Context Dependency Management in Ontology
Engineering: A Formal Approach*

Pieter De Leenheer, Aldo de Moor, and Robert Meersman

Semantics Technology and Applications Research Laboratory (STARLab)
Department of Computer Science
Vrije Universiteit Brussel
Pleinlaan 2, B-1050 BRUSSELS 5, Belgium
{pdeleenh, ademoor, meersman}@vub.ac.be

Abstract. A viable ontology engineering methodology requires supporting do-
main experts in gradually building and managing increasingly complex versions
of ontological elements and their converging and diverging interrelationships.
Contexts are necessary to formalise and reason about such a dynamic wealth
of knowledge. However, context dependencies introduce many complexities. In
this article, we introduce a formal framework for supporting context dependency
management processes, based on the DOGMA framework and methodology for
scalable ontology engineering. Key notions are a set of context dependency op-
erators, which can be combined to manage complex context dependencies like
articulation, application, specialisation, and revision dependencies. In turn, these
dependencies can be used in context-driven ontology engineering processes tai-
lored to the specific requirements of collaborative communities. This is illustrated
by a real-world case of interorganisational competency ontology engineering.

Keywords: context-driven ontology engineering, context dependency manage-
ment, ontology evolution, ontology management, lexical disambiguation.

1 Introduction

Though a vast amount of research has been conducted on formalising and applying
knowledge representation (KR) models (e.g., [1124314.15]]), there is still a major problem
with disambiguation of meaning during the elicitation and application of an ontology.
The problem is principally caused by three facts: (i) no matter how expressive ontolo-
gies might be, they are all in fact lexical representations of concepts, relationships, and
semantic constraints; (ii) linguistically, there is no bijective mapping between a concept
and its lexical representation; and (iii) concepts can have different meaning in different

contexts of use.

* We would like to thank our colleagues in Brussels, especially Stijn Christiaens and Ruben
Verlinden for the valuable discussions about theory and case. We also would like to thank Tom
Mens for the valuable discussions about semantic conflict merging. This research has been
partially funded by the EU DIP EU-FP6 507483 project and the EU Leonardo da Vinci Project
CODRIVE (BE/04/B/F/PP-144.339).

S

. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 26 2007.

(© Springer-Verlag Berlin Heidelberg 2007

Context Dependency Management in Ontology Engineering: A Formal Approach 27

In collaborative applications, multiple stakeholders have multiple views on multiple
ontologies. There, humans play an important role in the interpretation and negotiation
of meaning during the elicitation and application of ontologies [6]. A viable ontology
engineering methodology requires supporting domain experts in gradually building and
managing increasingly complex versions of ontological elements and their converging
and diverging interrelationships. Contexts are necessary to formalise and reason about
the structure, interdependencies, and versioning of these ontologies, thus keeping their
complexity manageable.

1.1 Context and Ontologies

Today in Al and linguistics, the word context has gained a (confusing) variety of mean-
ings, which have led to diverse interpretations and purposes of context [7i8]]. Moreover,
context is found in various Al application fields such as database integration [9], knowl-
edge translation [10], reasoning [1112/13], and lexical disambiguation [7U14415/16].
Furthermore, notions of context were adopted for scalable management of and reason-
ing on very large bases of formal artefacts using micro-theories, in particular for knowl-
edge in Cyc [17/18] and data models [19]. Here, we only review the key notions which
we find useful for the purpose of this article. For a comprehensive survey of context in
computer science we refer to [20].

On the Semantic Web [21]], the primary role of context is to factor the differences,
consequently remove ambiguity, between data sources when aggregating data from
them. The Semantic Web is large-scaled and highly distributed in nature, hence, instead
of adopting complex context mechanisms that introduce nested contexts and the ability
to transcend contexts, rather stronger constraints on the computational complexity and
ease of use of the context mechanism are placed [22].

Bouquet et al. [23] introduce an extension to the Web ontology language OWL, viz.
Context OWL (C-OWL) for representing so-called contextual ontologies. They argue
that not all knowledge should be integrated by an ontology, e.g., knowledge that is
mutually inconsistent. In that case the ontology is contextualised, and for this reason
considered a context. This means its contents are kept local, and are put in relation
with the content of other contexts via explicit mappings. Introducing context in OWL
required a revision to the OWL syntax and semantics. Giunchiglia [11]] was especially
motivated by the problem of reasoning on a subset of the global knowledge base. The
notion of context is used for this “localisation”.

More recently is the so-called Pragmatic Web vision [24/25]. This vision claims
that it is not necessary (or even possible) to reach for context-independent ontological
knowledge, as most ontologies used in practice assume a certain context and perspec-
tive of some community. Taking this in consideration, it is natural that ontologies co-
evolve with their communities of use, and that human interpretation of context in the
use and disambiguation of an ontology often plays an important role. More concretely,
the aim is to augment human collaboration effectively by appropriate technologies, such
as systems for negotiation during elicitation and application of ontologies for collabo-
rative applications. In this view, the Pragmatic Web complements the Semantic Web
by improving the quality and legitimacy of collaborative, goal-oriented discourses in
communities.

28 P. De Leenheer, A. de Moor, and R. Meersman

Based on these viewpoints, we next define our notion of context-driven ontology
engineering.

1.2 Context-Driven Ontology Engineering

We define context-driven ontology engineering as a set of ontology engineering (OE)
processes for which managing contexts (and their dependencies) effectively and effi-
ciently is crucial for their success. The context of an entity is the set of circumstances
surrounding it. Based on our literature study, we distinguish four key characteristics
of context: (i) contexts package related knowledge: in that case a context defines part
of the knowledge of a particular domain; (ii) context provides pointers for lexical dis-
ambiguation; (iii) lifting rules provide an alignment between assertions in disconnected
knowledge bases; and (iv) statements about contexts are themselves in contexts; in other
words, contexts can be embedded or linked [16]. In the next paragraphs we outline
some important types of context-driven OE processes that address these issues. These
are macro-level processes in that they provide the goals of the ontology engineering
process.

Lexical disambiguation. At the start of the elicitation of an ontology (cfr. Fig. [II),
its basic knowledge elements (such as concepts and relationships) are extracted from
various resources such as a text corpus or an existing schema, or formulated by human
domain experts. Many ontology approaches focus on the conceptual modelling task,
hence the distinction between lexical level (term for a concept) and conceptual level (the
concept itself) is often weak or ignored. In order to represent concepts and relationships
lexically, they usually are given a uniquely identifying term (or label). However, the
context of the resource the ontology element was extracted from is not unimportant, as
the meaning of a concept behind a lexical term is influenced by this elicitation context.
Phenomena such as synonyms and homonym are typical examples of this, and can
result in frustrating misunderstanding and ambiguity when unifying information from
multiple sources. An analysis of multiple contexts is generally needed to disambiguate
successfully [[L6.26].

Multiple contextualisations. Similarly for the application of an ontology: the inter-
pretation of the knowledge elements (which are referred to by terms) of the ontology is
ambiguous if the context of application, such as the purpose of the user, is not consid-
ered. Different domain experts might want to “contextualise” elements of an ontology
differently for the purpose of their organisation, by e.g., selection, specialisation or re-
finement, leading to multiple diverging ontologies that are context-dependent on (read:
contextualisations of) the same (part of an) ontology.

Ontology integration. An important class of OE processes concerns ontology integra-
tion. This process has been studied extensively in the literature (for a state-of-the-art
survey, cf. [27l28]]). Although different groups vary in their exact definition, ontology
integration is considered to consist of four key processes (adopting the terminology
from [28]):

Context Dependency Management in Ontology Engineering: A Formal Approach 29

LANGUAGE LEVEL = CONCEPTUAL LEVEL

| ELICITAT

ON

Incompatible information

Information Systems

[T T T T T 7171

APPLICATION

Domain Experts F

Fig. 1. Ontologies are elicited by extracting knowledge from various sources and are also applied
in different contexts

1,2 mapping and alignment: given a collection of multiple contextualisations, these
often need to be put in context of each other, by means of mapping or aligning
(overlapping) knowledge elements pairwise;

3 schema articulation: a collection of individual knowledge elements may need to
be contextualised, by means of a consensual articulation schema of these (overlap-
ping) elements;

4 merging: a collection of individual knowledge elements may need to be contextu-
alised by means of a consensual merging of these (overlapping) elementdl.

Ontology versioning. Parts of an ontology might be revised, expanded, or contracted,
resulting in branching of that ontology through time [29(30]. This might possibly trigger
a cascade of revisions to all ontologies that are context-dependent on the knowledge
elements in the revised part.

1.3 Context Dependency Management

All ontology engineering methodologies use some combination of the above identi-
fied context-driven OE macro-processes. However, in their operational implementation
of these processes, which we call context-driven OE micro-processes, methodologies
differ widely. E.g., consider the plethora of Semantic Web and Conceptual Structures
research on this matter. Our intention is not to add to these processes themselves, but
to identify and position them, indicating how they can be used in the bigger picture of
real-world ontology engineering processes, such as interorganisational ontology engi-
neering [31]]. The question is how to apply and (re)combine them to increase the quality
of such processes.

As already mentioned, contexts are important building blocks in our decomposi-
tion and linking of ontology engineering processes. Context dependencies constrain the

! An ontology merging process requires an established articulation schema, which is the result
of a successful articulation process. However, in this article we do not work out such relations
between contextualisations.

30 P. De Leenheer, A. de Moor, and R. Meersman

possible relations between the entity and its context. Many different types of context
dependencies exist, within and between ontological elements of various levels of gran-
ularity, ranging from individual concepts of definitions to full ontologies. One of the
best studied dependencies are specialisation dependencies [31]. For instance, an organ-
isational definition of a particular task (the entity) can have a specialisation dependency
with a task template (its context). The constraint in this case is that each organisational
definition must be a specialisation of the template.

In this article, we give an non-exhaustive analysis of context dependency types and
meaning conflicts between diverging meanings as a natural consequence of interorgani-
sational ontology engineering. We illustrate these dependencies by formally describing
and decomposing the context-driven macro-processes (lexical disambiguation, contex-
tualisation, alignment, and versioning) in terms of a non-exhaustive set of micro-process
primitives for selecting, linking, and changing knowledge elements.

When managed consistently, tracing context dependencies by means of micro-process
primitives, provides a better understanding of the whereabouts of knowledge elements in
ontologies, and consequently makes negotiation and application less vulnerable to am-
biguity, hence more practical. Therefore, we outline a context dependency management
framework combining these macro-processes and micro-process primitives.

1.4 Towards a Formal Framework

To formalise the context dependency management framework we circumscribed in pre-
vious subsection, we adopt and extend the DOGMAA ontology engineering approach.
This approach has some distinguishing characteristics such as its groundings in the lin-
guistic representations of knowledge, and the explicit separation of conceptualisation
and axiomatisation. The DOGMA approach is supported by DOGMA Server, an ontol-
ogy library system [32], that already features context-driven disambiguation of lexical
labels into concept definitions [16]. Provided this basis, it is convenient to extend the
DOGMA framework with a layer for managing multiple context dependency types and
operators, viz. a context dependency management framework.

For the formalisation of this layer, we reuse existing domain-independent frame-
works for managing diverging and converging formal artefacts, and the different types
of conflicts between knowledge elements that emerge from this.

As mentioned, we focus on the positioning, not on the implementation of context-
driven OE processes. Moreover, we stress the importance of human understanding and
interaction during the disambiguation and conflict resolution process. Worthwhile men-
tioning is that some of the surveyed conflict management techniques tackle this problem
rather differently from classical ontology integration techniques. However, if positioned
properly, they can contribute to the ontology engineering state-of-the art.

This article is structured as follows: in Sect.[2] we introduce the DOGMA OE frame-
work, along with its extension to support context-driven term disambiguation. Next, in
Sect.[3 we formalise a context dependency management framework and suggest possi-
ble approaches. Then, in Sect. Bl we illustrate our framework by considering

2 Acronym for Developing Ontology-Grounded Methods and Applications; a research initiative
of VUB STARLab.

Context Dependency Management in Ontology Engineering: A Formal Approach 31

inter-organisational context dependency management in a real-world case study. Finally
we end the article with a discussion in Sect.[3] and a conclusion in Sect.

2 DOGMA Ontology Engineering Framework

DOGMA is an ontology approach and framework that is not restricted to a particular
representation language. An important characteristic that makes it different from tradi-
tional ontology approaches is that it separates the specification of the conceptualisation
(i.e. lexical representation of concepts and their inter-relationships) from its axiomati-
sation (i.e. semantic constraints). The goal of this separation, referred to as the double
articulation principle [33], is to enhance the potential for re-use and design scalability.

This principle corresponds to an orthodox model-theoretic approach to ontology repre-
sentation and development [33]]. Consequently, the DOGMA framework consists of two
layers: the Lexon Base (conceptualisation) and the Commitment Layer (axiomatisation).

2.1 Lexon Base

The Lexon Base is an uninterpreted, extensive and reusable pool of elementary build-
ing blocks for constructing an ontology. These building blocks (called lexonsﬁ) are
linguistic in nature, and intuitively represent plausible binary fact-types (e.g., Person
drives/is driven by Car). The Lexon Base is stored in an on-line DOGMA server. For
guiding the ontology engineer through this very large database, contexts impose a mean-
ingful grouping of these lexons within the Lexon Base.

The context identifier of a lexon refers to the source it was extracted from. Sources
could be terminologicaﬂ or human domain experts. We refer to Gémez-Pérez and
Manzano-Macho [35] for a comprehensive survey on text mining methods and tools for
creating ontologies. For mining DOGMA lexons in particular, we refer to Reinberger
and Spyns [36]. A lexon is defined as:

Definition 1 (lexon). A lexon is an ordered 5-tuple of the form {7y, t1,71,72,t2) where
yel,t1 €T, ta €T, r1 € Randry € R. I is a set of identifiers, T and R are sets
of strings; t1 is called the head term of the lexon and 1y is called the tail term of the
lexon; 71 is the role of the lexon, 74 is the co-role; 7y is the context in which the lexon
holds.

Given a lexon | = (y,t1,71,72,12), we define accessors as: y(1) = ~, t1(l) = t1,
7"1([) =1, 7’2([) = Tg,tg(l) =ty,andVt, e TUR : t; el & t; = tl(l) Vit =
Tl(l) \Y ti = Tz(l) \Y ti = tg(l).

Role and co-role indicate that a lexon can be read in two directions. A lexon (v, t1, 71,
o, t2) is a fact type that might hold in a domain, expressing that within the context -,
an object of type t; might plausibly play the role r; in relation to an object of type ts.
On the other hand, the same lexon states that within the same context ~y, an object of
type t2 might play the co-role 72 in (the same) relation to an object of type ;.

3 Lexons are DOGMA knowledge elements.
4 “A context refers to text, information in the text, to the thing the information is about, or the
possible uses of the text, the information in it or the thing itself” [34} pp. 178].

32 P. De Leenheer, A. de Moor, and R. Meersman

Some role/co-role label pairs of lexons in the Lexon Base intuitively express an onto-
logical relationship (such as taxonomy, meronymy), e.g. (v, manager, is a, subsumes,
person). However, as already mentioned above: the Lexon Base is uninterpreted, so
the interpretation of a role/co-role label pair as being a part-of or specialisation rela-
tion, is delegated to the Commitment Layer, where the semantic axiomatisation takes
place. A lexon could be approximately considered as a combination of an RDF/OWL
triple and its inverse. Lexons and commitments are visualised in a NIAMPH-like schema

(cfr. Fig.).
@ DRIVES / IS DRIVEN BY °

Fig. 2. Illustration of a lexon that is described in a hypothetical context

2.2 Commitment Layer

Committing to the Lexon Base in the context of an application means selecting a mean-
ingful set 3 of lexons from the Lexon Base that approximates well the intendedd con-
ceptualisation, followed by the addition of a set of constraints, or rules, to this subset.
We shall label these semantic constraints. The result (i.e., X' plus a set of constraints),
called an ontological commitment, is a logical theory of which the models are first-order
interpretations that correspond to the intended meaning of the application (-domain). An
ontological commitment constitutes an axiomatisation in terms of a network of lexons
logically connected and provides a partial view of the Lexon Base. An important differ-
ence with the underlying Lexon Base is that commitments are internally unambiguous
and semantically consisten{]. Once elicited, ontological commitments (i.e. ontologies)
are used by various applications such as information integration and mediation of het-
erogeneous sources. Though ontologies can differ in structure and semantics, they all
are built on a shared Lexon Base.

A commitment is specified in a designated language, called (2-RIDL [39]. It de-
scribes two aspects: (i) semantic constraints in terms of paths, covering all classical
database constraints (cfr. ORM), and (ii) which role/co-role label pairs are interpreted
as which ontological relationship. Consequently, this impacts the semantics of the com-
mitment. Commitments are also categorised and stored in a commitment library in the
DOGMA server. Hence once applied in a commitment, a lexon declares either:

i taxonomical relationship (genus): e.g., (7, manager, is a, subsumes, person);
ii non-taxonomical relationship (differentia):
e.g., {7y, manager, directs, directed by, company).

5 NIAM [[37] is the predecessor of ORM [38].

® With respect to the application domain.

7 Although it is outside the scope of this article, we find it valuable to note that in the research
community it is debated that consistency is not necessarily a requirement for an ontology to
be useful.

Context Dependency Management in Ontology Engineering: A Formal Approach 33

Note: a taxonomical relationship is transitive. This means that if an arbitrary pair
(v, a,is a, subsumes, b), {(v,b, is a, subsumes, ¢) € X, then we can assert (implicitly)
(v,a,is a, subsumes,c) € X. Furthermore, if (v,a,isa,subsumes,b), (y,b,
r1,72,c) € X (for some arbitrary 71, 72), then (implicitly) (v, a,r1,72,c) € X.

A path differs from a lexon because it is directed, but it is trivially constructed from
(a concatenation of) lexons. In the following two examples we illustrate two constraints.

Example 1. Suppose we have selected a subset X' from the Lexon Base in order to
conceptualise some domain of interest. Consider following lexons [; € X

l; := (EUVATDirective, company, publishes, published by, webpage);
Iy := (EUVATDirective, company, is referred by, refers to, name);
(EUVATDirective, company, is located in, locates, country).

l3:

Suppose we want to express that a company might publish at most one webpage. This is
done by imposing the uniqueness constraint U NI () on the path p;=[EUVATDirective,
webpage, publishes, published by, company]: UNIQ(p1).

Example 2. In order to express that a company is identified by the combination of the
name it is referred by, and the country it is located in we state another uniqueness
constraint U NIQ(p2, p3) in terms of two paths: po =[EUVATDirective, name, refers
to, is referred by, company] and p3 =[EUVATDirective, country, locates, is located
in, company]. Another type of constraint we will illustrate is the mandatory constraint
M AN D. Suppose we want to express that a country locates at least one company, we
state M AN D(ps).

In our next definition of ontology we only consider, as proof of concept, the two
constraint types MAND and UNIQ from Ex. [Il and 2] and the taxonomical and
meronymical ontological relationships, resp. isa and part of. We do this by defining a
restricted ontological commitment as follows:

Definition 2 (ontology). A (isa,partof, UNIQ,MAND)-restricted ontology or ontologi-
cal commitment, is a tuple (X, A), where X is a strict subset of the Lexon Base, and
A = {isa,partof, UNIQ, M AN D} is a particular subset or class of constraints or
rules. Where isa,partof € R X R are role/co-role label pairs that are interpreted
as respectively taxonomical and meronymical ontological relationships. Furthermore,
each constraint (UNIQ, M AN D) is expressed as a collection of sets of paths in X.

Example 3. Reconsider the ontology from Ex.[[landRlviz. O = (X', A) where p1, p2, p3
are paths constructed from lexons [y, ls,l3 € X. Furthermore, UNIQ, MAND € A,
where UNIQ = {{pl}, {pg,pg}} and MAND = {{pg}}

2.3 Contexts

A lexon is a lexical representation of a conceptual relationship between two concepts,
however, there is no bijective mapping between a lexical representation and a concept.
Consider for example phenomenons such as synonyms and homonyms that can result in
frustrating misunderstanding and ambiguity (see Def.[3). As we have seen, the meaning
of a lexical term can vary depending on the context it was elicited from.

34 P. De Leenheer, A. de Moor, and R. Meersman

In DOGMA, a context is used to group lexons that are relatedd to each other in the
conceptualisation of a domain. A context in DOGMA has one fundamental property:
it is also a mapping function used to disambiguate terms by making them language-
neutral. Based on Meersman [15]], we can give the following definition for a context:

Definition 3 (context). A context v € I' is a mapping v : T U R — C' from the set
of terms and roles to the set of concept identifiers C' in the domain. In a context, every
term or role is intuitively mapped to at most one concept identifier. A context 7y is also
a reference to one or more documents and/or parts of a document. This reference is
defined by the mapping cd : I’ — D.

The intuition that a context provides here is: a context is an abstract identifier that refers
to implicit and tacit assumptions in a domain, and that maps a term to its intended
meaning (i.e. concept identifier) within these assumptions. Notice that a context in our
approach is not explicit formal knowledge. In practice, we define a context by referring
to a source (e.g., a set of documents, laws and regulations, informal description of best
practice, etc.), which, by human understanding, is assumed to “contain” the necessary
assumptions [40]]. The formal account for context is manifested through the interpreta-
tion of lexons in commitments, and the context dependencies between them, which we
will introduce later in Sect. 3l

A tuple (v, t) ideally maps to only one concept identifier. However, during the initial
stage of elicitation, when lack of agreement is not often occurs, it could map to a set
of concepts that approximately frames the intended one. We elaborate more on this
problem in Sect.

With a concept we mean the thing itself to which we refer by means of a term (or
role) in the Lexon Base. If we want to describe the set of concepts of our domain for-
mally, we can do this, according to Meersman [[15], by introducing the partial function
ct : I'x TUR — C which associates a concept with a tuple consisting of a context and
a term (or role). This partial function, which describes a form of meaning articulation,
is defined as follows:

Definition 4 (meaning articulation). Given the partial functionct : ' x TUR — C,
then
ct(vy,t) =ce () =c

An association ct(y,t) = c is called the “meaning articulation” or articulatiorl) of
a term t (in a particular context vy) into a concept identifier c. ct is called a meaning
articulation mapping.

Our definition above includes the most general case where roles are treated like terms,
hence we provide the possibility to define meaning articulations for roles as well. In
some cases such as task or process ontologies (e.g., the task templates we will con-
sider in SectH)), it might be useful to clearly disambiguate roles, and even define cross-
contextual bridges between roles. However, we must note that in practice it is usually

8 Not necessarily in a logical way but more in an informal way. E.g., lexons are related because
they were elicited from the same source, i.e. the elicitation context.
* We adopt the term articulation from Mitra et al. ([41]) (see discussion).

Context Dependency Management in Ontology Engineering: A Formal Approach 35

less straightforward or even infeasible to disambiguate roles as properly as terms. Ex-
ample 4] illustrates the latter definition:

Example 4. Consider a term “capital”. If this term was elicited from a typewriter man-
ual, it has a different meaning than when elicited from a book on marketing. Therefore,
we have resp. two contexts: v, = typewriter manual, and o = marketing book. To
express that “capital” is associated with different meanings, we write ct(~1, capital) =
c1, and ct(ye, capital) = ca.

Until now, the endpoint of the meaning articulation is a meaningless concept identi-
fier ¢1,co € C. However, in the next section we will introduce the Concept Definition
Server. Each concept identifier itself will point to a particular concept definition. The
terms (on the language level) that are articulated (using ct) are then mapped to a partic-
ular explication of a meaning, i.e. a concept definition of a term residing in the Concept
Definition Server (on the conceptual level), instead of to a meaningless concept iden-
tifier. Before we continue, we present some useful terminology about synonyms and
homonyms (polysemy), as defined by De Bo and Spyns [42]:

Definition 5 (synonyms and polysemous terms)

— Two terms t1 € T and to € T are synonyms within a context y if and only if
(V(t1) = c & y(t2) = o).
— Atermt € T is called polysemous if and only if 3y1,v2 € I : y1(t) # v2(¢).

These definitions also hold for roles r € R.

2.4 Concept Definition Server

The idea for a Concept Definition Server (CDS) was first mentioned in [42], and is
based on the structure of WordNet [43]]. CDS is a database in which one can query
with a term, and get a set of different meanings or concept definitions (called senses
in Wordnet) for that term. A concept definition is unambiguously explicated by a gloss
(i.e. a natural language (NL) description) and a set of synonymous terms. Consequently
we identify each concept definition in the CDS with a concept identifier ¢ € C.

The following definition specifies the CDS:

Definition 6 (concept definition server). We define a Concept Definition Server T as
a triple (Ty, Dr, concept) where:

— Ty is a non-empty finite set of strings (terms) 19;

— Dr is a non-empty finite document corpus;

— concept : C'+—— Dy x p(Tr) is an injective mapping between concept identifiers
¢ € C and concept definitions.

10 Additionally, we could require 7' U R C T» (T and R from the Lexon Base). Doing so, we
require each term and role in the Lexon Base to be a term in the synset of at least one concept
definition.

36 P. De Leenheer, A. de Moor, and R. Meersman

Further, we define conceptde f (t)
= {concept(c) | concept(c) = (g, sy) At € sy},
where gloss g € Dy and synset sy C Tr.

Going from the language level to the conceptual level corresponds to articulating lexons
into meta-lexons:

Definition 7 (meta-lexon). Given a lexon | := (7y,t1,71,72,t2), and an instance of
an articulation mapping ¢t : I' x T U R — C. A meta-lexon my ;. = (ct(7y,t1),
ct(y,r1),ct(y,r2), ct(y,t2)) (on the conceptual level) is the result of “articulating”
lexon 1 via ct.

In Fig. (3 the articulation is illustrated by a meaning ladder going from the (lower)
language level to the (higher) conceptual level and vice-versa. We refer to Fig.[Il where
we introduced the levels and the ladder in the application—elicitation setting.

LANGUAGE LEVEL L CONCEPTUAL LEVEL
A LEXON N : A META-LEXON D,

Incompatible informatipn
Ifl r_. <Yt o, o>] < Ct1, Cr1, Cr2, Ctp >

CDS Record for term “capital”
conceptdef(capital) = { S1, $2, .. Sn}

InformatinSysIems —
Terminologist

Domain Experts

ARTICULATION [excerpt
Concept Definition Server

ci(y, t) = cu ‘

Lexon Base

[\
5 //‘ ¥ Concept definition S; |

‘ o Concept identifier Cq
|

Knowledge enginegr_l-
— =
/|| * Natural language gloss

Quality Assurance

-
s <71t > | -

—

o
— <v,n>" " 4

e Synset={t,..., tm}

-
s <Y,f2>"

TR ‘

> <Y, th> 7
MEANING LADDER

Fig. 3. Illustration of the two levels in DOGMA ontology: on the left — the lexical level, lexons are
elicited from various contexts. On the right, there is the conceptual level consisting of a concept
definition server. The meaning ladder in between illustrates the articulation of lexical terms into
concept definitions.

Given a total articulation mapping ct, applying the articulation to the whole Lexon
Base {2 would return a Meta-lexon Base Mg, v = {my |l € 2}.

Note: One might argue to define commitments in terms of the Meta-lexon Base, and get
rid of the Lexon Base. This would translate in redefining paths in terms of meta-lexons.
Doing so, however, results in a loss of the language level. The inverse articulation map-
ping of a meta-lexon could return more than one lexon. On the other hand by defining

Context Dependency Management in Ontology Engineering: A Formal Approach 37

commitment on the Lexon Base, one can always translate to commitments on the Meta-
lexon Base.
We end this section with an illustrative example:

Example 5. As an illustration of the defined concepts, consider Fig.[dl The term “cap-
ital” in two different contexts can be articulated to different concept definitions in
the CDS. The terms are part of some lexons residing in the Lexon Base. The knowl-
edge engineer first queries the CDS 7T for the various concept definitions of the term:
conceptde f (capital) = Secapitat € Dr % p(Tr). Next, he articulates each term to the
concept identifier of the appropriate concept definition:

— Term “capital” was extracted from a typewriter manual, and is articulated to concept
identifier c; that corresponds to concept definition (or meaning) s1 € Scapital (as
illustrated on the right of Fig.[)). A gloss and set of synonyms (synset) is specified
for s1:

concept (ct(typewriter manual, capital)) = s1.

— Term “capital” was extracted from a marketing book, due to the different context it
was extracted from, it is articulated to another concept identifier co that is associated
with a concept definition so € S:

concept (ct(marketing book, capital)) = s9.

On the other hand, suppose we have elicited a term “exercise” from the typewriter
manual, and a term “example” from the marketing book. The engineers decide inde-
pendently to articulate the resp. terms to the same concept definition with concept iden-
tifier c3 with gloss: “a task performed or problem solved in order to develop skill or
understanding”:

cs = ct(typewriter manual, exercise)

= ct(marketing book, example).

This articulation defines a semantic bridge between two terms in two different
ontological contexts.

2.5 Articulation and Application of Concepts in Practice

The DOGMA approach above assumes the ideal case where a tuple (,t) maps to
exactly one concept identifier (hence concept definition) c. Once, after some iterations,
this lexical disambiguation has been achieved, c is further ontologically organised and
defined in terms of the binary relationships it has with other concepts, viz. meta-lexons.

The Meta-lexon Base consists of all plausible “uses” of a concept. Consequently,
an application defines and constrains the genus and differentiae of each concept in
its domain, particularly by selecting (read: committing to) a meaningful subset X' of
lexons (hence implicitly meta-lexons) that approximately fits the intended model of
its concepts. Finally, a set of rules is added to constrain the possible interpretations,
and hence increase the understandability and usability of the ontological commitment.

38 P. De Leenheer, A. de Moor, and R. Meersman

LANGUAGE LEVEL B CONCEPTUAL LEVEL
—0 i
...] Concept Definition Server

Lexon Base —
CDS Record for term “capital”

conceptdef(capital) = { S1,Sp, .. Sn}

— \
\

|— < typewriter manual, capital > —F-— —=/* ConceptDefiniion Sy |
ARTICULATION [“‘- Concept identifier C1
— | s Gloss =
Ct('Y t) =G one of the large alphabetic
e | characters used as the first letter

| s e
in writing or printing proper names

\ and sometimes for emphasis; (...)
L1 ‘s Synset = { upper case, majuscule}

— == —

L < marketing book, capital > S —
| Concept DefinitionSy |

« Concept identifier C2
| e Gloss=)
| | assets available for use in the
production of further assets

« Synset = { budget, amount}

MEANING LADDER

Fig. 4. Illustration of two terms (within their resp. contexts), being articulated (via the mapping
ct) to their appropriate concept definition

Consequently, the Commitment Layer contains the (possibly empty) collections of all
committed uses of all concepts.

The use of a concept is defined by, the axiomatised relationships it has with other
concepts. Inspired by Putnam’s schematic clusters [44, pp. 33—69], we now define a
query to retrieve from the Commitment Layer, the collection of all uses, given a concept:

Definition 8 (schematic cluster). Given a concept ¢ € C, the schematic cluster SC,.
of cw.rt. to a set of commitments O is defined as the collection of non-empty lexon sets
7m(0;) with O; = (X, A;) € O, where w(0;) is defined as {l € X;| ct(v(1),t1(1)) =
eV et(1(1), t2(1)) = cb.

Concept definitions (stored in the CDS) present the essential meaning of a concept,
while commitments represent the domain-specific applications of a particular concept.
A similar distinction exists between respectively Aristotle and Wittgenstein: Aristo-
telian “type” definitions are obligatory conditions that state typical properties, while
Wittgenstein considers the meaning of a concept to be the set of all its uses [43, pp. 128],
the latter is analogue to Putnam’s schematic clusters above.

Brachman [46] also believes that a careful distinction must be made between essen-
tial and incidental properties of a concept. Only essential properties should be defined
in the ontology as they are recognized as members of the type in every possible world.
From a DOGMA point of view, non-essential properties can always reside in the Meta-
lexon Base, but whether they are committed to, is incidental to the application scenario.
If a property is de facto always committed to, it actually becomes essential.

Context Dependency Management in Ontology Engineering: A Formal Approach 39

Based on Brachman’s ideas, Bachimont [26] claims that organising the domain con-
cepts in a taxonomy is a key component for building ontological commitments. In this
process, he emphasizes the importance of a clear normalisation (or lexical disambigua-
tion) of the meaning of concepts. Once terms are normalised properly, they can be for-
malised (hence selected and committed to) and operationalised. For the normalisation,
a differential ontology is built which turns lexical labels into notions, based on differ-
ential semantics [47]. Practically, this means that notions are orthogonally described in
terms of similarities and differences with their parents, children, and siblings. In the
resulting taxonomy of notions, the meaning of a node is given by the gathering of all
similarities and differences attached to the notions found on the way from the root no-
tion (the more general) to this node.

Summarising, the disambiguation of terms extracted from verbal descriptions is cle-
arly a methodological process of expressing the differences and similarities with other
concept definitions using notions of context. In this process it is important to distinguish
between necessary and incidental properties. In practice, in a typical ontology elicita-
tion scenario where multiple stakeholders yield tacit and imperfect definitions, onto-
logical definitions will continuously be subject to changing relevance and focus, and
the distinction between essential or incidental will evolve as well in some cases, even
within the same application domain. Agreeing on one unique concept definition to dis-
ambiguate a term, is an incremental process that should result in a right balance where
essential properites are comprised in the concept definition, and incidental properties
are put rather in commitments depending on the relevance for the respective stakehold-
ers. This enforces our argument to extend our traditional ontology library system, in
order to support these kind of OE processes in the management of context dependen-
cies and conflicts between knowledge elements from different ontologies.

3 Context Dependency Management

The management of context dependencies is important for successful disambiguation in
OE. Ding and Fensel [32] identify management as one of the three indispensable pillars
for an ontology library system. They define management in terms of three features, viz.
ontology identification, storage and versioning. We must note that in the collaborative
application we envision, we cannot rely on pessimistic versioning control, where all
ontologists work on the same library, and parallel contextualisation is prevented by
locking. However, if we want ontologists to be able to work completely separately for
some time on a personal copy of the ontology (optimistic versioning), we have to deal
with the conflicts between parallel contextualisations.

3.1 Formal Framework
We identify the following features in our context dependency management framework:

1. alibrary of ontologies;

2. a sound and complete set of context dependency operators on ontologies;

3. a collection of context dependency types;

4. a library of contextualisations, i.e context dependency relations within between
ontologies in the library.

40 P. De Leenheer, A. de Moor, and R. Meersman

A library of ontologies. The Commitment Layer is a library of ontological commit-
ments. DOGMA Server stores these in a RDBMS, and provides an API for unified
access to all structures.

A set of context dependency operators. An additional element of the framework is
a sound and complete set of context dependency operators. The set should subsume
every possible type of ontology access and manipulation (completeness issue), and in
particular, the manipulation operators should only generate valid ontologies (soundness
issue) [48]. In this article we only give a non-exhaustive set of operators. However,
concerning the soundness issue, we make sure these operators are conditional, which
means that their applicability depends on pre- and post-conditions.

The resemblance and differences between ontologies and data schema are widely
discussed in literature such as [[15/33149]]. In the schema and ontology evolution liter-
ature, much work focuses on on devising taxonomies of elementary change operators
that are sound and complete. Significant examples of data schema evolution include
transformation rules (in terms of pre- and post-conditions) to effect change operators
on data schemas and change propagation to the data [48], frameworks for managing
multiple versions of data schemas coherently [50/51]] and models for different levels of
granularity in change operators, viz. compound change operators [[52]]. Furthermore,
changes in one facet of an ontology might trigger a cascade of changes in other facets
[53]]. These triggers could be defined by the semantics of the dependencies.

Main results in ontology evolution include 54155129156, which base their work pre-
dominantly in the previous mentioned schema evolution techniques, next to addressing
particular needs for evolution of ontologies.

We provide a non-exhaustive list of operators for supporting OE and characteris-
ing context dependencies. For now, we ignore axiom operators. We define the pre-
and postconditions in terms of the ontology before the operation, denoted by L =
(X', Ar), and the ontology after the operation, denoted by R = (Xp, Ag). Also
1sa = {risala risag} S A{L,R}'

L. artConcept({v,t),c): articulate a term ¢ in a particular context + into a concept
¢ € C, provided ct(~, t) is not defined.
VteT;VyeI';Nee C:
- PreCond = {(v,t) € Yr;ct(y,t)undefined}
- PostCond = {(7,t) € Xr;ct(y,t) =c}
2. defineGenus({v,1t), (v,9)): set ct(v, g) as genus of a concept ct(v,t).
Vt,geT;Nyel:
- PreCond = {<77t> € ZLv <77g> € ZLv <77ga Tisal, risa27t> ¢ ZL}
- PostCond = {(7,t,Tisa1,Tisas» 9) € LR}
3. defineDif f((7,t),U; di): add a set of differentiae | J; d;, where
di = (v, t, rfi, rgl , tgi), to an already defined concept ct(, t).
Vi, t5 e TV rdi € Ry e I

I ¢.g., moving an attribute x from a class A to a class B, means (more than) successively deleting
x in A and adding x in B.
12 ¢f. Definition

Context Dependency Management in Ontology Engineering: A Formal Approach 41

— PreCond = {(’y,t> € EL;Vi<’y,tgi> € Xp;Vid; ¢ EL}
- PostCond = {(v,t) € ZriVily, t%) € Xp:Vd; € Yr}
4. specialiseDif f((7,t), (v, s),d): replace any occurence of (v,¢) with one of its
children (v, s) in an existing differentia d = (v, t, 71, r2, t2).
Vt,s,to € T;Vri,70 € R;Vy € I
- PreC’ond = {<’77 tv r1,7T2, t2>7 <77 Sy Tisaly Tisass t> S EL; <77 S§,T1,T2, t2> ¢
XL}
— PostCond = {(7,5,7"1,7“2,152), (7, 8, Tisals Tisas, t) € XR; (7, t, 71,72, t2) &
Yr}
5. gememliseDiff((77 t), (v,p), d): replace any occurrence of (v, ¢) with a parent
(v, p) in an existing differentia d = (v, t, 71,72, t2).
Vi, p,to € T;Vr1,19 € R;Vy € I
— PreCond = {(’y,t,rl,rg,tg), (Y, t, Tisal, Tisag, P) € XL;{(V,D,71,T2,t2) &
YL}
- POStCOTLd = {<77p7 T1,7T2, t2>7 <77 ta Tisal, risa27p> S ER; <77 tv 1,72, t2> ¢
Yr}
6. pullUp({v,t),(7,s)): pull up an already defined concept (including its children)
higher in the taxonomy as a child of (v, s).
Vt,t1,s € T;Vye
- PreCond = {(v,t,Tisa1: Tisaz: t1) € X103 (Y, t, Tisa1, Tisas» 8) & X1}
- PostCond = {(7,t,Tisa1; Tisas: t1) & XR; (V:t, Tisals Tisass) € LR}
7. pullDown((v,t), (7,s)): pull down an already defined concept (including its chil-
dren) lower in the taxonomy as a child of (v, s).
Vt,t1,s € T;Vvye
- PreC’ond = {<’77 tv Tisal, risa27t1> S ZL; <77 tv Tisal, risa275> ¢ ZL}
- PostCond = {(7,t,Tisa1; Tisas: t1) & XR; (V:, Tisals Tisass) € LR}

The latter two in fact produce resolution points as there are alternative strategies
to resolve the inheritance of differentiae when pulling up or down a concept. As this
discussion is outside the scope of this article we take the most straightforward resolution
and omit further elaboration on this.

A set of context dependency types. How a new ontology was obtained from the
original is determined by a sequence of applied operators. By constraining the pos-
sible combinations of operators, we can characterise various types of dependency be-
tween the new and the old. We refer to these dependency types by inferring a class of
dependency types.

An ontology that is context-dependent on another ontology is called a contextualisa-
tion. The contextualisation of ontological definitions might be constrained in different
ways. One particular example in the sense of conceptual graph theory [45] would be
a specialisation dependency for which the dependency constraint is equivalent to the
conditions for CG-specialisation [45, pp. 97]. A specialisation dependency corresponds
to a monotone specialisation.

We can identify and express different context dependency types between sub-con-
texts within one ontology (intra-ontological) and between different ontologies (infer-
ontological): (i) articulation; (ii) application; (iii) specialisation; and (iv) revision. As

42 P. De Leenheer, A. de Moor, and R. Meersman

suggested by discussions, there are many more context dependency types. However,
we will only formalise the above four in this article, and characterise them in terms of
applicable operators.

Articulation dependency. Usually, lexical labels are used to represent concepts and
relations, though there is no bijective mapping between them. Phenomena such
as synonyms and homonyms exemplify this, and can result in frustrating misun-
derstanding and ambiguity when unifying information from multiple sources. The
meaning of a concept behind a lexical term is dependent on the context of elic-
itation. This ambiguity might be partly resolved by taxonomically categorizing
it by setting its genus, however this should be complemented by explicating the
articulation of a lexical term in a particular context into the intended concept.
Hence this dependency type, denoted by ART, is characterised by artConcept
and de fineGenus.

Application dependency. Once a term has been articulated into the intended concept
and its genus has been set, it is used or applied in multiple ways. Within a particular
context of application, a concept is defined in terms of differentiae and axioms,
resulting in an ontological definition. An application dependency corresponds to
a monotone refinement, consequently this dependency type, denoted by APP, is
characterised by defineDif f.

Specialisation dependency. The specialisation of ontological definitions is typically
constrained to refining differentiae, including specialising concepts. Hence this de-
pendency type, denoted by S PFE, is characterised by specialiseDif f.

Revision dependency. When considering versioning, evolution steps are stored for
later reference, therefore we devise a revision dependency. A revision might be
non-monotone, i.e. it might correspond to well-formed sequence of expansions and
contractions of definitions, or even reclassification in taxonomies. Hence this de-
pendency type’s particular characteristics depend on the operators used. Notice that
a revision possibly triggers a cascade of revisions to all ontologies that are context-
dependent on the knowledge elements in the revised part. This dependency is de-
noted by RE'V.

Example 6. As an illustration of defining a context dependency type in terms of con-
straints on possible operators, the necessary and sufficient condition to assert that Oy is
application-dependent of concept ¢ in Oy, is that O is a monotone refinement of a sub-
set of O; in terms of a sequence of exclusively de fineDi f f operations. In that case O5
is a “concept-application” contextualisation of O;. We denote this as Oy --+4pp Os.

A library of contextualisations. Context dependency types are instantiated in terms
of a source and a target ontology from the library. These instantiations are referred to
as contextualisations.

In this subsection, we defined a context dependency framework that is mainly defined
by a set of context dependency operators and types. Next, we look at related approaches
that might support our framework in the management of these context dependencies,
and above all resolution of related meaning conflicts.

Context Dependency Management in Ontology Engineering: A Formal Approach 43

3.2 Approaches for Context Dependency Management

In this subsection we suggest some existing approaches for the management of diverg-
ing and converging formal artefacts, and the related conflicts, for supporting collabora-
tion. Mens [57] gives an excellent survey of such techniques in the context of software
merging. Among these we particularly focus on domain-independent formalisms, so
they can be reused for our purposes, viz. the management of context dependencies and
emerging conflicts between knowledge elements in ontologies. He considers four types
of conflicts that can occur in formal artefacts: textual, syntactic, structural and semantic
conflicts.

As mentioned in the introduction, we focus on the positioning, not on the imple-
mentation of context-driven OE processes. Moreover, we stress the importance of hu-
man interaction during the conflict resolution process. Worthwhile mentioning is that
some of the surveyed conflict management techniques provide such facilities for resolv-
ing conflicts, which are rather different than classical ontology integration techniques
[28]. However, if positioned properly, they can contribute to the ontology engineering
state-of-the art.

Collaborative application frameworks. These frameworks support multiple distri-
buted users working on temporal replicas of a shared artefact, and assistance in the
following merging process. Timewarp [S8] uses divergent and convergent timelines to
support collaboration, and provides facilities for conflict detection resolution compa-
rable to analysis in Ex.[7l The framework is extended with multi-level or inter-leaved
timelines, and support for capturing causal relationships in timelines via a nested trans-
action mechanism. In GINA [59]], merging of command histories is achieved by selec-
tively using a redo mechanism to apply one developer’s changes to the other’s version.
The user is assisted by the system when merging diverged replicas. Approaches in this
area concentrate especially on the user interface aspects. Therefore, they are in fact
complementary to the formal foundations that conceptual graph rewriting provides.

Conditional graph rewriting. Mens [60] defined a domain-independent formalism for
detecting and resolving merge conflicts during parallel evolutions of formal artefacts in
general, and software in particular. Therefore he adopts principles of graph rewriting
(GR) theory [61]. The advantage of GR is that it provides a domain-independent and
stable formal foundation for both descriptive as operational aspects.

In this formalism, we can describe a possibly infinite collection of graphs in a fi-
nite way: by stating a set of initial graphs and a set of graph rewriting rules. Through
repeated application of these rules, starting from one of the initial graphs, new graphs
can be generated. An asset here is that the ontology engineer does not have to explicitly
specify this sequence of rules: he only needs to specify how the new ontology should
look like. Another advantage of formalising ontology transformations in a conditional
GR system is that we can provide a precise and unambiguous definition of context de-
pendency notions, and make it visually attractive.

Next to the descriptive aspect, the graph rewriting rules simplify the composition of
context dependency operators, hence its semantics. Furthermore GR, reduces the com-
plexity of the manipulation and analysis during the OE processes we identified above.

44 P. De Leenheer, A. de Moor, and R. Meersman

E.g., it provides theoretical insights into the parallel and sequential independence of
ontology transformations, the latter which are described in terms of sequences of oper-
ators. This means, translated to context-driven OE, support for the detection of possible
meaning conflicts between multiple parallel contextualisations of the same original on-
tology (see Ex.[J).

Example 7. Consider an ontology O, which is contextualised by two ontologists con-
currently. The first ontologist adds a differentia to an already existing concept (v, t)
using defineDiff((w,t), (7, t, 7“1,T2,t2>). The second ontologist concurrently de-
fines a genus for (v, t), viz. (7, g), using defineGenus((v, ty, (7, g)) Now consider
(v,9,71,72,t2) € YXo. For both operations the pre-conditions w.r.t. to the O are satis-
fied. However, when merging both contextualisations a conflict would have merged as
each operation introduces an element that is forbidden to exist in the pre-condition of
the other.

The caveat for reusing Mens’ formalism is the definition of a typegraph, a labelled
typed (nested) graph representation of the meta-schema for the kind of formal artefact
that is to be manipulated. The fact-oriented character of DOGMA ontologies and meta-
schema, makes GR particularly suitable for our purposes.

4 Inter-organisational Context Dependency Management

In this section we illustrate context-driven ontology elicitation in a realistic case study
of the European CODRIVHS project.

4.1 Competencies and Employment

Competencies describe the skills and knowledge individuals should have in order to be
fit for particular jobs. Especially in the domain of vocational education, having a central
shared and commonly used competency model is becoming crucial in order to achieve
the necessary level of interoperability and exchange of information, and in order to
integrate and align the existing information systems of competency stakeholders like
schools or public employment agencies. None of these organisations however, have
successfully implemented a company-wide “competency initiative”, let alone a strategy
for inter-organisational exchange of competency related information.

The CODRIVE project aims at contributing to a competency-driven vocational ed-
ucation by using state-of-the-art ontology methodology and infrastructure in order to
develop a conceptual, shared and formal KR of competence domains. Domain partners
include educational institutes and public employment organisations from various Euro-
pean countries. The resulting shared “Vocational Competency Ontology” will be used
by all partners to build interoperable competency models.

The example concerns collaborative OE between two participating stakeholders E'1
and PF, each containing organisations being resp. educational institute and public em-
ployment agency. Core shared and individual organisational ontologies have already

13 CODRIVE is an EU Leonardo da Vinci Project (BE/04/B/F/PP-144.339).

Context Dependency Management in Ontology Engineering: A Formal Approach 45

(00PE) . co N . 00_El M
00_PE CO_TH 00_El
_TH _TH
{} ART ﬁ ART ﬁ
I — — = — = — — —— e —— — —
I T I
APP| APP | APP |
Y) 4
0O0_PE_DEFS OO_E|_DEFS
SPE SPE
< U4 N & < >

Fig. 5. The scenario illustrates a snapshot of contexts and context dependencies emerging from
different OE processes by multiple stakeholders in inter-organisational ontology engineering: (1)
term articulation (ART); (ii) template creation (AP P); and (iii) template specialisation (SPFE)

been defined for both ET and PE. Fig.[lillustrates the initial versions, say V0, of the
different contexts@:

— CO is the common ontology, containing two sub-contexts, viz. CO T M PL and
CO TH.Thelatteris CO’s type hierarchy (detailed in Fig.[6)). It has among its con-
cepts Task, with as subtypes EducationalTask and JobTask. The
concepts are in fact terms, but within the context CO they refer to at most one
concept definition. CO T'M PL is a set of templates that define applications of con-
ceptsin CO T H in terms of differentiae, consequently CO T'M P L is application-
dependent on CO TH.

— OO EI and OO PE are the individual organisational ontologies for resp. educa-
tional institutes and public employment agencies. Organisational ontologies also
contain two sub-contexts: e.g., OO EI TH is EI’s type hierarchy whose concepts
are articulation-dependent on CO T H. OO EI DEFS contains EI’s ontolog-
ical definitions refining the templates in CO T M PL, hence OO EI DEFS is
application-dependenton CO T M PL.

The different contextualisations above, illustrate the grounding of the individual organ-
isational definitions in the common ontology CO.

In the following subsections we consider a scenario where we show that in order to
effectively and efficiently define shared relevant ontological meanings, context depen-
dencies are indispensable. In building the shared ontology, the individual organisational

14 In this case study, each context corresponds to exactly one ontology and vice-versa. However,
an ontology engineer might select lexons from various contexts for modelling his ontology.

46 P. De Leenheer, A. de Moor, and R. Meersman

Quality Process

Task

Product Material

JobTask EducationalTask

Fig. 6. Excerpt from a sub-context CO T'H in CO. T denotes the root concept.

ontologies of the various stakeholders need to be aligned insofar necessary. It is impor-
tant to realise that costly alignment efforts only should be made when necessary for the
shared collaboration purpose.

The scenario illustrates the following processes by different stakeholders, necessary
in inter-organisational ontology engineering: (i) term disambiguation in OO EI and
OO PE; (ii) template creation in CO; (iii) template specialisation OO FEI; and fi-
nally (iv) template revision, triggering a cascade of revisions to context-dependent sub-
contexts. These processes are triggered by business rules tailored to the specific require-
ments of a collaborative community. Even with a few simple operators, already many
context dependencies are introduced.

4.2 Term Disambiguation in OO EI

ET is a national bakery institute, responsible for defining curriculum standards for bak-
ery courses. As such, much of its organisational terminology should be grounded in
the common ontology C'O. It now wants to add a new term “panning” to its OO EI
ontology. It defines this informally as the act of “depositing moulded dough pieces into
baking pans with their seam facing down”.

First the ontology maintainer defines the term’s genus (de fineGenus) and articula-
tion (artConcept) in a sub-context OO EI TH of OO EI.OO EI TH is supposed
to be articulation-dependent on CO T H, so E1 is allowed to define and articulate the
new term in its ontology. However, in this E'1 case, the precondition is that the genus
is predefined in CO T H (Fig.[@). This is inferred from the production de fineGenus
defined in Sect. 3| strengthened by the following business ruld:

R1l: The CODRIVE ontology server (COS) asks EI to classify the
shared concept to which the term belongs.

Hence, The ET representative classifies Panning as an Educational Task in taxon-
omy OO FEI TH.

15 The concepts underlined in the rules below are modelled but not shown.

Context Dependency Management in Ontology Engineering: A Formal Approach 47

Next, EI decides to articulate Panning as follows:
concept(ct(OO EI TH, panning)) = (g, sy)

where gloss g corresponds to “depositing moulded dough pieces into baking pans with
their seam facing down”. The synset sy is ignored here. The above operations are
applications of resp. defineGenus and artConcept which results in following
articulation-contextualisation:

COTH --+4rr OO EI TH.

4.3 Template Creationin CO
One of the business rules in the CoDrive ontology server demands:

R2: IF a NewTask is an Educational Task, and the

Individual OntologyOwner is an Educational Institute THEN a
Full SemanticAnalysis of the NewTask needs to be added to the
Individual Ontology of the Individual OntologyOwner;

another meta-rule fires as an immediate consequence:

R3: IF a Full SemanticAnalysis needs to be made of a Concept in
an IndividualOntology or SharedOntology THEN the

Concept Template needs to be filled out in that Ontology.
Furthermore, for each Term and Role of these definitions, a
MeaningArticulation needs to be defined.

The template was created in a separate process by the common ontology maintainer.
Creating a template corresponds to applying a sequence of de fineDi f f operations in
order to define differentiae of a given concept. This results in an application dependency
(APP arrows in Fig.[5):

CO TH --» ,pp CO TMPL. (1)

Hence, it resides in a sub-context of C'O, viz. CO T M PL. The template is shown in
Fig.[1l In this case the template states it is necessary to know who is the performer
of the task (e.g. Student), what inputs and materials are necessary for the task (e.g.
Baking Pan, Dough), what is the result of the task (Greased Pan), and so on.

4.4 Template Specialisation in OO ET

A template is an ontological definition that needs to be specialised using the specialisa-
tion dependency (S PE arrows in Fig.[3).

InOO EI DEFS (asub-contextof OO EIT), the new task Panning is specialised,
which boils down to specialising (and in a way disambiguating) the differentiae in the
template (illustrated by Fig.[7). Each new term or role to be used in the specialisation
must first be defined and articulated in OO EI T H. Similar to before, this produces
new operations that extend our articulation contextualisation:

CO TH ~-» spp OO EI TH.)

48 P. De Leenheer, A. de Moor, and R. Meersman

€O_TMPL

results in
Educational

Task Actor

Quality

has quality

Fig.7. Template for Educational T'ask, defined in CO T'M P L, sub-context of C'O

00_E| DEFS

Greased Pan

Clean

Baker
fas quality

~ has quality
Well Filled
uses uses

Greasing

Maghine Baking Pan

Fig. 8. A specialisation-contextualisation CO TMPL --+spg OO EI DEFS

The specialisation of the template is done by iteratively applying the specialise
Di f f production which results in following specialisation-contextualisation:

CO TMPL --3sspp OO EI DEFS. 3)

4.5 Term Disambiguation in OO PFE

Concurrently with R3, following business rule is triggered:

R4: IF an Educational Task is added to an IndividualOntology
THEN a corresponding JobTask needs to be defined in all
instances of IndividualOntology of all PublicEmploymentAgencies

The rationale for this rule is that public employment agencies need to be aware of
changes to the curricula of educational institutes, so that they are better able to match

Context Dependency Management in Ontology Engineering: A Formal Approach 49

job seekers with industry demands. However, unlike the definitions of educational tasks,
the job task definitions in public employment agency ontologies only require a short
informal description of the concept itself, not an extended template definition:

R5: IF a JobTask is added to an IndividualOntology THEN a Gloss
needs to be defined for that Concept.

Of course, public employment agencies also could have the need for template defini-
tions, but those would refer to the job matching processes in which the tasks play a role
(why is panning needed), not to how the tasks themselves are to be performed.

Hence, R4 requires the PE representative to classify Panning as an JobTask in
OO PE TH.
Next, he decides to articulate Panning as follows:

concept(ct(OO PE TH,panning)) = (g, sy)

where gloss g corresponds to “an essential skill in baking”. The synset sy is ignored here.
Again, the above operations are applications of resp. de fineGenus and artConcept
which results in following articulation-contextualisation:

CO TH —=*ART OO PE TH.

4.6 Template Revisionin CO TM PL

Figure [shows the version 0 snapshot of a library of ontologies and their context de-
pendencies, the latter denoted by arrows in different directions. When considering the
revision dependency type, we must introduce a timeline that is orthogonal to all arrows
so far. A revision to a knowledge element in some ontology should result in a new ver-
sion of that ontology. As a consequence, a cascade of revision requests is triggered to
all ontologies that are context-dependent on the revised element. This in order to keep
the context dependencies intact, and hence anticipate on conflicts. In the following ex-
ample, we will show that, as an additional problem, in most cases there are multiple
alternative ways to resolve the conflict. Our framework identifies conflicts, hence am-
biguity, and delegates these decision options to the human ontologist.

Suppose that the template we created (cf. Fig.[7) is expanded with a new differentia.
First a new concept Lecture Room is defined and then articulated in CO T H:

de fineGenus((CO, LectureRoom), (CO, Object))

artConcept ((CO, LectureRoom), c)

for some ¢ € C. This results in the following revision-contextualisation:
COTH ~-~*REV COTH V1.

Note the version-id that is appended, which brings CO T H V1 to a time snapshot dif-
ferent from all other ontologies so far. Next, we define a new differentiain CO T M PL
using the new conceptin CO TH V1:

defineDiff((CO7 EducationalT ask),
(CO, EducationalTask, has,of, Lecture Room>).

50 P. De Leenheer, A. de Moor, and R. Meersman

This results in another revision-contextualisation:
CO TMPL --+grgy CO TMPL V1,
constrained by following application dependency:

COTH V1 --s4pp COTMPL V1.

This application dependency itself can be considered as an extension of the previously
created dependency in ().

The latter revision, forces us to evolve all ontologies that are context-dependent on
CO TMPL. As an illustration, take the specialisation-contextualisation

CO TMPL --+spg OO EI DEFS

in Fig.[8l Because the template has been expanded, this template-specialisation has now
become underspecified: first, it tells nothing about some Lecture Room room in which
Panning is being instructed; and secondly, it doesn’t specify in which particular type
of Lecture Room that Panning is being instructed.

Hence, rule R3 is triggered again. This rule required that templates should be fully
specified. The process that follows is analogue to the template specialisation that we
described earlier, so we skip the details. In short, in order to specialise the newly intro-
duced differentia in the template, Lecture Room is specialised by introducing a new
subconcept PreparationRoom in OO EI TH. This results in following revision-
contextualisations:

OO EI TH --»rgy OO EI TH V1,

OO EI DEFS --sggy OO EI DEFS V1,

again constrained by following articulation and specialisation dependencies respectively:
COTH V1 --s4rr OO EI TH V1,

COTMPLV1--+spg OO EI DEFS V1,

being extensions of previously created dependencies in @) and (@) respectively.

5 Discussion

The previous scenario, although using only a few simple operators, already demon-
strated the complex dependencies emerging in a typical case of context-driven ontology
engineering. When introducing additional context dependency operators, complexity
only grows. Furthermore, we have only considered relatively straightforward expansion
operators. Contraction even makes context dependency management more difficult. Es-
pecially then there is special need for conflict pair analysis (cf. Ex.[Z), which we did not
touch upon in the scenario.

Context Dependency Management in Ontology Engineering: A Formal Approach 51

Some further observations:

1. Context-driven ontology elicitation and disambiguation avoids wasting valuable
modelling time and enormous cost. This is illustrated by the density of lexon elicita-
tion in the £I DEF'S ontology compared to the sparsely populated PE DEF'S
for term “panning”. The density reflects the minimal level of modelling details
needed. For other terms this might be vice-versa.

2. Context dependencies can be defined between sub-contexts within one ontology
and between different ontologies. Their types are characterised by applicable oper-
ators. This is illustrated by the arrows between the various nested boxes.

3. The context dependency arrows define a lattice. Management and access is facil-
itated by properly navigating through its branches. This suggests the need for an
appropriate query language.

4. Some contextualisations require the pre-existence of other types of contextualisa-
tion. Reconsider the specialisation of CO T'M PL which required a number of
applications of articulations first.

It is clear that proper management of these dependency complexities is essential
for context-driven ontology engineering to be successful. In this article, we have pre-
sented the foundation of an extensible context dependency management framework. It
currently contains a number of important context dependency types and operators. In
future research, we will produce a more detailed typology.

Next some more reflections on related work and future research.

5.1 Lexical Disambiguation

Shamsfard et al. [62] provide a comprehensive survey of methods and tools for (semi)
automatic ontology elicitation. However, in this article our focus is not on automation.
Work which is strongly related with what we need is e.g., Mitra et al. [41], who indi-
rectly adopt some of those features we concluded with in our synthesis earlier. They
illustrate a semi-automatic tool for creating a mapping between two ontologies (in fact
contexts). Their motivation is that two different terms can have the same meaning and
the same term can have different meanings, which exactly defines the lexical disam-
biguation problem. This mapping is manifested by an articulation ontology, which is
automatically generated from a set of articulation rules (i.e. semantic relationships)
between concepts in each context resp. Finally, we refer to the MikroKosmos project
[63]], which is concentrated in the domain of ontology-based disambiguation for natural-
language processing in a multi-cultural context.

In our framework, the CDS provides a basic means for relevant alignment of het-
erogeneous ontologies. The concept definitions (gloss, synset) in the CDS support the
meaning articulation of language level terms. As was illustrated in Ex.[3] the articulation
of terms from different contexts to a shared CDS, results in cross-context equivalence
relations, i.e. synonyms.

The meta-rules we made in step 3 and 5, were not formalised explicitly in this article.
However, we could devise a syntax, e.g.:

ct(EI, panning) < ct(SHARED, educational task)
ct(PE,panning) = ct(SHARED, jobtask)

52 P. De Leenheer, A. de Moor, and R. Meersman

The rules above extend the cross-context equivalence: they allow us to specify an align-
ment between a term in one context to a possibly more general term in another context.
In the future we will extend this feature and provide a formal semantics of meta-rules.
This can be very powerful in context-driven ontology elicitation and application such as
meta-reasoning on context and ontology alignment processes, and meaning negotiation
processes between stakeholders. Currently we are exploring reasoning for commitment
analysis and conceptual graph tools for ontology elicitation and analysis.

Initially, the lexon base and CDS are empty, but the CDS can be easily populated
by importing similar information from publically available electronic lexical databases,
such as WordNet [43] or Cyc [64]. The Lexon Base is populated during the first step
of an ontology elicitation process by various (not necessarily human) agents. See Rein-
berger & Spyns [36] for unsupervised text mining of lexons. The second step in the
elicitation process is to articulate the terms in the “learned” lexons.

5.2 Context Dependency Management

For supporting context-driven OE, we consider two points of view to manage (storage,
identification, versioning [32]) the disambiguation of meaning — ontologies in particular
— in our framework:

1. The context-dependency-driven way is to store only the initial ontologies and the re-
stricted derivation sequences. Access to the contextualisations is done by navigating
through the lattice composed by the context dependencies. Once arrived, the contex-
tualisation is generated automatically by completing the pushout of the derivation
sequence, the latter being gradually built from the path followed in the lattics.

2. The meta-data-driven way would be to store all the ontologies, but none of the
context dependencies between them. Access to these contextualisations is by iden-
tifying them with domain-specific meta-data tags (cf. Cyc [65]]). This might include
authorship and space-time allocation. Other dimensions are correlations with other
contexts, in our case, context dependencies. We have to investigate whether it is
possible, given any pair of ontologies, to induce this information.

The context dependency types and operators we introduced in this article are not ex-
haustive. Currently, we have only defined expanding and specialising operators, which
did not turn out to be very conflictive. However, to support complete revision capabil-
ity, we must add contracting and more generalising operators of which we could expect
following troublesome scenarios:

- Revisions will trigger cascades of revisions to existing context dependencies, usu-
ally implying alternative resolutions in which the human has to make choices.

- A revision resulting from a sequence of concept generalisations and specialisations
could force the concept to be unnaturally reclassified in a different branch in the
taxonomy.

- Introducing operators for axioms, implying new ‘“axiomatisation” dependency
types, could return unexpected behaviour. In this article we did not consider the
semantic constraints completely. The only visible constraint is the interpretation of
ontological relationships. We aim to extend our framework with typical ORM [38]

Context Dependency Management in Ontology Engineering: A Formal Approach 53

constraints such as uniqueness, mandatory, and exclusion. We can expect conflicts
between axiom restriction and relaxation operators.

Existing work might help is in the future extension to a broader set of context depen-
dencies and operators. E.g., in [66], algorithms are described for detecting unsatisfia-
bility of ORM schema. There, conflict patterns provide insights for the specification of
application conditions for productions on axioms. Furthermore, by founding our frame-
work in terms of graph rewriting (Sect.[3.2)), we aim to extend the use of conflict pair
analysis we introduced in Ex.[Zl Successful application of this exist in software evolu-
tion [60] and collaborative applications [S9158]], but could have a whole new application
domain in context-driven ontology engineering.

6 Conclusion

Contexts play a very important role in real-world, gradual ontology elicitation and appli-
cation efforts. In context-driven ontology engineering processes, such as ontology dis-
ambiguation, integration, and versioning, managing contexts effectively and efficiently
is crucial for their success. However, contexts and especially their dependencies are still
little understood.

In this article, we introduced a formal framework for supporting context dependency
management processes, based on the DOGMA framework and methodology for scal-
able ontology engineering. Key notions are a set of context dependency operators, that
can be combined to manage complex context dependencies like articulation, applica-
tion, specialisation, and revision dependencies. In turn, these dependencies can be used
in context-driven ontology engineering processes tailored to the specific requirements
of collaborative communities. This was illustrated by a case of interorganisational com-
petency ontology engineering.

With the foundation of the framework firmly established, research can shift to de-
veloping more extensive descriptions of context dependency operators and types, and
their systematic integration in community workflows through business rules. By includ-
ing these context modules in the existing DOGMA methodologies and tools in the near
future, experiments can be done to see which combinations of dependency management
processes are required in practice. It is our conviction that this will demonstrate the true
power of systematic context dependency management. Instead of being frustrated by out-
of-control change processes, proper context dependency management support will allow
human experts to focus on the much more interesting meaning interpretation and nego-
tiation processes. This, in turn should make ontologies much more useful in practice.

References

1. Gruber, T.: Cyc: a translation approach to portable ontologies. Knowledge Acquisition 5(2)
(1993) 199-220

2. Guarino, N.: Formal ontology and information systems. In: Proc. of the 1st Int’l Conf. on
Formal Ontologies in Information Systems (FOIS98) (Trento, Italy), IOS Press (1998) 3—15

54

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.
22.

23.

24.

P. De Leenheer, A. de Moor, and R. Meersman

Meersman, R.: The use of lexicons and other computer-linguistic tools in semantics, design
and cooperation of database systems. In: Proc.of the Conf. on Cooperative Database Systems
(CODAS99), Springer Verlag (1999) 1-14

Ushold, M., Gruninger, M.: Ontologies: Principles, methods and applications. The Knowl-
edge Engineering Review 11(2) (1996) 93-136

Farquhar, A., Fikes, R., Rice, J.: The ontolingua server: a tool for collaborative ontology
construction. Int’l Journal of Human-computer Studies 46(6) (1997) 707-727

de Moor, A.: Ontology-guided meaning negotiation in communities of practice. In Mambrey,
P., Griither, W., eds.: Proc. of the Workshop on the Design for Large-Scale Digital Commu-
nities at the 2nd International Conference on Communities and Technologies (C&T 2005)
(Milano, Italy). (2005)

McCarthy, J.: Notes on formalizing context. In: Proc. of the 15th Int-1 Joint Conf. Artificial
Intelligence (IJCAI93) (Chambéry, France), Morgan Kaufmann (1993) 555-560

Sowa, J.: Peircean foundations for a theory of context. In: Conceptual Structures: Fulfilling
Peirce’s Dream, Springer-Verlag (1997) 41-64

Farquhar, A., Dappert, A., Fikes, R., Pratt, W.: Integrating information sources using con-
text logic. In Knoblock, C., Levy, A., eds.: Information Gathering from Heterogeneous,
Distributed Environments, Stanford University, Stanford, California (1995)

Buvag, S., Fikes, R.: A declarative formalization of knowledge translation. In: Proc. of 4th
Int’l Conf. on Information and Knowledge Management (ACM CIKM 95). (1995)
Giunchiglia, F.: Contextual reasoning. special issue on I Linguaggi e le Macchine XVI
(1993) 345-364

Nayak, P.: Representing multiple theories. In: Proc. of the 12th Nat’l Conf. on Artificial
Intelligence (AAAI 94)(Seattle, Washington), AAAI Press (1994)

McCarthy, J., Buvag, S.: Formalizing context (expanded notes). Technical Report STAN-
CS-TN-94-13, Stanford University (1994)

Buvac, S.: Resolving lexical ambiguity using a formal theory of context. In Van Deemter,
K., Peters, S., eds.: Semantic Ambiguity and Underspecification, CSLI Publications (1996)
Meersman, R.: Reusing certain database design principles, methods and techniques for on-
tology theory, construction and methodology. Technical report, VUB STAR Lab, Brussel
(2001)

De Leenheer, P., de Moor, A.: Context-driven disambiguation in ontology elicitation. In
Shvaiko, P., Euzenat, J., eds.: Context and Ontologies: Theory, Practice, and Applications.
Proc. of the 1st Context and Ontologies Workshop, AAAI/TAAI 2005, Pittsburgh, USA, July
9, 2005. (2005) 17-24

Guha, R., D., L.: Cyc: a midterm report. AI Magazine 11(3) (1990) 32-59

Guha, R.: Contexts: a formalization and some applications. Technical Report STAN-CS-91-
1399, Stanford Computer Science Department, Stanford, California (1991)

Theodorakis, M.: Contextualization: an Abstraction Mechanism for Information Modeling.
PhD thesis, University of Crete, Greece (1999)

Guha, R., McCarthy, J.: Varieties of contexts. In: CONTEXT 2003. (2003) 164-177
Berners-Lee, T.: Weaving the Web. Harper (1999)

Guha, R., McCool, R., Fikes, R.: Contexts for the semantic web. In Mcllraith, S.A., Plex-
ousakis, D., van Harmelen, F., eds.: Proceedings of the International Semantic Web Confer-
ence. Volume 3298 of Lecture Notes in Computer Science., Springer Verlag (2004)
Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-owl:
Contextualizing ontologies. In: Proc. of the 2nd Int’l Semantic Web Conference ISWC
2003) (Sanibel Island, Florida)”, LNCS 2870, Springer Verlag (2003) 164-179

Singh, M.: The pragmatic web: Preliminary thoughts. In: Proc. of the NSF-OntoWeb Work-
shop on Database and Information Systems Research for Semantic Web and Enterprises.
(2002) 82-90

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.
45.

Context Dependency Management in Ontology Engineering: A Formal Approach 55

Schoop, M., de Moor, A., Dietz, J.: The pragmatic web: A manifesto. Communications of
the ACM 49(5) (2006)

Bachimont, B., Troncy, R., Isaac, A.: Semantic commitment for designing ontologies: a
proposal. In Gémez-Pérez, A., Richard Benjamins, V., eds.: Proc. of the 13th Int’l Conf.
on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web
(EKAW 2002) (Siguenza, Spain), Springer Verlag (2002) 114-121

Euzenat, J., Le Bach, T., Barrasa, J., et al.: State of the art on ontology alignment. Knowledge
web deliverable KWEB/2004/d2.2.3/v1.2 (2004)

Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In: Proc. of the
Dagstuhl Seminar on Semantic Interoperability and Integration (Dagstuhl, Germany). (2005)
Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change de-
tection on the web. In: Proc. of the 13th European Conf. on Knowledge Engineering and
Knowledge Management (EKAWO02) (Siguenza, Spain). (2002) 197-212

De Leenheer, P., Kopecky, J., Sharf, E., de Moor, A.: A versioning tool for ontologies (2006)
EU IP DIP (FP6-507483) Deliverable D2.4.

de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A meaning evolution support
system for interorganizational ontology engineering. In: In Proc. of the 14th Int’] Conference
on Conceptual Structures (ICCS 2006) (Aalborg, Denmark). LNAI 4068, Springer Verlag
(2006) 189-203

Ding, Y., Fensel, D.: Ontology library systems: the key to succesful ontology re-use. In:
Proc. of the 1st Semantic Web Symposium (SWWSO01) (Stanford, California). (2001)
Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD
Record 31(4) (2002) 12-17

Sowa, J.: Knowledge Representation - Logical, Philosophical and Computational Founda-
tions. Brooks/Cole Publishing Co. (2000)

Goémez-Pérez, A., Manzano-Macho, D.: A survey of ontology learning methods and tech-
niques. OntoWeb Deliverable D1.5 (2003)

Reinberger, M.L., Spyns, P.: Unsupervised text mining for the learning of DOGMA -inspired
ontologies. In: Buitelaar P., Handschuh S., and Magnini B.,(eds.), Ontology Learning and
Population, IOS Press (2005) in press

Verheijen, G., Van Bekkum, J.: NIAM, an information analysis method. In: Proc. of the IFIP
TC-8 Conference on Comparative Review of Information System Methodologies (CRIS 82),
North-Holland (1982)

Halpin, T.: Information Modeling and Relational Databases (From Conceptual Analysis to
Logical Design). Morgan Kauffman (2001)

Verheyden, P., De Bo, J., Meersman, R.: Semantically unlocking database content through
ontology-based mediation. In: Proc. of the 2nd Workshop on Semantic Web and Databases,
VLDB Workshops (SWDB 2004) (Toronto, Canada), Springer-Verlag (2004) 109-126
Jarrar, M., Demey, J., Meersman, R.: On reusing conceptual data modeling for ontology
engineering. Journal on Data Semantics 1(1) (2003) 185-207

Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation of ontol-
ogy interdependencies. In: EDBT *00: Proceedings of the 7th International Conference on
Extending Database Technology, London, UK, Springer-Verlag (2000) 86—-100

De Bo, J., Spyns, P., Meersman, R.: Assisting ontology integration with existing thesauri.
In: Proc. of On the Move to Meaningful Internet Systems (OTM2004) (Ayia Napa, Cyprus),
Springer Verlag (2004) 801-818

Fellbaum, C., ed.: Wordnet, an Electronic Lexical Database. MIT Press (1998)

Putnam, H.: Mind, Language, and Reality. Cambridge University Press, Cambridge (1962)
Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine. Addison-
Wesley (1984)

56

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

P. De Leenheer, A. de Moor, and R. Meersman

Brachman, R., McGuiness, D., Patel-Schneider, P., Resnik, L., Borgida, A.: Living with
classic: When and how to use a KL-ONE-like language. In Sowa, J., ed.: Principles of
Semantic Networks, Morgan Kaufmann (1991) 401456

Rastier, E., Cavazza, M., Abeillé, A.: Sémantique pour L’analyse. Masson, Paris (1994)
Banerjee, J., Kim, W.: Semantics and implementation of schema evolution in object-oriented
databases. In: ACM SIGMOD Conf., SIGMOD Record. (1987) 311-322

Noy, N., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge and
Information Systems 6(4) (2004) 428-440

Kim, W., Chou, H.: Versions of schema for object-oriented databases. In: Proc. of the 14th
Int’l Conf. on Very Large Data Bases (VLDBS88) (L.A., CA.), Morgan Kaufmann (1988)
148-159

Roddick, J.: A survey of schema versioning issues for database systems. Information and
Software Technology 37(7) (1995) 383-393

Lerner, B.: A model for compound type changes encountered in schema evolution. ACM
Transactions on Database Systems (TODS) 25(1) (2000) 83-127

De Leenheer, P.: Revising and managing multiple ontology versions in a possible worlds
setting. In: Proc. of On the Move to Meaningful Internet Systems Workshops (OTM2004)
(Ayia Napa, Cyprus), LNCS 3292, Springer Verlag (2004) 798-818

Oliver, D., Shahar, Y., Musen, M., Shortliffe, E.: Representation of change in controlled
medical terminologies. Al in Medicine 15(1) (1999) 53-76

Heflin, J.: Towards the Semantic Web: Knowledge Representation in a Dynamic, Distributed
Environment. PhD thesis, University of Maryland, Collega Park, MD, USA (2001)
Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evolution man-
agement. In: Proc. of the 13th European Conf. on Knowledge Engineering and Knowledge
Management (EKAWO02) (Siguenza, Spain). (2002) 285-300

Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering 28(5) (2002) 449462

Edwards, W., Igarashi, T., LaMarca, A., Mynatt, E.: A temporal model for multi-level undo
and redo. In Press, A., ed.: Proc. of the 13th annual ACM symposium on User interface
software and technology (San Diego, CA). (2000) 31-40

Berlage, T., Genau, A.: A framework for shared applications with a replicated architecture.
In Press, A., ed.: Proc. of the 6th annual ACM symposium on User interface software and
technology (Atlanta, GA). (1993) 249-257

Mens, T.: Conditional graph rewriting as a domain-independent formalism for software evo-
lution. In: Proc. of the Int’l Conf. on Applications of Graph Transformations with Industrial
Relevance (Agtive 1999). Volume 1779., Springer-Verlag (2000) 127-143

Lowe, M.: Algebraic approach to single-pushout graph transformations. Theoretical Com-
puter Science 109 (1993) 181-224

Shamsfard, M., Barforoush, A.: The state of the art in ontology learning: a framework for
comparison. the Knowledge Engineering Review 18(4) (2003) 293-316

Beale, S., Nirenburg, S., Mahesh, K.: Semantic analysis in the MikroKosmos machine trans-
lation project. In: In Proc. of the 2nd Symposium on Natural Language Processing (Bangkok,
Thailand). (1995) 297-307

(OpenCyc) http://www.opencyc.org.

Lenat, D.: The dimensions of context-space. Cycorp technical report (1998)

Jarrar, M., Heymans, S.: Unsatisfiability reasoning in orm conceptual schemes. In: Proc. of
Int’l Conf. on Semantics of a Networked World (Munich, Germany), Springer Verlag (2006)
Lecture Notes in Artificial Intelligence, in press.

Default Clustering with Conceptual Structures

J. Velcin and J.-G. Ganascia

LIP6, Université Paris VI
8 rue du Capitaine Scott
75015 Paris
France
{julien.velcin, jean-gabriel.ganascia}@lip6.fr

Abstract. This paper describes a theoretical framework for inducing
knowledge from incomplete data sets. The general framework can be used
with any formalism based on a lattice structure. It is illustrated within
two formalisms: the attribute-value formalism and Sowa’s conceptual
graphs. The induction engine is based on a non-supervised algorithm
called default clustering which uses the concept of stereotype and the
new notion of default subsumption, inspired by the default logic theory.
A validation using artificial data sets and an application concerning the
extraction of stereotypes from newspaper articles are given at the end of
the paper.

1 Introduction

This paper presents a model dealing with sparse data sets. Our original goal was
to simulate common-sense inductive reasoning. It appears from previous research
[1U213] that common-sense reasoning is highly related to reasoning from partially
described data. The general framework we propose treats such data by following
a default reasoning. It can be applied to automatically process heterogeneous
data which often fit this property of sparseness. The main considered application
deals with newspaper articles translated into a logical formalism. Our goal is to
extract characteristic representations called stereotypes from these newspapers.
The extracted representations can be seen as a way of summarizing the data in
a simplified and rough manner.

More precisely, we refer to representations that can be obtained through a
task of clustering. Conceptual clustering, a fundamental machine learning task
[4], takes a set of object descriptions, or observations, as input and creates a clas-
sification scheme. Our interest will be more focused on the concepts used to name
the classes than on the classes themselves. However, information sparseness is a
recurrent problem in clustering. This may be for several reasons: voluntary omis-
sions, human error, broken equipment which causes a loss of data, etc. [5]. The
phenomena increases drastically when you consider the information extracted
from newspapers because the vocabulary used is often very heterogeneous. Usu-
ally, existing algorithms are not adapted when there are many missing values.
One solution is to fill the holes, i.e. the unknown values, by analogy with the

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 1 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Velcin and J.-G. Ganascia

other data. However, these imputation techniques [0] are separated from the
clustering task and mostly adapted to numerical variables.

The proposed model uses a default reasoning schema in order to induce knowl-
edge from sparse and categorical data sets. What this induction model does is
to build categories from incomplete data and name them thanks to specific con-
ceptual descriptions. The concept of stereotype was chosen to reflect internal
coherence within the clusters. It can be formed thanks to a new relation we have
introduced, called default subsumption, that has been inspired from the default
logic theory [7]. But contrary to this logic, which is used for default deduction,
default subsumption is a specific logic for default induction. Furthermore, our
model uses an original constraint named cognitive cohesion inspired by the no-
tion of family resemblance of L. Wittgenstein [8].

This model of default clustering and its applications relies on the hypothesis
that popular inductions are not only biased by lack of facts, but also by the
poor description of existing facts [9]. Hence, experiments was made in the field
of scientific discovery which confirm that missing values can lead to erroneous
representations [1J2] whereas complete data do not. With a high rate of missing
values, we state that each piece of information is crucial and must be used
to build rich and relevant representations of the data. Stereotype sets seem
really appropriate as a base for such representations. These sets provide coherent
and cohesive descriptions that go beyond the usual approach used in clustering.
All the above is closely linked to the context of sparse data, in which data
extracted from textual data sets are often placed. For instance, Press Content
Analysis becomes a natural object of such a cognitive model. This subarea of
social psychology aims to analyse representations through the manipulation of
concepts and relationship among these concepts from newspapers [I0J11]. This
is the reason why the model of default clustering is well designed to extract
stereotypes from such data.

The paper is divided into five parts. Section 1 introduces the problem of
missing values within the clustering process. Section 2 gives the abstract and
logical framework of default clustering. This framework makes use both of the
notion of default subsumption and of the concept of stereotype, which models
the way sparse descriptions may be categorized. Section 3 goes on to instantiate
this model of default clustering into two formalisms: the attribute-value formal-
ism and the conceptual graph formalism. Section 4 presents the validation of
the model using artificial data sets and a real application dealing with social
misrepresentations. Section 5 suggests further lines of research.

2 Dealing with Missing Values

2.1 Missing Values and Clustering

Generally, in Data Analysis, missing values are primarily solved just before start-
ing the “hard” analysis itself. Three kinds of strategies are generally used to
handle such data [6]:

Default Clustering with Conceptual Structures 3

— ignoring the incomplete observations (the so-called “listwise deletion”),

— estimating the unknown values with other variables (single or multiple im-
putation, k-nearest-neighbors [12], maximum likelihood approaches [13]),

— using the background knowledge to complete automatically the unknown
data with default values (arbitrary values, default rules).

But this pre-processing methods are mainly adapted to numerical data and seem
not really flexible in a classification task with very sparse data.

Clustering is a classification task performed in a non-supervised way. It means
that the categories are discovered without knowing previously the class to which
each object belongs (like with a teacher). The most famous clustering algo-
rithms are k-means (in fact its categorical version: k-modes [I4]) and EM [I5]
(as Expectation-Maximization) that will be briefly described in section 53] But
contrary to these algorithms that can easily lead to local optima, we have cho-
sen to achieve the clustering using a combinatorial optimization approach, like
in [I6/17]. Besides, our goal here is not only to cluster examples but also and
mainly to describe the clusters easily and in a non-probabilistic way. The prob-
lem can thus be stated as finding a set of readable, consistent, cohesive and rich
descriptions of the data.

2.2 Overview of Default Logic

During the eighties, there were many attempts to model deductive reasoning where
implicit information exists. A lot of formalisms [I8[T97] were developed to en-
compass the inherent difficulties of such models, especially their non-monotony:
close-world assumption, circumscription, default logic, etc. Since our goal here is
to model the way people induce empirical knowledge from partially and non ho-
mogeneously described facts, we face a very similar problem: in both cases, it is
to reason where implicit information exists. Therefore, it is natural to make use of
similar formalisms.

In this case, we have chosen default logic formalism, which was developed in
the eighties by R. Reiter [7]. This logic for default reasoning is based on the notion
of default rule which makes it possible to infer new formulas when the hypotheses
are not inconsistent. More generally, a default rule always has the following form:
A:Bi1,Bs...B,/C where A is called the prerequisite, B; the justifications and
C the conclusion. This default rule can be interpreted as follows: if A is known
to be true and if it is not inconsistent to assume Bi, Bs ... B, then conclude C.

For instance, let us consider the default rule below:

politician(X) A introduced Abroad(X) : ~diplomat(X)
traitor(X)

This rule translates a usual way of reasoning for people living in France during
the end of the 19th century; it means that one can suspect all politicians who
are introduced abroad of being traitors towards their own countries, except for
diplomats. In other words, it states that the conclusion traitor(X) can be derived

4 J. Velcin and J.-G. Ganascia

if X is a politician who is known to be introduced abroad and that we cannot
prove that he is a diplomat.

It should be noted that information conveyed by default rules refers to implicit
connotations. For example, the antinomy between patriots and internationalists
and the rule that considers almost all the politicians involved with foreigners to
be traitors both correspond to connotations and may facilitate the completion of
partial descriptions. The key idea is that people have in mind stereotypes that
correspond to strong images stored in their memory which associates features
and makes them connote each others.

2.3 Default Clustering

Conceptual clustering is a machine learning task defined by R. Michalski [4]
which does not require a teacher and uses an evaluation function to discover
classes of similar observations with data. In the same time, these classes are
named with appropriate conceptual descriptions. Conceptual clustering was prin-
cipally studied in a probabilistic context (see D. Fisher’s Cobweb algorithm [20])
and seldom used really sparse data sets. For instance, the experiments done by
P.H. Gennari do not exceed 30% of missing values [21].

This paper proposes a new technique called default clustering which is inspired
by the default logic. We use a similar principle but for induction, when missing
information exists. The main assumption is the following: if an observation is
grouped with other similar observations, you can use these observations to com-
plete unknown information in the original fact if it remains consistent with the
current context. Whereas default logic needs implicit knowledge expressed by
default rules, default clustering only uses information available in the data set.
The next section presents this new framework. It shows how to extract stereo-
type sets from very sparse data sets: first it extends the classical subsumption,
next it discusses the way stereotypes are choosed, and finally it proposes a local
search strategy to find the best solution.

3 Logical Framework of Default Clustering

3.1 General Framework

Let there be a description space noted D. A description d of D is defined as a logical
structure (for instance a graph or a vector) describing objects, persons, events, etc.
The observations we want to classify are associated to a set of such descriptions.
Let us now suppose that this space can be structured into a lattice through the
two binary operators A and V. Here is the precise definition of a lattice:

Definition 1. An algebra < D; A,V > is called a lattice if D is a nonempty set,
A and V are binary operations on D, both A\ and \V are idempotent, commutative,
and associative, and they satisfy the absorption law.

A partially ordered set (poset) can be defined from the lattice structure through
the subsumtion relationship:

Default Clustering with Conceptual Structures 5

Definition 2. Being given two descriptions (d,d’) € D?, d subsume d’' (noted
d<d) if and only if dNd' = d.

The expression d < d’ means that all the observations covered by the descrip-
tion d’, i.e. the observations that verify the information given by d’, are also
covered by d. In other words, d is more general than d’ and therefore covers
a more important number of observations. At the opposite, d’ is a more spe-
cific description that covers less observations. If (d,d’) € D?, d A d’ is the lower
bound of d and d’, which corresponds to the greatest minorant common to the
descriptions: Vd",d" < d,d” < d" = d’ < d Ad'. In the same way, d V d’ is
the upper bound of d and d’, that corresponds to the least common majorant:
vd',d<d',d <d"=dnd <d".
Here is defined the notion of completion:

Definition 3. Being given two descriptions (d,d’) € D?, d' completes d if and
only if d < d'.

Fig. 1. Illustration of a description lattice

Fig. [l is an example of a lattice formed from eleven descriptions: dy, ds ... dy,
T, L. T is the empty-description that subsumes all the possible descriptions, i.e.
Vd € D, T < d. On the contrary, 1 is the absurd-description that is subsumed
by all the other descriptions. In this example, dy V d3 = d7, but da V dqy =1.
Otherwise, d; Ad4 = T and d7 Adg = d3. Besides, dg completes d3 which is itself
completed by d7.

Let the descriptions di, do and d3 describe three french meals:

di: a meal composed by an onion soup and a steak-potatoes accompanied
with red wine;

ds: a meal composed by a steak-potatoes, bread and red wine.

ds: a meal composed by a steak-potatoes and bread.

As we can see, d3 %_ d1 because the information about the bread is missing
in dy. However, d3 < ds because ds does not precise the drink and then covers
also the meals accompanied with red wine. Furthermore, we can propose the
following lower and upper bounds for d; and ds:

6 J. Velcin and J.-G. Ganascia

d1 ANds: a meal composed by a steak-potatoes and accompanied with red wine;
di V ds2: a meal composed by an onion soup, steak-potatoes, bread and red
wine.

The above is possible because it is done within the framework of propositional
logic framework, which allows the use of a lattice structure. It can be adapted to
all formalisms using specialization and generalization operators such as V and
A. The attribute-value formalism (see section {]) is just one example of such a
description space with the operators U and N. It must be noticed that conceptual
graphs or a restricted version of ER structures can also be used if they fit the
previous conditions.

3.2 Default Subsumption

Contrary to default logic, the problem here is not to deduce, but to induce
knowledge from data sets in which most of the information is unknown. There-
fore, we propose the notion of default subsumption, which is the equivalent for
subsumption of the default rule for deduction.

Let us start with an intuitive idea of this notion before moving to a more
formal definition. Let us consider two descriptions d and d’ such that d does
not subsume d’, i.e. d £ d'. d subsumes d’ by default means that d’ could be
completed in such a way that it would be subsumed by d in the classical way.
This completed description d. brings together the information of d and d'.

More formally:

Definition 4. For any (d,d') € D?, d subsumes d’ by default (noted d <p d’)
if and only if d.,d. #L, such that d. completes d' and d < d..

Let us note that d. is a majorant of d and d’ in the subsumption lattice. This
leads us to the following theorem linked to the lattice theory:

Theorem 1. V(d,d') € D?, d<pd & dVvd #L1.

Proof. d <p d' = 3d. #L /d' < d. and d < d. (def. @). d vV d’ is the lowest
majorant common to d and d’, so Vdg,d < di,d < dy = dVd < di. In
particular, dVd < d. #1,s0dVd #1. Reciprocally, d V d #.1 is a majorant
of dand d'. If d. = dV d' then d < d. and d’' < d.. d. is a description # 1 that
completes d’ and is subsumed by d.

Property 1. The notion of default subsumption is more general than the classical
subsumption since, if d subsumes d’, i.e. d < d’, then d subsumes d’ by default,
i.e. d <p d'. The converse is not true.

Proof. Since d < d’, let us state d. = d’; d’ = d. < d. (thanks to the absorption
law of A) and d < d. =d = d <p d' (def. H).

Property 2. The default subsumption relationship is symmetrical, i.e. V(d,d’) €
D2, if d <p d’ then d' <p d.

Default Clustering with Conceptual Structures 7

Proof. d <p d" = dvd #L (th.[); since the operator V is commutative,
dvd#Ll;th.Ml=d <pd.

Let us note that the notion of default subsumption may appear strange for people
accustomed to classical subsumption because of its symmetry. As a consequence,
it does not define an ordering relationship on the description space D. The
notation <p may be confusing with respect to this symmetry, but it is relative
to the underlying idea of generality.

Fig. 2 gives two examples extracted from fig. [l where the default subsumption
is verified and a third case where it is not.

da dy

L

Fig. 2. d1 <p d3 and dg9 <p dg, but da fD dy

Let us consider the previous descriptions d; and ds of two french meals. It is
assumed that d; and ds are partial descriptions. For instance, we do not know
if there is a starter in the meal ds or not. Hence, d2 can be completed into d. by
adding the onion soup, such as:

d.: a meal composed by an onion soup, a steak-potatoes, bread and red wine.

Since dy subsumes d., i.e. di < d., dy subsumes dy by default, i.e. d; <p ds.
dy could be completed in the same way, which leads to conclude do <p dy. Let
us note that the number of observations covered by d. is necessarily less (or
equal) than that of d; and that of ds.

3.3 Concept of Stereotype

E. Rosch saw the categorization itself as one of the most important issues in
cognitive science [22]. She observed that children learn how to classify first in
terms of concrete cases rather than through defining features. She therefore
introduced the concept of prototype [22I23] as the ideal member of a category.
Membership of a class is therefore defined by the proximity to the prototype and
not by the number of shared features.

For example, a robin is closer to the bird prototype than an ostrich is, but
they are both closer to it than they are to the prototype of a fish, so we call
them both birds. However, it takes longer to decide that an ostrich is a bird than
it takes to decide that a robin is a bird because the ostrich is further from the
prototype. J. Sowa defines a prototype as a typical instance formed by joining
one or more schemata [24]. Instead of describing a specific individual, it describes
a typical or “average” individual.

Even if the original idea behind the concept of prototype and our approach
have several features in common, we prefer to refer to the older concept of

8 J. Velcin and J.-G. Ganascia

stereotype that was introduced by the publicist W. Lippman [25] and developped
later by H. Putnam [26]. For Lippman, stereotypes are perceptive schemas (as
structured association of characteristic features) shared by a group about other
person or object categories. These simplifying and generalizing images about
reality affect human behavior and are very subjective. Below are three main
reasons to make such a choice.

First of all, the concept of prototype (whatever the term: centroid, medoid,
etc.) is often misused in data mining techniques. It is reduced to either an av-
erage observation of the examples or an artificial description built on the most
frequent shared features. Nevertheless, both of them are far from the underlying
idea in family resemblance. Especially in the context of sparse data, it seems
more correct to speak about combination of features found in different example
descriptions than about average or mode selection. The second argument is that
the concept of stereotype is often defined as an imaginary picture that distorts
reality. Our goal is precisely to generate such pictures even if they are caricatural
of the observations. Finally, these specific descriptions are more adapted for fast
classification (we can even say discrimination) and prediction than prototypes.
This is closely linked to Lippman’s definition.

In order to avoid ambiguities, we restrict the notion of stereotype to the
following:

Definition 5. A stereotype is a specific description s € D.

However, the next subsection does not handle stereotypes alone but stereotype
sets to cover a whole description set.

Let us now consider a set E of facts (or examples) and a function § that maps
each fact e € F to its description d(e) € D. The objective is to automatically
construct a set of stereotypes that cover E, whereas most of the studies are fo-
cused on already fixed stereotype usage [27128]. Keeping this in mind, the space
of all the possible stereotype sets is browsed in order to discover the best one,
i.e. the set that best covers the examples of E with respect to some similarity
measure. In a word, the stereotype set search can be summarized as an opti-
mization problem. Before addressing this problem, let us introduce the relation
of relative cover that will be used to fix the criterion to be optimized.

3.4 Stereotype Sets and Relative Cover

Groups of people share implicit knowledge, which makes them able to understand
each other without having to express everything explicitly. This sort of knowledge
can be expressed in terms of erudite theories (e.g. the “blocking perspiration”
theory in [2]) or use a more “naive” formulation. Our hypothesis is that this
implicit knowledge can be stored in terms of sets of stereotypes. This means
that many people have in mind stereotype sets and that they use them to reason
in a stereotyped way by associating new facts to known stereotypes.

To formalize this idea, let us first state a very general measure of similarity
M defined on D. This measure reflects the degree of similarity between two
descriptions d; and ds of D: the more the score, the closer d; and ds. For instance,

Default Clustering with Conceptual Structures 9

M, can be based on the number of common shared descriptors in the attribute-
value formalism.

Let us now consider a stereotype s € D and a fact e € E. We say that the
stereotype s is able to cover the fact e if s subsumes d(e) by default and if
M (s, d(e)) reflects some similarities. In other words:

Definition 6. Let s be a stereotype € D and e an example € E, s covers e if
and only if s <p §(e) and Ms;m(s,0(e)) >0

This notion can be extended to consider a set of facts:

Definition 7. Let s be a stereotype € D and E’ a part of E, s covers E’ if and
only if Ve € E', s covers e.

Thus, the idea is to find a set of stereotypes that are able together to cover the
whole set E:

Definition 8. Let D be a description space, a set of stereotypes S is a set of
n+ 1 descriptions {s1,82...8,, T} € D"

Given a set of facts E and a set of stereotypes S, it is possible to calculate a
categorization of E where each example e € FE is associated to a description
of S. The categorization is calculated by bringing together the facts that are
covered by the same stereotype. The descriptions of the facts e € F can then be
completed thanks to this stereotype. But it is also possible to predict the values
of new observed facts that were not initially in F.

More precisely, completion is possible when there exists at least one stereotype
s; € S such that s; # T and s; covers the description §(e) of the fact e (belong-
ing to E or not). In other words, thinking by stereotype is possible when the
descriptions are so sparse that they seem consistent with existing stereotypes.
This capacity to classify and to complete the descriptions is closely linked to the
concept of stereotype as introduced by Lippman in [25].

When one and only one stereotype s; (except L) covers by default the fact
e, the description of e may be completed by the stereotype s;. However, it hap-
pens that facts may be covered by two or more stereotypes. So, the stereotype
associated with a fact e is the one that maximizes the measure of similarity
Mim, i.e. it is the stereotype s; which both covers d(e) by default and maxi-
mizes Mg (d(e),s;). It is called the relative cover of e, thanks to the measure
of similarity Mg, and to the set of stereotypes S = {s1,82...8n, T }.

Definition 9. The relative cover of a fact e, with respect to a set of stereotypes
S ={51,82...8n, T}, noted Cs(e), is the stereotype s; if and only if:

1. s, €85,

2. S; SD (5(6)

3 Mszm((6)7 l) 0;

4. Yk € [Ln], k # i, Mgim(5(e), 8i) > Msim (6(€), 1)

10 J. Velcin and J.-G. Ganascia

It means that a fact e is associated to the most-similar and “covering-able”
stereotype relative to the set S. If there are two competing stereotypes (or more
than two) with an equal higher score of similarity, then two strategies can be
used: either associate the fact arbitrarily to one or other of these stereotypes, or
reject the fact under the empty-stereotype whose description is T. It may also
happen that no stereotype covers the fact e, which means that d(e) is inconsistent
with all s;. The example is then directly associated to the empty-stereotype and
no completion can be calculated. Fig. Bl shows how the example e € FE is covered
by ss relatively to the set S of stereotypes.

Fig. 3. The example e is covered by s3 relatively to S

3.5 Extraction of Stereotypes

In this paper, default reasoning is formalized using the notions of both default
subsumption and stereotype set. Up to now, these sets were supposed to be
given. This section shows how the classification can be organized into such sets
in a non-supervised learning task. It can be summarized as follows.

Given:

1. An example set E.

2. A description space D.

3. A description function §: E — D which associates a description d(e) € D
to each example belonging to the training set F.

The function of a non-supervised learning algorithm is to organize the initial
set of facts E into a structure (for instance a hierarchy, a lattice or a pyramid). In
the present case, the structure is limited to partitions of the training set, which
corresponds to searching for stereotype sets as discussed in the previous sections.
These partitions may be generated by (n + 1) stereotypes S = {s1,82...8n, T }:
it is sufficient to associate to each s; the set F; of examples e belonging to F
and covered by s; relative to S. The examples that cannot be covered by any
stereotype are put into the Et cluster and associated to T.

To choose among the numerous possible partitions, which is a combinatorial
problem, a non-supervised algorithm requires a function for evaluating stereo-
type set relevance. Because of the categorical nature of data and the previous
definition of relative cover, it appears natural to make use of the similarity mea-
sure Mg;m. This is exactly what we do by introducing the following evaluation
function hg:

Default Clustering with Conceptual Structures 11

Definition 10. Given an example set E, a stereotype set S = {s1,82...5n, 1}
and the function Cg that associates to each example e € E its relative cover, i.e.
its closest stereotype with respect to Mgy, and S, the evaluation function hg is
defined as follows:

hE(S) = Z Msim(a(e)v Cs(e))

ecE

While other non-supervised learning algorithms, such as k-modes or EM, are
straightforward, i.e. each step leads to the next one until convergence, we reduce
here the non-supervised learning task to an optimization problem. This approach
offers several interesting features: avoiding local optima (especially with categor-
ical and sparse data), providing “good” solutions even if not the best ones, better
control of the search. In addition, it is not necessary to specify the number of
expected stereotypes that are also discovered during the search process.

There are several methods for exploring such a search space (hill-climbing,
simulated annealing, etc.). We have chosen the meta-heuristic called tabu search
which improves the local search algorithm. Previous work studying the use of
tabu search for clustering problems can be found in [29/30].

Let us recall that the local search process can be schematized as follows:

1. An initial solution S;,; is given (for instance at random).

2. A neighborhood V (S;) is calculated from the current solution S; with the
assistance of permitted movements. These movements can be of low influence (en-
rich one stereotype with a descriptor, remove a descriptor from another) or of high
influence (add or retract one stereotype to or from the current stereotype set).

3. The better movement, relative to the evaluation function hg, is chosen and
the new current solution S;11 is computed.

4. The process is iterated a specific number of times and the best up-to-now
discovered solution is recorded.

Then, the solution is the stereotype set Sp,q. that best maximizes hg in
comparison to all the crossed sets. Fig. @] shows the process of searching through
the space of all the potential solutions.

As in almost all local search techniques, there is a trade-off between exploita-
tion, i.e. choosing the best movement, and exploration, i.e. choosing a non opti-
mal state to reach completely different areas. The tabu search extends the basic
local search by manipulating short and long-term memories which are used to

Fig. 4. Local search through the potential solutions

12 J. Velcin and J.-G. Ganascia

avoid loops and to intelligently explore the search space. For instance, a tabu list
can be used in order to avoid the solutions that have been already visited. We
shall not detail here this meta-heuristic but suggest the reader to consult the
book of Glover and Laguna [31].

3.6 Cognitive Cohesion

A constraint inspired by the family resemblance relationship has been added to
reflect internal cohesion within the categories. This constraint, called cognitive
cohesion, checks cohesion within the example set F; C E, relative to the corre-
sponding stereotype s; € S. The idea is that all the features (descriptors in the
A/V formalism, concepts with the conceptual graphs) of s are somehow linked
by a succession of co-occurences. It means that cognitive cohesion is verified if
there exists a path through the example descriptions that links the different ele-
ments constituting the stereotype description. A similar approach for clustering
can be found in [32].
Let us consider the following descriptions:

dy: a scientist with a red beard;
ds: a tall man with a beard;

ds3: a tall red-haired scientist;
d4: a small black-haired woman.

This example clearly shows a first category bringing the descriptions d;, ds
and ds together, whereas the description d4 seemingly has to be placed in a
separate group.

This constraint is used both to restrain the search space and to assure a good
cohesion within the stereotypes. It removes the solutions that do not correspond
to our assumption and are considered irrelevant. This is closely linked to the
context of sparse descriptions. It will be explained in much more detail in the
section dealing with the attribute-value formalism.

4 Implementation of Default Clustering

Now that the framework of default clustering has been given, this section shows
how it can be used with two different formalisms. The first one is the well-known
attribute-value formalism, derived from the propositional logic. The second one
is the conceptual graph formalism introduced by J.F. Sowa [24].

4.1 Attribute-Value Formalism

Let us consider a set A of m categorical attributes. Each attribute 4;,1 <1i < m,
can take a finite number of mutually exclusive values V;;. The descriptor space
V corresponds to all the tuples built from an attribute associated with a value,
which is noted (A; = V;;). Thus, the description space D is composed of all the
possible combinations of descriptors, i.e. P(V), with the strong constraint that

Default Clustering with Conceptual Structures 13

an attribute can take only one value for each description. Here is an example of
a description about a French meal:

d = {(Starter = onion — soup), (Dish = steak — potatoes), (Drink = wine)}

Here E constitutes a base of French meals and each example e € E is mapped
to one description of D thanks to the function §. The definition @ of the default
subsumption can be rewritten, thanks to the theorem [l as shown below:

Definition 11. For any (d,d’) € D?, d subsumes d’ by default (i.e. d <p d') if
and only if d. =dUd #1.

To illustrate this new definition, here are some descriptions that can be compared
with respect to the default subsumption:

dy = {(Starter = onion — soup), (Drink = red — wine)}

do = {(Starter = onion — soup), (Dish = steak — potatoes)}

ds = {(Dish = sole)}

ds = {(Starter = onion — soup), (Drink = red — wine), (EndWith = cof fee)}
d1 <p ds and dy <p dy because 3d. such that d. = dy Uds #L:

d. = {(Starter = onion — soup), (Dish = steak — potatoes), (Drink = red — wine)}

d1 <p d4 because d; < dy (property [Il). However, considering the new con-
straint that red wine cannot be drunk with fish and vice-versa, which could be
assumed as an implicit statement in French cuisine, d; does not subsume d3 by
default, i.e. dy £p ds.

In order to measure the degree of similarity between two descriptions d and
d' € D, we propose a very basic function that counts the number of common
descriptors of V belonging to d and d’. The unknown values are ignored and the
default subsumtion relationship is taken into account.

Mgim: D x D — Nt
(di,dj)l—> Msim(di,dj) = |dz ﬂdj| if dz SD dj and
Mgim(di, d;) = 0if d; £p dj.

Let us now present the constraint of cognitive cohesion in the attribute-value
formalism. This constraint is verified if and only if, being given two descriptors
vy and v € V of s € S, it is always possible to find a series of examples in F
that makes it possible to pass by correlation from vy to vy. More formally:

Definition 12. Being given a stereotype s € D and a set E of examples covered
by s, s is said to check the cognitive cohesion constraint if and only if VerVes €
5, Un = €i(1),€i(2) - - - Ci(m)/Citk) € E,c1 € €y, ¢a € ey with Vj € [1,m —
1],dc € V/c € ey and c € e;(j+1)-

Let us continue with the previous illustration of a french meal (see fig. Bl). Five at-
tributes are considered because they are instantiated by the stereotype: Starter,
Main-dish, Drink, Dessert and End-with. For instance, Starter can take the val-
ues green-salad, onion-soup, fish-soup, and Main-dish the values steak-potatoes,
sole-rice, chicken-puree.

14 J. Velcin and J.-G. Ganascia

Starter Main-dish Drink Dessert End-with
s1 : green-salad steak-potatoes beer cream-puff coffee

e1 : green-salad ? ? ? coffee
e2 : green-salad steak-potatoes 7 ? ?
€6 : ? ? beer ? ?
es : ? steak-potatoes beer cream-puff ?
e : green-salad ? beer ? ?

s2 : green-salad steak-potatoes beer cream-puff coffee

eo : green-salad steak-potatoes 7 ? ?
es : ? ? 7?7 cream-puff ?
eg : green-salad steak-potatoes 7 ? ?
es1 : ? ? beer ? coffee
elo1 : ? ? beer ? coffee

Fig. 5. Two example sets with their covering stereotype

The examples covered by the stereotype s; verify the constraint. Hence, it
is always possible to pass from each descriptor green-salad, steak-potatoes, beer,
cream-puff or coffee to another descriptor belonging to s;. To take an example
of path, you can go from coffee to cream-puff by using e, e4o and eg. This path
is illustrated in the figure below:

Starter Main-dish ~ Drink Dessert End-with
s1 @ green-salad steak-potatoes beer cream-puff coffee

€1 : greenrsated 2 2 2 {coffee]
ez : greentsalad steak-potatoes 7 ? ?
€6 ? beer ? ?
es - ?
e42 : greenlselad ?

The examples covered by the stereotype so do not verify the constraint. Hence,
it is never possible with sy to pass from green-salad to beer. In the case of s1,
you are always able to find a “correlation path” from one descriptor of the de-
scription to another, that is to say examples explaining the relationship between
the descriptors in the stereotype.

4.2 Conceptual Graphs Formalism

Let us now consider the conceptual graph formalism applied to the default clus-
tering model, following the notations given by Sowa. But first, here is a reminder
of the main assumption of conceptual graphs [24]:

Assumption 1. A conceptual graph is a finite, connected, bipartite graph.

e The two kinds of nodes of the bipartite graph are concepts and conceptual
relations.

e Every conceptual relation has one or more arcs, each of which must be linked
to some concepts.

Default Clustering with Conceptual Structures 15

e If a relation has n arcs, it is said to be n-adic, and its arcs are labeled
1,2...n. The term monadic is synonymous with 1-adic, dyadic with 2-adic,
and triadic with 3-adic.

e A single concept by itself may form a conceptual graph, but every arc of
every conceptual relation must be linked to some concept.

Given two conceptual graphs g and gg, gs < g means that gg is a specializa-
tion of g and g is a generalization of gg, i.e. g subsumes gg. This means that
gs is canonically derivable from g, possibly with the join of other conceptual
graphs. For the sake of clarity, let us simply consider that the join of graph u
and v is the graph w obtained by aggregating the concepts and relations of u
and v. For further details, please see [24].

Remark 1. Let us emphasize that the symbol < has the opposite meaning in the
conceptual graph formalism and in the attribute-value formalism we exposed
previously. However, it is the notation followed by Sowa in his book [24]. Thus,
g < ¢’ means that the conceptual graph ¢’ is more general than the conceptual
graph g.

Now, let a stereotype be a specific conceptual graph s. If this stereotype is more
general than gg, i.e. gg < s, then it subsumes g by default. More formally,
definition [can be rewritten this way:

Definition 13. Let e be a fact represented by the conceptual graph g = 6(e) and
s a stereotype. s subsumes g by default (i.e. s <p g) if and only if there exists
a graph gs with gs < g and gs < s. gs 1is therefore a graph formed by the join
operator performed on the graphs g and s.

Fig. [@l presents the fact The meal of Jules is composed of steak, red wine, and
ends with a cup of very hot coffee which can be subsumed by default by the
stereotype The meal is composed of steak with potatoes and French bread, and
ends with a cup of coffee because the fact can be completed to The meal of Jules
18 composed of steak with potatoes and French bread, red wine, and ends with
a cup of very hot coffee. If the stereotype had presented a meal ending with a
liqueur, it would not match the fact and so could not subsume it by default.

We want now to link the relation of default subsumption to the notion of com-
patibility as developed by Sowa. But first, here is the definition of compatibility
given by Sowa [24]:

Definition 14. Let conceptual graphs uy and us have a common generalization
v with projections m : v — w1 and W : v — ug. The two projections are said to
be compatible if for each concept c in v, the following conditions are true:

o type(mic) Nitype(mac) > L.

e The referents of mic and mac conform to type(mic) N type(mac).

o If referent(mic) is the individual marker i, then referent(mac) is either i
or *.

16 J. Velcin and J.-G. Ganascia

Fact

Stereotype

‘MEAL: the meal of Ji ules‘

mainly accompanied
composed of with a drink

‘ DISH ‘

mainly
composed of
STEAK

mainly
composed of

accompanied
with bread
‘ RED WINE ‘ ‘ COFFEE ‘ ‘ DISH ‘ FRENCH COFFEE
Y
accompanied mainly
warmth (with vegetable; [composed of]

‘VERY HOT‘ ‘POTATOES‘ ‘ STEAK ‘

Completed fact

‘MEAL: the meal of T ules‘

accompanied accompanied
with bread with a drink

y

mainly

end with
composed of

DISH

FRENCH
BREAD

‘ RED WINE ‘ ‘ COFFEE ‘

mainly accompanied
composed of with vegetables

‘ STEAK ‘ ‘ POTATOES ‘

warmth
VERY HOT

Fig. 6. The stereotype subsumes by default the fact description. The description below
is the result of the join operator, i.e. the completed fact.

where type maps concepts into a set of type labels (e.g. meal or wine) and referent
is either an individual marker (e.g. the meal of Tom) or the generic marker *.

We state the following theorem in order to link the notions of compatibility
and default subsumption:

Default Clustering with Conceptual Structures 17

Fact 1 Fact 2

MEAL: meal of Tom

accompanied
with bread

MEAL: meal of Luc

mainly
composed of

end with mainly - . accompanied
(start wit) with a drink

FRENCH COFFEE ‘ DISH ‘ ‘ONION SOUP‘ ‘WHITE WINE‘
BREAD
ai accompanied
)
DAUPHINE
STEAK VERY HOT POTATOES

Fact 3

‘ MEAL: meal of the Petit family‘

start with end with

mainly accompanied
composed of with a drink

STARTER ‘ ‘ DISH ‘ ‘ RED WINE ‘ ‘ COFFEE

mainly accompanied
composed of with vegetables

FRENCH
STEAK FRIES

Fig. 7. Three facts corresponding to a French meal

Theorem 2. Let conceptual graphs ui and us have the least common general-
1zation v with projections m : v — w1 and e 1 V — uz. T and Ty are compatible
if and only if uy subsumes us by default.

Proof. If m; and my are compatible then there exists a common specialization w
of uy and wus (cf. theorem 3.5.7 [24]). According to definition [I3] u; subsumes us
by default. Reciprocally, if u; subsumes uy by default then there exists a common
specialization w. Suppose that m; and mo are not compatible. There therefore
exists at least one concept in v with type(m c)Ntype(mec) =L, or with the referent
of ¢ or moc not conform to type(mi c) Ntype(maec), or with re ferent(mc) = i and
referent(moc) = j, i # j. These three cases are absurd because they contradict
the construction of w. Therefore, m; and mo are compatible.

Fig. [} represents a stereotype formed from three facts taken from fig. [7] cor-
responding to French meals. The missing values in these facts can be completed
using default reasoning with the corresponding values in the stereotype because

18 J. Velcin and J.-G. Ganascia

Stereotype

accompanied
with bread

start with

mainly accompanied
composed with with a drink

ONION SOUP‘ ‘ DISH ‘ ‘ WINE ‘ FRENCH COFFEE

\ BREAD
mainly accompanied
composed with with vegetables

l l

‘ STEAK ‘ ‘ POTATOES ‘

Fig. 8. A stereotype of a French meal

there is no contradiction between them. Thus, we can infer for instance that
Tom drinks wine or that the Petit family eat French bread with their meal.
We do not propose a similarity measure associated to conceptual graphs be-
cause this problem is combinatorial and much more difficult to handle than with
the attribute-value formalism. For further information, see [33], that deals with
graph matching and proposes an interesting heuristic to calculate this similarity.

5 Experiments

This section starts by presenting experiments performed on artificial data sets.
It goes on to give an original comparison in a real data case with three well-
known clusterers. Default clustering was implemented in a Java program called
PRESS (Programme de Reconstruction d’Ensembles de StéréotypeS). All the ex-
periments for k-modes, EM and Cobweb were performed using the Weka platform
[34]. To get a brief description of the three clusterers, see section [5.3l

5.1 Validation on Artificial Data Sets

Artificial data sets are used to validate the robustness of the non-supervised
learning algorithm, which builds sets of stereotypes from a learning set F and a
description language D. It should be remembered that stereotypes are supposed
to be more or less shared by many people living in the same society. Since the
use of stereotypes is the way to model implicit reasoning, this could explain why
pre-judgements and pre-suppositions are almost identical in a group. Secondly,
it is assumed that people reason from sparse descriptions that are completed
and organized into stereotype sets in their memory. It follows that people who
have shared different experiences and who have read different newspapers, are
able to build very similar sets of stereotypes from very different learning sets.

Default Clustering with Conceptual Structures 19

Therefore, our attempt to model construction of stereotype sets using a non-
supervised learning algorithm ought to have this stability property. This is what
we evaluate here on artificial data.

Let us now consider the attribute-value formalism. Given this description
language, we introduce some full consistent descriptions, e.g. {s1, s2, $3}, which
stand for the description of a stereotype set. Let us note as ns the number of
such descriptions. These ng descriptions may be randomly generated. The only
point is that they need to be complete and consistent.

The second step in the generation of the artificial set is to duplicate these
descriptions ng times, for instance 50 times, making ng X ng artificial examples.
Then, these ng X ng descriptions are arbitrarily degraded: descriptors belonging
to these duplications are chosen randomly to be destroyed. The only parameter
is the percentage of degradation, i.e. the ratio of the number of destroyed de-
scriptors on the total number of descriptors. The generated learning set contains
ns X ng example descriptions, which all correspond to degradations of the n
initial descriptions.

The default clustering algorithm is tested on these artificially generated and
degraded learning sets. Then, the stability property is evaluated by weighing the
stereotype set built by the non-supervised algorithm against the n, descriptions
initially given when generating the artificial learning set.

Our first evaluation consists in comparing of quality —i.e. the percentage of
descriptors— and the number of generated stereotypes to the n, initial descrip-
tions, while the percentage of degradation increases from 0% to 100%. It appears
that in up to 85% of degradation, the stereotype sets correspond most of the time
to the initial ones (see fig.[@). Although the data were highly degraded, the correct
number of stereotypes was discovered through the default clustering process.

The second test counts the classification error rate, i.e. the rate of degraded
facts that are not covered by the right stereotype. By “right stereotype” we
mean the discovered description that corresponds to the initial fact the degraded
facts come from. Fig. [0 shows the results of our program PRESS relative to
three classic classification algorithm: k-modes (categorical version of k-means),
COBWEB and EM. These experiments clearly show that the results of PRESS

100 4.5
0 .
80 2 1
a
%' 70 2., ’
E] g %5
& 604 ,
@ . /,\-_-\N—‘»
5 50 B 3] e—o—o"
4 5
s 40 4]
8 a0 8
a £
N 204 2,
10
0 T T T T T T T T T T T T 15 T T T T T T T T T T T
0 25 50 60 BS 70 75 80 82 85 88 90 92 0 25 80 B0 B5 70 75 &0 B2 385 &% 90 €2
“ Missing data “ Missing data

Fig. 9. Quality and number of stereotypes discovered

20 J. Velcin and J.-G. Ganascia

7. Classification error

25 35 45 55 65 75 85
¥ Missing data

[==PRESS —&—EM — Cobweb —o—Kmodes |

Fig. 10. Classification error of degraded examples

are really good with a very stable learning process: up to 75% of degradation,
the error rate is less than 10% and better than the others three.

5.2 Studying Social Misrepresentation

The second part of the experiments deals with real data extracted from a news-
paper called “Le Matin” of the end of the 19th century in France. The purpose
is to automatically discover stereotype sets from a translation of events related
to the political disorder in the first ten days of September 1893. The results of
PRESS are compared to those of the three clusterers k-modes, EM and Cobweb.
It should be pointed out that our principal interest is focused on the cluster
descriptions, which we call representatives to avoid any ambiguity, rather than
on the clusters themself.

The articles linked to the chosen theme were gathered and represented using
a language of 33 attributes (for instance: political party, religion, linked with a
foreign country, corrupted by the Freemasonry, etc.). The terms of this language,
i.e. attributes and associated values, were extracted manually. Most of the at-
tributes are binary, some accept more than two values and some are ordinals.
The number of extracted examples is 63 and the rate of missing data is nearly
87%, which is most unusual. In these experiments, a constraint of no-redundancy
was added in order to get a perfect separation between the stereotypes because,
in this context of very high sparseness, it seems important to extract contrasted
descriptions by forbidding redundant descriptors.

5.3 Evaluation of Default Clustering

In order to evaluate PRESS, a comparison was made with three classical clus-
terers: k-modes, EM and Cobweb.

K-modes [14] is an adaptation of the widespread algorithm k-means for cat-
egorical data. The process is here summarized: a set of n initial centres called

Default Clustering with Conceptual Structures 21

centroids are chosen (randomly most of the time); the objects are then allocated
to the nearest centroid; each centroid is recalculated from the set of covered
objects; the objects are allocated one more time; the process is iterated un-
til convergence. EM [I5] (for Expectation-Maximization) is a method of doing
maximum likelihood estimation for incomplete data. It uses probabilistic dis-
tributions to describe the clusters and can be considered as a generalization of
k-means algorithm. Finally, Cobweb [20] is an hierarchical clusterer that relies
on the category utility notion proposed by E. Rosch. The “flat” clustering is
obtained by cutting through the resulting tree.

The output of two of these algorithms is a set of probabilistic distributions.
To perform the comparison with PRESS, we need to extract a non-probabilistic
description of the clusters they built. The same process was extended to the
clusters given by k-modes algorithm. Four techniques were considered:

(1) using the most frequent descriptors (mode approach),

(2) the same as (1) but forbidding contradictory features between the examples
and their representative,

(3) dividing the descriptors between the different representatives,

(4) the same as (3) but forbidding contradictory features.

Three remarks need to be made. Firstly, the cluster descriptions resulting
from k-modes correspond to technique (1). Nevertheless, we tried the other
three techniques exhaustively. Secondly, representatives resulting from extrac-
tion techniques (3) and (4) entail by construction a redundancy rate of 0%.
Thirdly, it must be recalled that the number of stereotypes has not to be given
but is discovered by PRESS during the clustering process.

The classification error rate and the notion of quality relative to the original
descriptions can no longer be used in these new experiments. This is the reason
why the comparison was made according to the three following points:

The first approach considers the contradictions between an example and its
representative. The example contradiction is the percentage of examples con-
taining at least one descriptor in contradiction with its covering representative.
In addition, if you consider one of these contradictory examples, average contra-
diction is the percentage of descriptors in contradiction with its representative.
This facet of conceptual clustering is very important, especially in the sparse
context.

Secondly, we check if the constraint of cognitive cohesion (see and [A.T]) is
verified. The rate of descriptor redundancy is also considered. These two notions
are linked to the concept of stereotype and to the sparse data context.

Finally, we consider the degree of similarity between the examples and their
covering representatives. This corresponds to the notion of compactness within
clusters, but without penalizing the stereotypes with many descriptors. The func-
tion hg seems really adapted to render an account of representative relevance.
In fact, we used a version of hg normalized between 0 and 1, by dividing by the
total number of descriptors.

22 J. Velcin and J.-G. Ganascia

5.4 Results

Fig. [[l gives the results obtained from the articles published in Le Matin. Ex-
periments for the k-modes algorithm were carried out with N = 2..8 clusters,
but only N = 6 results are presented in this comparison. It corresponds to the
number of stereotypes that was discovered with PRESS. The rows of the table
show the number n of extracted representatives, the two scores concerning con-
tradiction, the result of hg, the redundancy score and whether or not cognitive
cohesion constraint is verified. The columns represent each type of experiment
(k-modes associated with techniques from (1) to (4), EM and Cobweb as well,
and finally our algorithm PRESS).

Let us begin by considering the scores concerning contradiction. They high-
light a principal result of default clustering: using PRESS, the percentage of
examples having contradictory features with their representative is always equal
to 0%. In contrast, the descriptions built using techniques (1) and (3) (whatever
the clusterer used) possess at least one contradictory descriptor with 27% to
57% of the examples belonging to the cluster. Furthermore, around 50% of the
descriptors of these examples are in contradiction with the covering description,
and that can in no way be considered as a negligible noise. This is the reason why
processes (1) and (3) must be avoided, especially in the sparse data context, when
building such representatives from k-modes, EM or Cobweb clustering. Hence,
we only consider techniques (2) and (4) in the following experiments.

k-Modes EM Cobweb PRESS
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

n 6 6 6 6 2 2 2 2 2 2 2 2 6

ex. contradiction 27 0 27 0 48 0 48 0 56 0 57 0 0
av. contradiction 42 0 44 0 56 0 56 0 52 0 51 O 0
hEe .89 .60 .74 .50 .85 .66 .83 .65 .82 .56 .68 .46 .79
redundancy 70 63 0 O 17 7 0 O 7255 0 O 0
cog. cohesion X X X X X X X X X X X X v

Fig. 11. Comparative results on Le Matin

Let us now study the results concerning clustering quality. This quality can
be expressed thanks to the compactness function hg, the redundancy rate and
cognitive cohesion.

PRESS marked the best score (0.79) for cluster compactness with six stereo-
types. That means a very good homogeneity between the stereotypes and the
examples covered. It is perfectly consistent since our algorithm tries to max-
imize this function. The redundant descriptor rate is equal to 0%, according
to the constraint of no-redundancy. Furthermore, PRESS is the only algorithm
that is able to verify the cognitive cohesion. Using technique (2), EM obtains the
second best score (0.66) and redundant descriptor rate remains acceptable (7%).
However, the number of expected classes must be given or guessed, using a cross-
validation technique, for instance. K-modes and Cobweb come in at third and

Default Clustering with Conceptual Structures 23

fourth positions with respectively 0.6 and 0.56 if we consider technique (2), but
redundancy is very high with 63% and 55%. The scores fell to 0.5 et 0.46 using
technique (4), if the aim is to decrease the redundancy. K-modes and Cobweb
also have to use external mechanism to discover the final number of clusters.

It should be noted that the stereotypes extracted using PRESS correspond
to the political leanings of the newspaper. For instance, the main stereotype
produces a radical, socialist politician, corrupted by the foreign money and the
Freemasonry, etc. It corresponds partly to the difficulty in accepting the major
changes proposed by the radical party and to the fear caused in France since
1880 by the theories of Karl Marx. These first results are really promising and
should lead to advanced experiments.

6 Future Work

The first point that needs to be examined is the process of translation from
newspaper articles into logical facts, which is still very subjetive if done by
hand. It is for this reason that we are now studying the development of software
to assist a user in this translation process. This software will rely on the idea of
reflexivity and make him the ability of backtracking possible in order to obtain
entire satisfaction.

Secondly, this work should be related to the domain of social representations
as introduced by Serge Moscovici in [I0]. According to him, social representa-
tions are a sort of “common sense” knowledge which aims at inducing behaviors
and allows communication between individuals. We think that social represen-
tations can be constructed with the help of stereotype sets. The way these rep-
resentations change can be studied through the media over different periods and
social groups in comparison with such sets. Hence, future work could be done on
choosing key dates of the Dreyfus affair and automatically extracting stereotyp-
ical characters from different newspapers. These results will then be compared
and contrasted with the work of sociologists and historians of this period. This
represents as yet an unexplored way for enriching historical and social analysis.

7 Conclusion

Flows of information play a key role in today’s society. However, the value of
information depends on its being interpreted correctly, and implicit knowledge
has a considerable influence on this interpretation. This is the case in many
of today’s heterogeneous data that are far from complete and, consequently,
need special techniques to be automatically completed. This is particularly true
of the media, including newspapers, radio and television, where the information
given is always sparse. It seems that Data Mining techniques, such as conceptual
clustering, represent an alternative to deal with this kind of information.

In this context we propose a cognitive model called default clustering based on
stereotype sets which summarize facts by “guessing” the missing values. Stereo-
types are an alternative to prototypes and are more suitable in the categorization

24 J. Velcin and J.-G. Ganascia

of sparse descriptions. They rely on the notion of default subsumption which re-
laxes constraints and makes possible the manipulation of such descriptions. De-
scriptions are then completed according to the closest stereotypes, with respect to
the similarity measure Mg;,,. This model can be applied to different formalisms
and the two presented in this paper are not exhaustive. Very good results have
been found using the attribute-value formalism on artificial data sets. Future ex-
periments will be done in the same formalism, but with real data extracted from
the period of the Dreyfus affair, in order to see whether the default clustering
model can be used to offer an alternative for Press Content Analysis.

Acknowledgments

The authors would particularly like to thank Rosalind Greenstein for reading
and correcting the manuscript.

References

1. Corruble, V.: Une approche inductive de la découverte en médecine : les cas du
scorbut et de la lépre, thése de I’Université Pierre et Marie Curie, rapport interne
LAFORIA TH96/18 (1996).

2. Corruble, V., Ganascia, J.-G.: Induction and the discovery of the causes of scurvy : a
computational reconstruction, In: Artificial Intelligence Journal, vol. 91 (2), pp.205—
223, Elsevier Press (1997).

3. Velcin J.: Reconstruction rationnelle des mentalités collectives: deux études sur la
xénophobie, DEA report, Internal Report University Paris VI, Paris (2002).

4. Michalski, R.S.: Knowledge acquisition through conceptual clustering: A theoretical
framework and algorithm for partitioning data into conjunctive concepts, In: Inter-
national Journal of Policy Analysis and Information Systems, 4 (1980) pp.219-243.

5. Newgard, C.D., Lewis, R.J.: The Imputation of Missing Values in Complex Sam-
pling Databases: An Innovative Approach. In: Academic Emergency Medicine, Vol-
ume 9, Number 5484. Society for Academic Emergency Medicine (2002).

6. Little, R., Rubin, D.: Statistical analysis with missing data, Wiley-Interscience pub-
lication (2002).

7. Reiter, R.: A logic for default reasoning. In: Artificial Intelligence, number 13 (1980)
pp.81-132.

8. Wittgenstein, L.: Philosophical Investigations. Blackwell (1953), Oxford, UK.

9. Ganascia, J.-G.: Rational Reconstruction of Wrong Theories, In: Proceedings of the
LMPS-03, P.V.-V. Hajek,L.;Westerstahl, D., Ed.: Elsevier - North (2004).

10. Moscovici, S.: La psychanalyse : son image et son public, PUF (1961), Paris.

11. Fan, D.: Predictions of public opinion from the mass media: Computer content
analysis and mathematical modeling. New York, NY: Greenwood Press (1988).

12. Huang, C.-C., Lee, H.-M.: A Grey-Based Nearest Neighbor Approach for Miss-
ing Attribute Value Prediction, In: Applied Intelligence, vol. 20. Kluwer Academic
Publishers (2004) pp.239-252.

13. Ghahramani, Z., Jordan, M.-1.: Supervised learning from incomplete data via an
EM approach, In: Advances in Neural Information Processing Systems, vol. 6. Mor-
gan Kaufmann Publishers (1994), San Francisco.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

Default Clustering with Conceptual Structures 25

Huang, Z.: A Fast Clustering Algorithm to Cluster Very Large Categorical Data
Sets in Data Mining, In: DMKD (1997).

Dempster, A.P. et al.: Maximum likelihood from incomplete data via the EM al-
gorithm, In: Royal Statistical Society. Series B (Methodological), 39 (1) pp.1-38
(1977).

Figueroa, A., Borneman, J., Jiang, T.: Clustering binary fingerprint vectors with
missing values for DNA array data analysis (2003).

Sarkar, M., Leong, T.Y.: Fuzzy K-means clustering with missing values, In: Proc
AMIA Symp., PubMed (2001) pp.588-92.

McDermott, D., Doyle, J.: Nonmonotonic logic 1. In: Artificial Intelligence, number
13 (1980) 41-72.

McCarthy, J.: Circumscription: a form of non-monotonic reasoning, In: Artificial
Intelligence, number 13 (1980) 27-39, 171-172.

Fisher, D.H.: Knowledge Acquisition Via Incremental Conceptual Clustering. In:
Machine Learning, number 2 (1987) pp.139-172.

Gennari, J.H.: An experimental study of concept formation, Doctoral dissertation
(1990), Department of Information & Computer Science, University of California,
Irvine.

Rosch, E.: Cognitive representations of semantic categories, In: Journal of Ezrperi-
mental Psychology: General, number 104 (1975) pp.192-232.

Rosch, E.: Principles of categorization, In: Cognition and Categorization. NJ:
Lawrence Erlbaum, Hillsdale (1978) pp.27-48.

Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley Publishing Company (1984), Massachusetts, The Systems Pro-
gramming Series.

Lippman, W.: Public Opinion, Ed. MacMillan (1922), NYC.

Putnam, H.: The Meaning of 'Meaning’, In: Mind, Language, and Reality Cam-
bridge University Press (1975) pp.215-271.

Rich, E.: User Modeling via Stereotypes, In: International Journal of Cognitive
Science, 3 (1979) pp.329-354.

Amossy, R., Herschberg Pierrot, A.: Stéréotypes et clichés : langues, discours,
société. Nathan Université (1997).

Al-Sultan, K.: A Tabu Search Approach to the Clustering Problem, In: Pattern
Recognition, vol. 28 (9). Elsevier Science Ltd (1995) pp.1443-1451.

Ng, M.K., Wong, J.C.: Clustering categorical data sets using tabu search techniques,
In: Pattern Recognition, vol. 35 (12). Elsevier Science Ltd (2002) pp.2783-2790.
Glover, F., Laguna, M.: Tabu Search, Kluwer Academic Publishers (1997).

Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for Cat-
egorical Attributes, In: Information Systems, vol. 25, n5 (2000) pp.345-366.
Zhong, J., Zhu H., Li J., Yu Y.: Conceptual Graph Matching for Semantic Search,
In: Proceedings of the 10th International Conference on Conceptual Structures:
Integration and Interfaces, Spring-Verlag (2002) 92-106.

Garner, S.R.: WEKA: The waikato environment for knowledge analysis, In: Proc. of
the New Zealand Computer Science Research Students Conference (1995) pp.57—64.

Encoding Classifications into Lightweight
Ontologies™

Fausto Giunchiglia, Maurizio Marchese, and Ilya Zaihrayeu

Department of Information and Communication Technology
University of Trento, Italy
{fausto, marchese, ilya}@dit.unitn.it

Abstract. Classifications have been used for centuries with the goal
of cataloguing and searching large sets of objects. In the early days it
was mainly books; lately it has also become Web pages, pictures and
any kind of digital resources. Classifications describe their contents us-
ing natural language labels, an approach which has proved very effective
in manual classification. However natural language labels show their lim-
itations when one tries to automate the process, as they make it very
hard to reason about classifications and their contents. In this paper we
introduce the novel notion of Formal Classification, as a graph structure
where labels are written in a propositional concept language. Formal
Classifications turn out to be some form of lightweight ontologies. This,
in turn, allows us to reason about them, to associate to each node a
normal form formula which univocally describes its contents, and to re-
duce document classification and query answering to reasoning about
subsumption.

1 Introduction

In today’s information society, as the amount of information grows larger, it
becomes essential to develop efficient ways to summarize and navigate informa-
tion from large, multivariate data sets. The field of classification supports these
tasks, as it investigates how sets of “objects” can be summarized into a small
number of classes, and it also provides methods to assist the search of such “ob-
jects” [11]. In the past centuries, classification has been the domain of librarians
and archivists. Lately a lot of interest has focused also on the management of
the information present in the web: see for instance the WWW Virtual Library
pro jectﬂ, or the web directories of search engines like Google, or Yahoo!.
Standard classification methodologies amount to manually organizing topics
into hierarchies. Hierarchical library classification systems (such as the Dewey

* This paper is an integrated and extended version of two papers: the first with title
“Towards a Theory of Formal Classification” was presented at the 2005 International
Workshop on Context and Ontologies; the second with title “Encoding Classifications
into Lightweight Ontologies” was presented at the 2006 European Semantic Web
Conference.

! The WWW Virtual Library project, see http://vlib.org/

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 57 2007.
© Springer-Verlag Berlin Heidelberg 2007

58 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

Decimal Classification System (DDC) [3] or the Library of Congress classifica-
tion system (LCCE) are attempts to develop static, hierarchical classification
structures into which all of human knowledge can be classified.

More recently, many search engines like Google, Yahoo as well as many eCom-
merce vendors, like Amazon, offer classification hierarchies (i.e., web directories)
to search for relevant items. Such web directories are sometimes referred to as
lightweight ontologies [29). However, as such, they lack at least one important
property that ontologies must have: ontologies must be represented in a formal
language, which can then be used for automating reasoning [21]. None of the ex-
isting human crafted classifications possesses this property. Because classification
hierarchies are written in natural language, it is very hard to automate the clas-
sification task, and, as a consequence, standard classification approaches amount
to manually classifying objects into classes. Examples include DMoz, a human
edited web directory, which “powers the core directory services for the most pop-
ular portals and search engines on the Web, including AOL Search, Netscape
Search, Google, Lycos, DirectHit, and HotBot, and hundreds of others” [28§].

Although all the above mentioned classifications are based on well-founded
classification methodologies, they have a number of limitations:

— the semantics of a given category is implicitly codified in a natural language
label, which may be ambiguous and may therefore be interpreted differently
by different classifiers;

— a link, connecting two nodes, may also be ambiguous in the sense that it may
be considered to specify the meaning of the child node, of the parent node,
or of both. For instance, a link connecting the parent node “programming”
with its child node “Java” may, or may not mean that (a) the parent node
means “computer programming” (and not, for example, “events schedul-
ing”); (b) that the child node means “Java, the programming language”
(and not “Java, the island”); or (c¢) that the parent node’s meaning excludes
the meaning of the child node, i.e., it is “programming and not Java”;

— as a consequence of the previous two items, the classification task also be-
comes ambiguous in the sense that different classifiers may classify the same
objects differently, based on their subjective opinion. This observation has an
impact in particular on the fact that both current tasks of classification and
search by means of browsing do not scale to large amounts of information.

In the present paper we propose an approach to converting classifications
into Formal Classifications, or lightweight ontologies, thus eliminating the three
ambiguities discussed above. This in turn allows us to automate, through propo-
sitional reasoning, the essential tasks of document classification and query an-
swering. Concretely, we propose a three step approach:

— first, we convert a classification into a new structure, which we call Formal
Classification (FC'), where all the labels are expressed in a propositional
Description Logic (DL) language (i.e., a DL language without roles) [1I;

2 The Library of Congress Classification system, see http://www.loc.gov/catdir/cpso/
lcco/lcco.html/

Encoding Classifications into Lightweight Ontologies 59

— second, we convert a FC into a Normalized Formal Classification (NFC).
In NFCs each node’s label is a propositional DL formula, which univocally
codifies the meaning of the node in the classification, taking into account
both the label of the node and its position within the classification;

— third, we encode document classification and query answering in NFCs as
a propositional satisfiability (SAT) problem, and solve it using a sound and
complete SAT engine.

NFCs are full-fledged lightweight ontologies, and have many nice properties.
Among them:

— NFC node labels univocally codify the set of documents which can be clas-
sified in these nodes;

— NFCs are taxonomies in the sense that, from the root down to the leaves,
labels of child nodes are subsumed by the labels of their parent nodes;

— as nodes’ labels codify the position of the nodes in the hierarchy, document
classification and query answering can be done simply by analyzing the set
of labels. There is no need to inspect the edge structure of the NFC.

The remainder of the paper is organized as follows. In Section [2] we intro-
duce classifications and discuss how they are currently used in real use cases. In
Section [3] we motivate a formal approach to dealing with classifications. In Sec-
tion @ we introduce the notion of FC as a way to disambiguate labels in clas-
sifications. In Section [l we discuss how we disambiguate links in classifications
by introducing the notion of NFC. In Section [and Section [0 we show how
the two main operations performed on classifications, namely classification and
search, can be fully automated in NFCs by means of propositional reasoning. In
Section §we discuss related work. Section[@summarizes the results and concludes
the paper.

2 Classifications

Classifications are hierarchical structures used to organize large amounts of ob-
jects [I7]. These objects can be of many different types, depending on the charac-
teristics and uses of the classification itself. In a library, they are mainly books
or journals; in a file system, they can be any kind of file (e.g., text files, im-
ages, applications); in the directories of Web portals, the objects are pointers to
Web pages; in market places, catalogs organize either product data or service
titles. Classifications are useful for both object classification and retrieval. Users
browse the hierarchies and catalogue or access the objects associated with differ-
ent concepts, which are described by natural languages labels. Noteworthy, many
widely used classifications impose a simple structure of a rooted tree. Examples
of tree-like classifications are DMoz, DDC, Amazon, directories of Google and
Yahoo, file system directories, and many otherdd.

3 While making this statement we excluded from consideration secondary classification
links normally used for improving navigability and which make the classification a
DAG. An example of such links is the “related” links of DMoz.

60 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

We define the notion of Classification as follows:

Definition 1 (Classification). A Classification is a rooted tree C = (N, E, L)
where N is a finite set of nodes, E is a set of edges on N, and L is is a finite
set of labels expressed in natural language, such that for any node n; € N, there
is one and only one label l; € L.

Classifications, as tree-like structures with natural language node labels, are
used in a variety of domains such as standardization (e.g., eCl@ss [4]), con-
trolled thesauri (e.g., MeSH [27]), and many others. Depending on their target
application, classifications and their elements are given a specific interpretation
and can therefore be treated differently. In this paper, we see classifications as
objects whose primary purpose is the classification of and search for documents.
We therefore define the classification semantics as strongly related to documents,
and we define it at three levels:

— Label: labels, as such, describe real world entities or individual objects, and
the meaning of a label in a classification is the set of documents which are
about the entities or individual objects described by the label. Note, that a
label can denote a document, e.g., a book; and, in this case, the classification
semantics of this label is the set of documents which are about the book,
e.g., book reviews. Note that the label semantics is fully captured by the
label itself and nothing else;

— Node: nodes represent complex concepts formed as a combined faceted view
of the real world entities and/or individual objects described by the nodes’
labels and by the labels of all their ascendant nodes. The meaning of a
node in a classification is the set of documents which are about the complex
concept represented by the node. The classification semantics of a given node
is defined by the labels of the nodes on the path from the root to the node;

— Classification: the classification semantics of nodes defines the basis for how
they are used for the classification of documents in a specific classification
algorithm. The set of documents which are populated in a node defines the
semantics of this node at the classification level. In the most general case,
the classification semantics is defined by the nodes’ labels, by the structure
of the classification, and by the employed classification algorithm.

In the rest of this section we briefly describe and discuss two different Clas-
sifications: a relatively old librarian classification hierarchy, the Dewey Decimal
Classification system (DDC), and an example from a modern web catalogue,
namely the DMoz human-edited web directory.

Example 1 (DDC). Since the 19" century, librarians have used DDC to or-
ganize vast amounts of books. DDC divides knowledge into ten different broad
subject areas, called classes, numbered 000 - 999. Materials which are too general
to belong to a specific group (encyclopedias, newspapers, magazines, etc.) are
placed in the 000’s. The ten main classes are divided up into smaller classes by
several sets of subclasses. Smaller divisions (to subdivide the topic even further)

Encoding Classifications into Lightweight Ontologies 61

500 Natural Science and Mathematics
520 Astronomy and allied sciences
523 Specific celestial bodies and phenomena
523.1 The universe
523.2 Solar system
523.3 The Earth
523.4 The moon
523.5 Planets
523.51 Mercury
523.52 Venus
523.53 Mars — 523.53HAN

Fig. 1. A part of the DDC system with an example of book classification

are created by expanding each subclass and adding decimals if necessary. A small
part of the DDC system is shown on Figure [Il

In DDC, the notation (i.e., the system of symbols used to represent the classes
in a classification system) provides a universal language to identify the class and
related classes.

Before a book is placed on the shelves it is:

— classified according to the discipline matter it covers (given the Dewey
number);

— some letters (usually three) are added to this number (usually they represent
the author’s last name);

— the number is used to identify the book and to indicate where the book will be
shelved in the library. Books can be assigned a Dewey number corresponding
to both leaf and non-leaf nodes of the classification hierarchy.

Since parts of DDC are arranged by discipline, not subject, a subject may
appear in more than one class. For example, the subject “clothing” has aspects
that fall under several disciplines. The psychological influence of clothing be-
longs to 155.95 as part of the discipline of psychology; customs associated with
clothing belong to 391 as part of the discipline of customs; and clothing in the
sense of fashion design belongs to 746.92 as part of the discipline of the arts.
However, the final Dewey number associated to a book has to be unique and,
therefore, the classifier needs to impose a classification choice among all the
possible alternatives.

As an example, let’s consider the Dewey number for the following book: Michael
Hanlon, “Pictures of Planet Mars’. A possible classification is Dewey number:
523.53 HAN and the classification choice for the book is shown in Figure[ll

The main properties of DDC are:

— the classification algorithm relies on the get-specific ruldd: when you add a
new object, get as specific as possible: dig deep into the classification schema,

* Look at http://docs.yahoo.com/info/suggest /appropriate.html to see how Yahoo!
implements this rule.

62 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

looking for the appropriate sub-category; it is a bad practice to submit an
object to a top level category, if one more specific exists. At present, the
enforcement of such rule is left to the experience of the classifier;

— each object is placed in exactly one place in the hierarchy. As a result of
this restriction, a classifier often has to choose arbitrarily among several
reasonable categories to assign the classification code for a new document
(see the above example for “clothing”). Despite the use of documents called
“subject authorities”, which attempt to impose some control on terminology
and classification criteria, there is no guarantee that two classifiers make
the same decision. Thus, a user, searching for information, has to guess the
classifier’s choice in order to decide where to look for, and will typically have
to look in a number of places;

— each non-root node in the hierarchy has only one parent node. This enforces
a tree structure on the hierarchy. |

Example 2 (DMoz). The Open Directory Project (ODP), also known as DMoz
(for Directory.Mozilla.org, the domain name of ODP), is a multilingual open
content directory of World Wide Web links owned by America Online that is
constructed and maintained by a community of volunteer editors. ODP uses a
hierarchical ontology scheme for organizing site listings. Data is made available
through an RDF-like dump that is published on a dedicated download server.
Listings on a similar topic are grouped into categories, which can then include
smaller categories. As of March 10, 2006, the RDF held 5,272,517 listings and
over 590,000 multilingual categories. DMoz powers the core directory services
for the most popular portals and search engines on the Web, including AOL
Search, Netscape Search, Google, Lycos, DirectHit, and HotBot, and hundreds
of others [28].

In DMoz, as in DDC, objects (here mainly web links) are classified by a human
classifier following the get-specific rule. In this classification hierarchy, an object
can be often reached from different paths of the hierarchy, thus providing an
efficient way for finding items of interest following different perspectives. This
normally means that the object is classified in two (or more) nodes or that the
object is classified in one node and there are “related” links from other nodes to
the node where the object is classified.

In the following we present an example of classification for a software pro-
gramming document in the DMoz web directory. The document title is “Java
Enterprise in a Nutshell, Second Edition”. In the DMoz web directory, reduced
for sake of presentation, the example title can be found through two different
search paths (see Figure 2]), namely:

Top/Business/Publishing and Printing/Books/Computers/
Top/Computers/Programming Languages/Java/ |

From the two specific examples we can see that Web catalogues are more flexible
than classifications like Dewey. In fact, their aim is not to position a resource
in a unique position, but rather to position it in such a way, that the user,

Encoding Classifications into Lightweight Ontologies 63

) Top |
@] Busimmers |
()] Publishing :nd Printing | (5) | Programming Languages |
®)] BoEks | @] J:va |

(3)‘ Computers ‘

Java Enterprise in a Nutshell, Second Edition

Fig. 2. A part of the DMoz web directory

who navigates the catalogue, will be facilitated in finding appropriate or similar
resources related to a given topic.

3 Why Formal Classifications?

There are many methodologies for how to classify objects into classification
hierarchies. These methodologies range from the many rigorous rules “polished”
by librarians during hundreds of years; to less strict, but still powerful rules
of classification in a modern web directoryﬁ. What is relevant here, is that in
all these different cases, a human classifier needs to follow a common pattern,
which we summarize in four main steps. These steps are also followed when one
searches for an object by means of classification browsing. The only difference
is in that now the categories are inspected for where to find an object, and not
where to put it. We discuss the four steps below, and we elucidate them on the
example of the part of the DMoz web directory presented in Example 2.

1. Disambiguating labels. The challenge here is to disambiguate natural lan-
guage words and labels. For example, the classifier has to understand that in
the label of node n; (see Figure 2)) the word “Java” has at least three senses,
which are: an island in Indonesia; a coffee beverage; and an object-oriented pro-
gramming language. Moreover, words in a label are combined to build complex
concepts. Consider, for example, the labels at node ny, publishing and printing,
and ns, programming languages. The combination of natural language atomic
elements is used by the classifier to aggregate (like in publishing and printing)
or disambiguate (like in programming languages) atomic concepts;

2. Disambiguating links. At this step the classifier has to interpret links be-
tween nodes. Namely, the classifier needs to consider the fact that each non-root

® See, for instance, the DMoz classification rules at http://dmoz.org/guidelines/

64 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

node is “viewed” in the context of its parent node; and then specify the meanings
of the nodes’ labels. For instance, the meaning of the label of node ng, computers,
is bounded by the meaning of node ng, business books’ publishing;

3. Understanding classification alternatives. Given an object, the classi-
fier has to understand what classification alternatives for this object are. For
instance, the book “Java Enterprise in a Nutshell, Second Edition” might po-
tentially be put in all the nodes of the hierarchy shown in Figure 2l The reason
for this is that the book is related to both business and technology branches;

4. Making classification choices. Given the set of classification alternatives,
the classifier has to decide, based on a predefined system of rules, where to put
the given object. The system of rules may differ from classification to classifi-
cation, but the get-specific rule is commonly followed. Note, that there may be
more than one category for the classification. For instance, if the get-specific rule
was used, then one would classify the above mentioned book into nodes n; and
ng, as they most specifically characterize the book.

Humans have proven to be very effective at performing steps 1 and 2, as
described above. However, there are still some challenges to be addressed. The
main challenge in step 1 is dealing with the ambiguities introduced by multi-
ple possibilities in meaning. One source of this is in that labels contain many
conjunctions “and”’s and “or”’s, whereas they actually mean inclusive disjunc-
tion, i.e., either the first conjunct, or the second, or both. For instance, the
phrase “publishing and printing” means either publishing, or printing, or both.
Apart from the conjunctions, multiple possibilities are introduced also by punc-
tuation marks denoting enumeration (e.g., the comma), and by words’ senses
(recall the various senses of the word “Java”). It has been shown, that cognitive
reasoning with the presence of multiple possibilities (distinctions) is an error-
prone task for humans [I4]. For instance, even if DMoz labels are short phrases,
consisting, on average, of 1.81 tokens, they contain 0.23 conjunctions per label;
and average polysemy for nouns and adjectives is 3.72 per wordd. Conjunctions,
punctuation, and words’ senses count together to 3.79 possibilities in meaning
per label.

The challenge of step 2 is that the classifier may need to follow a long path of
nodes in order to figure out a node’s meaning. It has two consequences: first, the
classifier needs to deal with the growing complexity in ambiguity introduced by
each new label in the path; and, second, the classifier has to consider each new
label in the context of the labels of the ancestor nodes, and, thus, partly resolve
the ambiguity. Note, that, for instance, the average length of a path from the
root to a leaf node in DMoz is 7.09.

Steps 3 and 4 is where the real problems for humans begin. Even with classi-
fications of average size, it is not easy to find all the classification alternatives.
Consider, for instance, how many times you did not find an email in your own

5 A summary of the statistical analysis we performed on DMoz is reported in Ta-
ble [l In our analysis we excluded branches leading to non-English labels, such as
Top/World/ or Top/Kids and Teens/International/

Encoding Classifications into Lightweight Ontologies 65

Table 1. DMoz statistics

Statistics category Value
Total English labels 477,786
Tokens per label, avg. 1.81
Total links classified in English labels |3,047,643
Duplicate links, % from the total 10.70%
Nouns and adjectives polysemy, avg. |[3.72
“and”s and “or”’s per label, avg. 0.23
Total disjunctions per label, avg. 3.79
Root-to-leaf path length, avg. 7.09
Branching factor, avg. 4.00

mail directory. With large classifications this task becomes practically impossible.
For instance, think about possible classification alternatives in DMoz, which has
477,786 English categories. Thus, at step 3, a human classifier may not be able to
enumerate all the possible classification alternatives for an object.

Step 4 requires abundant expertise and profound methodological skills on the
side of the classifier. However, even an expert makes subjective decisions, what
leads, when a classification is populated by several classifiers, to nonuniform,
duplicate, and error-prone classification. If the get-specific rule is used, then the
classifier has to parse the classification tree in a top-down fashion, considering
at each parent node, which of its child nodes is appropriate for the classification
or for further consideration. The higher the average branching factor in the clas-
sification tree, the higher the probability of that two different classifiers will find
appropriate two different sibling nodes at some level in the tree. This is because
the difference in meaning of the two nodes may be vague or, vice versa, because
the two nodes have distinct meanings and they represent different facets of the
object being classified. In this latter case the classifiers may simply follow dif-
ferent perspectives (facets) when classifying the object (recall the example with
“clothing” from Example 1). Note, that even if DMoz encourages the classifi-
cation of a Web page in a single category, among 3,047,643 links (classified in
English labels), about 10.70% are classified in more than one nodtfl. And, about
91.36% of these are classified in two different nodes. This is not surprising given
that DMoz is populated by more than 70,000 classifiers, and that it has average
branching factor of 4.00.

Given all the above described complexity, humans still outperform machines
in natural language understanding tasks [25], which are the core of steps 1 and
2. Still, the availability of electronic repositories that encode world knowledge
(e.g., [I6I19]), and powerful natural language processing tools (e.g., [22/16])
allows the machines to perform these steps reasonably well. Moreover, ma-
chines can be much more efficient and effective at steps 3 and 4, if the prob-
lem is encoded in a formal language, which is what we propose to do in
our approach.

" We identified duplicate links by exact equivalence of their URLs.

66 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu
4 Disambiguating Labels

To support an automatic classifier in step 1 of the classification task (as described
in the previous section), we propose to convert classifications into a new struc-
ture, which we call Formal Classification (FC), more amenable to automated
processing.

Definition 2 (Formal Classification). A Formal Classification is a rooted
tree FC = (N, E, L¥) where N is a finite set of nodes, E is a set of edges on
N, and LT is a finite set of labels expressed in Propositional Description Logic

language L€, such that for any node n; € N, there is one and only one label
IFelLf.

FCs and classifications are related in the sense that a FC is a formalized copy of
a classification. In other words, a FC has the same structure as the classification,
but it encodes the classification’s labels in a formal language (i.e., LY), capable
of encapsulating, at the best possible level of approximation, their classification
semantics. In the following we will call LE, the concept language. We use a
Propositional Description Logic language for several reasons:

— since natural language labels are meant to describe real world entities, and
not actions, performed on or by entities, or relations between entities, the
natural language labels are mainly constituted of noun phrases; and, there-
fore, there are very few words which are verbs. This makes it very suitable
to use a Description Logic (DL) language as the formal language, as DLs are
a precise notation for representing noun phrases [1J;

— The set-theoretic semantics of DL allows us to translate syntactic relations
between words in a label into the logical operators of DL, preserving, at the
best possible level of approximation, the classification semantics of the label.
Below in this section we provide concrete examples and argumentation of the
translation process and its principles;

— a formula in LC can be converted into an equivalent formula in a proposi-
tional logic language with the boolean semantics. Thus, a problem expressed
in LY can be converted into a propositional satisfiability problerrE‘.

Converting classifications into FCs automates step 1, as described in Section[3
In our approach we build on the work of Magnini et. al. [I7]. We translate a nat-
ural language label into an expression in L by means of mapping different parts
of speech (POSs), their mutual syntactic relation, and punctuation to the clas-
sification semantics of labels. We proceed in three steps, as discussed below:

1. Build atomic concepts. Senses of common nouns and adjectives become
atomic concepts of LC, whose interpretation is the set of documents about the
entities, which are denoted by the nouns, or which possess the qualities denoted

8 For translation rules from a Propositional Description Logic to a Propositional Logic,
see [6].

Encoding Classifications into Lightweight Ontologies 67

by the adjectives. We enumerate word senses using WordNet [19], and we write
x#1i to denote an atomic concept corresponding to the i** sense of the word x
in WordNet. For instance, programming#2 is an atomic concept, whose interpre-
tation is the set of documents which are about computer programming; and the
atomic concept red#1 denotes the set of documents which are about red entities,
e.g., red cats or red cars. Proper nouns become atomic concepts of LY, whose
interpretation is the set of documents about the individual objects, denoted by
the proper nouns. They may be long expressions, denoting names of people,
movies, music bands, and so on. Some examples are the movie “Gone with the
Wind”, and the music band “The Rolling Stones”. Apart from proper nouns,
multi-words are recognized, and each their distinct sense becomes an atomic
concept in the concept languageﬁ. Words which are not found in WordNet are
assigned distinct atomic concepts, which are uniquely identified by the string
representation of the words (case ignored). Put it differently, words which are
not found in WordNet and whose string representations are equal, are assigned
the same atomic concept. As the output of this step, each word (multi-word, or
proper noun) is associated with one or more atomic concepts, whereas many of
them are associated with the corresponding senses from WordNet.

2. Word sense disambiguation. At this step we discard irrelevant word senses
and corresponding atomic concepts. In part, we follow the approach proposed
n [I7]. Namely, if there is a relation found in WordNet between any two senses
of two words in a label, then these senses are retained and other unrelated senses
are discarded. The relation looked for in WordNet is synonymy, hypernymy (i.e.,
the “kind-of” relation, e.g., caris a kind of vehicle), or holonymy (i.e., the “part-
of” relation, e.g., room is a part of a building). If no relation found, then we check
if a relation exists between two WordNet senses by comparing their glosses as
proposed in [9]. In this respect we go beyond what is suggested in [I7].

3. Build complex concepts. Complex concepts are built from atomic concepts
as follows: first, we build words’ formulas as the logical disjunction (L) of atomic
concepts corresponding to their senses (remaining after step 2), and we write xx
to denote the disjunction of the (remaining) senses of word x. For instance, the
noun “Programming” becomes the concept (programming#1 LI programming#2),
whose interpretation is the set of documents which are about event scheduling
and/or about computer programming. Second, labels are chunked, i.e., divided
into sequences of syntactically correlated parts of words. We then translate syn-
tactic relations to the logical connectives of L¢ following a precise pattern. Let
us consider a few examples.

A set of adjectives followed by a noun group is translated into the logical con-
junction (M) of the formulas corresponding to the adjectives and to the nouns.

9 Because of their negligibly small presence, we do not consider verbs. We neither
consider articles, numerals, pronouns and adverbs. However, their share in the labels
of real classifications is reasonably small. When such words are found, they are just
omitted from the label.

68 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

The interpretation of the resulting concept is the set of documents which are
about the real world entities denoted by all the nouns, and which possess qual-
ities, denoted by all the adjectives. For instance, the phrase “long cold winter
blizzard” is translated into the concept long+ M colds Mwinterx N blizzardx.

Prepositions are also translated into the conjunction. The intuition is that
prepositions denote some commonality between the two objects they relate; and,
in terms of the classification semantics, this “commonality” can be approximated
to the set of documents which are about both objects. For instance, the following
phrases: “books of magic”, “science in society”, and “software for engineering”,
they all denote what the two words, connected by the prepositions, have in
common.

Coordinating conjunctions “and” and “or” are translated into the logical dis-
junction. For instance, “flights or trains” and “animals and plants” become
flightxlltrain* and animalxllplant* respectively. Punctuation marks such as
the period (.), the coma (,) and the semicolon (;) are also translated into the log-
ical disjunction. For instance, the phrase “metro, bus, and trolley” is converted
into the concept metrox Ll busx* Ll trolleysx.

Words and phrases denoting exclusions, such as “excluding”, “except”, “but
not”, are translated into the logical negation (—). For instance, label “runners
excluding sprinters” becomes the concept runnerx—sprinters. However, since
they are meant to describe what “there is” in the world, and not what “there
isn’t”, labels contain very few such phrases.

The use of logical connectives, as described above but with the exception of
prepositions, allows it to explicitly encode the classification semantics of labels.
In other words, the interpretation of the resulting formulas explicitly represents
the set of documents which are about the corresponding natural language la-
bels. The translation of prepositions is an approximation, as they may encode
meaning, which only partly can be captured by means of the logical conjunc-
tion. For example, “life in war” and “life after war” will collapse into the same
logical formula, whereas the classification semantics of the two labels is different.

Example 3 (Disambiguating labels in a web directory). Let us consider
how the label of node ns in the part of the Amazon book directory shown in
Figure [3] can be disambiguated. The label consists of three tokens: “business”,
“and”, and “investing”, whereas the first and the last tokens are recognized as
nouns, and the second token is recognized as a coordinating conjunction. The
noun “business” has nine, and the noun “investing” has one sense in WordNet.
Therefore, after step 1 we have two words with associated atomic concepts as
shown below:

business (business#1, business#2, ..., business#9), and
investing (investing#1)

At step 2, the senses of the two words are compared, and it is found that
investing#1 (defined as “the act of investing; laying out money or capital
in an enterprise with the expectation of profit”) is a second level hyponym of
business#2 (defined as “the activity of providing goods and services involving

Encoding Classifications into Lightweight Ontologies 69

W)l Subjects

(2)| Business and Investing 3) Computers and Internet
T

(4)| Small Business and (5) .

Entrepreneurship FreliEibulue

'

(8) New Business Enterprises] Java Language
'

(8) Java Beans

Fig. 3. Amazon Book Directory

financial and commercial and industrial aspects”). Therefore, the second sense
(and the atomic concept associated with it) of the word “business” is retained
and all the others are discarded.

At step 3 we build a complex concept by considering the fact that the coor-
dinating conjunction “and” is translated into the logical disjunction. We have
therefore:

I} = business#2 U investing#1]

In order to estimate how much of the information encoded into the labels of
a real classification can be captured using our approach, we have conducted a
grammatical analysis of the DMoz classification. For doing this, we have used
the OpenNLP Tools tokenization and POS-tagging library [22], which reports to
achieve more than 96% accuracy on unseen data!¥. In Table Blwe show the POS
statistics of the DMoz tokens. Note, that about 77.59% of the tokens (nouns
and adjectives) become concepts, and about 14.69% (conjunctions and preposi-
tions) become logical connectives of LE. WordNet coverage for common nouns
and adjectives found in DMoz labels is quite high, and constitutes 93.12% and
95.01% respectively. Detailed analysis of conjunctions and prepositions shows
that about 85.26% of them are conjunctions “and”, and about 0.10% are con-
junctions “or”. In our analysis we found no words or phrases which would result
into the logical negation. Only about 4.56% of tokens are verbs and adverbs in all
their forms.

Note, that the propositional nature of LE allows us to explicitly encode about
90.13% of the label data in DMoz (i.e., nouns, adjectives, conjunctions “and”
and “or”). Still, this is a rough understated estimation, as we did not take into
account multi-word common and proper nouns. In fact, a manual analysis of the
longest labels, as well as of the ones with verbs, shows that the majority of these
labels represents proper names of movies, games, institutions, music bands, etc.

10 The tool may not function at its expected performance on special data as short
labels because it has been trained on well-formed natural language sentences.

70 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

Table 2. DMoz token statistics

POS Share
Common nouns 71.22%
Proper nouns 0.18%
Adjectives 6.19%
Conjunctions and prepositions |14.69%
Verbs, adverbs 4.56%
Other POSs 3.16%

5 Disambiguating Edges

As discussed in Section [2] the classification semantics of nodes codifies the fact
that child nodes are always considered in the context of their parent nodes.
This means that the meaning of a non-root node is the set of documents, which
are about its label, and which are also about its parent node. We encode the
classification semantics of nodes into their property which we call concept at a
node [6]. We write C; to refer to the concept at node n;, and we define this
notion as:

o — 1F if n; is the root of FC 1)

v lf M Cj if n; is not the root of F'C, where n; is the parent of n;
There may be two meaningful relations between the concept at a parent node,
and the label of its child node, as represented in Figure [

— in case (a) the label of the child node is about the parent node, but it is also
about something else. In this case the parent node specializes the meaning
of the child node by bounding the interpretation of the child node’s label
with the interpretation of the concept at the parent node. For instance, think
about a classification where the root node is labeled “Italy” and its sole child
node is labeled “Pictures” (see Figure @h). A human can understand that
the meaning of the child node is “pictures of Italy” and not “pictures of
Germany”, for example. In the corresponding FC this knowledge is encoded
into the concept at node Cy = italy * I picturesx;

— in case (b) the child node represents a specification of the parent node, and
their relation can be, for instance, the “is-a” or the “part-of” relation. Note,
that in this case, differently from case (a), the parent node does not influence
the meaning of the child node. Suppose that in the previous example the child
node’s label is “Liguria” (see Figure @b). A human can understand that the
meaning of this node is the same as of its label. In the corresponding FC this
knowledge is encoded into the concept at node Cy = italy * M liguriax,
which can be simplified to Co = liguria#1, taking into account the fact
that both words “Italy” and “Liguria” have only one sense in WordNet, and
given that the corresponding axiom (liguria#l C italy#1) is memorized
in some background knowledge base.

Encoding Classifications into Lightweight Ontologies 71

Italy ltaly

Pictures Liguria

(a) (b)

Fig. 4. Edge semantics in FCs

Note, that applying Equation [recursively, we can compute the concept at
any non-root node n; as the conjunction of the labels of all the nodes on the
path from the root of the F'C', nq, to n;. This corresponds to how the notion of
concept at a node is defined in [7], namely:

Ci=1Fmifn...mif (2)

The concept at a node encodes, but only to a certain extent, the path from the
root to the node. In fact, there may be more than one way to reconstruct a path
from a concept. Atomic concepts in a concept at a node may be “distributed”
differently among different number of nodes, which, in turn, may have a different
order in the path. The number of nodes may range from one, when the concept
at the node is equivalent to the node’s label, to the number of clauses in the
CNF equivalent of the concept. However, all the possible paths converge to the
same semantically equivalent concept. Consider, for instance, node ng in the
classification shown in Figure[2l The two paths below will converge to the same
concept for the noddt:

top/Publishing and Printing/Business Books/Computers/
top/Business/Publishing and Printing/Computer Books/

We use the notion of concept at a node to define another structure which we
call Normalized Formal Classification (NFC).

Definition 3 (Normalized Formal Classification). A Normalized Formal
Classification is a rooted tree NFC = (N, E,LN) where N is a finite set of
nodes, E is a set of edges on N, and LN is is a finite set of labels expressed in
L€, such that for any node n; € N, there is one and only one label IN e LN and

Note, that the main characteristic of NFCs, that distinguishes them from FCs,
is the fact that labels of child nodes are always more specific than the labels of
their parent nodes. Interestingly, if a taxonomic classification, i.e., a classification

1 For sake of presentation we give these examples in natural language.

72 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

with only “is-a” and “part-of” links, is converted into a FC, then the latter is
also a NFC.

Apart from this, NFCs have a number of important properties relevant to
classifications, discussed below:

— the interpretation of nodes’ labels is the set of documents which can be
classified in these nodes. We underline the “can” since, as we discuss in the
next section, documents which are actually classified in the nodes are often
a subset of the interpretation of the labels in NFCs;

— two nodes, representing in a classification the same real world entities, will
have semantically equivalent labels in the NFC. This fact can be exploited for
automatic location and/or prevention of adding of such “duplicate” nodes.
As an example, consider the different paths that lead to the same concept
as described earlier in this section;

— NFCs are full-fledged lightweight ontologies, suitable for the automation of
the core classification tasks, such as document classification and query an-
swering.

The consideration of the path from the root to any given node allows us not
only to compute the concept at that node which leads to the properties discussed
above, but also to further disambiguate the senses of the words in its label taking
into account the context of the path and, accordingly, to delete corresponding
atomic concepts from its label in the NFC. In this task we apply exactly the
same technique as the one discussed in Section H for sense disambiguation in
labels with the only difference in that now all the remaining words’ senses in all
the labels on the path to the root are compared.

Example 4 (Disambiguating edges in a web directory). Recall the ex-
ample of the part of the DMoz directory shown in Figure 2l and let us see how
the concept at node n; can be computed. Remember the three senses of the
word “java” (which is the label of n7) discussed earlier in the paper, and con-
sider the parent node’s label, “programming languages”, which is recognized as
a multi-word with only one sense whose gloss is “a language designed for pro-
gramming computers”. Comparing this gloss with the gloss of the third sense
of the word “java” (defined as “a simple platform-independent object-oriented
programming language...”) results that the similarity of the two glosses exceeds
a certain threshold and, therefore, a relation is found between these two senses.
We therefore compute the concept at node ny as:

& = (computer#1 Ll computer#2) N programming language#1Mjava#3 [J

6 Document Classification

Before some document d can be classified, it has to be assigned an expression in
L€, which we call the document concept, written C%. The assignment of concepts
to documents is done in two steps: first, a set of n keywords is retrieved from the
document using text mining techniques (see, for example, [23]); the keywords

Encoding Classifications into Lightweight Ontologies 73

are then converted into a concept by means of the conjunction of the formulas
representing the keywords, translated to L as discussed in Section [l

The interpretation of the document concept of any document includes the
document itself (i.e., d € (C%)T) as well as other documents which have equiva-
lent or more specific document concepts. In Figure[§] we show an example of how
a document and the interpretation of its concept can be interrelated. There, the
interpretation of the concept of document di, C%, includes d; itself, ds, whose

concept is equivalent to C?, and ds, whose concept C% is more specific than
Ccdr,

Cd Cd3

d,

Fig. 5. Document concept

We say that node n; is a classification alternative for the classification of some
document d with concept C?, if C¢ C [V . In fact, if this relation holds, and given
that d € (C?)Z, it follows that d € (IN)Z, i.e., document d belongs to the set of
documents which can be classified in n;. For any given document d and a NFC,
we compute the set of classification alternatives for d in the NFC as follows:

A(Ch) = {ny|lCt 1N} (3)

By computing Equation B, we can automate step 3 described in Section Bl The
automation of step 4, i.e., making classification choices, depends on what clas-
sification algorithm is used. Below we show how it can be automated for some
set A of classification alternatives if the get-specific rule (see Section B]) is used:

C(A) ={n; € Alfin; € A (i # j), such that I} T1\} (4)

The set C'(A) includes all the nodes in the NFC, whose labels are more general
than the document concept, and more specific among all such labels. As labels
of child nodes in NFCs are always more specific than the labels of their parent
nodes, C'(A) consists of nodes which lie as low in the CNF tree as possible, and
which are still classification alternatives for the given document. Note, that the
get-specific rule applies not only to nodes located on the same path from the
root, but also to nodes located in different branches. For instance, a document
about computer graphics will not be classified in the node top/computers/ if
the more specific node top/arts/computers/ exists.

74 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

Formula @] implies that the set of documents classified in some node n; may
(and, in most cases will) be a subset of the interpretation of its label IV. In
fact, the set of documents which are actually classified in n; excludes those,
which belong to the interpretation of labels, which are more specific than . We
encode this set in the concept lic which univocally identifies the set of documents
classified in node n;, and, therefore, defines the classification level semantics of
n; in the NFC. We compute [¢ as follows:

10 =1 n=| N #a1 T) (5)

Noteworthy, the concepts which represent the classification semantics at the
three levels discussed in Section [2] are related by the subsumption relation as
shown below:

i oiN il (6)

Computing Equations Bl [and [l requires verifying whether the subsumption
relation holds between two formulas in LC. In a more general case, if we need to
check whether a certain relation rel (which can be C, J, =, or 1) holds between
two concepts A and B, given some knowledge base KB, which represents our a
priori knowledge, we construct a propositional formula according to the pattern
shown in Equation [7, and check it for validity:

KB — rel(A, B) (7)

The intuition is that B encodes what we know about concepts A and B, and
rel(A, B) holds only if it follows from what we know. In our approach KB is
built as the conjunction of a set of axioms which encode the relations that hold
between atomic concepts in A and B. Relation rel(A, B) is the formula encoding
the relation between concepts A and B translated to the propositional logic ac-
cording to the rules proposed in [6]. As discussed in Section @] atomic concepts
in LY are mapped to the corresponding natural language words’ senses. These
senses may be lexically related through the synonymy, antonymy, hypernymy, or
holonymy relations. These relations can be translated into axioms, which explic-
itly capture the classification semantics of the relation that holds between the
two senses. Thus, for instance, the set of documents which are about cars is a
subset of the set of documents which are about a hypernym of the word “car”,
vehicle. The idea, therefore, is to find the lexical relations using WordNet and to
translate synonymy into the logical equivalence, antonymy into the disjointness,
hypernymy and holonymy into the subsumption relation in L.

Example 5 (Document classification). As en example, recall the classifica-
tion in Figure[2] and suppose that we need to classify the book: “Java Enterprise
in a Nutshell, Second FEdition”, whose concept is java#3 I enterprise#2 I
book#1. It can be shown, by means of propositional reasoning, that the set of
classification alternatives includes all the nodes of the corresponding NFC. For

Encoding Classifications into Lightweight Ontologies 75

sake of presentation we provide concrete formulas only for nodes ny and nsg,
whose labels are:

& = computer Mprogramming * [language * Mjavak, and

1Y = business x M(publishing * Llprintings) [publishing x

[Mbooks * Ncomputerx.

We can extract the following knowledge from WordNet: the programming lan-
guage Java is a kind of programming languages, and it is a more specific concept
than computer is; books are related to publishing; and enterprise is a more spe-
cific concept than business is. We encode this knowledge in the following set of
axioms:

a1 = (java#3 C pr language#1); a3 = (book#1 C publishing#1);

az = (java#3 C computer#1); a4 = (enterprise#1 C business#2).
Next, we translate the axioms and the labels into the propositional logic lan-
guage, and we verify if the condition in Formula [B] holds for the two labels by
constructing two formulas, following the pattern of Equation [as shown below:

(ag Aag Aag) — (CT— 1) (a1 Aag) — (CF — 1),

We then run a SAT solver on the above formulas, which shows that they are
tautologies. It means that both nodes n; and ng are classification alternatives
for the classification of the book. Among all the classification alternatives, only
these two nodes satisfy the get-specific rule, and, therefore, they are the final
classification choices for the given book. The latter can be shown by computing
Equation] by means of propositional reasoning. O

Note, that the edges of the NFC are not considered in document classification. In
fact, the edges of the NFC become redundant, as their information is implicitly
encoded in the labels. Note that given a set of labels, there may be several ways
to reconstruct the set of edges of a NFC. However, from the classification point
of view, all these NFCs are equivalent, as they classify documents identically.
In other words, nodes with equivalent labels are populated with the same set of
documents.

7 Query Answering

When the user searches for a document, she defines a set of keywords or a phrase,
which is then converted into an expression in L¢ using the same techniques as
discussed in Section @l We call this expression, a query concept, written C?. We
define the answer A? to a query q as the set of documents, whose concepts are
more specific than the query concept C'?:

A7 = {djc C) (®)

Searching directly on all the documents may become prohibitory expensive as
classifications may contain thousands and millions of documents. NFCs allow us
to identify the maximal set of nodes which contain only answers to a query, which

76 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

we call, the sound classification answer to a query (written N?). We compute
N as follows:
N = {n[1} © C%})

In fact, as C¢ C [V for any document d classified in any node n; € NZ (see
Formulas 3 and @), and [N C €9 (as from Formula [l above), then C¢ C (9.
Thus, all the documents classified in the set of nodes N belong to the answer
A9 (see Formula [§)).

We extend N? by adding nodes, which constitute the classification set of a
document d, whose concept is C? = C9. We call this set, the query classification
set, written C19; and we compute it following Formula [l In fact, nodes in CI4
may contain documents satisfying Formula [§, for instance, documents whose
concepts are equivalent to C1.

Thus, for any query ¢, the user can compute a sound query answer A? by
taking the union of two sets of documents: the set of documents which are
classified in the set of nodes NZ (computed as {d € n;|n; € N7}); and the set of
documents which are classified in the nodes from the set C1? and which satisfy
Formula § (computed as {d € n;|n; € C17,C% C C1}). We have therefore:

A9 = {d € niln; € NI} U {d € ng|n; € C19,C* C C?} (10)

Under the given definition, the answer to a query is not restricted to the doc-
uments classified in the nodes, whose concepts are equivalent to the concept of
the query. Documents from nodes, whose concepts are more specific than the
query concept are also returned. For instance, a result for the above mentioned
query may also contain documents about Java beans.

Note that the proposed approach to query answering allows it to search by
comparing the meaning of the query, of the nodes, and of the documents by
means of propositional reasoning on their formulas. For instance, in our ap-
proach documents about “Ethiopian villages” will be returned as the result of
the user searching for “African settlements”. This makes a fundamental differ-
ence with the standard search techniques based on information retrieval and
word indexing. These are based on exact term matching and on ranking the
results following relative term frequencies; no query semantics is taken into ac-
count in these approaches.

Example 6 (Query answering). Suppose that the user defines a query to
the Amazon NFC which is translated to the following concept: C? = java#3 U
cobol#1, where cobol#1 is “a common business-oriented language”. It can be
shown, that N2 = {nr,ng} (see Figure[Blfor the Amazon classification). However,
this set does not include node ns, which contains the book “Java for COBOL
Programmers (2nd Edition)”. The relevance of node ns to the query can be
identified by computing the query classification set for query ¢, which in fact
consists of the single node ns, i.e., Cl? = {ns}. However, ns may also contain
irrelevant documents, which are excluded from the query result by computing
Formula [I0 O

Encoding Classifications into Lightweight Ontologies 7

For what regards the complexity of the query answering and document classifi-
cation algorithms, since both are reduced to the validity problem, they represent
co-NP-complete problems. However, as discussed in [10], in most of the cases the
time complexity is (or can be reduced to) polynomial.

8 Related Work

In our work we adopt the notion of the concept at a node as first introduced in [6]
and further elaborated in [7]. Moreover, the notion of label of a node in a FC,
semantically corresponds to the notion of the concept of a label introduced in [7].
In [7] these notions play the key role in the identification of semantic mappings
between nodes of two schemas. In this paper, these are the key notions needed to
define NFCs which can be used for document classification and query answering
in a completely new way.

This work as well as the work in [6J7] mentioned above is crucially related
and depends on the work described in [2I7]. In particular, in [2], the authors,
for the first time, introduce the idea that in classifications, natural language
labels should be translated in logical formulas, while, in [I7], the authors pro-
vide a detailed account of how to perform this translation process. The work
in [6/7] improves on the work in [2JI7] by understanding the crucial role that
concepts at nodes have in matching heterogeneous classifications and how this
leads to a completely new way to do matching. This paper, for the first time,
recognizes the crucial role that the ideas introduced in [2J6I7/T7] have in the
construction of a new theory of classification, and in introducing the key notion
of FC.

In [24], the authors propose a very similar approach to converting natural
language labels in classifications to concept language formulas. Our approach is
different in at least two respects. First, the target application in [24] is matching,
whereas in the present paper we focus on document classification and query
answering. Second, DL roles are used in [24] to encode the meaning of labels.
The advantage of our approach is in that, while using a simpler subset of DLs,
we are able to explicitly capture the semantics of a large portion of the label
data in a real classification.

A related approach to converting generic thesauri and related resources from
their native format to RDF(S) and OWL was recently proposed in [30]. In that
work, the authors discuss a set of guidelines for how to perform a conversion of
syntactic elements (e.g., structure, entity names) and semantic elements (e.g.,
property types) from the native format to RDF(S) and OWL. Our approach is
different because it aims at extracting semantic information implicitly encoded
in the classification schema (by using NLP) in order to enable the automation
through reasoning, and not to perform meaning-preserving structure conversion
from one format to another in order to improve interoperability as it is the case
in [30].

The approach presented in this paper can potentially allow for automatic
classification of objects into user-defined hierarchies with no or little intervention

78 F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

of the user. This, in turn, provides the user with less control over the classification
process. Therefore, for any classified object, the user may want to be given
explanatory details for why the object was classified in one and not another
way. From this perspective, the work presented in [I8] is particularly relevant to
our approach, as it allows to monitor the reasoning process and present the user
with the trace of the main reasoning steps which led to the obtained conclusion.

A lot of work in information theory, and more precisely on formal concept
analysis (see for instance [3I]) has concentrated on the study of concept hi-
erarchies. NFCs are very similar to what in formal concept analysis are called
concept hierarchies with no attributes. The work in this paper can be considered
as a first step towards providing a computational theory of how to transform the
“usual” natural language classifications into concept hierarchies.

The document classification and query answering algorithms, proposed in this
paper, are similar to what in the Description Logic (DL) community is called
realization and retrieval respectively. The fundamental difference between the
two approaches is in that in the DL approach the underlying structure for the
classification is mot predefined by the user, but is built bottom-up from atomic
concepts by computing the partial order on the subsumption relation. Interested
readers are referenced to [I2], where the authors propose sound and complete
algorithms for realization and retrieval. In our approach, classifications are built
in the top-down fashion by the user and in the way decided by the user. There-
fore, after their conversion to NFCs, the order of labels imposed by the edges
does not necessarily represent the partial order, which requires algorithms and
optimizations different from those used in the DL approach.

In Computer Science, the term classification is primarily seen as the process
of arranging a set of objects (e.g., documents) into categories or classes. There
exist a number of different approaches which try to build classifications bottom-
up, by analyzing the contents of documents. These approaches can be grouped
in two main categories: supervised classification, and unsupervised classification.
In the former case, a small set of training examples needs to be pre-populated
into the categories in order to allow the system to automatically classify a larger
set of objects (see, for example, [BI20]). The latter approach uses various ma-
chine learning techniques to classify sets of objects (e.g., data clustering [13]),
and it usually has much lower precision than the former one. There exist some
approaches that apply (mostly) supervised classification techniques to the prob-
lem of documents classification into hierarchies [15)26]. The classifications built
following our approach are better and more natural than those built following
these approaches. They are in fact constructed top-down, as chosen by the user
and not constructed bottom-up, as they come out of the document analysis.
Moreover, in our approach there is no need to have a pre-populated set of doc-
uments in order to classify another, larger set. Last but not least, our approach
has the ability to classify documents one-by-one and not only in sets by con-
trasting reciprocal properties of documents in the set as it is done in the above
approaches.

Encoding Classifications into Lightweight Ontologies 79

9 Future Work and Conclusions

In this paper we have introduced the notion of Formal Classification, namely
of a classification where labels are written in a propositional concept language.
Formal Classifications have many advantages over standard classifications all
deriving from the fact that formal language formulas can be reasoned about
far more easily than natural language sentences. In this paper we have high-
lighted how this can be done to perform automatic document classification and
semantics-aware query answering. Our approach has the potential, in principle,
to allow for the automatic classification of (say) the Yahoo! documents into the
Yahoo! directories.

The primary goal of this paper is to present the theory of how to translate
classifications into Lightweight Ontologies and how they can be used for the au-
tomation of essential tasks on classifications. Therefore, large-scale experiments
are out of the scope of the present paper even if the first experiments show
the proof of concept of our approach. However, the results shown in the related
approach of semantic matching allow us to expect promising results for our ap-
proach. In fact, in both cases, the core underlying technologies are NLP (applied
to classifications) and propositional reasoning, which gives us a reason to think
that the results of the two approaches will be comparable. Note that semantic
matching outperforms other similar approaches in some primary indicators [8].

However much more can be done. Our future work includes testing the feasi-
bility of our approach with very large sets of documents, such as those classified
in the DMOZ directory, as well as the development of a sound and complete
query answering algorithm. Apart from this, we will explore the ways of com-
bining the proposed approach to query answering with those based on document
indexing and keywords-based search. Our future work also includes a study of
how dynamic changes made to classifications can be fully supported at the level
of the corresponding FCs and NFCs.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider. The Description Logic Handbook : Theory, Implementation and
Applications. Cambridge University Press, 2003.

2. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach
and an application. In Proc. of the 2nd International Semantic Web Conference
(ISWO0’03). Sanibel Islands, Florida, USA, October 2003.

3. Lois Mai Chan and J.S. Mitchell. Dewey Decimal Classification: A Practical Guide.
Forest P.,U.S., December 1996.

4. eCl@ss: Standardized Material and Service Classification. see
http://www.eclass-online.com/.

5. G.Adami, P.Avesani, and D.Sona. Clustering documents in a web directory. In
Proceedings of Workshop on Internet Data management (WIDM-03), 2003.

80

10

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

F. Giunchiglia, M. Marchese, and 1. Zaihrayeu

F. Giunchiglia and P. Shvaiko. Semantic matching. Knowledge Engineering Review,
18(3):265-280, 2003.

F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: An algorithm and an
implementation of semantic matching. In Proceedings of ESWS’04, 2004.

F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In
CooplS, 2005.

F. Giunchiglia and M. Yatskevich. Element level semantic matching. In Meaning
Coordination and Negotiation workshop, ISWC, 2004.

F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching.
In ESWC, 2005.

A.D. Gordon. Classification. Monographs on Statistics and Applied Probability.
Chapman-Hall/CRC, Second edition, 1999.

Tan Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The instance store: DL
reasoning with large numbers of individuals. In Proc. of the 2004 Description Logic
Workshop (DL 2004), pages 31-40, 2004.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264-323, 1999.

Johnson-Laird. Mental Models. Harvard University Press, 1983.

Daphne Koller and Mehran Sahami. Hierarchically classifying documents using
very few words. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th In-
ternational Conference on Machine Learning, pages 170-178, Nashville, US, 1997.
Morgan Kaufmann Publishers, San Francisco, US.

Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 38(11):33-38, 1995.

Bernardo Magnini, Luciano Serafini, and Manuela Speranza. Making explicit the
semantics hidden in schema models. In: Proceedings of the Workshop on Human
Language Technology for the Semantic Web and Web Services, held at ISWC-2003,
Sanibel Island, Florida, October 2003.

D. L. McGuinness, P. Shvaiko, F. Giunchiglia, and P. Pinheiro da Silva. Towards
explaining semantic matching. In International Workshop on Description Logics
at KR’04, 2004.

George Miller. WordNet: An electronic Lexical Database. MIT Press, 1998.
Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and Tom M. Mitchell. Text
classification from labeled and unlabeled documents using EM. Machine Learning,
39(2/3):103-134, 2000.

Natalya F. Noy. Semantic integration: a survey of ontology-based approaches.
SIGMOD Rec., 33(4):65-70, 2004.

The OpenNLP project. See http://opennlp.sourceforge.net/.

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1-47, 2002.

Luciano Serafini, Stefano Zanobini, Simone Sceffer, and Paolo Bouquet:. Matching
hierarchical classifications with attributes. In ESWC, pages 4-18, 2006.

J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In
ICDM, pages 521-528, 2001.

MeSH: the National Library of Medicine’s controlled vocabulary thesaurus. see
http://www.nlm.nih.gov/mesh/.

28.
29.

30.

31.

Encoding Classifications into Lightweight Ontologies 81

DMoz: the Open Directory Project. See http://dmoz.org/.

Michael Uschold and Michael Gruninger. Ontologies and semantics for seamless
connectivity. SIGMOD Rec., 33(4):58—-64, 2004.

Mark van Assem, Maarten R. Menken, Guus Schreiber, Jan Wielemaker, and Bob
Wielinga. A method for converting thesauri to RDF/OWL. In the Third Inter-
national Semantic Web Conference (ISWC’04), number 3298, pages 17-31, Hi-
roshima, Japan, November 2004. Lecture Notes in Computer Science.

Rudolf Wille. Concept lattices and conceptual knowledge systems. Computers and
Mathematics with Applications, 23:493-515, 1992.

GeRoMe: A Generic Role Based Metamodel
for Model Management

David Kensche', Christoph Quix', Mohamed Amine Chatti', and Matthias Jarke!-2

L RWTH Aachen University, Informatik V (Information Systems), 52056 Aachen, Germany
2 Fraunhofer FIT, Schloss Birlinghoven, 53574 St. Augustin, Germany
{kensche, quix, chatti, jarke}@cs.rwth-aachen.de

Abstract. The goal of Model Management is the development of new technolo-
gies and mechanisms to support the integration, evolution and matching of data
models at the conceptual and logical design level. Such tasks are to be performed
by means of a set of model management operators which work on models and
their elements, without being restricted to a particular metamodel (e.g. the rela-
tional or UML metamodel).

We propose that generic model management should employ a generic meta-
model (GMM) which serves as an abstraction of particular metamodels and pre-
serves as much of the original features of modeling constructs as possible. A
naive generalization of the elements of concrete metamodels in generic meta-
classes would lose some of the specific features of the metamodels, or yield a
prohibitive number of metaclasses in the GMM. To avoid these problems, we
propose the Generic Role based Metamodel GeRoMe in which each model ele-
ment is decorated with a set of role objects that represent specific properties of
the model element. Roles may be added to or removed from elements at any time,
which enables a very flexible and dynamic yet accurate definition of models.

Roles expose to operators different views on the same model element. Thus,
operators concentrate on features which affect their functionality but may remain
agnostic about other features. Consequently, these operators can use polymor-
phism and have to be implemented only once using GeRoMe, and not for each
specific metamodel. We verified our results by implementing GeRoMe and a se-
lection of model management operators using our metadata system ConceptBase.

1 Introduction

Design and maintenance of information systems require the management of complex
models. Research in (data) model management aims at developing technologies and
mechanisms to support the integration, merging, evolution, and matching of data mod-
els at the conceptual and logical design level. These problems have been addressed for
specific modeling languages for a long time. Model management has become an ac-
tive research area recently, as researchers now address the problem of generic model
management, i.e. supporting the aforementioned tasks without being restricted to a
particular modeling language [7U8]. To achieve this goal, the definition of a set of
generic structures representing models and the definition of generic operations on these
structures are required.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 82 2007.
(© Springer-Verlag Berlin Heidelberg 2007

GeRoMe: A Generic Role Based Metamodel for Model Management 83

According to the IRDS standard [[18], metamodels are languages to define models.
Examples for metamodels are XML Schema or the UML Metamodel. The same ter-
minology is adopted in the specifications of the Object Management Group (OMG,
http://www.omg.org) for MOF (Meta Object Facility) and MDA (Model Driven
Architecture). Models are the description of a concrete application domain. Within an
(integrated) information system, several metamodels are used, a specific one for each
subsystem (e.g. DB system, application). Thus, the management of models in a generic
way is necessary.

1.1 The Challenge: A Generic Mechanism for Representing Models

This paper addresses the first challenge mentioned in [8]], the development of a mech-
anism for representing models. Since the goal is the support of generic model man-
agement, this has to be done in some generic way. Currently, model management ap-
plications often use a generic graph representation but operators have to be aware of
the employed metamodel [LO{15123]. A graph representation is often sufficient for the
purpose of finding correspondences between schemas, which is the task performed by
the model management operator Match [28]], but such a representation is not suitable
for more complex operations (such as merging of models) as it does not contain de-
tailed semantic information about relationships and constraints. For example, in [27] a
generic (but yet simple) metamodel is used that distinguishes between different types of
associations in order to merge two models. Consequently, in order to support a holistic
model management framework it is necessary to provide a detailed generic metamodel.
A more detailed discussion about the related work on the representation of models is
given in section 2l

The intuitive approach to develop a truly generic metamodel (GMM) identifies ab-
stractions of the metaclasses of different metamodels. Its goal is to define a comprehen-
sive set of generic metaclasses organized in an inheritance lattice. Each metaclass in a
given concrete metamodel then has to be mapped to a unique metaclass of the GMM.

The sketched approach exhibits a prohibitive weak point: elements of particular
metamodels often have semantics that overlap but is neither completely different nor
equivalent. For example, a generic Merge operator has to merge elements such as
classes, relations, entity types and relationship types. All of these model elements can
have attributes and should therefore be processed by the same implementation of an op-
erator. In this setting, such polymorphism is only possible if the given model elements
are represented by instances of the same metaclass in the GMM, or at least by instances
of metaclasses with a common superclass. Thus, one has to choose the features of model
elements which are combined in one metaclass.

Actually, in each metamodel there may be elements incorporating an entirely new
combination of such aspects. One approach to cope with this problem is to focus on the
“most important” features of model elements while omitting such properties which are
regarded as less important. But to decide which properties are important and which are
not results in loss of information about the model.

All properties of model elements could be retained if the GMM introduced a set of
metaclasses as comprehensive as possible and combined them with multiple inheritance
such that any combination of features is represented by a distinct metaclass. Despite the

http://www.omg.org

84 D. Kensche et al.

modeling accuracy of such a GMM, it will suffer from another drawback, namely that
it leads to a combinatorial explosion in the number of sparsely populated intersection
classes which add no new state.

1.2 Our Solution: Role Based Modeling

In such cases, a role based modeling approach is much more promising. In role based
modeling, an object is regarded as playing roles in collaborations with other objects.

Applied to generic metadata modeling this approach allows to decorate a model
element with a combination of multiple predefined aspects, thereby describing the ele-
ment’s properties as accurately as possible while using only metaclasses and roles from
a relatively small set. In such a GMM, the different features of a model element (e.g. it
is not only an Aggregate but also an Association) are only different views on the same
element. During model transformations or evolution, an element may gain or lose roles,
thereby adding and revoking features. Thus, the combinatorial explosion in the number
of metaclasses is avoided but nevertheless most accurate metadata modeling is possible.

Therefore, the GMM proposed in this work retains these characteristics by employ-
ing the role based modeling approach, resulting in the Generic Role based Metamodel
GeRoMe (phonetic transcription: dzeroum). Implementations of model management
operators can assert that model elements have certain properties by checking whether
they play the necessary roles. At the same time the operator remains agnostic about any
roles which do not affect its functionality. Thus, while role based metamodeling allows
to formulate accurate models, the models appear to operators only as complex as nec-
essary. GeRoMe will be used only by model management applications; users will use
their favorite modeling language.

The difference between our and the naive generalization approach is similar to the
difference between the local-as-view (LAV) and global-as-view (GAV) approaches in
data integration. By defining elements of a GMM as generalization of elements of spe-
cific metamodels, an element of the GMM is defined as a view on the specific elements.
In contrast, in our approach the definition of the roles in GeRoMe is independent of a
particular metamodel, and the elements of the concrete metamodels can be character-
ized as a combination of roles. Thus, our role based approach can be seen as a LAV
approach on the meta level, which has similar advantages as the normal LAV approach
[22]. The role based metamodel is more “stable” with respect to the concrete meta-
models represented, i.e. additional modeling features of other metamodels can be eas-
ily added by defining new role classes. Thus, this change would not affect other role
classes in GeRoMe. In addition, the representations of the concrete metamodels are
more accurate as their elements can be described by a combination of role classes.

The definition of the GMM requires a careful analysis and comparison of existing
metamodels. Since it has to be possible to represent schemata in various metamodels in
order to allow generic model management, we analyzed five popular yet quite different
metamodels (Relational, EER, UML, OWL DL, and XML Schema). We identified the
common structures, properties, and constraint mechanisms of these metamodels. This
part of our work can be seen as an update to the work in [17]], in which several semantic
database modeling languages have been compared.

GeRoMe: A Generic Role Based Metamodel for Model Management 85

The paper is structured as follows. Section 2] provides some background information
on model management and role based modeling, and presents a motivating scenario. In
section Bl we analyze and compare existing metamodels and derive the Generic Role
based Metamodel GeRoMe. Section H] shows several examples of models in different
metamodels represented in GeRoMe. Section [3] explains how model management op-
erations can be performed using GeRoMe. As an example, we describe some atomic
operations necessary for the transformation of an EER model into a a relational model.
The architecture and implementation of our model management prototype is discussed
in section |6l In particular, we present a rule-based approach to import and export mod-
els. Finally, section[7] summarizes our work and points out future work.

2 Background and Motivation

The next subsection provides an overview of model management in general. The moti-
vating scenario in section2.2]should give an idea of the benefits of a model management
framework and the usage of a generic metamodel for model management. An overview
of work about role based modeling concludes this section.

2.1 Model Management

Model management aims at providing a formalization for the definition and modifi-
cation of complex models [8]. To achieve this goal, a model management system has
to provide definitions for models (i.e. schemas represented in some metamodel), map-
pings (i.e. relationships between different models), and operators (i.e. operations that
manipulate models and mappings). There have been earlier approaches to model man-
agement [3120], which did address especially the transformation of models between
different metamodels. Model management has become more important recently, as the
integration of information systems requires the management of complex models. The
most important operations in model management are Merge (integration of two models),
Match (creating a mapping between two models), Diff (finding the differences between
two models), and ModelGen (generating a model from another model in a different
metamodel representation).

Rondo [23]) is the first complete prototype of model management. It represents mod-
els as directed labeled graphs. Each node of such a graph denotes one model element,
e.g. an XML Schema complex type or relational table. A model is represented by a
set of edges between these nodes. A model element’s type (Table, Column, Class, ...)
is also specified by such an edge with the label fype. Furthermore, types of attributes
are specified by other dedicated edges, e.g. SQLtype. For each of the supported meta-
models a different set of types is available. Although the models are represented in a
generic graph structure, the implementation of the operators is not truly generic. For
example, the implementation of the Match operator requires two models of the same
type as input, and some operators (such as Extract) have specific implementations for
each metamodel.

Another approach to generic model representation has been introduced in [3]], ex-
pressed in a relational model dictionary [1]], and was recently used for the generic Mod-
elGen implementation MIDST [2]. This approach differs from our representation in that

86 D. Kensche et al.

it describes a class of model elements as a pattern built up from a set of components
such as an EER relationship type which is composed of at least two participators and
any number of attributes. A model element belongs to a class of modeling constructs
if it matches the given pattern. They map all metamodels to a very small set of mod-
eling constructs. In constrast, we regard the differences in the semantics of modeling
constructs in different metamodels as subtle but important. For example, modeling sets
with object identity and sets without object identity in the same way results in hiding
this knowledge in code of the model management system whereas it should be part of
the generic representation. In our representation we describe a model element by the set
of roles it plays and their relationships to other elements. A small difference between
two constructs can be modeled by adding a role to an element and thereby adding a new
feature to the element.

Another rule-based approach to model transformation is presented in [9]]. Models are
first translated into a universal metamodel and then a sequence of rule-based transfor-
mations is applied to generate a model that is valid in the target metamodel. Details
about the universal metamodel are not given in [9]].

Clio [15] is a tool for creating schema mappings. Whereas schema matching algo-
rithms just discover correspondences between schemas, Clio goes one step further and
derives a mapping from a set of correspondences. The mapping is a query that trans-
forms the data from one schema into another schema. However, Clio supports only
XML and relational schemas.

More sophisticated model management operators such as Merge (integration of two
models according to a given mapping, resulting in a new model) require even more
semantic information about the models involved. For example, in [27] a meta model
with several association types (e.g. has-a, is-a) is used.

The various approaches to model management show that each operator requires a
different view on a model. Schema matching focuses on labels and structure of schema
elements, whereas merging and transformation of models require more detailed infor-
mation about the semantics of a model (e.g. association types, constraints). These dif-
ferent views are supported by our role based approach, as operators will see only those
roles which are relevant in their context.

2.2 Scenario

The following simplified scenario should provide an idea of what model management
is about and of the benefits of utilizing a generic metamodel for model management.

Complex information systems undergo regular changes due to changes of the re-
quirements, of the real world represented by the information system, or of other systems
connected to the information system. As an example, we consider the following eBusi-
ness scenario: a supplier of an automotive manufacturer receives orders from a business
partner in some XML format (XS1). The orders are entered into the ERP system of the
supplier by a transformation program, which uses a mapping between the XML schema
and the relational DB (RM2) of the ERP system.

In order to generate this mapping, the two models are represented as models in a
generic metamodel (GM1 and GM2). A Match operator can then be used to create a
mapping GM1 GM2 between the two models, which can be further translated into the

GeRoMe: A Generic Role Based Metamodel for Model Management 87

GM1_GM2

XS1_RM2

Fig. 1. Schema evolution using GeRoMe and Model Management

desired mapping XS1 RM2 between the original models, e.g. by exporting the mapping
with an operator which generates a set of data access objects for RM2 and a parser
for XML documents conforming to XS1 as well as glue code which uses the mapping
information for adapting these classes to each other.

Due to a change in the system of the manufacturer, the schema of the orders has
changed. This change has to be propagated to the mapping between the XML schema
and the relational DB. Focusing on the models, this scenario can be seen as an example
of schema evolution (Fig.[I). The original XML schema XS1 is mapped to the relational
model (RM2) of the DB using the mapping XS1 RM2. The schema evolution generates
a new version of the XML schema, namely XS1°.

Again, instead of applying the model management operators to the level of specific
schemas, we will first generate a corresponding representation of the specific model in
GeRoMe (GM1’). Then, we have to apply the Match operator to GM1 and GM1’, result-
ing in a mapping GM1’ GM1 between these models. This match operation should be
simpler than matching the new version GM1’ with GM2 directly, as two versions of the
same model should be quite similar. Then, we can compose the mappings GM1’ GM1
and GM1 GM2 to a new mapping GM1’ GM2. Note, that this operation has just to con-
sider mappings between models represented in GeRoMe, which should simplify the
implementation of such an operator. The result of this step is a mapping from GM1’ to
GM2 of those elements which are also present in GM1.

In order to map elements which have been added during the schema evolution a
Diff operator has to be used on GM1’ and GM1 which takes into account the mapping
GM1’ GM1. The difference then has to be mapped individually.

The important difference to other approaches is that the operations in GeRoMe are
truly generic, they do not have to take into account different representations of models.
Therefore, the operators have to be implemented only once, namely for the GeRoMe
representation. In the example the same match operator can be used in both cases, to
match the two versions of the XML Schema and to match the XML Schema with the
relational model.

2.3 Role Based Modeling

The concept of role (or aspect) based modeling has first been described in detail in
the context of the network model [4] and later on in several works on object-oriented
development and object-oriented databases [11129130].

Different formalizations have been proposed, which exhibit significant differences,
but all have in common that a role extends the features of an existing object while being

88 D. Kensche et al.

a view on the object and not an object in its own right. In [[L1] multiple direct class
membership is considered as a solution to the problem of artificial intersection classes.
That is, instead of defining an intersection class, the combination of state and behavior
is achieved by defining an object to be instance of several classes at the same time,
which are not necessarily on the same specialization path.

In [29]] the notion of aspects of objects is discussed. It is stated that at any given mo-
ment an entity may have many different types that are not necessarily related. Often this
issue cannot be handled by multiple inheritance since this would lead to a large number
of sparsely populated “intersection classes” which add no new state. This approach is
different from multiple direct class membership in that each object can have multiple
aspects of the same type, e.g. a person can at the same time be a student at more than
one university while still being the same individual.

[6] presents an approach to avoid large class hierarchies in chemical engineering
applications that is also based on aspects. Aspects divide a class into separately in-
stantiatable partitions. Thus, aspects are a “part” of the object whereas roles are more
“external” objects attached to another object, thereby providing different views on that
object. A comparison of aspects and roles and issues concerning their implementation
are discussed in [[14].

Other approaches, such as the one considered in [30], treat the different features of
an object as roles, which are themselves instances of so called role classes and have
identity by state. This representation also allows model elements to play directly or
implicitly more than one instance of the same role. In addition, [30] introduces the
concept of role player qualification which means that not every object may play every
role but that certain conditions have to hold.

3 The Generic Role Based Metamodel GeRoMe

In this section, we will first explain the role model which we have employed to define
GeRoMe. Based on our analysis of existing metamodels (section[3.2), we have derived
the Generic Role based Metamodel, which is described in detail in section[3.3]

3.1 Description of the Role Model

GeRoMe employs the following role model. A model element is represented by an
object which has no characteristics in its own right. Roles can be combined to describe
amodel element encompassing several properties. Thus, the model element is decorated
with its features by letting it play roles. A role maintains its own identity and may be
player of other roles itself. Because a model element without roles does not have any
features, every model element has to play at least one role. Every role object has exactly
one player. In our model, some role classes may be used more than once by an element,
e.g. an Artribute may play the role of a Reference to more than one other Attribute.
Thus, the complete representation of a model element and its roles forms a tree with the
model element as its root.

We used three different relationships between role classes, namely inheritance, play,
and precondition. The play relationship defines which objects may be player of certain

GeRoMe: A Generic Role Based Metamodel for Model Management 89

roles. For example, an Aftribute role may play itself the role of a reference. In addition,
arole may be a precondition of another role. Thus, in order to be qualified to play a role
of a certain class, the player must be already the player of another role of a certain other
class. Except for namespaces, all links between model elements are modeled as links
between roles played by the elements.

To tap the full power of role modeling, we have to define role classes in such a way
that each of them represents an “atomic” property of a model element. Then roles can
be combined to yield the most accurate representation of an element.

3.2 Role Based Analysis of Concrete Metamodels

A generic metamodel should be able to represent both the structures and constraints
expressible in any metamodel. Thus, to define such a metamodel it is necessary to an-
alyze and compare the elements of a set of metamodels. Our choice of metamodels
comprises the relational model (RM) [12] and the enhanced entity relationship model
(EERM) [12]] because these two models are rather simple and are in widespread use.
The metamodel of the Unified Modeling Language (UML, version 1.5) has been ana-
lyzed as an example for object-oriented languages. The description logics species of the
Web Ontology Language (OWL DL, http://www.w3.org/2004/0WL/) has been in-
cluded since it follows different description paradigms due to its purpose. For example,
properties of concepts are not defined within the concepts themselves but separately.
Finally, XML Schema (http://www.w3.org/XML/Schema) has been analyzed as it
is the most important metamodel for semistructured data.

We analyzed the elements and constraints available in these five metamodels and
identified their differences and similarities. In doing so, we determined the role classes,
which constitute our role based metamodel. In total, we compared about seventy struc-
tural properties and elements and twenty types of constraints. Some of them are very
easily abstracted, such as data types or aggregates. Others, such as the XML Schema
element or OWL object properties, are rather intricate and need closer inspection. The
XML Schema element is an association (associating a parent element with its children).
The root element of a document is a special element which does not have a parent. Fur-
thermore, an XML Schema may allow different types of root elements for a document.
Another problematic example are object properties in OWL DL: the Association role is
played by a “pair of properties” and the ObjectAssociationEnd role is played by object
properties. Furthermore, some metamodels provide redundant options for representing
the same semantics, e.g. there is no semantic difference between an XML Schema at-
tribute and a simple-typed XML Schema element with a maximum cardinality of 1.
Thus, it is difficult to represent such specific model elements in a GMM. In section [4]
we describe some of the representation problems in more detail.

Table [1] shows a selection of role classes and states the related model elements in
the considered metamodels. The table contains roles which are used to define structural
model elements (e.g. relation, class) and roles to define relationships and constraints
(e.g. association, disjointness). Due to space constraints, the table does not embody all
metamodel elements and correspondences in the different metamodels.

http://www.w3.org/2004/OWL/
http://www.w3.org/XML/Schema

90

Role
Domain
Aggregate

Association
ObjectSet
Base-
Element
Derived-
Element

Union

IsA

. Kensche et al.

Table 1. Roles played by concrete metaclasses

EER

domain
entity/rel.-ship
type, comp. attr.
relationship type

entity/rel.-ship
type

supertype in isA,
subset in Union
subtype in isA or
union type

derivation link of

union type
isA derivation
link

Enumeration enumerated do-

Attribute

Object-
Association-
End

Literal-
Association-
End

Literal
Structured-
Instance
Visible

Reference

Foreign Key
Disjointness

Injective

Identifier

Universal

Existential
Default

main restriction

(composite / mul-
tivalued) attribute

link between rela-
tionship type and
its participator

instance of a do-
main

instance of a
structured type
entity type, rel.-
ship type, attr.

constraint on sub-

types
primary/partial
key
primary/partial
key

anonymous do-

main of attribute

Relational
domain
relation

base of anony-
mous domain

anonymous do-
main constraint

enumerated do-
main restriction

column

domain value
tuple
relation, col-
umn
foreign
comp.
foreign key

key

unique, primary
key
primary key

anonymous do-
main constraint
of column

default value

OWL DL
xsd datatype
class

a pair of inverse
object properties
class

superclass,
superproperty
subclass, sub-
property

derivation
of union class
subclassing
derivation link
enumeration

data type prop-
erty

object property

data type value
individual
named

property

class,

constraint
classes

on

inverse func-

tional

allValuesFrom

XML Schema
any simple type
complex type

element

complex type,
schema

base simple / com-
plex type

derived simple /

complex type

link derivation link of

union type
restriction / exten-
sion derivation link
enumeration

attribute, element
with simple type

link between ele-
ment and its nested
or enclosing com-
plex type

link between an
element and its
nested simple type
simple type value

valid XML

named type, at-

tribute element
keyref component

keyref

unique, key
key

restriction of com-
plex type

someValuesFrom -

default value

UML

datatype

class, association
class, struct
association, associ-
ation class

class, ass. class, as-
sociation, interface
superclass, imple-
mented interface
subclass, subinter-
face, implementa-
tion

subclassing, imple-
mentation

enum, constants in
interface (constant
inheritance)?
attributes in struct,
member variables,
properties

point where associ-
ation meets partici-
pator

constant, value of
simple type
value of struct, ob-

ject

anything not
anonymous
constraint on
classes

- (covariance
breaks polymor-
phism)

default value

GeRoMe: A Generic Role Based Metamodel for Model Management 91

3.3 Description of GeRoMe

Figure[2lpresents the Generic Role based Metamodel GeRoMe at its current state, based
on the analysis of the previous section. All role classes inherit from RoleObject but we
omitted these links for the sake of readability. Although we use here the UML notation
to describe the metamodel GeRoMe, it has to be stressed that UML or the related MOF
standard (http://www.omg.org/mof/) are not suitable for expressing models for
generic model management applications, since — as we discussed above — the use of
multiple inheritance instead of a role based approach would lead to a combinatorial
explosion of classes in the metamodel. Below, we will describe the elements of GeRoMe
according to their basic characteristics: structural elements, derivations, and constraints.

Structural Elements. Every model element representing a primitive data type plays
the role of a Domain. GeRoMe contains a collection of predefined domains such as int
and string. In contrast, model elements which may have attributes play an Aggregate
role (e.g. entity and relationship types, composite attributes in EER; relations, classes
and structs in other metamodels).

Thus, the Aggregate role is connected to a set of Attribute roles. Each of these Az-
tribute roles is part of another tree-structured model element description. An Attribute
role is a special kind of Particle and has therefore the min and max attributes which can
be used to define cardinality constraints. Every attribute has a Type, which may be a
primitive type or an Aggregate in the case of composite attributes.

The Aggregate role and the Domain role are specializations of Type. Type is a spe-
cialization of DerivableElement which is the abstract class of roles to be played by
all model elements which may be specialized. Another kind of DerivableElement is
the Association role. Properties of associations are AssociationEnd roles. For example,
association roles are played by EER relationship types, UML associations, or UML as-
sociation classes. A model element which provides object identity to its instances may
participate in one or more associations. This is modeled by specifying the element’s Ob-
JjectSet role to be the participator of one or more ObjectAssociationEnd roles. Thus, an
association end is a model element in its own right, and the association is a relationship
between objects and values. In addition, the roles AggregationEnd and CompositionEnd
can be used to model the special types of associations available in UML. In order to be
able to represent the aforementioned special case of XML Schema elements having a
simple type, we had to introduce the LiteralAssociationEnd as a role class. Furthermore,
an Attribute or LiteralAssociationEnd role may itself play the role of a Reference, which
defines a referential constraint referencing another Aztribute of the same type.

The Association and Aggregate role classes are an intuitive example of two role
classes that can be used in combination to represent similar concepts of different meta-
models. If the represented schema is in a concrete metamodel which allows relationship
types to have attributes, such as the EER metamodel, then every model element playing
an Association role may play additionally an Aggregate role. If associations may not
have attributes, which is the case in OWL, a model element may only play either of
both roles. On the other hand, the representation of a relational schema may not contain
Association roles at all. Thus, these two roles can be combined to represent the precise
semantics of different metamodel elements. Of course any of these combinations can

http://www.omg.org/mof/

D. Kensche et al.

92

1aunuap)
«=2558(08|0Mx>

& sresd

2=2S5E|03|0M=>

angalu

v

ajuanbag
«=S5E| 0804

10X
==S5E|D8|0M==

dnouglons +

sSauUI0IsIq
«=35E|08]|04»>

<<GEE|0A|0M=>

[euonaung

Aayubiaing
<=55R| D804 ==

«=S5E| 08|04

drioso

punogIamo] + Uea|oog | |[aug| + Jafiaqu ; YAuaTREL +

UEa00g ; [aU9n + Auls dxabal + 1af8iu| yiBuauiw + Jafau - unjsioaid +
punogiaddn +

pauyagIeAII uoneIaWNug pauyaqdIhiay papLsadBua Pa)oLSaYUDISIZa]
zs55E0a108=5 | ==538108/04=> || <=5sEI08I04= <<GER|0AI0Hx> <<55BI0A0H ==
BUMLS © anjen + [T Al \Un}m_avv_ \\\\\\ A T
1
lesa aJue)SUpaINANNS unejaq Ueajoag . [Bjolsl+

=<EEE[DA0M= ==558(08(0y== =<5SEI0210Y=> vs| uon

«<55E|08|04x=

«=35E|08]|04>=

N

JaGan|es + 2%

==358|08(0Y>

_ [<7 |
7 12 A_w |||||||||||| 4 mm
| =3Upxew + UELIEE + wmwwzmammme Fateidsy
HUBBSUO NS00 L [<=35EID810H>> HTHOReALRT
==55E1D8104== - <L s A ey
ajopied
==55E|08|0M=> 0 pujuomsodwo) pujuonefiaiffiy P
7 ==538|08|04== ==35EI0310H>> UB3/000 JUBRING +
O3] 7 JawRERaN g
55810310
Anjedined + anualajay el P ner S m et w1oaln0 0 puayens ==25EB[DA0==
oLpariasal + P s <=5581080H = ERCCTITCEI] INPSRR [IRt O N SHRRRHOR A
| g
| + ccxw 1asapdns + ,|A_w|; Jojediaed + i 1 [EYE
L % - wawagaseq i | ==ssenBigss
. I
Uealang : pasapin » |0 | PRUIMPRLY ! pasiadins + PUFHOREII0SSY i b
wewog ajelaiifiy ahguny ==55B[J3|0Y=>= ' | [enua)sixy
25 2 1
£<5EE[0B|0H = =z35EDaI0d=> || <=ssenai0d-- B i 4 i e
1 1
AN T uopuogaid
3 « "An I [d =
7 I Ansmes woRIRTOY
9diy amaa | e EEEEL LT -t- " i | essEIoang->
0.4d T
==58E[0al0y = | B0+
auodwod +] <=sse1n810M=> HOneI0SSY '
_ Sl 7 ==55E08]0Y== !
- 1
| h
q A || B et i o] !
Pensy BIERT ==UBITHUG =
\\\\\\\\\\\\ . e Ay
==35E|0810Y== [~ ==UdNipUGaad== S<SSBIQBIOMRE o omi e > L aaedsawen alIsIn
2=55EI0310H=> ==58E|08|04=>

V.

afjaeioy

||||||| > <<sseipajogs-

Fig. 2. The Generic Role based Metamodel (GeRoMe)

GeRoMe: A Generic Role Based Metamodel for Model Management 93

be further combined with other roles, such as the ObjectSet role, to yield even more
description choices.

We have defined a formal semantics for models represented in GeRoMe that allows
to specify Instances for model elements which play a Set role. Values of Domains are
modeled as elements playing a Literal role. On the other hand values of elements play-
ing ObjectSet, Aggregate, or Association roles, or combinations thereof are represented
by elements playing a Structuredinstance role. These are for example rows in a table,
values of structs in UML, or instances of classes or association classes. An Abstract role
marks a Set as being not instantiable. The Any role is used as a wildcard, in cases where
types or associations or attributes are not constrained. This is commonly used in XML
Schema where you can specify components of a complex type with anyAttribute
or anyElement, for instance. Each Instance can also play the role of a Default value
with respect to any number of properties. Our formal semantics defines also the shape
of the structured instance such that it conforms to the structure defined by its value set.
But we abstain here from further elaborating on that issue since this topic abandons the
model level for the instance level.

Finally, model elements can be Visible, i.e. they can be identified by a name. The name
attribute of a Visible role has to be unique within the Namespace it is defined in. Further-
more, a visibility can be chosen for a Visible element from a predefined enumeration. A
model’s root node is represented by a model element which plays a Namespace role.

Derivation of New Elements. A BaseElement role is played by any model element
that is a superset in the definition of a derived element. Thus, a DerivedElement can
have more than one BaseElement and vice versa. These roles can be played by any
DerivableElement.

The BaseElement and DerivedElement roles are connected via dedicated model el-
ements representing the DerivationLink. Each DerivationLink connects one or more
BaseElements to one DerivedElement. The IsA role can be used to define specialization
relationships. It extends the definition of a superclass by adding new properties (e.g.
inheritance in UML). A DerivedElement role which is connected to an IsA role with
more than one BaseElement role can be used to define a type which is the intersection
of its base elements. A Subtrahend is an element whose instances are never instances
of the derived element (e.g. a complementOf definition in OWL).

We identified two different kinds of isA relationships which are often not distin-
guished from each other. All surveyed metamodels allow extension (i.e. the subtype
defines additional attributes and associations) if they allow specialization at all. In EER
and OWL, model elements can specialize base elements also by constraining the ranges
of inherited properties. In EER, this is called predicate defined specialization [12, p.80],
whereas in OWL it is called restriction and comprises a very important description fa-
cility for inheritance. Such derivations can be expressed in our metamodel by deriving
the constrained property from the original one and letting it play the role of a Univer-
sal or Existential restriction. This Restriction role must reference the DerivedElement
role of the respective subclass. These restrictions cannot be used in UML. For exam-
ple defining a universal restriction on an association would amount to covariance, that is
specialization of a property when specializing a class. Covariance breaks polymorphism
in UML (or object oriented programming languages); it is therefore not allowed.

94 D. Kensche et al.

Special kinds of derivations are for example enumerations and intervals. We model
such derivations by letting the IsA link play additional roles. This is similar to the facets
of XML Schema simple types and allows to orthogonally specify conditions of the de-
rived Set. Obviously some of these roles may only be applied when deriving Domains.
You can define new structural elements by using an Enumeration role and enumerating
those Instances which are element of the new Set. Furthermore, derivations may define
intervals of existing Domains or restrict the length and precision of their values. In case
the base element is the built-in domain string or a subtype thereof a regular expression
can define a new subtype. In XML Schema, named domains can be derived from others
whereas in the relational metamodel derived domains occur only as an anonymous type
of attributes with enumeration or interval domains.

Constraints. Constraints are represented by separate model elements. For example, a
disjointness constraint on a set of derived elements (or any other types) has to be defined
by a model element representing this constraint. The element has to play a Disjointness
role which references the types to be disjoint. In the case of OWL or UML, any col-
lection of classes can be defined to be disjoint. When representing an EER model, this
constraint can be used to define a disjoint isA relationship by referencing at least all of
the derived elements.

Another constraint is the Functional constraint which declares a property or a set of
properties to have the characteristics of be a function (uniqueness and completeness)
and is used for example to represent certain OWL properties. Correspondingly, an In-
Jective property is a functional property that specifies a one-to-one relationship. Such
an Injective role is equivalent to a uniqueness constraint in XML Schema or SQL. It
can also define a composite key by being connected to multiple properties. An injective
constraint playing an Identifier role defines a primary key. This reflects the fact that a
primary key is only a selected uniqueness constraint, and thus, only one of multiple
candidate keys.

The ForeignKey constraint is a collection of Reference roles which defines a (possibly
composite) reference to an Identifier. This is used to model foreign keys in the relational
model or key references in XML Schema.

Additional restrictions on the structure of Aggregates or Associations can be given
by Group constraints which reference a set of Particles. For instance, the Sequence con-
straint defines the order of appearance of properties. The XOr constraint is a modeling
feature that is available in the UML metamodel or in XML Schema. It states that an
object may participate only in one of the related associations or that only one of refer-
enced attributes occurrs. Such Group constraints can also be nested which corresponds
to the nesting of the respective model groups in XML Schema and allows to define them
recursively together with cardinality constraints.

We are aware that there are subtle differences in the semantics of constraints for
the various metamodels. However, these differences stem from the objectives of the re-
spective modeling languages and apply only to the data level. In contrast, the goal of
GeRoMe is to represent models and to provide a generic data structure for manipulating
them. For instance, in a relational database a uniqueness constraint is checked when-
ever a row is inserted or updated whereas in an ontology such a constraint will only
narrow the interpretation of the model such that individuals with the same value for the

GeRoMe: A Generic Role Based Metamodel for Model Management 95

unique property are classified as being equal. On the model level the constraint is just a
statement about the property.

Another issue are constraints that can be attached as an expression in some for-
mal constraint language to the model (e.g. OCL constraints or SQL assertions). Such
constraints cannot be represented in a generic way, as this would require a language
that unifies all features of the various constraint languages. Thus, a generic constraint
language would be difficult to interpret because of the complexity of the language or
it would be undecidable whether a constraint can be satisfied or not. Currently, we are
able to express constraints as first-order logic formulas (using predicates referring to the
instance level as defined in appendix [A.T) which certainly cannot cover all constraints
(e.g., SQL assertions with aggregations or functions). Therefore, a translation of exist-
ing contraint languages into our language could be done only partially. The opposite
way, however, will be possible, e.g. generating executable code from these constraints.
This is especially important for mappings between different models as these mappings
will be used to transform data from one model into another model.

GeRoMe can be extended with new role classes representing other features of con-
straints and structures while existing models and operators still remain correct.

4 Representation Examples

This section presents some example models based on a small airport database in [12,
p.109] (see fig. B). We represented EER, XML Schema and OWL DL models for this
example. The model contains simple entity types composed of attributes as well as
some advanced features, which are not supported by all metamodels (e.g. composite
attributes, isA relationship).

partial,
overlapping

Employee

Fig. 3. Part of an airport EER schema

4.1 Representation of an EER Schema

Fig.Hlshows a part of the representation of the airport model in GeRoMe. The GeRoMe
representation shows each model element as a ModelElement object (gray rectangle)
which plays a number of roles (white squares) directly or by virtue of its roles playing
roles themselves. Each such role object may be connected to other roles or literals,
respectively. Thus, the roles act as interfaces or views of a model element. The links

96 D. Kensche et al.

_AirportSchema
t

Const']

Person N

,Name*
Hours Flies _ Name

NS| |As

Employee

_PlaneType ’ _Pilot m B —
min,max: (1, n) J string E -
L

.
min,max:

’Lic_Num Restr

Fig. 4. GeRoMe representation of an EER schema

between role objects connect the model element descriptions according to the semantics
of the represented schema.

For the sake of readability, we refrain here from showing the whole model and omit-
ted repeating structures with the same semantics such as links from namespaces to their
owned elements or Visible roles. A model element plays a Visible role if it has a name.
We represent this in the following figures by assigning a simple label to the gray box
resembling the element. In case of anonymous elements, which do not play a Visible
role, we prefix the label with an underscore.

The root model element of the airport schema is a model element representing the
schema itself (AirportSchema). It plays a Namespace role (NS) referencing all model
elements directly contained in this model.

The Name attribute is a visible model element and therefore its model element object
plays the Visible role (Vis). The role defines a name of the element as it could be seen in
a graphical EER editor (note that we omitted other occurrences of the Visible role class).

Since entity types are composed of attributes, every object representing an entity
type plays an Aggregate role (Ag). Furthermore, instances of entity types have object
identity. Consequently, representations of entity types also play an ObjectSet role (OS).
The Aggregate role is again connected to the descriptions of the entity type’s attributes.

The EER model defines a primary key constraint on the SS» attribute. Therefore, a
model element representing the constraint (Constl) and playing an Injective role (Inj)
is connected to this attribute. This is a uniqueness constraint which is special in the
sense that it has been chosen to be a primary key for the entity type Person. This fact

GeRoMe: A Generic Role Based Metamodel for Model Management 97

is represented by the constraint playing an Identifier role (Id1) connected to the identi-
fied aggregate. Since Person’s subtypes must have the same identifier, the injectiveness
constraint plays also Identifier roles (Id2, Id3) with respect to these model elements.

In the EER model, it is usually not possible to specify domain constraints, but the
addition of default domains does not hurt. Therefore, attributes always have a type in
GeRoMe. Domains are themselves represented as model elements playing domain roles
(D) (e.g. string). It is also possible to derive new types from existing ones as this is also
possible in most concrete metamodels.

In addition, note that the composite attribute Name has not a domain but another
Aggregate as type. Unlike the representation of an entity type, NameType is not player
of an ObjectSet role. Consequently, this element cannot be connected to an Association-
End, which means that it cannot participate in associations. Furthermore, NameType
is not visible as it is an anonymous type. However, the representation is very similar
to that of entity types and this eases handling both concepts similarly. For example, in
another schema the composite attribute could be modeled by a weak entity type. If these
two schemata have to be matched, a generic Match operator would ignore the ObjectSet
role. The similarity of both elements would nevertheless be recognized as both elements
play an Aggregate role and have the same attributes.

Furthermore, the figure shows the representation of the isA relationship. Since ev-
ery instance of Pilot and Employee is also an instance of Person, the Person model
element plays a BaseElement role (BE) referenced by two IsA roles (IsA). These roles
define two children, namely the DerivedElement roles (DE) which are played by the re-
spective subtypes Employee and Pilot. Any attribute attached to the Aggregate roles of
the subtypes defines an extension to the supertype. The children could also be defined
as predicate-defined subtypes by associating to the DerivedElement roles a number of
Restriction roles.

The subtype Pilot participates in the relationship type Flies. The representation of
this relationship contains an Association role (As) which is attached to two Object-
AssociationEnds (OE) (i.e. a binary relationship). Furthermore, the relationship has an
attribute, and consequently, it plays the role of an Aggregate. The representations of the
two association ends define cardinality constraints and are linked to the ObjectSet roles
(OS) of their respective participators. They also may play a Visible role which assigns
a name to the association end.

4.2 Representation of an XML Schema

Figure[6] shows part of an XML Schema for the airport domain whereas figure 3] shows
the representation of this example schema in GeRoMe. The XML Schema element is a
relationship between its enclosing type and the complex type of the nested element. But
it is always a 1:n relationship since an XML document is always tree structured. Cross
links between elements in different subtrees have to be modeled by references.

But what about root elements in a schema? These elements are related to the schema
itself which in our role based model is represented by the http://../Airport model el-
ement. This is just one example of a concrete model element which is not obviously
mapped to a generic metamodel.

98 D. Kensche et al.

http://../Airport ’

o8 [Ns—

ini]
Id3 104

i

o

IsA|_DerivP IsA|_DerivPE| |[IsA|_DerivE E string
_AnonOE3| |_AnonOE4 /
pelfs. e fod pe] os]
PilotType| PilotEmpType EmpType

o) =R I)

As }« F
Flies ’Lic_Num Restr Att| Lic_Num

Fig. 5. Representation of a similar XML Schema

An XML document conforming to an XML Schema can have any element as root
element which is defined in the schema file as a direct child of the schema element.
Consequently, any such element is represented in GeRoMe as a model element playing
an association role with its complex type as one participator and the schema node as
the other participator. In the example, Airport is the only such element. This element
is visible and its name is “Airport”. AssociationEnds of XML elements have no names
attached and therefore are anonymous. Complex types may be anonymously nested into
an element definition. In the example, this is the case for AirportType. Since definitions
of keys have labels in XML Schema, the identifier of Person plays a Visible role with
its label “personKey” assigned to it.

Model elements defined within other model elements such as attributes and XML
elements are referenced by the Namespace role of the containing element. For example,
the element Flies is owned by the Namespace role of PilotType. Another consequence
of the structure of semistructured data is that the AssociationEnd of the nested type
always has cardinality (1, 1), i.e. it has exactly one parent. Finally, the model element
PilotEmpType has been introduced as it is not possible to represent overlapping types
in XML Schema.

4.3 Representation of an OWL DL Ontology

In table [Tl we stated that OWL DL object properties are represented by model elements
playing ObjectAssociationEnd roles and that a pair of these model elements is con-
nected by an Association. This is another good example for the problems which occur
when integrating heterogenous metamodels to a GMM. The reasons for the sketched

GeRoMe: A Generic Role Based Metamodel for Model Management 99

<xsd:schema xmlns="http://../Airport">
<xsd:element name="Airport">
<xsd:complexType>..</xsd:complexType>
<xsd:key name="personKey">

<xsd:selector xpath="./Person" />
<xsd:field xpath="@SSn" />
</xsd:key>

</xsd:element>
<xsd:complexType name="PersonType">
<xsd:attribute name="SSn" type="xsd:string" />
</xsd:complexType>
<xsd:complexType name="PilotType">
<xsd:complexContent>
<xsd:extension base="PersonType">
<xsd:sequence>
<xsd:element name="Flies">
<xsd:complexType>...</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="Lic_Num" type="xsd:string" />
<xsd:attribute name="Restr" type="xsd:string" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="PilotEmpType">

</xsd:complexType>
</xsd:schema>

Fig. 6. An XML Schema for the airport domain

representation can be explained with the semantics of the relationship type WorksOn in
fig.[3l The representation of the corresponding OWL DL elements is shown in figure[Zl

Intuitively and correctly, one represents WorksOn as a model element playing an
Association role. WorksOn has two ObjectAssociationEnds: one with cardinality (0,n)
pointing on PlaneType and one with cardinality (1,n) pointing on Employee. This is
represented analogous to Flies in fig. |4l Now what are the problems if you would regard
an object property WorksOn as corresponding to the given relationship type?

Firstly, an object property always has domain and range. Thus, it has a direction. But
the direction of a relationship type is only suggested by its name. On the other hand, an
association end has a direction. The role name describes the role which the participator
plays in the relationship type with respect to the participator at the opposite end. Fur-
thermore, these role names are often phrasal verbs as are the names of object properties
in OWL. Actually, in description logics object properties are often called roles. Thus,
“WorksOn” should be the role name assigned to the link between the relationship type
and the entitiy type PlaneType.

Secondly, an object property may have one cardinality restriction, whereas a rela-
tionship type has at least two (one for each participating entity). This shows that an
object property corresponds to an association end, and that a pair of object properties
(one of which is the inverse of the other) is correctly represented as a binary association.
Note that OWL DL allows only binary relationships.

100 D. Kensche et al.

Employee

@ WorksOn HasEmployee E
(0,n) (1,n)

Fig. 7. Representation of OWL object properties

In order to allow other constraints, such as Symmetric, new roles can be added to
GeRoMe. Adding a new role to the metamodel will render existing models and operator
implementations valid and correct. Thus, it is also easy to extend GeRoMe if this is
necessary in order to include new modeling constructs.

5 Model Management Using GeRoMe Models

In this section, we show how model management operators can make use of GeRoMe.
Transformation of models is a typical task for model management applications. Our im-
plementation of generic ModelGen operators is comparable to the approach described
in [26] which is imperative as well. Another approach is the rule-based model transfor-
mation of [2]. We implemented our Import and Export operators based on equivalence
rules between the concrete metamodels and GeRoMe (cf. section[6.3)). A rule based ap-
proach is particularly useful for this task as equivalence rules enable consistent import
and export of models since they are applicable in both directions.

We will explain the transformation of the EER model of fig. 4] into a relational
schema. Therefore, the original representation has to undergo several transformations
in order to become a representation of a relational schema. Fig. [8] shows the final result
of the transformation steps which will be discussed in detail in the following.

5.1 Transformation of GeRoMe Models

In model management, transformation of models is performed by a ModelGen operator,
i.e. the operator generates a model from another existing model. We have implemented
the transformation of constructs such as composite attributes or inheritance from an
EER schema by several ModelGen X operators. Each operator transforms the modeling
constructs not allowed in the relational model into modeling elements of the relational
model. The decomposition of the operators into several “atomic” operators has the ad-
vantage that they can be reused in combination with other operators to form new oper-
ators. Note that the following operators are not aware about the original representation
of the models, i.e. the operators just use the GeRoMe representation. Thus, they could
also be used to transform a UML model into XML Schema if similar transformation
tasks are required (e.g. transformation of associations to references).

GeRoMe: A Generic Role Based Metamodel for Model Management 101

AirportScl ’

hema
INSf—

‘_ConstraintZ LConstrainﬂ

Fig. 8. Representation of the resulting relational schema

It has to be emphasized that mapping of models from one metamodel to another is
just one popular example application of model management. The goal of our generic
metamodel is not only to provide a platform for schema translation but to provide a
generic model representation that serves as a foundation for the polymorphic usage of
any model management operator. Thereby, other applications of model management,
such as schema evolution, are also supported in a generic way.

Transformation of Relationship Types. Relationship types are not allowed in the re-
lational metamodel. According to properties such as cardinality constraints, they have
to be transformed to relations by executing the operator ModelGen AssocToRef for each
Association role. First, it looks for attached ObjectAssociationEnd roles, the arity of the
association, and cardinality constraints. Depending on these constraints the transfor-
mation is either performed automatically or the user is asked for a decision before the
operator can proceed. Copies of all attributes in the participators’ identifiers are attached
to the relationship’s Aggregate role. An Aggregate role has to be created first, if not yet
available. Furthermore, these copies play Reference roles (Ref) referencing the original
attributes, and thereby defining referential constraints. These reference roles constitute
a foreign key (FK). After performing all these transformations, the association ends and
the relationship’s Association role are deleted.

The result yet contains ObjectSet roles (OS), which are not allowed in a relational
model. These roles can now be removed directly, as the associations have been trans-
formed to attribute references. This yields an intermediate result which cannot be in-
terpreted as a valid schema in the EER or relational metamodel, since it now contains
constructs disallowed in both metamodels. An Export operator to the Relational or EER
metamodel would have to recognize this invalidity and reject to export.

102 D. Kensche et al.

Transformation of IsA Relationships. The isA relationships also have to be removed
depending on their characteristics (partial and overlapping), the attributes of the exten-
sions Pilot and Employee thereby become attributes of the supertype.

The operator ModelGen FlattenlsA fulfills this task by receiving a BaseElement role
as input. It first checks for disjointness of connected isA relationships and whether they
are total or not. Depending on these properties, the user is presented a number of choices
on how to flatten the selected isA relationships. In the example, the base type Person and
its subtypes Pilot and Employee have been selected to be transformed to one single ag-
gregate due to the fact that the isA relationship is neither total nor disjoint. The resulting
aggregate contains all attributes of the supertype and of the subtypes. Additionally, the
boolean attributes isPilot and isEmployee as well as Default roles Df1 and Df2 related
to these attributes have been introduced.

Transformation of Composite Attributes. The transformation of composite attributes
is done by another atomic operator. First, it collects recursively all “atomic” attributes
of a nested structure. Then, it adds all these attributes to the original Aggregate and re-
moves all the structures describing the composite attribute(s) (including the anonymous
type). This operator also needs to consider cardinality constraints on attributes, since
set-valued attributes have to be transformed into a separate relation.

In this way, the whole EER schema has been transformed to a corresponding rela-
tional schema. Of course, more operators are needed to handle other EER features, such
as Union derivations of new types.

5.2 Equivalence of Models Represented in Different Metamodels

The preceding sections showed models for the airport domain in different concrete
metamodels. It can be seen that, although each of the models is designed for the same
domain, their GeRoMe representations differ from each other.

Please note that the differences in the representations stem from the constraints and
semantics of the concrete metamodels. Nevertheless the representations use the same
role classes in all models, while accurately representing the features of the constructs
in the concrete modeling languages. For example, the XML Schema PersonType plays
the same roles as the EER Person, since entity types have the same semantics as XML
Schema complex types. Furthermore, the relational Person does not play the ObjectSet
and BaseElement roles since these are not allowed in the relational model. On the other
hand, all these roles play an Aggregate role, and therefore they look the same to an
operator which is only interested in this role.

In the last section we demonstrated the tranformation of an EER model into a rela-
tional model. Because of the aforementioned differences in the semantics of represen-
tations in different concrete metamodels a model resulting from such transformations
cannot be equivalent to the original model in a formal way. For example, since the rela-
tional model does not allow relationship types, these elements have to be transformed to
relations with referential constraints. Thus, during the transformation information about
the original model is lost because the target metamodel cannot represent these concepts.

Consequently, if you transform the GeRoMe representation of an EER model into
the GeRoMe representation of a relational schema and try to reverse this, the result

GeRoMe: A Generic Role Based Metamodel for Model Management 103

may be a model which is different from the original schema. For example, it is not
possible to identify which model elements stem from entity types or relationship types,
respectively.

To summarize, a generic metamodel cannot represent models from different con-
crete metamodels identically because each concrete metamodel is designed to repre-
sent different aspects of real world entities and their relationships. What it can do is
to represent models in any metamodel with the same set of modeling elements. This
allows to implement model management operators only with respect to these elements
of the generic metamodel and to use these operators polymorphically for models from
arbitrary metamodels.

6 Architecture and Implementation

Applications dealing with complex models require support for model management in
several ways. Therefore, our goal is to provide a library for the management of GeRoMe
models (including the definition of several operators) that can be reused in various appli-
cation settings. In the following, we will first present the architecture of our framework.
In section we will explain how we have realized the import and export of GeRoMe
models, which is based on a logical formalization presented in section 6.2l More infor-
mation about the import and export of models and also the transformation of models
using a rule based approach in GeRoMe can be found in [21]].

6.1 Architecture

In order to make the functionalities of GeRoMe available to several applications, we
developed an API for the manipulation of models represented in GeRoMe. Manipu-
lations are performed by a set of model management operators. These can be atomic
operators or operators composed of existing operators. Figure [9] presents the structure
of our API as well as the general architecture of model management applications based
on GeRoMe.

Domain-dependent metadata intensive application

Library of composed Operators Atomic Operators

_____________ SEeo5g

Implementation ! GeRoMe-API: _
of GeRoMe-API 1 Interfaces and Base Implementations

Metadatabase
Models, Mappings

Fig. 9. Architecture of a metadata intensive application based on GeRoMe

104 D. Kensche et al.

Our implementation of a model management platform is based on a multi-layered
architecture. The lowest layer provides facilities to store and retrieve models in the
GeRoMe representation and is implemented using the deductive metadatabase system
ConceptBase [19]. ConceptBase uses Telos as modeling language [25]], which allows
to represent multiple abstraction levels and to formulate queries, rules and constraints.
Objects are represented using a frame-like or graphical notation on the user side, and a
logical representation (triples similar to RDF) based on Datalog™ internally. The logical
capabilities of ConceptBase can be used to analyze the models or to encode the seman-
tics of models in logical rules (e.g. inheritance of attributes. In addition, GeRoMe
models can be stored as and constructed from a set of logical facts which is used for the
import and export of models. This will be discussed in more detail below. Furthermore,
it is possible to store models represented in GeRoMe in an XML format to ease the
exchange of metadata.

On top of the storage layer, an abstract object model corresponding to the model in
fig. Blhas been implemented as a Java library. This is a set of interfaces and base imple-
mentations in Java. An implementation of these interfaces can be chosen by instantiat-
ing a factory class. Consequently, the object model is independent from the underlying
implementation and storage strategy. The relationship between roles and model ele-
ments is represented in member variables and methods which allow to add and delete
roles from model elements (or other roles). A role has also a link to its player. A model
element can be queried for the roles it plays or all roles of a specific class can be re-
trieved. Some convenience methods in the model element interface allow direct access
to the role object (e.g. getAggregate ()). The GeRoMe API is also independent
from any original metamodels; the relationship between models represented in GeRoMe
and models represented in the original metamodels is established by import and export
operators as described below in section[6.3]

The next layer is formed by atomic operators based on the GeRoMe API. Operators
have to be implemented “as atomically as possible” in order to allow maximum reuse.
These atomic operators are not aware of the original metamodel, i.e. their implementa-
tions use exclusively roles and structures in GeRoMe.

By “atomic” we denote that when implementing an operator such as ModelGen RM,
this shall not be implemented as a black box. Instead, the developer should extract
certain steps that can be seen as meaningful units of manipulation and can be reused in
other tasks. Such an atomic operator should not implicitly encode any knowledge about
the native metamodel it operates on.

Atomic operator implementations can be combined to form new, more complex,
composite operators. In doing so, the reuse of operators is increased in two ways. On
the one hand, operators have to be implemented only once for the generic metamodel
and can be used for different concrete metamodels.

For example an operator for the transformation of association ends to referential
constraints can be reused by a composite operator ModelGen RM which computes a

! We are aware of the fact that Datalog cannot be used to support full reasoning on all model-
ing languages, especially not OWL DL. However, this is not the goal of GeRoMe, it is used
to represent the explicit knowledge about models which will be used in model management
operators. Full reasoning about models has still to be done by special purpose reasoners for
the specific metamodels.

GeRoMe: A Generic Role Based Metamodel for Model Management 105

relational model from an EER model and by another composite operator ModelGen XS
for computing an XML Schema from an OWL ontology.

On the other hand, operators such as Match or Merge can be reused to compose
new operators for solving different metadata related tasks. Thus, a metadata intensive
application uses atomic and composite operators to implement its model manipulation
functionality.

6.2 Logical Formalization

A logical formalization of GeRoMe enables the specification of several model man-
agement tasks in a declarative way. As we will describe in the next section, import
and export of models can be easily defined by rules using such a formalization. Further-
more, this logical representation enables also more sophisticated reasoning mechanisms
on models, for example, to check the consistency of models or the correctness of trans-
formations.

Formally, GeRoMe is defined by a set of role types R = {rq,...,7r,} and a set
of attribute types A = {a1,...,an} which can be applied to role types. In addition,
V denotes a set of atomic values which may be used as attribute values. A model M
represented in GeRoMe is defined by a tuple M = (E, R, type, plays, attr), where

- E={ey,...,er}is aset of model elements,

- R={o01,...,0p} is aset of role objects,

— type : R — R is a total function that assigns exactly one role class to each role
object,

— plays C (F' U R) X R represents the aforementioned relation between model ele-
ments (or role objects) and role objects,

- attr € (R x A) x (RUYV) represents the attribute values of a role object (i.e.
attributes may also refer to other role objects).

To make the representation more human-readable, we have used a simplified no-
tation in the formulation of the import/export rules below. The fact that an object e
is a model element (e € F) is represented by the statement modelElement (e).
Role objects are not explicitly represented; they are denoted as terms which have the
name of their role class as functor and all objects on which they depend as argu-
ments. For example, objectAssociationEnd (e) states that the model element
e plays the ObjectAssociationEnd role. The same term can be used to identify the role
object. The attr relationship is also reified: a term like attrName (o, v) denotes
that the object o has the value v for the attribute called attrName. For example,
min (objectAssocationEnd(e), 1) specifies that the min-attribute of the role
object defined above is 1.

We have also defined a formal semantics for GeRoMe to characterize data instances
(see appendix [AT)), which is in line with the logical formalization given above. Data
instances are also used at the model level (see role Instance), e.g. as default values or
boundaries of a type defined by an interval. The main goal of the formal semantics is
however the formal definition of mappings between models, which should finally be
used to translate data instances from one model to another model. As this is out of the
scope of this paper, we do not elaborate on the formal semantics here.

106 D. Kensche et al.

Using the logical representation for GeRoMe models and a similar representation for
models in specific metamodels, we can use a rule-based approach for the import and
export of models as we will present in the next section. Moreover, this representation of
a model is a fine grained representation, because each feature (or property) of a model
element is represented by a separate fact. This is especially useful for the Diff operator
in which we need to identify the differences of model elements.

6.3 Import and Export Operators

We do not continuously synchronize a GeRoMe model with underlying native metadata.
Instead, we import the native metadata into GeRoMe and after manipulating this model
we export it into some native format. A process that has also been used in [3]. In general,
it is not even possible to enforce consistency of the native schema with the GeRoMe
model since manipulations may yield an intermediate result that is not valid in neither
the source nor the target modeling language. Consider the example of section 3 An
EER model in which some of the relationship types have been transformed into foreign
keys but others have not, is neither a valid EER model, as it contains references, nor a
valid relational schema as it still contains relationship types. Consequently, the GeRoMe
model cannot be synchronized with a native schema. Instead, only the input and output
must be representations of valid native models.

Import and export operators to the native format of the various modeling languages
are currently being implemented. The operators use the logical representation presented
before and a rule-based approach: the relationship between a concrete metamodel and
GeRoMe is represented by a set of equivalence rules. The left hand side of a rule refers
to elements of the concrete metamodel, the right hand side refers to GeRoMe elements.

Using a rule-based approach for specifying the import/export operators has the ad-
vantage that the semantics of these operators can be specified in a declarative way and
is not hidden in the code of a complex transformation function. Furthermore, our ap-
proach is fully generic; it uses reflection and annotations in Java to create objects or to
generate facts from an existing GeRoMe model. Therefore, the code required to support
another metamodel is limited to the generation of the metamodel-specific facts and the
specification of the equivalence rules. This reduces the effort for the implementation of
import/export operators significantly.

Formally, a GeRoMe model is represented by a set of ground facts K Bgerone
which uses only vocabulary (functions, predicates, ..) from the logical GeRoMe repre-
sentation (e.g. model Element(Person), attribute(Person, Name), . ..). The model
itself corresponds to the one and only logical model M of K BgeRrone. This interpreta-
tion is trivial but it has to be noted that there must be only one logical model, otherwise
K BgeRrone 1s ambigious. This is one requirement that has to be considered when im-
plementing the rules for import and export.

Now, a model in a concrete metamodel (say EER) is also represented by a set of
ground facts K Bppr about model elements which uses only vocabulary from the
concrete metamodel (UM L AssociationEnd(as, ae, rn, min, max), RMTable(x),
EEREntityType(...),...). The import amounts to applying a set of rules to the facts
KBgpr (say SEER—GeRoMe)- The left hand side of the implication contains only
vocabulary from the concrete metamodel, the right hand side contains only vocabulary

GeRoMe: A Generic Role Based Metamodel for Model Management 107

sgl_column (ID),
sgl_column_table (ID, TablelID),
sgl_column_name (ID, Name),
sgql_column_type (ID, Type) <=>
modelElement (ID),
owned (namespace (TableID), ID),
visible (ID),
name (visible (ID), Name),
attribute (ID),
property (aggregate (TableID), attribute(ID)),
domain (attribute (ID), domain (Type)),
max (attribute (ID), 1).

sgl_column_nullable (ID, true) <=>
min (attribute (ID), 0).

Fig. 10. Example rules for the Import/Export of SQL models

from GeRoMe. The result is a set of ground facts K Bgeronre (instantiations of the right
hand sides). The export of a model is performed the other way around; to have consis-
tent import and export operators, the rules are expressed as equivalence rules which can
be interpreted from left to right or vice versa.

Fig. 10 gives an example for such rules. The rules are expressed in standard Prolog
syntax, i.e. labels starting with an upper-case letter denote variables. They are evaluated
using a meta-program implemented in Prolog, which is able to handle rules with mul-
tiple predicates on both sides of the equivalence. The example defines the import of a
column of a SQL table into a GeRoMe model. The column with the identifier ID be-
longs to a table and has a name and a type. In GeRoMe, we will create a model element
with the same ID. The second statement defines the relationship between the name-
space role of the table and the newly created model element. The following statements
define that the element is visible and has a name. Then, we have to specify that the new
model element plays also the attribute role, and link this role to the aggregate role of the
model element representing the table. Finally, the domain of the attribute is defined by
linking it to the domain role of the type, and the maximum cardinality of the attribute is
set to 1. The second rule represents the special case in which NULL-values are allowed
for the column, which is represented in GeRoMe by a minimum cardinality of 0.

In the example of Fig. we have used terms as arguments of some predicates
(e.g. namespace (TableID)). As described above, these terms represent the role
objects. With a pure logical view, one could also interpret these terms just syntactically
as Skolem functions, which have been introduced on the right hand side to replace ex-
istentially quantified variables, i.e. variables that would appear only on one side of the
rule. As the goal is to construct objects using the GeRoMe-API, these functions must
return meaningful objects. Therefore, while creating the GeRoMe objects from a set
of facts, these functions will return the corresponding role objects of the given model
elements, e.g. namespace (TableID) returns the Namespace role of the model el-
ement TableID. By doing so, we make sure that the same objects are used, even if
they are referenced in different rules; for example, the attribute role of ID is referenced
in both rules of fig. Note that in some cases, objects can play multiple roles of the

108 D. Kensche et al.

xs_namespace (NamespacelD),
xs_complextype (ID),
xs_complextype_ns (ID, NamespacelD),
xs_complextype_name (ID, Name) <=>
modelElement (ID),
owned (namespace (NamespacelD), ID),
visible (ID),
name (visible (ID) ,Name),
objectSet (ID) .

xs_attribute (ID),
xs_attribute_of (ID, ComplexTypelID) <=>
aggregate (ComplexTypeld),
modelElement (ID),
attribute (ID),
property (aggregate (ComplexTypelD),attribute (ID)),

Fig. 11. Example rules for the Import/Export of XML Schemas

same type (e.g. attributes may play several reference roles); in this case, these functions
have more than one argument (i.e. all objects that are necessary to identify the role).

Fig. [[T] presents an example of import/export rules for complex types of XML sch-
emas. The first part of the right hand side of the rule is similar to the example before; it
defines a model element which is contained in a namespace and which plays a visible
role. In addition, the model element plays also the ObjectSet role, as complex types
participate in associations. The second rule adds an aggregate rule to the model element
of this complex type, if the complex type contains also attributes. The rule creates also
a model element (ID) for the attribute and links the attribute role of this object to the
aggregate role of the complex type. We omitted further statements for the definition of
namespaces, etc.

Note that the rules can be used in both ways. Thus, it is also possible to export
GeRoMe models using these rules. Depending on the desired target metamodel, the cor-
responding rule set will be activated and evaluated based on a set of facts representing
the GeRoMe model. Evaluating the rules is only one step of the export operator: before
a model can be exported to a concrete metamodel, the export operator has to check
whether all roles used can be represented in the target metamodel. If not, the problem-
atic roles have to be transformed into different elements as described, for example, in
section

Due to the role and rule based approach and the generic implementation of the nec-
essary Java classes the effort of supporting a new metamodel is minimized. Since the
correspondences are not hidden in imperative code, but are given as a set of equivalence
rules, the developer can concentrate on the logical correspondences and does not have
to deal with implementation details. Besides, only two classes have to be implemented
that produce facts about a concrete model from an API (e.g., the Jena OWL API, see
fig. [[2)) or read facts and produce the model with calls to the API, respectively. These
two classes merely produce (or read) a different syntactic representation of the native
model and do not perform any sophisticated processing of schemas. Creating and pro-
cessing of facts about the GeRoMe representation is completely done with reflection.

GeRoMe: A Generic Role Based Metamodel for Model Management 109

public String transformClass (OntClass cls) {
/...
List<OntClass> l1lClasses=cls.listSuperClasses (true).toList();

for (OntClass superClass : lClasses) {
sResID = transformClass (superClass);
Term t=Prolog.term("owl_subclass",plID,Prolog.id(sResID));
mlFacts.add(t);

}

}

Fig. 12. Example code fragement for importing OWL classes

// term is a Java object representing a Prolog term
if (term.arity () == 1) {
if (!invokeBuilder (term)) {
throw new ModelManException ("No such method");
}
}
else if(term.arity () == 2 || term.arity() == 3) {
if (!invokeMethod (term)) {
throw new ModelManException ("No such property");
}
}

Fig. 13. Creating GeRoMe objects using reflection

During the export, facts about a GeRoMe model are created according to Java annota-
tions in the APIL. During the import unary facts cause model elements and role objects
to be created, binary facts establish relationships between objects and ternary facts do
the same for indexed relationships (see fig.[13). This significantly reduces the program-
ming effort for supporting a new metamodel. For example, import and export of SQL
requires about 250 lines of Java code for each operator, and about 200 lines of code for
the Prolog rules. The relationships between the modeling constructs could be expressed
in less than 20 equivalence rules.

6.4 Equivalence of Imported and Reexported Models

The transformations, performed by ModelGen operators such as the ones presented in
section [3] in general serve the purpose of removing constructs disallowed in the tar-
get metamodel. Therefore, the transformation cannot be reversed automatically as it
removed information from the original model which can only be regained by asking the
user. At best, suggestions can be made based on heuristics.

However, the import and subsequent export for a generic metamodel should not lose
information. It must be emphasized that an import to and an export from GeRoMe may
result in a model syntactically different from the original model, as there are redun-
dant ways to represent the same modeling construct in specific metamodels. For exam-
ple, consider an OWL object property described as being functional; this could also be

110 D. Kensche et al.

modeled by an inverseFunctional statement of the inverse property. In the import/export
rules, such ambiguity must be resolved by using negation, e.g. the property will be de-
fined as functional only if there is no (visible) inverse property that could be declared
as inverseFunctional or vice versa.

On the other hand, semantic equivalence of imported and subsequently reexported
models means that the same set of instances (individuals, tuples, XML fragments, ..)
satisfies both, the original model and the imported and reexported model. The mapping
rules for metamodels described above should be formulated in a way which ensures that
this property holds.

Equivalence between models can be defined by means of information capacity
[16l24] This definition must be adopted in our case to metamodels. Let f be a map-
ping between the native metamodel M and GeRoMe defined by a set of mapping rules
R. A subsequent import and export can only yield the original model if f is invertible,
so f~! and f can be composed. Therefore, it must be a total and injective function
from the set of valid models in M to the set of valid GeRoM e models. Then f is
an information capacity preserving mapping [16l24] between the sets of models, and
GeRoMe dominates M via f and, naturally, the composition of f and f~! is the iden-
tity function (an equivalence preserving mapping) on the set of models in metamodel
M. Consequently, the above notion of semantic equivalence would be satisfied.

Thus, the question of whether a model in a native metamodel can be losslessly im-
ported and reexported can only be answered with respect to the allowed modeling con-
structs and the mapping rules R for the respective metamodel. These mapping rules
must translate every native modeling construct uniquely into a corresponding generic
modeling construct (or combination thereof) and translate the same generic construct
into the same native modeling construct. Indeed, there are some constructs, that still
cannot be represented in GeRoMe. For instance, as we concentrated on data models, we
cannot model methods in GeRoMe. But GeRoMe is designed to be extendable; if it is
not possible to represent a modeling construct in the correct way in GeRoMe, new roles
can be added to do so. We have made this experience while implementing the mapping
rules for XML Schema; it contains several modeling features which are not available
in other modeling languages. For instance, the LiteralAssociationEnd role has been in-
troduced to model XML elements with simple type. These could as well be modeled
as attributes, but then it would not be possible to tell whether an attribute should be
exported to an XML Schema attribute or an element.

While implementing the mapping rules for the import and export operators, we have
to assert that structures or constraints are uniquely imported into our metamodel and,
vice versa, that GeRoMe represents these features non-ambigously, so that they can
be exported again into the native format. In [2] the authors already argued for their
system that a formal proof of losslessness of translations to a generic metamodel is
hopeless as even a test for losslessness of translations between two native metamodels
is undecidable [3]]. However, we tried to ease the formulation of such a mapping by
implementing import and export in a way which allows the developer to concentrate
on defining the mapping rules in a declarative way rather than distributing the mapping
over a set of Java classes.

GeRoMe: A Generic Role Based Metamodel for Model Management 111

7 Conclusion

Generic model management requires a generic metamodel to represent models defined
in different modeling languages (or metamodels). The definition of a generic metamodel
is not straightforward and requires the careful analysis of existing metamodels. In this
paper, we have presented the generic role based metamodel GeRoMe, which is based
on our analysis and comparison of five popular metamodels (Relational, EER, UML,
OWL, and XML Schema).

We recognized that the intuitive approach of identifying generic metaclasses and
one-to-one correspondences between these metaclasses and the elements of concrete
metamodels is not appropriate for generic metamodeling. Although classes of model
elements in known metamodels are often similar, they also inhibit significant differ-
ences which have to be taken into account. We have shown that role based metamod-
eling can be utilized to capture both, similarities and differences, in an accurate way
while avoiding sparsely populated intersection classes. In addition, the role based ap-
proach enables easy extensibility and flexibility as new modeling features can be added
easily. Implementations of operators access all roles they need for their functionality
but remain agnostic about any other roles. This reduces the complexity of models from
an operator’s point of view significantly. Furthermore, the detailed representation of
GeRoMe models is used only by a model management application, users will still use
their favorite modeling language.

Whereas role based modeling has yet only been applied to the model level, we have
shown that a generic metamodel can benefit from roles. In particular, GeRoMe enables
generic model management. As far as we know, the role based approach to the prob-
lem of generic metadata modeling is new. It has been validated by representing several
models from different metamodels in GeRoMe.

We implemented a framework for the management of models including an object
model for GeRoMe models that allows operators to manipulate, store, and retrieve mod-
els. Atomic model management operators are implemented based on our generic meta-
model and can be combined to composite operators. In particular, the usage of a generic
metamodel allows to apply operator implementations polymorphically to models repre-
sented in various modeling languages which increases the reusability of operators. As
a first evaluation of GeRoMe, we have implemented some ModelGen operators.

We have developed a rule-based approach for import and export operators which is
based on a logical formalization of GeRoMe models. These operators will also be used
to verify that the model elements of different metamodels can be represented accurately
and completely in GeRoMe.

Future work will concentrate on the development of further model management oper-
ators. We have started working on the implementation of a Match operator for GeRoMe
models and are investigating how the generic representation can be exploited by this
operator. We have defined a formal semantics for GeRoMe which was necessary to de-
scribe the structure of instances of GeRoMe models. The semantics is also used for a
formal definition of mappings between GeRoMe models which we are currently design-
ing. The mapping representation will be used by model management operators such as
Merge and Compose.

112 D. Kensche et al.

While it might be necessary to integrate new modeling features of other languages,
or features which we did not take into account so far, we are confident that our work is
a basis for a generic solution for model management.

Acknowledgements. This work is supported in part by the EU-IST project SEWASIE
(http://www.sewasie.org) and the EU Network of Excellence ProLearn
(http://www.prolearn-project.org).

References

1. P. Atzeni, P. Cappellari, P. A. Bernstein. A Multilevel Dictionary for Model Management.
L. M. L. Delcambre, C. Kop, H. C. Mayr, J. Mylopoulos, O. Pastor (eds.), Proc. 24th Inter-
national Conference on Conceptual Modeling (ER), Lecture Notes in Computer Science, vol.
3716, pp. 160-175. Springer, Klagenfurt, Austria, 2005.

2. P. Atzeni, P. Cappellari, P. A. Bernstein. Model-Independent Schema and Data Translation.
Y. E. Ioannidis, M. H. Scholl, J. W. Schmidt, F. Matthes, M. Hatzopoulos, K. Bohm, A. Kem-
per, T. Grust, C. Bohm (eds.), Proc. 10th International Conference on Extending Database
Technology (EDBT), Lecture Notes in Computer Science, vol. 3896, pp. 368-385. Springer,
Munich, Germany, 2006.

3. P. Atzeni, R. Torlone. Management of Multiple Models in an Extensible Database Design
Tool. P. M. G. Apers, M. Bouzeghoub, G. Gardarin (eds.), Proc. 5th International Conference
on Extending Database Technology (EDBT), Lecture Notes in Computer Science, vol. 1057,
pp- 79-95. Springer, Avignon, France, 1996.

4. C. W. Bachman, M. Daya. The Role Concept in Data Models. Proceedings of the Third
International Conference on Very Large Data Bases (VLDB), pp. 464-476. IEEE-CS and
ACM, Tokyo, Japan, 1977.

5. D. Barbosa, J. Freire, A. O. Mendelzon. Information Preservation in XML-to-Relational
Mappings. Z. Bellahsene, T. Milo, M. Rys, D. Suciu, R. Unland (eds.), Proc. of the Second
International XML Database Symposium, XSym 2004, Toronto, Canada, Lecture Notes in
Computer Science, vol. 3186, pp. 66-81. Springer, August 2004.

6. M. Baumeister, M. Jarke. Compaction of Large Class Hierarchies in Databases for Chemi-
cal Engineering. 8. GI-Fachtagung fr Datenbanksysteme in Bro, Technik und Wissenschaft
(BTW), pp. 343-361. Springer, Freiburg, 1999.

7. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. Proc.
First Biennial Conference on Innovative Data Systems Research (CIDR2003). Asilomar, CA,
2003.

8. P. A. Bernstein, A. Y. Halevy, R. Pottinger. A Vision for Management of Complex Models.
SIGMOD Record, 29(4):55-63, 2000.

9. P. A. Bernstein, S. Melnik, P. Mork. Interactive Schema Translation with Instance-Level
Mappings. K. Bohm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-A. Larson, B. C. Ooi (eds.),
Proc. 31st International Conference on Very Large Data Bases (VLDB), pp. 1283-1286.
ACM Press, Trondheim, Norway, 2005.

10. P. A. Bernstein, S. Melnik, M. Petropoulos, C. Quix. Industrial-Strength Schema Matching.
SIGMOD Record, 33(4):38-43, 2004.

11. E. Bertino, G. Guerrini. Objects with Multiple Most Specific Classes. Proc. European
Conference on Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science
(LNCS), vol. 952, pp. 102-126. Springer, Aarhus, Denmark, 1995.

12. R. A. Elmasri, S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley, Read-
ing, Mass., 3rd edn., 1999.

13. R. Fagin, P. G. Kolaitis, L. Popa, W. C. Tan. Composing schema mappings: Second-order
dependencies to the rescue. ACM Transactions on Database Systems, 30(4):994-1055, 2005.

14. S. Hanenberg, R. Unland. Roles and Aspects: Similarities, Differences, and Synergetic Po-
tential. Proc. 8th International Conference on Object-Oriented Information Systems, Lecture
Notes in Computer Science (LNCS), vol. 2425, pp. 507 — 520. Springer, Montpellier, France,
2002.

http://www.sewasie.org
http://www.prolearn-project.org

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A

A.

GeRoMe: A Generic Role Based Metamodel for Model Management 113

. M. A. Herndndez, R. J. Miller, L. M. Haas. Clio: A Semi-Automatic Tool For Schema
Mapping. Proc. ACM SIGMOD Intl. Conference on the Management of Data, p. 607. ACM
Press, Santa Barbara, CA, 2001.

R. Hull. Relative Information Capacity of Simple Relational Database Schemata. SIAM
Journal of Computing, 15(3):856-886, August 1986.

R. Hull, R. King. Semantic Database Modeling: Survey, Applications, and Research Issues.
ACM Computing Surveys, 19(3):201-260, 1987.

ISO/IEC. Information technology — Information Resource Dictionary System (IRDS) Frame-
work. International Standard ISO/IEC 10027:1990, DIN Deutsches Institut fiir Normung,
e.V., 1990.

M. A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt. ConceptBase — Managing Conceptual
Models about Information Systems. P. Bernus, K. Mertins, G. Schmidt (eds.), Handbook on
Architectures of Information Systems, pp. 265-285. Springer-Verlag, 1998.

M. A. Jeusfeld, U. A. Johnen. An Executable Meta Model for Re-Engineering of Database
Schemas. Proc. 13th Intl. Conference on the Entity-Relationship Approach (ER94), Lecture
Notes in Computer Science (LNCS), vol. 881, pp. 533-547. Springer-Verlag, Manchester,
U.K., 1994.

D. Kensche, C. Quix. Transformation of Models in(to) a Generic Metamodel. submitted for
publication.

M. Lenzerini. Data Integration: A Theoretical Perspective. L. Popa (ed.), Proceedings of
the Twenty-first ACM Symposium on Principles of Database Systems (PODS), pp. 233-246.
ACM Press, Madison, Wisconsin, 2002.

S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A Programming Platform for Generic Model
Management. Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 193-204.
ACM, San Diego, CA, 2003.

R.J. Miller, Y. E. Ioannidis, R. Ramakrishnan. The Use of Information Capacity in Schema
Integration and Translation. R. Agrawal, S. Baker, D. A. Bell (eds.), Proc. 19th International
Conference on Very Large Data Bases (VLDB), pp. 120-133. Morgan Kaufmann, Dublin,
Ireland, 1993.

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. Telos: Representing Knowledge About
Information Systems. ACM Transactions on Information Systems, 8(4):325-362, 1990.

P. Papotti, R. Torlone. Heterogeneous Data Translation through XML Conversion. Journal
of Web Engineering, 4(3):189-204, 2005.

R. Pottinger, P. A. Bernstein. Merging Models Based on Given Correspondences. J. C.
Freytag, P. C. Lockemann, S. Abiteboul, M. J. Carey, P. G. Selinger, A. Heuer (eds.), Proc.
29th International Conference on Very Large Data Bases (VLDB), pp. 826-873. Morgan
Kaufmann, Berlin, Germany, 2003.

E. Rahm, P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching. VLDB
Journal, 10(4):334-350, 2001.

J. Richardson, P. Schwarz. Aspects: extending objects to support multiple, independent roles.
Proc. ACM SIGMOD Intl. Conference on Management of Data, pp. 298-307. Denver, CO,
1991.

R. K. Wong, H. L. Chau, F. H. Lochovsky. A Data Model and Semantics of Objects with
Dynamic Roles. Proc. 13th Intl. Conference on Data Engineering (ICDE), pp. 402—411.
IEEE Computer Society, Birmingham, UK, 1997.

Appendix

1 Formal Semantics of GeRoMe

The formalization of GeRoMe in section[6.2]described how GeRoMe models can be rep-
resented as a set of logical facts, and how this representation can be used to implement
the import and export operators.

114 D. Kensche et al.

To describe the semantics of a GeRoMe model, we have to characterize what are
the valid instances of a GeRoMe model. For example, we have to define for a model
element Person how intances of this model element may look like and which are valid
relationships between persons and other instances. In the following, we will first define
the formal semantics of GeRoMe, and a simplified notation for instances of GeRoMe
models that is used in data mappings.

Semantics
Definition 1 (Atoms and Object Identifiers)

— A denotes a set of atoms, which are literal values of simple datatypes, e.g. "HLX”,
”Boeing-747", "John”, ”Smith”, ”5.2”.
— O denotes a set of object identifiers, which are used to distinct two instances

with the same component values from each other if they are instances of an
ObjectSet.

Definition 2 (GeRoMe Interpretation). An interpretation J in GeRoMe is a tuple
J=<7Z,0,P,V,A O,¢ > where O is a set of object identifiers and A is a set of
atoms (literals, ..) as defined before. ¢ ¢ O U A is the null value, which can be used for
null data values (for attributes), null participators (for association ends), or null object
identifiers (for elements without object identity).

7 is the interpretation mapping which maps a model element (specifying a data set,
not a constraint) to a set of instances.
O maps a model element to the set of its object identifiers.
‘P maps a model element to a set of Association instantiations.
V maps a model element to a set of data values.

The interpretation mapping is defined as follows:

— Ifm is a Domain then Z[m] C A is the set of atoms in m.
— If m is an ObjectSet, an Association, an Aggregate, or any combination of these
then
Zim] C [O[m] x V[m] x P[m]] where

e [fm is an ObjectSet then O[m] C O is the set of object identifiers of instances
of m, otherwise O[m| = {e}.

e [fm is an Association with AssociationEnds AF; i = 1,...,n then
Plm] C [(O[AE.participator] U€) x ... x (O[AE,.participator] U €)],
otherwise P[m] = {e}. The participator of an AssociationEnd is always an
ObjectSet. Consequently, this defines a set of tuples of object identifiers. If an
association end may be null, e may be the value of this participator. If an asso-
ciation end may participate more than once, each participation is instantiated
by another tuple, that is, another element of Z[m/]. Thus, multiple participations
of one participator are multiple instances of the association.

o Ifm is an Aggregate with Attributes A; i = 1,...,n then
V[m] C [P(Z[A;.type]) x ... x P(Z[A,, type])],
otherwise V[m] = {e€}. Infinite, recursive structures are not allowed, i.e. an
element x of V|m] must not contain any element in which x occurs. The cardi-
nality of a component of V[m] must be within the (min,max) constraints of the
attribute.

GeRoMe: A Generic Role Based Metamodel for Model Management 115

AirportSchema

1,1))

Fig. 14. An example schema about persons and companies

Examples. Figure[I4]gives an example schema containing various combinations of the
ObjectSet, Asssociation and Aggregateroles. A possible interpretation are the following:
0 =1{1,2,3},

A = {"InsuranceCorp.”,”0815”,” John”,” Smith”,2500.00},

O[Company] = {1},

O[Person| = {2},

O[Employment] = {3},

O[theAnonType] = {e},

¢ € I[Company] with ¢ =< 1, ¢, < 7 InsuranceCorp.” >>,

p € Z|Person] withp =< 2,e,< 708157, < €, ¢, < ” John”,” Smith >>>,

n € Z| theAnonType] with c =< €, e, < John”,” Smith” >>,

e € Z[Employment] with ¢ =< 3, < 1,2 >, < 2500.00 >>,

Simplified Notation. For the formulation of constraints, queries, and mappings, we
choose a simpler representation that uses flat logical predicates instead of the complex
terms used before.

Definition 3 (Notation of instances as logical facts). The interpretation J of a model
M is represented by a set of facts Dy as described below.

— The interpretation of a model element T|m)| is represented by a set of abstract identi-
fiers {idy, ..., id,}. The set of all abstract identifiers is denoted by T . inst(id;, m)
€ Dy means that the object represented by id; is an instance of m.

— V model elements m playing a Domain role and Yv € Z|m] : value(id;,v) € Dy
and inst(id;,m) € Dyy.

— Y model elements m playing an ObjectSet role and Yo € O[m)]: 0id(id;,0) € Dy
and inst(id;,m) € Dy Each id; has at most one object identifier o, and each
object identifier o is related to exactly one id;. There is no oid(id;,0) € Dy with
0=c¢e

116 D. Kensche et al.

— V model elements m playing an Aggregate role and having the attribute a (model
element), and this instance has the value v € T for that attribute: attr(id;, a,v) €
Dy and inst(id;, m) € Dyy.

— V model elements m playing an Association role in which the object with identifier o
participates for the association end ae: part(id;, ae,0) € Dy and inst(id;,m) €
Dy

— There are no other elements in D).

Please note that the existence of a predicate like attr(id, a,v) or part(id, ae, 0) in
D requires the existence of other predicates in D), to assure a consistent model (e.g.,
an attribute value has to be an instance of the type of that attribute).

The “artificial” identifiers ¢d; are introduced here to reify the complex tuples of an
interpretation J in order to have flat tuples.

Example. The example given above is represented by the following set of facts (7 =

{#1,#2,#3,...}):

oid(#1,1) 0id(#2,2)
oid(#3,3)
attr(#1, Name, #5) attr(#2, SSN, #6)
value(#5,” InsuranceCorp”) value(#6,”0815”)
attr(#2, Name, #4) attr(#4, FName, #7)
value(#7,” John”)
attr(#4, LName, #8) attr(#3, Wage, #9)
value(#8,” Smith”) value(#9,725007)
part(#3, EmployedBy, #1) part(#3, Employs, #2)
inst(#1, Company) inst(#2, Employee)
inst(#3, Employment) inst(#4, theAnonType)
inst(...) for values

A.2 Queries and Mappings in GeRoMe

Using the formal semantics of GeRoMe models, it is straightforward to represent for-
mulas over GeRoMe models that can be used as queries or mappings.

A query in GeRoMe is a conjunctive query using the predicates defined above in def-
inition3l A mapping is basically a relationship of queries over two different models. As
it has been proven in [13], mappings expressed second-order tuple generating depen-
dencies (SO tgds) are closed under composition, but first-order tgds are not. Therefore,
we use SO tgds to express mappings between models.

Definition 4 (GeRoMe model mapping). A GeRoMe model mapping (or, in short,
mapping) is a triple M = (S, T,), where S and T are the source model and the
target model respectively, and X' is a finite set of formulas of the form

FH((Vxa(pr = 1)) Ao A (VXa(Pn = Pn)))

where each member of f is a function symbol, and where each @; is a conjunction of
atomic formulas and/or equalities over S and 1; is a conjunction of atomic formulas
over T as defined in definition Bl Furthermore, the variables of x; appear in at least
one atomic formula of p;.

GeRoMe: A Generic Role Based Metamodel for Model Management 117

The predicates from definition 3] can also be used in first-order logic formulas to ex-
press constraints on models. For example, the following formula states that employees
working at “Insurance Corp.” earn more than 2000 EUR.

Va,y, z,v,n inst(x, Employment) A attr(x, Wage, y) A value(y,v) A
part(z, EmployedBy, z) A attr(z, Name,n) A n =" InsuranceCorp.”
= v > 2000

As it would be very inefficient to transform data into the GeRoMe representation,
it is not intended that these queries, mappings, and constraints are actually evaluated
on the GeRoMe models. Instead, these expressions will be translated into the native
query format of the original metamodel (e.g. SQL for a relational database schema) and
executed by the specific query evaluation engines.

Metadata Management in a Multiversion Data
Warehouse

Robert Wrembel and Bartosz Bebel

Institute of Computing Science, Poznan University of Technology, Poznan, Poland
{Robert.Wrembel, Bartosz.Bebel}@cs.put.poznan.pl

Abstract. A data warehouse (DW) is a database that integrates data
from external data sources (EDSs) for the purpose of advanced analysis.
EDSs are production systems that often change not only their contents
but also their structures. The evolution of EDSs has to be reflected in a
DW that integrates the sources. Traditional DW systems offer a limited
support for the evolution of their structures. Our solution to this prob-
lem is based on a multiversion data warehouse (MVDW). Such a DW is
composed of the sequence of persistent versions, each of which describes
a schema and data within a given time period. The management of the
MVDW requires a metadata model that is much more complex than
in traditional data warehouses. In our approach and prototype MVDW
system, the metadata model contains data structures that support: (1)
monitoring EDSs with respect to content and structural changes, (2) au-
tomatic generation of processes monitoring EDSs, (3) applying discov-
ered EDS changes to a selected DW version, (4) describing the structure
of every DW version, (5) querying multiple DW versions at the same
time and presenting the results coming from multiple versions.

1 Introduction

A data warehouse (DW) is a large database (often exceeding a size of dozens
of terabytes) that integrates data from multiple external data sources (EDSs).
The content of a DW includes historical, current, and summarized data. Data
warehouses are important components of decision support systems. Data stored
in a DW are analyzed by the so-called On-Line Analytical Processing (OLAP)
applications for the purpose of discovering trends (e.g., demand and sales of
products), discovering patterns of behavior (e.g., customer habits, credit repay-
ment history) and anomalies (e.g., credit card usages) as well as for finding
dependencies between data (e.g., market basket analysis, suggested buying, in-
surance fee assessment). The process of good decision making often requires
forecasting future business behavior, based on present and past data as well as
based on assumptions made by decision makers. This kind of data processing
is called a ‘what-if’ analysis. In this analysis, a decision maker uses a DW for
simulating changes in the real-world, creates virtual possible business scenarios,
and explores them with OLAP queries. To this end, a DW must provide means
for creating and managing various DW alternatives. This feature often requires
changes to the structure of a DW.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 118 2007.
© Springer-Verlag Berlin Heidelberg 2007

Metadata Management in a Multiversion Data Warehouse 119

Two examples illustrating the need for the ‘what-if’ analysis include: simu-
lating changes in a pay rate of fines as well as simulating changes in taxing of
parking lots. In the first example, the police maintains an official pay rate of fines
where every offense is categorized to a particular pay rate. They might need to
simulate a hypothetical increase in fines (impacting an income to a budget) by
increasing by 10% the rate of the most frequent offenses. Such a simulation re-
quires changes in a dimension that stores the pay rate. In the second example,
a city leases parking places to someone, who pays a tax from the whole leased
parking area. The city managers might decide to simulate changes in income
from parking places by changing the taxation policy. Instead of taxing the whole
parking area they may want to tax every single parking place. Such a simulation
will require changes to the DW schema, in particular, to a dimension describing
the taxation scheme.

An inherent feature of external data sources is their autonomy, i.e., they may
evolve in time independently of each other and independently of a DW that
integrates them [65/7T]. The changes have an impact on the structure and content
of a DW. The evolution of EDSs can be characterized by content changes, i.e.,
insert /update/delete data, and schema changes, i.e., add/modify/drop a data
structure or its property. Content changes result from user activities that perform
their day-to-day work on data sources by means of different applications. On
the contrary, schema changes are caused by: (1) changes of the real-world being
represented in EDSs (e.g., changing the borders of countries/regions, changing
the administrative structure of institutions, changing legislations); (2) new user
requirements (e.g., storing new kinds of data); (3) new versions of software being
installed, and (4) system tuning activities.

Several real-world examples illustrating the need for a DW evolution come
from Poland. The first case concerns changes in the administrative division of
Poland that until 1998 was composed of 49 regions. In 1999, the number of re-
gions was reduced to 19. Some regions retained their old names, but their borders
changed substantially. Such an administrative change has a strong impact, for
example, on the analysis of past and present sales of products in regions. The
second case concerns reclassification of building materials from 7% to 22% tax
category that happened when Poland joined the EU. Comparing a gross sales of
these materials in consecutive months of 2004 will result in a remarkable increase
in gross sales starting from May, as compared to previous months. In practice,
this increase is mainly caused by tax increase rather than by actual increase
in sales. Although these cases can be handled by the solution based on slowly-
changing dimensions (SCD) Type 2 or Type 3 [46] it is recommended to separate
these different DW states as they describe different real-world scenarios. SCD
Type 2 and 3 store all (past and current) data in the same data structure.

As yet another example let us consider a DW storing various data on unem-
ployed, maintained by a city hall. Until 2004 they analyzed unemployment per city
and education in every month. Since 2005 they started analyzing the impact of vo-
cational trainings (partially supported by the EU) on unemployment rate. Such an
analysis requires changes to a DW schema in order to register unemployed taking

120 R. Wrembel and B. Bebel

vocational trainings. This case can not be handled by the solutions proposed for
SCDs. Other examples of various change scenarios can be found in [T0J9I2552].

The consequence of content and schema changes at EDSs is that a DW built on
such EDSs becomes obsolete and needs to be synchronized. In practice, content
changes are monitored and propagated to a DW often by means of materialized
views [35] and the history of data changes is supported by applying temporal
extensions, e.g., [I8I30/52]. Temporal extensions use timestamps on modified
data in order to create temporal versions.

Schema changes of EDSs are often handled in a DW by applying schema
evolution, e.g., [I2/42] and versioning extensions [I3I33I52]. Schema evolution
approaches maintain one DW schema and the set of data that evolve in time. In
versioning extensions, a DW evolution is managed partially by means of schema
versions and partially by data versions. These approaches solve the DW evo-
lution problem partially. Firstly, they do not offer a clear separation between
different DW states. Secondly, the approaches do not support modeling alterna-
tive, hypothetical DW states required for the ‘what-if’ analysis.

In our approach, we propose a multiversion data warehouse (MVDW) as a
framework for handling content and schema changes in EDSs as well as for sim-
ulating and managing alternative business scenarios. The MVDW is composed
of a sequence of its versions, each of which corresponds either to the real-world
state (representing the content of EDSs within a given time period) or to a
simulation scenario applied to the ‘what-if’ analysis.

In order to support the life-cycle of a DW, from its initial loading by ETL pro-
cesses and then periodical refreshing, to OLAP processing and query optimiza-
tion, a DW has to manage metadata. Metadata are data about various aspects of
a DW. They are used for improving a DW management and exploitation. There
are two basic types of metadata, namely business and technical ones. Business
metadata include among others: dictionaries, thesauri, business concepts and
terminology, predefined queries and report definitions. They are mainly used by
end-users. Technical metadata include among others: a DW schema description
and the definitions of its elements, physical storage information, access rights,
statistics for a query optimizer, ETL process descriptions, and data transforma-
tion rules [77].

In the case of a multiversion data warehouse, metadata are much more com-
plex than in traditional DWs and have to provide additional information. Indus-
try standard metamodels, i.e., the Open Information Model and the Common
Warehouse Metamodel [T7] as well as research contributions, e.g., [40J61] do not
support metadata describing the evolution of a DW.

The focus of this paper and its contribution includes the development of the
two following metamodels: (1) a metamodel for managing multiple versions of a
DW and (2) a metamodel for detecting changes in EDSs.

The first metamodel supports:

— the management of multiple versions of schemas and data in the MVDW;
— the execution of queries that address several DW versions;

Metadata Management in a Multiversion Data Warehouse 121

— the presentation (visualization) of query results, coming from different DW
versions, and their comparison;

— the augmentation of query results with metadata that describe changes made
to adjacent DW versions. These metadata allow to properly interpret the
obtained results.

The second metamodel supports:

— the automatic detection of structural and content changes in EDSs;

— the automatic generation of software for monitoring EDSs;

— the automatic generation of operations in the multiversion data warehouse
in response to the detected changes.

Based on the developed concepts and the metamodel, a prototype MVDW
system was implemented in Java and Oracle PL/SQL language. Data and meta-
data are stored in an Oracle Database 10g. To the best of our knowledge, this
is the first approach and implemented system that: (1) supports managing mul-
tiple, persistent, and separate DW versions; (2) supports modeling alternative
business scenarios as DW versions; (3) uses metadata to augment query results.

This paper extends our previous paper [78] with respect to: (1) the abstract
description of the model of the MVDW:; (2) an algorithm for processing multiver-
sion queries; (3) the performance evaluation of processing multiversion queries.

The reminder of this paper is organized as follows. Section [2] presents basic
definitions in the field of the DW technology. Section [B] overviews our concept of
the multiversion data warehouse, presents its abstract model, and outlines op-
erations that modify a DW. Section H] presents the implementation metamodel
of the MVDW and a graphical user interface for managing the MVDW. Section
illustrates the usage of metadata in queries addressing multiple DW versions,
presents the execution algorithm of a multiversion query, and compares our query
language to a temporal OLAP query language called TOLAP. Section [f] outlines
fundamental implementation issues concerning the MVDW and presents prelim-
inary performance evaluation results. Section [{] presents the system architecture,
mechanism, and underlying metamodel for detecting changes in EDSs. Section
discusses existing approaches to: handling changes in structures and contents
of databases and data warehouses, detecting structural changes in data sources
as well as approaches to metadata management. Finally, Section [0] summarizes
the paper.

2 Basic Definitions

A DW takes advantage of a multidimensional data model [36)37/40/49] with
facts representing elementary information being the subject of analysis. A fact
contains numerical features, called measures that quantify the fact and that
allow to compare different facts. Examples of measures include: quantity, income,
turnover, duration time.

Facts are organized in n-dimensional spaces, called data cubes. Values of mea-
sures in these spaces depend on a context set up by dimensions. The structure

122 R. Wrembel and B. Bebel

of a dimension is defined by its schema. A dimension schema Dimgcpema 1S
a direct acyclic graph composed of a fixed set of nodes L (further called levels)
and a fixed set of edges E between levels [49], thus Dimgschema = (L, E). The
dimension schema has the following properties:

— L contains a distinguished top level, noted as l4;;, and a terminal/bottom
level, noted as l7erm;

— relation — on L relates a child level (lower level) to its direct parent level
(upper level), i.e. for each pair of levels (l;,1;) € L: l; — l; there is no level
lq such that I; — I, — 1;;

— for each level [; € L the following holds: Irerm — I; — Lay;

— every level [; has associated a domain of values, noted as dom(l;); the finite
subset of dom(l;), noted as inst;,, constitutes the set of level instances; in
particular dom(l,y;) = all.

A typical example of dimension called Geography is shown in Fig. [Th.
It is composed of four levels, namely Shops, Cities, Regions, and [y,
where Shops— Cities— Regions—l4;. The instances of level Shops in-
clude {shopA, shopB, shopC,shopD}; the instances of level Cities include
{Edinbourgh, Glasgow, Swansea}, cf. Fig.[b.

IAII

all
¥ Regions Scotland Wales
o
S / \
8 Cities Edinbourgh Glasgow Swansea
Shops shopA shopB shopC shopD
a) a dimension schema b) a dimension instance

Fig. 1. An example Geography dimension schema and dimension instance

A dimension instance Dimpnstance 0f Dimschema = (L, E) is a direct
acyclic graph composed of the set of level instances L; and the set of edges Ey
between level instances, thus Dimynstance = (L1, Fr). The dimension instance
has the following properties:

— Ly consists of pairwise disjoint sets of level instances inst;, Uinst;, U. . . inst;,,
where l;, 1y, ...,y € L;

— for each pair of levels (I;,1;) € L: [; — I every instance of /; is connected to
an instance of [;.

An example of the instance of dimension Geography is shown in Fig. [Ib. In
queries, dimensions specify the way measures are aggregated. A child level of a
dimension rolls-up to its parent level, yielding more aggregated data.

Metadata Management in a Multiversion Data Warehouse 123

Data cubes can be implemented either in MOLAP (multidimensional OLAP)
servers or in ROLAP (relational OLAP) servers. In the former case, a cube is
stored either in a multidimensional array [67/68] or in a hash table (e.g., SQL
Server) or as the value of a binary large object (e.g., Oracle) or as another
specialized data structure like Quad tree or K-D tree [58].

In a ROLAP implementation, a data cube is stored in relational tables, some
of them represent levels and are called level tables (e.g., Categories and Items
in Fig.[2]), while others store values of measures, and are called fact tables (Sales
in Fig. 2)). Two basic types of ROLAP schemas are used for the implementation
of a data cube, i.e., a star schema and a snowflake schema [I9]. In a star schema,
a dimension is composed of only one level table (e.g., Time in Fig. Q). In a
snowflake schema, a dimension is composed of multiple level tables connected
by foreign key - primary key relationships (e.g., dimension Location with level
tables Shops, Cities, and Regions). In practice, one also builds the so called star-
flake schemas where some dimensions are composed of multiple level tables and
some dimensions are composed of one level tables, cf. Fig. Bl

REGIONS
. . # region_id
Dimension TIME ;ng’r?a—,;e
TIME area
time_id
day_name 2
month_name o
CATEGORIES quarter CITIES E
IG # cat_id year # city_id 1%
S cat_name day_no_inyear city_name S
= cat_tax month_no nb_inhabit =
8 region_id o
o 2
=)
s E
€ SALES e
£ [ITEMS # prod_id SHOPS
o # prod_id # shop_id # shop_id
prod_name # time_id shop_name
cat_id quantity city_id

Fig. 2. An example star-flake schema of a data warehouse on sales of products

In the reminder of this paper, we will focus our discussion on the ROLAP
implementation of the multidimensional data model, but our concepts can also
be used in the MOLAP implementation.

3 Multiversion Data Warehouse

This section overviews our concept of the multiversion data warehouse, informally
presents the elements of the MVDW model and its graphical representation, as

124 R. Wrembel and B. Bebel

well as outlines operations that are used for modifying the MVDW. The formal
and comprehensive description of the MVDW can be found in [8/53].

3.1 Basic Concepts

The multiversion data warehouse is composed of the sequence of its versions.
A DW version is in turn composed of a schema version and an instance version.
The DW schema version describes the structure of a DW within a given time
period, whereas the DW instance version represents the set of data described
by its schema version.

The DW schema version is composed of:

— multiversion dimensions, composed of dimension versions,
— multiversion levels, composed of level versions,

— multiversion hierarchies, composed of hierarchy versions,
— multiversion facts, composed of fact versions,

— attributes,

— integrity constraints,

— assignments of level versions to hierarchy versions,

— assignments of hierarchy versions to dimension versions,
— assignments of fact versions to level versions, forming versions of data cubes,
— assignments of attributes to fact versions,

— assignments of attributes to level versions,

— mappings between attributes,

— mappings between level versions,

— mappings between fact versions.

An abstract graphical notation of the schema version is shown in Fig. Bl Each
dimension can have many versions that belong to a multiversion dimension,
noted as MV _Dimension. In a given schema version SV;, there may be only
one dimension version DV; € MV _Dimension.

Each level can have many versions that belong to a multiversion level, noted as
MYV _Level. In a given schema version SV;, there may be only one level version
LV; € MV _Level. A level version is described by its name, a key attribute
(used in roll-up operations) and, optionally, by descriptor attributes (not used
in roll-up operations).

In a given schema version SV, level versions {LV;, LV;, ..., LV,}
form a hierarchy version that belongs to a multiversion hierarchy, noted as
MV _Hierarchy. In a given schema version SV;, there may be only one hi-
erarchy version HV; € MV _ Hierarchy. For a given level version LV;, function
LvZarentlV. _HV assigns the level version to an indicated hierarchy version,
at a position indicated by its parent level version (ParentLV) and child level
version (ChildLV).

A hierarchy version belongs to a dimension version. Dimension versions belong
to a multiversion dimension, noted as MV _Dimension. In a given schema
version SV;, there may be only one dimension version DV; € MV _Dimension.
For a given hierarchy version HV;, function HV—DYV assigns the hierarchy

Metadata Management in a Multiversion Data Warehouse 125

DW schema version | |DW instance version

HV—-DV l—»\ MV_Dimension

MV_Hierarchy

0

'

ParentLV
‘ LV chilay >HY MV_Level

LV {LV}

RV—{LV}

|

MV_Record

\ |
C—>{A} ! | m |
° | ! :
| 1 -, I
Attribute :] ‘m ___ ______ R Vﬁ_‘}“_’}_i
| |
A—A 1
' RV {FV}
N et .
) —
© Version of an element R ' Multiversion element
© Non-versioned element —— Mapping between elements

Fig. 3. The graphical abstract representation of the MVDW

version to an indicated dimension version. A given dimension version may include
several hierarchy versions, starting at the same bottom level version and ending
at the same top level version.

A data cube (storing fact data) is represented by a fact version. Versions of the
same data cube belong to a multiversion fact, noted as MV _Fact. In a given
schema version SV;, there may be only one fact version F'V; € MV _ Fact. For
a given fact version F'V;, function FV—{LV} assigns FV; to the set of level
versions {LV;, ..., LV,,}.

As mentioned earlier, level versions are composed of attributes. The same
applies to fact versions. The set of attributes used in level versions and fact
versions is noted as Attributes. Attributes are assigned to level versions and to
fact versions by means of assignment functions A—LV and A—FV | respectively.
An attribute can have several integrity constraints defined. The set of all integrity
constraints is noted as Constraints. An integrity constraint is assigned to one
or more attributes by an assignment function, noted as C—{A}. Notice that
attributes and integrity constraints are not versioned in order to keep the model
simple but powerful enough to provide the versioning functionality.

126 R. Wrembel and B. Bebel

When the name or the definition of some attributes in a level version changes,
a new level version is created in a new DW version. For the purpose of query-
ing multiple DW versions under schema changes, the previous and the newly-
created level versions are mapped to each other by a mapping function, noted as
LV—{LV}. An old level version LV; can be mapped to a few new level versions
in case of creating a new parent level version LV}, based on its child level version
LV; (cf. Section[34), i.e. child level LV; transforms to a new child level LV, and
its newly-created parent level LVj.

Similarly, when the name or the structure of a fact version changes, a new fact
version is created in a new DW version. The previous and the newly-created fact
versions are mapped to each other by a mapping function, noted as FV—FV.
Changes to attribute names and their definitions are mapped by a mapping
function, noted as A—A.

Example 1. As a simple example illustrating our model, let us consider a DW
schema version V1, as shown in Fig. [This version is composed of the Sales fact
table in version V1. It is associated with the three following level tables Items,
Time, and Shops, all in version V1. Function FV—{LV} executed for Salesy;
returns {Itemsy1, Timey1, Shopsyi}.

HV*)DVC Dimension_Time, 4 Schema Version V1

Hierarchy_Time,

Dimension_Product,,
@*}DV

Hierarchy_Product, T FV-LV Hierarchy_Location,

Sales, —>’ Shops, 4 ’—>’ Citiesyq ’—>’ Regions\”’

FVoLV FVoLV LVOVLHY LVEERLHY LV jes, 2HY

HV—)DVC Dimension_Location,

HV—)DVC Dimension_Time, Schema Version V2
Hierarchy_Time,

i i
Dimension_Product,,

Hierarchy_Product,, T FV->LV

‘Categories\,1 id—

Categories
LV fiems,>HV LV VL,

Dimension_Location,,

HV—)DVC HV—)DVC

Hierarchy_Location,,

Items, , id— Sales,, —>< Shopsy, |—>< Statesv2|

HV FVoLV FVoLV LVS ™ HV LV ghops,,2HV

Fig. 4. An example presenting two DW schema versions with their components

Itemsy1 belongs to the Product hierarchy in version V1. As stated earlier,
function LVEgrentLV: HV executed for a given level version assigns this level
version to an indicated hierarchy version at an indicated position. If ParentLV
and ChildLV are null then the function returns the name and the version of
a hierarchy a level belongs to as well as its direct parent and child levels. The
function executed for Itemsy returns the following tuple:

Metadata Management in a Multiversion Data Warehouse 127

Itemsy1.LV—HV = (Hierarchy Producty1,null, null),

where the first value is the version hierarchy Itemsy, belongs to, the second
value (null) is a child level versions of Itemsy; and the third value (null) is its
parent level version.

Timey belongs to the Time hierarchy in version V1, i.e.

Timey1.LV—HV = (Hierarchy _Timey1, null, null),

Shopsy1, Citiesy1, and Regionsy1 belong to the Location hierarchy in ver-
sion V1, i.e.:

Shopsy1.LV—HV = (Hierarchy _Locationy1,null, Citiesyy),

Citiesy1.LV—HV = (Hierarchy _Locationyi, Shopsy1, Regionsy1),

Regionsy1.LV—HV = (Hierarchy _Locationy, Citiesy1, null).

Hierarchy version Hierarchy Producty; belongs to its dimen-
sion Dimension_Producty1. Thus, function HV—DV executed on
Hierarchy Producty; returns Dimension__Producty ;. Similarly, the function
executed for the two remaining hierarchies returns their dimensions.

Let us assume that new schema version V2 was derived from V1. The schema
in V2 was changed as described below. Firstly, level Regions was renamed to
States. This change resulted in creating new version of this level, i.e. Statesy.
Secondly, level Clities was removed from dimension Location. It resulted in creat-
ing a new version of the hierarchy (HierarchyLocationy2) and a corresponding
dimension (DimensionLocationy). Moreover, a new version of level Shops was
created in order to handle the removal of Cities, i.e. Shopsyo became a child of
Statesys. Next, a new level Categories was created as a parent level of Items.
This change resulted in creating a new version of Items, i.e. Itemsyz that be-
came a child of Categoriesy.

Since level Regions was renamed, Regionsy1 is mapped to Statesys by means
of the LV—LV function. The function executed for Regionsy 1 returns Statesyo.

Notice that dimension Time has not changed and it is shared by both schema
versions.

The DW instance version is composed of (cf. Fig. Bl):

— multiversion records, composed of record versions,
— assignments of record versions to level versions,
— assignments of record versions to fact versions.

Versions of records represent either versions of level instances or versions
of fact data. Versions of records belong to a multiversion record, noted as
MV _Record. On the one hand, in a given DW instance version IV; there
may be only one version of multiversion record RV; € MV _Record. On the
other hand, the same version of a record may be shared by multiple DW instance
versions.

A given version of record RV} is assigned to one or more level versions by means
of an assignment function, noted as RV—{LV}. Similarly, a record version is
assigned to one or more fact versions by means of an assignment function, noted
as RV—{FV}.

128 R. Wrembel and B. Bebel

Level instances and dimension instances can be modified by multiple opera-
tions, as outlined in Section B4l For the purpose of querying the MVDW un-
der such changes, record version RV; (being the instance of one level version,
say LV;), is mapped to one or more newly-created record versions (being the
instances of newly-created level version, say LV, derived from LV;). Such map-
pings are represented by a mapping function, noted as RV—{RV}.

3.2 Types of DW Versions

We distinguish two types of DW versions, namely real and alternative ones.
Real versions are created in order to keep up with changes in a real business
environment, like for example: changing user needs concerning the context of
an analysis (adding dimensions to or removing dimensions from a cube), chang-
ing the way a business is done (changing the structure of servicing customers
from regional offices to city offices), changing the organizational structure of a
company, changing the geographical borders of countries/regions, changing the
prices/taxes of products. Real versions are linearly ordered by the time they
are valid within. Alternative versions are created for simulation purposes, as
part of the ‘what-if’ analysis. Such versions represent virtual business scenar-
ios. Alternative versions may branch. All DW versions are connected by version
derivation relationships, forming a version derivation graph. The root of this
graph is the first real version.

Fig. Bl schematically shows real and alternative versions. R1 represents an
initial real version. Based on RI, new real version R2 was created. Similarly,
R3 was derived from R2 and R/ was derived from R3. A2.1 and A2.2 are
alternative versions derived from R2, and A/.1 is an alternative version derived
from R4.

One may consider applying a multiversion data warehouse for a company
selling and hosting DWs for multiple customers, each of which needs slightly
customized DW structure. This scenario can be handled in our approach only
by creating a real ‘base’ version and deriving from it customized alternative
versions for every customer.

.dt. past .dt. present
t 2. 3 t4- -t5 6
bl el H |-
¥ — — T >
“R1 L R2 " R3 - R4 time
g R e & R
7 < L : T
7 N - .
e R —
A2.1 A2.2 L AdA
Legend: version derivation relationship — — = = — »

version validity period -

Fig. 5. An example derivation graph including real and alternative versions

Metadata Management in a Multiversion Data Warehouse 129

3.3 Constraints on DW Versions

Every DW version is valid within certain period of time represented by two
timestamps, i.e., begin validity time (BVT) and end validity time (EVT)
[9]. This concept is similar to the concept of valid time in temporal databases
[3AU72173).

As an example let us consider again DW versions from Fig.[Bl Real version R1
is valid within time ¢t/ (BVT) and t2 (EVT), R2 is valid within t3 (t3=t2+dy)
and t/, whereas R/ is valid from t6 until present. Alternative versions A2.1,
A2.2, and A/.1 are valid within the same time period as the real versions they
were derived from.

DW versions in the version derivation graph must fulfill the three following
constraints:

— Real Versions Validity Time - the begin validity time of a child real version
is greater by time d; than the end validity time of its parent real version (cf.
Fig. B);

— Real-Alternative Versions Validity Time - the validity time of any alternative
DW version is within the validity time of its parent real version;

— Alternative Parent-Child Versions Validity Time - the validity time of a child
alternative DW version is within the validity time of its parent alternative
version. This constraint allows the existence of multiple alternative versions
valid within the same time period.

Versions of schema elements (dimensions, hierarchies, levels, facts) and ver-
sions of instance elements (records) form version derivation graphs. As dimension
versions and fact versions can be shared by multiple DW versions, derivation
graphs of these schema elements may differ from the DW version derivation
graph. The version derivation graph of a dimension and the version derivation
graph of its hierarchies must be identical since we do not allow the existence of
dimensions without hierarchies and hierarchies without dimensions.

3.4 DW Version Change Operations and Version Creation

A DW version is created/derived explicitly by a DW designer/administrator.
Then a newly-derived DW version is modified by means of operations that have
an impact on a schema, further called schema change operations, as well as by
means of operations that have an impact on dimension instances, further called
instance change operations.

Schema change operations include among others: adding a new attribute
to a level table, removing an attribute from a level table, creating a new fact
table, associating a given fact table with a given dimension, renaming a fact or a
level table, creating a new level table with a given structure, including a parent
level table into its child level table, and creating a parent level table based on its
child level table. The last three operations are applicable to snowflake schemas.

Instance change operations include among others: inserting a new level
instance into a given level, deleting a level instance, changing the association of

130 R. Wrembel and B. Bebel

a child level instance to another parent level instance, merging several instances
of a given level into one instance of the same level, splitting a given level instance
into multiple instances of the same level.

Notice that multiple schema change operations and instance change opera-
tions may be included into one set of operations and executed on the same DW
version. The full list of schema and dimension change operations with their for-
mal semantics, their application to the MVDW, and their outcomes can be found
in [§].

Our experience in DW version management comes from the electricity sup-
ply business. Our findings in this area show that the required number of real
DW versions within 5-8 years will not be greater than 10. It results from slowly
changing legislation and structural changes in the electricity supply business that
impact the information systems and data warehouses already applied. The num-
ber of alternative versions will not be greater than 3-5 per year. It is caused by
the need for simulating the business (in particular, simulating different modes of
computing a depreciation). Thus, the maximum number of DW versions required
within 5-8 years should not be greater than 30.

4 Metamodel of the MVDW

The metamodel of the MVDW is general and is applicable to ROLAP and MO-
LAP implementation. Regardless the implementation, a data structure storing
dimension data will further be noted as DIMENSION and a data structure storing
fact data (a data cube) will further be noted as FACT.

4.1 MVDW Implementation Metaschema

The core metaschema of our prototype MVDW [79] is shown in Fig. Bl It is
designed in the Oracle notation [6] where: a dashed line means an optional
foreign key, a solid line means a mandatory foreign key, a line end that is split
into three means a relationship of cardinality many, whereas a simple line end
means a relationship of cardinality one.

The Versions dictionary table stores data about all existing DW versions, i.e.,
a unique version identifier, name, begin and end validity times, status (whether
a version is committed or under development), type (a real or an alternative
one), parent-child (derivation) dependencies between versions.

Metadata about FACT versions are stored in the Fact Versions dictionary
table. It contains a unique FACT identifier, name, the identifier of a multiversion
FAcT a given FACT belongs to, FACT implementation name, DW version identi-
fier a given FACT belongs to, the identifier of a transaction that created a given
FacT.

Metadata about DIMENSION versions are stored in Dim_ Versions. It contains
a DIMENSION version identifier, name, the identifier of a multiversion DIMENSION
a given DIMENSION belongs to, DW version identifier a given DIMENSION belongs
to, the identifier of a transaction that created a given DIMENSION.

131

Metadata Management in a Multiversion Data Warehouse

U__IM_,« V ||||||||||||||||||||||| pr Bmmlvmlnh #
PIN pIIon _POPIA#
§ PPN e e e e — = — o aweu”sAs™ A} dVIN ¥3A LOVd
|ddep_pe - U_|“_®> pIoRIAW
oL pt & oweu sAs A Sweu A
adfp ne sweuw Hoeq jsul| SAS | PN} #
aweu e aweuw Mo jsul| PI ASjW = —<
pine # ones osm_w_l»_ Y SNOISH3A LOV4
S3LNgidLLY mau_pl Al —
PIO pI Al SNOISH3A AT
[MaupITisull # pra
" " pIo” pi isull # \f \f 4\ pi oy
o dVINT LSNI' AT — pI oA juaied 1oA Pl A
A A maww“\»_ # JUSLILWOO JaA Pt on #
pI piI —_— # adfysen | SNOILVYIOOSSY 3IHA
aWeUW OEG He dep Pl Be # dVIN d3A AT wEwMMIM_M» N . 4\
oEm:Elzm&Hzm Ao pI pe # = G0N ; -
msu_pi_ne S3IONIANIJAA 4 _ptJen sweu 1on / N
et swi pus) e pImeyjussed sy
pI we # awny Bag : > PIA|
= Jsoy 4} SNOISH3IAN pI Ay
dVIN 11V g = JE pIray #
s - 3 _—
pIor eI ol o SNERERERELY
1EAJ9p_O1 pI i # pi /—\
Jopyoayo ol =
< odAi o1 SNOILOVSNVYL _pt Jan PITAY #
4 - P WipAW PIAp #
weu a1 sweu Ap -
- pI ol # — pl oA # —
P 4 i pI AP # — — pI L
PI oL # SINIVYLSNOOD LNI SNOISYIA MIa SY3IA ¥3IH WId sweu Ay
pI e # PIAY #
SINIVYISNOO L1V SNOISYAA u3H

Fig. 6. The metaschema of our prototype MVDW

132 R. Wrembel and B. Bebel

Metadata describing versions of DIMENSION hierarchies and their associations
to DIMENSION versions are stored in Hier Versions and Dim_ Hier Versions,
respectively. Versions of hierarchies are composed of level versions, whose de-
scriptions are stored in Lev_ Versions. This dictionary table stores a level iden-
tifier, name, the identifier of a multiversion level a given level belongs to, level
implementation name, DW version identifier a given level belongs to, the iden-
tifier of a transaction that created a given level. Versions of level hierarchies are
composed of level versions. These associations are stored in Hier_ FElements.

FAcCT versions are associated with DIMENSION versions via level versions. The
associations are stored in FHE Associations. Every record in this dictionary
table contains the identifier of a FACT version, and the identifier of the version
of a hierarchy element (an association with the lowest level in a level hierarchy),
the identifier of a DW version this association is valid in, and the identifier of a
transaction that created this association.

Every FACT version and level version includes the set of its attributes, that
are stored in the Attributes dictionary table. As mentioned earlier, attributes
are not versioned in order to keep the model simple. As a consequence, a single
attribute can’t be shared by multiple DW versions.

Integrity constraints that may be defined for FACTS and level versions
are stored in the Int Constraints and Att Constraints dictionary tables.
Int_ Constraints stores, among others, the name of an integrity constraint, its
type and definition. Our prototype system supports the following types of in-
tegrity constraints: primary key, foreign key, null/not null, and check. Attributes
of fact as well as level tables that have integrity constraints defined, are regis-
tered in Att_Constraints. Functional dependencies between attributes in level
versions are stored in F' Dependencies.

Table Att_ Map is used for storing mappings between an attribute existing
in DW version V,, and its corresponding attribute in a child version V,. This
kind of mappings are necessary in order to track attribute definition changes
between versions, i.e., changing an attribute name, data type, length, and in-
tegrity constraints. Some changes in attribute domain between two consecutive
DW versions, say V, and V, (e.g., changing a university grading scale from the
Austrian one to the Polish one) will require data transformations, if the data
stored in V,, and V,, are to be comparable. To this end, forward and backward
conversion methods have to be provided. Their names are registered in At¢ Map
as the values of att forw mname and att_back mname, respectively.

In our prototype system, conversion methods are implemented as Oracle
PL/SQL functions. The input argument of such a function is the name of an
attribute whose value is being converted and the output is the converted value.
Conversion methods are implemented by a DW administrator and they are reg-
istered in the metaschema by a dedicated application. In the current imple-
mentation a conversion method may accept only one input argument, i.e., an
attribute name. From a conceptual and technical point of view, extending con-
version methods with multiple arguments will require minor extension of the
metamodel, minor modification of a user interface for associating conversion

Metadata Management in a Multiversion Data Warehouse 133

methods with attributes, and an extension of our multiversion query parser (the
most complicated task).

The Fact_Ver Map dictionary table is used for storing mappings between a
given FACT in DW version V,, and a corresponding FACT in version V), directly
derived from V,. This kind of mappings are necessary in order to track FACT
definition changes between versions, i.e., changing a FACT name or splitting
a FAcCT. The purpose of Lev_ Ver Map is to track changes of levels between
versions, i.e., changing a level name, including a parent level into its child level,
creating a parent level based on its child level, cf. [§].

As outlined in Section 34l the instances of level versions can be modified by
changing associations to parent level instances as well as by merging and splitting
them. Operations of this type result in a new structures of a dimension instance.
In order to allow querying multiple DW versions under such modifications, the
system has to map level instances in version V,, into their corresponding instances
that were modified in version V,,. To this end, the Lev_Inst Map data dictionary
table is used.

The prototype MVDW is managed in a transactional manner and the Transac-
tions dictionary table stores the information about transactions used for creating
DW versions and modifying them.

Example 2. In order to illustrate the idea and usage of mapping tables, let us
consider a DW schema from Fig. Pl and let us assume that initially, in a real
version from February (RFFP) to March (RMAR) there existed 3 shops, namely
ShopA, ShopB, and ShopC' that were represented by appropriate instances of the
Location dimension. In April, a new DW version was created, namely RAPE in
order to represent a new reality where ShopA and ShopB were merged into one
shop - ShopAB. This change was reflected in the Location dimension instances.
To this end, the two following records were inserted to the Lev Inst Map dic-
tionary table:

(id_ShopA,id_ShopAB,id_ShopsRMA® id ShopsRATE,
100, null, null, tr_11)
(id_ShopB,id_ShopAB,id_ShopsRMAL id ShopsRATE,
100, null, null, tr _11)

The first and the second value in the above records represents the identifier
of ShopA and ShopAB, respectively. The third and fourth value represents the
Shops level identifier in version RMAR and RAPE, respectively.

The fifth value (attribute Ratio in Lev_Inst Map, cf. Fig. []) is the merg-
ing/splitting ratio. It is used in cases when an entity (e.g., branch, division,
faculty, shop) splits into multiple new entities. Typically, each of these new en-
tities contains a fraction of its original entity (e.g., the number of employees,
funds, assets). The merging/splitting ratio stores the percent of an original en-
tity that constitutes a new entity. The same applies to merging. A new entity
can be created by merging whole or only parts of old entities. In our example,
the ratio equals to 100%, meaning that the whole ShopA and ShopB constitute
ShopAB.

134 R. Wrembel and B. Bebel

For more advanced splitting or merging operations it will be necessary to
provide a backward and a forward transformation methods for converting facts
from an old to a new DW version. If such methods are explicitly implemented
and provided by a DW administrator, then their names are registered as the
values of linst _back mname and linst _forw mname, respectively.

The last value (attribute ¢r_id) in both of the above records stores the iden-
tifier of a transaction that carried out the modifications.

The dictionary tables discussed above implement abstract elements of the model
presented in Section Bl The mappings between dictionary tables and model
elements are summarized in Table [Tl

Table 1. The correspondence between dictionary tables and model elements

Model elements Dictionary tables
DV; DIM VERSIONS
LV; LEV_VERSIONS
HV; HIER VERSIONS
FV; FACT VERSIONS

RV;, RV—{LV}, RV—{FV} stored in implementation tables created
by the system; their names are stored
as the values of:

FACT VERSIONS.FV_SYS NAME
LEV_VERSIONS.LV_SYS NAME

Constraints INT_CONSTRAINTS
F_DEPENDENCIES
Attributes ATTRIBUTES
LV—HV HIER_ELEMENTS
HV—DV DIM_HIER_VERSIONS
FV—{LV} FHE_ASSOCIATIONS
LV—{LV} LEV_VER_MAP
FV—FV FACT_VER_MAP
RV—{RV} LEV_INST MAP
C—{A} ATT _CONSTRAINTS
A—IV ATTRIBUTES
A—FV ATTRIBUTES

4.2 MVDW vs. SCD

It may be tempting to apply to the scenario discussed in Example [2] and to
other scenarios the mechanism of slowly changing dimension (SCD) proposed by
R. Kimball [46[70]. The author proposed the so-called Type 2 SCD and Type 3
SCD that are capable of handling data evolution. In Type 2 SCD, every time data
record R; in table T' is changed, an old and a new record are stored in 7". Thus,
the whole history of record changes is stored in a database. In Type 3 SCD, for
each column C; whose value changes are to be tracked, there is a corresponding

Metadata Management in a Multiversion Data Warehouse 135

column C;_, .. C; stores an initial value, whereas C; stores a current
value. Additionally, for each pair of attributes C; and C;_, .., there exists also
a column D;__,, . that stores the date when the current value becomes active.

The main limitation of Type 2 SCD is that: (1) all versions of records (com-
ing from different time periods) are stored in the same table that may cause
a decrease in query processing efficiency; (2) sharing versions records between
multiple DW states requires further extensions to the Type 2 SCD mechanism,
namely, for each record its validity times need to be stored. The limitations of
the Type 3 SCD are as follows. First of all, it does not allow to store the whole
history of data changes since only the initial and the last value of an attribute
are stored. Second of all, a DW designer has to know in advance which attributes
will change their values and he/she has to create for every such an attribute two
additional attributes, namely C;_, . and D . This causes that any evolv-
ing table stores numerous additional attributes, even if some of them may not
be used at all. Moreover, neither Type 2 SCD nor Type 3 SCD support schema
changes. What is more, neither of the techniques is capable of handling level
instance splitting or level instance merging since they do not allow to register
the semantics of instance change operations.

On the contrary, in our approach:

current

lactive

— the whole history of data changes is stored and managed by the system
without the need of extending original tables;

— multiple, logically consistent data and schema changes can be separated in
different DW versions;

— versions of data can be shared between multiple DW versions;

— the system registers all schema and instance changes in the data dictionary
that allows to interpret the obtained query results in the context of the
registered changes.

4.3 Metadata Visualization — MVDW User Interface

A MVDW administrator manages the structure and content of the MVDW via
a graphical application, implemented in Java. Its main management window is
shown in Fig. [It is composed of the version navigator, located in the left hand
side panel and the schema viewer, located in the right hand side panel. Both
visualize the content of the MVDW metaschema.

The main functionality of the application includes:

— the derivation of a new (real or alternative) version of a DW;

— the modification of a schema version by means of schema change operations
(cf. Section B.4);

— the modification of the structure of dimension instances by means of dimen-
sion change operations (cf. Section [34));

— loading data from EDSs into a selected DW version (any ODBC data sources,
sources accessible via a gateway, or text files can be used);

— visualizing the schema of a selected DW version;

136

Z| Multiversion Data Warehouse

R. Wrembel and B. Bebel

Framewark “ersion Manager Schema Manager Data Manager Ahout
PLO00 LR L L XL PTE P PP
EdeW1@IDcthDSt:1521:Dra1Dg : 1Ol Wersiem eeheme (RV7) it mn i
agm RV (Januang 2
san RY2 (Februand
aan Y3 (March)
ddn RV (ApHD time_id
ada RVE (May) ronth_no
dan RWE (June) guarter_no
Bl g RYT (July 2
B[] poland_sale
prod_id
srhop_.|d PRODUCTS POLTAND_SALE
tirme_id prod_id prod_J?:’
amount e s_ﬁop__Jd
vat_frorn_sale item_price tirne_isl
1 d_products cat i amount
+ vat_from_sale
B d_shops
=] ?g h_shops
B [shaps VAT_CATEGORIES
shop_id cat_id
narne name
citi vat_value
TZ,' d time vat_valuel

Fig. 7. The user interface for managing the MVDW and visualizing its metadata

— visualizing the DW version derivation graph;

— querying multiple DW versions;

— presenting results of queries on multiple DW versions and augmenting the
results with metadata.

5 Metadata in Multiversion Queries

The content of the MVDW can be queried either by a query that addresses a
single version — further called a single-version query (SVQ) or by a query that
addresses multiple versions — further called a multiversion query (MVQ).

In the MVDW, data of user interest are usually distributed among several
versions and a user may not be aware of the location of particular set of data.
Moreover, DW versions being addressed in multiversion queries may differ with
respect to their schemas. For these reasons, querying the MVDW is challenging
and requires intensive usage of metadata.

5.1 Querying Multiple DW Versions

For the purpose of querying the MVDW, a traditional SQL select command
has to be extended. To this end, we proposed clauses that allow querying: (1) a

Metadata Management in a Multiversion Data Warehouse 137

single DW version that can be either a real or an alternative one, (2) the set of
real DW versions, (3) the set of alternative DW versions.

The set of versions addressed in a MVQ can be provided by a user in a query
in the two following ways:

— implicitly — by specifying a time interval (represented by version begin and
version end validity times);
— explicitly — by specifying the set of version identifiers.

To this end, the version from ’beg_date’ to ’end_date’ and version in
(VIDy, ..., VID,) clauses are used, respectively.

The detail description of the clauses as well as a user interface for specifying
multiversion queries and visualizing their results is presented in [54].

A user’s multiversion query is processed by our MVQ parser and executor in
the four following steps.

1. Constructing the set of DW versions
The set SV = {V1,Va,...,V,} of versions that is to be addressed in a mul-
tiversion query is constructed by the MVQ parser by using version begin
validity times and version end validity times (cf. Section Bl) if a user spec-
ified a time interval in his/her query. Otherwise, explicitly provided version
identifiers are used.

2. Decomposing MVQ
Next, for every DW version {V1,Va,...,V,,} € SV, the parser constructs an
appropriate single-version query {SVQ1, SV Qa,...,SVQ,}. In this process,
the differences in version schemas are taken into consideration. If some tables
and attributes changed their names from one version to another version, then
appropriate names are found in metadata dictionary tables and are used in
these SVQs.

If an attribute used in the select clause is missing in DW versions V;,
Vi, Vi, then the attribute is excluded from single-version queries addressing
Vi, Vj, V. If an attribute used in the group by clause is missing in DW
versions V;, Vj, Vi, then SVQs are are not executed in these versions. They
are executed only in these versions where the attribute exists or has its cor-
responding attribute. In both of these cases a user is notified about missing
attributes by means of meta-information that is attached to the result of a
SVQ. For example, if queried attribute Gross price was removed from table
Sale in queried DW version V; then the result of SV Q; will have attached
the following meta-information:

Attribute Gross_price removed from Sale
The data dictionary tables searched in this step include among others: Ver-
sions, Fact _ Versions, Dim_ Versions, Hier_Versions, Dim_ Hier Versions,
Hier Elements, FHE Associations, Lev_ Versions, Fact Ver Map,
Lev_ Ver Map, Attributes, Att_ Map.
3. Executing SVQs
Every single version query {SVQ1,SVQa,...,SVQ,} constructed in step 2
is next executed in its own DW version {V1, Vs, ..., V, }. Then, the result set

138 R. Wrembel and B. Bebel

of every SVQ is returned to a user and presented separately. Additionally,
every result set is annotated with:

— an information about a DW version the result was obtained from,

— metadata about schema and dimension instance changes between adja-
cent DW versions being addressed by the MVQ. The metadata informa-
tion attached to a SVQ result allow to analyze and interpret the obtained
data appropriately.

4. Integrating SVQ results

Result sets of single-version queries {SVQ1,SVQa,...,SVQ,} obtained in
step 3 may be in some cases integrated into one common data set. This
set is represented with respect to the schema of a DW version specified
by a user (the current real version by default). The integration of SVQs
results will be possible if the MVQ addresses attributes that are present (or
have corresponding attributes) in all queried DW versions and if there exist
transformation methods between adjacent DW versions (if needed).

For example, it will not be possible to integrate the results of a MVQ
addressing DW version V, and V,, computing the sum of products sold
(select sum(amount) ...), if attribute amount exists in version V, and
it was dropped in version V,.

While integrating result sets the following dictionary tables are
used among others: Fact_ Versions, Fact Ver Map, Lev_Versions,
Lev_Ver Map, Attributes, Att_Map, Lev_Inst_ Map.

Example 3. In order to illustrate annotating result sets of SVQs with metadata
(step 3) let us consider a DW schema from Fig. [2 Let us further assume that
initially in a real version from April 2004 RAPE there existed 3 shops, namely
ShopA, ShopB, and ShopC. These shops were selling porotherm bricks with 7%
of VAT (tax). Let us assume that in May, porotherm bricks were reclassified to
22% VAT category (which is a real case of Poland after joining the European
Union). This reclassification was reflected in a new real DW version RMAY

Now we may consider the below user’s MVQ that addresses DW versions from
April till May and that computes gross and net total sales of products.

select sum(ps.amount * pr.item_price * vc.vat_valuel) gross_sales,
sum(ps.amount * pr.item_price) net_sales,
pr.name product

from poland_sale ps, products pr, vat_categories vc

where ps.prod_id=pr.prod_id

and pr.cat_id=vc.cat_id

group by pr.name

version from ’01-04-2004° to ’30-04-2004’

The query is decomposed into two SVQs: one for version R4 and one for

RMAY After executing the SVQs in their proper versions, the result set of SVQ
addressing version RM4Y is augmented and returned to a user with metadata
describing changes in the structure of the Product dimension instance between
versions RAPE and RMAY | as follows:

Metadata Management in a Multiversion Data Warehouse 139

Reclassified key [bril(porotherm)—vc7(VAT 7%) to
[bri(porotherm)) —vc22(VAT 22%)
in table PRODUCTS

In this way a sales analyst will know that a gross sales increase from April to
May was at least partially caused by VAT increase.

A screen shot of the result of this query in our MVDW prototype system is
shown in Fig.[8l RV4 and RV'5 are version identifiers and they represent versions
from April and May, respectively. Query results can be displayed either in a text
form (available under the View data buttons) or as charts (available View chart
buttons).

= Multiversion Data Warehouse

Framework ‘“ersion Manager Schema Manager Data Manager About

PFLO0O LR L2LPLPL PEE of F P

iE el i@localhost 1521 or : [e IT-Yy =1 | R T T x
[
[s RVI (Januan) ||| version R4 121
s RV2 (February) :
s RV3 iMarchy : [T view data | M wiew chart | 0 view gquery | 434 Hide changes
E gy R4 (April) 1 —|
[H] poland_sale J|| | Table SALE renamed to FOLAND_SALE =
1 d_products
‘z d_shops || rVersion Rva
7 d_time : - |) | - | ; |
- 2 Wiew data View chart Wiew que Hide changes
Bl 2 RVE (May) : il il 2 query amn b
= D poland_sale ||| | Reclassified key (bl (porotherm) -= w7 (AT 7% to [bri{porothermm) -= ve220/AT 22%)]
prod_id : intable PRODUCTS
y =l [Common guery chars e i sl i il i I
Ranoe 5 product hd Domain {3 gross_sale - | Show chart |
32500 1
30000 7
27 500 -
25000 -
22 500 -
& 20000 1
@
' 17 500 -
@
=
S 15000 1
12500
10000 |
7 500 1
5000 |
2500 1 L
o -
parathem aak board 4m -
Pl | ... | | »

Fig. 8. An example result of a multiversion query addressing real versions from April
and May

140 R. Wrembel and B. Bebel

5.2 MVQ Processing Algorithm
While parsing a cross-version query, the query executor uses information stored

in the metaschema. The pseudo-code of parsing and executing a multiversion
query is shown as Algorithm [T

Algorithm 1. Parsing and executing a multiversion query

1: input: multiversion query MVQ
2: Q={} {the set of partial queries}
3: V={} {the set of versions being addressed in MVQ}
4: T={} {the set of tables being addressed in MVQ}
5. A={} {the set of attributes used in MVQ}
6: get the set of DW versions MVQ addresses: V={V, ..., Vi }
7: get the set of tables used in MVQ: T={Tk, ..., Ty}
8: get the set of attributes used in MVQ: A={ax, ..., aq}
9: for V; € V do
10: Ttemp:{}
11: Atemp:{}
12: construct BOOLEAN=TRUE
13: check if all tables in T exist in V; {consult the metadata}
14: if NOT TRUE then
15: check if table names were changed in V; {consult the metadata}
16: if NOT TRUE then
17: construct=FALSE {skip constructing partial query @Q;}
18: else
19: get table names into Tiemyp
20: end if
21: else
22: get table names into Tiemp
23: end if
24: check if all attributes in A exist in Tiemp {consult the metadata}
25: if NOT TRUE then
26: check if attribute names were changed in V; {consult the metadata}
27: end if
28: if construct=TRUE then
29: get attribute names into Aiemp
30: construct partial query Q); using table names in Tiemp and attributes in Aiemyp
31: insert); into @
32: end if
33: end for

34: for Q; € Q do

35: execute Q;

36: get result of Q;

37: return and display Q;
38: end for

Metadata Management in a Multiversion Data Warehouse 141

5.3 Multiversion Query Language vs. TOLAP

Our Multiversion Query Language and its implemented parser and executor
[54U79] offer similar functionality as a temporal OLAP query language called
TOLAP [52J75]. Both languages are capable of querying multiple DW states
that differ with respect to the schema of dimensions and schema of fact tables.
Moreover, both can provide consistent query results under changes to the struc-
ture of dimension instances. Query results can be presented in a way as if they
were at certain indicated time period (version). In our language, the merge into
clause is used for this purpose [54]. TOLAP allows to explicitly query metadata
on DW changes. Our query language does not allow to explicitly query meta-
data but the query parser and executor implicitly queries metadata, so that
every query result is augmented with metadata describing changes to adjacent
queried DW versions.

6 Implementation Issues

Two or more versions of a DW may share fact as well as dimension data. In order
to implement this functionality, we proposed a data sharing mechanism (further
called BitmapSharing). It consists in storing with every record, in a fact table or
a dimension level table, information about all DW versions this record is shared
by [I1]. At the implementation level, sharing information is stored in the set of
bitmaps (bit vectors) attached to a shared table, where one bitmap represents
one DW version. The number of bits in a bitmap equals to the number of records
in a shared table. The " bit in bitmap V},, describing version V},, is set to 1
if the 3" record is shared by DW version V,,,. Otherwise the bit is set to 0. The
association between a given DW version and its corresponding bitmap is stored
in another dedicated data structure.

Currently, the efficiency of BitmapSharing is being experimentally evaluated
and compared to two prominent data sharing techniques proposed in the litera-
ture, i.e., [I7J66]. Some of the obtained results are reported below.

Fig. @ presents the results of the experiment that measured time overhead
for constructing the content of a single DW version. Two different versions were
queried, namely version number 5 (in the middle of the version derivation graph)
and version number 10 (at the end of the graph). Each version (except the initial
one) shared all its data records with its parent version. The number of records
physically stored (not shared) in each version was parameterized and equaled to
10000, 50000, and 100000. The techniques proposed in [17] and [66] are noted in
Fig.@ as DBVA and Framework, respectively.

As we can observe from Fig. [0 the BitmapSharing offers better performance
than the two other techniques. It results from a simpler data sharing mechanism
that we use as compared to the Framework and DBVA. In the BitmapSharing,
in order to find the required records, the program executes simple table scans in
appropriate DW versions, retrieving records with their sharing information. Then,
the final selection of records is done by AND-ing appropriate version bitmaps. The
BitmapSharing performance can be further improved by using indexes.

142 R. Wrembel and B. Bebel

100000
L e s AR E LR ED BN CRE LR CE R I EECECEECEEEE I EECECEECEEEE I EROR

E- 1000 ool Jeeee] e s A ... 727 - n B BitmapSharing

@ ODEWVA

LT - 7/ S NN TN NN . .

o / A Framework

£

= 04| EA----B BB B4 B4l B

17 .
version
number
10000 rec/version 50000 reciversion 100000 reciversion

Fig. 9. Constructing the content of a version for version number 5 and version number
10 (percent of records shared by a child and its parent version equals to 100%; number
of records physically stored in each version: 10000, 50000, 100000)

Similar performance characteristics to the one shown in Fig. [0 were obtained
also for the lower number of shared records. The number (percent) of shared
records does not influence the processing time as the system processes the same
number of bitmaps, regardless of the number of shared records.

In order to test the scalability of the BitmapSharing we executed queries
selecting various number of records from every DW version in the test set. The
set was composed of 10, 20, 40, 60, 80, and 100 DW versions. The number of
records locally stored in every version equaled to 100000. Additionally, a parent
DW version shared 100% of its records with its child version.

Table 2 presents execution time for queries selecting 50% of records from every
DW version as well as time increase coefficients. The coefficients are computed
as tm+ta/tm, where t,, is the execution time of a query addressing m (e.g., 40)
consecutive DW versions, and ¢,,+ 4 is the execution time of a query addressing
m + A consecutive DW versions (e.g., 60). As we can observe from the table,
increase time coefficients range from 1.55 to 2.65.

Fig. [0 shows the performance characteristic from Table[2l As we can observe
from the chart, although the characteristic is not ideally linear it is close to a
linear one.

One of the most important research and technological issues in the field of data
warehousing is DW performance in terms of query processing, no matter whether
a standard, temporal, or multiversion DW is applied. OLAP applications heavily

Table 2. BitmapSharing performance: selecting records from multiple DW versions

Nb of queried versions 10 20 40 60 80 100

Time ID tio 20 tao t6o tso t100
Response time [msec] 140 312 828 1438 2625 4063
Time increase coefficient t20 /tlo tao /tzo teo /t40 ts0 /tao t100 /tso

Coefficient value 223 265 1.74 1.82 1.55

Metadata Management in a Multiversion Data Warehouse 143

4500
4000 +
3500 4
3000
2500 +
2000
1500 +
1000 ~
500

time [msec]

nb of queried versions

Fig. 10. BitmapSharing: selecting records from multiple DW versions (the number of
queried versions equals to: 10, 20, 40, 60, 80, and 100; the number of records selected
from every version equals to 50%; versions are sharing 100% of their records; the number
of records locally stored in every version equals to 100000)

use the so-called star queries that join fact tables with multiple dimension tables.
Reducing execution time of such joins is crucial to a DW performance. To this
end, a special data structure, called a join index was developed [76]. This index
is typically organized as a B-tree and stores a precomputed join of a fact and a
dimension table.

In order to optimize multiversion star queries in the MVDW, we propose a
multiversion join index [16]. The index joins multiple versions of a fact table
with versions of a dimension table that are physically stored in separate DW
versions. Its internal structure combines two indexes, namely Value indexr and
Version index. Both of them are B¥-tree based. Value index is created on a join
attribute. Its leaves store values of an indexed attribute and pointers to Version
index. Version index is used for indexing versions of a data warehouse. Its leaves
store lists of ROWIDs, where ROWIDs in one list point to rows (of a fact and
a dimension table) in one DW version. Thus, a multiversion star query can be
answered by searching Value index first, and then, by searching Version index
in order to find appropriate DW versions storing records of interest. The perfor-
mance of the multiversion join index has been evaluated by multiple experiments
[16]. Their results are currently under reviewing.

7 Detecting Changes in EDSs

In order to ease the detection of content and structural changes in EDSs we
use an operational data store (ODS) as a buffering layer between EDSs and
the MVDW. Notice that the system architecture and functionality presented in
this section focuses on automatic detection of changes in EDSs that have an
impact mainly on dimension schemas, fact schemas and structures of dimension
instances, rather than on supporting fully functional ETL processes.

144 R. Wrembel and B. Bebel

7.1 System Architecture

The basic architecture of our system is shown in Fig. [[1l External data sources
(EDSy, EDSs, and EDS3) are connected in a standard way to the ODS via wrap-
pers [64] that are software modules responsible for data model transformations.

multiversion
data warehouse
r
—
ODS
metaschema
manager lwarehouse refresher U

mapping metaschema DW update register

'y
=m/
A

[y

<
<

monitor
generator

’ wrapper H ’ wrapper H ’ wrapper H

Fig.11. The ODS architecture supporting the detection of content and structural
changes in EDSs

d
J
A

Wrappers are connected to monitors. Monitors are responsible for detecting
the occurrences of predefined events on EDSs. In response to an event detection,
monitors generate actions that will be applied to an indicated DW version, cf.
Section The set of EDSs events being detected and their corresponding
actions are described in the so-called mapping metaschema, cf. Section [[23l The
content of the mapping metaschema is used for the automatic generation of
executable code of monitors, cf. Section [[.4l Actions generated by monitors are
stored in a dedicated data structure called the DW update register.

7.2 Events and Actions

For the purpose of synchronizing a DW version with changes in EDSs, for each
EDS supplying the MVDW we define the set of events being monitored and the
set of actions associated with every event.

Metadata Management in a Multiversion Data Warehouse 145

We distinguish two types of events, namely: structure events and data events.
A structure event signalizes changes in an EDS’s structure, that include:
adding an attribute, modifying the name or domain of an attribute, dropping an
attribute, adding a new data structure (table, class), dropping a data structure,
changing the name of a data structure. A data event signalizes changes in an
EDS’s content, that include: adding, deleting, or modifying a data item. The set
of events being monitored at EDSs is explicitly defined by a DW administrator
and is stored in the so-called mapping metaschema, cf. Section [(.3]

For every event in the set, a DW administrator explicitly defines one or more
ordered actions to be performed in a particular DW version. We distinguish two
kinds of actions, namely messages and operations. Messages represent actions
that can not be automatically applied to a DW version, e.g., adding an attribute
to an existing data structure at an EDS, creating a new data structure. These
events may not necessarily require DW version modification if a new object is not
going to store any information of user’s interest. Messages are used for notifying
a DW administrator about certain source events. Being notified by a message,
an administrator can manually define and apply appropriate actions into a se-
lected DW version. Operations are generated for events whose outcomes can be
automatically applied to a DW version, e.g., the insertion, update, and deletion
of a record, the modification of an attribute domain or name, the change of a
data structure name. The associations between events and actions are stored in
the mapping metaschema.

Notice that actions do not create new DW versions automatically. They are
either (1) applied to a DW version explicitly selected by a DW administrator
during an action definition or (2) are logged in a special data structure (cf.
Section [74)) for manual application.

From the implementation point of view, operations are represented by SQL
DML and DDL statements or stored procedures addressing an indicated DW
version. The executable code of operations and bodies of messages are automat-
ically generated by monitors, cf. Section [[4l

7.3 Mapping Metaschema

The structure of the mapping metaschema is shown in Fig. (represented
in the Oracle notation). The SRC SOURCES dictionary table stores descrip-
tions of external data sources. It contains among others connection parame-
ters for accessing every EDS. Data about EDSs data structures whose changes
are to be monitored are registered in two dictionary tables: SRC OBJECTS
and SRC_ ATTRIBUTES. All monitored events at EDSs are stored in
SRC EVENTS.

DW_AC SRC EV_MAPPINGS stores mappings between events detected
at EDSs and their associated actions that are to be executed in a given DW
version. Action definitions, i.e., an action type and a data warehouse object
the action is to be performed on, are stored in DW_ACTIONS. MVDW
object descriptions (i.e., attributes, versions of fact and dimension level tables,

146 R. Wrembel and B. Bebel

SRC_OBJECTS DW_ATTR_EXPRESSIONS DW_ATTRIBUTES
src_obj_id # dw_attr_exp_id # dw_attr_id
src_obj_name dw_attr_exp_text dw_attr_name
src_obj_type dw_attr_exp_type dw_attr_type
src_id dw_ac_id dw_attr_length
dw_attr_id dw_obj_id
src_attr_id
SRC_SOURCES
src_id
src_name SRC_ATTRIBUTES DW_ACTIONS
src_type # src_attr_id # dw_ac_id
src_h_ost src_attr_name dw_ac_type_id
src_sid src_attr_type dw_ac_description
src_port src_attr_length dw_adm_approval
src_owner src_obj_id dw_obj_id
src_password dw_attr_id
SRC_EVENTS
src_eve_id DW_AC_SRC_EV_MAPPINGS DW_OBJECTS
src_eve_type_id # dw_ac_id # dw_obj_id
src_id # src_eve_id dw_obj_name
src_obj_id dw_ac_sequence dw_obj_type
src_attr_id src_eve_sequence dw_obj_version
SRC_EVENT_TYPES DW_ACTION_TYPES
src_eve_type_id # dw_ac_type_id
src_eve_type_name dw_ac_type_name

Fig. 12. The structure of the mapping metaschema

versions of dimensions and hierarchies) are stored in the DW_ ATTRIBUTES
and DW_OBJECTS dictionary tables.

Values taken from EDSs may need transformations (e.g., conversion of
GBP into Euro) before being loaded into a DW wversion, as it is typ-
ically done within the Extraction-Translation-Loading processes [45]. Ex-
pressions that transform/compute values of attributes are stored in the
DW_ATTR_EXPRESSIONS.

A DW administrator defines the content of the mapping metaschema (i.e.,
mappings between events and actions) by means of a graphical Java application,
called the metaschema manager. The mapping metaschema is stored in an Oracle
Database 10g.

7.4 Automatic Generation of Monitors

Every EDS is connected to the ODS by its own wrapper and monitor. For each
EDS, the code of its monitor is automatically generated by a software mod-
ule called the monitor generator. The monitor generator uses the content of
the mapping metaschema. In the current prototype system, monitors are im-
plemented in the Oracle PL/SQL language as stored packages and as triggers

Metadata Management in a Multiversion Data Warehouse 147

detecting defined events. The current implementation allows to automatically
generate monitors for data sources implemented on Oracle databases only.

After being installed at EDSs, monitors register predefined events at EDSs and
they generate actions (executable code of operations and bodies of messages) in
response to the events. Generated actions are stored in a special data structure
called the DW update register. Every action is described by: (1) its type
(message or DML statement), (2) its content (e.g., SQL statement or stored
procedure) addressing particular objects in a particular DW version, and (3)
its sequence. An action sequence reflects the order of action executions. When
an administrator decides to refresh a DW version, he/she selects actions for
execution and runs a dedicated process, called the warehouse refresher. This
process reads operations stored in the DW update register and applies them to
a specified DW version.

8 Related Work

This section overviews related work in multiple research areas that are relevant
to the work presented in this paper. These areas include: evolution in databases,
evolution in data warehouses, detecting structural changes at data sources, and
metadata.

8.1 Managing Evolution in Databases

The support for managing the evolution of data and schemas turned up as an
important feature in object-oriented databases, mediated and federated database
systems as well as in standard relational databases.

The need for schema and data evolution resulted from applying object-
oriented databases to Computer Aided Design, Engineering, and Manufacturing
systems. This evolution problem was intensively investigated and resulted in the
development of various approaches and prototypes, [2BIT7I32/4463], to list only
a few of them. These and many other approaches were proposed for versioning
complex objects or complex schemas stored in a database of moderate size.

The problem of managing schema changes appeared also in mediated and
federated database systems that were used for interconnecting heterogeneous
data sources, e.g., [I5l26]. In this field, research has focused on handling schema
changes and propagating them into a global schema, e.g., [50/51].

In the area of standard relational databases, research and technological work
concentrate on temporal extensions [3T34J39/4TJ72] and data versioning [TI66].

Versioning mechanisms proposed for object-oriented databases support either
versioning of objects or data structures (classes). In mediated and federated
databases, the proposed solutions focus on handling schema changes only. In
relational databases the proposed solutions support the evolution/versioning of
multiple states of data only but not data structures. Our framework supports
handling both structural changes and data changes of a DW. Thus we provide
a more comprehensive solution.

148 R. Wrembel and B. Bebel

8.2 Managing Evolution in Data Warehouses

Handling schema changes in external data sources and propagating them into
a data warehouse is a natural extension of the solutions presented above. How-
ever, DW systems have different characteristics requiring new approaches to this
problem.

On the contrary to the approaches managing evolution in the object-oriented
field, in data warehouse systems objects being versioned have very simple struc-
ture (several fact or dimension tables) but the size of a database is much larger.
Therefore, the versioning mechanisms developed in the object-oriented field are
not suitable for versioning traditional (relational) data warehouses.

On the contrary to the approaches managing evolution in mediated and feder-
ated database systems, in data warehouse systems a final DW schema is usually
totally different from schemas of external data sources. Moreover, a DW stores
not only elementary data but also data aggregated at many levels. These aggre-
gated data have to be transformed /updated /recomputed as the result of updates
to a DW schema and to the structure of dimension instances. This recomputation
should be efficient, therefore it is often required to apply an incremental recom-
putation [35]. These facts pose new challenges in propagating changes from EDSs
to DWs.

Four eligible solutions for handling changes in data warehouses have been
proposed in the literature. The solutions can be categorized as follows: (1) schema
and data evolution [12373842], (2) simulation [ABIT], (3) temporal extensions
[I827I30149169], and (4) versioning extensions [I3TAB3527H].

Schema and data evolution approaches maintain one DW schema and the set
of data that evolve in time. Schema modifications (e.g., dropping an attribute,
changing the length or domain of an attribute) require data conversions and,
as a consequence, historical DW states are lost. Modifications of the structure
of dimension instances are implemented by simple updates of attribute values.
This also causes that old values are lost.

Simulation approaches use virtual data structures in order to simulate or to
screen DW evolution. In the approach proposed in [4l5] a virtual DW structure,
called scenario, is constructed for hypothetical queries, for the purpose of the
‘what-if” analysis. Then, the system using substitution and query rewriting tech-
niques transforms a hypothetical query into an equivalent query that is run on a
real DW. As this technique computes new values of data for every hypothetical
query, based on virtual structures, performance problems will appear for large
DWs. The approach proposed in [7] simulates changes in a DW schema by means
of views. The approach supports only simple changes in source tables (add, drop,
modify an attribute) and it does not deal either with typical multidimensional
schemas or evolution of facts or dimensions.

Temporal extensions use timestamps on modified data in order to create tem-
poral versions. Most of the approaches focus mainly on handling changes in the
structure of dimension instances, cf. [I8127/30/49J69]. In the approach presented
in [I8] the authors propose to timestamp hierarchical assignments between level
instances. At the implementation level, the assignments are represented as a

Metadata Management in a Multiversion Data Warehouse 149

matrix whose rows and columns store level instances whereas cells store valid-
ity times of hierarchical assignments between level instances. Similar concept of
time stamping level instances and their hierarchical assignments was presented in
[27030]. Additionally, this concept supports transformations of fact instances as
a consequence of changes to dimension instances. To this end, system conversion
methods are applied. The methods are expressed as matrices defining recalcula-
tions of facts. In order to represent the history of changes to level instances, the
system associates and stores timestamps along with level instances. In [69], a
similar concept is used, but in this approach, a timestamped history of changes
to dimension instances is stored in an additional separate data structure. The
paper by [49] proposes consistency criteria that every evolving dimension has to
fulfill. It gives an overview how the criteria can be applied to a temporal DW.
All the discussed approaches from this category are suitable for representing
historical versions of data, but not versions of a schema.

In versioning extensions, depending on the approach, a DW evolution is man-
aged partially by means of schema versions and partially by data versions. The
versioning mechanism presented in [I3I14] supports explicit, timestamped per-
sistent versions of data. The proposed concept also uses timestamps on level
instances and their hierarchical assignments. Additionally, fact data are times-
tamped. The version of a data cube that is valid within a given time period is
conceptually represented by the so-called Temporally Consistent Fact Table. At
the implementation level, one central fact table is used for storing all versions
of data. As a consequence, only changes to dimension schemas and dimension
instance structures are supported. In [33] an explicit DW schema versioning
mechanism is presented. A new persistent schema version is created for han-
dling schema changes. The approach supports only four basic schema modifica-
tion operators, namely adding/deleting an attribute as well as adding/deleting
a functional dependency. A persistent schema version requires a population with
data, but this issue is not addressed in the paper. The approach described in
[52075] supports versioning a DW schema and data. To this end, the structures
of levels as well as fact tables are timestamped. All schema elements within the
same range of their timestamps constitute a temporal schema version. Similar
concept is used for versioning dimension instances and fact data that are stored
in a temporal dimension schema and a temporal fact table, respectively. The
proposed language (TOLAP) is able to query multiple temporal versions that
differ with respect to their structures.

Implicit versioning of data was proposed in [4347J60J65/74]. In all of these
approaches versions are used for avoiding conflicts and mutual locking between
OLAP queries and transactions refreshing a data warehouse.

Commercial DW systems existing on the market (e.g., Oracle Database 9i/10g,
IBM DB2 UDB, Sybase IQ, Computer Associates CleverPath OLAP, NCR Tera-
data Database, Hyperion Essbase OLAP Server, MS SQL Server, SAP Business
Warehouse, SAS Enterprise BI Server) do not offer advanced mechanisms for
managing DW evolution or handling multiple DW states. Some functionality
supporting a DW evolution is offered by:

150 R. Wrembel and B. Bebel

— SAP Business Warehouse — it is capable of handling only simple changes
(value updates) in dimension instances;

— Oracle Database 10g — it supports flashback queries; this mechanism can
only be used for managing data versions provided that a database schema
remains unchanged; moreover, it supports querying data from a specific point
in time;

— SQL Server 2005 — it supports dimension instances updates; the updates are
implemented by the mechanism of Slowly Changing Dimensions of Type 1
and/or Type 2; in this server, dimension schema changes are not supported.

Our approach supports all basic schema and dimension change operations.
Fundamental changes, reflecting either new real-world states or simulation sce-
narios are clearly separated in DW versions. Thus, a user can address only a DW
version of interest without the necessity of accessing the whole DW. As a conse-
quence, less data are searched that, in turn, impacts a system’s performance. A
unique feature of our framework and prototype system is the augmentation of
multiversion query results with data describing changes made to queried adja-
cent DW versions, unlike in [52[75]. These data allow to interpret the obtained
results appropriately.

8.3 Detecting Structural Changes in Data Sources

Schema changes of EDSs were originally investigated in the context of adjusting
materialized view definitions after changing the structure of their base tables.
The EVE framework [48] represents a pioneering work in this area. It allows to
include in a materialized view definition rules for its evolution/changes. To this
end, EVE uses the so-called View Knowledge Base (VKB) and Meta Knowledge
Base (MKB). VKB stores view definitions and MKB stores metadata describing
abilities of data sources to co-operate with the EVE framework. Using the con-
tent of both knowledge bases, a view is rewritten as the result of changes to an
EDS. Further extensions to the EVE framework were proposed in [55] and [56].

The approach presented in [20/22] uses a meta relation whose content describes
a data source schema and its changes. The meta relation is stored in a wrapper
associated with a data source. This mechanism is capable of handling only basic
schema changes, i.e. the creation, deletion, and renaming of an attribute. [80]
discusses the SDCC system that is used for synchronizing materialized views
maintenance under source changes. SDCC collects and timestamps messages
sent by a data source to DW when the source needs to change its schema or
data. In this system, every change to a data source has to be approved by a DW
before being applied.

Another algorithm, called Dyno [2TI23], allows to detect the so-called danger-
ous dependencies among data source updates, i.e. updates that cause a broken
query anomaly [22]. Dyno tries to find such an order of data source updates
that eliminates dangerous dependencies. To this end, it constructs a dependency
graph with vertices representing update operations. The graph is next topolog-
ically sorted in order to detect cycles that signalize dangerous dependencies. If

Metadata Management in a Multiversion Data Warehouse 151

there is a cycle in the graph then every update is executed atomically. Otherwise,
multiple updates are executed as a transaction.

The work described in [2829] focuses on detecting structural changes in di-
mension instances. To this end, the authors propose to analyze the so-called
slices of data. A data slice represents fact data coming from consecutive time
periods. Data slice analysis applies various data mining techniques. The draw-
back of this solution is that the discovered changes not always represent real
changes made in a DW.

Most of the discussed approaches focuses on view maintenance under struc-
tural changes of data sources. The focus of our work is on propagating changes
to a DW schema and dimension instances (which are basis for DW view cre-
ation) rather than to materialized views themselves. Moreover, our approach
contributes a mapping mechanism between source changes and DW changes.
The mappings are defined by a DW administrator and are stored in the map-
ping metaschema. Based on the mappings, our prototype system automatically
generates: (1) wrappers detecting changes for every EDS of interest and (2)
commands modifying a DW.

8.4 Metadata Management

The need for metadata describing multiple areas of a DW system design, devel-
opment, deployment, and usage as well as the need for data exchange between
different heterogeneous systems resulted in two industrial metadata standards,
namely the Open Information Model (OIM) [40/77] and the Common Ware-
house Metadata (CWM) HOB7TT]. OIM was developed by the Meta Data
Coalition (MDC) for the support of all phases of an information system de-
velopment. OIM is based on UML, XML, and SQL92. It includes the following
models: (1) object-oriented analysis and design, (2) object and component de-
velopment life-cycles, (3) business engineering, (4) knowledge management tool,
as well as (5) database and data warehousing model, including: database and
multidimensional schema elements, data transformations, non-relational source
elements, report definitions. OIM was supported among others by Microsoft,
Brio Technologies, Informatica, and SAS Institute.

On the contrary, CWM was developed by the Object Mlanagement Group
(OMG) for the support of integrating DW systems and business intelligence
tools. The standard is based on XML, CORBA IDL, MOF, and SQL99. It in-
cludes the following models: (1) foundation of concepts and structures, (2) ware-
house deployment, (3) relational interface to data, (4) record-oriented structures,
(5) multidimensional database representation, (6) XML types and associations,
(7) type transformations, (8) OLAP constructs, (9) warehouse process flows,
and (10) warehouse day-to-day operations. CWM is supported among others by
IBM, Oracle, Hyperion, and SAS Institute.

In 2000, the standard developed by MDC was integrated into the standard
developed by OMG. Since then, the integrated standard is developed under OMG
[24] and is currently supported by most of software providers.

152 R. Wrembel and B. Bebel

Although the two standards have been well developed, they do not include
either models for detection and propagation of changes from data sources to a
DW, or models for schema and data evolution in a DW. Consequently, they do
not provide support for temporal or multiversion queries.

From the research approaches discussed in Section B2, only [30] presents a
metamodel for a temporal DW. Additionally, [61] discusses and presents high
level metamodel for handling and assuring data quality in a DW.

Our approach and metamodel substantially extend the metamodel presented
in [30] with: (1) the support of not only dimension changes but also with schema
changes, (2) the support for querying multiple DW states and annotating query
results with metadata.

9 Summary and Conclusions

Handling changes in external data sources and applying them appropriately into
a DW became one of the important research and technological issues [59/62].
Structural changes applied inappropriately to a DW schema or to dimension in-
stances may result in wrong analytical results. Research prototypes and solutions
to this problem are mainly based on temporal extensions that limit their use.
The solution to the so-called slowly-changing dimensions proposed by R. Kim-
ball [46] can be applicable to a limited set of dimension instance changes. Most
of commercially available DW systems do not offer mechanisms for managing
multiple DW states.

Our approach to this problem is based on a multiversion data warehouse,
where a DW version represents the structure and content of a DW within a
certain time period. Managing multiple persistent versions of a DW allows to:

— store the history of real-world changes without the loss of any information,

— manage not only changes to dimension instances but also changes to a DW
schema,

— create alternative business scenarios for simulation purposes,

— query multiple DW states and compare query results.

A fully-functional DW system needs managing metadata in order to support
the full life-cycle of a system. In the case of a multiversion data warehouse,
metadata are much more complex than in traditional DWs and have to provide
additional information, among others on: the structure and content of every DW
version, a trace of schema and dimension instance changes applied to every DW
version. The industry standard CWM metamodel and research contributions do
not offer metadata describing a DW evolution.

In this paper we contributed by:

1. The development of the MVDW metamodel that is capable of: (1) managing
versions of schemas and data in the MVDW, (2) executing queries that
address several DW versions, and (3) presenting, comparing, and interpreting
results of such queries.

Metadata Management in a Multiversion Data Warehouse 153

2. The development of the framework for detecting changes in external data
sources and propagating them into the MVDW. The functionality offered
by the framework includes: (1) automatic generation of software monitoring
EDSs, based on metadata, (2) automatic generation of actions to be executed
in a DW version in response to EDSs events.

Based on the developed metamodels, the prototype MVDW system was im-
plemented in Java and Oracle PL/SQL language, whereas data and metadata
are stored in an Oracle Database 10g.

OLAP queries that run on a data warehouse are typically very complex and
their optimization has impact on the performance of the whole DW. In the
MVDW, data can be shared by multiple versions that makes querying and query
optimization even more difficult. In order to optimize the execution of multiver-
sion queries, we have developed a data sharing technique and a multiversion join
index. The multiversion join index has been implemented and evaluated experi-
mentally giving promising results, which are currently under reviewing. The data
sharing technique is currently being evaluated and compared experimentally to
other techniques proposed in [I766].

In the future we plan to extend automatic generation of monitors for other
database systems including: IBM DB2, Sybase Adaptive Server Enterprise, and
MS SQL Server as well as for non-database sources including text and XML files.
Future work will also focus on extending our metamodels in order to handle data
quality issues in the MVDW. Another interesting task is to extend the accepted
industry standard CWM so that it is suitable for describing a multiversion data
warehouse.

Acknowledgements. The authors acknowledge anonymous reviewers for their
constructive and thorough comments that greatly improved the quality of this
paper. The authors would like to thank also the following graduate students
from the Poznan University of Technology: Jan Chmiel - for running multiple
performance experiments as well as Tomasz Majchrzak and Robert Guzewicz -
for developing the MVDW prototype.

References

1. Abdessalem T., Jomier G.: VQL: A query Language for Multiversion Databases.
Proc. of Int. Workshop on Database Programming Languages (DBPL), pp. 103-
122, 1997, LNCS 1369

2. Agrawal R., Buroff S., Gehani N., Shasha D.: Object Versioning in Ode. Proc. of
Int. Conference on Data Engineering (ICDE), pp. 446-455, 1991

3. Ahmed-Nacer M., Estublier J.: Schema Evolution in Software Engineering. In:
Databases - A new Approach in ADELE environment. Computers and Artificial
Intelligence, 19, pp. 183-203, 2000

4. Balmin A., Papadimitriou T., Papakonstanitnou Y.: Hypothetical Queries in an
OLAP Environment. Proc. of Int. Conference on Very Large Data Bases (VLDB),
pp. 220-231, 2000

154

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

R. Wrembel and B. Bebel

Balmin A., Papadimitriou T., Papakonstanitnou Y.: Optimization of Hypothetical
Queries in an OLAP Environment. Proc. of Int. Conference on Data Engineering
(ICDE), p. 311, 2000

. Barker R.: Case*Method: Entity Relationship Modelling Addison-Wesley, 1990,

ISBN 0201416964

. Bellahsene Z.: View Adaptation in Data Warehousing Systems. Proc. of Int. Con-

ference on Database and Expert Systems Applications (DEXA), pp. 300-309, 1998,
LNCS 1460

. Bebel B.: Transactional Refreshing of Data Warehouses. PhD thesis, Poznan Uni-

versity of Technology, Institute of Computing Science, 2005

. Bebel B., Eder J., Konicilia C., Morzy T., Wrembel R.: Creation and Management

of Versions in Multiversion Data Warehouse. Proc. of ACM Symposium on Applied
Computing (SAC), pp. 717-723, 2004

Bebel B., Krolikowski Z., Wrembel R.: Managing Multiple Real and Simulation
Business Scenarios by Means of a Multiversion Data Warehouse. Proc. of Int.
Conference on Business Information Systems (BIS), pp. 102-113, 2006, Lecture
Notes in Informatics

Bebel B., Wrembel R., Czejdo B.: Storage Structures for Sharing Data in Multi-
version Data Warehouse. Proc. of Baltic Conference on Databases and Information
Systems, pp. 218-231, 2004

Blaschka M., Sapia C., Hofling G.: On Schema Evolution in Multidimensional
Databases. Proc. of Int. Conference on Data Warehousing and Knowledge Dis-
covery (DaWakK), pp. 153-164, 1999, LNCS 1676

Body M., Miquel M., Bédard Y., Tchounikine A.: A Multidimensional and Multi-
version Structure for OLAP Applications. Proc. of ACM Int. Workshop on Data
Warehousing and OLAP (DOLAP), pp. 1-6, 2002

Body M., Miquel M., Bédard Y., Tchounikine A.: Handling Evolutions in Multi-
dimensional Structures. Proc. of Int. Conference on Data Engineering (ICDE), p.
581, 2003

Bouguettaya A., Benatallah B., Elmargamid A.: Interconnecting Heterogeneous
Information Systems, Kluwer Academic Publishers, 1998, ISBN 0792382161
Buczkowski P., Blaszyk M., Chmiel J., Tucholski M., Wrembel R.: Design, Imple-
mentation, Evaluation of a Multiversion Join Index. Research report RA-009/05,
Poznan University of Technology

Cellary W., Jomier G.: Consistency of Versions in Object-Oriented Databases.
Proc. of Int. Conference on Very Large Data Bases (VLDB), pp. 432-441, 1990
Chamoni P., Stock S.: Temporal Structures in Data Warehousing. Proc. of Int.
Conference on Data Warehousing and Knowledge Discovery (DaWakK), pp. 353-
358, 1999, LNCS 1676

Chaudhuri S., Dayal U.: An overview of data warehousing and OLAP technology.
SIGMOD Record, 26(1), pp. 65-74, 1997

Chen J., Chen S., Rundensteiner E.: A Transactional Model for Data Warehouse
Maintenance. Proc. of Int. Conference on Conceptual Modeling (ER), pp. 247-262,
2002, LNCS 2503

Chen J., Chen S., Zhang X., Rundensteiner E.: Detection and Correction of Con-
flicting Source Updates for View Maintenance, Proc. of Int. Conference on Data
Engineering (ICDE), pp. 436-448, 2004

Chen J., Rundensteiner E.: TxnWrap: A Transactional Approach to Data Ware-
house Maintenance, Technical Report WPI-CS-TR-00-26, Worcester Polytech-
nic Institute, 2000, retrieved June 11, 2006, from http://citeseer.ist.psu.edu/
384586.html

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Metadata Management in a Multiversion Data Warehouse 155

Chen S., Zhang X., Rundensteiner E.: A Compensation-based Approach for Ma-
terialized View Maintenance in Distributed Environments. IEEE Transactions on
Knowledge and Data Engineering, 18(8), pp. 1068-1081, 2006

Competing Data Warehousing Standards to Merge in the OMG. Retrieved August
10, 2005 from http://xml.coverpages.org/OMG-MDC-20000925.html

Czejdo B., Messa K., Morzy T., Putonti C.: Design of Data Warehouses with
Dynamically Changing Data Sources. Proc. of Southern Conference on Computing,
USA, 2000

Elmagarmid A., Rusinkiewicz M., Sheth A.: Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann Publishers, 1999, ISBN 1-
55860-216-X

Eder J., Koncilia C.: Changes of Dimension Data in Temporal Data Warehouses.
Proc. of Int. Conference on Data Warehousing and Knowledge Discovery (DaWaK),
pp. 284-293, 2001, LNCS 2114

Eder J., Koncilia C., Mitsche D.: Automatic Detection of Structural Changes in
Data Warehouses. Proc. of Int. Conference on Data Warehousing and Knowledge
Discovery (DaWaK), pp. 119-128, 2003, LNCS 2737

Eder J., Koncilia C., Mitsche D.: Analysing Slices of Data Warehouses to Detect
Structural Modifications. Proc of Conference on Advanced Information Systems
Engineering (CAiSE), pp. 492-505, 2004, LNCS 3084

Eder J., Koncilia C., Morzy T.. The COMET Metamodel for Temporal Data
Warehouses. Proc. of Conference on Advanced Information Systems Engineering
(CAiSE), pp. 83-99, 2002, LNCS 2348

Etzion O., Jajoda S., Sripada S.: Temporal Databases: Research and Practice.
1998, LNCS 1399

Gangarski S., Jomier G.: A framework for programming multiversion databases.
Data Knowledge Engineering, 36(1), pp. 29-53, 2001

Golfarelli M., Lechtenborger J., Rizzi S., Vossen G.: Schema Versioning in Data
Warehouses. Proc. of ER Workshops, pp. 415-428, 2004, LNCS 3289

Goralwalla I.A., Tansel A.U., Ozsu M.T.: Experimenting with Temporal Relational
Databases. Proc. of ACM Conference on Information and Knowledge Management
(CIKM), pp. 296-303, 1995,

Gupta A., Mumick 1.S. (eds.): Materialized Views: Techniques, Implementations,
and Applications. The MIT Press, 1999, ISBN 0-262-57122-6

Gyssens M., Lakshmanan L.V.S.: A Foundation for Multi-Dimensional Databases.
Proc. of Int. Conference on Very Large Data Bases (VLDB), pp. 106-115, 1997
Hurtado C.A., Mendelzon A.O., Vaisman A.A.: Maintaining Data Cubes under
Dimension Updates. Proc. of Int. Conference on Data Engineering (ICDE), pp.
346-355, 1999

Hurtado C.A., Mendelzon A.O., Vaisman A.A.: Updating OLAP Dimensions. Proc.
of ACM Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 60-66, 1999
Microsoft ImmortalDB. Retrieved November 25, 2005 from
http://research.microsoft.com/db/ImmortalDB/

Jarke M., Lenzerini M., Vassiliou Y., Vassiliadis P.: Fundamentals of Data Ware-
houses. Springer-Verlag, 2003, ISBN 3-540-42089-4

Jensen C.S., Lomet D.B.: Transaction Timestamping in (Temporal) Databases.
Proc. of Int. Conference on Very Large Data Bases (VLDB), pp. 441-450, 2001
Kaas Ch.K., Pedersen T.B., Rasmussen B.D.: Schema Evolution for Stars and
Snowflakes. Proc. of Int. Conference on Enterprise Information Systems (ICEIS),
pp. 425-433, 2004

156

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

R. Wrembel and B. Bebel

Kang H.G., Chung C.W.: Exploiting Versions for On-line Data Warehouse Main-
tenance in MOLAP Servers. Proc. of Int. Conference on Very Large Data Bases
(VLDB), pp. 742-753, 2002

Kim W., Chou H.: Versions of Schema for Object-Oriented Databases. Proc. of
Int. Conference on Very Large Data Bases (VLDB), pp. 148-159, 1988

Kimball R., Caserta J.: The Data Warehouse ETL Tookit. John Wiley & Sons,
Inc., 2004, ISBN 0764567578

Kimball R., Ross M.: The Data Warehouse Toolkit. John Wiley & Sons, Inc., 2002,
ISBN 0-471-20024-7

Kulkarni S., Mohania M.: Concurrent Maintenance of Views Using Multiple
Versions. Proc. of the Int. Database Engineering and Application Symposium
(IDEAS), pp. 254-259 ,1999

Lee A., Nica A., Rundensteiner E.: The EVE Framework: View Synchronization
in Evolving Environments. Technical Report WPI-CS-TR-97-4, Worcester Poly-
technic Institute, 1997, retrieved June 10, 2006, from http://citeseer.ist.psu.edu/
100503.html

Letz C., Henn E.T., Vossen G.: Consistency in Data Warehouse Dimensions. Proc.
of Int. Database Engineering and Applications Symposium (IDEAS), pp. 224-232,
2002

McBrien P.; Poulovassilis A.: Automatic Migration and Wrapping of Database
Applications - a Schema Transformation Approach. Proc. of Int. Conference on
Conceptual Modeling (ER), pp. 96-113, 1999, LNCS 1728

McBrien P., Poulovassilis A.: Schema Evolution in Heterogeneous Database Archi-
tectures, A Schema Transformation Approach. Proc. of Conference on Advanced
Information Systems Engineering (CAiSE), pp. 484-499, 2002, LNCS 2348
Mendelzon A.O., Vaisman A.A.: Temporal Queries in OLAP. Proc. of Int. Confer-
ence on Very Large Data Bases (VLDB), pp. 242-253, 2000

Morzy T., Wrembel R.: Modeling a Multiversion Data Warehouse: A Formal Ap-
proach. Proc. of Int. Conference on Enterprise Information Systems (ICEIS), pp.
120-127, 2003

Morzy T., Wrembel R.: On Querying Versions of Multiversion Data Warehouse. Proc.
ACM Int. Workshop on Data Warehousing and OLAP (DOLAP), pp. 92-101, 2004
Nica A., Lee A., Rundensteiner E.: CVS: The Complex Substitution Algorithm
for View Synchronization. Technical Report WPI-CS-TR-97-8, Worcester Poly-
technic Institute, 1997, retrieved June 10, 2006, from http://citeseer.ist.psu.edu/
nica97cv.html

Nica A., Rundensteiner E.: Using Complex Substitution Strategies for View
Synchronization. Technical Report, WPI-CS-TR-98-4, Worcester Polytechnic
Institute, 1998, retrieved June 11, 2006, from http://citeseer.ist.psu.edu/
35922.html

Object Management Group. Common Warehouse Metamodel Specification, v1.1.
Retrieved August 10, 2005 from http://www.omg.org/cgi-bin /doc?formal /03-03-02
Overmars M.H.,van Leeuwen J.: Dynamic multidimensional data structures based
on Quad- and K-D trees. Acta Informatica, (17), pp. 267-285, 1982

Panel discussion on "Future trends in Data Warehousing and OLAP" at ACM Int.
Workshop on Data Warehousing and OLAP (DOLAP), 2004

Quass D., Widom J.: On-Line Warehouse View Maintenance. Proc. of ACM SIG-
MOD Int. Conference on Management of Data, pp. 393-404, 1997

Quix C.: Repository Support for Data Warehouse Evolution. Proc. of Design and
Management of Data Warehouses (DMDW), 1999

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

Metadata Management in a Multiversion Data Warehouse 157

Rizzi S.: Open Problems in Data Warehousing: 8 Years Later. Keynote speech at
Design and Management of Data Warehouses (DMDW), 2003

Roddick J.: A Survey of Schema Versioning Issues for Database Systems. In Infor-
mation and Software Technology, volume 37(7), pp. 383-393, 1996

Roth M.T., Schwarz P.: Don’t scrap it, wrap it. A wrapper architecture for data
sources. Proc. of Int. Conference on Very Large Data Bases (VLDB), pp. 266-275,
1997

Rundensteiner E., Koeller A., and Zhang X.: Maintaining Data Warehouses over
Changing Information Sources. Communications of the ACM, 43(6), 2000
Salzberg B., Jiang L., Lomet D., Barrena M., Shan J., Kanoulas E.: A Framework
for Access Methods for Versioned Data. Proc. of Int. Conference on Extending
Database Technology (EDBT), pp. 730-747, 2004, LNCS 2992

Sarawagi S.: Indexing OLAP Data. IEEE Data Engineering Bulletin, 20(1), pp.
36-43, 1997

Sarawagi S., Stonebraker M.: Efficient organization of large multidimensional ar-
rays. Proc. of Int. Conference on Data Engineering (ICDE), pp. 328-336, 1994
Schlesinger L., Bauer A., Lehner W., Ediberidze G., Gutzman M.: Efficienlty Syn-
chronizing Multidimensional Schema Data. Proc. of ACM Int. Workshop on Data
Warehousing and OLAP (DOLAP), pp. 69-76, 2001

Slowly Changing Dimension. Retrieved July 24, 2006, from
http://www.lkeydata.com/datawarehousing/scd-type-1.html

Sjsberg D.: Quantifying Schema Evolution. Information Software Technology
35(1), pp. 35-54, 1993

Snodgrass R. (ed.): The Temporal Query Language TSQL2. Kluwer Academic
Publishers, 1995, ISBN 0-7923-9614-6

Tansel A., Gadia J., Jajodia S., Segev A., Snodgrass R. (Eds.): Temporal
Databases. Benjamin Cummings, 1993, ISBN 0-8053-2413-5

Teschke M., Ulbrich A.:. Concurrent Warehouse Maintenance whithout Compro-
mising Session Consistency. Proc. of Int. Conference on Database and Expert Sys-
tems Applications (DEXA), pp. 776-785, 1998, LNCS 1460

Vaisman A., Mendelzon A.: A Temporal Query Language for OLAP: Implemen-
tation and Case Study. Proc. of Workshop on Data Bases and Programming Lan-
guages (DBPL), pp. 78-96, 2001, LNCS 2397

Valduriez P.: Join Indices. ACM Transactions on Database Systems (TODS), 12(2),
pp. 218-246, 1987

Vetterli T., Vaduva A., Staudt M.: Metadata Standards for Data Warehousing:
Open Information Model vs. Common Warehouse Metadata. SIGMOD Record,
vol. 29(3), pp. 68-75, 2000

Wrembel R., Bebel B.: Metadata Management in a Multiversion Data Warehouse.
Proc. of Ontologies, Databases, and Applications of Semantics (ODBASE), pp.
1347-1364, 2005, LNCS 3761

Wrembel R., Morzy T.: Managing and Querying Versions of Multiversion Data
Warehouse. Proc. of Int.f Conference on Extending Database Technology (EDBT),
pp. 1121-1124, 2006, LNCS 3896

Zhang X., Rundensteiner E.: Integrating the maintenance and synchronization of
data warehouses using a cooperative framework. Information Systems 27, pp. 219-
243, 2002

A Tool for Evaluating Ontology Alignment
Strategies

Patrick Lambrix and He Tan

Department of Computer and Information Science
Link&pings universitet, Sweden
{patla,hetan}@ida.liu.se

Abstract. Ontologies are an important technology for the Semantic
Web. In different areas ontologies have already been developed and many
of these ontologies contain overlapping information. Often we would
therefore want to be able to use multiple ontologies. To obtain good
results, we need to find the relationships between terms in the different
ontologies, i.e. we need to align them. Currently, there exist a number
of systems that support users in aligning ontologies, but not many com-
parative evaluations have been performed and there exists little support
to perform such evaluations. However, the study of the properties, the
evaluation and comparison of the alignment strategies and their combi-
nations, would give us valuable insight in how the strategies could be
used in the best way. In this paper we propose the KitAMO framework
for comparative evaluation of ontology alignment strategies and their
combinations and present our current implementation. We evaluate the
implementation with respect to performance. We also illustrate how the
system can be used to evaluate and compare alignment strategies and
their combinations in terms of performance and quality of the proposed
alignments. Further, we show how the results can be analyzed to obtain
deeper insights into the properties of the strategies.

Keywords: ontologies, alignment, evaluation.

1 Introduction

Intuitively, ontologies (e.g. [22IT4]) can be seen as defining the basic terms and re-
lations of a domain of interest, as well as the rules for combining these terms and
relations. They are considered to be an important technology for the Semantic
Web. Ontologies are used for communication between people and organizations
by providing a common terminology over a domain. They provide the basis for
interoperability between systems. They can be used for making the content in
information sources explicit and serve as an index to a repository of information.
Further, they can be used as a basis for integration of information sources and as
a query model for information sources. They also support clearly separating do-
main knowledge from application-based knowledge as well as validation of data
sources. The benefits of using ontologies include reuse, sharing and portability

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 182 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Tool for Evaluating Ontology Alignment Strategies 183

of knowledge across platforms, and improved maintainability, documentation,
maintenance, and reliability. Overall, ontologies lead to a better understanding
of a field and to more effective and efficient handling of information in that field.
In the field of bioinformatics, for instance, the work on ontologies is recognized
as essential in some of the grand challenges of genomics research [4] and there is
much international research cooperation for the development of ontologies (e.g.
the Gene Ontology (GO) [13] and Open Biomedical Ontologies (OBO) [33] ef-
forts) and the use of ontologies for the Semantic Web (e.g. the EU Network of
Excellence REWERSE [36/37]).

Many ontologies have already been developed and many of these ontologies
contain overlapping information. Often we would therefore want to be able to
use multiple ontologies. For instance, companies may want to use community
standard ontologies and use them together with company-specific ontologies.
Applications may need to use ontologies from different areas or from different
views on one area. Ontology builders may want to use already existing ontologies
as the basis for the creation of new ontologies by extending the existing ontologies
or by combining knowledge from different smaller ontologies. In each of these
cases it is important to know the relationships between the terms in the different
ontologies. We say that we align two ontologies when we define the relationships
between terms in the different ontologies. We merge two ontologies when we,
based on the alignment relations between the ontologies, create a new ontology
containing the knowledge included in the source ontologies.

Ontology alignment and merging is recognized as an important step in ontol-
ogy engineering that needs more extensive research (e.g. [34]). Currently, there
exist a number of systems that support users in aligning or merging ontologies
in the same domain. These systems use different techniques, but it is not clear
how well these techniques perform for different types of ontologies. Also, it is
not clear whether and how different techniques could be combined to provide
better alignments. The study of the properties, the evaluation and comparison of
the alignment strategies and their combinations, would give us valuable insight
in how the strategies could be used in the best way. It would also lead to rec-
ommendations on how to improve the alignment techniques. However, relatively
few comparative evaluations on ontology merging and alignment have been per-
formed [2324125126)34T0/T7] and no advanced tools for supporting these kinds
of evaluations exist yet [20]. To be able to study the properties of the alignment
techniques and their combinations and to compare them, we need tools that
allow us to evaluate them in different settings. Such tools should allow us to
apply the techniques and different combinations of techniques to different types
of ontologies. The tools should also support evaluation and comparison of the
techniques and their combinations in terms of e.g. performance and quality of
the alignment. Further, we need support to analyze the evaluation results in
different ways.

In this paper we propose a tool for evaluating ontology alignment strategies
and their combinations. The tool covers the non-interactive part of the gen-
eral framework for aligning ontologies as described in [25]. In section [we first

184 P. Lambrix and H. Tan

describe the KitAMOY framework for evaluating ontology alignment strategies
and then describe the current implementation. In section [the implementation
is evaluated with respect to performance. We also show how the tool can be
used to evaluate and compare strategies and their combinations in terms of per-
formance and quality of the proposed alignment relationships. Further, we show
how the results can be analyzed to examine the advantages and disadvantages
of the strategies in more details. Related work is discussed in section Bl and the
paper concludes in section [l In the next section we provide some background on
(biomedical) ontologies, ontology alignment systems and evaluations of ontology
alignment strategies.

2 Background

2.1 Ontologies

Ontologies differ regarding the kind of information they can represent. From a
knowledge representation point of view ontologies can have the following com-
ponents (e.g. [22I38]). Concepts represent sets or classes of entities in a domain.
Instances represent the actual entities. They are, however, often not represented
in ontologies. Further, there are many types of relations. Finally, axioms repre-
sent facts that are always true in the topic area of the ontology. These can be
such things as domain restrictions, cardinality restrictions or disjointness restric-
tions. Depending on which of the components are represented and the kind of
information that can be represented, we can distinguish between different kinds
of ontologies such as controlled vocabularies, taxonomies, thesauri, data models,
frame-based ontologies and knowledge-based ontologies. These different types of
ontologies can be represented in a spectrum of representation formalisms rang-
ing from very informal to strictly formal. For instance, some of the most expres-
sive representation formalisms in use for ontologies are description logic-based
languages such as DAMLA+OIL and OWL.

2.2 Biomedical Ontologies

In this paper we have chosen to use test cases based on biomedical ontologies
(e.g. [22]). There are several reasons for this. Research in biomedical ontologies
is recognized as essential in some of the grand challenges of genomics research
[4]. The field has also matured enough to develop standardization efforts. An
example of this is the organization of the first conference on Standards and On-
tologies for Functional Genomics (SOFG) in 2002 and the development of the
SOFG resource on ontologies. Further, there exist ontologies that have reached
the status of de facto standard and are being used extensively for annotation
of databases. Also, OBO was started as an umbrella web address for ontologies
for use within the genomics and proteomics domains. Many biomedical ontolo-
gies are already available via OBO. There are also many overlapping ontologies
available in the field.

! Toolkit for Aligning and Merging Ontologies.

A Tool for Evaluating Ontology Alignment Strategies 185

The ontologies that we use in this paper are GO ontologies, Signal-Ontology
(SigO) [3], Medical Subject Headings (MeSH) [28] and the Adult Mouse
Anatomical Dictionary (MA) [I6]. The GO Consortium is a joint project which
goal is to produce a structured, precisely defined, common and dynamic con-
trolled vocabulary that describes the roles of genes and proteins in all organ-
isms. Currently, there are three independent ontologies publicly available over
the Internet: biological process, molecular function and cellular component. The
GO ontologies are a de facto standard and many different bio-databases are to-
day annotated with GO terms. The terms in GO are arranged as nodes in a
directed acyclic graph, where multiple inheritance is allowed. The purpose of
the SigO project is to extract common features of cell signaling in the model
organisms, try to understand what cell signaling is and how cell signaling sys-
tems can be modeled. SigO is based on the knowledge of the Cell Signaling
Networks data source [41] and treats complex knowledge of living cells such
as pathways, networks and causal relationships among molecules. The ontology
consists of a flow diagram of signal transduction and a conceptual hierarchy
of biochemical attributes of signaling molecules. MeSH is a controlled vocabu-
lary produced by the American National Library of Medicine and used for in-
dexing, cataloging, and searching for biomedical and health-related information
and documents. It consists of sets of terms naming descriptors in a hierarchical
structure. These descriptors are organized in 15 categories, such as the cate-
gory for anatomic terms, which is the category we use. The purpose of MA is
to provide an ontology for annotating and integrating different types of data
pertinent to anatomy. It is based on the Mouse Embryo Anatomy Nomenclature
Database [2] and will be integrated with the Anatomical Dictionary for Mouse
Development to generate an anatomy ontology covering the entire lifespan of
the laboratory mouse. The ontology contains more than 2400 anatomical terms.
They are structured as directed acyclic graphs across is-a and part-of relation-
ships. The hierarchy of the ontology is organized in both spatial and functional
ways.

2.3 Ontology Alignment Systems

There exist a number of ontology alignment systems that support users in find-
ing inter-ontology relationships. Some of these systems are also ontology merge
systems. Many ontology alignment systems can be described as instantiations of
the general framework defined in [25)26] (figure [II).

In our framework an alignment system receives as input two source ontologies.
The system can be seen as being composed of two major parts. The first part
(I in figure [[l) computes alignment suggestions. The second part (II) interacts
with the user to decide on the final alignments.

An alignment system can include several matchers. These matchers calculate
similarities between the terms from the different source ontologies. The matchers
can implement strategies based on linguistic matching, structure-based strate-
gies, constraint-based approaches, instance-based strategies, strategies that use
auxiliary information or a combination of these. Strategies based on linguistic

186 P. Lambrix and H. Tan

—
—
—
ﬁf?ral/‘ domain
‘W dictionaries
corpora x\/ thesauri
~thesauri __~
— 0 -
|] 4
alignment algorithm

matcher

matcher

v

!

combination

o 0 =" o O @«

filger I

suggestions L‘us er '

accepted I conflict
H |
suggestions \ checker

V""‘:‘»(DBB(TQ"‘"—‘N

©“ o =0 O — O —* B O
v

Fig. 1. A general alignment strategy [25]

matching make use of textual descriptions of the concepts and relations such
as names, synonyms and definitions. The similarity measure between concepts
is based on comparisons of the textual descriptions. Structure-based strategies
use the structure of the ontologies to provide suggestions. For instance, previ-
ously accepted alignments can be used to influence the similarity values between
the sub- and super-concepts of already aligned concepts. Other approaches use
paths between already aligned concepts to generate new alignment suggestions.
In the constraint-based approaches the axioms are used to provide suggestions.
For instance, knowing that the range and domain of two relations are the same,
may be an indication that there is a relationship between the relations. On
their own these approaches may not be sufficient to provide high quality sug-
gestions, but they may complement other approaches to reduce the number of
irrelevant suggestions. In some cases instances are available directly or can be
obtained. When instances are available, they may be used in defining similar-
ities between concepts. Further, dictionaries and thesauri representing general
or domain knowledge, or intermediate ontologies may be used to enhance the
alignment process. Table[Ilgives an overview of the used strategies per alignment
system. For more information we refer to [26].

A Tool for Evaluating Ontology Alignment Strategies 187

Table 1. Strategies used by alignment systems [20]

linguistic ~ structure constraints instances auxiliary

ArtGen name parents, children domain-specific WordNet
[30] documents
ASCO name, label, parents, children, WordNet
[27] description siblings,

path from root
Chimaera name parents, children
129
FCA-Merge name domain-specific
[39] documents
FOAM name, parents, children equivalence
[12l6] label
GLUE name neighborhood instances
5
HCONE name parents, children WordNet
i21]
IF-Map instances a reference
[19] ontology
iMapper leaf, non-leaf, domain, instances WordNet
[40] children, range

related node
OntoMapper name parents, children documents
135]
(Anchor-) name direct graphs
PROMPT
32
SAMBO name, is-a and part-of, domain-specific WordNet,
[24125126] synonym descendants documents UMLS

and ancestors
S-Match label path from root semantic WordNet
[15] relations

codified
in labels

Alignment suggestions are then determined by combining and filtering the
results generated by one or more matchers. Although most systems combine
different approaches, not much research is done on the applicability and
performance of these combinations. In the current systems similarity values are
often combined using a weighted sum. In most systems the filtering consists
of retaining the pairs of terms with a similarity value above a certain thresh-
old as alignment suggestions. Recently, some more advanced filtering meth-
ods are proposed, such as in [3] where the structure of the ontologies is used
to filter out alignment suggestions. By using different matchers and combin-
ing them and filtering in different ways we obtain different alignment
strategies.

188 P. Lambrix and H. Tan

source ontologies

\ alignments
/

X [2
merging TITIS
computation ! \C/heCk?r/
computed ontology user)

Y
merged ontology

Fig. 2. A general merging algorithm [25]

The interactive component of the alignment system presents the suggestions
to the user who accepts or rejects them. The acceptance and rejection of a
suggestion may influence further suggestions. Also, some matchers (e.g. some
structural matchers as in [32/24]) require as input already accepted suggestions.
Further, a conflict checker is used to avoid conflicts introduced by the align-
ment relationships. The output of the alignment algorithm is a set of alignment
relationships between terms from the source ontologies.

Figure 2lshows a simple merging algorithm. A new ontology is computed from
the source ontologies and their identified alignment. The checker is used to avoid
conflicts as well as to detect unsatisfiable concepts and, if so desired by the user,
to remove redundancy.

2.4 Evaluation of Ontology Alignment Strategies

To date comparative evaluations of ontology alignment and merge systems have
been performed by some groups ([34], [23/2425I26] and the EON and I3CON con-
tests). The EU OntoWeb project [34] evaluated the systems PROMPT [31] based
on Protégé (with extension Anchor-PROMPT [32]), Chimaera [29] (described,
not evaluated), FCA-Merge [39] and ODEMerge. This evaluation focused on
such things as functionality, interoperability and visualization, but did not in-
clude tests on the quality of the alignment. In [23124126] PROMPT, Chimaera,
FOAM and an early version of SAMBO were evaluated in terms of the quality
of the alignment as well as the time it takes to align ontologies with these tools.
Different alignment algorithms and their combinations were evaluated in [25J26].
The test cases were biomedical ontologies and ontologies about academia.

In 2004, two different experiments for the evaluation of the alignment tools
were launched: the ontology alignment contest held by the International
Workshop on the Evaluation of Ontology-based Tools (EON) [I0] and the

A Tool for Evaluating Ontology Alignment Strategies 189

evaluation of ontology alignment tools organized by the Information Interpreta-
tion and Integration Conference (I3CON) [I7]. Their main goals were to show
how it is possible to evaluate ontology alignment tools and provide a framework
for the evaluation of the alignment tools. In 2005 EON and I3CON organized a
unique evaluation campaign. Its outcome is presented in [9]. In this experiment
there were 7 participants. The participants were provided pairs of ontologies
(OWL) and their expected results (RDF/XML). The participants submitted to
the organizers their best alignment results which were generated under the same
set of parameters. The alignment algorithms were to be performed without inter-
vention. The test cases were from three topics, including bibliographic ontologies,
ontologies constructed from Google, Yahoo and Looksmart web directories, and
anatomy models FMA and OpenGalen. Not all participants finished all these
tests. The organizers evaluated the results submitted by the participants and
compared them. The evaluation measures were precision and recall.

3 KitAMO

In this section we present the KitAMO framework for evaluating ontology align-
ment strategies and present the current implementation. KitAMO supports the
study, evaluation and comparison of alignment strategies and their combinations
based on their performance and the quality of their alignments on test cases. This
corresponds to the evaluation of the non-interactive alignment components (part
I in figure [I) in an ontology alignment system. KitAMO also provides support
for the analysis of the evaluation results.

3.1 Framework

Figure B illustrates the KitAMO framework for comparative evaluation of the
different alignment components. KitAMO receives as input different alignment
components that we want to evaluate, e.g. various matchers, filters and com-
bination algorithms. KitAMO contains a database of evaluation cases which is
built in advance. Each case consists of two ontologies and their expected align-
ments produced by experts on the topic area of the ontologies. The alignment
components are evaluated using these cases.

The evaluation tool in the framework provides the wrapper which allows the
alignment components to work on the ontologies in the database of evaluation
cases, and provides the interface where the user can decide, e.g. which evaluation
cases are used, and how these alignment components cooperate. The evaluation
tool also has the responsibility to save the similarity values generated by the
alignment components to the similarity database, and retrieves these similarity
values from the database when required by the analysis tool.

The analysis tool receives as input data from the database of evaluation cases,
similarity values retrieved by the evaluation tool from the similarity database,
and possibly previously generated data from the analysis database. The analysis
tool allows a user to analyze different properties of the evaluated alignment com-
ponents and their combinations. For instance, it is possible to analyze such things

190 P. Lambrix and H. Tan

alignment
components

matchers filters

combination
algorithms
\i
—
T evaluation

v

evaluation
casesdb || 00! |

similarity

—_database - (user)

analysis
tool

—_database ~

atabase

Y

evaluation
report

Fig. 3. The KitAMO framework

as the similarity values between terms from different matchers, the performance
of the matchers, and the quality of the alignment suggestions generated by differ-
ent matchers and their combinations with different filters. Through the analysis
tool the user can also save the evaluation results into the analysis database and
produce an evaluation report.

3.2 Implementation

In the current implementation of KitAMO we have focused on the evaluation
of matchers. Instead of allowing different combination and filtering strategies
as input, currently we implemented the most used strategies in KitAMO, i.e. a
weighted sum as combination strategy and filtering based on a threshold value.

The matchers are added to KitAMO as plug-ins. Each matcher needs to im-
plement the plug-in interface where similarity values between terms in ontologies

A Tool for Evaluating Ontology Alignment Strategies 191

are computed. When new matchers are added, the system is restarted in order to
pick up the new plug-ins, and to take the change in configuration into account.

The current database of evaluation cases consists of five test cases based on
two groups of biomedical ontologies. These cases were previously used in the
evaluations in [25/26/42]. For the first two cases we use a part of a GO ontology
together with a part of SigO. The first case, behavior (B), contains 57 terms
from GO and 10 terms from SigO. The second case, immune defense (ID), con-
tains 73 terms from GO and 15 terms from SigO. We used more terms from GO
than from SigO because the granularity of GO is higher than the granularity of
SigO for these topics. The other cases are based on MeSH (anatomy category)
and MA. The three cases used in our test are: nose (containing 15 terms from
MeSH and 18 terms from MA), ear (containing 39 terms from MeSH and 77
terms from MA), and eye (containing 45 terms from MeSH and 112 terms from
MA). We translated the ontologies from the GO flat file format to OWL retain-
ing identifiers, names, synonyms, definitions and is-a and part-of relationships.
The alignments for these test cases were provided to us by biologists. In this
implementation of the database we only considered equivalence and is-a rela-
tions between terms as alignment relationships. For each case we also stored the
expected suggestions and the inferred suggestions. The expected suggestions is
the minimal set of alignment suggestions that matchers are expected to generate
for a perfect recall. This set does not include the inferred suggestions. Inferred
suggestions can be inferred by a merging algorithm. An example of an inferred
suggestion is that incus is-a ear ossicle. In this case we know that auditory bone
(MA) is equivalent to ear ossicle (MeSH), and incus is-a auditory bone in MA.
Then the system should derive that incus is-a ear ossicle.

The user starts the evaluation process by choosing an evaluation case. Then
the user decides which matchers should be used in the evaluation from the list
of matcher plug-ins configured in KitAMO. For instance, figure [shows that we
have 4 matcher plug-ins (UMLSKSearch, TermWN, TermBasic and BayesLearn-
ing) and that we decided to perform the evaluations on the first two matchers.
The selected matchers calculate similarity values between the terms in the cho-
sen evaluation case, and the results are written to the similarity database. For
the combination each matcher can be assigned a weight (weight in figure [H]).
The similarity values generated by the combination, i.e. the weighted sum, can
also be saved to the similarity database by the user. For the filter the user can
assign threshold values for individual matchers and the combination (threshold
in figure [{).

KitAMO shows the result of an evaluation for a group of weights and thresh-
olds in the form of a table as illustrated in figure[6l In the example we see that the
number of expected suggestions (ES) is 27 for the evaluation case. UMLSKSearch
found 23 correct alignments, 2 wrong suggestions and 1 inferred suggestion for
the threshold 0.6. For the combination with weight 1.0 for UMLSKSearch and
weight 1.2 for TermWN we found 24 correct suggestions, 2 wrong suggestions
and no inferred suggestions for threshold 0.5. The user can save this data to the
analysis database and at any time the user can look at previously saved data

192 P. Lambrix and H. Tan

Allgn ear:Ma and ear;MeSH with

F UMLSKSearch
matchers: ¥ TermwiN | Etanl Finaliza
r TermBasic

I BayeslLeaming

Fig. 4. The list of matcher plug-ins

weight threshold

UMLSKSearch 1.0 0.8

Termi |1.2 0.6

zomb. Threshald Iﬁ
Analyse save Comb. | Festart |

Fig. 5. The weights and thresholds assignment

ES Th C W I
UMLSKSearch 0.6 23 2 1
Termih 27 0.6 26 19 2
Combil.0,1.2) 0.5 24 2 0
El Show Similarity values (U Matcher Performance
El show Analysis Results . Sawve Analysis

Fig. 6. The analysis result

(figure[7). The table with previously saved data can be sorted according to each
column. The user can also look at the actual similarity values between the pairs
of terms in the ontologies of the evaluation case. For instance, figure [§ shows a
table with the terms in the ontologies together with the similarity values gener-
ated by the analyzed matchers and combinations. It also shows whether the pair
is a correct alignment, an inferred suggestion or a wrong suggestion. The table
can be sorted according to each column. Further, the user can look at the time

A Tool for Evaluating Ontology Alignment Strategies

193

(1.0UM,1.0TW) 0.50 23 2 0
(1.0UM,1.2TW) 0.50 24 2]
Termiwh 0.40 26 110 19
Termwh 0.50 26 65 a
TermwWh 0.60 26 19 2
UMLSKSearch 0.40 23 2 1
UMLSKSearch 0.50 23 2 i1
UMLSKSearch 0.60 23 2 1

Fig. 7. The previously saved analysis results

basilar mamhria

basilar n

10000/

C

tectonal membrane| tectonal membrane 1.0000| 1.0000 10000 <
stapedius stapadius 1.0000| 1.0000 1.0000f C

scala bympani scala tympani 1.0000| 1.0000 1.0000/ C
vestibular aguaduce| vestibular aqueduct 1.0000| 10000 1.0000
utncle| saccule and wtricle 1.0000| 1.0000 1.0000, W

tensor tympani tansor tympan 1.0004| 1.0000 100000 ©
middie ear middhe ear 1.0000| 1.0000 1.00000 C

ear aar 1.0000] 1.0000 1.0000f €

spiral organ| grgan of cart] 1.0000) 1.0000 .1,00000 C
tympanic membrane| tympanic membrane 1.0000| 1.0000 100000 €
auditory bone aar pssicle 1.0000| 10000 1.0000f C
cochlea cochlea 1.0000f 10000 1.0000f <

saccule| saccule and wtncle 1.0000(1.0000 1.0000, W

MCUs Ncus 1.0000| 1.0000 10000 <

Fig. 8. The similarity table

Termi' ™

41,156

UMLSKSearch

137.798

Fig. 9. The performance table

needed by the matchers for the computation of similarity values as illustrated in

figure

The user can always restart the evaluation process with a different group of
matchers or with different combinations and thresholds. Finally, the user can
export the similarity and analysis data to Excel files.

KitAMO is implemented in Java. It relies on the Jena ontology API [1§] for
parsing OWL files. MySQL is used for the databases in KitAMO.

194 P. Lambrix and H. Tan
4 Evaluation and Discussion

In this section we evaluate the performance of the system using our test cases.
This gives us an indication of the extra amount of time that KitAMO needs to
process the alignment evaluations. This extra amount of time should be com-
pared to the time it takes to manually analyze the similarity results generated
by different matchers. We also give an example use of the system.

4.1 Performance of the System

We have run KitAMO using our test cases on a PC with 128Mb memory and
an AMD Athlon 64 processor. We divide the time needed for an evaluation
task into four parts. The first part includes the time for loading the ontolo-
gies and for generating the final evaluation reports as output (I/O in table [2I).
The second part is the time needed by each matcher to calculate the similarity
values (table [3]). This is an inherent property of the matchers and is outside
KitAMO'’s control. However, we note that KitAMO actually measures this time
as part of an evaluation (e.g. figure [@). The third part is the time necessary
to set up the evaluation (Setup in table 2]). This includes the creation and ini-
tial set-up of the similarity database, the insertion of the similarity values into
the database, and the creation of the analysis database. The fourth part is the
time needed by the analysis tool for one evaluation given the selected matchers,
weights and threshold (Analysis in table 2]). The first, second and third parts
are done only once per evaluation. The fourth part is repeated for each new
analysis.

Table 2. Time for evaluation (in seconds)

Case I/0O Setup Analysis

B 24 24 0.3
ID 26 44 0.3
nose 2.9 1.7 0.4
ear 3.0 8.3 0.7
eye 3.4 145 1.1

Table 3. Average time for computation of similarity values based on 5 runs (in seconds)

Case TermBasic TermWN UMLSKSearch BayesLearning

B 0.7 11.0 33.6 50.9
1D 3.0 37.0 37.6 90.6
nose 0.6 7.3 44.1 24.5
ear 3.8 37.9 105.8 114.2

eye 8.0 60.4 132.2 173.1

A Tool for Evaluating Ontology Alignment Strategies 195

As expected, the larger the ontologies, the more time the evaluation takes.
With respect to the parts under KitAMO’s control, the initial set-up takes the
most time. Also this is expected as a number of databases needs to be created.
However, the part that usually takes the most time is outside KitAMO’s control,
i.e. the calculation of the similarity values by the matchers. Both the initial set-
up and the running of the matchers is performed only once. The actual analysis
is fast and can be repeated to create new analysis results.

In the past we have run analysis experiments on the implemented test cases
using the matchers in SAMBO (e.g. [25126/42]). The time needed by each matcher
to calculate the similarity values was similar to the time it takes in KitAMO. The
analysis process was done manually and partly using Excel. This process needed
to be repeated for each new analysis. While KitAMO generates the analysis
results in seconds, this process was previously time-consuming and error-prone.

4.2 Example Use

In this part we show how we can use KitAMO for evaluating matchers and
analyzing the results. We use the ear case to evaluate two matcher plug-ins
TermWN and UMLSKSearch. The experiments are similar to the ones in [20].
TermWN [26] is a terminological matcher combined with the general thesaurus
WordNet. The terminological matcher is a combination matcher based on the
textual descriptions (names and synonyms) of concepts and relations. In the
current implementation, the matcher combines two approximate string matching
algorithms (n-gram and edit distance) and a linguistic algorithm. A n-gram is a
set of n consecutive characters extracted from a string. Similar strings will have
a high proportion of n-grams in common. Edit distance is defined as the number
of deletions, insertions, or substitutions required to transform one string into
the other. The greater the edit distance, the more different the strings are. The
linguistic algorithm computes the similarity of the terms by comparing the lists of
words of which the terms are composed. Similar terms have a high proportion of
words in common in the lists. A Porter stemming algorithm is employed to each
word. Further, the similarity measure is enhanced by looking up the hypernym
relationships of the pairs of words in the terms in WordNet [45].
UMLSKSearch [26] uses domain knowledge. We utilize the Metathesaurus in
the Unified Medical Language System (UMLS) [44] which contains more than
100 biomedical and health-related vocabularies. The Metathesaurus is organized
using concepts. The concepts may have synonyms which are the terms in the
different vocabularies in the Metathesaurus that have the same intended mean-
ing. The similarity of two terms in the source ontologies is determined by their
relationship in UMLS. In our experiments we use the UMLS Knowledge Source
Server to query the Metathesaurus with source ontology terms. As a result we
obtain concepts that have the source ontology term as their synonym. We assign
a similarity value of 1 for exact matches of query results for the two terms, 0.6
if the source ontology terms are synonyms of the same concept and 0 otherwise.
We decide to experiment with thresholds 0.4, 0.5, 0.6, 0.7 and 0.8 for the
two individual matchers, and different weights for the combination for the

196 P. Lambrix and H. Tan

| Th| =@ i 4|
((1.0UM,1.0TW) 0.50 2 o
(1.0UM,1.2TW))| 0.50 24 2| o
{1.00UM,1.4Tw)| 0,50 25 2 0
(1.0UM,1.6TW)| 0.50 26 3 0
(1.0UM,1.8TW) 0.50 26 3]
(1.0UM,2.0TW) 0.50 26 3 ol
(1.0UM,2.0TW) 0,50 26 13 2
(1.0UM,5.0TW) 0.50 26 19 2|
(1.2UM,2.0TW) 0.50 26 3 5]
[1.2UM,3.0TW)| 0.50 26 8 0
(1.2UM,5.0TW)| 0.50 26| 17 2|
(1.4UM,2. I]TWJ 0.50 26 2] 1]
(1.4Um,3.0Tw)| 0.50 26 3 0
fiee auM, S| 0.50 26 14 2
TermWN| 0.40 26 110 19
TarmWh| 0.50 26 65 8
Tarm!AN| 0.60 26 i 2
Tearm'Wh| 0.70 26 E 1]
TermWhn| 0.80 25 E 0
UMLSKSearch 0.40 23 2 1
UMLSKSearch) 0.50 23 2 1
UMLSKSearch 0.60 23 g 1}
UMLSKSearch 0.70 22 2| ol
UMLSKSearch| 0.80 22 2] ol

Fig. 10. The analysis results for the ear case

threshold 0.5. The analysis results are shown in figure [[0l We have sorted the
results according to the matchers and their thresholds. This allows us to analyze
the influence of the thresholds for the matchers. For TermWN we see that the
quality of the results differs significantly for the different thresholds. Although
the number of correct suggestions is almost the same (25 or 26), the number
of wrong suggestions goes from 3 to 8, 19, 65 and 110 when the threshold de-
creases. Also the number of inferred suggestions increases when the threshold
decreases. This would suggest to use a high threshold for TermWN for this
case. For UMLSKSearch the quality of results stays similar when the threshold
changes.

For the combination the threshold is the same, but we have varied the weights
for the matchers in the combination. In addition to comparing the different com-
binations to each other (e.g. the combinations with weights (1,1.4) and (1,1.6)
give good results), we can also compare the combinations with the individual

A Tool for Evaluating Ontology Alignment Strategies 197

matchers. We note, for instance, that TermWN finds the correct suggestions that
the combinations find. However, the combination finds fewer wrong suggestions.
In the combination UMLSKSearch can be seen as the contributing factor to filter
out the wrong and inferred suggestions. This is reasonable since the similarity
values from UMLSKSearch can only be 1, 0.6 and 0. It also suggests that the
available domain knowledge in UMLS has good quality.

We can also sort the table with respect to the threshold. This allows us to
compare the influence of the threshold between the different matchers. We can
also sort the table with respect to the number of correct suggestions. In the best
case this gives us the best alignment situation. Otherwise, when there are also
many wrong suggestions, it may give a good starting point for combining with
other algorithms (as TermWN in the example) or for applying a more advanced
filtering technique as in [3].

To examine the matchers in more detail we can use the similarity table as in
figure Bl By sorting the table with respect to TermWN and looking at the pairs
with similarity values above a certain threshold we can analyze the properties of
TermWN. For instance, we observe that TermWN finds suggestions where the
names of terms are slightly different, e.g. (stapes, stape). As the test ontologies
contain a large number of synonyms, also suggestions where the names of terms
are completely different can be found, e.g. (inner ear, labyrinth), where inner
ear has labyrinth as synonym. By using WordNet, TermWN finds suggestions
such as (perilymphatic channel, cochlear aqueduct) where cochlear aqueduct has
perilymphatic duct as synonym, and duct is a synonym of channel in WordNet. On
the other hand, since endothelium is a kind of epithelium in WordNet, TermWN
generates a wrong suggestion (corneal endothelium, corneal epithelium). Sorting
the table with respect to UMLSKSearch we can analyze the properties of that
matcher. As the similarity values assigned by UMLSKSearch can only be 1, 0.6
and 0, we obtain good results for the threshold 0.6. (This was already clear
from the table in figure [0l) The matcher finds suggestions of which the terms
have completely different names and synonyms, or have no synonyms at all, e.g.
(external acoustic meatus, ear canal). The matcher works for some terms with
slightly different names, e.g. (optic disc, optic disk), which are mapped to the
concept optic disc in UMLS, but does not work for others, e.g. (stapes, stape),
which are mapped to different concepts in UMLS.

The number of expected suggestions for the ear case is 27 (see figure [6). To
find out the expected suggestion that is not found by any of the matchers we
can check the similarity table as in figure Bl By sorting the similarity table
according to the similarity values of a matcher, and looking at the values below
the thresholds we will easily find that the only pair marked with ’C’ in the
"Sug’ column is (auricle, ear cartilage). This pair receives a very low similarity
value from TermWN as the strings are very different and also the synonyms in
WordNet are very different. We can also see that the terms are not synonyms in
UMLS.

The similarity table can also be sorted with respect to the terms in the first
ontology or the terms in the second ontology. This allows for checking for a term

198 P. Lambrix and H. Tan

in one ontology which term in the other ontology is closest related according to
the different matchers.

An advantage of using a system like KitAMO is that we can experiment with
different (combinations of) strategies and different (combinations of) types of
ontologies. For instance, the evaluation in our example may give an indication
about what (combinations of) strategies may work well for aligning ontologies
with similar properties as our test ontologies. However, when choosing a strategy
other factors, such as time, may also play a role. For instance, KitAMO shows
that UMLSKSearch is more time consuming than TermWN.

5 Related Work

The experiments for EON and I3CON used tools in the evaluations [IT/I]. An
APT for ontology alignment for EON is described in [I1I7]. In the APT the inter-
face AlignmentProcess provides the method align which needs to be implemented
to perform the computation of the alignments. The alignment algorithms should
not require user intervention. In the API there are several linguistic-based align-
ment algorithms implemented that compute similarity values between terms.
The different components of ontologies, e.g. concepts, instances and relations
can be aligned. The API also allows to choose a filter method out of a few pre-
defined methods, such as threshold-based filtering or retaining the n % pairs with
highest similarity values. The evaluator is the interface for the evaluation of two
alignment results. In the API two evaluators are implemented. One computes
the precision, recall, fallout and f-measure of an alignment result. The other
produces a weighted symmetric difference between two alignments. The API
supports source ontologies in OWL, and expected alignments which are repre-
sented in RDF/XML. The alignment results can be output as RDF, OWL, XSLT,
SWRL and COWL files. The evaluation results are reported in a RDF /XML file.

OLA [g] is a GUI application implemented on top of the API. OLA supports
ontologies represented in OWL-Lite. The ontologies can be visualized as graphs.
After loading two ontologies, choosing an alignment algorithm, and specifying
the parameters for alignment (e.g. a threshold), the system runs the alignment
algorithm. After the computation the alignments and their similarity values can
be presented in a table and output as an XML file. Further, OLA provides a tool
for alignment comparison. After loading two alignments in the form of XML files
which were the results of the alignment tool, the precision, recall, fallout and
f-measure of the alignments are computed. The results are displayed and the
user can compare them. The evaluation results can also be saved as an XML
file.

Both the EON tools and KitAMO focus on the non-interactive part of the
alignment framework. KitAMO provides an integrated system for comparative
evaluation of alignment strategies and their combinations. In KitAMO after the
computation of the similarity values, the evaluations can be performed for dif-
ferent alignment algorithms with different thresholds, and also for different com-
binations with different algorithms, weights and thresholds. The EON tools do

A Tool for Evaluating Ontology Alignment Strategies 199

not support the evaluation of the combination of different alignment algorithms.
Also, to evaluate different alignment algorithms and different thresholds, batch
programs in Java based on the API need to be implemented. OLA can also only
compare two alignment results. While OLA presents the alignment results to the
user, KitAMO presents the alignment results as well as the similarity values for
all pairs of terms. KitAMO also allows to sort the table according to the different
columns which gives the user the opportunity to analyze the properties of the
alignment strategies. In OLA the tool for alignment comparison computes the
precision, recall, fallout and f-measure of the alignments, while Kit AMO presents
the number of the correct, wrong and inferred suggestions to the user in a ta-
ble. The measures presented by OLA can be easily computed and we intend to
add these to the interface. KitAMO also allows to store the evaluation results
from different matchers and combinations, and with different thresholds. This
allows for a deeper comparison of the strategies. Further, KitAMO computes the
performance of the strategies.

6 Conclusions

In this paper we proposed the KitAMO framework for comparative evaluation
of the non-interactive alignment components, including alignment algorithms,
combination algorithms and filters. We presented our current implementation
of the framework. In this implementation we focused on the evaluation of dif-
ferent alignment algorithms and implemented the most used combination and
filter methods. We evaluated the implementation with respect to performance.
We also showed how the system can be used to evaluate and compare align-
ment algorithms and their combinations in terms of performance and quality of
the proposed alignments and how these results lead to deeper insights into the
properties of the strategies.

In the future we will test the scalability of KitAMO. We will also further
develop different aspects of KitAMO. First, we will provide support for the eval-
uation of combination and filter methods. We will also use the framework as a
basis for implementing and testing new alignment components. For the evalua-
tion cases ontologies from different topic areas and with different representational
complexity should be included. The current test cases are small pieces from larger
ontologies. Although the expected alignments for large 'real life’ ontologies are
hard to obtain, they are necessary for better evaluations. Further, we will add
different ways of visualizing the alignment and evaluation results.

Acknowledgments

We acknowledge the financial support of the Swedish Research Council (Veten-
skapsradet), the Center for Industrial Information Technology (CENIIT), the
Swedish national graduate school in computer science (CUGS), and the EU Net-
work of Excellence REWERSE (Sixth Framework Programme project 506779).

200

P. Lambrix and H. Tan

References

10.

11.

12.
13.

14.

15.

16.

17.
18.
19.

20.

21.

. Ashpole B (2004) Ontology translation protocol (ontrapro). Proceedings of the Per-

formance Metrics for Intelligent Systems Workshop.

. Bard JL, Kaufman MH, Dubreuil C, Brune RM, Burger A, Baldock RA, Davidson

DR (1998) An internet-accessible database of mouse developmental anatomy based
on a systematic nomenclature. Mechanisms of Development, 74:111-120.

. Chen B, Tan H, Lambrix P (2006) Structure-based filtering for ontology align-

ment. Proceedings of the IEEE WETICE Workshop on Semantic Technologies in
Collaborative Applications.

. Collins F, Green E, Guttmacher A, Guyer M (2003) A vision for the future of

genomics research. Nature, 422:835-847.

. Doan A, Madhavan J, Domingos P, Halevy A (2003) Ontology matching: A machine

learning approach. Staab, Studer (eds) Handbook on Ontologies in Information
Systems, pp 397-416, Springer.

. Ehrig M, Haase P, Stojanovic N, Hefke M (2005) Similarity for Ontologies - A

Comprehensive Framework. Proceedings of the 13th European Conference on In-
formation Systems.

. Euzenat J (2005) An API for Ontology alignment (version 1.3).
. Euzenat J, Loup D, Touzani D, Valtchev D (2004) Ontology Alignment with OLA.

Proceedings of the 3rd International Workshop on FEwvaluation of Ontology-based
Tools.

. Euzenat J, Stuckenschmidt H, Yatskevich M (2005) Introduction to the Ontology

Alignment Evaluation 2005. Proceedings of the K-CAP 2005 Workshop on Inte-
grating Ontologies.

Euzenat J (2004) Introduction to the EON ontology alignment context. Proceedings
of the 3rd International Workshop on the Evaluation of Ontology-based Tools.
Euzenat J (2004) An API for ontology alignment. Proceedings of the 3rd Interna-
tional Semantic Web Conference, pp 698-712.

FOAM. http://www.aifb.uni-karlsruhe.de/WBS/meh /foam/

The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of
biology. Nature Genetics, 25(1):25-29. http://www.geneontology.org/.
Goémez-Pérez A (1999) Ontological Engineering: A state of the Art. Ezpert Update,
2(3):33-43.

Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: an algorithm and an
implementation of semantic matching. Proceedings of the Furopean Semantic Web
Symposium, LNCS 3053, pp 61-75.

Hayamizu TF, Mangan M, Corradi JP, Kadin JA, Ringwald M (2005) The Adult
Mouse Anatomical Dictionary: a tool for annotating and integrating data. Genome
Biology, 6(3):R29

I3CON (2004) http://www.atl.lmco.com/projects/ontology /i3con.html

Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net/
Kalfoglou Y, Schorlemmer M (2003) IF-Map: an ontology mapping method based
on information flow theory. Journal on Data Semantics, 1:98-127.

KnowledgeWeb Consortium (2004) Deliverable 2.2.4 (Specification of a method-
ology, general criteria, and benchmark suites for benchmarking ontology tools).
http://knowledgeweb.semanticweb.org/

Kotis K, Vouros GA (2004) The HCONE Approach to Ontology Merging. Proceed-
ings of the European Semantic Web Symposium, LNCS 3053, pp 137-151.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.

A Tool for Evaluating Ontology Alignment Strategies 201

Lambrix P (2004) Ontologies in Bioinformatics and Systems Biology. Chapter 8 in
Dubitzky W, Azuaje F (eds) Artificial Intelligence Methods and Tools for Systems
Biology, pp 129-146, Springer.

Lambrix P, Edberg A (2003) Evaluation of ontology merging tools in bioinformat-
ics. Proceedings of the Pacific Symposium on Biocomputing, 8:589-600.

Lambrix P, Tan H (2005) Merging DAML-+OIL Ontologies. Barzdins, Caplinskas
(eds) Databases and Information Systems, pp 249-258, IOS Press.

Lambrix P, Tan H (2005) A Framework for Aligning Ontologies. Proceedings of
the 3rd Workshop on Principles and Practice of Semantic Web Reasoning, LNCS
3703, pp 17-31.

Lambrix P, Tan H (2006) SAMBO - A System for Aligning and Merging Biomedical
Ontologies. Journal of Web Semantics, special issue on Semantic Web for the Life
Sciences.

Le BT, Dieng-Kuntz R, Gandon F (2004) On ontology matching problem (for build-
ing a corporate semantic web in a multi-communities organization). Proceedings of
6th International Conference on Enterprise Information Systems.

Medical Subject Headings. http://www.nlm.nih.gov/mesh/

McGuinness D, Fikes R, Rice J, Wilder S (2000) An Environment for Merging and
Testing Large Ontologies. Proceedings of the Seventh International Conference on
Principles of Knowledge Representation and Reasoning, pp 483-493.

Mitra P, Wiederhold G (2002) Resolving terminological heterogeneity in ontologies.
Proceedings of the ECAI Workshop on Ontologies and Semantic Interoperability.
Noy NF, Musen M (2000) PROMPT: Algorithm and Tool for Automated Ontol-
ogy Merging and Alignment. Proceedings of Seventeenth National Conference on
Artificial Intelligence, pp 450-455.

Noy NF, Musen M (2001) Anchor-PROMPT: Using Non-Local Context for Seman-
tic Matching. Proceedings of the IJCAI Workshop on Ontologies and Information
Sharing, pp 63-70.

OBO - Open Biomedical Ontologies. http://obo.sourceforge.net/

OntoWeb Consortium (2002) Deliverables 1.3 (A survey on ontology tools) and 1.4
(A survey on methodologies for developing, maintaining, evaluating and reengi-
neering ontologies). http://www.ontoweb.org

Prasad S, Peng Y, Finin T (2002) Using Explicit Information To Map Between Two
Ontologies, Proceedings of the AAMAS Workshop on Ontologies in Agent Systems.
REWERSE. Backofen R, Badea M, Burger A, Fages F, Lambrix P, Nutt W,
Schroeder M, Soliman S, Will S (2004) State-of-the-art in Bioinformatics. REW-
ERSE Deliverable A2-D1.

REWERSE. Backofen R, Badea M, Barahona P, Burger A, Dawelbait G, Doms
A, Fages F, Hotaran A, Jakoniené V, Krippahl L, Lambrix P, McLeod K, Moller
S, Nutt W, Olsson B, Schroeder M, Soliman S, Tan H, Tilivea D, Will S (2005)
Usage of bioinformatics tools and identification of information sources. REWERSE
Deliverable A2-D2.

Stevens R, Goble C, Bechhofer S (2000) Ontology-based knowledge representation
for bioinformatics. Briefings in Bioinformatics, 1(4):398-414.

Stumme G, Méadche A (2001) FCA-Merge: Bottom-up merging of ontologies. Pro-
ceedings of the 17th International Joint Conference on Artificial Intelligence, pp
225-230.

Su XM, Hakkarainen S, Brasethvik T (2004) Semantic enrichment for improving
systems interoperability. Proceedings of the ACM Symposium on Applied Comput-
ing, pp 1634-1641.

202 P. Lambrix and H. Tan

41. Takai-Igarashi T, Nadaoka Y, Kaminuma T (1998) A Database for Cell Signaling
Networks. Journal of Computational Biology, 5(4):7T47-754.

42. Tan H, Jakoniené V, Lambrix P, Aberg J, Shahmehri S (2006) Alignment of
biomedical ontologies using life science literature, Proceedings of the International
Workshop on Knowledge Discovery in Life Science Literature, LNBI 3886, pp 1-17.

43. Takai-Igarashi T and Takagi T (2000), SIGNAL-ONTOLOGY: Ontology for Cell
Signalling. Genome Informatics, 11:440-441.

44. UMLS. http://www.nlm.nih.gov/research/umls/about umls.html

45. WordNet. http://wordnet.princeton.edu/

Processing Sequential Patterns
in Relational Databases

Xuequn Shang!* and Kai-Uwe Sattler?

1 'School of Computer Science, Northwestern Polytechnical University
710072, Shaanxi, China
shang@nwpu.edu.cn
2 Department of Computer Science and Automation,
Technical University of Ilmenau, Germany
kus@tu-ilmenau.de

Abstract. Integrating data mining techniques into database systems
has gained popularity and its significance is well recognized. However, the
performance of SQL based data mining is known to fall behind special-
ized implementations. Reasons for this are among others the prohibitive
nature of the cost associated with extracting knowledge as well as the
lack of suitable declarative query language support. Recent studies have
found that for association rule mining and sequential pattern mining
with carefully tuned SQL formulations it is possible to achieve perfor-
mance comparable to systems that cache the data in files outside the
DBMS. However, most of the previous pattern mining methods follow
the method of Apriori, which still encounters problems when a sequen-
tial database is large and/or when sequential patterns to be mined are
numerous and long.

In this paper, we present a novel SQL based approach that we re-
cently proposed, called Prospad (PROjection Sequential PAttern Dis-
covery). Prospad fundamentally differs from an Apriori-like candidate
set generation-and-test approach. This approach is a pattern growth-
based approach without candidate generation. It grows longer patterns
from shorter ones by successively projecting the sequential table into
subsequential tables. Since a projected table for a sequential pattern i
contains all and only necessary information for mining the sequential
patterns that can grow from 4, the size of the projected table usually re-
duces quickly as mining proceeds to longer patterns. Moreover, a depth
first approach is used to facilitate the projecting process in order to avoid
creating and dropping costs of temporary tables.

1 Introduction

One of the most important data mining issues is the discovery of sequential pat-
terns, which involves finding frequent subsequences as patterns in a sequence

* This work was performed while Xuequn Shang was with the Department of
Computer Science, University of Magdeburg, Germany.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 203 2007.
© Springer-Verlag Berlin Heidelberg 2007

204 X. Shang and K.-U. Sattler

database. Application areas for this issue include analysis of customer purchase
behavior, web access pattern, disease treatments, DNA sequences, and so on.
For example, considering the sequences of customer purchases, the discovered
patterns are the sequences of commodities most frequently bought by the cus-
tomers. An example could be that 78% of people who buy a computer and then
a printer also buy a digital camera within a month. These patterns can be used
for shelf placement and promotions, etc.

The sequential pattern mining problem was first introduced by Agrawal and
Srikant [AS95] and further generalized in [SA96]. Most of the algorithms used
today typically employ sophisticated in-memory data structures, where the data
is stored into and retrieved from flat files. However, because the mined datasets
are often stored in relational format and relational databases are one of the
biggest resources of mining objects, the integration of data mining with relational
database systems is an emergent trend in database research and development
area [Cha98|. There are several potential advantages of an SQL implementation.
First of all, SQL-based mining approaches promise scalability wrt. the size of
the datasets. In contrast, in-memory-based approaches can only handle datasets
which fit into the memory efficiently. For larger datasets they have to limit the
dataset (e.g. by sampling [T0i96]) or will get a significant performance loss due
to memory paging. Furthermore, SQL-aware mining systems can exploit the
powerful mechanisms for accessing, filtering, and indexing data, as well as SQL
parallelization the database systems provide. In addition, they have the ability
to support ad-hoc mining, i.e. allowing to mine arbitrary query results from
multiple abstract layers of database systems or data warehouses.

From the performance perspective, data mining algorithms that are imple-
mented with the help of SQL are usually considered inferior to algorithms that
process data outside the database systems. One of the important reasons is that
offline algorithms employ sophisticated in-memory data structures and try to
reduce the scan of data as much as possible, while SQL-based algorithms either
require several scans over the data or require many and complex joins between
the input tables. This fact motivated us to develop a new SQL-based algorithm
which avoids making multiple passes over the large original input table and
complex joins between the tables.

The remainder of this paper is organized as follows. In section 2 we briefly dis-
cuss sequential pattern mining algorithms and implementations employing SQL
queries. The Prospad algorithm is explained in section Bl Section H presents
several experiments that assess the performance of the algorithms based on syn-
thetic datasets. We conclude the paper in section [0 and give a brief outlook on
future work.

2 Sequential Pattern Mining with SQL

2.1 Problem Statement

Given a database of sequences, where each sequence is a list of transactions
ordered by the transaction time and each transaction contains a set of items.

Processing Sequential Patterns in Relational Databases 205

The sequential pattern mining problem can be formally defined as follows. Let
I ={iy,i2,...,im} be a set of items. An itemset is a subset of items. A sequence
s = (81,82,...,5n) is an ordered list of itemsets, where s; C I, i € {1,...,n}.
The number of itemsets in a sequence is called the length [of the sequence.

A sequence s, = (a1,as2,...,a,) is a subsequence of another sequence s, =
(b1,ba,...,by) if there exist integers 1 < 43 < iz < ... < i, < m such that
ai Q bi17 ag Q biQ, ce.y Ap g bzn

A sequence database D is a set of tuples (cid, tid,itemset), where cid is a
customer or sequence id, tid is a transaction id based on the transaction time,
itemset is a set of items. A sequence consists of all the transactions of a customer,
where each transaction corresponds to a list of items, and a list of transactions
corresponds to a sequence.

The support of a sequence s in a sequence database D, denoted as supp(s), is
the number of sequences in the database containing s in the same sense as defined
in [SA96]: a sequence s, contains another sequence s, if s, is a subsequence
of sp.

Given a support threshold min supp, a sequence s is called a frequent se-
quential pattern in D if supp(s) > min supp. Given a sequence database and
main supp, the problem of mining sequential patterns is to discover all frequent
sequential patterns with a user-specified minimum support min supp in the
database.

2.2 Algorithms for Mining Sequential Patterns

There are several algorithms for mining sequential patterns. These algorithms
can be classified into two categories: Apriori-based [AS95] [SA96, [AFGY02] and
Pattern-growth [PHMAT01, [AO04] methods.

— Apriori-based approaches are based on an anti-monotone Apriori heuristic:
if any length k£ pattern is not frequent in the database, its super-pattern of
length (k+41) can never be frequent. They start with the discovery of frequent
1-sequences and then generate the set of potential frequent (k -+ 1)-sequences
from the set of frequent k-sequences. This kind of algorithm, though reducing
search space, may still suffer from the following three nontrivial, inherent
costs:

e It is costly to handle a huge number of candidate sets.

e [t is tedious to repeatedly scan the database.

e It generates a combinatorially explosive number of candidates when min-
ing large sequential patterns.

— Pattern-growth methods are a more recent approach to deal with the problems
of mining sequential patterns. The key idea is to avoid repeatedly scanning
the entire database and testing and generating large set of candidates, and
to focus the search on a restricted portion of the initial database. PrefixSpan
[PHMAT01] is the most promising of the Pattern-growth approaches. It re-
cursively projects a sequence database into a set of smaller projected sequence
databases and mines frequent patterns locally in each projected database. Pre-
fizSpan achieves high efficiency, compared to Apriori-based approaches.

206 X. Shang and K.-U. Sattler

2.3 Sequential Pattern Mining Based on SQL

Recently, researchers have started to focus on issues to integrating mining with
database systems. There have been language proposals to extend SQL to support
mining operators. The Data Mining Query Language DMQL [HEW96] proposed
a collection of such operators for classification rules, characteristics rules, as-
sociation rules, etc. In [Woj99], Wojciechowski proposed an SQL-like language
capable of expressing queries concerning all classes of patterns.

There are some SQL-based approaches proposed to mine sequential patterns
in [TS9§]|, for example k-way joins or subquery-based. Almost all proposed se-
quential pattern mining algorithms with SQL are based on Apriori, which consist
of a sequence of steps proceeding in a bottom-up manner. The result of the k-th
step is the set of frequent itemsets, denoted as Fj. The first step computes fre-
quent 1-itemsets F. The candidate generation phase computes a set of potential
frequent k-itemsets Cy from F}_;. The support counting phase filters out those
itemsets from C} that appear more frequently in the given set of transactions
than the minimum support and stores them in Fj.

Before data can be mined with SQL, it has to be made available as relational
tables. The input sequence data is transformed into the first normal form table T
with three column attributes: sequence identifier (cid), transaction identifier (tid)
and item identifier (item). For a given cid, typically there are multiple rows in
the sequence table corresponding to different items that belong to transactions in
the data sequence. The output is a collection of frequent sequences. The schema
of the frequent sequences table is (itemy,enos,...,itemy, enog,len). The len
attribute gives the length of the sequence. The eno attributes stores the element
number of the corresponding items.

In [TS9§], Thomas et al. addressed the problem of mining sequential pat-
terns using SQL queries and developed SQL formulations. The statement for
generating Cy from Fj_; in SQL-92, is shown in Figure [l

A well known approach for support counting using SQL-92 presented in
[TS98], is similar to k-Way joins for association rule mining [STA9§|. In ad-
dition to the constraint of min supp, [T'S98] adds further constraints including
window-size, maz-gap, and min-gap.

[TS98] points out that it is possible to express complex sequential pattern
mining computations in SQL. The approach, however, shares similar strengths

insert into C}%

select I.itema, [1.eno, ..., I1.itemy—_1, I1.enog—1, I2.itemy_1,
I1.enoip_1 + Is.enop_1 — Is.enog_o

from Fr_1 1, Fr_1 Io

where I1.items = Is.itemy and ...and
Iy.itemyp_1 = Is.itemyi_o and
I1.eno3 — I1.enos = Is.enos — Is.enop and . ..and

Ii.enox_1 — I1.enog_o = Is.enor_o — Ia.enok_3

Fig. 1. Candidate generation phase in SQL-92

Processing Sequential Patterns in Relational Databases 207

and weaknesses as the Apriori method. Nearly all proposed approaches use the
same statement for generating candidate k-itemsets and differ only in the state-
ments used for support counting. [T'S9§| also uses object-relational extensions
in SQL like UDF's, BLOBs, table functions, etc. to improve performance.

For frequent pattern mining, an SQL-based frequent pattern growth method
called Propad [SS05] has been developed for efficient mining frequent patterns in
relational database systems. The general idea of Propad is to successively trans-
form the original transaction table into a set of frequent item-related projected
tables, then to separately mine each one of the tables as soon as they are built.
In this paper, we explore the spirit of Propad for mining sequence patterns.

3 Prospad: PROjection Sequential PAttern Discovery in
SQL

In this section, we illustrate our novel SQL-based sequential pattern mining
method called Prospad using an example. This method first recursively gener-
ates a set of frequent sequence-related projected tables and then mines locally
frequent patterns in each projected table.

Let us give an example with four sequences in Figure and support thresh-
old 2. The input sequence data is transformed into the first normal form table

CID TID Sequence CID TID Item
1 1 a 1 1 a
1 2 a,b, c 1 2 a
1 3 a,c 1 2 b
1 4 d 1 2 c
1 5 c, f 1 3 a
2 1 a,d 1 3 c
2 2 c 1 4 d
2 3 b, c 1 5 c
2 4 a,e 1 5 f
3 1 e, 2 1 a
3 2 a,b 2 1 d
3 3 d, f 2 2 c
3 4 c 2 3 b
3 5 b 2 3 c
4 1 e 2 4 a
4 2 g 2 4 e
4 3 a, f cee e
4 4 c 4 4 c
4 5 b 4 5 b
4 6 c 4 6

(a) Sequence Database (b) T

Fig. 2. A sequence database and its relational format

208 X. Shang and K.-U. Sattler

CID TID Item

—_
w
IS

R W NN NN =
S UL UL b W W Ut Ut W
QO T 0 Q0 TR0 a0

Fig. 3. An example projected table

T with three column attributes: sequence identifier (cid), transaction identifier
(tid) and item identifier (item), as shown in Figure
Before the new algorithm is presented, let us give some definitions as follows.

Definition 1. Given a sequence pattern p and a frequent item i in the sequence
database D, a sequence-extended pattern can be formed by adding the item i to
its prefix sequence p, and an itemset-extended pattern can be formed by adding
the item i to the last itemset of the prefix sequence p.

For example, if we have a sequence pattern {(a), (c)}, and a frequent item b,
then {(a), (c), (b)} is a sequence-extended pattern and {a, (c,b)} is an itemset-
extended pattern.

Definition 2. Given a sequence table T, a frequent sequence s-related projected
table, denoted as PTs, has three column attributes: sequence identifier (cid),
transaction identifier (tid), item identifier (item), which collects all sequences
containing s. Moreover, in the sequence containing s, only the subsequence pre-
fized with the first occurrence of s should be considered.

Take frequent sequence ¢ in T shown in Figure for example. The sequences
containing ¢ are {1,2,3,4}. In the sequence 1, the first transaction containing
¢ is 2. Prefixed by ¢ are (1, 3, a), (1, 3, ¢), (1, 4, d), (1, 5, ¢), and (1, 5, f).
These sequences can be collected in the table PT,.. Similarly, the table PT. also
includes (2, 3, b), (2, 3, ¢), (2, 4, a), (2, 4, €), (3,5, b), (4, 5,), (4, 6, ¢). The
projected table PT. is shown in Figure [3

In order to avoid repetitiousness and to ensure each frequent item is projected
to at most one projected table, we suppose items to be in in alphabetical order.
The mining process can be regarded as a process of frequent sequence growth,
which is facilitated by projecting sequence tables in a top-down fashion. The
whole process works as follows:

Processing Sequential Patterns in Relational Databases 209

— Step 1. At the first level we simply gather the count of each item. Items that
satisfy the minimum support are inserted into the transformed transaction
table TF that has the same schema as transaction table T'. The complete set
of frequent 1-items is {a:4,b:4,c:4,d:3,e:3, f:3} They are included
in the table T'F' as shown in Figure

The SQL statements used to create table TF are illustrated as follows. First,
we count the support if items using an aggregation query and insert frequent
items into table F. We use select distinct before the group by to ensure
that only distinct data sequences are counted. Second, by joining the original
table T and the table containing all frequent items we construct TF.

insert into F
select S.item, count (*)
from (select distinct item,cid from T) as S
group by item
having count(*) > min supp

insert into TF
select T.cid,T.tid, T.item
from T F
where T.item = F.item

— Step 2. At the second level, for each frequent 1-item 4 in the table TF we
construct its respective projected table PT;. This is done by two phases. In
the first phase we find all sequences in TF containing 4, in which only the
subsequence prefixed with the first occurrence of i should be collected. This
can be expressed in SQL as follows. We use a temporary table TEMP id to
collect the first occurrence of ¢ in each sequence containing <.

insert into TEMP id
select cid, min(tid) as tid
from TF
where item = 1
group by cid

insert into PT; (
select tl.%

from TF t1, TEMP 4id t2
where tl.cid = t2.cid and tl.tid > t2.tid
union

select *
from TF
where (cid,tid) in (select cid,tid from TEMP id) and item > i)

— Step 3. The next phase finds all items that could be an itemset-extended
pattern in the PT;. All the items that occur in the same transaction as 4
can itemset-extend the current pattern. And then we update all these items

210 X. Shang and K.-U. Sattler

by appending '—’ to distinct an itemset-extended pattern from a sequence-
extended pattern. The SQL statements can be expressed as follow:

insert into TEMP item
select cid,tid, min(item) as item
from PT;
where (cid,tid) in (select cid,tid from TEMP id)
group by cid, tid

update PT;
set item = item || '—
where (cid,tid,item) in (select cid,tid,item from TEMP item)

/

— Step 4. Then we look for local frequent items. Frequent 1-items are re-
garded as the prefixes, frequent 2-patterns are gained by simply combining
the prefixes and their local frequent itemsets. For instance, we get the fre-
quent 1l-items {a,b,c,d, e, f}, their respective projected tables PT,, PTy,
PT., P14, PT., PTy. Starting from item a, the a-related projected table is
constructed as follows: we find all frequent patterns wrt. item a, which is the
base item of the tested projected table. All items that are locally frequent
with a, {a :2,b:4,b—:2,c:4,d:2 f:2}, are inserted into the table
PT,, as shown in Figure l(a-e). Then, the frequent 2-itemsets associated
with item a {{a,a},{a,b},{(a,b)}, {a,c},{a,d}, {a, f} can be found.

— Step 5. At the next level, for each frequent item j in the projected table PT;
we recursively construct its projected table PT; ; and gain its local frequent
items. A projected table is filtered if no frequencies can be derived. For
instance, if no local frequent items in the PT, ,, as shown in Figure can
be found, the processing for mining frequent sequential patterns associated
with aa terminates.

Basically, the projecting process can be facilitated either by breadth first ap-
proach or by depth first approach. In a breadth first approach, we have two
alternatives to represent projected transaction tables. The first one is: each fre-
quent item has its corresponding projected transaction table and local frequent
sequences table at level k. That means, n projected tables need to be generated
if we have n frequent sequences at level k. It is obviously impractical because too
many temporary tables have to be kept — especially for dense datasets and low
support threshold. The second alternative is to use one projected transaction
table is used at each level. Normally, this projected transaction table is too large
to efficiently join in subsequent mining procedures, especially at level 2.

In order to avoid creating and dropping many temporary tables, we use a
depth first approach. Let {i1,12,...,i,} be the frequent 1-sequence. We can first
find the complete set of frequent sequences containing {i;}. Conceptually, we
construct {41 }-projection table and then apply the techniques recursively. After
that, we can find the complete set of frequent sequences containing {i2} but no
item {41 }. Similarly, we can find the complete set of frequent sequences.

Processing Sequential Patterns in Relational Databases 211

CID TID Item CID TID Item

—_
—_
IS}

1 2 a b2 e
1 2 b
1 2 b
1 2 c
1 2 c 1 3 a
1 3 a
CIDTID cee
b3 e 2 1 d
1 4 d 1 1 9 9
1 5 ¢ 2 1 ¢
1 5 f 3 2 A
B, 4 3 3 d
4 1 e (b) TEMP id
4 3 a 4 3 f
4 3 f
4 4 c
4 4 c
4 5 b
4 5 b
4 6 . 4 6 c
(a) TF (c) PT,
CID TID Item
1 2 a
1 2 b
1 2 c
1 3 a Item Count
CIDTID Item 9 1 4- a 2
2 1 d- 2 2 ¢ bb_ ;1
3 2 b— . . 4
4 3 f- 3 2 b— d 9
(d) TEMP item 3 3 d 7 9
4 3 o (f) F
4 4 c
4 5
4 6 c
(e) PTq
CID TID Item CID TID Item
12 b 1 2 b
1 2 c 1 2 c
CIDTID 1 3 a 1 3 a
1 2 1 3 c 1 3 c
2 4 1 4 d 1 4 d
(g) TEMP id 1 5 c 1 5 c
1 5 f 1 5 f
2 4 e 2 4 e—
(h) PTaa (i) PTaa

Fig. 4. Constructing frequent sequences by successively projecting transaction table T'

212 X. Shang and K.-U. Sattler

To construct the projection table associated with item 7 we use temporary
projection tables TEMP id, TEMP item to collect all frequent items (larger
than ¢) in the transactions containing i. The frequent itemset table F' is used to
store local frequent items of each TEMP item. In fact, these temporary tables
are only required during the construction of the projection table PT. In that
case, we create one TEMP id, TEMP item and one F' during the whole mining
procedure. These tables can bethey can be cleared for constructing the other PTs
after one PT is constructed. Moreover, in the whole mining procedure, the PT
tables of each frequent item are not constructed together. The mining process for
each frequent item is independent of that for others. In that case, we only need
one PT table at the each level. The number of PT tables is the same magnitude
as the length of maximum frequent pattern.

Now we summarize the algorithm PROjection Sequential PAttern Discovery,
abbreviated as Prospad, as listed in Figure

Analysis: The mining process can be facilitated by projecting sequence tables in
a top-down fashion. In our method, we are trying to find all frequent sequences
with the respect to one frequent item, which is the base item of the tested
projected table. All items that are locally frequent with ¢ will participate in
building the i-related projected table. Our method of Prospad has the following
merits:

— It avoids repeated scannings of the original sequence table, only needs to scan
the local projected transactions table to generate a descendant, transformed
transaction (sequence) tables.

— It avoids complex joins between candidate sequence tables and transaction
tables, replacing by simple joins between smaller projected tables and fre-
quent sequences tables.

— It avoids creating and dropping cost of some temporary tables by using DFS
instead of BFS.

4 Performance Evaluation

In order to evaluate the efficiency of Prospad, we have done extensive experi-
ments on various kinds of datasets with different features. We have compared
our approach implemented in Java and using SQL/JDBC for database access to
a SQL-based implementation of Apriori. Furthermore, wee have chosen a loose-
coupling approach PS based on PrefixSpan which is implemented in Java, too.
PS accesses the input table in the DBMS using a JDBC interface and mines
sequential patterns in memory.

4.1 Datasets

We use synthetic sequence data generation with the program described in Apriori
algorithm paper [AS95] for experiments. The nomenclature of these datasets is
of the form CwwTzxSyylzz, where ww denotes the total number of sequences

Processing Sequential Patterns in Relational Databases 213

Input: a sequence table T" and
a minimum support threshold &
Output: a frequent pattern table PAT

pass num = 0;

prefix := null;

/* Step 1 */

get the transformed transaction table TF by removing
infrequent (wrt. §) items from T

/* Step 2 */

insert the frequent 1-items into PAT;

create projection table PT;

foreach distinct frequent item 4 in TF do
/* Step 3 */
prefir := 1;
call findFP(prefiz, 1);

done

procedure findFP(prefiz, k)
if PTy has frequent items then
combine prefix with frequent item sets and
insert them into PAT;
if PT} is not be filtered then
if £+ 1 > pass num then
create table PTy41;
pass num =k + 1;
else
clear table PTx41;
endif
/* Step 4 */
construct PT11 by projection;
find local frequent items;
foreach frequent item j in PTj41 do
/* Step 5 */
prefi := prefix + j;
call findFP (prefiz, k + 1);
done
endif
endif

Fig. 5. Algorithm for Prospad

in K (1000’s). zz denotes the average number of items in a transaction and
yy denotes the average number of transactions in a sequence. On average, a
frequent sequential pattern consists of four transactions, and each transaction
is composed of zz items. We report experimental results on two datasets, they
are respectively C10T8S8I8 and C200T2.551011.25. As a real-world dataset we

214 X. Shang and K.-U. Sattler

use Gazelle from KDDCUP-2000 provided by Blue Martini Software. Gazelle
contains click-stream data where each session has several page views done by a
customer over a short time. We treat product pages viewed in one session as an
itemset and each page view as an event. Different sessions of a user are considered
as a sequence. The dataset contains 29369 sequences, 35722 sessions, and 87546
page views. There are 1423 different products. Gazelle is a very sparse dataset
but contains a few very long frequent sequences with low support threshold.

4.2 Performance Comparison

In this subsection, we present results comparing the performance and memory
consumption of Prospad to a k-Way-join-based implementation and PS. Our
experiments were performed on Version 8 of IBM DB2 EEE installed on Linux
operation system with Pentium IV 2.0GHz processor. The performance measure
was the execution time of the algorithm on the datasets with different support
threshold.

30000

50000 i .
Prospad —— X
45000 || Apriofi w3 ;

40000 [
35000 |
30000 |
25000
20000
15000
10000

5000 -

0 t PR 0 M . .

10 5 3252 1 2 15 1 0.8 0.6
Support (%) Support (%)

(a) Prospad vs. k-Way join — C10T8 (b) Prospad vs. k-Way join — C200T2.5

Prospad ——
T
25000 .:_X

20000 |

15000

Time (secs)
Time (secs)

10000

5000

Fig. 6. Evaluation results: Prospad vs. k-Way join

Figure and (b) show the total time taken by the two approaches on the
two datasets respectively: k-way joins, Prospad. In Fig. for the support of
1% and in Fig. for the support of 0.8%, the running times of the k-way join
based Apriori approach were so large that we had to abort the runs in many
cases.

As the support is high, the frequent sequences are short and the number
of sequences is not large. From the graph we can make the following observa-
tions: The advantages of Prospad over Apriori are not so impressive. Prospad is
even slightly worse than Apriori. For example, the maximal length of frequent
patterns is 1 and the number of frequent sequences is 89 when the datasets is
C10T8S8I8 with the support threshold 10%, Apriori can finish the computa-
tion shorter than the time for Prospad. However, as the support threshold goes
down, the gap is becoming wider: Prospad is much faster than Apriori. When the
support is low, the number as well as the length of frequent sequences increase

Processing Sequential Patterns in Relational Databases 215

1000
900 -

Prospad ——
Apriori -+ -

Time (secs)

0 . . .
0.04 0.035 0.03 0.025 0.02
Support (%)

Fig. 7. Prospad vs. k-Way join — Gazelle

dramatically. Candidate sequences that Apriori must handle become extremely
large, joining the candidate sequences with sequence tables becomes very ex-
pensive. In contrast, Prospad avoids candidates generation and test. That’s why
Prospad can get significant performance improvement.

Figure [1 shows the performance comparison among the two approaches for
Gazelle data set. Gazelle is a very sparse dataset and has some long frequent
sequences when the support threshold is set low (0.05%). We can see that Prospad
is much more efficient than Apriori. The Apriori cannot stop running in an
appropriate time when the support threshold is no greater than 0.02%.

35 . —x 16000 . .
Prospad —+— Prospad —+—
20| Apriori - P S | 14000 F PrefixSpan - F
& o5 12000
=
5 % 10000 |
2 20]
@ X L 8000 |
2 & ©
> 15} £
2 X = 6000
5} S
= 0% 4000 |-
5 1 2000 -
T
0 T I L L 0
10 5 3252 1 2
Support (%) Support (%)
(a) Memory usage for C10T8S8I8 (b) Prospad vs. PS

Fig. 8. Evaluation results II

In terms of memory consumption, Prospad consumes less memory than Apri-
ori, since it uses DF'S that only keeps track of the prefix-lists for the extension of
a given sequence, as well as it applies simple joins. Figure shows that both
algorithms spend more memory as the support is low, since the number as well
as the length of frequent sequences is high.

Figure shows that the algorithm PS outperforms the Prospad method
for the C200T2.5S10I1.25 with low minimum support. As being an in-memory
approach, however, the available memory is a limitation of input size.

216 X. Shang and K.-U. Sattler

5 Summary and Conclusion

In this paper, we propose an efficient SQL based algorithm to mine sequential
patterns in relational database systems. Rather than Apriori-like methods it
adopts the divide-and-conquer strategy and projects the sequence table into a
set of frequent item-related projected tables. Experimental studies show that
the Prospad algorithm can get higher performance than k-way joins based on
Apriori-like approaches especially on large and dense datasets, but it has severe
limitations in performance compared to in-memory PrefizSpan algorithms.

There remain lots of further investigations. We plan to do more experimen-
tation on different datasets, including real datasets and to consolidate the ex-
periences in mining all classes of patterns with SQL. Furthermore, we want to
explore index techniques based on Prospad to make SQL-based approaches more
efficient.

References

[AFGY02] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential Pattern Mining
using a Bitmap Representation. In Proc. of the 8th Int. Conference on
Knowledge Discovery and Data Mining (KDD-02), pages 429-435, New
York, NY, USA, 2002. ACM Press.

[AO04] C. Antunes and A. L. Oliveira. Sequential Pattern Mining Algorithms:
Trade-offs between Speed and Memory. In 2nd Int. Workshop on Mining
Graphs, Trees and Sequences, Pisa, Italy, September 2004.

[AS95] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of
the 11th Int. Conference on Data Engineering (ICDE’95), pages 3-14,
Taipei, Taiwan, 1995. IEEE Computer Society Press.

[Cha98] S. Chaudhuri. Data Mining and Database Systems: Where is the Inter-
section? Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 21(1), March 1998.

[HFW96] J. Han, Y. Fu, and W. Wang. DMQL: A Data Mining Query Language
for Relational Database. In Proc. of the 1996 SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery, Montreal,
Canada, 1996.

[PHMA™'01] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth. In Proc. of the Int. Conf. on Data Engineer-
ing (ICDE’01), pages 215-224, Heidelberg, Germany, April 2001.

[SA96] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations
and Performance Improvements. In Proc. of 5th Int. Conf. Extending
Database Technology (EDBT’96), volume 1057, pages 3-17. Springer-
Verlag, 1996.

[SS05] X. Shang and K. Sattler. Depth-First Frequent Itemset Mining in Re-
lational Databases. In Proc. ACM Symposium on Applied Computing
SAC 2005, New Mexico, USA, 2005.

[STA9S] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating Association Rule
Mining with Relational Database Systems: Alternatives and Implica-
tions. In Proc. of the Int. Conf. on Management of Data (SIGMOD’98),
pages 345-354, Seattle, WA, June 1998. ACM Press.

[Toi96)]

[TS98]

[Woj99]

Processing Sequential Patterns in Relational Databases 217

H. Toivonen. Sampling Large Databases for Association Rules. In Proc.
of Int. Conf. Very Large Data Bases (VLDB’96), pages 134-145, 1996.
S. Thomas and S. Sarawagi. Mining Generalized Association Rules and
Sequential Patterns Using SQL Queries. In Proc. of the 4th Int. Confer-
ence on Knowledge Discovery and Data Mining (KDD-98), pages 344
348, 1998.

M. Wojciechowski. Mining Various Patterns in Sequential Data in an
SQL-like Manner. In Advances in Databases and Information Systems,
3rd East European Conference (ADBIS’99A) — Short Papers, pages 131—
138, 1999.

SOMERDFS in the Semantic Web

P. Adjiman!, F. Goasdoué!, and M.-C. Rousset?

L LRI, batiment 490, Université Paris-Sud 11, 91405 Orsay Cedex, France
2 LSR-IMAG, BP 72, 38402 St Martin d’Heres Cedex, France

Abstract. The Semantic Web envisions a world-wide distributed archi-
tecture where computational resources will easily inter-operate to coor-
dinate complex tasks such as query answering. Semantic marking up of
web resources using ontologies is expected to provide the necessary glue
for making this vision work. Using ontology languages, (communities of)
users will build their own ontologies in order to describe their own data.
Adding semantic mappings between those ontologies, in order to seman-
tically relate the data to share, gives rise to the Semantic Web: data on
the web that are annotated by ontologies networked together by map-
pings. In this vision, the Semantic Web is a huge semantic peer data
management system. In this paper, we describe the SOMERDFS peer
data management systems that promote a ”simple is beautiful” vision of
the Semantic Web based on data annotated by RDFS ontologies.

1 Introduction

The Semantic Web [I] envisions a world-wide distributed architecture where
computational resources will easily inter-operate to coordinate complex tasks
such as query answering. Semantic marking up of web resources using ontologies
is expected to provide the necessary glue for making this vision work.

Recent W3C efforts led to recommendations for annotating data with ontolo-
gies. The Resource Description Framework (RDF, http://www.w3.org/RDF) al-
lows organizing data using simple taxonomies of classes and properties with RDF
Schema (RDFS), the ontology language that comes with RDF. The Ontology
Web Language (OWL, http://www.w3.org/2004/OWL) is defined on top of RDF
and allows building more complex statements about data. It corresponds in its
decidable versions (OWL-lite and OWL-DL) to expressive description logics.

Using ontology languages, (communities of) users will build their own ontolo-
gies in order to describe their own data. Adding semantic mappings between
those ontologies, in order to semantically relate the data to share, gives rise to
the Semantic Web: data on the web that are annotated by ontologies networked
together by mappings. In this vision, the Semantic Web is a huge semantic peer
data management system (PDMS).

Some PDMSs have been developped for the Semantic Web like Edutella [2],
RDFPeers [3], GridVine [4] or SOMEOWL [5]. Edutella, RDFPeers and GridVine
use RDF while SOMEOWL uses a fragment of OWL.

Edutella is made of a network of super-peers, the topology of which is a hy-
percube. Super-peers are mediators with the same schema: a reference ontology

S. Spaccapietra et al. (Eds.): Journal on Data Semantics VIII, LNCS 4380, pp. 158 2007.
© Springer-Verlag Berlin Heidelberg 2007

SOMERDF'S in the Semantic Web 159

(e.g., http://demoz.org). The data sources of a super-peer are its connected
peers. Therefore, data are distributed over the peers while the ontologies are
distributed over the super-peers. A peer must annotate its data in terms of the
ontology of the super-peer to which it is connected. To answer queries, there is
no need of mappings between the super-peer ontologies since they are identical:
queries are efficiently routed in the network, using its topology of hypercube, in
order to find super-peers that can provides answers with their peers.

In RDFPeers and GridVine PDMSs, the peers are organized according to a
Distributed Hash Table using CHORD [6]. As in Edutella, such a fixed struc-
ture allows efficient routing of messages between peers. While RDFPeers only
addresses the problem of query answering without taking into account the on-
tologies that annotate the data, GridVine takes into account the ontologies. On
each GridVine peer, data are annotated with an RDFS ontology and mappings
with ontologies of other peers are stated by equivalences between properties of
peer ontologies.

In SoMEOWL PDMS{] [5], peers are not organized according to a fixed topol-
ogy: the topology is induced by the mappings between the peers ontologies.
SOMEOWL PDMSs are based on a simple data model: the ontologies and map-
pings are expressed in a fragment of OWL-DL that corresponds to the CLU
description logic (-, M, and U). Query answering takes into account the ontolo-
gies and is achieved using a rewrite and evaluate strategy. The rewriting part is
reduced to a consequence finding problem in distributed propositional theories. It
is performed by SOMEWHERE, a peer-to-peer inference system that implements
DECA: DEcentralized Consequence finding Algorithm [5]. Query answering in
a SOMEOWL PDMS is sound, complete and terminates. Moreover, the detailed
experiments reported in [7] show that it scales up to 1000 peers.

The contribution of this paper is to show how to deploy a PDMS using a data
model based on RDF on top of the SOMEWHERE infrastructure: we will call such
a PDMS a SOMERDFS PDMS. To express the ontologies and mappings, we con-
sider the core fragment of RDFS allowing to state (sub)classes, (sub)properties,
typing of domain and range of properties. A mapping is an inclusion statement
between classes or properties of two distinct peers, or a typing statement of a
property of a given peer with a class of another peer. Therefore, mappings are
RDFS statements involving vocabularies of different peers which thus establish
semantic correspondances between peers.

Like in a SOMEOWL PDMS, the topology is induced by the mappings between
the peers’ ontologies. We show that query answering in SOMERDF'S PDMSs can
be achieved using a rewrite and evaluate strategy, and that the corresponding
rewriting problem can be reduced to the same consequence finding problem in
distributed propositional theories as in [5]. SOMEWHERE can then be used to
compute the rewritings, with the same properties as mentionned above. We thus
provide an operational solution for deploying a Semantic Web of data annotated
with RDFS ontologies related by mappings. Moreover, the consequence finding

! In this article, we denote by SOMEOWL PDMSs the PDMSs based on OWL that
have been designed in [5].

160 P. Adjiman, F. Goasdoué, and M.-C. Rousset

problem resulting from the propositional encoding of the fragment of RDF'S that
we consider is tractable since the resulting propositional theories are reduced to
clauses of length 2 for which the reasoning problem is in P. The experiments re-
ported in [7] show that it takes in mean 0.07s to SOMEWHERE for a complete
reasoning on randomly generated sets of clauses of length 2 distributed on 1000
peers.

The paper is organized as follows. Section 2] defines the fragment of RDFS
that we consider as data model for SOMERDF'S. Section [B] relates the problems
of query answering and query rewriting, and shows how query rewriting can be
reduced to a consequence finding problem in distributed propositional theories.
Section [presents the query rewriting algorithm which is built on top of the
DECA algorithm of SOMEWHERE. We conclude with related work in Section
and a discussion in Section

2 Data Model of a SOMERDFS PDMS

We consider the core constructors of RDFS based on unary relations called
classes and binary relations called properties. Those constructors are: class in-
clusion, property inclusion, and domain/range typing of a property. We denote
this language core-RDFS.

While the logical semantics of the whole RDFS raises non trivial problems
[SIQITOITT], core-RDFS has a first-order logical semantics which is clear and in-
tuitive. This semantics can be defined in terms of interpretations or can be given
by the first-order formulas expressing the logical meaning of each constructor.
Based on the FOL semantics, it can be seen that core-RDFS is a fragment of
DL-Liteg, which is a description logic (DL) of the DL-Lite family [I2/T3]. The
DL-Lite family has been designed for allowing tractable query answering over
data described w.r.t ontologies.

The following table provides the logical semantics of core-RDFS by giving the
DL notation and the corresponding first-order logical (FOL) translation of the
core-RDFS constructors.

Constructor DL notation FOL translation
Class inclusion C1 CCy VX (C1(X) = C2(X))
Property inclusion PCP VXVY (P1(X,Y) = P(X,Y))

Domain typing of a property 3P C C VXVY (P(X,Y) = C(X))
Range typing of a property IP~ CC VXVY(P(X,Y)= C(Y))
Ontologies, data descriptions and mappings of SOMERDF'S peers are stated in
core-RDFS. To make the semantics clear, we have chosen to use the FOL notation
to denote ontologies, data and mappings as (possibly distributed) sets of FOL
formulas. As seen in the previous table, the correspondence with the DL notation
is obvious. It is important to note that core-RDFS belongs to the intersection
of two logical languages that have been extensively studied: Horn rules without
function and description logics. Therefore, core-RDFS is a fragment of DLP [14].

SOMERDF'S in the Semantic Web 161

2.1 Peer Ontologies

Peer ontologies are made of core-RDFS statements involving only relations of
a peer vocabulary. A peer vocabulary is the union of a set of classe names and
a set of property names that are disjoint. The class and property names are
unique to each peer. We use the notation P:R for identifying the relation (class
or property) R of the ontology of the peer P.

2.2 Peer Storage Descriptions

The specification of the data stored in a peer is done through the declaration of
assertional statements relating data of a peer to relations of its vocabulary. The
DL notation and the FOL translation of assertional statements is the following
(a and b are constants):

Constructor DL notation and FOL translation
Class assertion C(a)
Property assertion P(a,b)

2.3 Peer Mappings

Mappings are the key notion for establishing semantic connections between on-
tologies in order to share data. We define them as core-RDFS statements involv-
ing relations of two different peer vocabularies. The DL notation and the FOL
translation of the mappings that are allowed in SOMERDF'S are given in the
following table.

Mappings between P; and P2 DL notation FOL translation
Class inclusion P1:C1 C Ps:Co VX(P1:C1 (X) = Ps:Co (X))

Property inclusion P1:Py C Pa:Py VXVY (P1:Pi(X,Y) = Pa: P2 (X,Y))
Domain typing of a property IP1:P C P:C VXVY (P1:P(X,Y) = P2:C(X))
Range typing of a property ~ 3IP1:P~ C P2:C VXVY (P1:P(X,Y) = P2:C(Y))

The definition of shared relations follows from that of mappings.

Definition 1 (Shared relation). A relation is shared between two peers if it
belongs to the vocabulary of one peer and it appears in a mapping in the second
peer.

2.4 Schema and Data of a SOMERDFS PDMS

In a PDMS, both the schema and data are distributed through respectively the
union of the peer ontologies and mappings, and the union of the peer storage
descriptions. The important point is that each peer has a partial knowledge of
the PDMS. In a SOMERDFS PDMS, a peer just knows its ontology, its mappings
with other peers and the relations shared with them, and its own data.

The schema of a SOMERDFS PDMS S, denoted schema(S), is the union of
the ontologies and the sets of mappings of all the peers.

The data of a SOMERDFS PDMS &, denoted data(S), is the union of the
peers data descriptions.

A SOMERDF'S knowledge base is the union of its schema and data.

162 P. Adjiman, F. Goasdoué, and M.-C. Rousset

2.5 Queries

Many query languages have been recently developped for RDF [I5] (e.g., RDQL,
SPARQL,...). Most of them offer select-project-join queries which are known
as the core relational query language in the database literature, namely the
conjunctive queries.

Conjunctive queries can be expressed in first-order logic as open formulas with
free variables X and made of conjunction of atoms. The free variables are called
the distinguished variables of the query and they correspond to the variables of
interest for the users. The other variables are existential variables that appear in
the atoms of the query. The conjunction of atoms models the request of a user.
For example, the following query expresses that the user is interested in knowing
which artists have created paintings belonging to the cubism movement. The
existential variable Y is just there to denote the existence of paintings created
by the artist denoted by the variable X: the user wants to get as answers the
instances of X satisfying the formula but he/she is not interested to know the
instances of Y.

Q(X) = 3Y Artist(X) ACreates(X,Y) A Painting(Y) A BelongsTo(Y, cubism)
The FOL translation for a conjunctive query is given in the following table.

Conjunctive query FOL translation

Q: {(X) | ALy mi(Xi, Yi)} Q(X) = 3Y AL, 7i(X;,Y;), where
{(= U:;l g(z are free variables and
Y =, Y; are existential variables.

The most general queries that we will consider, the SOMERDFS queries, are
conjunctive queries that may involve the vocabularies of several peers. In con-
trast, the users’ queries involve the vocabulary of a single peer, since a user
interrogates the PDMS through a peer of his choice.

Definition 2 (Query). A query is a conjunctive query in terms of relations of
peer vocabularies.

Definition 3 (User query). A user query is a query in terms of relations of
a single peer vocabulary.

2.6 Semantics

In a SOMERDFS PDMS, ontologies, storage descriptions, mappings, and queries
have all a FOL correspondence. From a logical point of view, a SOMERDFS
PDMS is a FOL knowledge base made of Horn rules (the schema) and ground
atoms (the data). As mentioned before, it could also be equivalently seen as a
DL knowledge base made of a Thox (the schema) and an Abox (the data).
Two main semantics have been investigated for a PDMS based on FOL:
the standard FOL semantics and the epistemic FOL semantics (see Section [l).
Roughly speaking, the standard FOL semantics does not distinguish mappings

SOMERDF'S in the Semantic Web 163

from ontology formulae, i.e., they are interpreted in the same way. In contrast,
the epistemic FOL semantics restricts the expressivity of mapping formulae.

In a SOMERDFS PDMS, we adopt the standard FOL semantics. As for data, we
stick to the usual information integration assumption, namely the unique name
assumption.

Semantics of a query. While a user query is given in terms of the relations of
a single peer, its expected answers may be found all over the PDMS. An answer
is a tuple made of constants stored in the PDMS for which it can be logically
inferred (from the union of ontologies, storage descriptions and mappings) that
it satisfies the expression defining the query. It corresponds to an extension of
the notion of certain answer in information integration systems.

Definition 4 (Answer set of a query). Let S be a SOMERDFS PDMS and
Q a n-ary query. Let C be a set of constants appearing in data(S). The answer

set of Q is: Q(S) = {f€ C" | S E QD).

Subsumption. The subsumption (a.k.a. containment) relation allows to com-
pare two relations (classes, properties and queries) of the same arity.

A relation r1 subsumes (respectively strictly subsumes) a relation ro, iff for
every interpretation I, vl C r{ (respectively ri C rf).

Given a SOMERDFS PDMS S, a relation r; subsumes (respectively strictly
subsumes) a relation ro w.r.t. S, iff for every model I of schema(S), ri C r!
(respectively ri C rl).

2.7 Graphical Conventions

In the following, we adopt some graphical conventions in order to represent a
SOMERDFS schema.

A class is denoted by a node labeled with the class name. A property is a
directed edge labeled with the property name. Such an edge is directed from
the domain to the range of the property. A relation inclusion is denoted by a
directed dotted edge labeled with the subsumption symbol C. Such an edge is
directed from the subsumee to the subsumer. A peer ontology is a subgraph
totally contained in a box labeled with a peer name. A mapping is a directed
edge from a peer ontology to another peer ontology. The owner of the map-
ping is the peer the box of which contains the corresponding edge label. More-
over, since there is no ambiguity with the owners of the ontology relations,
we omit to prefix a relation name with its owner name in order to alleviate
the notations.

For instance, let consider the mapping VX (P1:Arti fact(X) = Pa:Works(X))
between a peer P; and a peer Ps. This mapping is a class inclusion: the class
P1:Artifact of Py is contained in the class Po:Work of Ps. If we suppose that
it belongs to Ps, its graphical notation is the one in Figure [Il In that case,
P1:Artifact is a shared relation between P; and Ps.

Let consider another mapping VXVY (Pi:paints(X,Y) = Papainting(Y))
between P; and Ps. This mapping is a range typing of the property P;:paints

164 P. Adjiman, F. Goasdoué, and M.-C. Rousset

E

Fig. 1. Class inclusion mapping

P P

@ pamts >@

Fig. 2. Range typing mapping

of Py, the domain of which is typed with the class P;:Painter of P;. The range
typing is made with the class Po:Painting of Ps. If we suppose that this map-
ping belongs to Pi, its graphical notation is the one in Figure 21 In that case,
Py:Painting is a shared relation between P; and Ps.

2.8 Illustrative Example

We will illustrate our contributions throughout the article on the following simple
SOMERDFS § consisting of two peers P; and Ps.

P; can store data about artists (some of them being sculptors and /or painters),
artifacts artists have created, and the artistic movements the artifacts belong to.
Some artist creations are distinguished according to whether their creators are
sculptors or painters. Py can store data about works (some of them being paint-
ings, sculptures or musics) and the artistic period they refer to. The FOL notation
of their ontologies is given in Figure

P1 actually stores that Picasso has painted “Les demoiselles d’Avignon” which
belongs to the Picasso’s pink movement, and has sculpted “La femme au chapeau”
which belongs to the Modern art movement. Ps stores that “Le déjeuner des can-
otiers” is a painting and that “Les demoiselles d’Avignon” refers to the Cubism

‘P1 ontology P2 ontology

VX (P1:Sculptor(X) = P1:Artist(X)) VX (P2:Painting(X) = P2:Work(X))

VX (Pi:Painter(X) = P1:Artist(X)) VX (P2:Sculpture(X) = P2:Work(X))
VXVY (Pi:creates(X,Y) = Pr:Artist(X)) VX (P2:Music(X) = Pa:Work(X))

VXVY (Pi:creates(X,Y) = Pr:Artifact(Y)) VXVY (Pa:refersTo(X,Y) = Pa:Work(X))

VXVY (P1:paints(X,Y) = Pi:creates(X,Y)) VXVY (P2:refersTo(X,Y) = Pa:Period(Y))
VXVY (P1:sculpts(X,Y) = Pricreates(X,Y))

VXVY (P1:sculpts(X,Y) = Pr:Sculptor(X))

VXVY (P1:paints(X,Y) = Pi:Painter(X))

VXVY (P1:belongsTo(X,Y) = Pir:Artifact(X))

VXVY (P1:belongsTo(X,Y) = Pir:Movement(Y))

Fig. 3. Ontologies of P; and P2

SOMERDF'S in the Semantic Web 165

P1 Data Py Data
P1:paints(Picasso,Les-demoiselles-d-Avignon) P2:Painting(Le-dejeuner-des-canotiers)
P1:sculpts(Picasso,La-femme-au-chapeau) Pa:refersTo(Les-demoiselles-d-Avignon,Cubism)
P1:belongsT o(Les-demoiselles-d-Avignon,Picasso-pink) Pa2:Sculpture(The-statue-of-David)
P1:belongsTo(La-femme-au-chapeau,Modern-art) P2:Music(Nutcracker)

Fig. 4. Data of P; and P-

P1 mappings P2 mappings
VXVY (Pi:paints(X,Y) = Pa:Painting(Y)) VX (Pi:Artifact(X) = P2:Work(X))
VXVY (Py:sculpts(X,Y) = Pa:Sculpture(Y)) VXVY (Py:belongsTo(X,Y) = PairefersTo(X,Y))

Fig. 5. Mappings of P; and P2

——» property

C
@ creates @ belongsTo — = — > relation inclusion
*x ! ~ =

refersTo

P

Fig. 6. Graphical representation of schema(S)

artistic period. It also stores that “The statue of David” is a sculpture and that
“Nutcracker” is a music. The storage description of P; and P is given in Figure[l

In order to share data with Ps, P; has established two mappings to distinguish
sculptor and painter creations from artist creations. This is done by the range
typing of Py :sculpts and Pi:paints with respectively the classes of sculptures and
paintings of P,. P has also established mappings with P; in order to state that
the class of artifacts of P is contained in its class of artistic works, and that the
property Pq:belongsTois contained in its property Pa:re fersT o. Their mappings
are given in Figure[fl Those mappings indicate that the shared relations of P; are
P1:Arti fact and Py:belongsT o, while the shared relations of Py are Po: Painting
and Po:Sculpture.

Following our graphical conventions, the above SOMERDFS schema is given
in Figure

3 Query Answering Through Query Rewriting

Query answering is the main inference in a PDMS. Finding all the answers of a
user query is, in general, a critical issue [I6]. It has been shown in [I7] that when

166 P. Adjiman, F. Goasdoué, and M.-C. Rousset

a query has a finite number of mazimal conjunctive rewritings, then its answer
set can be obtained as the union of the answer sets of its rewritings.

Definition 5 (Conjunctive rewriting). Given a SOMERDFS PDMS S, a
query R is a conjunctive rewriting of a query Q iff Q subsumes R w.r.t. S.
R is a maximal conjunctive rewriting of Q if there does not exist another con-
Junctive rewriting R’ of Q strictly subsuming R.

Theorem [l shows that query answering in a SOMERDFS PDMS can be done
through query rewriting.

Theorem 1. Query answering of a user query can be achieved by a rewrite and
evaluate strategy. The rewriting complexity is polynomial w.r.t. the size of the
schema of the SOMERDFS PDMS and exponential w.r.t. the number of atoms
in the query. The evaluation complexity is polynomial w.r.t. the size of the data
of the SOMERDFS PDMS.

Proof. The schema ofa SOMERDFS PDMS forms a knowledge base R of function-
free Horn rules with single conditions (see the FOL axiomatization of core-RDFS
in Figure[2). A simple backward chaining algorithm [I8] with cycle detection ap-
plied to each atom of a user query @ ensures to find all the maximal conjunctive
rewritings of each atom of @ with atmost n chaining steps, if n is the number of
rules in the schema. The reason is that each rule in a schema can only be used at
most once (assuming cycle detections) because they have a single condition. There-
fore, there are at most » maximal conjunctive rewritings (each one being reduced
to one atom) for each of the k atoms of the user query.

It follows from [19] that when views, queries and rewritings are conjunctive
queries, the set of all the (maximal) rewritings using views of a query can be
obtained from the conjunctions of the rewritings of each atom of the query. In
order to apply that result to our setting, we just have to reformulate the rewriting
problem that we consider into the rewriting problem using views considered in
[19). For doing so, for each atom p(X) we create a view, named p(X), the body
of which is the conjunction of the different atoms that can be derived (e.g., by

standard forward-chaining) from p(X) using the set R of rule:

p(X) = A a(Y).

{p(X)}URFa(Y)

Those views have no existential variable (for every a(Y') such that {p(X)} UR
a(Y), Y C X) because the FOL axiomatization of core-RDFS (see Figure B is
made of safe rules only. Therefore, conjuncting views that are relevant to each
atom of the query provides rewritings of the query. As shown in [20], it is not
true in the general case where the conjunctions of views relevant to each atom
of the query are just candidate rewritings for which subsumption with the query
must be checked.

By construction, there are at most n views relevant for each atom of the
query. Therefore, there are at most n* maximal conjunctive rewritings of the user
query, obtained by conjuncting rewritings of each atom of the query. Therefore,

SOMERDF'S in the Semantic Web 167

rewriting complexity in SOMERDFS is in O(n*). Note that in practice the value
of n might be quite large while the one of k£ should be small.

Finally, evaluating a conjunctive query is in P w.r.t. data complexity [21].
Since a user query has a finite number of maximal conjunctive rewritings to
evaluate, answering such a query is in P w.r.t. data complexity. O

The proof of Theorem [l provides a solution in order to deploy a SOMERDFS
PDMS: one needs a peer-to-peer reasoner that performs backward chaining in
distributed knowledge bases of FOL function-free Horn rules. To the best of our
knowledge such a FOL peer-to-peer reasoner does not exist. However, there exists
a propositional peer-to-peer reasoner: SOMEWHERE [5]. We will show that it is
possible to encode FOL reasoning in SOMERDFS into propositional reasoning
in SOMEWHERE.

Before presenting the corresponding reduction, we illustrate the rewrite and
evaluate strategy for query answering in a SOMERDFS PDMS on the example
of Section 2.8

3.1 Illustrative Example (Continued)

Let us consider the user query Q1(X) = Po:Work(X) asked to the peer Py. It
is easy to see that its maximal rewritings are (e.g., using backward chaining on
the Horn rules of schema(S)):

1. RY(X) = Pya:Work(X)

2. RY(X) = Pa:Painting(X)

3. Ri(X) = Pa:Sculpture(X)

4. RY(X) = Pa:Music(X)

5. RY(X) =3Y ParefersTo(X,Y)
6. R§(X) = Pr:Artifact(X)

7. RY(X) =3Y PyibelongsTo(X,Y)
8. RI(X)=3Y Prcreates(Y, X)

9. RY(X) =3Y Pr:paints(Y, X)
10. Riy(X) =3Y Pyisculpts(Y, X)

The answer set of @1 is obtained by evaluating those rewritings.
Q1(S) = 0 U{Le-dejeuner-des-canotiers} U { The-statue-of-David}
~N~ 0~ v~ -

Ri(S) R;(/S) R;(’S)
U {Nutcracker} U {Les-demoiselles-d-Avignon} U 0
~ ~ v~ ~ v =~
RL(S) RL(S) Rg(S)
U {Les-demoiselles-d- Avignon,La-femme-au-chapeau} U ()
~ ~ v =~
RL(S) Rg(S)
U {Les-demoiselles-d-Avignon} U { La-femme-au-chapeau}.
~ ~ v~ ~ -
R3(S) Rio(S)

Consider now the user query Q2(X,Y) = Pa:Painting(X) A ParefersTo
(X,Y) asked to Ps. Its maximal rewritings are:

168 P. Adjiman, F. Goasdoué, and M.-C. Rousset

1. R}(X,Y) = Pa:Painting(X) A Pa:refersTo(X,Y)
2. R4(X,Y) = Pa:Painting(X) A Pr:belongsTo(X,Y)
3. R3(X,Y) =3Z Pi:paints(Z, X) A ParefersTo(X,Y)
4. R¥(X,Y) =3Z Pr:paints(Z, X) A\ Pi:belongsTo(X,Y)

The answer set of Q2 is obtained by evaluating those rewritings.

Q2(S) = & u B u i(Les—demoiselles—{;Avignon, Cubism)l
R3(S) R3(S) R2(S)
U {(Les-demoiselles-d-Avignon, Picasso-pink)}.
N~ ~ 4

R(S)
Note that the above rewritings suggest the need of optimization in order to be
efficiently evaluated: some atoms appear in several rewritings and are thus eval-
uated several times. Standard caching techniques can be used for that purpose.
@1 and @2 highlight three kinds of rewritings.

— Local rewritings involve relations of the queried peer’s vocabulary. For exam-
ple, the rewriting R} shows that the data Nutcraker of Py, which is known
as music, is an artistic work.

— Distant rewritings involve relations of a single distant peer’s vocabulary. For
example, the rewriting R? shows that Les demoiselles d’Avignon is a painting
that refers to Cubism. It is worth noticing that Les demoiselles d’Avignon
is already known from P53, but not as a painting.

— Integration rewritings involve relations of several peer’s vocabularies. For
example, the rewriting RZ shows that Les demoiselles d’Avignon which is
already known from Ps to refer to Cubism, refers also to the Pink period of
Picasso.

3.2 Propositional Reduction of Query Rewriting in a SOMERDF'S
PDMS

In this section, we describe how to equivalently reduce query rewriting in a
SOMERDFS PDMS to consequence finding over logical propositional theories in
SOMEWHERE. To do this, we have to convert the distributed FOL knowledge
base that corresponds to a SOMERDFS PDMS into a distributed propositional
theory T that corresponds to a SOMEWHERE peer-to-peer inference system, and
to show that we obtain the maximal conjunctive rewritings of a query Q(X)
from the proper prime implicates of =@Q w.r.t. T' using the DECA algorithm of
SOMEWHERE.

SOMEWHERE [0] is a peer-to-peer inference system (P2PIS), in which each
peer theory is a set of propositional clauses built from a set of propositional
variables. Any variable common to two connected peers can be stated as shared.
In that case, both peers know that they share that variable. Any variable of
a peer’s vocabulary can also be stated as target. When a peer is solicited for
computing consequences, the consequences it can send back are only those that
contain target variables. From a logical point of view, the global theory of a
SOMEWHERE P2PIS is the union of the propositional theories of its peers. From

SOMERDF'S in the Semantic Web 169

a reasoning point of view, each SOMEWHERE peer runs DECA [5] (DEcentralized
Consequence finding Algorithm), which is a message-passing algorithm that
computes the proper prime implicates of literals w.r.t. the global theory of the
P2PIS. The point is that it does it in a fully decentralized manner, without
knowing the whole global theory. DECA is sound, i.e., it computes only proper
implicates of the input literal w.r.t. the global theory. DECA always terminates
and notifies the user of its termination. We have exhibited in [5] a sufficient con-
dition for DECA to be complete, i.e., to return all the proper prime implicates
of the input literal (w.r.t. the global theory): for any two peers having a variable
in common, there is a path of connected peers sharing that variable.

The following definition recalls the notion of proper prime implicate of a clause
w.r.t. a propositional clausal theory.

Definition 6 (Proper prime implicate w.r.t. a theory). Let T be a clausal
theory and q be a clause. A clause m is said to be:

— a prime implicate of ¢ w.r.t. T iff TU{q} = m and for any other clause m/,
if TU{q} Em' and m' =m then m' =m.

— a proper prime implicate of g w.r.t. T iff it is a prime implicate of q¢ w.r.t.
T and T £ m.

The propositional encoding of a SOMERDF'S that we consider is given in Defini-
tion [7 It must translate appropriately the semantic connection between classes
and properties. In particular, the typing of the properties must distinguish the
typing of the domain from the typing of the range of a given property P. As we
will see, this distinction is important for rebuilding the FOL rewritings from the
propositional rewritings. In the FOL notation, the distinction relies on the place
of the typing variable as argument of the property: in VXVY (P(X,Y) = C(X))
the fact that the typing variable (i.e., X) appears as the first argument of P
indicates that the domain of the property is typed by the class C, while in
VXVY (P(X,Y) = C(Y)) the fact that the typing variable (i.e., Y) appears as
the second argument of P indicates that the range of the property is typed by
the class C.

Therefore, for a given class C, we distinguish its two typing roles for properties
by encoding it by two propositional variables C4°™ and C™%"9¢. Thus, we encode
the domain typing of a property P by a class C with the clausal form —P v C%™
of the implication P = C%™. Similarly, we encode the range typing of a property
P by a class C' with the clausal form =PV C"%"9¢ of the implication P = C"*"9¢.

Definition 7 (Propositional encoding of SOMERDFS). We encode a
SOMERDFS S into a SOMEWHERE Prop(S) by encoding each SOMERDFS
peer P in S into a SOMEWHERE peer Prop(P) in Prop(S):

— if VX(C1(X) = Co(X)) is in P, ~Cfem v Cdom and —C7"9¢ v C5"9¢ are
in Prop(P).

—if VX, Y(P(X,Y) = O(X)) is in P, =PP™P \ 0™ js in Prop(P).

— VX, Y(P(X,Y) = C(Y)) is in P, =PP™°P \y C"*"9¢ js in Prop(P).

— VX, Y(P(X,Y) = P(X,Y)) is in P, =P"P v PY"P is in Prop(P).

170 P. Adjiman, F. Goasdoué, and M.-C. Rousset

It is important to notice that a dual encoding would have been possible, consist-
ing in distinguishing the domain and range typing by encoding each property
P by two propositional variables P4°™ and P7%"9¢: a clause ~P%™ v C would
encode the domain typing of a property P by a class C, while =P"*"9¢V C' would
encode the range typing of a property P by a class C.

All the propositional variables in Prop(P) are stated as target. A variable in
Prop(P) that corresponds to a relation shared with another peer P’, is stated
as shared with Prop(P’).

As an illustration, Figure[drepresents the two peers of the SOMERDFS PDMS
introduced in Section

Py
VX (Pq:Sculptor(X) = P1:Artist(X))
VX (Pq:Painter(X) = Py:Artist(X))

VXVY (Ppicreates(X,Y) = Pp:Artist(X)) P2

VXVY (P1icreates(X,Y) = Pi:Artifact(Y)) VX(Pg:Painting(X) = Pg:Work(X))
VXVY (Pq:paints(X,Y) = Pj:creates(X,Y)) VX (Pg:Sculpture(X) = Pg:Work(X))
VXVY (Pq:sculpts(X,Y) = Pp:creates(X, Y)) VX (Pa:Music(X) = Pg:Work(X))

VXVY (Pqisculpts(X,Y) = Pq:Sculptor(X)) VXVY (PairefersTo(X,Y) = Pa:Work(X))

VXVY (PgyirefersTo(X,Y) = Pg:Period(Y))
VX (Pp:Artifact(X) = Po:Work(X))
VXVY (Py:belongsTo(X,Y) = PoirefersTo(X,Y))

VXVY (Pqipaints(X,Y) = Py:Painter(X))
VXVY (Py:ibelongsTo(X,Y) = Py:Artifact(X))

VXVY (Pq:belongsTo(X,Y) = Pi:Movement(Y)
Shared

With P1: Po:Painting(X), Po:Sculpture(X)

VXVY (Py:paints(X,Y) = Pg:Painting(Y))

VXVY (Pp:sculpts(X,Y) = Pog:Sculpture(Y))

Shared
With Pg: Pr:Artifact(X), Py:belongsTo(X,Y)

Fig. 7. The SOMERDFS PDMS of Section 2.8

Figure[§ corresponds to the encoding of this SOMERDFS PDMS into a SOME-
WHERE P2PIS. The Shared section in the Figure[d] (resp.[B) makes explicit which
local relations (resp. propositional variables) are known to be shared with others
peers.

Proposition [Ml states that the propositional encoding of a SOMERDFS PDMS
leads to a SOMEWHERE P2PIS for which the DECA algorithm is complete.

Proposition 1 (Completeness of DECA for the propositional encoding
of a SOMERDFS PDMS). Let S be a SOMERDFS PDMS. Let Prop(S) be the
SOMEWHERE P2PIS resulting from the propositional encoding of S. DECA is
complete for Prop(S).

Proof. By definition, in a SOMERDFS PDMS, a relation which appears in two
peers comes from a mapping between those two peers and is shared between
those two peers. In the propositional encoding, the only variables that can be
common to two peer theories result from the encoding of a mapping. Therefore,
in a SOMEWHERE P2PIS resulting from the encoding of a SOMERDFS PDMS,
all the variables that are common to two peer theories are necessarily shared by
those two peers, and the sufficient condition for the completeness of DECA is
obviously satisfied. |

SOMERDF'S in the Semantic Web 171

P

~P1 : Sculptord®™ v Py Artistdom

—P1 : Sculptor”™@MIe v Py Artist"AnIe Py :
~P1 : Painterd®™ v Py : Artistdom Py ¢ Paintingdom v py : Workdom
—=Pq : Painter"®M9¢ v Py : ArtistTan9ge —Pg : Painting™@M9¢ v Py : Work"an9ge

—Py : Sculpturedo™ v Py ¢ Workdom
—Py i Sculpture”®™IC V Py i Work 4mIE
~Pg : Music®™ v Py : Workdom

—Py i Music™@9€ v Py : Work"en9e
—Py : refersToP 0P v Py i Workdom

Py : ereatesPTOP v Py i Artistdom
—Pq : createsPTOP v Py : Artifact™dMIC
—P1 : paintsPTOP v Py : createsPTOP

—P1 ¢ sculptsPTOP v Py : createsPTOP

Py : sculptsPTOP v Py : Sculptordo™ prop range
—Py : paintsPTOP v Py : Painterdo™ Py : refersTo V Py i Period"MY
. ; dom . dom
—Pq : belongsToPTOP v Py : Artifactdom —P1 : Artifact V Pg : Work
H rtd range . .range
~P1 : belongsToPTOP v Py : Movement”@"9¢e —P1 : Artifact™"IC v Py : Work"am9e
—P1 : paintsPTOP v Py : Painting”®"9¢ —Py1 i belongsToPTOP v Py : refersToPTOP
) Shared

—P1 ¢ sculptsPTOP v Py : Sculpture”®m9e
. ’ : ! With Py: Pg:Painting”*"9¢, Py:Sculpture” ™9

Shared
With Pg: Pp:Artifactd®™ Pi:Artifact™@n9e
Py :belongsToPTOP

Fig. 8. Propositional encoding of the SOMERDFS PDMS of Section [Z.8]

Proposition[2 establishes the connection between maximal conjunctive rewritings
of queries made of a single atom in a SOMERDFS PDMS and proper prime
implicates of a literal in a SOMEWHERE P2PIS. Note that Proposition [2 also
suggests an optimization of the propositional encoding when query rewriting is
used for query answering: the target variables should be only the ones resulting
from relations for which facts are stored. Doing this, each conjunctive rewriting
will be useful for query answering: it will provide at least one answer.

Proposition 2 (Propositional transfer). Let S be a SOMERDFS PDMS and
let Prop(S) be its propositional encoding into a SOMEWHERE P2PIS.

(i) R(X) = C'(X) is a maximal conjunctive rewriting of a query Q(X) =
C(X) w.r.t. S iff ~C'®™ is a proper prime implicate of =C%°™ w.r.t.
Prop(S)

(i) R(X)=3YP(X,Y) is a mazimal conjunctive rewriting of a query Q(X) =
C(X) w.rt. S iff ~PP™P is a proper prime implicate of =C%™ w.r.t.
Prop(S).

(ii) R(X)=3YP(Y,X) is a mazimal conjunctive rewriting of a query Q(X) =
C(X) w.r.t. S iff ~PP™P is a proper prime implicate of =C"*™9¢ w.r.t.
Prop(S).

(iwv) R(X,Y) = P/(X,Y) is a mazimal conjunctive rewriting of a query Q
(X,Y) = P(X,)Y) w.r.t. S iff ~P'P"°P is a proper prime implicate of ~PP"P
w.r.t. Prop(S).

Proof. We first exhibit some properties that will be used in the proof of the
proposition. Let § be a SOMERDFS PDMS and let Prop(S) be its propositional
encoding into a SOMEWHERE P2PIS. Let C' and P be respectively a class and
a property of S, and C9°™, C7%"9¢ and PP™°P be their corresponding variables
in Prop(S).

172 P. Adjiman, F. Goasdoué, and M.-C. Rousset

Let I = (A”,.7) be an interpretation of S and (0,0’) € Al x A. We build an
interpretation p, o (I) of Prop(S) as follows:

ap. (CdomyPo.or (D) — trye iff 0 € CT and (CT99¢)Po.o' () = trye iff o € C1.
ag. (PProP)Po.o’ () = trye iff (0,0') € PT.

Let J be an interpretation of Prop(S). We build i(J) = (Al = {dom,
range},.'!)) an interpretation of S as follows:

Bi. dom € GV iff (Cdom)t = true and range € CciY) iff (Cranse)T = true.
Ba. if (PPT°P)7 = true then RYY) = {(dom,range)} else R*V) = ().

Properties 1. and 2. follow from the definition of the above interpretations:
For every interpretation I of S and (0,0") € Al x A, for every interpretation .J
of Prop(S):

1. I is a model of S iff p, o (I) is a model of Prop(S).
2. i(J) is a model of S iff J is a model of Prop(S).

We now give the proof of the item (i) of the proposition. We do not provide
the proofs of the items (%), (ii7) and (iv) because they are very similar to that
of (7).

(i) (<) We have to prove that if ~C’?™ is a proper prime implicate of ~C%™
w.r.t. Prop(S) then R(X) = C’(X) is a maximal conjunctive rewriting of a
query Q(X) =C(X) wr.t. S.

Suppose that —=C’4°™ is a proper prime implicate of ~C9°™ w.r.t. Prop(S).
Let us first show that R(X) = C’'(X) is a conjunctive rewriting of Q(X) = C(X)
w.r.t. S§. If it is false, then there exists a model I of S and a constant b such that
be C'" and b ¢ CT. Note that there always exists such a b since the core-RDFS
data model does not allow building unsatisfiable logical sentences (w.r.t. S).
According to property 1., pp »(I) is a model of Prop(S). According to definition
a1 we have (C"%m)Per() = trye and (CPom)Per) = false, i.e., (—C™)Pos)
= true and (—~C’"@™)Peo(I) = false. This contradicts the fact that ~C’9™ is an
implicate of ~C%™ w.r.t. Prop(S).

Let us show now that R(X) = C’(X) is a mazimal conjunctive rewriting. If
it is false, there exists a mazrimal conjunctive rewriting R’ of Q w.r.t. S strictly
subsuming R, i.e., there exists a model I of S and an element o € A’ such that
o€ (R),0ec @' ando ¢ R'. Theorem[Istates that all the maximal conjunctive
rewritings of a user query can be obtained using a backward chaining algorithm
with cycle detection. Because of the form of the core-RDFS rules in schema(S)
(Section [2]), any maximal conjunctive rewriting of a query made of a single atom
Q(X) = C(X) is either of the form R'(X) = A(X), or R/(X) =3YB(X,Y), or
R'(X)=3YB(Y,X):

— R/(X) = A(X): According to property 1, p, (1) is a model of Prop(S) and
according to definition «a; we have: (A%M)PeoD) = frye,
(Cdomypooll) = trye, and (C'4m)Pooll) = false, ie., (mA%™)Pooll) =
false, (=Cdom)Pooll) = false, and (—C"4°™)Po.c) = trye. This contradicts
the fact that ~C"4°™ is a prime implicate of ~C%™ w.r.t. Prop(S).

SOMERDF'S in the Semantic Web 173

— R/(X) = 3YB(X,Y): Since 0 € R’ then there exists o/ € A! such that
(0,0') € BI. According to property 1, po o (I) is a model of Prop(S) and ac-
cording to definition «; and «g we have: (BP"P)Po. D = true,
(Cdomypo.or () = trye, and (C'4om)Po.r (1) = false, i.e., (~BPTOP)Poo' (1) =
false, (~Cm)Poor (1) = false, (—C'@™)Po.o (1) = trye. This contradict the
fact that ~C’%°™ is a prime implicate of =C%™ w.r.t. Prop(S).

— R/'(X) = 3YB(Y, X): This case is similar to the previous one.

(i) (=) We have to prove that if R(X) = C’(X) is a maximal conjunctive
rewriting of a query Q(X) = C(X) w.r.t. S then =C’%™ is a proper prime
implicate of ~C%™ w.r.t. Prop(S).

Suppose that R(X) = C'(X) is a maximal conjunctive rewriting of a query
QX)=C(X) wrt. S.

Let us first show that =C’@™ is an implicate of ~C%°™ w.r.t. Prop(S). Since
C’(X) is a conjunctive rewriting of C'(X), for every model I of S: (C")! C (C)!. If
—=C'¥°™ js not an implicate of ~C°™ w.r.t. Prop(S), then {~C™}UProp(S)
=C'dom e, {C'°m} U Prop(S) £ C4°™ i.e., there exists a model J of {C’4°™}
UProp(S) such that (C%™)7 = false and (C"4°™)7 = true. According to prop-
erty 2., i(J) is a model of S. According to definition 3; we have dom ¢ (C)"”)
and dom € (C')"Y) thus (C)'V) ¢ (C’)"/). This contradicts the fact that
R(X) = C'(X) is a conjunctive rewriting of Q(X) = C(X) w.r.t. S.

Let us show now that —~C’@™ is a proper implicate of =C%°™ w.r.t. Prop(S).
Let I be a model of S such that B! # (). Note that such a model always exists
since the core-RDFS data model does not allow building unsatisfiable logical
sentences (w.r.t. S). Let o be in C"f. According to property 1, p, o(I) is a model
of Prop(S) and according to definition o; we have (C'4™)Po.o(l) = trye, i.e.,
(=C"dom)po.o(I) — false. Therefore, there exists a model of Prop(S) which is
not a model of =C’%™ . That means that =C’4°™ is not an implicate of Prop(S)
alone.

Finally, let us show that ~C"°™ is a prime implicate of ~C%°™ w.r.t. Prop(S).
Suppose that there exists a clause cl such that Prop(S) U {=C%™} k= cl and
cl = =C"°™ Either cl is =C'¥°™ since ~C"%°™ is a literal and thus =C’4°™ is
prime, or cl is the empty clause and thus Prop(S) U {-~C49°™} is unsatisfiable.
Let us show that the latter case is not possible. Let I be a model of S such that
o & (C%™)I Tt is always possible to build such a model: let K = (AK .K) be
a model of S such that o ¢ AX then I = (AX U {0}, .K) is a model of S such
that o ¢ (C9°™)I. According to the property 1, p,o(I) is model of Prop(S),
and according to the definition oy we have: (C%™)Pe.o(l) = false. Therefore,
Po.o(I) is a model of Prop(S)U{=C%™} and thus Prop(S)U{-C9™} is always
satisfiable. O

In the next section, we provide an algorithm built on top of DECA which com-
putes all the maximal conjunctive rewritings of any user query.

174 P. Adjiman, F. Goasdoué, and M.-C. Rousset

4 Query Rewriting Algorithm of a SOMERDFS PDMS

The query rewriting algorithm of SOMERDFS, namely DECARPFS ig designed
on top of DECA. On each SOMERDFS peer P, DECARDPFS acts as an interface
between the user and DECA which works on Prop(P).

The strategy of DECARPFS is to rewrite the user query’s atoms independently
with DECA, based on the result of Proposition[2] and then to combine their rewrit-
ings in order to generate some conjunctive rewritings of the user query w.r.t. a
SOMERDFS PDMS. DECARPFS guarantees that all the maximal conjunctive
rewritings of the user query w.r.t. a SOMERDFS PDMS are generated.

DECARDFS is presented in Algorithm [l It uses the conjunctive distribution
operator @® on sets of FOL formulas: S1® - ® S, = 0" S; = {F1 A ANF, |
Fy e Sl, ..., F, e Sn} Note that if S; = @, 1€ [1..71], then @?:151' = 0.

Algorithm 1. DECARDFS
Require: A user query Q(X) =3V A, m(Xs,Yi)st. X =UJ, Xsand Y =, Vi
Ensure: Output contains only conjunctive rewritings of @@ w.r.t S, including all the
maximal conjunctive rewritings of Q w.r.t S

1: for i € [1..n] do

2: ATOMREWRITINGS; = ()
3 if 7;(X;,V:) is of the form C(U) then
4 for imp € DeC A(-C?™) do
5: if imp has the form ~C’%°™ then
6 ATOMREWRITINGS; = ATOMREWRITINGS; U {C'(U)}
7 else if imp has the form —P'?"°? then
8: ATOMREWRITINGS; = ATOMREWRITINGS; U {3ZP'(U, Z)} endif
9: end for

10: for imp € DeCA(-C"*"9°) do

11: if imp has the form —P'?"°? then

12: ATOMREWRITINGS; = ATOMREWRITINGS; U {3ZP'(Z,U)} endif
13: end for

14: else if ri(Xi,Yi) is of the form P(Ui,Us) then

15: for imp € DeCA(—-P?"°?) do

16: if imp has the form —P'?"°? then

17: ATOMREWRITINGS; = ATOMREWRITINGS; U {P' (U1, Us)}
18: end for

19: end if

20: end for

21: return @®;—; ATOMREWRITINGS;

4.1 Illustrative Example (Continued)

Let us consider the user query Q1(X) = Pa:Work(X) asked to P in the exam-
ple of Section 2.8

SOMERDF'S in the Semantic Web 175

At Line @l of DECARDFS P, . Workdom is asked to DECA:

DECA (=Pa:Work®m) ={=Py:Workde™ —Py: Painting®™, —Py:Sculpturedom™,
—Py:Music®™, —Py:refersToPTP, —=Py: Arti fact?®™, =Py :belongsToPTP}.

At Line [0 of DECARPFS ' —p,.Work o9 is asked to DECA:

DECA (= P2:Workrem9¢) = {=Py:Workr®mse — —Py:Painting"*"9°,
—Po:Sculpture™®™9¢, —Po:Music™9¢, —Pi:Artifact™™9¢, —Pi:createsP™P,
—P1:paintsP"P, —Py:sculptsPToP}.

It follows that, at Line ZII ®}_;ATOMREWRITINGS; = {Pa:Work(X),
Pa:Painting(X), Pa:Sculpture(X), Po:Music(X), 3IZParrefersTo(X,Z),
P1:Artifact(X), AT Py :belongsTo(X,T), U P;:creates(U, X),

AV Prpaints(V, X), IW Py :sculpts(W, X)}.

Therefore, DECARPFS returns the maximal conjunctive rewritings of Q; w.r.t.
S exhibited in the example of Section 3]

Let us consider now the user query Q2(X,Y) = Po:Painting(X)
APsa:refersTo(X,Y) asked to Py in the example of Section 28

In the first iteration of DECARDFS7 ﬂPQ:Paintingdom is asked to DECA at
Line @ and —Ps: Painting™*™9¢ is asked to DECA at Line [I0] with the following
results:

DECA (=Pa: Painting®™) = {=Pa: Painting®™},
DECA (=Pz:Painting”*™9°) = {=Pa: Painting™*™9¢, —Py:paintsPToP}.

In the second iteration of DECARPFS —Py:re fersToP P is asked to DECA at
Line [[H] with the following results:

DECA (=Pa:refersToP"P) = {=Pa:refersToP"P, —Py:belongsT oP™P}.
It follows that, at Line 211

O ATOMREWRITINGS; = { Pa:Painting(X) N ParefersTo(X,Y),
Pa:Painting(X)NPy:belongsTo(X,Y), 3Z Pr:paints(Z, X)WPa:refersTo(X,Y),
3AZ Py:paints(Z, X)) A Pr:belongsTo(X,Y)}.

Therefore, DECARPFS returns the maximal conjunctive rewritings of Qy w.r.t.
S exhibited in the example of Section B3]

4.2 Properties of DECARDPFS
The main properties of DECARDPFS are stated by the two following theorems.

Theorem 2 (Soundness of DECARPFS). et S be a SOMERDFS PDMS
and let P be one of its peers. Any user query Q asked to P will produce a set
DECARPFS(Q) of queries containing only conjunctive rewritings of Q
w.r.t. S.

176 P. Adjiman, F. Goasdoué, and M.-C. Rousset

Proof. Theorem 1 in [5] states the soundness of DECA. Therefore, according to
Proposition 2 in Section Bl ATOMREWRITINGS; (¢ € [1..n]) at Line 21] contains
only conjunctive rewritings of the i*" atom of the user query Q.

The soundness of the output of DECARPFS at Line 2T results from the fact
that, as we have shown in the proof of Theorem [, we are in a setting where it
has been proved [19] that conjuncting conjunctive rewritings of each atom of the
query provides conjunctive rewritings of the query. ([

Theorem 3 (Completeness of DECARPYS), Let S be a SOMERDFS PDMS
and let P be one of its peers. Any user query @ asked to P will produce a set
DECARPFS(Q) of queries containing all the mazimal conjunctive rewritings of

Q wrt S.

Proof. Theorem 2 in [B] states a sufficient condition for the completeness of
DECA. Proposition [l in Section [B] ensures that this condition is satisfied in
Prop(S). Therefore, the use of DECA at Line [, Line [0} and Line [I5] produces
all the proper prime implicates of the given literals w.r.t. Prop(S).

According to Proposition 2] in Section B, ATOMREWRITINGS; (i € [1..n]) at
Line 21l contains all the maximal conjunctive rewritings of the i*" atom of the
user query Q.

The completeness of the output of DECARPFS at Line 2] results from the
fact that, as we have shown in the proof of Theorem [I], we are in a setting where
it has been proved [I9] that conjuncting all the maximal conjunctive rewritings
of each atom of the query provides all the maximal conjunctive rewritings of the
query. O

Theorem 4 (Termination of DECARPFS). et S be o SOMERDFS PDMS
and let P be one of its peers. Any user query @ asked to P will produce a
computation that always terminates.

Proof. Theorem 1 in [5] states that DECA always terminates after having pro-
duced a finite set of proper prime implicates of a given literal w.r.t. Prop(S).
Therefore, it is obvious that DECARPFS always terminates. (]

Other interesting properties are inherited from DECA’s properties: anytime com-
putation and termination notification. Note that the latter property is crucial
for an anytime algorithm.

Theorem 5 (Anytime computation of DECARPFS). [etS be a SOMERDFS
PDMS and let P be one of its peers. Any user query Q asked to P will return a set
DECARPYS(Q) of query rewritings as a stream.

Proof. Tt is obvious that the n iterations at Line [I] are independent. Therefore,
they can be parallelized.

Within an iteration, if there are several calls to DECA, those calls and
the computations that follows are independent: they only add results in the
same variable ATOMREWRITING;. Therefore, those calls can be parallelized.
Moreover, since DECA performs an anytime computation, the feeding of the

SOMERDF'S in the Semantic Web 177

ATOMREWRITING; can be made anytime: each time a result is produced by
DECA (at Line[d Line [0, and Line[TH), that result is processed (within the for
loops at Line @ Line [[0, and Line [I3]).

It follows that the computation at Line[2Ilcan also be made anytime: each time
an ATOMREWRITING;, (k € [l.n]) is fed with a formula F,
OF ' ATOMREWRITINGS; © {F} ® O 41 ATOMREWRITINGS; is returned in the
output stream. U

Theorem 6 (Termination notification of DECARPFS). et S be a
SOMERDFS PDMS and let P be one of its peers. Any user query asked to
P will produce a computation, the end of which will be notified to the user.

Proof. Theorem 3 in [5] states that DECA, which is anytime, notifies of its ter-
mination. Therefore, it is obvious that as soon as all the finite number of calls to
DECA have notified of there termination and the ATOMREWRITINGS; (i € [1..n])
have been properly fed according to the results of these calls, DECARPFS can no-
tifies the user of its termination after having returned ®;_; ATOMREWRITINGS;
at Line 211 O

4.3 Scalability of DECARDFS

The scalability of DECARDPFS is directly related to the scalability of DECA.
We can infer that DECARPFS has good scalability properties from the DECA
scalability experiments that are reported in [7]. Those experiments have been
performed on networks of 1000 peers deployed on a cluster of 75 heterogeneous
computers. The networks that have been considered have a topology of “small
world” [22] like in social networks: there are clusters of very connected peers
and a few connections between peers of different clusters. Each peer theory is
randomly generated as 70 clauses of length 2 from 70 variables, 40 of which
are ramdomly chosen as target variables. A peer is connected to 10 other peers
with which it shares 2 variables (randomly chosen). These connections take into
account the “small world” topology. From a peer point of view, these connec-
tions are done by adding in its theory 20 new clauses modeling the mappings
with its neighbours. Among the experiments performed on SOMEWHERE P2PISs
[7], the ones that are the most representative of the propositional encodings of
SOMERDFS PDMSs correspond to the very easy case for DECA in which all
the mappings correspond to clauses of length 2. It is due to the simplicity of the
RDFS model (no class constructor and no negation). In that case, it has been
experimentally shown that all the proper prime implicates of a given literal are
computed in 0.07 second in mean (over more than 300 different input literals).

This lets envision a good scalability of DECARPFS gince for any user query,
atoms are independently rewritten in parallel. Thus, the expected time to add
to the above 0.07 second in mean is the time needed to combine the rewritings
of the user query atoms (Line 211 in Algorithm [J).

178 P. Adjiman, F. Goasdoué, and M.-C. Rousset

5 Related Work

We have already presented in the introduction some PDMSs that have been
developped for the Semantic Web: Edutella [2], RDFPeers [3], GridVine [4] or
SoMEOWTL [5]. Like a SOMERDF'S PDMS, a GridVine PDMS is based on RDF'S
and considers mappings between peer ontologies. However, the mappings consid-
ered in a GridVine PDMS are restricted to equivalence of properties, while we
allow in a SOMERDF'S PDMS more expressive mappings that can be inclusion
of classes, inclusion of properties, and domain and range typing of properties. In
contrast with a GridVine PDMS, the topology of a SOMERDFS PDMS is not
fixed and results from the existence of mappings between peers.

Several peer-to-peer data management systems for other data models than
those of the Semantic Web have been proposed recently.

Piazza [16123], in contrast with Edutella, does not consider that the data dis-
tributed over the different peers must be described relatively to some existing
reference schemas. Each peer has its own data and schema and can mediate with
some other peers by declaring mappings between its schema and the schemas
of those peers. The topology of the network is not fixed (as in Edutella) but
accounts for the existence of mappings between peers (as in SOMEOWL and
SOMERDFS PDMSs): two peers are logically connected if there exists a map-
ping between their two schemas. The underlying data model of the first version
of Piazza [16] is relational and the mappings between relational peer schemas are
inclusion or equivalence statements between conjunctive queries. Such a map-
ping formalism encompasses the Local-as-View and the Global-as-View [24] for-
malisms used in information integration systems based on single mediators. The
price to pay is that query answering is undecidable except if some restrictions are
imposed on the mappings or on the topology of the network [16]. The currently
implemented version of Piazza [23] relies on a tree-based data model: the data
is in XML and the mappings are equivalence and inclusion statements between
XML queries. Query answering implementation is based on practical (but not
complete) algorithms for XML query containment and rewriting. The scalability
of Piazza so far does not go up to more than about 80 peers in the published
experiments and relies on a wide range of optimizations (mappings composition
[25], paths pruning [20]), made possible by the centralized storage of all the
schemas and mappings in a global server.

The peer data management system considered in [27] is similar to that of
[16] but proposes an alternative semantics based on epistemic logic. With that
semantics it is shown that query answering is always decidable (even with cyclic
mappings). Answers obtained according to this semantics correspond to a sub-
set of those that would be obtained according to the standard FOL semantics.
However, to the best of our knowledge, these results are not implemented.

The Kadop system [28] is an infastructure based on distributed hash tables
for constructing and querying peer-to-peer warehouses of XML resources seman-
tically enriched by taxonomies and mappings. The mappings that are considered
are simple inclusion statement between atomic classes.

SOMERDF'S in the Semantic Web 179

We will end this section by relating the DECARPFS rewriting algorithm that
we have described in Section 4, with the rewriting algorithm Per fectRef used
in [I2] for reformulating a query w.r.t. DL-Lite Tboxes. The subtle step of
PerfectRef consists in rewriting each atom of the query by applying positive
inclusions. The result of the application of the two positive inclusion statements
expressing domain and range role typing corresponds exactly to respectively
Line 8 and Line 12 of the DECARPFS algorithm (applied in the centralized case
for making the comparison meaningful). The difference is that while inclusion
statements are applied on first-order atoms in PerfectRef, we proceed in two
steps: first the variables of the query are removed and we compute propositional
rewritings, second we obtain the FOL rewritings by simply adding variables
(possibly fresh existential variables) appropriately, depending on whether the
propositional rewritings come from propositional atoms of the form C%™ or
Crm9¢ The equivalent of the application of the positive inclusions is done in
the first step, which applies to propositional atoms. This is an advantage for
scalability issues in the decentralized case.

6 Conclusion and Future Work

We have presented the SOMERDFS model of PDMSs based on RDFS. It is the
first work on distributed RDFS handling semantic heterogeneity between peers
through more complex mappings than equivalence statements. The mappings
that we have considered are RDFS statements involving classes or properties
of different peers. Our approach for query answering in this setting relies on
two steps: query rewriting results in a union of conjunctive queries over possibly
different peers ; the answers are then obtained by evaluating each of those con-
junctive queries on the appropriate peers. This paper has focused on the first
step which is crucial for scalablity issues since it is within this step that the dif-
ferent peers possibly relevant to the query are discovered. For the answering step,
we know which peers have to be interrogated and with which queries. The opti-
mization issues that are relevant to this evaluation step are out of the scope of
this paper. Query answering by rewriting is a standard approach in information
integration systems based on centralized mediators. It raises new problems in a
decentralized setting, in particular scalabiliy and even decidability [29]. The fact
that in our approach query rewritings can be obtained through a propositional
encoding step guarantees decidability and scalability.

In fact, we have shown how to deploy SOMERDFS PDMSs on top of the
SOMEWHERE infrastructure for which experiments [7] have shown good scala-
bility properties. As a comparison, a simple GridVine PDMS of 60 peers have
been deployed and experimented in []: peer ontologies are in core-RDFS, 15
ontologies are used (each of which is used by 4 peers), each peer has 2 mappings
and stores only 1 fact. On such a PDMS, a user query, which is similar to our user
query made of a single atom, is answered in more that 10 seconds. In contrast,
experiments presented in [7] show that on a more complex network with bigger
ontologies (1000 peers, 1000 ontologies, 10 mappings per peer), the rewritings

180 P. Adjiman, F. Goasdoué, and M.-C. Rousset

produced by DECA for any user query made of a single atom are obtained in
0.07 second in mean. This lets envision that the whole query answering (rewrit-
ing and evaluation) could be made in less than 1 or 2 seconds. Such a hint must
be confirmed by a large-scale experimental study that we plan to conduct in the
near future.

We also plan to extend the current SOMERDFS model for handling more
complex ontologies and more complex mappings. In particular, it seems doable
to consider DL-Lite both for expressing local ontologies over RDF facts and
for expressing mappings between ontologies. Since the negation is supported at
the propositional level in SOMEWHERE the DECA algorithm can be used to
check the satisfiability of the global schema. Then it should be straightforward
to extend the two-step DECARPFS rewriting algorithm to handle the additional
constructors of DL-Liter. As a consequence, by a slight extension of the ap-
proach presented in this paper we could obtain a fast deployment of PDMS
based on distributed DL-Lite (in which the mappings are interpreted in first-
order semantics).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001)

2. Nedjl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., al.. EDUTELLA: a P2P
networking infrastructure based on RDF. In: WWW. (2002)

3. Cai, M., Frank, M.: RDFPeers: a scalable distributed RDF repository based on a
structured P2P network. In: WWW. (2004)

4. Aberer, K., Cudré-Mauroux, P., Hauswirth, M., Pelt, T.V.: GridVine: Building
internet-scale semantic overlay networks. In: ISWC. (2004)

5. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed
reasoning in a P2P setting: Application to the semantic web. Journal of Artificial
Intelligence Research (JAIR) (2006)

6. Stoica, 1., Morris, R., Karger, D., Kaasshoek, M., Balakrishnan, H.: CHORD a
scalable P2P lookup service for internet applications. In: ACM SIGCOMM. (2001)

7. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Scalability
study of P2P consequence finding. In: IJCAIL (2005)

8. ter Horst, H.J.: Extending the RDFS entailment lemma. In: ISWC. (2004)

9. de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of normative RDF.
In: OWLED. (2005)

10. de Bruijn, J., Franconi, E., Tessaris, S.: Logical reconstruction of RDF and ontology
languages. In: PPSWR. (2005)

11. Farrugia, J.: Model-theoretic semantics for the web. In: WWW. (2003)

12. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: AAAI. (2005)

13. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: KR. (2006)

14. Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description Logic Programs: com-
bining logic programs with description logic. In: WWW. (2003)

15. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of RDF query
languages. In: ISWC. (2004)

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

SOMERDF'S in the Semantic Web 181

Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data
management systems. In: ICDE. (2003)

Goasdoué, F., Rousset, M.C.: Answering queries using views: a KRDB perspective
for the semantic web. ACM Journal - Transactions on Internet Technology (TOIT)
4(3) (2004)

Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edition
edn. Prentice-Hall, Englewood Cliffs, NJ (2003)

Levy, A.Y., Mendelzon, A.O., Sagiv, Y., Srivastava, D.: Answering queries using
views. In: PODS. (1995)

Pottinger, R., Halevy, A.Y.: MiniCon: A scalable algorithm for answering queries
using views. In: VLDB Journal 10(2-3). (2001)

Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

Watts, D.J., Strogatz, S.H.: Models of the small world. Nature 393 (1998)
Halevy, A., Ives, Z., Tatarinov, 1., Mork, P.: Piazza: data management infrastruc-
ture for semantic web applications. In: WWW. (2003)

Halevy, A.Y. In: Logic-based techniques in data integration. Kluwer Academic
Publishers (2000)

Madhavan, J., Halevy, A.: Composing mappings among data sources. In: VLDB.
(2003)

Tatarinov, 1., Halevy, A.: Efficient query reformulation in peer data management
systems. In: SIGMOD. (2004)

Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.: Logical fondation of P2P
data integration. In: PODS. (2004)

Abiteboul, S., Manolescu, I., Preda, N.: Constructing and querying P2P warehouses
of XML resources. In: SWDB. (2004)

Tatarinov, 1., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi, N., Dong, X.,
Kadiyska, Y., Miklau, G., Mork, P.: The Piazza peer data management project.
In: SIGMOD Record. Volume 32. (2003)

	Introduction
	Sequential Pattern Mining with SQL
	Problem Statement
	Algorithms for Mining Sequential Patterns
	Sequential Pattern Mining Based on SQL

	Prospad: PROjection Sequential PAttern Discovery in SQL
	Performance Evaluation
	Datasets

	Summary and Conclusion

