real-world data, we selected datasets from the UCI reposi-
tory that had at least 1000 examples. In each case, the class attribute was ignored
in the distance calculation. Nominal attributes were treated as integer-valued at-
tributes, and all attributes were normalized. Missing values were replaced by the
mean for numeric attributes, and the mode for nominal ones. On each dataset,
the data structures were evaluated 5 times using a random 90/10 data/query set
split, and the results reported are averages of those 5 runs. Also, the evaluations
for both the artificial and the real-world data were repeated for £k = 1,5, and 10
neighbours.

All three data structures compared have a space requirement of O(n). For
Cover Trees though, the exact space is comparatively higher since it has max-
imum leaf size 1, but for KD-Trees and Metric Trees it is very similar as they
both have maximum leaf size 40. The construction time for Cover Trees is
O(c®nlogn) [8] (where c is the expansion constant of the dataset [§]), but for
KD-Trees and Metric Trees, with their chosen construction methods, it is not
guaranteed. However, in the expected case they do construct in O(nlogn) time.
The query time of Cover Trees is O(c'?logn) [§], whereas for KD-Trees and Met-
ric Trees it is O(logn) in the expected case for lower d’s. Note that the constant
c for Cover Trees is related to the assumption of restricted growth of a dataset,
and can sometimes vary largely even within a dataset [8]. Hence, for all the data
structures the space is guaranteed, but the construction and query times can
best be observed empirically.

For the comparison of query time, linear search is also included in the exper-
iments as a baseline. All compared techniques, including the linear search, were
augmented with Partial Distance Calculation [I5ITI], which skips the complete
distance calculation of a point if at some stage the distance becomes larger than
the distance of the best k" nearest neighbour found so far.

For all the experiments the leaf size of KD-Trees and Metric Trees was set
to 40. The threshold on a node’s maximum relative width in KD-Trees was
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set to 0.01. All algorithms were implemented in Java and run under the same
experimental conditions The Cover Tree implementation we used is a faithful
port of the original C implementation provided by the authors. Note that the
base for the radii of the balls in the algorithm was set to 1.3 instead of 2 in the
C implementation, and thus also in ours.

3.1 Results

We present construction times and query times for the synthetic data. For the
real-world datasets, only the query times are given, to support the main conclu-
sions observed from the synthetic data.

Figure [B] shows the construction times of the structures on synthetic data for
increasing n, for d = 4, and also for increasing d, for n = 16000. Figures @l and [
show the query times, Figure[ for increasing n for k = 5 and d = 8, and Figure[Q]
for increasing d for k = 5 and n = 16000. All axes are on log scale.

It can be observed from Figure B that KD-Trees exhibit the best construction
time overall. On all but the line distribution, their construction time grows at
the same rate as for the other techniques, but is a constant times faster. The
construction time of Cover Trees is very similar to that of Metric Trees on
distributions other than the line, but for d > 16 it grows exponentially and
becomes worst overall.

Considering query time, Figures @ and B show that all three tree methods
suffer from the curse-of-dimensionality, and generally become worse than linear
search for d > 16. At higher d’s they are only better than linear search if the
points are clustered or lie on a line. KD-Trees are the best method if the query
points have the same distribution as the data used to build the trees, otherwise
KD-Trees are best for low d’s, but for higher d’s Cover Trees are best. Metric
trees generally perform somewhat better than Cover Trees when the query points
have the same distribution as the original data, and somewhat worse otherwise.
However, their query times are generally quite close. When the query distribution
is not changed to be uniform, KD-Trees, in terms of both construction and query
time, are worse than the others only for points lying on a line, a case that is
uncommon in practice. Trends like the ones in Figures [3, M and Bl were also
observed for k =1 and k£ = 10, and other values of d and n.

Table [l shows the query time of the data structures on the UCI data. All
the techniques are compared against KD-Trees, and the symbols o and e denote
respectively, whether the query time is significantly worse or better compared
to KD-Trees, according to the corrected resampled paired t-test [16]. It can be
observed that KD-Trees are significantly better than the rest on most datasets.
In some cases they are still better than linear search even at higher d’s (the
dimensions are given in brackets with the name of a dataset). It can also be
observed that, in most cases, and in contrast to the results on the artificial data,
Cover Trees outperform Metric Trees.

2 All implementations are included in version 3.5.6 of the Weka machine learning
workbench, available from http://www.cs.waikato.ac.nz/ml/weka.
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Table 1. Query time of the data structures on UCI data

Dataset KD-Trees Linear Search Metric Trees Cover Trees
car(7) 0.03 0.07 o 0.08 o 0.07 o
mfeat(7) 0.02 0.11 o 0.03 0.04 o
cme(10) 0.02 0.05 o 0.07 o 0.04 o
german-credit(21) 0.06 0.06 0.09 o 0.09 o
segment (20) 0.03 0.13 o 0.08 o 0.08 o
page-blocks(11) 0.04 0.76 o 0.17 o 0.18 o
sick(30) 0.15 0.60 o 0.78 o 0.21 o
hypothyroid(30) 0.21 0.82 o 1.06 o 0.27 o
kr-vs-kp(37) 0.40 0.57 o 1.03 o 0.54 o
nursery(9) 0.76 2.91 o 7.31 o 4.54 o
mushroom(23) 0.34 2.44 o 4.05 o 1.04 o
pendigits(17) 0.44 3.01 o 1.22 o 1.07 o
splice(62) 2.10 1.93 e 2.53 o 2.29 o
waveform (41) 4.67 4.35 o 6.05 o 6.00 o
letter(17) 4.00 11.42 o 8.20 o 6.16 o
optdigits(65) 4.50 4.79 o 5.52 o 4.13 o
ipums-la-97-small(61) 4.91 4.60 o 6.27 o 5.53 o
ipums-la-98-small(61) 4.48 4.00 o 5.77 o 5.25 o
ipums-la-99-small(61) 6.42 5.60 e 8.22 o 7.63 o
internet-usage(72) 26.90 23.90 o 35.73 o 32.45 o
auslan2(27) 23.71 660.73 o 100.33 o 101.62 o
auslan(14) 28.54 2162.14 o 297.02 o 123.70 o
ipums-la-98(61) 474.78 364.63 o 602.31 o 580.48 o
census-income-test(42) 189.06 556.99 o 976.03 o 624.07 o
ipums-la-99(61) 666.84 513.60 e 862.59 o 839.27 o
abalone(9) 0.06 0.27 o 0.20 o 0.12 o
ailerons(41) 4.35 8.57 o 11.20 o 10.47 o
bank32nh(33) 11.06 9.82 e 13.84 o 14.56 o
2dplanes(11) 12.81 42.56 o 39.08 o 23.05 o
bank8FM(9) 0.68 1.76 o 1.52 o 1.51 o
cal-housing(9) 1.33 7.60 o 2.60 o 2.70 o
cpu-act(22) 0.54 3.32 o 1.91 o 1.79 o
cpu-small(13) 0.23 2.52 o 1.02 o 0.92 o
delta-ailerons(6) 0.10 0.81 o 0.39 o 0.40 o
delta-elevators(7) 0.21 1.48 o 1.00 o 0.94 o
elevators(19) 3.28 7.69 o 8.55 o 7.71 o
fried(11) 16.08 45.07 o 61.27 o 47.43 o
house-16H(17) 3.53 25.79 o 12.93 o 10.06 o
house-8L(9) 1.30 16.79 o 4.57 o 3.91 o
CorelFeatures-ColorHist(33) 16.67 157.90 o 155.29 o 75.05 o
CorelFeatures-ColorMoments(10)  23.64 90.38 o 54.72 o 50.14 o
CorelFeatures-CoocTexture(17) 20.83 110.80 o 32.76 o 32.56 o
CorelFeatures-LayoutHist(33) 35.01 177.49 o 120.31 o 104.83 o
el-nino(12) 173.40 481.58 o 2056.06 o 1000.63 o
kin8nm(9) 0.89 1.93 o 2.20 o 1.85 o
mv(11) 8.56 36.28 o 21.60 o 12.11 o
pol(49) 1.20 14.98 o 9.61 o 6.02 o
puma32H(33) 9.86 8.42 o 12.21 o 12.96 o
puma8NH(9) 0.94 1.97 o 2.33 o 2.02 o
quake(4) 0.01 0.07 o 0.02 0.02 o

o/e Statistically worse/better at 95% confidence level.

4 Conclusions

Most of the data structures and techniques proposed since the initial inception of
the NNS problem have not been extensively compared with each other, making
it hard to gauge their relative performance.

KD-Trees are one of the most popular data structures used for NNS for moder-
ate d’s. Metric Trees are more widely applicable, and also designed for moderate
d’s. The more recently proposed Cover Trees have been designed to exploit the
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low intrinsic dimensionality of points embedded in higher dimensions. This pa-
per has presented an extensive empirical comparison of these three techniques on
artificial and real-world data. It shows that Metric Trees and Cover Trees do not
perform better than KD-Trees in general on the standard NNS problem. On our
synthetic data, Cover Trees have similar query time to Metric Trees, but they
outperform Metric Trees on real-world data. However, Cover Trees have a higher
construction cost than the other two methods when the number of dimensions
grows.
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Abstract. Partial rankings are totally ordered subsets of a set of items.
For example, the sequence in which a user browses through different
parts of a website is a partial ranking. We consider the following problem.
Given a set D of partial rankings, find items that have strongly different
status in different parts of D. To do this, we first compute a clustering of
D and then look at items whose average rank in the cluster substantially
deviates from its average rank in D. Such items can be seen as those that
contribute the most to the differences between the clusters. To test the
statistical significance of the found items, we propose a method that is
based on a MCMC algorithm for sampling random sets of partial rankings
with exactly the same statistics as D. We also demonstrate the method
on movie rankings and gene expression data.

1 Introduction

Partial rankings are totally ordered subsets of a set of items. For example, the
set of items might contain all products available at an Internet store, while a
partial ranking contains only products viewed by one user, ranked in the order
the user clicked on their descriptions. Partial rankings can be found for example
in clickstream analysis, collaborative filtering and different scientific applications,
such as analysis of microarray data.

Given a set of partial rankings we can construct a clustering so that similar
rankings are assigned to the same cluster [6]. The rankings belonging to the same
cluster can be aggregated to form a condensed representation of the cluster. This
representation can be for example a total or partial order on the complete set of
items. However, comparing the aggregate representations between clusters can
sometimes be difficult. Especially if the number of items is very large, it can be
hard to quickly identify features that separate the clusters from each other.

For example, consider microarray data where the expression levels of a number
of genes have been measured in different tissues or under different conditions.
Typically this kind of data is represented as a matrix, where the rows correspond
to different genes and columns to different tissues/conditions. This data can be
converted to partial rankings by sorting the tissues separately for each gene in
decreasing order of the level of expression. These rankings are indeed partial,
due to missing data. The partial rankings can be clustered to find out in what
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© Springer-Verlag Berlin Heidelberg 2007
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tissues the expression of genes belonging to a cluster is exceptionally strong or
weak. This type of analysis is relevant in cases where one wants to identify the
tissues or conditions in which a certain set of genes is more active than the rest.

As another example, consider movie ratings given by viewers. These ratings
can be converted to partial rankings as well. In general people tend to prefer
the same movies: if a movie is very good (or bad), then it is likely that the
vast majority of all viewers considers it is good (or bad). But some titles divide
the opinions of the viewers more than others. One of such films is for example
Pulp Fiction by Quentin Tarantino. People either think it is a very good movie
— maybe because of the distinct style of the director — or are appalled by the
violence and use of language. What we might thus expect, is that when movie
rating data is divided to, say, two clusters, the titles that end up as discriminative
are movies that have a fairly strong fan base, but are frowned upon or otherwise
disliked by others.

This leads to the idea of an alternative representation for a cluster. Instead of
using a total or partial order as the aggregate representation, we can list those
items that are ranked either distinctively high or low by the partial rankings in
a cluster when compared to an aggregate representation of the entire data set.
This provides a way of characterizing a cluster of partial rankings in terms of
the items that separate it from the complete data. We call such items outlying
items. A similar approach was proposed in [3], but it uses a different definition
for outlyingness.

The second question concerns the statistical significance of the found items.
For evaluating the “outlyingness” of an item we need a way to generate artificial
sets of partial rankings with exactly the same statistics as the real input data. To
this end we propose an MCMC algorithm for sampling sets of partial rankings
from an equivalence class that is defined by the following statistics: number and
length distribution of partial rankings, occurrence and co-occurrence frequencies
of the items and the probabilities Pr(u < v) that an item u precedes another
item v in the partial rankings for all v and v. Especially important are the
probabilities Pr(u < v), as they play a major part in identifying the outlying
items. We consider an item a significant outlier if it behaves differently in real
data compared to random data sampled from the same equivalence class.

The rest of this paper is organized as follows. The definition of an outlying
item and significance testing is discussed in Section 2] The MCMC algorithm
used for generating random data is described in Section Bl Experiments and
results are presented in Section @ while Section [l provides a short conclusion.

2 Problem Statement

2.1 Basic Definitions

Let M be a set of items to be ranked. In the following when we discuss an
item wu, it is always assumed to belong to the set M. A partial ranking ¢ is a
totally ordered subset of M. Note that this is not the same as a partial order that
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concerns all of M but leaves the mutual ranking between some items unspecified.
A set of partial rankings is denoted D.

Given the set D, we can compute a number of statistics that describe it. Some
simple examples of such statistics are the size of D, length distribution of the
partial rankings, occurrence-, and co-occurrence frequencies of the items. As the
data contains rankings, the most important statistic is related to the mutual
order of the items. For each pair (u,v), u,v € M, we consider the probability
that item u precedes the item v in D, denoted Pr(u < v). We estimate Pr(u < v)
with the fraction of partial rankings in D that place u before v. Note that v and v
do not need to be adjacent in the partial ranking. If 4 and v never occur together
in a partial ranking, we set Pr(u < v) = Pr(v < u) = 0.5, and in general we
always have Pr(u < v) + Pr(v < u) = 1. The probabilities are arranged in a
|M| x | M| matrix Cp, so that Cp(u,v) = Pr(u < v). We call Cp the pair order
matrixz associated with the set of partial rankings D.

All of the statistics discussed above can be used to define equivalence classes
over the set of all possible sets of partial rankings. We denote with C(D) the
class of sets of partial rankings that all have exactly the same statistics as the
set D. Later, in Section Bl we will discuss an algorithm for sampling uniformly
from C(D).

2.2 Finding Outlying Items

Let D' be a subset of D. Typically D’ is obtained by computing a clustering of
D and letting D’ correspond to one cluster. Our aim in this paper is to discover
items that behave differently in D’ when compared to D. To do this we use
the pair order matrices Cp and C'p/. More specifically, we are interested in the
quantities

SD(u):ZCD(u,v) and S’D/(u):Z(Z’D/(u,v)7

which are simply the row sums of the pair order matrices corresponding to D
and D’ for item u. These are indicators of the global rank of an item in a set of
partial rankings . For example, if Sp(u) is very large, then the item u should
be placed before most of the other items in a global ranking based on D, as u
tends to precede them in the partial rankings in D. Likewise, if Sp(u) is small
the item should be placed after most of the other items in the global ranking.
Given the subset D’ of D, we consider an item outlying in D’ if the difference

X(u) = Spr(u) = Sp(u) (1)

is significantly above (or below) zero. This would mean the rankings that belong
to D’ tend to place u more often before (or after) the other items than the
rankings belonging to D in general. Hence, the subset D’ is at least partially
characterized by the way in which it ranks the item u. See [3] for a slightly
different approach for finding outlying items.

Given the sets D and D’ we can sort the items in decreasing order of their
outlyingness | X (u)| and pick the h topmost items as interesting representatives
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for the set D’. These items may contain both items that are ranked unusually
high or unusually low in D’ when compared to D.

Thus, the definition of an outlying item is very simple. Computing X (u) is
almost trivial, as we only need to build the pair order matrices and compute
their row sums, but doing this alone may lead to incorrect conclusions. Consider
the case where all partial rankings in D are completely random, the probabilities
Pr(u < v) are all approximately 0.5 for all u and v. If we use some clustering al-
gorithm to divide D to two non-overlapping clusters, the result will be arbitrary.
However, in one of the clusters some of the items may have a slightly higher
global rank than in the entire data D. These will be identified as outlying, even
though they were found largely by coincidence. To prevent us from finding such
items in real data sets, we propose methods for evaluating the significance of the
outlyingness of an item.

2.3 Testing the Significance of Outlying Items

There are two possible pitfalls when using | X (u)| to find outlying items for a
subset D’. First, we must address the reliability of |X (u)| as the indicator of
outlyingness for a fixed item u. Especially we want to determine if the deviation
of X (u) from zero for a specific u is only caused by the values in the pair order
matrix Cp. If this were the case then we should observe high deviations from
zero for X (u) also with sets of partial rankings that differ from D but have the
same pair order matrix.

The second issue is related to the validity of the set of outlying items in
general. Suppose that we generate a random set D of partial rankings so that
Cp = Cp and compute a clustering of D to k clusters. The meaningfulness of
the set of outlying items found in the real data can be questioned if roughly the
same number of (possibly different) items u have equally high deviations of X (u)
from zero in a cluster of the random data.

The basic approach for using random data is the following:

1. Compute a clustering of the real data D and find the sets of outlying items
for each cluster using | X (u)].

2. Pick a set D of partial rankings from C(D) (the equivalence class of sets of
partial rankings with same statistics as D) uniformly at random.

3. Compute a clustering of D and record the |X (u)| values for each item in
each cluster. If enough samples of | X (u)| have been obtained, go to next
step, otherwise go to step 2.

4. Estimate E[|X (u)|] and Var[|X (u)|] for all w € M from the samples.

5. Compute a significance measure for |X(u)| based on E[|X(u)|]] and
Varl X (u)]].

Hence, we assume the X (u)s are normally distributed. The significance is mea-
sured by the distance of | X (u)| from E[|X (u)|] in standard deviations. That is,
we let

_ X W] = BIX ()]

Z(u) =
) VVar[|X (u)]]



Finding Outlying Items in Sets of Partial Rankings 269

For example, if Z(u) > 3, it is fairly safe to assume that u indeed is a significantly
outlying item.

To address the significance of the entire set of outlying items, we compute
the quantity Y (D’) = 3" X (u)?, where the X (u)s are deviations in subset D’.
This is done both for the original set of partial rankings and each random data.
The significance of the deviations in the original data is again expressed as the
distance of Y/(D') from E[Y", X (u)?] computed over all the clusters in random
data sets. Denote this by Q). Large values of ) indicate that the set of outlying
items in D’ is more significant, as it means that in random data the X (u)s
deviate on the average less from zero.

3 Sampling from C(D)

In order to test for the outlyingness X (u) of an item u we must have a way
of generating random sets of partial rankings with exactly the same features
as the original data D. Features we want to preserve are the size of D, length
distribution of the partial rankings, occurrence and co-occurrence frequencies of
all items, and most importantly the pair order matrix Cp. Recall, that data
sets with the same statistics as a given data set D belong to the equivalence
class C(D). We present a simple MCMC algorithm for sampling sets of partial
rankings uniformly from C(D).

3.1 The swAP-PAIRS Algorithm

The basic idea of the algorithm is to perform swaps of adjacent items in the
partial rankings of D. Suppose that v and v are adjacent in the partial ranking
¢ with u before v. Swapping u and v in ¢ has no effect on the length of ¢ or
the frequencies of u or v in general, but only on Cp(u,v) which is decremented
and Cp (v, u) which is incremented, both by the same amount. To preserve the
values of Cp (u,v) and Cp (v, u) we must perform another swap with the opposite
effect, i.e., we must find a partial ranking ¢ where u and v are adjacent, but
v precedes u, and swap those. Combining these two swaps results in a new set
of partial rankings D with ¢ and 1 changed, but having the pair order matrix
Cp equal to the original Cp. The algorithm is called SWAP-PAIRS and it simply
starts from D and performs a sequence of such swaps at random.

To do the swaps efficiently we preprocess the data and compute the set A of
swappable pairs. More formally we let

A= {{u,v}u €  Avu € ¥ A 6,9 € D}, (2)

where uv € ¢ denotes that items v and v are adjacent in ¢ with u before v. Note
that if the pair {u, v} is swappable and u and v are swapped, then {u, v} remains
swappable. However, as a consequence of a swap some other pairs may become
swappable and some other unswappable. For example, consider the following set
of partial rankings:
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SWAP-PAIRS:

1. Pick the swap (u, v, ¢, 1) uniformly at random from all possible swaps in the current
state.

2. Swap the positions of u and v both in ¢ and v with probability min(1
Update the set of possible swaps accordingly.

3. If we have done enough swaps, output ﬁ, otherwise go to step 1.

N (current) )
’ N(swapped) /"

Fig. 1. A high level description of the SWAP-PAIRS algorithm

$1:12345
$o:T8436
$5:32641

It is quickly seen that 3 and 4 are a swappable pair as they are adjacent in both
¢1 and ¢ but in different order. Also note that 2 and 3 form a swappable pair
with partial rankings ¢ and ¢s3. In this case we have thus A = {{2,3},{3,4}}.
Lets say we decide to swap 3 and 4 and obtain:

#:12435
Ph: 78346
$3:32641

Now {2,3} is no longer swappable, as 2 and 3 are no longer adjacent in ¢} and
we must remove this pair from A. However, now 4 and 6 are adjacent in both ¢}
and ¢3 and their order is different, so we can add {4, 6} to the set of swappable
pairs and are left with A = {{3,4},{4,6}}.

In addition to the list of swappable pairs we use a data structure, denoted S,
that quickly returns the set of relevant partial rankings when given a swappable
pair. We let S(u,v) = {¢ € D]uv € ¢}. The structure S is also computed during
preprocessing and updated during the execution of the algorithm.

Finally, to sample uniformly from C(D) we must address one additional issue.
We discuss some notation first. A swap is the tuple (u, v, ¢, 1), where u and v are
items and ¢ and ¢ are partial rankings in D. The swap (u,v, ¢, 1) means that
items v and v are swapped in rankings ¢ and . Denote the number of different
possible swaps at the current state of the Markov chain with N(current), and
with N (swapped) the same number for a state reachable by one swap from the
current state. It is easy to see that N(current) = > ¢, e [S(u,0)|[S(v,u)|.
As it is possible that N(current) # N(swapped), a simple algorithm that just
picks possible swaps at random doesn’t converge to the uniform distribution over
C(D). To remedy this we use the Metropolis-Hastings step when performing a
swap. That is, first the swap (u, v, ¢, %) is picked uniformly at random from the

set of all possible swaps at the current state, and we accept (u,v,,1) with

N (current)
' N(swapped)
fewer possible swaps than the current state, and if the next state has a larger
number of possible swaps, the transition is accepted with a probability less than

1. Pseudocode for the SWAP-PAIRS algorithm is given in Figure [Il

probability min(1 ). Intuitively the chain always moves to states with
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The number of possible swaps at a given state is of order O(|M|?|D|?) in the
worst case, which can get prohibitively large. In practice our implementation
never stores the set of possible swaps explicitly, but only uses the A and §
structures. The swap (u, v, ¢, ) is computed (step 1 of algorithm) by first picking
Isy(:iufe(:;)l and then picking ¢ and 1
uniformly at random from S(u,v) and S(v,u), respectively. This can be done in
time O(|M|?) when elements of S are accessible in constant time. Complexity of
the swap (step 2 of the algorithm) depends on the type of data structure used
for A and S(u,v) as they must be modified as a result of the swap. Our simple
implementation uses sorted random access lists that can be updated in time
O(log |[M|?) and O(log | D|) in case of A and S(u,v), respectively. Hashing would
provide a constant time solution, but might make step 1 more complicated as
we would need to sample uniformly from the values of a hash table. In practice,
however, the biggest bottleneck of the algorithm is sampling the swappable pair
{u,v} from A, because the probabilities need to be updated on every iteration
for each pair.

the pair {u,v} from A with probability

3.2 Theoretical Questions and Convergence Diagnostics

The problem of creating sets of partial rankings with the same features as a
given initial set by performing swaps of adjacent items is interesting in its own
right. The problem is very similar to the one discussed in [4] and more recently
in [2] and [I] in the context of 0-1 matrices. There the problem is to generate 0-1
matrices with exactly the same row and column sums as a given initial matrix.

It is easy to see that SWAP-PAIRS preserves the statistics used to define the
class C(D). However, it is not obvious that C(D) is connected with respect to
the swap operation. In [4] it is shown that the set of 0-1 matrices with same row
and column sums is connected with respect to a certain local transformation
of the matrix values. Whether this holds also with C(D) is an interesting open
question. Moreover, estimating the size of C(D) is another task for future work.

A more practical problem concerns the convergence of the Markov chain de-
fined using the swap operation. To use the algorithm for sampling sets of partial
rankings we must know how many swaps to make to be sure that the resulting
rankings are uncorrelated with the initial state D. In general analyzing the mix-
ing times of Markov chains formally is nontrivial. We can, however, empirically
evaluate the sequence of sampled sets D of partial rankings in terms of their
distance from D.

To do this, we define the function § as measure of the distance between two sets
of partial rankings generated by the swap randomization algorithm. As SWAP-
PAIRS only swaps items within a partial ranking, the items belonging to each
ranking stay the same. Hence, the i:th partial ranking in the swapped data set,
denoted D(i), is in fact a permutation of the i:th partial ranking of the original
data set, denoted D(i). We define 6(D, D) = |D|~! > d(D(i), D(3)), where d
is some distance function between permutations. We use Kendall’s tau, which
is the number of pairs of items that are ordered differently by D and D. The
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measure § is thus the average permutation distance between the partial rankings
in D and D.

To see when the chain has converged we must see how ¢ behaves as the
swapping progresses. Denote by bj the set of partial rankings obtained from
D by performing j swaps. We say the chain has converged after r swaps when
8(D,D,) ~ §(D,Ds). In practice we can determine r by starting the chain
from D and stopping when §(D, ﬁj) no longer increases. This way of measuring
convergence can be questioned as it does not directly use any of the estimated
parameters (X (u) in this case), but it is sufficient for our immediate concern of
keeping consecutive samples uncorrelated.

4 Experiments

4.1 Data Sets

In the following we briefly discuss the data sets used in the experiments. Table 2]
summarizes some of their statistics.

Movielens data. The MovieLens datal was originally collected by the Grou-
pLens research group at University of Minnesota. It contains 10° ratings for
about 3900 movies from over 6000 users. The ratings are given on a scale of 1-5.

Before turning the ratings into partial rankings we preprocess the data as
follows. First we discard movies that have been ranked by less than 1000 users.
This is done to reduce the number of different movies to 207. As many movies
have been seen by only very few users the data does not contain enough informa-
tion about their relation to the other movies. Next we prune users who have not
used the entire scale of five stars in their ratings. This way the resulting partial
rankings are more useful as they all reflect the entire preference spectrum from
“very bad” to “excellent”. This leaves us with 2191 users. For each user we create
a partial ranking by picking uniformly at random at most three movies with the
same number of stars and ordering them according to the number of stars so
that better movies are ranked before the worse ones. The mutual order between
two movies with the same number of stars is arbitrary. We call the resulting data
set MOVIELENS.

Microarray data. We use a publicly availabldd microarray data from [5]. The
data contains expression levels of 1375 genes in 60 cell lines associated to different
types of cancer. This data is converted to partial rankings by first sorting the cell
lines in decreasing order of expression, separately for each gene. If the expression
of a gene for some cell line is unavailable, then this cell line is omitted from the
ranking for that gene. Finally we select a random sample of 20 cell lines, again
separately for each gene, to have one partial ranking of 20 items for each gene.
We call this data set NC160.

! http://www.movielens.org/ (24.4.2007)
2 http://discover.nci.nih.gov/datasetsNature2000.jsp (24.4.2007)
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MOVIELENS NCI60
100
20 xRy
f" 80 f
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Fig. 2. Convergence of the SWAP-PAIRS algorithm with a movie ranking data (left) and
a gene expression data (right). The measure 6(D, D,) is the average Kendall distance
between rankings in the original data D and the permuted data D, after r swaps.

4.2 Convergence of SWAP-PAIRS

To make sure that the samples we obtain from C(D) are not correlated, we use
the measure 6 discussed above. Before sampling random sets of partial rankings
to be used in the actual experiments, we ran the SWAP-PAIRS algorithm on both
NCI160 and MOVIELENS data sets for ten million swaps and measured the distance
8(D, D,) every 10° steps. Running time of this test was a little over 14 minutes
with the MOVIELENS data and about five minutes with the NCI60 data using a
simple Java implementation of SWAP-PAIRS with JRE 1.5 on a 1.8GHz CPU.
This difference is due to the different number of items in the data sets. The
results are shown in Figure

It is immediate that with the NC160 data the algorithm seems to have con-
verged after roughly four million swaps. The subsequent samples are all at ap-
proximately equal distance from the original set of partial rankings. With MOVIE-
LENS the convergence is not as rapid. Even after ten million swaps it appears
that 6(D, ﬁr) is still slightly increasing, albeit extremely slowly.

For our purposes we considered it is enough to make 5 million swaps between
samples with both data sets. In case of NCI60 this should yield very uncorrelated
samples and also with MOVIELENS the samples should be usable.

4.3 Results

With both data sets we first computed a clustering to three clusters, and then
determined the list of outlying items for each cluster. The validity of the found
items was tested using the method discussed. We used 100 random data sets
sampled with the SWAP-PAIRS algorithm.

When MOVIELENS is clustered to three clusters, we obtain one group with 195,
one with 985 and a third one with 1011 partial rankings. The topmost part of
Table [B] shows the five movies with largest positive and negative deviations of
X (u) from zero in cluster 1. As it contains so few items, the deviations are not
very significant in terms of the Z(u) measure. We report the items nonetheless,
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Table 1. Outlying items found in clusters 2 and 3 computed from the NCI60 data

Cell line ID X(u) E[|X(uw)]] Std[|X(uw)]] Z(u)
Cluster 2: (412 rankings), @ = 18.92

CO:COLO205 14.34 3.9 2.76 3.78
CO:HT29 13.74 3.93 2.72 3.61
CO:SW-620 13.45 3.79 2.57 3.76
CO:KM12 12.14 4.92 3.18 2.27
CO:HCC-2998 11.15 3.47 2.3 3.34
LE:HL-60 10.87 3.66 2.66 2.71
CO:HCT-15 10.71 3.89 2.98 2.29
Cluster 3: (434 rankings), Q = 12.33

BR:MDA-N 19.31 3.8 2.57 6.04
BR:MDA-MB-435 19.05 3.59 2.64 5.86
ME:SK-MEL-5 17 4.71 3.24 3.79
ME:SK-MEL-28  13.83 4.71 3.11 293
ME:M14 13.48 3.25 2.27 4.5
ME:UACC-62 13.48 3.96 2.76 3.45
ME:SK-MEL-2 12.22 4.5 3.07 2.52
ME:MALME-3M 11.74 4.15 2.98 2.55
ME:UACC-257 11.17 3.65 2.48 3.03

Table 2. Statistics of the data sets used in the experiments

MOVIELENS  NCI60

number of partial rankings 2191 1375
total number of items to rank 207 60
average length of partial ranking 13.25 20
length of shortest partial ranking 6 20
length of longest partial ranking 15 20

as they have a nice interpretation. Items that have a high value of X (u) in cluster
1 are successful mainstream action titles, while those that have a low value (are
disliked by the viewers) are older, maybe movies for a more mature audience.
Clusters 2 and 3 are even more interesting. Table[3 shows the five most preferred
and disliked movies for both clusters that are also significant in terms of Z(u).
One immediately notices that three movies (Being John Malkovich, Fargo and
Reservoir Dogs) that are preferred by cluster 2 have a large negative value of
X (u) in cluster 3. In fact, both Pulp Fiction and Election almost made the list
as well, as X = —31.73 (with Z = 2.94) for Pulp Fiction and X = —35.09
(with Z = 4.43) for Election in cluster 3. These movies are titles that viewers
typically either love or hate. This result suggests that the outlying items can
be used to identify “causes of controversy” in partial rankings. Also, using the
randomization for identifying significant items proved useful, as for instance in
cluster 3 the movie having the highest X (u) was The Blair Witch Project with
X = 70.47 but as its Z was only 0.92, we omitted it from Table Bl There were
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Table 3. Outlying items found in three clusters computed from the MOVIELENS data

Movie title X(u) El|X(w)]] Std]|X(w)]] Z(u)
Cluster 1: (195 rankings), Q@ = 1.10

Twister 40.55 18.35 14.78 1.5
The Lost World: Jurassic Park 34.68 13.87 11.29 1.84
Robocop 33.51 16.03 12.2 1.43
The Fifth Element 31.82 14.39 12 1.45
Mad Max 2 31.25 17.64 13.36  1.02
Glory -37.88 17.52 14.94 1.36
The Godfather -37.92 14.74 11.31 2.05
Amadeus -39.47 17.79 13.76 1.58
The Sting -44.54 19.98 15.92 1.54
North by Northwest -50.41 25.64 20.24 1.22
Cluster 2: (985 rankings), Q@ = 0.85

Being John Malkovich 50.27 10.66 9.8 4.04
Fargo 46 10.27 10.37 3.45
Pulp Fiction 32.63 8.9 7.76 3.06
Election 31.91 7.65 6.19 3.92
Reservoir Dogs 30.82 8.02 7.13 3.2
Star Trek: First Contact -21.67 6.96 5.23 2.81
Mary Poppins -21.84 6.17 56 2.8
Apollo 13 (1995) -24.24 7.03 5.63 3.06
Forrest Gump (1994) -29.41 7.7 7.04 3.08
Star Wars: Episode V -45.31 11.37 9.94 341
Cluster 3: (1011 rankings), Q = 1.46

Independence Day 47.15 10.95 9.47 3.82
Ghost 34.69 9.16 7.73 3.3
The Rock 30.91 9.47 7.1 3.02
Men in Black 26.62 8.01 7.37 2.52
Big 24.26 5.5 4.84 3.87
Young Frankenstein -38.71 7.92 5.94 5.18
Reservoir Dogs -45.71 8.02 7.13 5.28
Taxi Driver -46.28 10.62 7.86 4.53
Being John Malkovich -53.64 10.66 9.8 4.39
Fargo -60.22 10.27 10.37 4.82

several other examples as well, such as American Beauty with X = 50.87 and
Z =0.94 in cluster 2. Maybe somewhat unfortunately, in MOVIELENS the X (u)s
tend to deviate by the same amount also in random data, as shown by the small
Q values.

Results for NCI60 are not interpreted as easily. Table [ shows the cell lines
with a large positive deviation of X (u) in clusters 2 and 3 as well as their Z(u)
values. In both clusters the cell lines with high values of X (u) come from the
same type of cancer. In cluster 2 all but one cell line is a sample from a colon cell,
while in cluster 3 all but two are samples associated to melanoma. Interestingly,
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in this case all the @ values are very high indicating that in random data the
deviations of X (u) from zero are in general far smaller.

5 Conclusions and Future Work

We have presented a method for finding items from sets of partial rankings
that have different status in different parts of the input. We called such items
outlying items. The method is based on clustering of the partial rankings and
subsequently computing a simple statistic X (u) for each item. Those items u
with X (u) deviating from zero are considered outlying. We also discussed how
to generate random data to evaluate the X (u) statistic. The results indicate
that the methods can be used to discover items that “divide the opinions” of the
partial rankings.

Some interesting questions for future work include properties of the equiv-
alence class C(D) defined by a set of partial rankings. Another direction for
is sampling from C(D) in a more efficient way than what is possible with the
SWAP-PAIRS algorithm. For example, replacing the swap with another kind of
transformation that result in shorter mixing times of the Markov chain would
be very useful. Another strategy would be to construct a model that can be
used to sample the sets of partial rankings more easily. One could, for example,
find a partial order P, such that the pair order matrix Cp obtained, when D
is generated from uniformly sampled linear extensions of P, would approximate
Cp as good as possible.
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Abstract. Rating players in sports competitions based on game results is
one example of paired comparison data analysis. Since an exact Bayesian
treatment is intractable, several techniques for approximate inference have
been proposed in the literature. In this paper we compare several variants
of expectation propagation (EP). EP generalizes assumed density filtering
(ADF) by iteratively improving the approximations that are made in the
filtering step of ADF. Furthermore, we distinguish between two variants of
EP: EP-Correlated, which takes into account the correlations between the
strengths of the players and EP-Independent, which ignores those correla-
tions. We evaluate the different approaches on a large tennis dataset to find
that EP does significantly better than ADF (iterative improvement indeed
helps) and EP-Correlated does significantly better than EP-Independent
(correlations do matter).

1 Introduction

Our goal is to develop and evaluate methods for the analysis of paired comparison
data. In this paper we illustrate such methods by rating players in sports, in
particular in tennis.

We consider the player’s strength as a probabilistic variable in a Bayesian
framework. Before taking into account the match outcomes, information avail-
able about the players can be incorporated in a prior distribution. Using Bayes’
rule we compute the posterior distribution over the players’ strengths. We take
the mean of the posterior distribution as our best estimate of the players’
strengths and the covariance matrix as the uncertainty about our estimation.

An exact Bayesian treatment is intractable, even for a small number of play-
ers; the posterior distribution cannot be evaluated analytically, and therefore we
need approximations for it. Expectation propagation [I] is a popular approxi-
mation technique. We will use it in this paper for approximating the posterior
distribution over the players’ strengths. The question that we want to answer
here is: how do different variants of expectation propagation perform for this
setting? In particular, does it make sense to perform backward and forward iter-
ations for the approximations and does it help to have a more complicated (full)
covariance structure?

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 374-[381] 2007.
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The paper is structured as follows: in the next section we introduce the prob-
abilistic framework used to estimate players’ strengths; in Section 3 we present
algorithms for approximate inference and the way they apply to our setting;
in Section 4 we show experimental results for real data, which we use to com-
pare the performance of the algorithms; and in the last section we draw the
conclusions.

2 Probabilistic Framework to Estimate Players’ Strengths

Let 8 be an npjayers-dimensional probabilistic variable whose components rep-
resent the players’ strengths. We define r;; = 1 if player ¢ beats player j, and
r;j = —1 otherwise. For the probability of 7;; as a function of the strengths 6¢;
and 6;, we take the Bradley-Terry model [2]:

1

ij10i,05) = '
p(ri;10s,05) 1+ exp[—ri;(0; — 6;)]

(1)

A straightforward method to approximate the players’ strengths is to build the
likelihood of @ given R; where R stands for the outcomes of all played matches.
We take the maximum of the likelihood as the estimate for the strengths of the
players.

The maximum likelihood approach gives a point estimate, the Bayesian ap-
proach, on the other hand, yields a whole distribution over the players’ strengths.
Furthermore, useful sources of information, like results in previous competitions
and additional information about the players, can be incorporated in a prior
distribution over the strengths. Using Bayes’ rule we compute the posterior dis-
tribution over the players’ strengths:

p(O|R) = (RIG) 0) [T p(ri;10:.6;) (2)
i#£]

where p(0) is the prior, p(ri;|60;,0;) from (), and d is a normalization constant.

We take the mean or the mode of the posterior as the best estimate for
the players’ strengths. While computing the mean of the posterior distribution
is computationally intractable, its mode (MAP) can be determined using opti-
mization algorithms. For the MAP estimate the computation time is linear in the
number of matches, and the number of iterations needed to obtain convergence.
Typically, the number of iterations needed scales linearly with the number of
players with a state-of-the-art optimization method such as conjugate gradient.

For making predictions and estimating the confidence of these predictions, we
need the whole posterior distribution over the players’ strengths. The posterior
obtained using Bayes’ rule in equation (2]) cannot be evaluated analytically, hence
we need to make approximations for it. For this task, sampling methods are very
costly because of the high-dimensionality of the sampling space: the dimension
is equal to the number of players. Therefore, for rating players, we here focus on
deterministic approximation techniques, in particular expectation propagation
and variants of it.
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3 Expectation Propagation

Expectation propagation (EP) [I] is an approximation technique which tunes the
parameter of a simpler approximate distribution, to match the exact posterior
distribution of the model parameters given the data.

Assumed Density Filtering. ADF is an approximation technique in which
the terms of the posterior distribution are added one at a time, and in each step
the result of the inclusion is projected back into the assumed density. As the
assumed density we take the Gaussian, to which we will refer below as gq.

The first term which is included is the prior, ¢(6) = p(0); then we add terms
one at a time f)(@) = !I/ij(ﬁi,&j)q(B), where Wij(ﬁi,ﬁj) = p(rij|9i,9j); and at
each step we approximate the resulting distribution as closely as possible by a
Gaussian ¢"*V(0) = Project{p(0)}. Using the Kullback-Leibler (KL) divergence
as the measure between the non-Gaussian p and the Gaussian approximation,
projection becomes moment matching: the result ¢V of the projection is the
Gaussian that has the first two moments, mean and covariance, the same as p.

After we add a term and project, the Gaussian approximation changes. We
call the quotient between the new and old Gaussian approximation a term ap-
proximation.

Iterative Improvement. EP generalizes ADF by performing backward-forward
iterations to refine the term approximations until convergence. The final approxi-
mation will be independent of the order of incorporating the terms. The algorithm
performs the following steps.

1. Initialize the term approximations @j (0:,0;), e.g., by performing ADF; and
compute the initial approximation
q(8) = p(0) [ [ (6:,65)-
1#]

2. Repeat until all @j converge: ~
a) Remove a term approximation ¥;; from the approximation, yielding
R t imation W;; f th imati ieldi

q(0)

\ij (@) —
() = - :
Wi (0:,05)

b) Combine ¢\ (@) with the exact factor ¥;; = p(r;;|6;,6;) to obtain
J J J
P(0) = Wi;(0:,0;)q\7 (6) . (3)
(¢) Project p(@) into the approximation family
q"°"(0) = argmin K L[p||q] .
q€Q

(d) Recompute the term approximation through the division

qnew (0)

eV (g, 0. =" .
1] ( ’ J) q\U(B)
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Computational Complexity. When minimizing the KL divergence in step
(c) we can take advantage of the locality property of EP [3]. From equation (),
because the term ¥;; does not depend on 0\ we can rewrite p as:

B(0) = B(6\i;10:,0,)5(0:,05) = 5(0:,0;)g\ (615163, 0;) -
Furthermore we obtain:
KL[p(8)|[q(0)] = KLI[p(0:,0;)q(6:,0;)]
+Ej0,.00) K L[\ (0\:510:,05)]|a(6\:;10:, 6;)]] - (4)

The two terms on the right-hand side can be minimized independently. Mini-
mization of the second term gives:

4" (0\i10:,0;) = q\"7 (85163, ) - (5)

Minimizing the KL divergence for the first term in the right-hand side in (@) re-
duces to matching the moments, mean and covariance, between the 2-dimensional
distributions p(0;, 6;) and ¢(6;, ;).

Exploiting this locality property, we managed to go from npjayers-dimensional
integrals to 2-dimensional integrals, which can be further reduced to 1 dimension,
by rewriting them in the following way (see e.g., the appendix of [4]):

(T(0;,0,)) N (m.c) = (F(aB;))n(m.c) = (F(OVaTCa+ a"m)) o1

where a is the vector [—1, 1] if player ¢ is the winner, or @ = [1, —1] if player
Jj is the winner, 8;; = [0;, 0;], F is defined through equation (), and N (m,C)
stands for a Gaussian with mean m and covariance matrix C. Substituting the
solution (), we see that the term approximation, in step (d) of the algorithm,
indeed only depends on ¢; and 0;.

We can simplify the computations by using the canonical form of the Gaussian
distribution. Because, when projecting, we need the moment form of the distri-
bution, we go back and forth between distributions in terms of moments and in
terms of canonical parameters. For a Gaussian, this requires computing the in-
verse of the covariance matrix, which is of the order nglayers. Since the covariance
matrix, when refining the term corresponding to the game between players ¢ and
j, changes only for the elements corresponding to players ¢ and j, we can use the
Woodbury formula [5] to reduce the cubic complexity of the matrix inversion to
a quadratic one. Thus, the complexity of EP is:

C(EP) = O(niterations X nglayers X nmatches)

where Niterations 18 the number of iterations back and forth in refining the term
approximations. In practice, the number of iterations to converge seems largely
independent of the number of players or matches. In our experiments, we needed
Niterations ~ O tO converge.

We will refer to this version of EP as EP-Correlated: by projecting into a non-
factorized Gaussian, it takes into account the correlations between the players’
strengths.
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EP-Independent. The complexity of the EP algorithm can be reduced further
if we keep track only of the diagonal elements of the covariance matrix, ignoring
the correlations. The matrix inversion has in this case linear complexity. The
algorithm is faster and requires less memory.

4 Experiments

We applied the approximation algorithms, presented in the previous section, to
the analysis of a real dataset. The dataset consists of results of 38538 tennis
matches played on ATP events among 1139 players between 1995 and 2006.
The goal was to compute ratings for the players based on the match outcomes.
The methods described yield a Gaussian distribution of the players’ strengths;
the mean of the distribution represents our estimate of the players’ strengths,
the rating, and the variance relates to the uncertainty. Furthermore, we predict
results of future games, and estimate the confidence of our predictions. We take
as the prior a Gaussian distribution with mean zero and covariance equal to the
identity matrix.

Figure 1 shows the empirical distribution of the players’ strengths (means of
the posterior distribution) in comparison with the average width of the posterior
for an individual player. It can be seen that the uncertainty for individual players
is comparable to the diversity between players.

600

—
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400

300

200

100

players’ strengths

Fig. 1. A histogram of the players’ strengths (means of the posterior distribution) for
all years. The bar indicates the average width of the posterior distribution for each of
the individual players. The results shown are for EP-Correlated.

4.1 Accuracy

We computed the ratings for the players at the end of each year, based on the
matches from that year. Furthermore, based on these ratings we made predictions
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for matches in the next year: in a match we predicted the player with the highest
rating to win.

EP-Correlated Versus ADF. We compared the accuracy of the predictions
based on EP-Correlated ratings with the ones based on ADF ratings. We divided
all joint predictions into 4 categories as shown in Table[Il We applied a binomial
test on the matches for which the two algorithms gave different predictions to
check the significance of the difference in performance [6]. The p-value obtained
for this one-sided binomial test is 3 x 10~ which indicates that the difference
is highly significant: EP-Correlated performs significantly better than ADF.

EP-Correlated Versus EP-Independent. The same type of comparison was
performed between EP-Correlated and EP-Independent, the results are shown in
Table[Dl As for the previous comparison, the p-value is very small, 3 x 10~7: the
binomial test suggests that the difference between the two algorithms is again
highly significant.

Table 1. Comparison between EP-Correlated, ADF and EP-Independent based on the
number of matches correctly /incorrectly predicted

ADF EP-Independent
correct incorrect correct incorrect
EP-Correlated
correct 16636 (54.48%) 2395 (7.81%) 17857 (58.46%) 1174 (3.83%)
incorrect 1902 (6.21%) 9620 (31.50%) 945 (3.09%) 10577 (34.62%)

EP-Correlated Versus Laplace and ATP Rating. We compared Laplace
and EP-Correlated to find out that EP-Correlated does slightly, but not signifi-
cantly better (p-value is 0.3). They disagree on only 0.2% of all matches.

We also compared the accuracy of the predictions based on the EP ratings
with the accuracy of the predictions obtained using the ATP ratings at the end
of the year. The ATP rating system gives points to players according to the type
of the tournament and how far in the tournament they reached. Averaged over
all the years, both EP and ATP ratings, give similar accuracy of predictions for
the next, about 62%.

4.2 Confidence

With a posterior probability over the players’ strengths we can compute the
confidence of the predictions.

The algorithms presented perform about the same in estimating the confi-
dence. However, they all tend to be overconfident, in the sense that the actual
fraction of correctly predicted matches is smaller than the predicted confidence,
as indicated by the solid line in the left plot of Figure 2l We can correct this
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by adding noise to the players’ strengths, to account for the fact that a player’s
strength changes over time:
9t+1 = et +e€

where € has mean zero and variance o2. To evaluate the confidence estimation,
we plot on the right side of Figure 2] the Brier score [7] for different values of o.
The optimum is obtained for ¢ = 1.4, which then yields the dashed line in the
left plot of Figure
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Fig. 2. Left: the actual fraction of correctly predicted matches as a function of the
predicted confidence; without added noise (solid line) and with noise of standard de-
viation 1.4 added (dashed line); the dotted line represents the ideal case and is drawn
for reference. Right: the Brier score for the confidence of the predictions as a function
of the standard deviation of the noise added to each player’s strength.

5 Conclusions

Based on the experimental results reported in this study we draw the conclu-
sion that EP-Correlated performs better in doing predictions for this type of
dataset than its modified versions, ADF and EP-Independent. Further experi-
ments should reveal whether this also applies to other types of data.

Our results are generalizable to more complex models, e.g. including dynamics
over time, which means that a players rating in the present is related to his
performance in the past [§]; and team effects: a player’s rating is inferred from
team performance [I10]. Specifically for tennis, the more complex models should
also incorporate the effect of surface because the performance of tennis players in
a match is influenced by the type of surface they play on (grass, clay, hard court,
indoor). In this paper we considered the most basic probabilistic rating model;
this model performs as good as the ATP ranking system. We would expect that
the more complex models could outperform ATP.
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Abstract. In this paper, a method for automatic classification of Hidden-Web
databases is addressed. In our approach, the classification tree for Hidden Web
databases is constructed by tailoring the well accepted classification tree of
DMOZ Directory. Then the feature for each class is extracted from randomly
selected Web documents in the corresponding category. For each Web
database, query terms are selected from the class features based on their
weights. A hidden-web database is then probed by analyzing the results of the
class-specific query. To raise the performance further, we also use Web pages
which have links pointing to the hidden-web database (HW-DB) as another
important source to represent the database. We combine link-based evaluation
and query-based probing as our final classification solution. The experiment
shows that the combined method can produce much better performance for
classification of hidden Web Databases.

1 Introduction

With the explosive growth of the World Wide Web, the traditional Crawlers fail to
satisfy the users’ demand for information searching yet. Many recent studies [1, 2]
have observed that a significant fraction of Web content known as the Hidden-Web
(HW) [3], the Invisible Web [4], or the Deep Web [2], lies outside the PIW. In fact,
these pages can only be dynamically generated in response to users’ queries, which
the traditional Crawlers cannot handle. However, we cannot simply ignore them,
because some recent studies claim that the size of the Hidden-Web pages are as many
as 500 billion pages, comparing to “only” two billion pages of the ordinary web [5].
Furthermore, the information on the HW is usually generated from structured
databases, which are referred to as Hidden-Web Databases (HW-DB) [6]. In [7], the
study has estimated that there are 250,000 private databases, and the access of 95% of
them is free. These databases represent 54% of the Hidden Web.

In this paper, in order to effectively guide users to find the relevant information
from such databases, we present a prototype system for classifying the HW-DB into a
predefined category hierarchy which is tailored from some existing classification tree
for Web documents. The feature for each class is extracted from randomly selected
Web documents in corresponding Web class. For each Web database, query terms are
selected from such class features based on their weights. A hidden-web database is

J.N. Kok et al. (Eds.): PKDD 2007, LNAI 4702, pp. 4541461, 2007.
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then probed by analyzing the results of the class-specific query to the hidden
database. To raise the performance further, we also use Web pages which have links
pointing to the hidden database as another important source to represent the database.
We combine link-based evaluation and query-based probing as our final classification
solution for hidden database classification. In addition, our focus is on text databases,
since 84% of all searchable databases on the web are estimated to provide access to
text documents [2], and other kinds of databases like image or video databases are out
of the scope of this paper.

The contributions presented in this article are organized as follows. We present the
details of our HW-DB classification system based on query probing and based on link
evaluation in Section 2. A system evaluation is conducted and important experimental
results are discussed in Section 3. And finally section 4 provides conclusions.

2 Hidden Databases Classification

Our system aims to automatically assign each Hidden-Web Database to the “best”
category or categories of the classification scheme. Instead of constructing a new
classification scheme manually, similar to the approaches proposed by [5, 7], we
exploit a category hierarchy for HW-DB classification from the popular DMOZ
Directory. Fig.1. shows a fraction of the category hierarchy used in our system.

Root
e
I | I | i | ! | I
Arts --- | Business | --- Health t--- | Science | --- Sports .-
I
|
N I
. I X I . L
Accounting | ... |Cooperatives | .. | E-Commerce | ... | Employment | ...

Fig. 1. A fraction of the category hierarchy for HW-DB used in our system

2.1 Classification Models

In order to assign a Web document to corresponding categories, a classifier algorithm
is needed. Several classifier models exist in literature, such as SVM (Support Vector
Machine) [8], kNN (key nearest Neighbor) [9], LLSF (Linear Least Square Fit) [10],
NNet (Neural Network) [11], NB (Naive Bayes) [11], and RIPPER [12]. Though [6]
shows that RIPPER can provide good overall performance for HW-DB classification,
the correctness of the rules for each category are critical for the precision of the
classifications. However, it is a hard work for correct rule extractions. Take the rule
(“ibm” AND “computer” —“Computer’”’) as an example, even though some document
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may contain both “ibm” and “computer”, it may not belong to the category of
“Computer” in many cases. Furthermore, the classification needs to extensively
interact with a HW-DB. That means, for each rule the system needs to interact at least
one time with the database. Y. Yang and X. Liu compared other classifiers and
pointed out that model SVM, kNN and NB can always produce better performance
for the document classifications over LLSF and NNet. Considering both effectiveness
and efficiency as the important factors, in our work, we employ kNN as the classifier
for HW-DB classifications.

To use kNN, training documents for each category are needed. In our
implementation, for any category c;, we select N Web documents (d;;, d;», ..., djn)
from the corresponding DMOZ directory. Then, for any Web document x, the
classification rule in KNN can be written as:

Similarity(x,c;) = z

where sim(x,d;;) is the metric of similarity between x and d;, b; is the category
specific threshold for the binary classification.

In order to calculate sim(x,d;;), we represent each Web document d as a vector
(wp,wy, ...wyy), where w; is the weight of term 7, in d. And w, is defined as:

_ fud)
Max ,, (if (1,.d)) 2)

sim(x,dj,i) —bj (1)

1<isSN

i

where #f(t,d) is the frequency of term 7, in d. With this definition, for any two web
documents d=( w;,w,, ...wy) and d’=( w’,w’,, ...w’y), sim(d,d’) is defined as the
cosine value between them:

sim(d,d') = ZWI*W'I ' 3)
V2 )2 Y (w)?

The original kNN classifier is designed for document classification. For a hidden
Web database HD, let {hd;, hd,, ...,hdp} be all the documents contained in HD. We
concatenate all the documents of HD into one document, still denoted as HD. That is,
HD=U hd;. Then, HD is assigned to category c if and only if Similarity(HD,c) >0.
However, we do not have the knowledge about the documents within HD. To solve
the problem, we use two techniques to approximate it in this study. Firstly, we detect
the HW-DB through probing; secondly, link structure of the Web is used.

2.2 Hidden Database Probing

In each category, some queries are needed for probing hidden databases. [6] uses
extensive number of rules or queries for probing. As mentioned before, multiple
query probing is expensive for both rule extracting and database probing. For such
reasons, in our approach, we only use one query for probing in each category. Our
one-query probing is based on the assumption that it does not affect the classification
too much because every category uses the same number of queries (one query in our
paper). We extract candidate query terms for each category from the concatenation of
its all training documents selected from the corresponding DMOZ Directory. Those
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terms, called category feature, are ordered with their weights. We chose several terms
according to their weights as a query to probe hidden databases.

After sending the request message including form filled-out information to the
server, our proposed system will receive the result pages. Perhaps the most common
case is that a web server returns results page by page consecutively, with a fixed
number, say ten or twenty, result matches per page.

To classify the HW databases effectively, we need to analyze the content of each
result document. However, full-text of results from some HW-DB cannot be obtained
for some reasons like copyright. So the system handles differently for these two
situations.

2.2.1 Result Documents Without Full-Text

In this situation, only the number of returned documents for the query can be used for
analysis. Let ¢j, ¢3 ..., ¢g be K categories under the same parent node in the
hierarchy, the returned number for each category by a hidden database HD are L;, L,,
...,Lg respectively. Then, we approximate HD as:

HD = 213 <K f.i *L.i @

where f; is the category feature of class c;. In fact, f; is the centroid of the training
documents in c;.

2.2.2 Result Documents with Full-Text
For the hidden databases whose full-texts can be accessed, our system can analyze the
document content further to get more accurate approximation for HD. In such case,
not only the number of the results for a category can be got, but also the relevance of
the documents can be used. To save the cost, we only access documents in several
positions along the result list. For example, the positions can be set to the first result
and the last result, or more complex to 0%, 25%, 50%, 75%, and 100% of the result
list.

Suppose we only access the first document hd;; and the last document hd,;; for
category ¢; Then, the hidden database HD can be approximated as:

1
HD = Z]Sigxa(hd jathd; )*L 5)

where L; is defined as before. It can be easily extended to support more document
accesses.

With the probed result for a hidden database HD (equation 4, or 5), HD can always
be classified using equation (1).

2.3 HW-DB Classification Based on Link Structure

In last subsection, we introduced the methods for the Hidden-Web databases
classification based on probing, which produces good experimental results. However,
it does not make use of the properties of Web structure, especially the links among the
Web documents. Actually, link structure of the Web provides another important clue
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for HW-DB classifications. In fact, as in fig.2, a hidden database may be referenced
by many Web pages. Those pages can also be used to derive the semantics of the
hidden database.

Neighbor
Page 3

Neighbo
Page 1

Page with
the form

Neighbor
Page 2

Neighbor
Page 4

Fig. 2. A Hidden database linked by other pages (neighbor pages)

Web pages, which have links to the hidden database HD, are called neighbor pages
for this database. To use them for the classification of HD, we concatenate all of the
neighbor pages into one document called NP. Then, the semantics of HD is
represented with a vector of terms extracted from NP. Therefore, HD is also can be
classified by the values of Similarity(NP,c).

2.4 Combined Classifier for Hidden Databases

To raise the performance of the classification, we try to combine probing model with
link-based model. In fact, new hidden databases often have less neighbor pages to be
referenced. Therefore, probing method is the only way for the classification in such
situation. To avoid outlier, we use link-based classifiers only for hidden databases
which have at least 20 neighbor pages. The combined classifier is defined as:

C-Similarity(HD, ¢)=W*Similarity(HD,c)+(1-W)*Similarity(NP,c) (6)

where W is used to balance this two classifiers.

3 Experiment

Our objective functions for system performance are based on two basic metrics—
precision and recall [5].

When evaluating the result of classification, there are three important values for
each category:

A ---- Number of documents which are classified into the category correctly;

B ---- Number of doc