
A Formal Framework for
Adaptive Access Control Models

Stefanie Rinderle1 and Manfred Reichert2

1 Department Databases and Information Systems, University of Ulm, Germany
stefanie.rinderle@uni-ulm.de

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. For several reasons enterprises are frequently subject to orga-
nizational change. Respective adaptations may concern business
processes, but also other components of an enterprise architecture. In
particular, changes of organizational structures often become necessary.
The information about organizational entities and their relationships is
maintained in organizational models. Therefore the quick and correct
adaptation of these models is fundamental to adequately cope with or-
ganizational changes. However, model changes alone are not sufficient to
guarantee consistency. Since organizational models also provide the basis
for defining access rules (e.g., actor assignments in workflow management
systems or access rules in document-centered applications) this informa-
tion has to be adapted accordingly (e.g., to avoid dangling references or
non-resolvable actor assignments). Current approaches do not adequately
address this problem, which often leads to security gaps and delayed
change implementation.In this paper we introduce a formal framework
for the controlled evolution of organizational models and related access
rules. Firstly, we introduce a set of operators with well-defined seman-
tics for defining and changing organizational models. Secondly, we show
how to define access rules based on such models. In this context we
also define a notion of correctness for access rules. Thirdly, we present
a formal framework for the (semi-automated) adaptation of access rules
when the underlying organizational model is changed by exploiting the
semantics of the applied changes. Altogether the presented approach
provides an important contribution for realizing adaptive access control
frameworks.

1 Introduction

Enterprise information systems comprise a variety of application and system
components. Important tasks to be accomplished include the support of busi-
ness processes, the management of enterprise documents, and the integration
of enterprise applications. For the implementation of respective system services
different middleware exists, including workflow management technology, doc-
ument management systems, and tools for enterprise application integration
[1,2,3].

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 82–112, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Formal Framework for Adaptive Access Control Models 83

1.1 Problem Description

Controlled access to its application services as well as to the application ob-
jects managed by them (e.g., business processes, documents, resources, or ap-
plication systems) constitutes an important task for any information system
(IS) [4,5,6,7,8]. This results in a large number of access rules covering different
system aspects and user privileges [9]. Usually, these access rules have to be
frequently adapted due to changes of organizational structures [10,11,12]. Such
changes become necessary, for instance, when an organizational unit is split into
two sub-units, two existing units are joined to a new one, a group of users is
reassigned to a new organizational unit, or simply an employee leaves the organi-
zation.1 As a consequence, access rules whose definition refers to organizational
entities may have to be modified as well. We denote the ability of an enterprise
IS to adapt access rules after organizational model changes as adaptive access
control.

Typically, information about organizational entities (e.g., organizational units,
roles, and users) and the relations between them (e.g., assignment of a user to a
role, hierarchical relations between organizational units) is kept in an organiza-
tional model. Based on such a model, access rights and user privileges (e.g., actor
assignments in workflow systems or access rules in document-centered applica-
tions) can be defined (cf. Fig. 1). Consequently, when organizational changes oc-
cur, both the organizational model and related access rules have to be adapted
in a correct and consistent manner. The focus of this paper is on the correct
handling of the evolution of organizational models and related access rules.

Another problem arises from the fact that the (middleware) components used
to build the application services of information systems often maintain their own
organizational model and security component; i.e., the information about orga-
nizational entities and their relations as well as the access rules based on them
may be scattered over different system components. On the one hand this has led
to functional redundancy, on the other hand (heterogeneous) information about
organizational structures is kept redundantly in different security components.
The latter very often results in inconsistencies, high costs for system maintain-
ability, and inflexibility when dealing with organizational change. In this paper,
however, we abstain from issues related to this heterogeneity problem.

The correct evolution of an organizational model is only one side of the coin
when dealing with organizational changes; the other one is to correctly and
efficiently adapt the access rules whose definition is based on this organizational
model. Note that in large environments hundreds up to thousands of access
rules may exist, each of them capturing different privileges of the IS. This, in
turn, makes it a hard job for the system administrator to quickly and correctly
adapt access rules to model changes. Current approaches do not sufficiently
deal with this issue. They neither exploit the semantics of the applied model
changes nor do they provide automated support for adaptating access rules and
for migrating them to the changed organizational model. In practice, this often
leads to problems like non-resolvable actor assignments, unauthorized access
1 For respective results from one of our case studies in the clinical domain see [10].

84 S. Rinderle and M. Reichert

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = staff

has

specializesspecializes

has

a) Organizational Model OM: b) Access Rules on OM:

AR1 Role=‘staff’ (+)
AR2 OrgUnit=‘treatment area’
AR3 (Role=’secretary’) OR

(Role=’assistant’)
AR4 NOT(OrgUnit=’medical clinic’(+))

Valid Actor Sets:

AR1: {Dr. Smith, Black, Hunter, Jones}
AR2: {Dr. Smith, Black}
AR3: {Black, Hunter, Jones}
AR4: {Jones}

specializes

OU: OrgUnit A: Actor R: Role

A = Jones

has

Fig. 1. Organizational Model and Related Access Rules (simplified)

to documents, or inconsistent user worklists. Assume, for example, that two
organizational units are joined to make the enterprise more efficient (cf. Fig. 3).
If this change is performed in an uncontrolled manner, orphaned (dangling)
references may result; i.e., access rules referring to org. entities which are no
longer present in the new organizational model. Even more critical might be cases
where changes of an organizational model lead to access rules for which no actor
qualifies any more. In process–aware information systems [13], for example, such
non-resolvable actor assignments lead to tasks which cannot be processed and
therefore have to be forwarded to the system administrator. As a consequence,
business process execution may be delayed and security gaps may arise.

To deal with these challenges we need an enterprise security service which
manages the organizational model as well as its evolution in a consistent and
correct manner. Furthermore, model changes have to be efficiently propagated
to access rules without causing inconsistencies or security gaps. Finally, we have
to consider passive access rules, which are checked when a certain privilege is
applied (e.g., at the moment a user wants to access a document), as well as active
access rules used to determine a set of potential users before accessing an object
or task (e.g., to create work items for user worklists in workflow systems).

Altogether these tasks are non-trivial. Both organizational models and access
rules may have complex structure, and we have to analyze and understand the
interdependencies between changes of an organizational model and necessary
adaptations of related access rules. This necessitates a framework with precise
and formal semantics for reasoning about model and rule changes.

1.2 Contribution

In this paper, we present a formal framework for the controlled evolution of or-
ganizational models and related access rules. Firstly, we introduce a meta model
and a set of operators with well-defined semantics for defining and changing or-
ganizational models. Secondly, we show how to define access rules based on such

A Formal Framework for Adaptive Access Control Models 85

models. We provide a precise semantics for access rules and introduce a notion
of correctness for them. These are important pre-conditions for reasoning about
rule changes. Thirdly, we present a formal framework for the (semi-automated)
adaptation of access rules when changing the related organizational model. For
selected organizational changes we show how they can be realized in our formal
framework, how their effects on access rules look like, and how these access rules
can be migrated to the new version of the organizational model. Thereby we
make use of the semantics of model changes and we introduce formally sound
migration concepts. Altogether the presented approach provides an important
contribution for realizing adaptive enterprise access control frameworks.

In [14] we have already introduced first results on adaptive access control (i.e.,
a criterion for correctness of access rules and exemplary strategies for avoiding
dangling references in such rules after model changes). This paper extends this
work in several directions: On the one hand, we elaborate these previous results
(e.g., by considering more complex access rules and model changes, or by pro-
viding more details on architectural issues). On the other hand, as completely
new results, the effects of organizational changes on actor sets are evaluated.
For example, we deal with the challenging question when actor sets become
empty after model changes. The remainder of this paper is organized as follows:
Section 2 introduces our framework for defining and changing organizational
models. Section 3 shows how to define access rules based on this framework, and
Section 4 illustrates how to adapt access rules to model changes. Architectural
and implementation issues are sketched in Section 5. Section 6 discusses related
work and Section 7 concludes with a summary and an outlook on future work.

2 Framework for Creating and Evolving Organizational
Models

In order to be able to analyze changes of organizational models as well as
their impact on related access rules we need a formalization of organizational
structures; i.e., a formal description of organizational entities and the relations
between them. Based on such a formalization it should be possible to specify
changes and their operational semantics. For this purpose, first of all, we intro-
duce a meta model for defining organizational structures, which is comparable to
the meta models current access control models are based on (e.g., [6,15,16]). In
this paper we restrict our considerations to the basic entity types organizational
unit, role and actor (cf. Fig. 2), and to the particular relation types existing
between respective entities (e.g., actor A1 belongs to organizational unit O1,
actor A1 has role R1, role R1 specializes role R0, etc.). In the overall frame-
work, we are currently realizing in the ADEPT2 project [17], we additionally
consider entity types like position, group, and capability (see [18] for details).
However, in this paper we omit these entity types in order to better focus on
core issues related to the evolution of organizational models and related access
rules.

86 S. Rinderle and M. Reichert

Organizational
Unit Actor Role

is subordinated

has

specializes

belongs to

(0,1)(0,n)

(0,n) (0,1) (0,n) (0,n)

(0,n)(0,1)

Fig. 2. Organizational Meta Model (in ER Notation)

Regarding the meta model OMM used in this paper (cf. Fig. 2) we specify
the set of valid entity types EntityTypes and the set of valid relation types
RelationTypes as follows:

– EntityTypes := {OrgUnit, Actor, Role}
– RelationTypes := {(OrgUnit, OrgUnit, is subordinated), (Role, Role,

specializes), (Actor, OrgUnit, belongs to), (Actor, Role, has)}

We further denote

– E := EId:= {(entId, entType) | entId ∈ Id, entType ∈ EntityTypes} as the
set of all entities definable over a set of identifiers Id and

– RE := {(e1, e2, relType) | e1 = (eId1, eType1), e2 = (eId2, eType2) ∈ E ,
(eType1, eType2, relType) ∈ RelationTypes} as the set of all tuples that
can be used to define relations over E

Actors are users (or resources) who need privileges to work on certain tasks
(e.g., workflow activities) or to access certain data objects (e.g., business doc-
uments). Generally, access rules are not directly linked to actors, but to the
more abstract concept of a role. Roles group privileges and are assigned to ac-
tors based on their capabilities and competences. Furthermore, an actor can
play different roles: A physician in a hospital, for example, may possess the two
roles ward doctor and radiologist. Actors with same role are being considered
as interchangeable. Roles can be hierarchically organized, i.e., a role may have
one or more specialized sub-roles. Thereby a sub-role inherits all privileges of its
super–role and may extend this set by additional privileges. Finally, each actor
can be assigned to an organizational unit. Like roles, organizational units can be
hierarchically structured; i.e., a particular unit may have one or more subordi-
nated units (e.g., a hospital may have an intensive care unit and an emergency
laboratory as subordinated units). Based on this meta model we can define the
notion of organizational model (cf. Def. 1). For the sake of readability, we do not
consider the cardinalities associated with the relation types of our meta model.

Definition 1 (Organizational Model). For the organizational meta model
OMM let E be the set of all entities over a given set of identifiers and let RE
be the set of all relations over E (see above). Then:
An organizational model OM is defined as a tuple (Entities, Relations) with
Entities ⊆ E and Relations ⊆ RE such that

A Formal Framework for Adaptive Access Control Models 87

– all entity identifiers are used in a unique way
– there are no cyclic dependencies between roles (relation specializes) or

between organizational units (relation is subordinated), formally:
• ∀ (role, Role) ∈ Entities: (role, Role) �∈ Spec(OM, (role, Role)) with
Spec(OM, el):=

�
el′:(el′,el,specializes)∈Relations ({(el′, Role)} ∪ Spec(OM, el′))

• ∀ (ou, OrgUnit) ∈ Entities: (ou, OrgUnit) �∈ Sub(OM, (ou, OrgUnit)) with
Sub(OM, el):=

�
el′:(el′,el,issubordinated)∈Relations ({(el′, OrgUnit)}∪Sub(OM, el′))

The set of all org. models definable on basis of OMM is denoted as OM.

As it can be seen from Def. 1 we define a notion of correctness imposed on
organizational models. It is based on different correctness constraints in order to
exclude undesired effects when creating and changing such models. For example,
a unique usage of entity identifiers is claimed. Another constraint refers to the
exclusion of cyclic dependencies between roles (relation specializes) as well as
cyclic dependencies between organizational units (relation belongs to) due to
their unclear semantics. The definition of further correctness constraints depends
on the particular application scenario and is omitted in this paper.

In order to be able to express all relevant kinds of changes on an organizational
model OM our framework provides a complete set of basic change operations;
e.g., for creating or deleting organizational entities and the relations between
them. For each change operation we define formal pre– and post–conditions,
which preserve the correctness properties of OM when applying the operation(s)
to this model (assuming that OM has been a correct model before). In addition
to these basic change operations we provide frequently used, high–level oper-
ations in order to facilitate change definition and to capture more semantics
about model changes. Examples for such high-level operations include the join
of two entities (e.g., fusion of two organizational units; cf. Fig. 3) or the split of
an existing entity into two new entities (e.g., a role; cf. Fig. 3).

Definition 2 (Change Framework for Organizational Models). Let E be
the set of all entities over a set of identifiers and let RE be the set of all relations
over E. Let further OM = (Entities, Relations) be a (correct) organizational
model which can be transformed into another (correct) organizational model OM’
:= (Entities’, Relations’) by applying change (transaction) Δ = op1, ..., opn. The
notion Δ = op1, ..., opn describes the sequential application of basic (cf. Tab. 1)
or high-level (cf. Tab. 2) change operations op1, ...opn to OM. This sequence of
change operations is encapsulated within change (transaction) Δ.

For example, a new relation (of type relT ype) between two entities e1 and e2
of an organizational model OM = (Entities, Relations) can be created by ap-
plying the basic change operation CreateRelation(OM, e1, e2, relType) to
OM . The pre–conditions associated with this operation ensure that both enti-
ties e1 and e2 are present in OM and that (e1, e2, relT ype) constitutes a valid
relation not yet present in OM . The post–condition of this operation, in turn,
describes the effects resulting from the application of this operation to OM . In
our example, relation (e1, e2, relT ype) is added to the set Relations whereas set
Entities remains unchanged.

88 S. Rinderle and M. Reichert

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = staff

has

specializesspecializes

has

OU: OrgUnit
A: Actor
R: Role

OU = medical clinic

OU = patient services

A = Dr. Smith A = Black

R = internist

R = admin staff

is subordinated

belongs to

R = assistant

belongs to

hashas has

Change

b) Change =

(JoinEntities(OM,(treatment area,OrgUnit),(administration,OrgUnit),(patient,services,OrgUnit),
 DeleteRelation(OM,((Hunter,Actor),(secretary,Role),has)),
 DeleteRelation(OM,((Jones,Actor),(secretary,Role),has)),
 DeleteRelation(OM,((secretary, Role),(staff,Role),specializes)),
 DeleteEntity(OM,(secretary,Role)),
 SplitEntity(OM,(staff,Role),(medical staff,Role),(admin staff,Role)),
 CreateRelation(OM,(Hunter,Actor),(admin staff,Role),has),
 DeleteEntitiy(OM,(Jones,Actor)))

R = medical staff

specializesspecializes

join two
org. units

delete role

split role

a) Organizational Model OM: Organizational Model OM’:

specializes

delete
actor

A = HunterA = Jones

belongs to

specializes

has

Fig. 3. Structural Change of the Organizational Model OM from Fig. 1

Table 2 contains high–level change operations which can be realized by ap-
plying a sequence of basic change operations. The purpose of these high–level
operations is to better assist users in defining complex, but common changes. In
this paper we consider the operations for reassigning existing relations, for join-
ing two entities (e.g., two organizational units), and for splitting entities (e.g.,
roles). An example for joining two organizational units treatment area and
administration to the new unit patient services is depicted in Fig. 3.

3 Framework for Defining (Correct) Access Rules

How do changes of an organizational model OM affect the access rules based on
it? In order to find a correct and precise answer to this challenging question, first
of all, we must be able to formally define access rules as well as their semantics.
Based on this formalization it should be possible to determine which access rules
(on OM) are affected by a model change Δ, how the effects of Δ on these rules
look like, and which rule adaptations become necessary.

Let OM = (Entities, Relations) be an organizational model. Based on the
entities and relations defined by OM we can specify rules for controlling the
access to processes, documents, or other objects. Since the structuring as well
as the semantics of these access rules is fundamental for the (semi-) automated
derivation of rule adaptations after model changes, we consider this issue in more
detail. We distinguish between elementary and complex access rules.

A Formal Framework for Adaptive Access Control Models 89

Table 1. Basic Change Operations on Organizational Models

CreateEntity:OM× Identifier × EntityType �→ OM with CreateEntitiy(OM, eId, entType) = OM’
Preconditions: • (eId, entType) �∈ Entities
Postconditions: • Entities’ = Entities ∪ {(eId, entType)}

• Relations’ = Relations
DeleteEntity: OM× E �→ OM with DeleteEntity(OM, e) = OM’

Preconditions: • e ∈ Entities
• � ∃ rel = (e1, e2, relType) ∈ Relations with e1 = e ∨ e2 = e

Postconditions: • Entities’ = Entities \ {e}
• Relations’ = Relations

CreateRelation: OM× E × E × RelType �→ OM with CreateRelation(OM, e1, e2, relType) = OM’)
Preconditions: • e1 := (eId1, eType1), e2 := (eId2, eType2) ∈ Entities

• (e1, e2, relType) ∈ R
• (e1, e2, relType) �∈ Relations

Postconditions: • Entities’ = Entities
• Relations’ = Relations ∪ {(e1, e2, relType)}
• for eType1=eType2 = Role ∧ relType = specializes: e1 �∈ Spec(OM, e2)Θ

• for eType1=eType2 = OrgUnit ∧ relType = is subordinated: e1 �∈ Sub(OM, e2)
DeleteRelation: OM×RE �→ OM with DeleteRelation(OM, relation) = OM’

Preconditions: • relation ∈ Relations
Postconditions: • Entities’ = Entities

• Relations’ = Relations \ {relation}

Θ For a formal definition of Spec and Sub see Definition 1

An elementary access rule (cf. Def. 3) consists of a simple expression that
qualifies a set of entities from OM (i.e., a subset of Entities) for this rule.
The elementary access rule Actor = ’Hunter’, for example, expresses that ex-
actly one entity, namely the actor with name ’Hunter’, qualifies for this rule and
therefore owns the privileges associated with it. As a second example consider
the elementary access rule OrgUnit = ’medical clinic’. For this access rule
we denote the organizational unit medical clinic as the qualifying entity. Fur-
thermore, all actors belonging to this unit own the privileges associated with this
rule.

For entities that can be hierarchically organized (i.e., for organizational units
and roles in our meta model) we further support the definition of transitive ele-
mentary access rules. As an example consider the elementary access rule OrgUnit
= medical clinic(+). For this transitive rule (indicated by the ’+’) the set of
qualifying entities comprises the organizational unit medical clinic itself and
all of its directly or indirectly subordinated units (i.e., the transitive closure with
respect to the ’is subordinated’ relation). All actors belonging to one of these
qualifying units own the privileges associated with this elementary rule.

Similar considerations can be made regarding the ’specializes’ relation between
entities of type Role.

Definition 3 (Elementary Access Rule). Let OM = (Entities, Relations)
be an organizational model based on OMM. Then an elementary access rule EAR
on OM is defined as follows:
EAR ≡ EAR1 | EAR2 | EAR3 with

EAR1 ←− (EntityType = el), EAR2 ←− (OrgUnit = el(+)), EAR3 ←− (Role = el(+))

90 S. Rinderle and M. Reichert

Table 2. High-Level Change Operations on Organizational Models

ReAssignRelaton: OM×RE × E × E �→ OM with ReAssignRelation(OM, r, e, eNew) = OM’
Preconditions: • r = (e1, e2, relType) ∈ Relations

• e = e1 ∨ e = e2
• eNew := (eIdNew, eTypeNew) ∈ Entities
• e = e1:=(eId1, eType1) =⇒ eTypeNew = eType1
• e = e2:=(eId2, eType2) =⇒ eTypeNew = eType2
• e = e1:=(eId1, eType1) =⇒ (eNew, e2, relType) �∈ Relations
• e = e2:=(eId2, eType2) =⇒ (e1, eNEw, relType) �∈ Relations

Postconditions: • e = e1 =⇒ Relations’ = Relations ∪ {(eNew, e2, relType} \
{(e1, e2, relType}
• e = e2 =⇒ Relations’ = Relations ∪ {(e1, eNew, relType} \
{(e1, e2, relType}
• for e = e1 ∧ eType1 = eType2 = eTypeNew = Role ∧ relType
= specializes: eNew �∈ pred*(OM, e1)
• for e = e2 ∧ eType1 = eType2 = eTypeNew = Role ∧ relType
= specializes: e2 �∈ pred*(OM, eNew)
• for e = e1 ∧ eType1 = eType2 = eTypeNew = OrgUnit ∧
relType = is subordinated: eNew �∈ pred*(OM, e1)
• for e = e2 ∧ eType1 = eType2 = eTypeNew = OrgUnit ∧
relType = is subordinated: e2 �∈ pred*(OM, eNew)

JoinEntities: OM× E × E × Identifiers �→ OM with JoinEntities(OM, e1, e2, nId) = OM’
Preconditions: • e1= (eId1, eType), e2 = (eId2, eType) ∈ Entities

• (nId, eType) �∈ Entities
• eType �= Actor

Basic Change Operations: • CreateEntity(OM, (nId, eType)), eNew := (nId, eType)
• ∀ (e, e1, relType) ∈ Relations: ReassignRelation(OM, (e, e1,
relType), e1, eNew)
• ∀ (e, e2, relType) ∈ Relations: ReassignRelation(OM, (e, e2,
relType), e2, eNew)
• ∀ (e1, e, relType) ∈ Relations: ReassignRelation(OM, (e1, e,
relType), e1, eNew)
• ∀ (e, e2, relType) ∈ Relations: ReassignRelation(OM, (e, e1,
relType), e2, eNew)
• DeleteEntity(OM, e1)
• DeleteEntity(OM, e2)

SplitEntity: OM × E × E × E �→ OM with SplitEntity(OM, eOld, e1, e2) = OM’
Preconditions: • (eIdOld, eType) := eOld ∈ Entities

• (e1Id, eType) := e1, (e2Id, eType) := e2 �∈ Entities
• eType �= Actor

Basic Change Operations: • CreateEntity(OM, e1)
• CreateEntity(OM, e2)
• All actors belonging to the splitted org. unit or possessing the
role to be splitted have to be assigned to one of the new entities
or to both of them
• Default behaviorχ for sub-roles: If the entity to split is of type
Role reassign its sub-roles to both new resulting roles after split.
• Default behavior for super-roles: If the entity to split is of type
Role and has a super-role reassign both resulting roles after split
to this super-role.
• Default behavior for subordinated org. units: If the entity to split
is of type OrgUnit reassign its subordinated org. units to exactly
one of the new org. units (user decision).
• Default behavior for superordinated org. units: If the entity to
split is of type OrgUnit and has a superordinated org. unit assign
both new org. units to this superordinated unit.
• DeleteEntity(OM, eOld)

The post conditions of the high-level changes result from the aggregation of the
post conditions of the applied basic change operations.
χ The user may override the default behavior any time.

The set of entities qualifiying for one of the elementary access rules EAR1, EAR2
or EAR3 can be determined as follows:

A Formal Framework for Adaptive Access Control Models 91

– EAR1 ←− (EntityType = el)

QualEntities(OM, EAR1) =
� {(el, EntityType)} : (el, EntityType) ∈ Entities

∅ : otherwise
– EAR2 ←− (OrgUnit = el(+))

QualEntities(OM, EAR2) =
� {(el, OrgUnit)} ∪ Sub(OM, el) : (el, OrgUnit) ∈ Entities

∅ : otherwise
with
Sub(OM, el):=

�
el′:(el′,el,issubordinated)∈Relations

�{(el′, OrgUnit)} ∪ Sub(OM, el′)
�

– EAR3 ←− (Role = el(+))

QualEntities(OM, EAR3) =
� {(el, Role)} ∪ Spec(OM, el) : (el, Role) ∈ Entities

∅ : otherwise
with

Spec(OM, el):=
�

el′:(el′,el,specializes)∈Relations

�{(el′, Role)} ∪ Spec(OM, el′)
�

In general, the semantics of an access rule (defined on OM) is determined by
the set of actors from OM qualifying for this rule (valid actor set). Definition 4
presents the valid actor sets for elementary access rules.

Definition 4 (Valid Actor Set for Elementary Access Rules). Let OM =
(Entities, Relations) be an organizational model. Let Act(OM) := {(a, Actor)|
(a, Actor) ∈ Entities} be the set of all actors defined by OM, and let EAR be an
elementary access rule on OM. Then: Valid actor set VAS(OM, EAR) denotes
the set of all actors (from OM) who qualify for EAR, i.e., who own the privileges
associated with rule EAR. Formally:

– AR ←− (EntityType = el) =⇒

V AS(OM, AR) =

�����
����

{(el, Actor)|(el, Actor) ∈ Act(OM)} ifEntityType = Actor
{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃(a, el, belongsto) ∈ Relations)} ifEntityType = OrgUnit

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃(a, el, has) ∈ Relations)} ifEntityType = Role

– AR ←− (EntityType = el(+)) =⇒

V AS(OM, AR) =

�������
������

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃el′ ∈ QualEntities(OM, AR) :
∃(a, el′, belongsto) ∈ Relations)} ifEntityType = OrgUnit

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃el′ ∈ QualEntities(OM, AR) :
∃(a, el′, has) ∈ Relations)} ifEntityType = Role

In order to enable the definition of more complex access rules we allow for the
composition of existing rules (cf. Def. 5). For this purpose the following operators
can be used: negation, conjunction and disjunction. Def. 5 also sets out a precise
semantics for complex access rules based on their valid actor sets.

Definition 5 ((Complex) Access Rule). Let OM = (Entities, Relations) be
an organizational model based on OMM. Then an access rule AR on OM is
defined as follows:

AR ≡ EAR | NEAR | CAR | DAR with

– EAR is an elementary access rule (cf. Def. 3)

– NEAR ←− (NOT (EAR)) where EAR is an elementary access rule
VAS(OM, NEAR) = Act(OM) \ VAS(OM, EAR)

92 S. Rinderle and M. Reichert

– DAR ←− (AR1 OR AR2) with AR1 and AR2 are access rules
VAS(OM, AR) = VAS(AR1) ∪ VAS(AR2)

– CAR ←− (AR1 AND AR2) with AR1 and AR2 are access rules
VAS(OM, AR) = VAS(AR1) ∩ VAS(AR2)

Consider the organizationalmodelOM depicted in Fig. 1a). An example for a com-
plexaccess ruleonOM is theexpressionAR←−(OrgUnit=medicalclinic(+)AND
Role = assistant)with valid actor set VAS(AR)= {Dr. Smith, Black, Hunter,
Jones} ∩ {Black} = {Black}.

Finally, we provide a criterion which allows us to decide when an access rule
AR is valid with respect to a given organizational model OM . We call an access
rule valid if the following two conditions hold:

(1) AR does not contain dangling references, i.e., it does not refer to entities
which are not present in OM . Formally:

DanglingRef(OM, AR)=
{
False if∀ EAR in AR : QualEntities(OM, EAR) �= ∅
True otherwise

where the notion EAR ∈ AR describes all elementary access rules EAR contained
in access rule AR.

(2) AR is resolvable, i.e., the set of valid actors VAS(OM , AR) does not become
empty. We consider this second constraint as an important property of any access
control module in order to ensure that objects remain accessible or tasks remain
doable. Formally:

Resolv(OM, AR) =
{
True if V AS(OM, AR) �= ∅
False otherwise

Note that dangling references or non-resolvable access rules might occur when
organizational models are changed in an uncontrolled manner (cf. Fig. 4).

Definition 6 (Valid Access Rule). Let OM = (Entities, Relations) be an
organizational model and let AR be an access rule on OM. Then AR is valid re-
garding OM if and only if there are no dangling references within the elementary
access rules contained in AR and AR is resolvable over the set Entities. Formally:
Valid(OM, AR) = True ⇐⇒ (DanglingRef(OM, AR) = False ∧ Resolv(OM, AR) = True)

As an example consider the change scenario depicted in Fig. 4 where organi-
zational model OM is transformed into another organizational model OM ′ by
applying change Δ (for a formal definition of this change see Fig. 3 b)). Access
rule AR1 ←− Role=’staff(+)’ defined on OM would contain a dangling refer-
ence when migrating this rule to the new organizational model OM ′. The same
holds for access rules AR2 and AR3. Access rule AR4 ←− NOT(OrgUnit=’medical
clinic’(+)) is resolvable on OM (VAS(OM’,AR4) = {Jones}), but no longer re-
solvable on OM ′. These simple examples demonstrate that uncontrolled changes
of an organizational model can lead to security gaps or access errors later on if
not treated in an adequate way. In the following section we introduce a formalism
for adaptive access control rules in order to avoid such problems.

A Formal Framework for Adaptive Access Control Models 93

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = staff

has

specializesspecializes

has

OU: OrgUnit
A: Agent
R: Role

OU = medical clinic

OU = patient services

A = Dr. Smith A = Black

R = internist

R = admin staff

is subordinated

belongs to

R = assistant

belongs to

hashas has

Change

R = medical staff

specializesspecializes

a) Organizational Model OM: Organizational Model OM’:

specializes

A = HunterA = Jones

belongs to

specializes

has

b) Access Rules on OM: c) Access Rules on OM’:

AR1 Role=‘staff’(+) AR1: dangling reference
AR2 OrgUnit=‘treatment area’ AR2: dangling reference
AR3 (Role=’secretary’) OR (Role=’assistant’) AR3: dangling reference
AR4 NOT(OrgUnit=medical clinic’(+)) AR4: not resolvable (VAS(OM’,AR4)) =

Migration?

Fig. 4. Changing the Organizational Model OM from Fig. 1 and the Resulting Problem
of Migrating Access Rules

4 Impact of Organizational Changes on Access Rules

In this section we introduce our formal framework for realizing adaptive access
control models. When transforming an organizational model OM into another
model OM ′ one must be able to decide which access rules defined on OM can
be directly migrated to OM ′, i.e., which rules can be re–linked to the new model
version without need for adaptation. Intuitively, this is the case for access rules
which are also valid on OM ′ (cf. Def. 6). Otherwise, we have to adapt access
rules that are no longer valid in order to keep the total set of access rules on the
new model version OM ′ consistent. Due to the potentially large number of access
rules to be managed we want to assist users as much as possible in accomplishing
this task. In particular, we aim at the (semi-) automated migration and trans-
formation of access rules in order to adapt them to changes of the organizational
model if possible. Finding meaningful access rule adaptations is based on exploit-
ing the semantics of the applied change operation(s). With ’semi-automated’ we
mean that the system shall assist the user in an adequate way, i.e., by explaining
the potential conflicts arising after org. model changes (e.g., dangling references)
and by making suggestions about potential rule transformations.

In Section 4.1 we provide a general criterion for the correct migration of ac-
cess rules when changing the organizational model these rules are based on.
Section 4.2 deals with the problem of dangling references. In Section 4.3 we

94 S. Rinderle and M. Reichert

analyze how the valid actor set of an access rule may change when migrating
this rule to a modified organizational model.

4.1 Basic Migration Rule

First of all, we provide a general criterion for the correct migration of access
rules, which is based on the considerations we made in Section 3:

Axiom 1 (Direct Migration of Access Rules). Let OM = (Entities, Rela-
tions) be a (correct) organizational model and AR be a valid access rule on OM,
i.e., Valid(OM, AR) = True. Let further Δ = op1, ..., opn be a change (trans-
action) consisting of a sequence of basic and/or high–level change operations,
which transforms OM into another (correct) organizational model OM’. Then:
AR can be directly migrated to OM’ if Valid(OM’, AR) = True.

As a simple example consider the scenario depicted in Fig. 4a). Assume that
access rule AR5 ←− Role = ’internist’ is defined on OM . When migrating
AR5 to OM ′ there are no dangling references since entity internist is still
present in OM ′. Further, the actor set of AR5 remains resolvable over OM ′

(VAS(OM’,AR5) = {Dr. Smith}). Consequently, AR5 is a valid access rule on
OM ′ as well (i.e., Valid(OM ′, AR) = True) and can therefore be directly migrated
to OM ′ according to Axiom 1.

4.2 Static Aspect – Dangling References

We analyze the problem of dangling references when migrating access rules to a
changed organizational model. For the sake of readability, first of all, we consider
the application of one single change operation. Following this, we deal with multi-
operation changes and their effects on access rules.

Application of Single Change Operations Δop. We consider a change
consisting of one single, basic or high–level change operation Δop := Δ = op
applied to an organizational model OM . We analyze the effects of this model
change on related access rules, particularly regarding the occurence of dangling
references.

As a first important result we can conclude that direct migration of an ac-
cess rule from OM to OM ′ (without additional checks) is always possible in
connection with change operation CreateEntity(OM, ...)(cf. Proposition 1).

Proposition 1 (Direct Migration of Access Rules). Let OM be a (correct)
org. model and let AR be a valid access rule on OM, i.e., Valid(OM, AR) =
True. Let further Δop be a change operation which transforms OM into another
(correct) org. model OM’. Then: AR can be directly migrated (re-linked) to OM’
(i.e., Valid(OM’, AR) = True) if Δop = CreateEntity(OM, ...).

When creating a new entity and solely adding this entity to OM we can always
guarantee that an arbitrary access rule valid on OM will remain valid on the

A Formal Framework for Adaptive Access Control Models 95

new model version OM ′ as well: No dangling references occur and the change is
invariant regarding the set of valid actors (of any access rule).

If an access rule AR cannot be directly transferred to the changed org. model
OM ′ there may be two reasons for that. Either there are dangling references (e.g.,
after deleting an entity from OM to which AR refers) or the set of valid actors
becomes empty for AR on OM ′. In this section we cope with the first problem.
Proposition 2 states for which basic change operations we can guarantee that
there will be no dangling references within existing rules after a change.

Proposition 2 (No Dangling References). Let OM be a (correct) organi-
zational model and let AR be a valid access rule on OM, i.e., Valid(OM, AR) =
True. Let further Δop be a change operation which transforms OM into another
(correct) organizational model OM’. Then: DanglingRef(OM’, AR) = False if
Δop ∈ {CreateEntity(OM,...), CreateRelation(OM,...),

DeleteRelation(OM,...), ReAssignRelation(OM,...)}.

The application of all other basic and high–level change operations Δop ∈
{DeleteEntity, JoinEntities, SplitEntity} to an org. model OM may re-
sult in dangling references for access rules defined on OM . The challenging
question is whether we can adapt respective access rules in a syntactically and
semantically correct manner in order to migrate them to the new org. model
OM ; i.e., no dangling reference must occur after the rule transformation and
the derived rule should still be compliant with its original objective.

We have a more detailed look at the two change operations JoinEntities
and SplitEntity from Table 2 in order to deal with these questions. When
applying one of these high–level change operations to an organizational model,
obviously, dangling references within access rules might occur. Adaptation Policy
1 indicates which rule adaptations can be automatically derived in such a case.
Particularly, Adaptation Policy 1 makes use of the semantics of these high-level
change operations. For example, if two entities e1 and e2 are joined to a new
entity e3, resulting dangling references to e1 or e2 within access rules could be
substituted by references to e3. At this point it is important to mention that
all derived rule adaptations solely constitute suggestions, i.e., users may apply
another strategy if more favorable.

Rule Adaptation Policy 1 (Avoiding Dangling References). Let OM =
(Entities, Relations) be a (correct) org. model and let AR be a valid access rule on
OM. Let further Δop ∈ {JoinEntities(OM, ...), SplitEntity(OM, ...)} be
a high-level change operation which transforms OM into another (correct) org.
model OM’. Then: When applying adaptation rule δAR (see below) to AR this
rule can be transformed into an access rule AR’ on OM ′ which does not contain
dangling references and which is semantically ”close” to AR. For respective Δop

the adaptation rule δAR turns out as follows:

– Δop = JoinEntities(OM, e1, e2, newE) =⇒ δAR:
∀ [N]EAR in AR with

[N]EAR:= [NOT](EntityType = e1) ∨ [N]EAR:= [NOT](EntityType = e2)
replace [N]EAR by [N]EAR’ ≡ [NOT](EntityType = newE) ∧

96 S. Rinderle and M. Reichert

∀ [N]EAR in AR with
[N]EAR:=[NOT](EntityType=e1(+)) ∨ [N]EAR:= [NOT](EntityType=e2(+))

replace [N]EAR by [N]EAR’ ≡ [NOT](EntityType = newE(+))
– Δop = SplitEntity(OM, e, e1, e2) =⇒ δAR:

∀ [N]EAR in AR with [N]EAR:= [NOT](EntityType = e)
replace [N]EAR by

[N]EAR ≡ [NOT](EntityType = e1 OR EntityType = e2) ∧
∀ [N]EAR in AR with [N]EAR:= [NOT](EntityType = e(+))

replace [N]EAR by
[N]EAR ≡ [NOT](EntityType = e1(+) OR EntityType = e2(+))

We illustrate these rule adaptations policies by means of examples. Figure 5a
shows the join of two organizational units OU1 and OU2 resulting in a new orga-
nizational unit OUNew. Access rules AR1 and AR2 on OM refer to one or both of
the joined organizational units (cf. Figure 5b). According to Adaptation Policy
1 these access rules could then be adapted by substituting the ”old” reference to
OU1(+) OR OU2(+) in AR1 by a reference to OUNew(+) and the ”old” reference
to OU1(+) in AR2 by a reference to OUNew (+) (analogously for AR3).

Note that the described adaptation policies may also affect the valid actor
sets of access rules when migrating them to the changed organizational model
OM ′. For example, for access rule AR2 its valid actor set on OM ′ becomes
bigger: VAS(OM, AR2) = {A1, A2} and VAS(OM’,AR2) = {A1, A2, A3}. Gen-
erally, changes of the valid actor set are more critical if it becomes smaller or even
an empty set. Regarding our example from Figure 5, for instance, this would be
exactly the case for access rule AR3 when migrating it to OM ′ in the described
way. We come back to this problem in Proposition 3 (cf. Section 4.3).

Figure 6 shows how access rules can be adapted when applying a split oper-
ation (here splitting organizational unit OU2 into two new organizational units
OU2 1 and OU2 2). According to Adaptation Policy 1 the given access rule con-
taining a reference to the splitted organizational unit OU2 could be adapted by

AR1 (OrgUnit = OU1(+)) OR (OrgUnit = OU2(+))

AR2 OrgUnit = OU1(+)

Δ = JoinEntities (OM, OU1, OU2, OUNew)
a) OM OM’

OU1

OrgUnit

SubOU2SubOU1

OU2

OrgUnit

A1

Actor

A2

Actor

A3

OUNew

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongs tois subordinated

belongs tobelongs to

belongs to

belongs tobelongs to

is subordinated is subordinated

b) Access Rules

AR3 OrgUnit = NOT(OU1(+))

ActorOrgUnitOrgUnit

AR1 OrgUnit = OUNew(+)

AR2 OrgUnit = OUNew(+)

AR3 OrgUnit = NOT(OUNew(+))

Fig. 5. Automatic Adaptation of Access Rules when Applying a Join Operation

A Formal Framework for Adaptive Access Control Models 97

 AR OrgUnit = OU2 AR (OrgUnit = OU2_1) OR (OrgUnit = OU2_2)

a) OM OM’
OU1

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

OU2

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongs to

belongs tobelongs to

is subordinated is subordinated

OU1

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

OU2_1

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongs to

belongs tobelongs to

is subordinated is subordinated

OU2_2

OrgUnit

belongs to

Δ = SplitEntity(OM, OU2, OU2_1, OU2_2)

b) Access Rules

Fig. 6. Automatic Adaptation of Access Rules when Applying a Split Operation

replacing this reference with the expression (OU2 1 OR OU2 2). Again it has to
be pointed out that this only constitutes a suggestion by the system.

In addition to split and join operations the deletion of entities may lead to
dangling references. In certain cases no automatic strategy for adapting a par-
ticular access rule can be provided; the system then only reports the problem
to the user and asks him for an adequate solution strategy. However, there exist
many situations in which automatic rule adaptations become possible, and thus
users can be assisted in transforming rules in a way such that they become valid
on the new model version OM ′ as well. In particular, this possibility exists in
connection with the migration of complex access rules (cf. Def. 5). As an exam-
ple take access rule (AR ←− Role = R1 ∨ Role = R2). Assume that role R2 is
deleted from the used org. model. This model change causes a dangling reference
in AR. A meaningful suggestion for automatically adapting rule AR would then
be to delete expression (EAR ←− Role = R2) from AR. This would result in the
simplified rule (AR ←− Role = R1), which does not contain dangling references.
Furthermore, we could exploit the semantics of hierarchical relations in order to
come up with some adaptation suggestions for affected access rules. Assume, for
example, that role r, which is a specialization of another role rsuper , is deleted.
Assume further that there exists an access rule AR ←− "... Role = r ..." af-
fected by this change. Then it could be a reasonable strategy to suggest adapted
rule AR’ ←− "... Role = rsuper ..." instead of AR (e.g., if it is not longer nec-
essary to have a more specialized nurse working on a specific ward, patient care
can be performed by a regular nurse as well). The same strategy may be applied
in the contrary direction if super-role r is deleted and the associated references
within affected access rules are adapted to reference more specific role rsub. Jus-
tification is that actors having role rsub possess all capabilities assigned to role r
and therefore are able to substitute actors having role r. Similar considerations
hold for hierarchical relations between organizational units.

Note that for join, split, and delete operations access rule transformations
do not always become necessary. If an access rule does not refer to any entity
joined, deleted, or splitted, the rule can stay unaltered after the respective model
transformation. Finally, in addition to the described rule transformations in our
current implementation we apply a number of other rule optimizations when

98 S. Rinderle and M. Reichert

migrating rules to a new version of the organizational model. The treatment of
these optimizations, however, is outside the scope of this paper.

Application of Complex Changes Δ = op1, ..., opn. We now consider the
application of a sequence of change operations to an organizational model OM ;
i.e., the application of a change (transaction) Δ = op1, ..., opn to OM (resulting
in OM ′) and its effects on related access rules. Again, when considering an
access rule AR on OM , dangling references within AR may result after migration
to OM ′. As an example consider Fig. 4 where the migration of access rules AR1,
AR2, and AR3 to OM ′ results in dangling references when applying change Δ
to OM . In order to deal with this problem, we have to analyze the effects of
each applied change operation opi (i = 1, ..., n) on access rules defined on OM .
Regarding a particular access rule this analysis is accomplished in the order
these operations were applied to OM . For those change operations opi which
cause dangling references and for which there exists an adaptation policy (cf.
Adaptation Policy 1) we can adapt the affected access rules accordingly.

For change Δ from Fig. 4 and Fig. 3, respectively, we check for the effects of op-
erations op1 = JoinEntities(OM, ...), op2 = DeleteRelation(OM, ...),
and so on (for a complete definition of Δ see Fig. 3b). Consider, for
example, access rule AR2 ←− OrgUnit=’treatment area’ in Fig. 4b. The ap-
plication of op1 = JoinEntities(OM, ...) already results in a dangling ref-
erence for AR2. Therefore AR2 is modified to (AR2 ←− OrgUnit = ’patient
services’) by applying Adaptation Policy 1 for the join operation. According
to Proposition 2 the following three change operations related to Δ (and be-
ing of type DeleteRelation(OM, ...)) do not cause dangling references when
migrating access rules to OM ′. For the applied DeleteEntity(OM, ...) op-
eration there may be dangling references, but not for access rule AR2. The
next SplitEntity(OM, ...) operation does not affect AR2 and the following
CreateRelation(OM, ...) operation is uncritical regarding dangling references.
Finally, the last DeleteEntity(OM, ...) operation could cause dangling refer-
ences, but again not for access rule AR2. Altogether, AR2 can migrate to OM ′ by
adapting it to (AR2 ←− OrgUnit = ’patient services’). According to Adap-
tation Policy 1 we can ensure that AR2 does not contain dangling references
based on OM ′.

4.3 Dynamic Aspect – Valid Actor Set

Even if the problem of dangling references is satisfactorily solved we still may be
confronted with non–resolvable access rules when changing an org. model. This
may cause runtime errors or at least runtime delays (e.g., if activities cannot im-
mediately be worked on since there is no qualifying actor any more). It may also
impose security problems (e.g., if then the non-resolvable activity is offered to
the system or process administrator as it is the case in several existing systems).

General Considerations. Let OM be an org. model which is transformed into
another org. model OM ′ by change Δ. Furthermore, let AR be an access rule on

A Formal Framework for Adaptive Access Control Models 99

OM � OM’

a) VAS(OM,AR) = VAS(OM’,AR) b) VAS(OM,AR) � VAS(OM’AR) c) VAS(OM,AR) � VAS(OM’,AR)

d) (VAS(OM’,AR) � VAS(OM,AR)) � (VAS(OM,AR) � VAS(OM’,AR))

d1) VAS(OM’,AR) � VAS(OM,AR) � � d2) VAS(OM’,AR) � VAS(OM,AR) = �

VAS(OM,AR): VAS(OM’,AR):

Fig. 7. Changing Organizational Models and Migrating Access Rules

OM . First of all, we illustrate at an abstract level how the valid actor set of an
access rule AR based on OM may change when migrating this rule to the new
model version OM ′. Figure 7 depicts possible relations between the valid actor
set of AR on OM VAS(OM,AR) and the valid actor set of AR on OM ′ VAS(OM’,AR):

In Fig. 7a the migration of AR from OM to OM ′ does not influence the valid
actor set, i.e., the set of valid actors remains the same. In this case, first of all,
AR is still resolvable over OM ′ and does not require any adaptation of work lists
or lists of qualified actors afterwards.

Figure 7b shows the case where the valid actor set is expanded when migrat-
ing AR to OM ′. In practice this may require, for example, an update of user
worklists by additionally inserting the associated work items into the worklists
of newly qualified actors from the difference set VAS(OM’, AR) \ VAS(OM, AR).
By contrast, the valid actor set may be also reduced due to a model change as
depicted in Fig. 7c. Consequently, for all actors no longer qualified for accessing
the associated object or task (i.e., VAS(OM, AR) \ VAS(OM’, AR)) the associated
access privileges have to be adapted accordingly. Note that for the case depicted
in Fig. 7c, it is possible that the valid actor set of AR on OM ′ becomes empty,
i.e., AR may be no longer resolvable on OM ′.

The scenario depicted in Figure 7d, where VAS(OM, AR) is not a subset of
VAS(OM’, AR) (or vice versa) can be further divided into two sub-cases d1 and
d2. For case d1 there are still actors contained in both valid actor sets, i.e.,
the intersection of VAS(OM, AR) and VAS(OM’, AR) is non–empty. For this case,
we firstly have to withdraw the privileges associated with AR for all actors con-
tained in VAS(OM, AR) \ VAS(OM’, AR). Second, we have to newly assign these
privileges to the actors contained in VAS(OM’, AR) \ VAS(OM, AR). Finally, if
VAS(OM, AR) and VAS(OM’, AR) are disjoint as depicted in case d2 the privileges
associated with AR have to be removed for all actors from VAS(OM, AR) and be
added for all actors from VAS(OM’, AR).

Knowing which of this cases applies in a given change scenario is helpful
in order to conduct the necessary adaptations of qualified actor lists or work
lists when migrating an access rule to the changed organizational model. In the

100 S. Rinderle and M. Reichert

following, first of all, we study the effects on valid actor sets of both elemen-
tary and complex access rules when a single change operation Δop is applied to
OM . This is followed by a discussion of complex changes where a sequence of
operations op1, ..., opn is applied within one change transaction Δ to OM .

Impact of Org. Model Changes on Actor Sets When Applying Single
Change Operations. Let Δop be a single change operation which transforms
org. model OM into org. model OM ′. Let further AR be a valid access rule on
OM . According to Proposition 2 the application of a change operation Δop ∈
{CreateRelation(...) DeleteRelation(...) ReAssignRelation(...)} does
not lead to dangling references in AR afterwards. However, Δop may affect the
valid actor set of AR when migrating this access rule to OM ′, i.e. VAS(OM’, AR) �=
VAS(OM, AR) (cf. Fig. 7). Assume, for example, that in the org. model from Fig.
1 the relation indicating that actor Black belongs to treatment area (i.e., rela-
tion ((Black, Actor), (treatment area, OrgUnit), belongs to)) is reas-
signed to (Black, Actor), (administration, OrgUnit), belongs to).
Then the valid actor set for access rule (AR2 ←− OrgUnit=’treatment area’)
is then reduced from {Dr. Smith, Black} to {Dr. Smith}.

We first analyze the effects of Δop on the valid actor sets of elementary access
rules EAR and negated elementary access rules NEAR. For the sake of readability
we do not consider all scenarios from Fig. 7, but focus on the most ”critical”
cases; i.e., changes of the oganizational model due to which the valid actor set of
[N]EAR is reduced (or even becomes empty) when migrating this access rule from
OM to OM ′. These cases are summarized in Table 3. The first column of this
table shows the change operation (and its parameters) and the third column the
(negated) elementary access rule(s) to be considered. Note that we may examine
more than one access rule for a given change operation. Further, the effects of a
change operation on the valid actor set of an access rule is depicted in the second
column. As can be seen, in most cases the actor set will reduced when applying
the change operation and migrating the access rule to the new organizational
model. Regarding operation ReassignRelation we also give examples where
new actors may be also added to the valid actor set.

The following figures illustrate some interesting situations from Table 3.
Firstly we consider the creation of a new relation between two entities of the
organizational model as depicted in Fig. 8. In this example, for both negated
access rules NEAR1 and NEAR2 their valid actor set based on OM will be reduced
when migrating the rule to OM ′. In particular, due to change Δ2 for NEAR2
the valid actor set becomes empty afterwards. Analogously, the application of
change operation DeleteRelation(OM, ...) may lead to reduced actor sets. As
an example consider the change scenario from Fig. 9. When deleting the relation
((a2, Actor), (r1, Role), has) from OM , for instance, for access rules EAR
←− (Role = ’r1’) or EAR ←− (ROLE=’r5’(+) the valid actor set will be re-
duced afterwards. The same applies to access rule EAR ←− (ROLE=r3(+)) after
deleting relation (((r1, Role), (r2, Role), specializes).

As discussed in Section 4.2, when applying change operations joinEntities
or splitEntity, dangling references within certain access rules may emerge

A Formal Framework for Adaptive Access Control Models 101

Table 3. Reduction of Valid Actor Set After Application of Change Operation Δ

Assume in the following that organizational model OM is transformed into organizational model OM’
by applying change operation Δ. Let further AR be an access rule defined on the basis of OM.

Change Operation Δ VAS(OM’,[N]EAR) =
VAS(OM, [N]EAR) \ δ (∪ ε)

∀ [N]EAR ∈ AR =⇒

CreateRelation(OM,

(a,Actor),(r,Role),has)

δ = {(a, Actor)} NEAR ←− NOT(Role=r1[(+)])

with (r, Role) ∈ QualEntities(OM,Role=r1[(+)])

CreateRelation(OM,

(a,Actor),(o,OrgUnit),belongsTo)

δ = {(a, Actor)} NEAR ←− NOT(OrgUnit=o1[(+)])

with (o, OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

CreateRelation(OM,

(r1,Role),(r2,Role),specializes)

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1

NEAR ←− NOT(Role=r3[(+)])

with (r1,Role), (r2,Role) ∈
QualEntities(OM’,Role=r3[(+)])

CreateRelation(OM,

(o1,OrgUnit),(o2,OrgUnit),

is subordinated)

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1

NEAR ←− NOT(OrgUnit=o3[(+)])

with(o1,OrgUnit), (o2,OrgUnit) ∈
QualEntities(OM’,OrgUnit=o3[(+)])

DeleteRelation(OM,

(a Actor),(r,Role),has)

δ = {(a, Actor)} EAR ←− Role = r1[(+)]

with (r, Role) ∈ QualEntities(OM,Role=r1[(+)])

DeleteRelation(OM,(a,Actor),

(o,OrgUnit),belongsTo)

δ = {(a, Actor)} EAR ←− OrgUnit=o1[(+)]

with (o, OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

DeleteRelation(OM,

(r1,Role),(r2,Role),specializes)

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1

EAR ←− Role=r3[(+)]

with (r1,Role), (r2,Role) ∈
QualEntities(OM’,Role=r3[(+)])

DeleteRelation(OM,

(o1,OrgUnit),(o2,OrgUnit),

is subordinated)

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1

EAR ←− OrgUnit=o3[(+)]

with (o1,OrgUnit), (o2,OrgUnit) ∈
QualEntities(OM’,OrgUnit=o3[(+)])

ReassignRelation(OM,

((a,Actor),(r,Role),has),

(r,Role),(rN,Role))

δ = {(a,Actor)} EAR ←− Role=r1[(+)]

with (r,Role) ∈ QualEntities(OM,Role=r1[(+)])

δ = {(a,Actor)} NEAR ←− NOT(Role=r1[(+)])

with (rN, Role) ∈ QualEntities(OM,Role=r1[(+)])

ReassignRelation(OM,

((a,Actor),(o,OrgUnit),belongsTo),

(o,OrgUnit),(oN,OrgUnit))

δ = {(a,Actor)} EAR ←− OrgUnit=o1[(+)]

with (o,OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

δ = {(a,Actor)} NEAR ←− NOT(Role=o1[(+)])

with (oN,OrgUnit) ∈
QualEntities(OM,OrgUnit=o1[(+)])

ReassignRelation(OM,

((r1,Role),(r2,Role),specializes),

(r1,Role),(rN,Role))

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1(+)

EAR ←− Role=r’[(+)]

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)])

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1(+)

NEAR ←− Role=r’[(+)]

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)]):

δ = VAS(OM,EAR’)

with EAR’ ←− Role=r1(+)

NEAR ←− Role=r’[(+)]

with (rN, Role) ∈ QualEntities(OM,Role=r’[(+)])

ReassignRelation(OM,

((r1,Role),(r2,Role),specializes),

(r2,Role),(rN,Role))

δ = VAS(OM,EAR’))

with EAR’ ←− Role=r1(+)

ε = VAS(OM,EAR’’)

with EAR’’ ←− Role = rN(+)

EAR ←− Role=r’[(+)]

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)])

ε = VAS(OM,NEAR’))

with NEAR’ ←− NOT(Role=r1(+))

δ = VAS(OM,NEAR’’)

with NEAR’’ ←− NOT(Role = rN(+))

NEAR ←− NOT(Role=r’[(+)])

with (r2, Role) ∈ QualEntities(OM,Role=r’[(+)])

ReassignRelation(OM,

((o1,OrgUnit),(o2,OrgUnit),is

subordinated),

(o1,OrgUnit),(oN,OrgUnit))

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1(+)

EAR ←− OrgUnit=o’[(+)]

with (o2,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1(+)

NEAR ←− NOT(OrgUnit=o’[(+)])

with (o2,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=OrgUnit=o1(+)

NEAR ←− NOT(OrgUnit=o’[(+)])

with (oN,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

ReassignRelation(OM,

((o1,OrgUnit),(o2,OrgUnit),is

subordinated),

(o2,OrgUnit),(oN,OrgUnit))

δ = VAS(OM,EAR’)

with EAR’ ←− OrgUnit=o1(+)

ε = VAS(OM,EAR’’)

with EAR’’ ←− OrgUnit = oN(+)

EAR ←− OrgUnit=o’[(+)]

with (o2,OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

ε = VAS(OM,NEAR’))

with NEAR’ ←− NOT(OrgUnit=o1(+))

δ = VAS(OM,NEAR’’))

with NEAR’’ ←− NOT(OrgUnit = oN(+))

NEAR ←− OrgUnit=o’[(+)]

with (o2, OrgUnit) ∈
QualEntities(OM,OrgUnit=o’[(+)])

102 S. Rinderle and M. Reichert

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

Changes �i (i=1,2)

�1 = CreateRelation(OM, (a2.Actor), (r1, Role), has)
�2 = CreateRelation(OM, (r1, Role), (r2, Role), specializes)

OM: OM’:

NEAR1 � NOT(Role=’r5’(+))
NEAR2 � NOT(Role=’r3’(+))

VAS(OM,NEAR1) = {(a2,Actor), (a3, Actor)} � VAS(OM’,NEAR1) = {(a3,Actor)}
VAS(OM,NEAR2) = {(a1,Actor), (a2,Actor)} � VAS(OM’,NEAR2) = �

Fig. 8. Reduction of Valid Actors Sets After Creating Relations

(cf. Figures 5 and 6). Therefore we have provided rules (cf. Adaptation Policy 1)
which enable the system to suggest automatic adaptations of the affected access
rules to the user. However, after applying these adaptation rules the actor sets
of the adapted and migrated access rules may be affected as well. In detail: For
operation joinEntities it has to be checked how the actor sets of affected access
rules have changed after the applicastion of adaptation rule δ (cf. Adaptation
Policy 1). In particular, for negated access rules, the actor set may become
smaller (and therefore even empty) afterwards. For operation splitEntity the
application of adaptation rule δ does not affect the actor sets of access rules.
Therefore no checks become necessary afterwards.

Proposition 3 (Actor Set After Joining Entities and Adaptation of
Access Rules). Let a (correct) organizational model OM be transformed into
another (correct) organizational model OM’ by applying change operation Δ =
JoinEntities(OM, ...). Let further AR be an access rule defined on OM which
is transformed into access rule AR’ (by applying adaptation rules δAR; cf. Adap-
tation Policy 1) and then migrated to OM ′. Then:

• ∀ EAR ←− (OrgUnit=o1) ∨ (OrgUnit=o2)) ∧ ∀ NEAR ←− NOT((OrgUnit=o1) ∨ (OrgUnit=o2)) =⇒
VAS(OM’,[N] EAR) = VAS(OM,[N] EAR)

• ∀ EAR ←− OrgUnit=o1 =⇒
VAS(OM’,EAR) = VAS(OM,EAR) ∪ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o2

• ∀ NEAR ←− NOT(OrgUnit=o1) =⇒
VAS(OM’,NEAR) = VAS(OM,NEAR) \ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o2

• ∀ EAR ←− OrgUnit=o2 =⇒
VAS(OM’,EAR) = VAS(OM,EAR) ∪ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o1

• ∀ NEAR ←− NOT(OrgUnit=o2) =⇒
VAS(OM’,NEAR) = VAS(OM,NEAR) \ VAS(OM,EAR’) with EAR’ ←− OrgUnit=o1

Consider, for example, access rule AR3 as depicted in Fig. 3. Before migration
the valid actor set of this rule turns out as VAS(OM,AR3) = {A3}. According to
the adaptation policies provided by Rule Adaptation Policy 1, AR3 is adapted to

A Formal Framework for Adaptive Access Control Models 103

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

(a1, Actor)

(r1, Role)

(r2, Role)

(r3, Role)

(r5, Role)

(a3, Actor)

(a2, Actor)

OM’: OM:

Changes �i (i=1,2)

�1 = DeleteRelation(OM, (a2.Actor), (r1, Role), has)
�2 = DeleteRelation(OM, (r1, Role), (r2, Role), specializes)

EAR1 � Role=’r5’(+)
EAR2 � Role=’r3’(+)

VAS(OM,EAR1) = {(a1,Actor), (a2, Actor)} � VAS(OM’,EAR1) = {(a1,Actor)}
VAS(OM,EAR2) = {(a1,Actor), (a2,Actor), (a3,Actor)} � VAS(OM’,EAR2) = {(a3,Actor)}

Fig. 9. Reduction of Valid Actors Sets After Deleting Relations

AR3 ←− NOT(OUNew). This adaptation affects the valid actor set as follows:
VAS(OM’,AR3) = VAS(OM,AR3) \ VAS(OM,EAR’) with EAR’ ←− (OrgUnit=OU2)
which results in VAS(OM’,AR3) = {A3} \ {A3} = ∅ (cf. Proposition 3). Such critical
effects should be at least reported to the user.

Impact of Org. Model Changes on Actor Sets When Applying Com-
plex Change Operations. Finally, we sketch potential effects on the valid ac-
tor set of access rules when migrating them from an org. model OM to a changed
org. model OM ′ after application of a (complex) change Δ = op1, ..., opn. When
considering Fig. 7, it becomes clear that the application of each change operation
opi (i = 1, ..., n) may result in a change of the valid actor set. In particular,
some of the changes may add actors to the valid actor set whereas others remove
elements from it. Therefore a general statement on how the actor set changes is
difficult. Similar to the considerations about dangling references resulting after
the application of a complex (i.e., multi-operation) change, the effects of each
change operation opi (in the order of their application) on the valid actor set
can be determined. Doing so finally results in the new actor set of an access
rule based on OM . However, we have to consider the efforts for this approach.
In order to decrease the computing time for the resulting actor set, the analysis
and adaptation for dangling references and the determination of the actor set
changes can be done in one go. We will address the issue of possible optimization
methods in future work.

5 Architectural and Implementation Issues

In this section we sketch architectural and implementation issues which arise
when realizing the described framework. Section 5.1 summarizes the architecture

104 S. Rinderle and M. Reichert

of the implemented adaptive enterprise security service. In Section 5.2 we discuss
its concrete usage in the context of process-aware information systems.

5.1 Overview of the Enterprise Security Service

As proof-of-concept we realized an advanced enterprise security service (ESS)
which implements the described framework. We have chosen a service–oriented
design in order to support the reuse of the security component in different con-
text and by different system components (e.g., workflow systems or document
management tools). Fig. 10 depicts the overall architecture of the ESS (sim-
plified illustration). The developed ESS comprises both tools and programming
interfaces for creating, evolving and managing organizational models as well as
the access rules based on them.

security engineer
organizational
model(s)

stored access
rules (server-side)

)SSE(re vreS
yt iruceS

esir pretnE

org. model
definition & storrage

org.model
change

org. model
discovery

LDAP /
X.500

ESS: Access rule editor

Model Management API

el
ur

ss
ec

a
eg

a r
o t

s
&.

fe
d

e l
u r

s s
ec

a
g n

ik
ce

hc
el

ur
s s

e c
a

no
i t

ul
os

e r
e l

ur
ss

ec
a

eg
n a

h c

I
P

At
ne

m e
ga

na
M

el
u

R

org. engineer

ESS: Org. modeling tooldefining, discovering,
changing and managing

org. models

parsing, resolving,
analysing, processing and

storing access rules

Process
management dystem

Locally stored access
rules (client-side)

define, store, load, change … org. model

discover org. model

check,
store,
adapt, …
rules

resolve rule,
register for
change notif.
etc.

process engineer

Fig. 10. (Simplified) architecture of the adaptive Enterprise Security Service (ESS)

For creating and adapting org. models the ESS offers a standard editor (cf.
Fig. 10). Among other things this tool utilizes the change operations presented
in this paper. All changes are logged and are traceable. Different org. models in
different versions can be maintained. For editing elementary as well as complex
access rules another tool is provided (cf. Fig. 10). Rules can be only released if
they are syntactically and semantically correct, which requires cross-checks with
the related org. model. The rule editor is realized as plug-in and can therefore
be easily integrated in different client applications (for further details see [18]).
Implementation is based on Java and SVG (Scalable Vector Graphics).

A Formal Framework for Adaptive Access Control Models 105

As mentioned the ESS offers powerful programming interfaces. The model
management API provides the basis for defining and storing new org. models,
for adapting existing ones to environmental changes, and for discovering infor-
mation about org. models. Based on this interface, adapted client components
for editing, displaying and analyzing org. models can be realized. Furthermore,
the ESS offers a complete interface for the management of access rules. This
interface allows to define, check and store new access rules (based on a referred
organizational model) and to maintain these rules by the ESS.

In general, we do not require clients of the ESS to store and maintain their
access rules within the ESS; this is only an optional feature. After having defined
an access rule, it may be also maintained by the client system itself (e.g., a
workflow system). In this case, the rule is represented as ”query string” following
the syntax of our rule definition language. This string can be resolved at runtime
by sending it to the ESS (e.g., when an activity in a workflow becomes activated),
which then parses and processes the access rule string, finally returning the set of
actors who qualify for it. For access rules already stored in the ESS these steps
can be partially omitted, resulting in higher system performance and better
response rates. In this case the client simply invokes a generic procedure with
the respective context information via the ESS interface.

The realized ESS extends the features of existing access control components
by offering more advanced change facilities. Adaptations of the org. model are
based on the operational framework described in Section 2. The ability to con-
comitantly adapt access rules is of particular importance. It uses the rule adap-
tation framework introduced in Section 4. Further, we offer different migration
and adaptation policies for access rules depending on whether they are directly
maintained by the ESS or by the client application. Access rules stored within
the ESS can be immediately processed in order to decide whether there is a
need for adaptation and - if yes - how it should look like. Further the ESS deter-
mines for which rules actor sets have changed. Based on this information users
or clients can be notified in order to accept the suggested rule adaptations or to
accommodate them.

Rules outside ESS control cannot be immediately migrated. This, in turn,
might lead to non-resolvable access rules which require lazy migration techniques
and advanced exception handling mechanisms. By using the provided API, how-
ever, clients can register for change notification events. When a model change
occurs the ESS notifies registered clients, which then can check the validity of
their access rules against the newly released version of the org. model. Finally, if
a non-resolvable access rule is sent to the ESS, an exception is thrown providing
the client with the information about necessary rule adaptations. Due to lack
of space we omit further details and a more precise presentation of the inter-
action patterns between clients (buildtime and runtime) and the ESS. Current
implementation of the ESS is based on Java and relational database management
technology. Integration with LDAP (Lightweight Directory Access Protocol) ser-
vices [19] is one important requirement for the future.

106 S. Rinderle and M. Reichert

Clients can be components of information systems or supporting technology
(e.g., workflow systems). Different clients may share one org. model (e.g., to
achieve consistency across multiple systems) or may maintain their own model
if favorable. In any case the information about org. entities and access rules
can be separated from the business logic implemented by the client programs.
Note that this provides the basis for the controlled evolution of org. models
and related access rules, and also constitutes a significant improvement when
compared to the proprietary, heterogeneous security components we can find in
current information systems. We strongly believe that a component like ESS is
very useful for dealing with org. change in a secure and intelligent manner, and
for providing better maintainability and traceability in this context.

5.2 Managing Actor Assignments and Worklists in Process-Aware
Information Systems

To illustrate our results we apply them to important elements of process-aware
information systems (PAIS) - activity actor assignments, user worklists, and their
adaptation due to org. changes. More precisely we sketch how changes of an org.
model have to be handled within a workflow system and how the different system
components interact with each other to cope with model changes. Usually, a PAIS
maintains different process templates each of them representing a particular
business process. Each of these process templates captures different aspects of a
business process like process activities, control and data flow between activities,
and actor assignments. The latter are of particular interest in the context of the
present work. They represent the access rules needed by the PAIS to decide which
users may work on instances of the respective activity. As an example, consider
the two actor assignment rules R1: (OrgUnit = OU 2 and Role = Role 2) and
R2: Role = Role 1 as depicted in Fig. 11. When an activity instance becomes
activated at runtime the PAIS determines all actors qualifying for this activity,
creates corresponding work items, and adds them to the worklists of these users.

At buildtime the PAIS must support the definition of actor assignments based
on an org. model and their correlation with process activities. For this the PAIS
either can utilize the standard modeling tools offered by the ESS or realize
own buildtime clients based on ESS interfaces. Within the ADEPT project, for
example, we have utilized the tools and plug-ins mentioned above. Access rules
can be assigned to activities or to other privileges relevant for the PAIS. Both
org. models and access rules are stored within the ESS.

Consider the scenario depicted in Fig. 11. When a change occurs within the
organization, an authorized user can adapt the org. model accordingly. In the
example from Fig. 11, for instance, the two org. units OU 2 and OU 3 are joined
and the ”has-role” relation between Actor 1 and Role 1 is deleted. This results
in a new version of the respective model, which then triggers the adaptation
and migration of related access rules. In the given example, for instance, at
the process template level the two actor assignment rules R1: (OrgUnit = OU 2
and Role = Role 2) and R2: Role = Role 1 may have to be adapted. If these
rules are directly maintained by the ESS, this service analyses them for necessary

A Formal Framework for Adaptive Access Control Models 107

OU

OU_1

Actor_1

is subordinated

Role

specializesspecializes specializes

JoinEntities(OU_2, OU_3)
OU_2 OU_3

is subordinated

OU_New

Process Templates

e
m it

dl i
u

B

User
Worklists

Process Instances

e
mi t

nu
R

Actor_2 Actor_3Actor_5 Actor_6

belongs to

Actor_3

belongs to belongs to

Role_1 Role_2 Role_3

has has has has has

Process-aware Information System

has

Delete-
Relation

is subordinated

actor
assignment rules

Create Process
Instances

Propagate Rule
Changes

Worklist Manager
1) New activity becomes activated:
• Resolve actor assignment and

retrieve actor sets from the ESS
• Cope with dependent actor

assignments if necessary
• Create new work items based on

retrieved actor set + update worklists
2) Change of organizational model:
• Adapt worklists according to

changes of valid actor sets

Enterprise
Security Service

(ESS)

Org. Model V 1.1

Model
Change

T1

R2: Role = Role_1

T2

resolve actor
assignment rule

send actor result set
I_11

I_12

notify about changes of
valid actor sets

OrgUnit = OU_2
and Role = Role_2

R1:

OrgUnit = OU_New
and Role = Role_2

R1’:

register for change
notification

adapt actor assignment
to org. model change

No adaptation
needed!

Actor set for rule R1 extended from
{Actor_3} to {Actor_3, Actor_5, Actor_6}

Actor set for rule R2 reduced from
{Actor_1, Actor_2} to {Actor_2}

(but: actor set
changed)

Fig. 11. Adapting actor assignment rules and worklists in process-aware IS

adaptations. As a result the ESS suggests the process engineer to adapt rule R1
to rule R1’ (cf. Fig. 11), but to remain rule R2 unchanged.

As discussed in Section 4 the adaptation of access rules (actor assignments) is
only one side of the coin. We also have to analyze the effects of the performed
model and rule changes to valid actor sets. This is of particular importance for
PAIS in order to avoid outdated or inconsistent worklists. As an example take the
adaptation applied for rule R1 in Fig. 11. Obviously, this extends the valid actor
set of this rule from {Actor 3} to {Actor 3, Actor 5, Actor 6}. For currently
activated activity instances based on this rule this should imply the creation of
new work items for Actor 5 and Actor 6. As another example consider rule R2.
Though this rule must not be adapted due to the model change (see above) its valid
actor set is reduced from {Actor 1, Actor 2} to {Actor 2}. Therefore, respective
work items currently assigned to Actor 1 on basis of R2 should be removed from
the worklist of this actor. In our approach, the worklist manager of the PAIS ac-
complishes such on-the-fly worklist updates based on the interfaces offered by the
ESS. Due to lack of space we omit further details. However, we are aware of the fact
that the efficient update of user worklists is a big challenge in the given context,
particularly when thinking of scenarios with ten thousands of work items.

6 Related Work

The provision of an adequate access control framework is indispensable for any
IS. In the literature numerous approaches have been presented dealing with

108 S. Rinderle and M. Reichert

challenging issues related to access control (e.g., [12,20,21,22]). Most of these
approaches apply Role–Based Access Control (RBAC) models for defining and
managing user privileges [6,23,20,24], e.g., to control the access to business doc-
uments and database objects, or to resolve the set of actors that qualify for a
newly activated task in a workflow system [25,4,8,21,26,22].

Usually, corresponding models provide core RBAC features as well as role
hierarchies. Regarding workflow–based applications, in addition, dynamic con-
straints (e.g., separation of duties) were extensively investigated in the past
[4,8,27,28]. Practical issues related to RBAC (e.g., NIST’s proposed RBAC stan-
dard, integration of RBAC with enterprise IT infrastructures, RBAC in commer-
cial products) are summarized in [24].

In the workflow literature several proposals have been made aiming at adap-
tive process management (e.g., [29,30,31,32,33,34,35,36,37]). The ADEPT tech-
nology, for example, enables controlled changes at the process type as well as
the process instance level (for details see [38,39,40]). Thereby, correctness and
consistency constraints of a workflow are preserved when dynamically changing
its structure, its state, or its attributes during runtime. In [22] an extension to
RBAC is proposed in order to accomplish such process changes is a safe way;
i.e. to restrict changes to selected user groups or processes if required. Though
all these approaches stress the need for adaptive information systems and define
different notions of correctness (for an overview see [30]), so far, focus has been
on process changes (control and data flow).

There are only few approaches [12,41,42,43] which address the problem of
organizational change. In [12,41,42] eight categories of structural changes on
organizational models are identified. Examples include the splitting of organiza-
tional units, the creation of new organizational entities, and the reassignment of
an actor to a new organizational unit. In principle, all these cases can be captured
by our change framework as well. As opposed to [12], however, we additionally
follow a rigorous formal approach in order to be able to derive the effects of
organizational changes on related access rules as well. Corresponding issues are
factored out in [12]. The approach introduced in [43] deals with the evolution
of access rules in workflow systems. However, only very simple scenarios are de-
scribed without any formal foundation. Furthermore, the compact definition of
access rules is aggravated by the lack of adequate abstraction mechanisms (e.g.,
hierarchical structures).

Issues related to the modeling of organizational structures have been con-
sidered by different groups [11,21,18]. Most of them suggest a particular meta
model for capturing org. entities and the relationships between them. Model
changes and the adaptation of access rules, however, have not been studied by
these approaches in sufficient detail. Particularly, no formal considerations exist
and no proof-of-concept prototypes have been provided.

In [44] important issues related to changes of processes and org. structures
are discussed. In this work the authors also motivate the need for the controlled
change of organizational models. In particular, they discuss different kinds of
adaptations that have to be supported by respective components (e.g., to extend,

A Formal Framework for Adaptive Access Control Models 109

reduce, replace, and re-link model elements). However, no concrete solution ap-
proach is provided (like, for example, formal change operators with well–defined
semantics or mechanisms for adapting access rules after model changes).

7 Summary and Outlook

The integrated and controlled evolution of organizational models as well as ac-
cess rules will be key ingredients of next generation enterprise security services,
ultimately resulting in adaptive and highly flexible access control frameworks.
Together with our previous work on business process evolution and dynamic
process change [38,45,40,39] the presented concepts contribute to a powerful
platform enabling the realization of flexible and adaptive information systems.

In this paper, we have designed a comprehensive framework for defining and
changing organizational models, for specifying access rules in a consistent man-
ner, and for correctly adapting these access rules when model changes occur.
We have discussed important challenges and requirements in this context as
well as limitations of current approaches. Based on this we have introduced a
comprehensive framework for the evolution of organizational models and the
adaptation of related access rules. The very important aspect of our work is its
formal foundation. We have provided precise definitions and formal propositions
which are fundamental for the correct handling of model changes, for reasoning
about the effects of such changes on access rules, and for adapting access rule
if necessary. The treatment of both elementary and composed access rules as
well as the consideration of runtime issues (e.g., effects of model changes on rule
actor sets) add to the completeness of our approach. Finally, we have discussed
important architectural issues and sketched a proof-of-concept implementation
demonstrating the feasibility of the presented concepts.

The implemented security service has been coupled with the ADEPT2 process
management system in order to enable the (dynamic) adaptation of actor as-
signments, user worklists, etc. when changes of the organizational model hap-
pen. For the sake of readability, in this paper we have restricted our consid-
eration to a rather simple role-based access control model which applies basic
entities (org. unit, role, and actor) and the relations between them (incl. role
hierarchies). However, the enterprise security service realized by us within the
ADEPT2 project is based on a more expressive meta model (incl. organizational
entities like position, capability or project group).

There are many other challenging issues that can be linked to the evolution
of org. models and related access rules. Firstly, we should consider semantical
constraints as well. Uncontrolled changes of an org. model, for example, may
violate semantical constraints like separation of duty (SoD) or mutual exclusion
[27,28,46,47]. Among other things, this may result in security gaps. Secondly, we
believe that changes of the org. model must be closely linked to other components
of an IS. For example, actor assignments in workflow-based applications may
have to be adapted on-the-fly in order to cope with org. changes. This, in turn,
may require change propagation to hundreds up to thousands of in-progress

110 S. Rinderle and M. Reichert

process instances as well as to related user worklists. Doing this in a correct
and efficient manner is a non-trivial problem that will be investigated by us in
more detail in future. Thirdly, it is interesting to investigate how access rules can
be improved, for example, based on previous adaptations (access rule life cycle
management). First work in this field on the mining of access rules from workflow
log data has been published in [48]. Finally, changes may not only concern the
process model or the org. model but other components of the information systems
as well. As an example take resource models or data models, which may be also
subject of change. Thew more we extract the specification of these different
aspects from application code the better will be the basis for setting up flexible
adaptation mechanisms.

References

1. v.d. Aalst, W., van Hee, K.: Workflow Management. MIT Press, Cambridge (2002)
2. Sutton, M.: Document Management for the Enterprise: Principles, Techniques and

Applications. John Wiley, Chichester (1996)
3. Linthicum, D.: Enterpise Application Integration. Addison-Wesley, Reading (1999)
4. Bertino, E., Ferrari, E., Alturi, V.: The specification and enforcement of authoriza-

tion constraints in wfms. ACM Trans. on Inf. and Sys. Sec. 2, 65–104 (1999)
5. Sandhu, S.: Authentication, access control and audit. ACM Computings Sur-

veys 28, 241–243 (1996)
6. Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role–Based Access Control. Artech

House (2003)
7. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-

trol models. IEEE Computer 29, 38–47 (1996)
8. Wainer, J., Barthelmess, P., Kumar, A.: W–RBAC – a workflow security model

incorporating controlled overriding of constraints. International Journal of Collab-
orative Information Systems 12, 455–485 (2003)

9. El Kalam, A., El Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Saurel, C.,
Deswarte, Y., Miege, A., Trouessin, G.: Organization-based access control. In: Proc.
4th IEEE Int. Workshop on Policies for Distributed Systems and Networks, IEEE
Computer Society Press, Los Alamitos (2003)

10. Konyen, I.: Organizational structures and business processes in hospitals. Master’s
thesis, University of Ulm, Computer Science Faculty (in German) (1996)

11. Jablonski, S., Schlundt, M., Wedekind, H.: A generic component for the computer–
based use of organizational models (in german). Informatik Forschung und En-
twicklung 16, 23–34 (2001)

12. Klarmann, J.: A comprehensive support for changes in organizational models of
workflow management systems. In: ISM 2001. Proc. 4th Int’l Conf. on Inf Systems
Modeling, pp. 375–387 (2001)

13. Dumas, M., ter Hofstede, A.W.A. (eds.): Process Aware Information Systems. Wi-
ley Publishing, Chichester (2005)

14. Rinderle, S., Reichert, M.: On the controlled evolution of access rules in cooperative
information systems. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful
Internet Systems 2005: CoopIS, DOA, and ODBASE. LNCS, vol. 3760, pp. 238–
255. Springer, Heidelberg (2005)

15. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed NIST
standard for role-based acces control. ACM ToISS 4, 224–274 (2001)

A Formal Framework for Adaptive Access Control Models 111

16. Tolone, W., Ahn, G., Pai, T.: Access control in collaborative systems. ACM Com-
putings Surveys 37, 29–41 (2005)

17. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with adept2. In: ICDE 2005. Proc. 21st Int’l Conf. on Data Engineering, Tokyo,
pp. 1113–1114 (2005)

18. Berroth, M.: Design of a component for organizational models. Master’s thesis,
University of Ulm, Computer Science Faculty (in German) (2005)

19. Howes, T., Smith, M., Good, G.: Understanding and Deploying LDAP Directory
Services. New Riders (2001)

20. Bertino, E.: Data security. DKE 25, 199–216 (1998)
21. Zur Muehlen, M.: Resource modeling in workflow applications. In: Proc. of the

1999 Workflow Management Conference (Muenster), pp. 137–153 (1999)
22. Weber, B., Reichert, M., Wild, W., Rinderle, S.: Balancing flexibility and security

in adaptive process management systems. In: Meersman, R., Tari, Z. (eds.) On the
Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. LNCS,
vol. 3760, pp. 59–76. Springer, Heidelberg (2005)

23. NIST: Proposed Standard for Role-Based Access Control (2004),
http://csrc.nist.gov/rbac/rbacSTDACM.pdf

24. Ferraiolo, D., Kuhn, D.: Role based access control. In: 15th National Computer
Security Conference (1992)

25. Botha, R., Eloff, J.: A framework for access control in workflow systems. Informa-
tion Management and Computer Security 9, 126–133 (2001)

26. Pfeiffer, V.: A framework for evaluating access control concepts in workflow man-
agement systems. Master’s thesis, University of Ulm, Computer Science Faculty
(in German) (2005)

27. Giuri, L., Iglio, P.: A formal model for role-based access control with constraints.
In: Proc. Computer Security Foundations Workshop, pp. 136–145 (1996)

28. Kuhn, D.: Mutual exclusion of roles as a means of implementing separation of duty
in role-based access control systems. In: Proc. 2nd ACM Workshop on Role-based
Access Control, pp. 23–30. ACM Press, New York (1997)

29. v.d. Aalst, W.: Exterminating the dynamic change bug: A concrete approach to
support worfklow change. Information Systems Frontiers 3, 297–317 (2001)

30. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering, Special Issue on
Advances in Business Process Management 50, 9–34 (2004)

31. Agostini, A., De Michelis, G.: Improving flexibility of workflow management sys-
tems. In: BPM 2000. Proc. Int’l Conf. on Business Process Management, pp. 218–
234 (2000)

32. Joeris, G., Herzog, O.: Managing evolving workflow specifications. In: CoopIS 1998.
Proc. Int’l Conf. on Cooperative Information Systems, New York City, pp. 310–321
(1998)

33. Weske, M.: Workflow management systems: Formal foundation, conceptual de-
sign, implementation aspects. University of Münster, Germany, Habilitation Thesis
(2000)

34. Sadiq, S., Marjanovic, O., Orlowska, M.: Managing change and time in dynamic
workflow processes. IJCIS 9, 93–116 (2000)

35. Fent, A., Reiter, H., Freitag, B.: Design for change: Evolving workflow specifications
in ULTRAflow. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.)
CAiSE 2002. LNCS, vol. 2348, pp. 516–534. Springer, Heidelberg (2002)

http://csrc.nist.gov/rbac/rbacSTDACM.pdf

112 S. Rinderle and M. Reichert

36. Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso,
J.: IntelliGEN: A distributed workflow system for discovering protein-protein in-
teractions. Distributed and Parallel Databases 13, 43–72 (2003)

37. Edmond, D., ter Hofstede, A.: A reflective infrastructure for workflow adaptability.
Data and Knowledge Engineering 34, 271–304 (2000)

38. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10, 93–129 (1998)

39. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16, 91–116 (2004)

40. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: van der Aalst, W.M.P., Bena-
tallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, Springer,
Heidelberg (2005)

41. Klarmann, J.: A comprehensive support for changes in organizational models of
workflow management systems. In: ISM 2001. Proc. Int’l Conf. on Information
Systems Modeling, Hradec nad Moravici, Czech Republic (2001)

42. Domingos, D., Rito–Silva, A., Veiga, P.: Authorization and access control in adap-
tive workflows. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 23–28. Springer, Heidelberg (2003)

43. v.d. Aalst, W., Jablonski, S.: Dealing with workflow change: Identification of is-
sues an solutions. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 267–276. Springer, Heidelberg (2003)

44. Klarmann, J.: Using conceptual graphs for organization modeling in workflow man-
agement systems. In: WM 2001. Proc. Conf. Professionelles Wissensmanagement,
pp. 19–23 (2001)

45. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: Meersman, R., Tari, Z. (eds.) On the
Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE. LNCS,
vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

46. Simon, R., Zurko, M.: Separation of duty in role based environments. In: Proc.
Computer Security Foundations Workshop X (1997)

47. Botha, R., Eloff, J.: Separation of duties for access control enforcement in workflow
environments. IBM Systems Journal 40(3) (2001)

48. Ly, T., Rinderle, S., Dadam, P., Reichert, M.: Mining staff assignment rules from
event-based data. In: Castellanos, M., Weijters, T. (eds.) BPI 2005. First Inter-
national Workshop on Business Process Intelligence, Nancy, France, pp. 177–190
(2005)

Creating Ontologies for Content
Representation—The OntoSeed Suite

Elena Paslaru Bontas Simperl1 and David Schlangen2

1 Freie Universität Berlin
Institut für Informatik

AG Netzbasierte Informationssysteme
Takustr. 9, 14195 Berlin, Germany

simperl@inf.fu-berlin.de
2 Universität Potsdam
Institut für Linguistik

Angewandte Computerlinguistik
P.O. Box 601553, 14415 Potsdam, Germany

das@ling.uni-potsdam.de

Abstract. Due to the inherent difficulties associated with manual on-
tology building, knowledge acquisition approaches such as ontology reuse
or ontology learning from texts are often seen as instruments that can
make this tedious process easier. In this paper we present a NLP-based
method to aid ontology design in a specific application scenario, namely
that in which the resulting ontology is used to support the semantic an-
notation of text documents. The proposed method uses the World Wide
Web in its analysis of the domain-specific documents, thereby greatly re-
ducing the need for linguistic expertise and resources, and suggests ways
to specify domain ontologies in a “linguistics-friendly” format in order to
improve further ontology-based natural language processing tasks such as
semantic annotation. We present a thorough evaluation of the method,
using corpora from three diverse real-world settings (medical informa-
tion, tourism, and recipes). Additionally, for the first scenario we com-
pare the costs and the benefits of the NLP-based ontology engineering
approach against a similar, reuse-oriented experiment.

1 Introduction1

Ontologies are widely recognized as a key technology to realize the vision of the
Semantic Web and Semantic Web applications. In this context, ontology engineer-
ing is rapidly becoming a mature discipline which has produced various tools and
1 The present paper is a revised and extended version of [29]. In particular, we

pointed out how our approach can complement existing methodologies and methods
in the areas of ontology engineering and knowledge acquisition, and addressed its
operationalization as a dedicated tool or in relation with general-purpose ontology
management environments. Further on, a new section discussing the approach has
been added (3.4), references have been updated, and many of the figures have been
revised.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 141–166, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

142 E. Paslaru Bontas Simperl and D. Schlangen

methodologies for building and managing ontologies. However, even with a clearly
defined engineering methodology, building a large ontology remains a challenging,
time-consuming and error-prone task, since it forces ontology builders to concep-
tualize their expert knowledge explicitly and to re-organize it in typical ontologi-
cal categories such as concepts, properties and axioms. For this reason, knowledge
acquisition techniques such as ontology reuse, ontology learning from texts or on-
tology lifting from semi-structured resources like databases are often seen as ways
to make this tedious process more efficient: though all methods cannot currently
be used to automatically generate a domain ontology satisfying a specific set of
requirements, they can be used to guide or accelerate the modeling process.

Natural language processing techniques have proven to be particularly useful
for these purposes [4,9,11,17,25,32]. However, existing systems are still knowledge
or resource intensive: they may not require much prior knowledge about the do-
main that is to be modeled, but they require in-depth linguistic expertise—as for
configuring and using the underlying techniques and tools—or linguistic resources
such as thesauri and lexica. In this paper we present a method to aid ontology
building—within a certain setting, namely that of semantic annotation of texts—
by using NLP techniques to analyze texts from the target domain.2 These tech-
niques are comparably “knowledge-lean”: they make use of the WWW as a text
collection against which the domain texts are compared during analysis, which
makes them easy to employ even if no linguistic expertise and resources are avail-
able, and reduces the engineering costs since it avoids building an application-
specific lexicon. The method carefully describes how the results of the natural
language processing techniques can be used in the context of an ontology engi-
neering process, thus decreasing the need for additional expert support. Finally,
the approach not only aids the ontology engineers in taking specific modelling de-
cisions, but it also suggests ways to specify the ontology in such a way that it fits
ideally into further NLP-based processing steps, e.g. the extraction of information
from domain-specific texts. Describing these specification issues and giving some
example use cases of ontologies thus created is the second aim of this paper.

The remainder of this paper is organized as follows: we motivate our approach
and discuss previous work in Section 2. Section 3 gives details about our approach
to using NLP to aid ontology design, which is evaluated from a technical and ap-
plication perspective in Section 4. We close with a discussion of the results and an
outline of future work in Section 5.

2 Motivation

2.1 Ontology Engineering

Due to the difficulties and costs involved in building an ontology from scratch, on-
tology engineering methodologies often recommend to rely on available

2 “Semantic annotation” is understood in this paper as the process through which the
contents of information items—textual documents, but also multimedia—are linked
to concepts and relations whose semantics is formally defined using an ontology.

Creating Ontologies for Content Representation—The OntoSeed Suite 143

domain-related structured or unstructured data sources.3 In conjunction with
knowledge acquisition techniques they are considered a valuable input for major
ontology development activities such as the requirements analysis and the con-
ceptualization of the domain knowledge, as stated in many ontology engineering
methodologies such as [15,19,38,40].

In our own experience in a Semantic Web project in the medical domain (see
[30,41] for a longer discussion of this issue, and Section 4.2 below for the project
setting), we found that just selecting and extracting relevant sub-ontologies, for
example from a comprehensive medical ontology like UMLS,4 was a very time-
consuming process. Besides, this approach still resulted in a rather poor domain
coverage and limited application-oriented usability as determined by the semantic
annotation task. The ontology generated in this way could not be used optimally
in NLP-based processes, while the acceptance by its intended users was extremely
low because of substantial difficulties in comprehending and evaluating it (cf. Sec-
tion 4); this was our motivation to develop the techniques described here.

An alternative to reusing available ontologies or related knowledge sources (e.g.
classifications, thesauri) is to employ text documents as an input for the conceptu-
alization process. The most basic way to use texts is to extract terms from them,
i.e. to determine words that denote domain-specific concepts (e.g. “lymphocyte”
in a medical text) as opposed to general concepts (e.g. “telephone” in the same
text). While this is often seen as a problem that is more or less solved ([10]; see
[21] for a review of methods), the methods employed still rely on the presence
of linguistic resources (e.g. corpora of non-domain-specific texts, lexica; our ap-
proach differs in this respect, see below), and in any case are only the first step in
a text-based analysis: ideally, the goal is to get a collection of terms that is fur-
ther structured according to semantic relationships between the terms. There are
several systems that go in this direction [4,9,11,17,25,32], which however still re-
quire the availability of linguistic knowledge and resources, and moreover do not
seem to work on all kinds of texts.5 In general, there is a trade-off between the
cost of getting or producing these resources and the simplification these methods
offer. Hence our aim was a more modest, but at the present state of the art of
the Semantic Web and in the given application scenario [30,41] a more realistic
one: to aid the ontology engineer as far as possible (both at methodological and
technological level), while requiring as little additional linguistic resources and
expertise as possible. Before we come to a description of our approach, however,
we briefly review the use of ontologies in NLP, and derive some requirements for
“NLP-friendly” ontologies. These requirements are crucial for the development of
high-quality domain ontologies, which should combine a precise and expressive
domain conceptualization with a feasible fitness of use (i.e. in our case, fitness of
use in language-related tasks).

3 Refer to [15,39] for recent overviews of the ontological engineering field.
4 http://www.nlm.nih.gov/research/umls last visited in July, 2006.
5 These methods rely on relational information implicitly encoded in the use of verbs;

one of the domains we tested our approach is marked by a reduced, “telegram”-like
text style with an almost complete absence of verbs, as elaborated in [33].

http://www.nlm.nih.gov/research/umls

144 E. Paslaru Bontas Simperl and D. Schlangen

2.2 Ontologies in NLP

Ontologies have been used for a long time in many NLP applications, be that
machine translation [27], text understanding [18], or dialogue systems (some
recent examples are [16,37]), and are of course central to information-extraction
or Semantic Web-related NLP applications [3].6

Despite all differences in purpose, a common requirement for an ontology to be
considered “linguistics-friendly” (or “NLP-friendly”) is that the path from lexi-
cal items (e.g. words) to ontology concepts should be as simple as possible.7 On
a more technical level, this requires that access to ontology concepts is given in a
standardized form—if access is via names, then they should be in a predictable
linguistic form. To give an example of this not being the case, the medical ontol-
ogy UMLS contains concept names in the form “noun, adjective” (e.g. “Asthma,
allergic”) as well as “adjective noun” (e.g. “Diaphragmatic pleura”), and also
concept names that are full phrases or even clauses (e.g. “Idiopathic fibrosing
alveolitis chronic form”). Below we describe a method to avoid these problems
during the ontology engineering process, by making the engineering team aware
of the requirements of NLP applications; we also describe the concrete use of an
ontology in the task of semantic annotation of text documents. A more concrete
list of requirements for “NLP-friendliness” is presented in Section 3.2.

3 Using the OntoSeed Suite in Ontology Engineering

This section describes the suite of tools we have developed to aid the design
of ontologies used in language-related tasks such as semantic annotation. We
begin by giving a high-level description of the NLP-aided ontology engineering
process, illustrating this with examples from the medical domain and explain
the technical realization of the tools.

3.1 Overview and Examples

The OntoSeed suite consists of a number of programs that produce various sta-
tistical reports (as described below) given a collection of texts from a certain
domain, with the aim to provide guidance for the ontology engineer on which
concepts are important in this domain, and on the semantic relationships among
these concepts. More specifically, it compiles five lists for each given collection
of texts, as follows:

1. a list of nouns (or noun sequences in English texts; we will only write “noun”
in the following) occurring in the collection, ranked by their “termhood” (i.e.
their relevance for the text domain; see below);

2. nouns grouped by common prefixes and
3. suffixes, thereby automatically detecting compound nouns; and

6 See [20] for a critical view on the use of ontologies in NLP.
7 See [2] for a still relevant discussion of these interface issues.

Creating Ontologies for Content Representation—The OntoSeed Suite 145

4. adjectives together with all nouns they modify; and
5. nouns with all adjectives that modify them.

Figures 1 to 3 show excerpts of these files for a collection of German texts from
the medical domain of lung pathology (the LungPath-Corpus (see [33]), consisting
of 750 reports of around 300 words each; during ontology construction we used
a “training-subset” of 400 documents). Our examples are from German texts
due to the application scenario in which this work was initiated (cf. Section 4.2).
While we have used those for our systematic evaluations, we have also tested the
tools on English texts and in general we do not expect any principled differences
when working with languages other than German (or at least closely related
languages — languages with different writing systems like Chinese pose different
problems).8

As illustrated inFigure 1, terms like “Tumorzelle/tumor cell” or “Lungengewebe
/lung tissue” get assigned a relatively high weight by our analysis methods (the
highest weight is 112.666),which suggests that these terms denote relevant domain
concepts that need to be modeled. Terms related to domain-independent concepts
(e.g. terms like “System/system”or “Zeit/time” inFigure 1) tend tobe rankedwith
significantly lower value.Whena decision ismade onwhich terms tomodel, clusters
in which these terms occur can be looked up, as shown in Figure 2. The overview of
the data afforded by ordering phrases in prefix and suffix clusters can be very useful
in deciding how to model complex concepts, since there is no general, established
way to model them. For example, a noun phrase like “Tumorzelle/tumor cell” can
be modeled as a single concept subclass of Zelle (cell), while in other settings it can
be advantageous to introduce a property like Zelle infectedBy Tumor . The suffix
clustering offers valuable information about subclasses or types of a certain con-
cept (in our example in Figure 2 several types of cells). The prefix clustering can be
utilized to identify concept parts or properties (e.g. in Figure 2 Lungengewebe (lung
tissue) or Lungengefaess (lung vessel) as parts of the Lunge (lung)).

Linguistically, this pre- and suffix-clustering of course results in an (approxi-
mation of a) decomposition of compound nouns; following our general strategy,
we leave it to the ontology engineer to specify the semantic relation between the
parts of the compound, as this task requires domain knowledge. However, while
the tool does not provide any guidance for the accomplishment of this task, it
speeds-up its operation by propagating manually defined semantic relationships
across the concept hierarchy. Once the ontology engineer has specified a link
between ontological concepts/classes (for example he introduces the property
infectedBy between the classes Lunge (lung) and Tumor) the tool suggests ad-
ditional concepts in the hierarchy which are likely to act as domain or range of
the property as well (in this case the tool takes a look at classes in the hierarchy
which are more general than Lunge (lung) and Tumor and recommends them as
domain and range of the property infectedBy). This will lead to a definition of
the original property at BodyPart and Finding , respectively, and to a subsequent
propagation of the property to all sub-classes of the two.
8 Indeed, the POS-tagger we are using comes with a model of English and Italian in

addition to German.

146 E. Paslaru Bontas Simperl and D. Schlangen

Lungenparenchym 96.515
Schnittfläche 90.993
Tumorzelle 90.951
Pleuraerguß 89.234
Entzündung 88.476
Bronchialsekret 87.711
Lungengewebe 84.918
Entzündungsbefund 83.631
…. ….
Wert 1.825
System 1.761
Neuß 1.448
Bitte 1.296
Zeit 1.085
Seite 1.018

Fig. 1. Excerpt of the weighted term list (step 1)

B-Zellen Lunge
Carcinom-Zellen Lungen-PE
Schleimhautlamellen Lungenabszeß
Plasmazellen Lungenarterienembolie
Epitheloidzellen Lungenbereich
Rundzellen Lungenbezug
Alveolardeckzellen Lungenbiopsat
Epithelzellen Lungenblutung
Plattenepithelzellen Lungenembolie
Karzinomzellen Lungenemphysem
Schaumzellen Lungenerkrankung
Riesenzellen Lungenfibrose
Tumorzellen Lungengefäße
Alveolarzellen Lungengewebe
Zylinderzellen Lungengewebsareal
Becherzellen Lungengewebsprobe
Herzfehlerzellen Lungengewebsstücke
Bindegewebszellen Lungeninfarkt
Entzündungszellen Lungenkarzinom
Pilzzellen Lungenlappen

Fig. 2. Excerpt of the prefix (left, step 2) and suffix lists (right, step 3)

Finally, we look at ways in which the relevant terms are modified by adjectives
in the texts, by inspecting the lists shown in Figure 3. These lists give us infor-
mation that can be used in making a decision for one of two ways of modeling the
meaning of modifiers: as properties of a concept (e.g. “gross/large” as in “grosse
Tumorzelle/large tumor cell”), or as part of a single concept (e.g. “link/left”
in linke Lunge (left lung)). The decision for either of the modeling alternatives
cannot be made automatically, since it depends strongly on the context of the
application. However, analyzing a text corpus can support the decision process:
modifiers which occur mostly together with particular noun phrases or categories
of concepts, respectively, could be candidates for the single concept variant, while

Creating Ontologies for Content Representation—The OntoSeed Suite 147

Tumorzelle: 92 gross:
beschrieben 1 1% 10 10% Absetzungsrand 1
einzeln 1 1% 60 1% Abtragungsfläche 1
epithelialer 1 1% 1 100% Biopsate 1
gelegen 1 1% 16 6% Bronchus 2
gross 4 4% 129 3% Lungengewebsprobe 3
klein 1 1% 88 1% Lungenlappen 3
mittelgross 1 1% 6 16% Lungenteilresektat 1
pas-positive 1 1% 6 16% Lungenunterlappen 5
spindeligen 2 2% 2 100% Lymphknoten 1
vergroessert 1 1% 9 11% Nekroseherde 13
zahlreich 1 1% 47 2% Oberlappenresektat 1

Ossifikationen 1
PE 1
Pleuraerguß 4
Raumforderung 1
Rippe 15
Rundherd 1
Stelle 5
Tumor 1
Tumorknoten 10
Tumorzelle 4
Vene 4

link:
Lunge: 85 Bronchus 7

link 9 10% 53 16% Hauptbronchus 6
recht 7 8% 66 10% Lunge 9
tumorferne 2 2% 2 100% Lungenlappen 1

Lungenoberlappens 1
Lungenunterlappen 4
Mittellappen 2
Oberlappen 9
Oberlappenbronchus 3
Seite 1
Thoraxseite 3
Unterlappen 4
Unterlappenbronchus 2
Unterlappensegment 1
Unterschenkels 1

Fig. 3. Excerpt of modifier list (steps 4 and 5)

those used with a broad range of nouns should usually be modeled as a property.
As Figure 3 shows, in our corpus the noun “Tumorzelle/tumor cell” occurs 92
times, 4 times modified with “gross/large” (i.e. approximately 4% of all modi-
fiers). The modifier, on the other hand, occurs 129 times, so the co-occurrences
of the two terms are 3% of all its occurrences, which indicates that “gross/large”
is a property that is ascribed to many different concepts in the corpus. In con-
trast, the modifier “link/left” (the normalized form of “links/left”) seems to be
specific in the corpus to concepts denoting body organs like Lunge (lung) and its
parts. A possible next step in specifying possible ontology properties could be
to consider verbs in correlation with noun phrases. Our tool does not tackle this
problem yet (cf. discussion below in Section 5).

To summarize, the classifications of the noun phrases and their modifiers are
used as input to the conceptualization/implementation phase of the ontology
building process, which is ultimately still performed manually in compliance to
some ontology engineering methodology (Figure 4). Nevertheless, compared to
a fully manual process, preparing the text information in the mentioned form
offers important advantages in the following ontology engineering sub-tasks:

148 E. Paslaru Bontas Simperl and D. Schlangen

nouns
(clustered by

suffix)

search engines

WWW as corpus

POS tagging

weighted
list of
nouns

nouns
(clustered by

prefix)

modifiers
(clustered by

noun)

nouns
(clustered by

modifiers)

nouns adjectives

concepts

taxonomy

properties

ontology

Fig. 4. The OntoSeed process

– selecting relevant concepts: the ontology engineer uses the list of nouns that
are ranked according to their domain specificity as described above and
selects relevant concepts and relevant concept names. Domain-specific and
therefore potentially ontology-relevant terms are assigned higher rankings
in the noun list (see Section 4.1 for the evaluation of the ranking function).
First simple concept names from the noun list are identified as being relevant
for the ontology scope. Then the ontology engineer uses the prefix and suffix
clusters to decide which compound concept names should be as well included
to the target ontology.

– creating taxonomy: suffix clusters can be used to identify potential sub-
classes.

– creating properties/relationship: the ontology engineer uses the modifier clas-
sification and the generated taxonomy to decide about relevant properties
(denoted by adjectives) and about the taxonomy level the corresponding
property could be defined. For example in Figure 3 most of the concepts
modified by “link/left” are subsumed by RespiratorySystem —therefore if
the ontology engineer decides to define a property corresponding to this
adjective, this property will be assigned the domain RespiratorySystem .
However since “link/left” occurs in the corpus mostly in correlation with
“Lunge/lung” an alternative conceptualization is to introduce the concept
LinkeLunge (left lung) as a subclass of Lunge (lung). Further relationships are

Creating Ontologies for Content Representation—The OntoSeed Suite 149

induced by the decision to conceptualize relevant compound nouns as two
or more related concepts in the ontology. For example if “Tumorzelle/tumor
cell” is to be conceptualized in the ontology as Zelle locationOf Tumor the
relationship locationOf should also be included to the ontology. Relation-
ships between concepts (e.g. locationOf) are not suggested explicitly; how-
ever, on the basis of the taxonomy which was specified in the previous step
OntoSeed is able to identify clusters of compound terms implying a similar
relational semantics. For example given the fact that Lunge (lung) and Herz

(heart) are both subsumed by BodyPart , the system suggests that the rela-
tionship correlating Lunge (lung) and Infarkt (attack) in the compound noun
“Lungeninfarkt/lung attack” is the same as the one in the case of the com-
pound “Herzinfarkt/heart attack”, thus simplifying this conceptualization
step even when no linguistic knowledge w.r.t. verbs is available.

From an implementation perspective, the application of our approach can be
operationalized in several ways. On one hand one can implement a dedicated
tool providing ease-to-use graphical interfaces to the information compiled by
OntoSeed from texts, and guiding the usage of this information towards the real-
ization of the final ontology according to the workflow described above. On the
other hand such functionality could be added to existing ontology engineering
environments such as Protégé, SWOOP or WebODE.9 These tools allow users to
create ontologies, by manually defining classes, properties, axioms and instances
and storing the results in specific implementation languages. The information
generated by OntoSeed from the document corpus could be used as an additional
input for this task, thus partially automatizing the conceptualization. From a
methodological perspective, OntoSeed is in compliance with established ontology
engineering methodologies [15,39]. It can be understood as a knowledge acqui-
sition activity supporting the main ontology development process (cf. [15] for
a classification of ontology engineering activities and their interdependencies).
Hence its outcomes can be integrated with intermediary ontologies obtained
from alternative engineering activities such as manual building, ontology reuse
or ontology merging.

We are following the first of the aforementioned implementation alternatives;
screenshots of the current release of the OntoSeed GUI are illustrated in Appen-
dix B. The tool allows the user to incrementally use the results of the generated
reports and to adjust the content of the prospected ontology using a graphical
interface.

3.2 OntoSeed and NLP-Friendly Ontologies

It is well accepted that NLP-driven knowledge acquisition on the basis of domain-
specific text corpora is a useful approach in aiding ontology building
[4,9,11,17,25,32]. Looking at the flow of requirements in the other direction,

9 http://protege.stanford.edu/,http://www.mindswap.org/2004/SWOOP/
http://webode.dia.fi.upm.es/WebODEWeb/index.html last seen in July, 2006.

http://protege.stanford.edu/
http://www.mindswap.org/2004/SWOOP/
http://webode.dia.fi.upm.es/WebODEWeb/index.html

150 E. Paslaru Bontas Simperl and D. Schlangen

language-related tasks such as semantic annotation can be performed more ef-
ficiently if the used ontology has already been built in a “linguistics-friendly”
manner, as described in the following set of operations.

– Logging Modeling Decisions: The relationship between extracted terms (re-
sulting from the knowledge acquisition process) and the final modeled con-
cepts should be recorded. For example the term Klatskin tumor will be
probably modeled as a single concept, while lung tumor might be formal-
ized as tumor hasLocation lung . These decisions should be encoded in a
predefined form for subsequent NLP tasks, so that the lexicon that has to
be built for these tasks knows about potential compound noun suffixes.

– Naming Conventions for Ontology Primitives: Since semantic annotation re-
quires matching text to concept names, it is necessary that the concept names
are specified in a uniform, predictable manner.10 Typically concept names
are concatenated expressions—where the first letter of every new word is
capitalized— or lists of words separated by delimiters (e.g. KlatskinTumor

or Klatskin Tumor). Furthermore it is often recommended to denominate
relationships in terms of verbs or predicative structures (e.g. diagnosedBy ,
part of) and attributes / properties in terms of adjectives (e.g left).

If the names become more complex, they should be stored in a format that
is easily reproducible, and allows for variations. E.g., should there be a need
to have a concept name that contains modifiers (“untypical, outsized lung
tumor with heavy side sequences”), the name should be stored in a format
where the order of modifiers is predictable (e.g. sorted alphabetically), and
the modification is disambiguated (((lung tumor (with ((side sequences),

heavy))), (untypical, outsized))). NLP-tools (chunk parsers) can help
the ontology designer to create these normalized names in addition to the
human-readable ones.

We now turn to a description (3.3) and discussion (3.4) of the technical details
of OntoSeed.

3.3 Technical Details

In the first processing step, the only kind of linguistic analysis proper that we em-
ploy is performed: determining the part of speech (e.g., “noun”, “adjective”, etc.)
of each word token in the collection. Reliable systems for performing this task
are readily available; we use the TreeTagger [34] developed at IMS in Stuttgart,
Germany,11 but other systems could be used as well.

This enables us to extract a list of all occurring nouns (or, for English, noun
sequences, i.e., compound nouns; German compound nouns are, as is well known,
written as one orthographic word). The “termhood” of each noun is determined

10 This requirement, for example, is not fulfilled in UMLS and other medical ontologies.
11 Freely available for academic research purposes from http://www.ims.uni-

stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html

Creating Ontologies for Content Representation—The OntoSeed Suite 151

by the usual inverted document frequency measure (tf.idf), as shown in the for-
mula below—with the added twist, however, of using a WWW-search engine to
determine the document frequency in the comparison corpus.12 In the formula,
tf (w) stands for the frequency of word w in our collection of texts; wf (w) is
the number of documents in the corpus used for comparison, i.e., the number
of hits for query w reported by the search engine used— in our experiments,
both www.google.com (through the API made available by Google inc.) and
www.yahoo.com. N is the size of the collection, determined in an indirect way
(as the search engines used do not report the number of pages indexed) by mak-
ing a query for a high-frequency word such as “the” for English or “der” for
German. This of course is just an approximation, and also the hits reported
for normal queries get progressively less exact the more frequent a term is; for
our purposes, this is precise enough, since for “Web-frequent” terms (where wf
ranges from 103 to 106) rough approximations already have the desired effect of
pushing the weight down.

weight(w) = (1 + log tf (w)) ∗ (log
N

wf (w)
)

Sorting by this weight results in lists like those shown partially in Figure 1
above; a quantitative description of the effect of this weighing procedure is given
in Section 4.1.

In the next step after weighing the terms, nouns are clustered, to find com-
mon pre- and suffixes. We use a linguistically näıve (since it only looks at strings
and ignores morphology), but efficient method for grouping together compound
nouns by common parts. This step is performed in two stages: first, preliminary
clusters are formed based on a pre- or suffix similarity of three or more letters
(i.e., “lung” and “lung pathology” would be grouped into one cluster, but also
“prerogative” and “prevention”). These preliminary clusters are then clustered
again using a hierarchical clustering algorithm [26], which determines clusters
based on maximized pre- or suffix length (see Figure 2 above). The accuracy
of the suffix clustering procedure is anew improved by using the Web to elimi-
nate suffixes that do not denominate concepts in the real world, but are simply
common endings of the clustered nouns (such as the ending “ight” in “light” or
“night” in English or the German ending “tion” in “Reaktion/reaction”, “Infek-
tion/infection”).

The compilation of the adjective lists (Figure 3) from the tokenized and POS-
tagged text collection is straightforward and need not be explained here.

3.4 Discussion of the Methods

As described above, POS-tagging is the first of the processing steps, and hence,
any errors made there impact on the further steps. [34] reports an accuracy of
97.5% for the tagger we used, on texts of the same sort as those it has been
trained on (newspaper text). Our LungPath corpus is characterized by a high

12 See [26] for a textbook description of the family of tf.idf measures.

www.yahoo.com

152 E. Paslaru Bontas Simperl and D. Schlangen

proportion of fragmentary sentences; this deviation from the training text sort
brings accuracy down to 93.7%. This illustrates a general caveat when applying
the method: completeness of term extraction cannot be guaranteed, as nouns
may in unfortunate circumstances (misclassification at this stage) not enter the
ranking list. However, as our results on coverage reported below suggest, in
practice this risk seems slight, even if the corpus contains many instances of non-
standard structures. Similarly one can not fully guarantee the completeness of
the domain coverage, since the quality of the term extraction is highly dependent
of the domain relevance of the corpus used.

Using the Web as a corpus in linguistic analysis has become a hot topic
recently in computational linguistics (see e.g. a current special issue of Com-
putational Linguistics [22]), and has also been used in Ontology Learning and
Population and in Semantic Annotation. [6] use information automatically col-
lected from the Web to annotate text with concepts, given an ontology; [1] de-
scribe methods to cull a domain specific corpus from the Web, given a list of
seed terms). To our knowledge, the system presented here is the first to use the
Web in this kind of ontology-building support application.

Nevertheless, the Web-based tf.idf method also has some potential problems,
which stem from the fact that concepts, which is what we are really interested
in, are only “imperfectly” represented by natural language expressions. Such
expressions may denote more than one concept, or concepts with a more re-
laxed meaning than the one intended in the domain. This in turn can lead to
“false positives” in the comparison corpus. An example shall make this clearer.
In the medical domain, the expression “sex” may legitimately denote an im-
portant concept; however, in our comparison corpus, the Web, this term will
also be frequent—for altogether different reasons. The sense we are interested in
(the one from our domain corpus) is narrower than the one that generates the
surplus hits. The effect of this is that the computed weight for the expression
is lower than it ideally should be. Similarly, in a technical domain (e.g., Unix
programming), the expression “cat” may be important (it is the name of a Unix
command), but will be pushed down in the metric through the many instances
in the comparison corpus where the same string denotes something completely
different (a mammal).13 As aforementioned, this so far has not been a problem in
our test corpora, but we are currently experimenting with techniques that weigh
not only individual words but sets of words with similar meaning (synsets), com-
puted via distributional similarity [24]. Another obvious approach would be to
use lexical resources such as the Princeton WordNet [12]. However, this would
violate our goal of producing a “linguistically knowledge-lean” (and accessible
for non-experts) suite of tools.

13 The first example was of something that would be called in linguistics “sense narrow-
ing” or perhaps “polysemy” (one word with a spectrum of senses or several discrete
ones), the latter “homography” (different words that happen to be spelled in the
same way). Clearly classifying lexemes into these categories is difficult and to some
extent theory-dependent [8]; for us, the differences do not really matter, and we only
mention them for completeness.

Creating Ontologies for Content Representation—The OntoSeed Suite 153

4 Evaluation

In this section we present the evaluation of our approach from a technical and an
application-oriented perspective. We first compare the results of the NLP tech-
niques on three different corpora against a näıve baseline assumption (Section 4.1).
The whole suite of tools is then evaluated within a real-world application setting in
the medical domain. For this purpose we will compare two experiments aiming at
developing the same ontology using alternative knowledge acquisition strategies—
aOntoSeed-aided engineering approach anda reuse-oriented one based onUMLS—
in terms of development costs and suitability of the outcomes in the target appli-
cation context (Section 4.2).

4.1 Technical Evaluation

For the technical evaluation of our methods we examined the weighing function
described above and the results of the prefix and suffix clustering against human
expertise.

A simple concept of the importance of a term would just treat its position in
a frequency list compiled from the corpus as an indication of its “termhood”.
This ranking, however, is of little discriminatory value, since it does not separate
frequent domain-specific terms from other frequent terms, and moreover, it does
not bring any structure to the data: Figure 5 (left) shows a doubly logarithmic
plot of frequency-rank vs. frequency for the LungPath data set; the distribution
follows closely the predictions of Zipf’s law [42], which roughly states that in a
balanced collection of texts there will be a low number of very frequent terms
and a high number of very rare terms.

In comparison, after weighing the terms as described above, the distribution
looks like Figure 5 (right), again doubly logarithmically rank (this time: rank
in weight-distribution) vs. weight. There is a much higher number of roughly
similarly weighted terms, a relatively clear cut-off point, and a lower number of
low-weighed terms. A closer inspection of the weighed list showed that it dis-
tributed the terms from the corpus roughly as desired: the percentage of general
terms within each 10% chunk of the list (sorted by weight) changed progres-
sively from 5% in the first chunk (i.e., 95% of the terms in the highest ranked

Fig. 5. Rank (x-axis) vs. frequency (left), and rank vs. weight (right); doubly logarith-
mically

154 E. Paslaru Bontas Simperl and D. Schlangen

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 2 3 4 5 6 7 8 9 10

recipes

medicine

tourism

Fig. 6. The ratio of general terms / domain terms per 10% chunk of weighted term list
(highest weight to the left) for the three corpora

10% denoted domain-specific terms) to 95% in the last chunk (with the lowest
weights). We repeated this process (weighing, and manually classifying terms as
domain-specific or general) with two further corpora and found a similar correla-
tion between weight and “termhood” (the results for both corpora are shown in
Figure 6). The first was a collection of 244 English texts (approximately 80500
word tokens altogether) describing environmental aspects of world countries. The
second corpus contained 500 XML-formatted cooking recipes (approximately
45000 tokens) in German language.

In all corpora, however, there was one interesting exception to this trend: a
higher than expected number of terms in one 10% chunk in the middle of the
weight distribution which were classified as irrelevant by the experts. These turned
out to mostly be misspellings of names for general concepts—a kind of “noise” in
the data to which the termhood measure is vulnerable (since in the misspelled
form they will be both rare in the analyzed collection as well as the comparison
corpus, the Web, pushing them into the middle ground in terms of their weights).
While this is not a dramatic problem, we are working on ways of dealing with it
in a principled manner.

Further on, the comparison of the clusters generated as described in Section
3.3 with the results of the human classification revealed an average percentage
of approximately 14% of irrelevant suffix/prefix clusters — a satisfactory result
given the linguistically näıve algorithms employed.

We now turn to a qualitative evaluation of the usefulness of OntoSeed within
a real-world Semantic Web application we are developing for the medical domain.

Creating Ontologies for Content Representation—The OntoSeed Suite 155

4.2 Application-Based Evaluation

In order to evaluate the costs and the benefits of the OntoSeed approach, we
examined two subsequent semi-automatic experiments which aimed at build-
ing the same application ontology using different engineering strategies based
on knowledge acquisition: the re-usage of existing medical ontologies and the
OntoSeed-guided acquisition of application-relevant knowledge from texts. The
evaluation procedure focused on two criteria: the efficiency of the ontology en-
gineering process (i.e. the associated development efforts) and the usability of
the ontology in the application setting (i.e. as regarding the semantic annota-
tion of medical reports). A second objective of the evaluation was targeted at
the methodological background of our approach i.e. at the question whether the
approach can guide the engineering team towards the creation of an application
ontology.

Application Scenario. The aim of the project SWPATHO - A Semantic Web
for Pathology was to investigate the potential of semantic technologies, partic-
ularly ontologies, for the realization of a content-based retrieval system for the
domain of lung pathology [30,41].14The ontology-based application operates upon
an archive of medical reports (the LungPath-Corpus mentioned above) consisting
of both textual and image-based data, which are semantically annotated in or-
der to transform them into a valuable resource for diagnosis and teaching, which
can be searched in a fast, content-based manner [30,41]. The semantic annota-
tion of the data is realized by linguistically extracting semantic information from
medical reports and lists of keywords associated with each of the digital images
(both reports and keyword lists are available in textual form). The search is
content-based in that it can make use of semantic relationships between search
concepts and those occurring in the text (cf. Appendix A. In the same time
the medical information system can provide quality assurance mechanisms on
the basis of the semantic annotations of the patient records. The annotated pa-
tient records are analyzed on-the-fly by the quality assurance component, and
potential inconsistencies w.r.t. the background domain ontology are spotted.

Extracting semantic information from the medical text data is realized auto-
matically using lupus—Lung Pathology System [33]. lupus consists of a NLP
component (a robust parser) and a Semantic Web component (a domain ontol-
ogy represented in OWL, and a Description Logic reasoner), which work closely
together, with the domain ontology guiding the information extraction process.
The result of the linguistic analysis is a (partial) semantic representation of the
content of the textual data in form of an OWL semantic network of instances
of concepts and properties from the domain ontology. This ontology is used in
three processing stages in lupus, all of which can profit from a good cover-
age (as ensured by building the ontology bottom-up, supported by OntoSeed)
and a “linguistics-friendly” specification (as described above). The most obvi-
ous step where NLP and ontology interface is concept lookup: the ontology de-
fines the vocabulary of the semantic representation. Since lupus cannot “know”
14 http://swpatho.ag-nbi.de

http://swpatho.ag-nbi.de

156 E. Paslaru Bontas Simperl and D. Schlangen

whether a phrase encountered (e.g. “anthrakotischer Lymphknoten/anthracotic
lymph node”) is modelled as a simple or complex concept (i.e., as a concept
AnthrakotischerLymphknoten or as a concept Lymphknoten having the property
anthrakotisch) it has to first try the “longest match”. For this to work, the sys-
tem has to be able to construct a form that would be the one contained in the
ontology. To stay with this example, an inflected occurrence of these terms, e.g.
in “die Form des anthrakotischen Lymphknotens” (“the form of the anthracotic
lymph node”), would have to be mapped to a canonical form, which then can be
looked up. As mentioned above, in ontologies like UMLS there is no guarantee
that a concept name would be in a particular form, if present at all. In a sec-
ond step, the ontology is used to resolve the meaning of compound nouns and
prepositions [33].

OntoSeed experiment vs. UMLS experiment. During this project we ex-
amined two alternatives for the semi-automatic generation of an ontology for
lung pathology which suits the application functionality mentioned above. The
two experiments were similar in terms of engineering team (and of course, of the
application context). In the first one the ontology was compiled on the basis of
UMLS, as the largest medical ontology available. The engineering process was
focused on the customization of pre-selected UMLS libraries w.r.t. the applica-
tion requirements and resulted in an ontology of approximately 1200 concepts
modeling the anatomy of the lung and lung diseases [28,30]. Pathology-specific
knowledge was found to not be covered by available ontologies to a satisfactory
extent and hence was formalized manually. In the second experiment the ontology
was generated with the help of the OntoSeed tools as described in Section 3.1.15

We compared the efforts invested in the corresponding engineering processes
and analyzed the fitness of use of the resulting ontologies, in our case the results
these ontologies achieved in semantic annotation tasks. The main advantages
of the OntoSeed-aided experiment compared to the UMLS-based one are the
significant cost savings in conjunction with the improved fitness of use of the
generated ontology.

Development efforts. From a resource point of view, building the first ontology
involved four times as many resources as the second approach (5 person-months
for the UMLS-based ontology with 1200 concepts vs. 1.25 person-months for
the “text-close” ontology of a similar size). We note that the customization of
UMLS 16required over 45% of the overall effort necessary to build the target
ontology in the UMLS experiment (cf. Figure 7). Further 15% of the resources
were spent on translating the input representation formalisms to OWL. The
reuse-oriented approach gave rise to considerable efforts to evaluate and extend
the outcomes: approximately 40% of the total engineering effort were necessary
15 The knowledge-intensive nature and the complexity of the application domain con-

vinced us to not pursue the third possible alternative, building the ontology from
scratch.

16 Customization includes getting familiar with, evaluating and extracting relevant
parts of the source ontologies.

Creating Ontologies for Content Representation—The OntoSeed Suite 157

OntoSeed

52%

25%

7%11%

5%

Relevant concepts

Taxonomy

Relationships

Refinements

Implementation

UMLS

15%

40%
45%

Evaluation and
customization
Translation

Refinements

Fig. 7. Efforts distribution for the UMLS-based (top) and the OntoSeed (bottom)
ontology engineering experiments

for the refinement of the preliminary ontology. The effort distribution for the
second experiment was as follows (cf. Figure 7): 7% of the overall effort was
invested in the selection of the relevant concepts. Their taxonomical classification
required 25% of the resources, while a significant proportion of 52% was spent
on the definition of additional semantic relationships. Due to the high degree
of familiarity w.r.t. the resulting ontology, the evaluation and refinement phase
in the second experiment was performed straight forward with 5% of the total
efforts. The OWL implementation necessitated the remaining 11%.

In comparison with a fully manual process the major benefit of OntoSeed
according to our experiences would be the pre-compilation of potential domain-
specific terms and semantic relationships. The efforts invested in the taxonomical
classification of the concepts are comparable to building from scratch, because
in both cases the domain experts still needed to align the domain-relevant con-
cepts to a pre-defined upper-level ontology (in our case the Semantic Network
core medical ontology from UMLS). The selection of domain-relevant terms was
accelerated by the usage of the termhood measure as described above since this
avoids the manual processing of the entire domain corpus or the complete evalua-
tion of the corpus vocabulary. The efforts necessary to conceptualize the semanti-
cal relationships among domain concepts were reduced by the clustering methods
employed to suggest potential subclass and domain-specific relationships. How-
ever the OntoSeed approach assumes the availability of domain-narrow text
sources and the quality of its results depends on the quality/domain relevance
of the corpus (cf. the discussion in Section 3.4.

158 E. Paslaru Bontas Simperl and D. Schlangen

Quality of the Outcomes. In order to evaluate the quality of the outcomes (i.e. the
ontologies resulted from the experiments mentioned above) we compared their
usability within the lupus system by setting aside a subset (370 texts) of the
LungPath corpus and comparing the number of nouns matched to a concept. Us-
ing the ontology created by using OntoSeed (on a different subset of the corpus)
as compared to the ontology derived from UMLS resulted in a 10 fold increase in
the number of nouns that were matched to an ontology concept—very encour-
aging results indeed, which indicate that our weighting method indeed captures
concepts that are important for the whole domain, i.e. that the results general-
ize to unseen data. However, this evaluation method does of course not tell us
how good the recall is w.r.t. all potentially relevant information, i.e., whether we
not still miss relevant concepts—this we could only find out using a manually
annotated test corpus, a task which is currently performed. In a preliminary
evaluation, domain experts selected the most significant (w.r.t their information
content) concepts from an arbitrary set of 50 patient reports. These concepts are
most likely to be used as search terms in the envisioned system because of their
high domain relevance (as assigned by human experts). The ontology derived
from UMLS contained 40% of these concepts (cf. Figure 8). However, only 8%
of them were directly found in the ontology,17 while the usage of the remaining
32% in the automatic annotation task was practically impossible because of the
arbitrary concept terminology used in UMLS. As underlined before, UMLS con-
tains concept names in various forms (“noun, adjective”, “adjective noun”, full
phrases—to name only a few). In comparison, the OntoSeed-generated ontology
was able to deliver 80% of the selected concepts with an overall rate of 61% di-
rectly extracted concepts. In contrast to the UMLS-oriented case, the 19% of the
remaining, indirectly recognized concepts could be de facto used in automatic
annotation tasks, due to the NLP-friendly nature of the ontology. In the second
ontology the concepts were denominated in an homogeneous way and critical
modeling decisions were available in a machine-processable format.

The results of the evaluation can of course not be entirely generalized to ar-
bitrary settings. Still, due to the knowledge-intensive character of its processes,
medicine is considered a representative use case for Semantic Web technolo-
gies [23]. Medical ontologies have already been developed and used in different
application settings: GeneOntology [7], NCI-Ontology [14], LinKBase [5] and
finally UMLS. Though their modeling principles or ontological commitments
have often been subject of research [36,31,35,13], there is no generally accepted
methodology for how these knowledge sources could be efficiently embedded in
real Semantic Web applications. At the same time, the OntoSeed results could be
easily understood by domain experts, enabled a rapid conceptualization of the
application domain whose quality could be efficiently evaluated by the ontology
users. Though OntoSeed was evaluated in a particular application setting, that of

17 Directly extracted concepts are the result of simple string matching on concept
names or their synonyms. The indirect extraction procedure assumes that a specific
concept available in the text corpus is formalized “indirect” in the ontology i.e. as a
set of concepts and semantical relationships; see Section 3.

Creating Ontologies for Content Representation—The OntoSeed Suite 159

0%

10%

20%

30%

40%

50%

60%

70%

80%

D
o

m
ai

n
 c

o
ve

ra
g

e

UMLS OntoSeed
Ontology engineering experiments

Total available
Directly found
Indirectly found

Fig. 8. Fitness of use of the two ontologies

semantically annotating domain-narrow texts using NLP techniques, we strongly
believe that the tools and the underlying approach are applicable to various do-
mains and domain-specific corpora with similar results. This assumption was in
fact confirmed to some degree by the technical evaluation of the tools on two
additional corpora (cf. Section 4.1).

5 Conclusions and Future Work

In this paper we presented methods to aid the ontology building process. Start-
ing from a typical ontology-driven application setting—the semantic annotation
of text documents—we introduced an approach that can aid ontology engi-
neers and domain experts in the ontology conceptualization process, the only
requirement being a collection of domain-specific text to kick-start the ontology
building. We evaluated the analysis method itself on three corpora, with good
results, and its methodological background within a specific application setting,
where it resulted in a significant reduction of effort as compared to adaptation
of existing resources. Additionally, the method suggests guidelines for building
“linguistics-friendly” ontologies, which perform better in ontology-based NLP
tasks like semantic annotation.

As future work, we are investigating to what extent analyzing verbs in do-
main specific texts can be used to aid ontology building, and ways to extract
more taxonomic information from this source (e.g. information about hyponym
(is-a) relations, via the use of the copula (x is a y)), while still being as lin-
guistically knowledge-lean as possible. Second, we are currently finalizing the

160 E. Paslaru Bontas Simperl and D. Schlangen

implementation of a graphical user interface to simplify the usage of the pre-
sented tools in ontology engineering processes and in the same time to extend
the automatic support provided by the OntoSeed approach (cf. Appendix B.
Lastly we will complete the evaluation of the LUPUS system and the benefits of
using “NLP-friendly” ontologies for the semantic annotation task in more detail.

Acknowledgements

This work has been partially supported by the EU Network of Excellence
“KnowledgeWeb” (FP6-507482). The project “A Semantic Web for Pathology”
is funded by the DFG (German Research Foundation). We are also grateful to
Google Inc. for making available their API to the public. Thanks to Manfred
Stede for valuable comments on a draft of this paper, and to the anonymous
reviewers for their helpful suggestions.

References

1. Baroni, M., Bernardini, S.: BootCaT: Bootstrapping Corpora and Terms from
the Web. In: Proceedings of the International Language Resources Conference
(LREC04), May 2004, Lisbon, Portugal, pp. 1313–1316 (2004)

2. Bateman, J.A.: The Theoretical Status of Ontologies in Natural Language Process-
ing. In: Preuβ, S., Schmitz, B. (eds.) Proceedings of the Workshop on Text Rep-
resentation and Domain Modelling, Technische Universität, Berlin (1992)

3. Bontcheva, K., Cunnigham, H., Tablan, V., Maynard, D., Saggion, H.: Developing
Reusable and Robust Language Processing Components for Information Systems
using GATE. In: Proceedings of the 3rd International Workshop on Natural Lan-
guage and Information Systems (NLIS02), pp. 223–227. IEEE Computer Society
Press, Los Alamitos (2002)

4. Buitelaar, P., Olejnik, D., Sintek, M.: A Protege Plug-In for Ontology Extraction
from Text Based on Linguistic Analysis. In: Bussler, C.J., Davies, J., Fensel, D.,
Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, Springer, Heidelberg (2004)

5. Ceusters, W., Smith, B., Flanagan, J.: Ontology and Medical Terminology: Why
Description Logics are Not Enough. In: Proceedings Towards An Electronic Patient
Record TEPR2003, CD–ROM (2003)

6. Cimiano, P., Handschuh, S., Staab, S.: Towards the Self-Annotating Web. In: Pro-
ceedings of the 13th International World Wide Web Conference (WWW-2004),
New York, USA, pp. 462–471 (2004)

7. The Gene Ontology Consortium: Gene Ontology: Tool for the Unification of Biol-
ogy. Nature Genetics 25, 25–30 (2000)

8. Cruse, D.A.: Lexical Semantics. Cambridge University Press, Cambridge (1986)
9. Dittenbach, M., Berger, H., Merll, D.: Improving Domain Ontologies by Mining

Semantics from Text. In: Proceedings of the 1st Asian-Pacific Conference on Con-
ceptual Modelling, pp. 91–100. Australian Computer Society, Inc. (2004)

10. Drouin, P.: Detection of Domain Specific Terminology Using Corpora Comparison.
In: Proceedings of the International Language Resources Conference LREC04, May
2004, Lisbon, Portugal (2004)

Creating Ontologies for Content Representation—The OntoSeed Suite 161

11. Faure, D., Poibeau, T.: First Experiments of Using Semantic Knowledge Learned
by ASIUM for Information Extraction Task Using INTEX. In: Proceedings of the
Ontology Learning ECAI-2000 Workshop, pp. 7–12 (2000)

12. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cam-
bridge, USA (1998)

13. Gangemi, A., Pisanelli, D.M., Steve, G.: An Overview of the ONIONS Project:
Applying Ontologies to the Integration of Medical Terminologies. Data Knowledge
Engineering 31(2), 183–220 (1999)

14. Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Parsia, B., Oberthaler, J.: The Na-
tional Cancer Institute’s Thesaurus and Ontology. Journal of Web Semantics 1(1)
(2003)

15. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering.
Springer, Heidelberg (2003)

16. Gurevych, I., Porzel, R., Slinko, E., Pfleger, N., Alexandersson, J., Merten, S.: Less
is more: using a single knowledge representation in dialogue systems. In: Proceed-
ings of the HLT-NAACL 2003 Workshop on Text Meaning, Morristown, NJ, USA,
pp. 14–21, Association for Computational Linguistics (2003)

17. Hahn, U., Schnattinger, K.: Towards Text Knowledge Engineering. In: Proceedings
of the AAAI/IAAI, pp. 524–531 (1998)

18. Hobbs, J.R., Croft, W., Davies, T., Edwards, D., Laws, K.: Commonsense meta-
physics and lexical semantics. Compuational Linguistics 13(3–4), 241–250 (1987)

19. Jarrar, M., Meersman, R.: Formal Ontology Engineering in the DOGMA Approach.
In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE
2002. LNCS, vol. 2519, pp. 1238–1254. Springer, Heidelberg (2002)

20. Junichi, T., Ananiadou, S.: Thesaurus or logical onotology, which do we need for
mining text? Language Resources and Evaluation 39(1), 77–90 (2005)

21. Kageura, K., Umino, B.: Methods of Automatic Term Recognition. Terminol-
ogy 3(2), 259–289 (1996)

22. Kilgarriff, A., Grefenstette, G.: Introduction to the Special Issue on the Web as
Corpus. Computational Linguistics 29(3), 333–348 (2003)

23. KnowledgeWeb European Project: Prototypical Business Use Cases (Deliverable
D1.1.2 KnoweldgeWeb FP6-507482) (2004)

24. Lee, L.: Measures of Distributional Similarity. In: Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics, Maryland, USA, pp.
25–32 (1999)

25. Maedche, A., Staab, S.: Semi-automatic Engineering of Ontologies from Text. In:
Proceedings of the 12th International Conference on Software Engineering and
Knowledge Engineering SEKE2000, pp. 231–239 (2000)

26. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, Massachusetts, USA (1999)

27. Nirenburg, S., Raskin, V.: The Subworld Concept Lexicon and the Lexicon Man-
agement System. Computational Linguistics 13(3–4) (1987)

28. Paslaru Bontas, E., Mochol, M., Tolksdorf, R.: Case Studies in Ontology Reuse.
In: Proceedings of the 5th International Conference on Knowledge Management
IKNOW05 (2005)

29. Paslaru-Bontas, E., Schlangen, D., Schrader, T.: Creating Ontologies for Content
Representation – the OntoSeed Suite. In: Meersman, R., Tari, Z. (eds.) On the
Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE. LNCS,
vol. 3761, pp. 1296–1313. Springer, Heidelberg (2005)

162 E. Paslaru Bontas Simperl and D. Schlangen

30. Paslaru Bontas, E., Tietz, S., Tolksdorf, R., Schrader, T.: Generation and Manage-
ment of a Medical Ontology in a Semantic Web Retrieval System. In: Meersman,
R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2004: CoopIS,
DOA, and ODBASE. LNCS, vol. 3290, pp. 637–653. Springer, Heidelberg (2004)

31. Pisanelli, D.M., Gangemi, A., Steve, G.: Ontological Analysis of the UMLS
Metathesaurus. JAMIA 5, 810–814 (1998)

32. Reinberger, M.L., Spyns, P.: Discovering Knowledge in Texts for the Learning of
DOGMA-inspired Ontologies. In: Proceedings of the ECAI-2004 Workshop Ontol-
ogy Learning and Population, August 2004, Valencia, Spain, pp. 19–24 (2004)

33. Schlangen, D., Stede, M., Paslaru Bontas, E.: Feeding OWL: Extracting and Repre-
senting the Content of Pathology Reports. In: Proceedings of the NLPXML Work-
shop 2004 (2004)

34. Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceed-
ings of the International Conference on New Methods in Language Processing
(1994)

35. Schulze-Kremer, S., Smith, B., Kumar, A.: Revising the UMLS Semantic Network.
In: Proceedings of the Medinfo 2004 (2004)

36. Smith, B., Williams, J., Schulze-Kremer, S.: The Ontology of GeneOntology. In:
Proceedings of the AMIA (2003)

37. Stede, M., Schlangen, D.: Information-Seeking Chat: Dialogues Driven by Topic-
Structure. In: Proceedings of Catalog (the 8th Workshop on the Semantics and
Pragmatics of Dialogue SemDial04), pp. 117–124 (2004)

38. Sure, Y., Staab, S., Studer, R.: Methodology for Development and Employ-
ment of Ontology based Knowledge Management Applications. In: Meersman,
R., Sheth, A. (eds.) SIGMOD Record – Web Edition, vol. 31(4), Special Sec-
tion on Semantic Web and Data Management (December 2002), Available at
http://www.acm.org/sigmod/record/

39. Sure, Y., Tempich, C., Vrandecic, D.: Ontology Engineering Methodologies. In: Se-
mantic Web Technologies: Trends and Research in Ontology-based Systems, Wiley,
UK (2006)

40. Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: An Argumentation Ontology for
DIstributed, Loosely-controlled and evolvInG Engineering processes of oNTolo-
gies (DILIGENT). In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS,
vol. 3532, Springer, Heidelberg (2005)

41. Tolksdorf, R., Paslaru Bontas, E.: Organizing Knowledge in a Semantic Web for
Pathology. In: Proceedings of the NetObjectDays Conference, pp. 39–54 (2004)

42. Zipf, G.K.: Human Behaviour and the Principle of Least Effort. Addison-Wesley,
Cambridge, MA, USA (1949)

A The SWPATHO System

SWPATHO is an ontology-based information system for pathology, which pro-
totypically realizes the eHealth application scenario introduced above. An on-
line demo of the system is available at http://swpatho.ag-nbi.de/english/
software.html

The screenshots should give an idea about the underlying implementation.
Figure 9 depicts the way the domain ontology is used as an instrument for
content- and structure-based search in the pathology report archive. Queries can

http://www.acm.org/sigmod/record/
http://swpatho.ag-nbi.de/english/software.html
http://swpatho.ag-nbi.de/english/software.html

Creating Ontologies for Content Representation—The OntoSeed Suite 163

Fig. 9. Interfaces to the ontology-based retrieval component in SWPATHO

164 E. Paslaru Bontas Simperl and D. Schlangen

Fig. 10. Interface to the ontology-based statistics component in SWPATHO

be formulated in the conventional manner by specifying keywords or graphically,
by navigating the content of the application ontology (Figure 9 top). The results
of the query are clustered according to core patient features; further on, for
each pathology report contained in the result set, the user can seek for similar
documents (Figure 9 bottom). The similarity function builds upon the structure
of the medical documents and the content of the application ontology to compare
the full text content and the semantic annotations of the documents available.
In Figure 10 the ontology is used to generate statistical reports according to
pre-defined domain-specific dimensions such as age or diagnosis.

B The OntoSeed Tool

As aforementioned in order to further decrease the ontology development costs
and to ensure a lower barrier of entry for the usage of the OntoSeed methods
we developed a dedicated client application; this realizes the theoretical consid-
erations exposed so far in this paper, provides methodological support to ontol-
ogy engineering processes and simplifies the access to the reports produced by
OntoSeed using a graphical user interface.

Figure 11 depicts the interface to the weighed list of corpus terms. The user
specifies the concepts of the final ontology in that she can modify the labels of the

Creating Ontologies for Content Representation—The OntoSeed Suite 165

Fig. 11. Concept selection in OntoSeed

potential concepts and decide to eliminate individual terms or the percentages
of the total result set.

Figure 12 shows the creation of the taxonomy, which is performed after the
specification of the domain-relevant concepts with the help of the prefix clusters
computed by OntoSeed (cf. Section 3.1). The user can modify the suggested tax-
onomical structure by moving concepts throughout the hierarchy and modifying
individual labels.

166 E. Paslaru Bontas Simperl and D. Schlangen

Fig. 12. Taxonomy construction in OntoSeed

Putting Things in Context:
A Topological Approach to Mapping Contexts to

Ontologies

Aviv Segev and Avigdor Gal

Technion - Israel Institute of Technology
Haifa 32000

Israel
asegev@tx.technion.ac.il, avigal@ie.technion.ac.il

Abstract. Ontologies and contexts are complementary disciplines for modeling
views. In the area of information integration, ontologies may be viewed as the
outcome of a manual effort to model a domain, while contexts are system gener-
ated models. In this work, we provide a formal mathematical framework that de-
lineates the relationship between contexts and ontologies. We then use the model
to handle the uncertainty associated with automatic context extraction from ex-
isting documents by providing a ranking method, which ranks ontology concepts
according to their suitability to a given context. Throughout this work we moti-
vate our research using QUALEG, a European IST project that aims at providing
local governments with an effective tool for bi-directional communication with
citizens. We empirically evaluate our model using two real-world data sets, com-
ing from Reuters and news RSS. Our empirical analysis shows that the input
needed to accurately define a concept by a context is small, and the classification
of documents to concepts is accurate.

Keywords: Ontology, Context, Topology mapping.

1 Introduction

Ontologies and contexts are both used to model views, which are different perspectives
of a domain. Some consider ontologies as shared models of a domain and contexts as
local views of a domain. In the area of information integration, an orthogonal classifica-
tion exists, in which ontologies are considered a result of a manual effort of modeling a
domain, while contexts are system generated models [35]. As an example, consider an
organizational scenario in which an organization (such as a local government) is mod-
eled with a global ontology. A task of document classification, in which new documents
are classified upon arrival to relevant departments, can be modeled as an integration of
contexts (automatically generated from documents) into an existing ontology. A sim-
ple example of a context in this setting would be a set of words, extracted from the
document.

Such an approach was recently adopted in QUALEG, a European Commission
project aimed at increasing citizen participation in the democratic process.1 In

1 http://www.qualeg.eupm.net/

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 113–140, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

114 A. Segev and A. Gal

QUALEG, contexts are used to classify the input from citizens and map them to services
provided by the local governments. In particular, QUALEG was designed to handle
routing of emails to departments, opinion analysis on topics at the forefront of public
debates, and identification of new topics on the public agenda.

The two classifications (i.e., global vs. local and manual vs. automatic) of contexts
and ontologies are not necessarily at odds. In the example given above, documents may
be email messages from citizens, expressing a local view of a domain to be matched
against a global view of government services. The former is automatically generated to
allow rapid response to citizens, while the latter is a result of a carefully and manually
crafted modeling of a domain. The classification of manual vs. automatic modeling of
a domain has been the center of attention in the area of data integration in the past few
years.

In this work, we aim at formalizing the inter-relationships between an ontology, a
manually generated domain model, and contexts, partial and automatically generated
local views. We provide a formal mathematical framework that delineates the rela-
tionships between contexts and ontologies. Following the motivation given above, we
discuss the uncertainty associated with automatic context extraction from existing doc-
uments and provide a ranking model, which ranks ontology concepts according to their
suitability to a given context.

Throughout this paper, we motivate our work with examples from the eGovernment
domain. However, due to the absence of large scale data sets for this domain, we support
our model with an empirical analysis using real-world news syndication traces.

Our contributions are as follows:

– We present a framework for combining contexts and ontologies using topological
structures.

– We provide a model for ranking ontology concepts relative to a context that deals
with the uncertainty inherent in the context extraction and classification.

– Using real world scenario, taken from email messages from citizens in a local gov-
ernment, we demonstrate three tasks that involve mapping contexts to ontologies,
namely email routing, opinion analysis, and public agenda identification. Analyz-
ing traces from Reuters and news RSS data, we analyze several aspects of our
model, such as the context size required to define a concept and the accuracy of the
classification of documents.

The rest of the paper is organized as follows. We first discuss related work in Section 2.
Next, in Section 3 we propose a model for combining contexts and ontologies. In Sec-
tion 4 we present a ranking model to map contexts to ontologies. Section 5 displays the
results and analysis of the model implementation. Finally, Section 6 includes conclud-
ing remarks and suggestions for future work.

2 Related Work

This section describes related work in three different research areas, namely context
representation and extraction, ontology, and topology.

Putting Things in Context 115

2.1 Context Representation and Extraction

The context model we use is based on the definition of context as first class objects
formulated by McCarthy [25]. McCarthy defines a relation ist(C, P), asserting that a
proposition P is true in a context C. We use this relation in Section 4.1 when discussing
context extraction.

It has been proposed to use a multilevel semantic network to represent knowledge
within several levels of contexts [42]. The zero level of representation is a semantic net-
work that includes knowledge about basic domain objects and their relations. The first
level of representation uses a semantic network to represent contexts and their relation-
ships. The second level presents relationships of metacontexts, the next level describes
metametacontext, and so forth. The top level includes knowledge that is considered to
be true in all contexts. In this work we do not explicitly limit the number of levels in
the sematic network. However, due to the limited capabilities of context extraction tools
nowadays (see below), we define context as sets of sets of descriptors at zero level only
and the mapping between contexts and ontology concepts is represented at level 1. Gen-
erally speaking, our model requires n + 1 levels of abstraction, where n represents the
abstraction levels needed to represent contexts and their relationships.

A previous work on contexts [39] uses metadata for semantic reconciliation. They
define the semantic domain of an attribute as the set of attributes used to define its
semantics. Work by [16] uses contexts that are organized as a meet semi-lattice and
associated operations like the greatest lower bound for semantic similarity are defined.
The context of comparison and the type of abstractions used to relate the two objects
form the basis of a semantic taxonomy. They define ontology as the specification of a
representational vocabulary for a shared domain of discourse. Both these approaches
use ontological concepts for creating contextual descriptions and serve best when cre-
ating new ontologies. In this work, we do not focus on ontology generation, which can
be performed in any one of various methods, including those mentioned above. In the
eGovernment application that we use as a motivation for this work, the existence of an
ontology to which contexts should be mapped is assumed.

The creation of taxonomies from metadata (in XML/RDF) containing descriptions
of learning resources was undertaken in [32]. Following the application of basic text
normalization techniques, an index was built, which can be observed as a graph with
learning resources as nodes connected by arcs labeled by the index words common to
their metadata files. A cluster mining algorithm is applied to this graph and then the
controlled vocabulary is selected statistically. A manual effort is necessary to organize
the resulting clusters into hierarchies. When dealing with medium-sized corpora (a few
hundred thousand words), the terminological network is too vast for manual analysis,
and it is necessary to use data analysis tools for processing. Therefore, Assadi [1] em-
ployed a clustering tool that utilizes specialized data analysis functions and clustered
the terms in a terminological network to reduce its complexity. These clusters are then
manually processed by a domain expert to either edit them or reject them.

Several distance metrics were proposed in the literature and can be applied to mea-
sure the quality of context extraction. Prior work presented methods based on infor-
mation retrieval techniques [43] for extracting contextual descriptions from data and
evaluating the quality of the process. In Section 5.2 we compare our experiments with

116 A. Segev and A. Gal

text classification using the Latent Semantic Indexing (LSI) approach presented in the
work of [14] and [21]. The approach associates word-based vectors to topics in a taxon-
omy. The underlying idea of LSI is that the aggregate of all the word contexts in which
a given word does and does not appear provides a set of mutual constraints that largely
determines the similarity of meaning of words and sets of words.

Methods which included techniques for analyzing quality of information included
Motro and Rakov [30] who proposed a standard for specifying the quality of databases
based on the concepts of soundness and completeness. The method allowed the quality
of answers to arbitrary queries to be calculated from overall quality specifications of the
database. Another approach [28] is based on estimating loss of information in navigat-
ing ontological terms. The measures for loss of information were based on metrics such
as precision and recall on extensional information. These measures are used to select
results having the desired quality of information and we shall use them in our empirical
evaluation as well.

To demonstrate our method, we propose in Section 4.1 the use of a fully automatic
context recognition algorithm that uses the Internet as a knowledge base and as a basis
for clustering [35]. Both the contexts and the ontology concepts are defined as topo-
logical sets, for which set distance presents itself as a natural choice for a distance
measure.

2.2 Ontology

Ontologies have been defined and used in various research areas, including philosophy
(where it was coined), artificial intelligence, information sciences, knowledge repre-
sentation, object modeling, and most recently, eCommerce applications. In his seminal
work, Bunge defines Ontology as a world of systems and provides a basic formalism
for ontologies [4]. Typically, ontologies are represented using Description Logic [2,9],
where subsumption typifies the semantic relationship between terms, or Frame Logic
[18], where a deductive inference system provides access to semi-structured data.

Recent work has focused on ontology creation and evolution and in particular on
schema matching. Many heuristics were proposed for the automatic matching of
schemata (e.g., Cupid [23], GLUE [8], and OntoBuilder [11]), and several theoretical
models were proposed to represent various aspects of the matching process [22,27,10].

The realm of information science has produced an extensive body of literature and
practice in ontology construction, e.g., [44]. Other undertakings, such as the DOGMA
project [41], provide an engineering approach to ontology management. Work has been
done in ontology learning, such as Text-To-Onto [24], Thematic Mapping [6], On-
toMiner [7], and TexaMiner [15] to name a few. Finally, researchers in the field of
knowledge representation have studied ontology interoperability, resulting in systems
such as Chimaera [26] and Protègè [31].

Our model of an ontology is based on Bunge’s terminology. We aim at formalizing
the mapping between contexts and ontologies and provide an uncertainty management
tool in the form of concept ranking. When experimenting with our model we assume an
ontology is given, designed using any of the tools mentioned above.

Putting Things in Context 117

2.3 Topology

In recent years researchers have applied principles from the mathematical domain of
topology in different fields of Artificial Intelligence. One work uses topological local-
ization and mapping for agent problem solving [5]. Other researchers have implemented
topology in metrical information associated with actions [38,20]. In another method of
topological mapping, which describes large scale static environments using a hybrid
topological metric model, a global map is formed from a set of local maps organized
in a topological structure, where each local map contains quantitative environment in-
formation using a local reference frame [40]. Remolina and Kuipers present a general
theory of topological maps whereby sensory input, topological and local metrical infor-
mation are combined to define topological maps explaining such information [33].

Following the success of these works, in this work we use topologies and topology
theory as a tool of choice for integrating contexts and ontologies. While the tools we
use are inherently different from those of [33] and [40], we follow their basic theme of
using topology to integrate local views into a global one.

3 A Model of Context and Ontology

In this section we formally define our model of contexts and ontologies (Section 3.1)
and propose a topology-based model to specify the relationships between them
(Section 3.2). We conclude in Section 3.3 with a discussion and a few examples from
the QUALEG project.

3.1 Contexts and Ontologies

We define a descriptor ci from domain D as an index term used to identify a record
of information [29]. It can consist of a word, phrase, or alphanumerical term. A weight
wi ∈ � identifies the importance of descriptor ci in relation to the record of information.
For example, we can have a descriptor c1 = Musik, and w1 = 6. A descriptor set
{〈ci, wi〉}i is defined by a set of pairs, descriptors and weights. Each descriptor can
define a different point of view of the concept. The descriptor set defines all the different
perspectives and their relevant weights, which identify the relative importance of each
perspective.

By collecting all the different view points delineated by the different descriptors we
obtain a context. A context C =

{
{〈cij , wij〉}i

}
j

is a set of finite sets of descriptors.
For example, a context C may be a finite set of words describing each document Doc
(hence D is a set of all possible documents) and the weights can represent the relevance
of a descriptor to Doc. In classic Information Retrieval, 〈cij , wij〉 may represent the
fact that the word cij is repeated wij times in Doc.

Another example which represents a context from a different perspective can be seen
if we take two different descriptor sets of a published article: first, the publication in-
formation of the article, such as article title and author, and second, a set of keywords
representing the classification topics of the paper. Both descriptor sets refer to the same
paper, but each descriptor set provides a different viewpoint of it. An example of a

118 A. Segev and A. Gal

Fig. 1. Contexts and Ontology Concepts

descriptor set based on the publication information of a document can be the title and
category (press release): {{〈Theater im Grenzbereich, 2〉}, {〈Pressemitteilung, 1〉}}. In
addition, the document can be described by a descriptor set:
{{〈Musik, 8〉} , {〈Open Air, 1〉}}. It is worth noting that the context above has two de-
scriptor sets, each with two pairs of a descriptor and a weight.

An ontology O = (V, E) is a directed graph, with nodes representing concepts
(things in Bunge’s terminology [3,4]) and edges representing relationships (See
Figure 1 (top) for a graphical illustration). A single concept is represented by a name
and a context C.

Example 1 (Contexts and ontologies). To illustrate contexts and ontologies, consider
the local government of Saarbrücken. Two ontology concepts in the ontology of
Saarbrücken are Perspective du Theatre and Long Day School. The first concept, Per-
spective du Theatre, is associated with a context that contains descriptor sets such as:

(Perspectives du Theatre, {
{〈

Öffentlichkeitsarbeit, 2
〉}

, {〈Multimedia, 1〉},
{〈Kulturpolitik, 1〉}, {〈Musik, 6〉}, ...})

and Long Day School is associated with the following context descriptor sets:

(Long Day School, {{〈Förderbedarf, 1〉}, {〈Mathematik, 2〉}, {〈Musik, 2〉},
{〈Interkulturell, 1〉}}).

A context, which was generated from an email message using the algorithm in [35] (to
be described in Section 4.1) is {{〈Musik, 8〉} , {〈Open Air, 1〉}}. Intuitively, this email
may be related to both concepts, possibly with a stronger connection to Perspective du

Putting Things in Context 119

Theatre (due to the higher weight). In this work we demonstrate how such a context can
be mapped to ontology concepts.

3.2 Modeling Context-Ontology Relationships

The relationships between ontologies and contexts can be modeled using topologies as
follows. A topological structure (topology) in a set X is a collective family ϑ = (Gi/i ∈
I) of subsets of X satisfying

1. J finite; ⇒
⋃

i∈J Gi ∈ ϑ
2. J ⊂ I ⇒

⋂
i∈J Gi ∈ ϑ

3. ∅ ∈ ϑ, X ∈ ϑ

The pair (X ,ϑ) is called a topological space and the sets in ϑ are called closed sets.
We now define a context to be a closed set in a topology, representing a family ϑ

of all possible contexts in some set X with the subset relation ⊆. X is a set of sets of
pairs 〈c, w〉, where c is a word (or words) in a dictionary and w is a weight. Note that
ϑ is infinite since descriptors are not limited in their length and weights are taken from
some infinite number set (such as the real numbers �).

The topology is defined by the following subset relation on the context: ∀Ca ∃Cb such
that Ca =

{
{〈cij , wij〉}i

}
j

⊆ Cb =
{
{〈ckp, wkp〉}k

}
p
. Stating that for each context

there exists another context that includes the existing context. Identity between contexts
is defined as follows: Ca = Cb if ckp = cij , wkp = wij , ∀k, p. Contexts are identical if
all descriptors and their matching weights are identical.

The empty set and X are also contexts. Contexts as sets of descriptor sets are closed
under intersection and union.

We previously defined contexts as closed sets. Next we define the notion of order of
contexts using a directed set. A directed set is a set S together with a relation ≥, which
is both transitive and reflexive, such that for any two elements a, b ∈ S, there exists
another element c ∈ S with c ≥ a and c ≥ b. In this case, the relation ≥ is said to
“direct” the set.

We define a specific directed set using contexts. A context directed set is formally
defined by:

C0 = {∅}
Cn = {DSi, DSi ∪ DSn|∀DSi ∈ Cn−1}
The definition is illustrated in Figure 2. The different descriptor sets can be viewed

as a collection in a bag. We randomly select one descriptor set DS1. Let Context C1
define all the descriptor sets that can be created out of one given context - this is only
one descriptor set. Let Context C2 be the sets of descriptors that can be created from two
given descriptor sets. Context C2 contains three descriptor sets: DS1 from the previous
context, DS2 which is another descriptor set we select, and the union of both descriptor
sets, therefore, C1 ≤ C2. We can continue and build this directed set by adding another
descriptor set to C2 forming a new Context C3, where C1 ≤ C3 and C2 ≤ C3. This
process of creating the directed set can continue indefinitely.

This directed set forms a sequence where: C1 ≤ C2 ≤ C3 ≤ ... ≤ Cn ≤ ...
Whenever a directed set contains contexts that describe a single topic in the real

world, such as school or festival, we would like to ensure that this set of contexts con-

120 A. Segev and A. Gal

c1, w1

c2, w2 DS1

c1, w1

c2, w2

.

Ontology
Concept

n

c1, w1

c2, w2

.

C1

c1, w1

c2, w2

.

DS2

DS1 U DS2

C2

DS3

DS1 U DS3

DS2 U DS3

C3 Cn

C1 C2 C3 ... Cn ...

Legend
ci – descriptor i
wi – weight i
DSi – Descriptor Set i
Ci – Context i

-
-

Fig. 2. Contexts Sets Converging to an Ontology Concept

verges to one ontology concept v, representing this topic, i.e., Cn →n→∞ v. In topology
theory, such a convergence is termed an accumulation point, a point which is the limit
of a sequence, also called a limit point. Figure 1 (bottom) and Figure 2 illustrate on-
tology concepts as points of accumulation. The concept can be viewed as delineating
a growing set of descriptors forming the context. The borders outline all of the sepa-
rate descriptors sets which belong to a specific concept. An overlap between descriptors
belonging to different concepts is possible, similarly to dynamic taxonomies [34].

To demonstrate the creation of an ontology concept let a context be a set containing
a singleton descriptor set {〈Mathematik, 2〉}. If we add another singleton descriptor set
of {〈Musik, 2〉} we form a new context which contains three descriptor sets:
{{〈Mathematik, 2〉}, {〈Musik, 2〉}, {〈Mathematik, 2〉 , 〈Musik, 2〉}}. As the possible
sets of descriptors describing documents increase we advance towards the coverage
of the accumulation point. The directed set comprising of these contexts becomes more
descriptive. We can converge to an ontology concept, such as Long Day School, defined
by a set, to which the context set belongs. Basically the accumulation point forms the
context which includes all the descriptor sets required to define a concept.

With infinite possible contexts, can we ensure the existence of ontology concepts to
which these contexts converge? The answer is yes. Looking at the topological defini-
tions, we defined contexts as a subset of a topological space. All of the subsets forming
the contexts were defined to be closed sets. According to [17], the following theorem
holds in regards to closed sets:

Putting Things in Context 121

Theorem 1. A subset of a topological spaces is closed if and only if it contains the set
of its accumulation point.

According to this theorem, any subset of contexts, being closed sets, will necessarily
include an accumulation point. If we look at a finite set of descriptor sets, when each
time we add another descriptor set, we will obviously reach an accumulation point,
which includes all of the descriptors forming the ontology concepts. However, the above
theorem guarantees that even if we have an infinite number of descriptors sets, we will
eventually reach an accumulation point, which will also be a context. This context will
include all of the descriptor sets defining our concept.

The proposed model employs topological definitions to delineate the relationships
between contexts and ontologies. A context is a set of descriptors and their correspond-
ing weights. A directed set is a relation of contexts that includes all of their possible
unions of sets of descriptors. An ontology concept is the accumulation point of the
directed set of contexts.

3.3 Discussion and Examples

A context can consist of multiple descriptor sets. Each descriptor set can belong to sev-
eral ontology concepts simultaneously. For example, a descriptor set {〈Musik, 2〉} can
be shared by many ontology concepts that have interest in culture (such as schools, after
school institutes, non-profit organizations, etc.) although it is not in their main role de-
finition (and hence the low weight assigned to it). Such overlap of contexts in ontology
concepts affects, for example, the task of email routing. The appropriate interpretation
of a context of an email that is part of several ontology concepts is that the email is
relevant to all such concepts. Therefore, it should be delivered to multiple departments
in the local government.

In comparison, prior work [16] has focused on semantic similarity, which is essen-
tially an abstraction / mapping between the domains of the two objects associated with
the context of comparison. The work presented here uses points of accumulation to
define ontology concepts to be the union of contexts rather than the intersection, as
suggested in earlier works.

Of particular interest are ontology concepts that are considered “close” under some
distance metric. As an example, consider the task of opinion analysis. With opinion
analysis, a system should not only judge the relevant area of interest of a given email
but also determine the opinion that is expressed in it. Consider an opinion analysis task,
in which opinions are partitioned into two categories (e.g., “for” and “against”). We
can model such opinions using a common concept ontology (say, that of Perspectives
du Theatre), with the addition of words that describe positive and negative opinions.
An email whose context fits with the theme of Perspective du Theatre will be further
analyzed to be correctly classified as “close” to the “for” or “against” category. Opinion
analysis can be extended to any number of opinions in the same manner.

4 Ranking Ontology Concepts

Up until now, the proposed model assumed perfect knowledge in the sense that a context
is a true representative of a local view and an ontology concept (and its related context)

122 A. Segev and A. Gal

is a true representative of a global view. In the real world, however, this may not be the
case. When a context is extracted automatically from some information source (e.g., an
email message), it may not be extracted accurately and descriptors may be erroneously
added or eliminated. Also, even for manually crafted ontology concepts, a designer may
err and provide an inaccurate context for a given concept. In [12] we also argued that
even a well-crafted ontology may vary slightly between organizations within the same
domain, such as local governments. Therefore, contexts are bound to vary as well.

In this section we highlight the uncertainty involved in automatic knowledge extrac-
tion and propose a method for managing such uncertainty. In particular, we discuss the
impact of uncertainty on the three tasks presented above, namely email routing, opinion
analysis, and public agenda in the QUALEG project. As a basis for our discussion, we
first present the principles of a context recognition algorithm. Details of the algorithm
are provided in [35] and the description here is given for the sake of completeness.

4.1 A Context Recognition Algorithm

Several methods were proposed in the literature for extracting context from text. A class
of algorithms were proposed in the IR community, based on the principle of counting
the number of appearances of each word in a text, assuming that the words with the
highest number of appearances serve as the context. Variations on this simple mecha-
nism involve methods for identifying the relevance of words to a domain, using meth-
ods such as stop-lists and inverse document frequency. For illustration purposes, we
next provide a description of a context recognition algorithm that uses the Internet as a
knowledge base to extract multiple contexts of a given situation, based on the stream-
ing in text format of information that represents situations. This algorithm was adapted
from [35] and is currently part of the QUALEG solution. We use the work in [35] to
demonstrate the feasibility of our model. However, other models, such as [21] and [13],
can be adopted for context recognition as well.

Let D = {P1, P2, ..., Pm} be a set of textual propositions representing a document,
where for all Pi there exists a collection of descriptor sets forming the context Ci =
{〈ci1, wi1〉, ..., 〈cin, win〉} so that ist(Ci, Pi) is satisfied. That is, the textual proposition
Pi is true for context Ci. The granularity of the textual propositions varies, based on the
case at hand, and may be a single sentence, a single paragraph, a statement made by
a single participant (in a chat discussion or a Shakespearian play), etc. The context
recognition algorithm identifies the outer context C defined by

ist(C,

m⋂

i=1

ist(Ci, Pi)).

The input to the algorithm is a stream, in text format, of information. The context
recognition algorithm output is a set of contexts that attempts to describe the current sce-
nario most accurately. The algorithm attempts to reach results similar to those achieved
by a human when determining the set of contexts that describe the current scenario.

The context recognition algorithm consists of the following major phases: collecting
data, selecting contexts for each text, ranking the contexts, and declaring the current
contexts. The phase of data collection includes parsing the text and checking it against a

Putting Things in Context 123

stop-list. To improve this process, text can be checked against a domain-specific dictio-
nary. The result is a list of keywords obtained from the text. The selection of the current
context is based on searching the Internet for relevant documents according to these
keywords and on clustering the results into possible contexts. The output of the ranking
stage is the current context or a set of highest ranking contexts. The set of preliminary
contexts that has the top number of references, both in number of Internet pages and in
number of appearances in all the texts, is declared to be the current context. The success
of the algorithm depends, to a great extent, on the number of documents retrieved from
the Internet. With a greater number of relevant documents, less preprocessing (using
methods such as Natural Language Processing) is needed in the data collection phase.

4.2 From an Automatically Extracted Context to Ontology Concepts

Given the uncertainty involved in automatically extracting contexts, adhering to a strict
approach according to which a context belongs to an ontology concept only if it is an
element in its associated point of accumulation may be too restrictive. To illustrate this
argument, let C be a context that is an accumulation point and let C′ be an automatically
extracted context. The following three scenarios are possible:

C ⊂ C′: In this case the context extraction algorithm has identified irrelevant descrip-
tors to be part of the context (false positives). Unless the set of descriptors in C′ that
are not in C is a context in x as well, C′ will not be matched correctly.

C′ ⊂ C: In this case the context extraction algorithm has failed to identify some de-
scriptors as relevant (false negatives). Therefore, C′ will only be matched correctly
if C is a context in the same directed set.

C � C′ ∧ C′ � C: This is the case in which both false positives and false negatives exist
in C′.

A good algorithm for context extraction generates contexts in which false negatives
and false positives are considered to be the exception, rather than the rule. Therefore,
we would like to measure some “distance” between an extracted context and various
points of accumulation, assuming a “closer” ontology concept to be better matched. To
that end, we define a metric function for measuring the distance between a context and
ontology concepts, as follows.

We first define distance between two descriptors ci and cj with their associated
weights wi and wj to be:

d(ci, cj) =
{

|wi − wj | i = j
max (wi, wj) i �= j

This distance function assigns greater importance to descriptors with larger weights,
assuming that weights reflect the importance of a descriptor within a context. To define
the best ranking concept in comparison with a given context we use Hausdorff metric.
Let A and B be two contexts and a and b be descriptors in A and B, respectively. Then,

d(a, B) = inf{d(a, b)|b ∈ B}
d(A, B) = max{sup{d(a, B)|a ∈ A}, sup{d(b, A)|b ∈ B}}

124 A. Segev and A. Gal

The first equation provides the value of minimal distance of an element from all
elements in a set. The second equation identifies the furthest elements when comparing
both sets.

Example 2. Going back to our case study example, the context{{〈Musik, 8〉} ,
{〈Open Air, 1〉}} may be relevant to both Perspective du Theatre and Long Day School,
since in both, a descriptor Musik is found, albeit with different weights. The distance be-
tween 〈Musik, 8〉 and 〈Musik, 6〉 in Perspective du Theatre is 2 and between 〈Musik, 8〉
and 〈Musik, 2〉 in Long Day School is 6. Assume that {〈Open Air, 1〉} is a false pos-
itive, which does not appear in either Perspective du Theatre or in Long Day School.
Therefore, its distance from each of the two points of accumulation is 1 (since
inf{d(a, b)|b∈B}=1,e.g., when comparing {〈Open Air, 1〉} with {〈Kulturpolitik, 1〉}).
We can therefore conclude that the distance between the context and Perspective du
Theatre is 2, which is smaller than its distance from Long Day School (computed to be
6). Therefore, Perspective du Theatre will be ranked higher than Long Day School.

Although a normalization step can be used to prevent descriptors with large frequencies
from influencing the results - in the previous example this will lead to lowering the value
of the weight of Musik - there is an advantage in leaving the higher value descriptors
so as to give these descriptors more weight in the process, in order to better represent
the weights of the contexts. A higher value means that these descriptors carry higher
importance.

We next show how the proposed ranking mechanism can be utilized for the various
tasks of eGovernment, as presented in Section 3.3.

Email routing: The user provides QUALEG with a distance threshold t1. Any ontol-
ogy concept that matches with a context, automatically generated from an email,
and its distance is lower than the threshold (d(A, B) < t1), will be considered
relevant, and the email will be routed accordingly.

Opinion analysis: The relevant set of ontology concepts is identified, similarly
to email routing. Then for each ontology concept, the relative distance of the differ-
ent opinions of that concept is evaluated. If the difference in distance is too close to
call (given an additional threshold t2), the system refrains from providing an opin-
ion (and the email is routed accordingly). Otherwise, the email is marked with the
opinion with minimal distance.

Public agenda: If all ontology concepts (of the n relevant concepts) satisfy that
d(A, B) ≥ t1, the email is considered to be part of a new topic on the public agenda
and is added to other emails under this concept. Periodically, such emails are clus-
tered and provided to decision makers to determine the addition of new ontology
concepts.

5 Experiences and Experiments

In this section we first present the QUALEG project as a test platform for the imple-
mentation of the model that maps context to ontology in Section 5.1. We also share our

Putting Things in Context 125

experiences with QUALEG pilots. Next, in Section 5.2 we empirically evaluate various
aspects of the proposed model using two real-world data traces, taken from Reuters and
news RSS.

5.1 QUALEG Experiences

The section begins with a description of the QUALEG architecture, followed by expe-
riences with e-mail routing and opinion analysis.

QUALEG Architecture. The aim of the QUALEG project is to support the electronic
interactions between civil servants and citizens. The QUALEG system aims at allowing
local governments to maintain a direct connection with citizens through the ongoing
adjustment of their policies according to the assessment of citizen needs. This implies
that local governments should be able to measure the performance of the services they
offer, assess citizen satisfaction, and re-formulate policy orientations on such elements
with the participation of citizens.

These tasks are achieved through the implementation of an agent oriented QUALEG
architecture, which consists of the following main seven components: (1) Agora - A
Web interface to the system through which a citizen interacts via emails, chats and fo-
rums with the civil servant. (2) Datamart - The component that stores QUALEG data. (3)
QUALEG ontology - A multilingual ontology describing the public and e-Government
issues. (4) Knowledge Extractor - The previously described context extraction algorithm
activated by the software agents. (5) QUALEG Workflow - The component that handles
the flow of processes relevant to the public servants and administrations. (6) A set of
agents, which in the backstage handle the main control of the QUALEG system, acting
asynchronously and handling the data to be communicated among various modules. (7)
A set of Web services offered for seamless data handling to and from the Datamart.

The Knowledge Extraction Agent (KE Agent) has the responsibility to trigger the
Knowledge Extraction Module so that the context of the stored information is regularly
analyzed. The Knowledge Extraction architecture is illustrated in Figure 3. There are
four types of documents that should be analyzed: documents uploaded to AGORA, text
in forums, chats, and incoming e-mail messages. In particular, the KE Agent performs
periodical searches in the platform’s databases for new information to be analyzed.
Every transaction with the database is carried out by means of Web services. If new
documents are found, the agent triggers the previously described knowledge extraction
algorithm on them. Hence, the KE Agent parses all the required information - such
as document id, document name, document url - to the KE module. The KE module
performs the mapping with reference to an ontology, which defines the set of concepts
and their relationships. After the KE process is completed, the context of the document
is stored in a database.

Similarly to the KE Agent, the Opinion Analysis Agent (OA Agent) regularly
searches in QUALEG’s databases to find which documents have to be analyzed by
the Opinion Analysis Module (OA Module). Once again, all the agent’s database trans-
actions are carried out through Web service calls. If documents requiring analysis are
found, the agent triggers the opinion analysis algorithm on them in the same way as the
KE agent. Opinion Analysis output is an ontology concept related to an opinion and a
list of words representing the context extracted.

126 A. Segev and A. Gal

Fig. 3. Knowledge Extraction Architecture

The platform for analyzing the information was written in Java running on a standard
PC. The processing time was divided into several intervals over a few days to avoid
excessive use of the Internet resources employed by the algorithm: Looksmart, Wisenut,
Open Directory, Ask, Sponsored Listings, MSN Search, and Vivı́simo.

QUALEG Email Routing. Our first experience involved the Perspectives du Theatre
Festival held during May every year in Saarbrücken, located at the French border of
Germany. The festival includes contemporary French theatre, films, street events, mu-
sic, etc. Our challenge was to analyze the festival material and provide a useful set
of classifications so that the materials could be rapidly understood and routed to the
appropriate civil servants.

The data we received included daily communications (in German) about this event,
for a total of 104 emails, primarily emails from citizens to the city hall and press releases
and announcements from the city outward. The festival is an annual event and we were
given data from 2004 and 2005.

The goal of the topic classification experiment was to identify the topic of an email
according to a predefined set of ontology concepts as supplied by Saarbrücken for or-
ganizing cultural events. The concepts were Organisation, Veranstalter, Finanzen,
Besucher, Informationen, Rahmenprogramm, Spielplan, and Other. Each ontol-
ogy concept was accompanied by a (manually designed) context that describes it.

To evaluate the proposed model we used a single ontology and two different meth-
ods to define and extract contexts. One method was that described in Section 4.1. This
method used the technique of mapping contexts to ontology concepts (C2O), as de-
tailed in Section 4.2. The other method was based on conventional Natural Language
Processing (NLP) techniques, enhanced by a language domain expert to build a set of
rules for identifying relevant words and grammar relevant to the German language. The
NLP technique was evaluated with the support of researchers from the University of
Southern California’s Information Sciences Institute (ISI).

Putting Things in Context 127

The two techniques are very different. The former is language independent, making
it more suitable for multilingual environments at the possible cost of lacking language
specific analysis tools used by the latter. The C2O technique uses the Internet as a
knowledge base for extracting contexts. These contexts were searched against a list
of descriptors that describe concepts in the ontology. The technique was based on a per
sentence analysis. For each sentence a classifier was used, automatically trained on key-
words and morphological variants (based on the initial list of topics from Saarbrücken).
Each sentence in the input was searched against the list of keywords and morphological
variants. The NLP technique started from an identical contexts list as the C2O and used
the morphological variants of each context.

For both methods the input was parsed at the granularity of sentences. The C2O
preprocessing included only partitioning of long sentences according to the search en-
gine requirements. The NLP preprocessing included a Tokenizer, a tool for breaking
up compound nouns, and a German Demorpher (Morphy engine), downloaded from
the University of Stuttgart (http://www.lezius.de/wolfgang/morphy/). The Demorpher
removes case markings, tense markings, etc.

Two different experiments were performed. The first experiment was to analyze our
model based on the German data. The C2O method achieved a Precision of 85.37%, a
Recall of 84.34%, and a total F-Score of 84.85%. This is based on the comparison of the
results of the Context Recognition component to that of a human expert. The German
input data was classified by two German Language experts and by Saarbrücken local
government civil servant employees.

The second experiment analyzed the performance of C2O compared to the NLP
technique. In this experiment a subset of 72 emails representing data from a single
year was used for comparison. The results showed that C2O achieved an F-Score of
81% while the NLP technique achieved an F-Score of 78%. The results therefore show
that the proposed topology-based model of contexts and ontology achieved comparable
performance to the NLP technique, with the added value of being language independent.

Opinion Analysis. Opinions can be viewed as perspectives expressed in the input in-
formation. We modeled opinions to be included in the ontology as concepts, associated
with context that provide the local interpretation of each opinion.

There is a difference between the email routing task based on the knowledge ex-
traction and opinion analysis. The knowledge extraction avoids the language specific
implementation and bases its analysis techniques on the use of a large corpus of rel-
evant documents taken from the Internet, while the opinion analysis uses techniques
from IR and NLP to improve content understanding. As in the knowledge extraction,
the results of the opinion analysis are mapped to concepts in the ontology, in this case,
opinion concepts. Opinions can be divided into an array of possibilities from extreme
positive to very negative. The opinions selected for the experiment were defined in only
three categories of concepts - positive, negative, and neutral.

The experiment included 72 emails in German. A set of approximately 6000 opinion
verbs and 6000 opinion adjectives taken from ISI [19] were analyzed in English and
translated using an online dictionary translation to German. These opinion words are
associated with the three opinion concepts. Two possibilities were examined: first, to
translate the emails into English and then analyze the texts for opinion, and second,

128 A. Segev and A. Gal

to translate opinion words. The latter alternative was found to achieve better results,
since considerably fewer words are translated, reducing the impact of natural language
ambiguity.

The opinion analysis experiments reached a precision of 78.95%, recall of 69.23%,
and F-score of 73.77%. The results indicate that it is feasible to use the model to perform
opinion analysis, albeit at a lower accuracy than that of routing.

5.2 Experiments

This paper models the relationship between contexts and ontologies as a topology. We
experimented with data from Reuters corpus and from news RSS. We start with a de-
scription of the two real world data traces and experiment set-up, followed by descrip-
tion of our experiments and an empirical analysis of the results.

The following experiments analyze the model to show how fast the contexts accu-
mulate to a concept, the quality of the context attributed to a high number of descrip-
tors from a single context vs. multiple contexts, and how concept overlap influences
the context representation. The following experiments demonstrate model performance
with multiple concepts and analyze the model performance in a dynamic setting, where
a context can be associated with more than a single concept.

Data Sets and Metrics. In this paper we present a model of context and ontology
relationships. When analyzing our model, we compare it to similar methods of text
analysis, which belong to the field of text categorization. This field includes analysis
methods to identify the category to which a given text belongs. Text categorization
usually allows text to belong to only one category. Since this classification is rigid and
less relevant to our requirements, the model developed in this paper allows a text to be
classified into multiple categories.

The two data traces we used come from Reuters and CNN RSS. In these data traces
data are partitioned to topics with no ontological relationships. The experiments fo-
cus on the concepts/contexts relationships, for which these data sets serve adequately.
Research and experiments on ontological relationships using contexts are reported in
[36].

The Reuters data set was taken from a publicly available trace (http://about.reuters.c
om/researchandstandards/corpus/). We chose 10 news topic categories (referred to here-
after as concepts), for a total of 3,125 data, where a datum is a Reuters news article.
The RSS trace was collected during August 2005 from the CNN Web site. Here, we
also chose 10 news topic categories including 1,130 data, where a datum is an RSS
news header or a news descriptor. The main difference between the Reuters trace and
the RSS trace is the datum size. Table 1 describes the two data sets. Concept overlap is
explained shortly.

We generated a context for each concept using the C2O algorithm. This context is
referred to as context* and the data that was used for this context generation is referred
to hereafter as the context* data. The number of data items that were used for gener-
ating context* data varies, ranging from one datum to 170 data items for Reuters and
from one datum to 61 for RSS. We also varied the number of context descriptors that
were generated from each datum in the context* data, ranging from 1 to 70 descriptors.

Putting Things in Context 129

Table 1. Reuters and RSS Data Set Statistics

Data Set Reuters RSS

Size 3,125 1,130
Categories 10 10
Datum per Category 126 - 510 113
Minimum Concept Overlap 21.6% 12.1%
Maximum Concept Overlap 75.5% 86.7%

Reuters

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 10 20 30 40

Context* Data Size

A
ve

ra
ge

R
ec

al
l

RSS

55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

0 10 20 30 40

Context* Data Size

A
ve

ra
ge

 R
ec

al
l

Fig. 4. Number of Contexts for Concept

A varying number of concepts was used, ranging from 1 to 10 concepts depending
on the experiment. We use the C2O algorithm, adapted from [35], as an example of a
context generator. C2O is known to have generated reasonable contexts in the past (see
experiments in [35]).

130 A. Segev and A. Gal

Table 2. Average Recall Level vs. Number of Descriptors - Reuters

Average Recall Level Number of Descriptors
100% 5 - 43
[95% - 100%) 1 - 11
[90% - 95%) 1 - 5
< 90% 1 - 3

Table 3. Average Recall Level vs. Number of Descriptors - RSS

Average Recall Level Number of Descriptors
[95% - 100%) 15 - 43
[90% - 95%) 9 - 43
< 90% 1 - 35

Given two concepts and their associated contexts, concept overlap is defined to be
the ratio of the number of common descriptors in both contexts and the minimum con-
text size. Table 1 presents statistics about the minimum and maximum concept overlap
found in the data sets.

As a measure of evaluation we use recall and precision metrics. Given a context* C,
the recall of a context C′ is defined as the ratio of the number of common descriptors
and the size of context* C. A high recall measure means that the C2O algorithm was
able to identify correctly a good portion of a context, minimizing false negative. We
measure precision with respect to the original classification of data items to categories
as given in the data traces. Therefore, the precision of a classification task using contexts
is measured as the ratio of the number of correctly classified data items and the number
of data items in the experiments. It is worth noting that in most of the experiments the
C2O algorithm classifies a datum to a concept whose contexts share the highest number
of descriptors with its context, thus setting a lower bound on the algorithm performance.
It is also worth noting that QUALEG required using all concepts whose context* shares
more than a threshold number of descriptors with a document context. A middle ground
may require using a top-K ranked concepts. This leads to a decrease in the precision,
yet it increases the recall. Minimizing false positive, in turn, increases the chances of
correctly matching data to concepts.

Experiment Results. In the first experiment, we evaluated the algorithm ability to
generate good representative contexts for concepts (context*). In each experiment we
selected a single concept and generated a context using context* data. For each of the re-
maining data in this category a context was generated and compared with the context*.
For each context* data size we repeated the experiment 10 times, each time choosing
randomly the context* data. In this setting the average recall and precision over all
experiments with the same context* data size are the same.

A graphic illustration of our results is given in Figure 4, which displays the average
recall, computed over 10 different ontology concepts in Reuters and news RSS. The

Putting Things in Context 131

Reuters

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

Number of Descriptors

A
ve

ra
ge

R
ec

al
l

method 1
#contexts=1

method 2
size of context set=5

RSS

0.0

0.2

0.4

0.6

0.8

1.0

5 15 25 35 45 55 65 75

Number of Descriptors

A
ve

ra
ge

R
ec

al
l

method 1
#contexts=1

method 2
size of context set=5

Fig. 5. Comparison of Context Collection Methods Recall

horizontal axis displays the context* data size. In this experiment each context was
limited to 10 descriptors. The vertical axis displays the average recall.

The experiment results indicate that as the number of contexts defining each ontology
concept increases, the concept definition improves. While this is to be expected, we
also observe that the average recall quickly approaches 100%, although at a different
rate for the two data sets. We attribute this different behavior to the sensitivity of the
C2O algorithm to different datum length in the two data sets. While Reuters datum
is a complete news article, RSS datum contains a header or a short description. Our
experience shows that the C2O algorithm we use generates better contexts when given
longer texts.

A per concept analysis shows an average recall ranging from 98.86% to 100% in the
Reuters data set and from 91.67% to 99.62% in the news RSS data set, when context*
is defined using up to 43 descriptors. Table 2 and Table 3 present a per-concept analysis

132 A. Segev and A. Gal

Reuters

0.6

0.65

0.7

0.75

0.8

0.85

0.9

5 15 25 35 45 55 65 75

Number of Descriptors

A
ve

ra
g

e
P

re
ci

si
o

n

method 1
#contexts=1

method 2
size of context set=5

RSS

0.6

0.65

0.7

0.75

0.8

0.85

0.9

5 15 25 35 45 55 65 75

Number of Descriptors

A
ve

ra
g

e
P

re
ci

si
o

n

method 1
#contexts=1

method 2
size of context set=5

Fig. 6. Comparison of Context Collection Methods Average Precision for Varying Context Sizes

showing the range of the number of descriptors required to achieve a certain average
recall level. It is worth noting that for the Reuters data set some concepts require a
training data set of size 5 to achieve 100% recall. There was only one concept that did
not reach 100% using a training data set of 43 data items.

We next compare two different methods for collecting context descriptors. Method 1
is based on collecting an increasing number of descriptors from a single textual datum.
As we increase the number of descriptors, we add to the single context more descrip-
tors with lower relevance value, possibly increasing uncertainty. Method 2 is based on
using different descriptors sets, each one based on a different textual datum. In this set
of experiments, we chose a single concept for which a context was generated based on
a context* and then compared against the remaining data items associated with this cat-
egory. For Method 1 to achieve a context of size M , the M top descriptors are chosen.

Putting Things in Context 133

Reuters

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60
Context* Data Size

A
ve

ra
g

e
R

ec
al

l

Minimum Overlap Maximum Overlap

RSS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 10 20 30 40 50 60

Context* Data Size

A
ve

ra
g

e
R

ec
al

l

Minimum Overlap Maximum Overlap

Fig. 7. Concept Overlap and Recall

For Method 2 the context* was increased, each datum adding up to 5 descriptors to the
context*, until the desired number of descriptors was reached.

The results are displayed in Figure 5. As the number of descriptors defining a single
context grows, the average recall improves for both methods, yet Method 2 converges
faster than Method 1. For the Reuters data, both methods approach 100% recall, while
for the RSS data Method 1 performs significantly worse than Method 2. We also observe
that recall reaches 100% for 30 descriptors in the Reuters data set while not reaching
100% even for 70 descriptors for the news RSS data set. This is again attributed to the
sensitivity of the C2O algorithm to the length of the processed text.

Comparing further the two context generation methods, we took concept pairs and
generated contexts* for each concept. We then classified each of the remaining data
items to one of the two concepts.

134 A. Segev and A. Gal

Reuters

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Number of Concepts

P
re

ci
si

o
n

1 set 31 sets 61 sets

RSS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Number of Concepts

P
re

ci
si

o
n

1 set 31 sets 61 sets

Fig. 8. Number of Concepts

Figure 6 displays the average precision rate for all pairwise combinations of con-
cepts. The horizontal axis displays the number of descriptors in the context* data set
and the vertical axis displays the average precision. For both data sets average precision
generally increases for Method 2 while remaining unchanged or even decreasing for
Method 1. We can conclude that Method 2 performs better and therefore we shall use
this method in the remaining experiments.

To evaluate the impact of concept overlap on precision we compared two concept
pairs, namely the pair with minimum concept overlap (21.6% for Reuters and 12.1%
for RSS) and the pair with maximum concept overlap (75.5% for Reuters and 86.7% for
RSS). For each concept in a pair we randomly chose a context* data set and generated a
context* for this concept. Then, we classified the remaining data similarly to what was
described earlier. The experiments were repeated for various context* data set sizes.

Putting Things in Context 135

Reuters

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

No. Concepts

R
ec

al
l

1 concept 2 concepts 3 concepts 4 concepts 5 concepts

RSS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

No. Concepts

R
ec

al
l

1 concept 2 concepts 3 concepts 4 concepts 5 concepts

Fig. 9. Recall Number of Possible Concepts

The results of these experiments are illustrated in Figure 7. We observe different
phenomena for each of the data sets. For the Reuters data the average recall converges
for a training set of size 30, while for the RSS data the concept pair with a high overlap
shows a significantly lower average recall for all tested training sizes. At this time we
are unable to explain these differences. For the news RSS data set there is a wider
difference between the minimum overlap pair and maximum overlap pair, which may
partially explain this phenomenon.

Next, we analyze the impact of the number of concepts on the classification proce-
dure. We repeated the experiment discussed earlier for an increasing number of con-
cepts, varying the size of the context* data set as well. For this set of experiments
we have enforced a rigid classification scheme, in which each document is forced to
be classified to a single concept. The experiment results are summarized in Figure 8.
The horizontal axis displays the number of concepts and the vertical axis presents the

136 A. Segev and A. Gal

Reuters

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

No. Concepts

P
re

ci
si

o
n

1 concept 2 concepts 3 concepts 4 concepts 5 concepts

RSS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

No. Concepts

P
re

ci
si

o
n

1 concept 2 concepts 3 concepts 4 concepts 5 concepts

Fig. 10. Precision Number of Possible Concepts

classification precision. Each curve represents a different context* data set size. As the
number of concepts increases, the precision declines. It can also be seen that preci-
sion improves as we increase the training set size. The marginal effect of increasing
the training set size becomes, however, less significant as we increase the training set
size. We note again that these precision curves serve as a lower bound on the algorithm
efficiency. By using top-K ranked concepts, rather than a single concept, precision de-
creases toward a lower bound.

To analyze a document belonging to multiple concepts, a random set of concepts
and documents was selected as training set. Each descriptor set included ten descrip-
tors. From the ten possible concepts the number of concepts each document can belong
to was increased from one to five concepts. The number of concepts used is the X axis.
The number of concepts that can be selected is each line (1 to 5) - number of possi-
ble concepts. The recall results are presented in Figure 9. For a given K of classified

Putting Things in Context 137

concepts, recall decreases as the number of available concepts increases, as expected.
However, an increase from 50% to 91.1% in recall is observed as we increase from
one to up to five, out a total of ten, the number of top ranking concepts selected per
document. Similarly, for the RSS data set, recall increased from 24.2% to 73.8%.

The precision results for both Reuters and RSS are presented in Figure 10. Both
Reuters and RSS results show that the best precision results occur when the number of
concepts to which each document can belong is two.

Finally, as a point of reference, we chose a pure vector-space technique [14], [21] of
the LSI approach. The two approaches share some similarity in the goal of classifying
text into predefined categories. There are also differences. First, the method we used is
not based on predefined word-based vectors but rather on a bag of words. This bag of
words is determined using words that are not necessarily extracted from the text itself
but are associated with a possible context. The size of the word comparison set is not
predetermined as in the vector-space method. Another advantage we see to C2O is the
use of the Internet as a knowledge base. The Internet allows a set of descriptors to be
constantly and automatically updated.

When analyzing our results and the results of the LSI approach, the emphasis on the
recall should be taken into consideration. The approach presented here achieved good
results in the recall. Although the statistics analysis is not identical in both approaches,
the F-score achieved in [21] was 71.1% to 85.3%. The approach presented here with
identical weights to the recall and precision, similar to the LSI approach, was from 58%
to 100%. The results seem to be especially high when the top five concept categories
for recall and top two concepts for precision are used.

6 Discussion and Conclusion

The paper presents a topological framework for combining contexts and ontologies in
a model that maps contexts to ontology. Contexts, individual views of a domain of
interest, are matched to concepts of an ontology, often considered to be the “golden
standard,” for various purposes such as email routing and opinion analysis. The model
provides a conceptual structure, based on topological definitions, which delineates how
and when contexts can be mapped to ontologies. The uncertainty, inherent in automatic
context extraction, is managed through the definition of distance among contexts and a
ranking of ontology concepts with respect to a given context.

The proposed model has been implemented as part of QUALEG, an eGovernment
project. In this project, information that flows into a local government system is au-
tomatically examined, and based on its context, its positioning within the ontology is
determined. Since the project involves different countries and different languages, a
multilingual ontology system is used. According to the model, different descriptor sets,
representing the same concept, can be mapped to the multilingual ontology. To support
opinion analysis, each ontology concept was divided into positive and negative citizen
opinions about the topics discussed in the email messages. This classification allows
the local government to make decisions according to the citizen opinions, which are
derived from the information received by email and analyzed only by the algorithm and
not by a civil servant.

138 A. Segev and A. Gal

During our experiments with the model, we identified several factors that may con-
tribute to uncertainty. The main reason for errors in ontology concept identification
pertains to the preprocessing of the input, which was limited to a minimal and naı̈ve
dissection of text. Most of the emails consisted of a few sentences only, resulting in
a one-shot attempt to determine the correct context. These results could be improved
by using different preprocessing methods and utilizing “soft” NLP tools. The ontology
definition, which is currently restricted to a small number of words, also contributed to
a lower recall rate.

To evaluate empirically the model properties in a controlled environment, we used
two real-world data traces, Reuters news reports and RSS news headlines. In these
experiments we measured the effectiveness of generating contexts automatically for
different concepts. We tested various methods for context extraction and examined the
impact of concept overlap and number of concepts on classification quality. We can
conclude that the proposed model associating a context with each ontology concept
is feasible and the amount of data needed for automatically generating contexts for
concepts is relatively small. Context generation can be improved, and we leave such
improvements for future research.

In QUALEG the availability of a predefined ontology is assumed. Therefore, ontol-
ogy concepts and their relationships are provided beforehand, and newly extracted con-
texts are mapped to existing concepts. A possible direction for further research would be
to utilize the partial overlapping among contexts to identify ontological relationships,
such as generalization-specialization relationships. An initial step in this direction is
presented in [37].

Acknowledgments

The work of Segev and Gal was partially supported by two European Commission 6th

Framework IST projects, QUALEG and TerreGov, and the Fund for the Promotion of
Research at the Technion. We thank Amir Teller for his assistance in integrating the
Knowledge Extraction component with QUALEG infrastructure and Yulia Turchin for
her assistance in experimenting with Reuters and RSS data sets.

References

1. Assadi, H.: Construction of a regional ontology from text and its use within a documentary
system. In: Proceedings of the International Conference on Formal Ontology and Informa-
tion Systems (FOIS-98) (1998)

2. Borgida, A., Brachman, R.J.: Loading data into description reasoners. In: Proceedings of
the 1993 ACM SIGMOD international conference on Management of data, pp. 217–226.
ACM Press, New York (1993)

3. Bunge, M.: Treatise on Basic Philosophy: vol. 3: Ontology I: The Furniture of the World.
D. Reidel Publishing Co., Inc., New York (1977)

4. Bunge, M.: Treatise on Basic Philosophy: vol. 4: Ontology II: A World of Systems. D.
Reidel Publishing Co., Inc., New York (1979)

5. Choset, H., Nagatani, K.: Topological simultaneous localization and mapping (slam): To-
ward exact localization without explicit localization. IEEE Trans. on Robotics and Automa-
tion 17(2), 125–137 (2001)

Putting Things in Context 139

6. Chung, C.Y., Lieu, R., Liu, J., Luk, A., Mao, J., Raghavan, P.: Thematic mapping from un-
structured documents to taxonomies. In: Proceedings of the 11th International Conference
on Information and Knowledge Management (CIKM) (2002)

7. Davulcu, H., Vadrevu, S., Nagarajan, S.: Ontominer: Bootstrapping and populating ontolo-
gies from domain specific websites. In: Proceedings of the First International Workshop on
Semantic Web and Databases (2003)

8. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies on
the semantic web. In: Proceedings of the eleventh international conference on World Wide
Web, Honolulu, Hawaii, USA, pp. 662–673. ACM Press, New York (2002)

9. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description logic. In:
Brewka, G. (ed.) Principles on Knowledge Representation, Studies in Logic, Languages
and Information, pp. 193–238. CSLI Publications (1996)

10. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and eval-
uating automatic semantic reconciliation. VLDB Journal 14(1), 50–67 (2005)

11. Gal, A., Modica, G., Jamil, H.M., Eyal, A.: Automatic ontology matching using application
semantics. AI Magazine, 26(1) (2005)

12. Gal, A., Segev, A.: Putting things in context: Dynamic eGovernment re-engineering using
ontologies and context. In: Proceedings of the 2006 WWW Workshop on E-Government:
Barriers and Opportunities (2006)

13. Hotho, A., Staab, S., Maedche, A.: Ontology-based text clustering. In: Proceedings of the
IJCAI-2001 Workshop Text Learning: Beyond Supervision (2001)

14. Kashyap, V., Dalal, S., Behrens, C.: Professional services automation: A knowledge man-
agement approach using LSI and domain specific ontologies. In: Proceedings of the 14th
International FLAIRS Conference (Florida AI Research Symposium), Special track on AI
and Knowledge Management (2001)

15. Kashyap, V., Ramakrishnan, C., Thomas, C., Sheth, A.: Taxaminer: An experimentation
framework for automated taxonomy bootstrapping. International Journal of Web and Grid
Services, Special Issue on Semantic Web and Mining Reasoning (September 2005)

16. Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: a
context-based approach. VLDB Journal 5, 276–304 (1996)

17. Kelley, J.: General Topology. American Book Company (1969)
18. Kifer, M., Lausen, G., Wu, J.: Logical foundation of object-oriented and frame-based lan-

guages. Journal of the ACM 42 (1995)
19. Kim, S.M., Ravichandran, D., Hovy, E.: ISI novelty track system for trec 2004. In: Proceed-

ings of the Thirteenth Text REtrieval Conference (TREC 2004) (2004)
20. Koenig, S., Simmons, R.: Passive distance learning for robot navigation. In: Proceedings of

the Thirteenth International Conference on Machine Learning (ICML), pp. 266–274 (1996)
21. Liu, T., Chen, Z., Zhang, B., Ma, W.-Y., Wu, G.: Improving text classification using local

latent semantic indexing. In: Perner, P. (ed.) ICDM 2004. LNCS (LNAI), vol. 3275, pp.
162–169. Springer, Heidelberg (2004)

22. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and reasoning
about mappings between domain models. In: Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of
Artificial Intelligence (AAAI/IAAI), pp. 80–86 (2002)

23. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: Pro-
ceedings of the International conference on very Large Data Bases (VLDB), pp. 49–58,
Rome, Italy (September 2001)

24. Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Sys-
tems 16 (2001)

25. McCarthy, J.: Notes on formalizing context. In: Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (1993)

140 A. Segev and A. Gal

26. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing
large ontologies. In: Proceedings of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR2000) (2000)

27. Melnik, S. (ed.): Generic Model Management: Concepts and Algorithms. Springer, Heidel-
berg (2004)

28. Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.P.: Imprecise answers in distributed en-
vironments: Estimation of information loss for multi-ontology based query processing. In-
ternational Journal of Cooperative Information Systems 9(4), 403–425 (2000)

29. Mooers, C.: Encyclopedia of Library and Information Science, vol. 7, chapter Descriptors,
pp. 31–45. Marcel Dekker (1972)

30. Motro, A., Rakov, I.: Estimating the quality of databases. Lecture Notes in Computer Sci-
ence (1998)

31. Noy, F.N., Musen, M.A.: PROMPT: Algorithm and tool for automated ontology merging
and alignment. In: Proceedings of the Seventeenth National Conference on Artificial Intel-
ligence (AAAI-2000), pp. 450–455, Austin, TX (2000)

32. Papatheodorou, C., Vassiliou, A., Simon, B.: Discovery of ontologies for learning resources
using word-based clustering. In: Proceedings of the World Conference on Educational Mul-
timedia, Hypermedia and Telecommunications (ED-MEDIA 2002), pp. 1523–1528 (2002)

33. Remolina, E., Kuipers, B.: Towards a general theory of topological maps. Artificial Intelli-
gence 152, 47–104 (2004)

34. Sacco, G.: Dynamic taxonomies: A model for large information bases. IEEE Trans. Knowl.
Data Eng. 12(2), 468–479 (2000)

35. Segev, A.: Identifying the multiple contexts of a situation. In: Proceedings of IJCAI-
Workshop Modeling and Retrieval of Context (MRC2005) (2005)

36. Segev, A., Gal, A.: Putting things in context: A topological approach to mapping contexts
and ontologies. In: Proceedings of AAAI-Workshop Workshop on Contexts and Ontologies:
Theory, Practice and Applications (2005)

37. Segev, A., Gal, A.: Ontology verification using contexts. In: Proceedings of ECAI-
Workshop on Contexts and Ontologies: Theory, Practice and Applications (2006)

38. Shatkay, H., Kaelbling, L.: Learning topological maps with weak local odometry informa-
tion. In: Proc. IJCAI-97 (1997)

39. Siegel, M., Madnick, S.E.: A metadata approach to resolving semantic conflicts. In: Pro-
ceedings of the 17th International Conference on Very Large Data Bases, pp. 133–145
(1991)

40. Simhon, S., Dudek, G.: A global topological map formed by local metric maps. In
IEEE/RSJ International Conference on Intelligent Robotic Systems 3, 1708–1714 (1998)

41. Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. ACM
SIGMOD Record 31(4) (2002)

42. Terziyan, V., Puuronen, S.: Reasoning with multilevel contexts in semantic metanetwork.
In: Nossun, R., Bonzon, P., Cavalcanti, M. (eds.) Formal Aspects in Context, pp. 107–126.
Kluwer Academic Publishers, Dordrecht (2000)

43. van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworths, London (1979)
44. Vickery, B.C.: Faceted classification schemes. Graduate School of Library Service, Rutgers,

the State University, New Brunswick, NJ (1966)

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 167 – 195, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Security Ontology to Facilitate Web Service Description
and Discovery

Anya Kim, Jim Luo, and Myong Kang

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, DC 20375
{kim,luo,mkang}@itd.nrl.navy.mil

Abstract. Annotation with security-related metadata enables discovery of
resources that meet security requirements. This paper presents the NRL
Security Ontology, which complements existing ontologies in other domains
that focus on annotation of functional aspects of resources. Types of security
information that could be described include mechanisms, protocols, objectives,
algorithms, and credentials in various levels of detail and specificity. The NRL
Security Ontology is more comprehensive and better organized than existing
security ontologies. It is capable of representing more types of security
statements and can be applied to any electronic resource. The class hierarchy of
the ontology makes it both easy to use and intuitive to extend. We applied this
ontology to a Service Oriented Architecture to annotate security aspects of Web
service descriptions and queries. A refined matching algorithm was developed
to perform requirement-capability matchmaking that takes into account not only
the ontology concepts, but also the properties of the concepts.

1 Introduction

In today’s network-centric computing environment, automatic discovery of resources
and the ability to share information and services across different domains are important
capabilities [1]. The first step in providing these capabilities is to markup these
resources with various metadata in a well-understood and consistent manner. Such
annotation will enable resources to be machine-readable and machine-understandable.

Using metadata to find distributed resources that meet one’s functional
requirements is only the first step. Resource requestors may have additional
requirements such as security, survivability, or quality of service (QoS) specifications.
For example, they may require resources to possess a certain military classification
level, to originate from trusted sources, or to be handled according to a specified
privacy policy. Therefore, resources need to be sufficiently annotated with security-
related metadata so that they can be correctly discovered, compared, and invoked
according to security as well as functional requirements of the requestor.

In this paper, we introduce a set of security-related ontologies collectively referred
to as the NRL Security Ontology [2, 3]. The NRL Security Ontology provides the
ability for precisely describing security concepts at various levels of detail. This
ontology complements existing ontologies that mainly focus on functional aspects of

168 A. Kim, J. Luo, and M. Kang

capability, content, and parameters. Marking up security aspects of resources is a
crucial step toward deploying a secure Service Oriented Architecture (SOA) system.

Other groups have recognized the need for security annotation of services and
proposed a set of security-related ontologies [4-6]. However, these ontologies possess
certain limitations, discussed in Section 2. The NRL Security Ontology was created to
address these limitations. We expect this work to serve as a catalyst in the
development of standardized security-related ontologies with contributions from both
the security community and the semantic Web community.

The rest of the paper is organized as follows. Section 2 examines previous work in
security ontologies and discusses the need for improvements. Section 3 presents the
NRL security ontology, including design objectives, domain and scope, and detailed
descriptions of each ontology. Section 4 gives examples of how to use these
ontologies to annotate and query for resources particularly in a Web service context.
It also discusses an algorithm for matchmaking between queries and resource
descriptions. Section 5 presents future work and our conclusion.

2 Existing Security-Related Ontologies

Realization of the need for security ontologies is not new. Denker et al. have created
several ontologies for specifying security-related information in Web services [4]
using Daml+OIL [7] and later OWL [8]. We refer to this set of ontologies as the
DAML Security Ontology for the rest of the paper. The authors state that the goal of
these ontologies is to enable high-level markup of Web resources, services, and
agents, while providing a layer of abstraction on top of various Web service security
standards such as XML-Enc [9], XML-Dsig [10], and SAML (Security Assertion
Markup Language) [11].

While we realize that these ontologies are works-in-progress and provide a great
foundation for describing security-related concepts, we found two issues with them.
First, they are not intuitive to understand especially in terms of the organization of
subclass relationships. Second, they cannot express all the security information that
we want to describe or be easily extended to do so.

The intuitiveness issue is particularly true for the main Security Mechanisms
ontology which we depict simplified in Figure 1. Certain unrelated concepts are
defined as sibling classes, which does not make sense from either a security
perspective or an ontology perspective. For example, the two subclasses Syntax and
KeyFormat are defined as sibling classes under the Security Mechanism class. These
two subclasses are not security mechanisms, so they should not be children of the
Security Mechanism class. Also, they are totally unrelated concepts that should not be
siblings. As another example, two individuals, Kerberos and SSH are both declared as
instances of the KeyProtocol class, however these are not key protocols. Also, a
Security Notation class is defined with various instances, but from a computer
security perspective, it does not make sense to group these individuals together. Some
instances (such as Confidentiality and Authorization) are security objectives, while
Policy is an abstract concept that is used to describe a high level set of rules to
achieve these security objectives, and Policy Languages are those that are used to
represent policies in some mathematical or logical format [12, 13]. That these various

 Security Ontology to Facilitate Web Service Description and Discovery 169

Security
Mechanism

SecurityNotation Signature Keyformat EncryptionProtocol Syntax

Key
Protocol

DataTransfer
Protocol

KeyRegistration
Protocol

KeyInformation
Protocol

Authentication

Authorization

AccessControl

DataIntegrity

Confidentiality

Privacy

ExposureControl

Anonymity

Negotiation

Policy

PolicyLanguage

KeyDistribution

documentation (range:&Bibtex_entry)

syntax (range: Syntax)

relSecNotation (range: SecurityNotation)

enc (range: Encryption)

sig (range: Signature)

reqCredentials (&ComposedCredential)

(properties)

ASCII

DAMLOIL

OWL

DER

XML

Binary

Radix-64_ASCII

ASN.1

MIME

XML_DigSig

SMIME_DigSig

OPENPGP_DigSig XML_Enc

OPENPGP_Enc

SMIME_Enc

SAML
X.509

Kerberos
OPENPGP
SSH
XKISS

HTTP
SOAP

X_KISSX_KRSS

Fig. 1. Graphical Representation of a DAML Security Ontology

concepts are grouped together as instances of the same class is puzzling. Additionally,
all properties have the top class as their domains. However, those properties do not
apply to most of the subclasses.

The second issue we mentioned is the lack of expressiveness. The DAML security
ontology includes many classes and instances that are not directly relevant for
security annotation while lacking others that are necessary. For example, syntax and
data transfer protocols are useful concepts in another domain, but are not particularly
relevant for describing security-related information, yet are included in the DAML
security ontology. Furthermore, the only encryption instances defined in the ontology
are S/MIME, OpenPGP, and XML encryption. In fact, S/MIME and OpenPGP
standards do not only deal with encryption, but have additional capabilities such as
key exchange and digital signatures, so how these instances would be used to describe
actual encryption mechanisms is unclear. For example, there is no way to state a
concept such ‘SSH with DES encryption algorithm’. We do realize that more
instances and properties could be added as the need arises and is so stated by the
DAML Security Ontology authors. However, the way in which the concepts within
the DAML Security Ontologies are organized makes it difficult to extend them to add
concepts in locations that make sense. For example, there should be classes to
represent military as well as commercial security devices and security policies, but
there is no appropriate location in the class hierarchy to create, for example, a
Security Policy class. If a user wanted to add an instance of XML Firewall to the
ontology, it would not fit within any of the current classes. If the user tried to create a

170 A. Kim, J. Luo, and M. Kang

class under which to place XML Firewall instance, the organization of the current
classes would not provide a logical place to do so. There is also a lack of
appropriately placed properties that could allow for more detailed refinement of
security concepts. For example, it would be useful to define the algorithms supported
by a protocol, or the certification status of a mechanism. Again, while properties
could easily be added, the organization of the classes and instances prohibits the user
from determining the correct domain to assign to the property.

Although the authors of the DAML Security Ontology did a great job in
recognizing the need for security ontologies and beginning work in security
ontologies, we feel that there is still room for improvement. The comments we make
about the DAML Security Ontology is not to criticize the work, but to point out areas
that are lacking and could be improved upon. The issues mentioned above make it
necessary to create a new set of security ontologies, rather than extend the DAML
security ontology. The next section describes the NRL Security Ontology in detail.

3 NRL Security Ontology

The DAML Security Ontology focuses on annotation of Web services rather than
resources in general. This is evident not only from their documentation [4], but also
by examining the types of classes and instances in the ontology. We want ontologies
that can be used to annotate generic resources from simple documents to interactive
services with security-related metadata. We also want to improve upon the limitations
of the DAML Security Ontology outlined in the previous section. The NRL Security
Ontology was designed with the following objectives in mind:

1. Describe security related information applicable to all types of resources
2. Provide the ability to annotate security related information in various levels

of detail for various environments (both commercial and military)
3. Create ontologies that are easy to extend and provide reusability
4. Bridge the gap between the operational people that understand the business

logic and the security people that understand the security requirements,
particularly in the context of enterprise applications

3.1 Domain and Scope of the Ontology

When creating an ontology, one of the most important factors is the domain and scope
in which it will be used [14]. While our objectives outlined above are a good starting
point, in order to create ontologies that will be truly useful, we need to understand the
types of questions that the ontology will be expected to answer.

These ontologies will be used by both the resource provider and the requestor to
express their security requirements and capabilities. We must consider the various
ways that the same statement can be expressed. Furthermore, we need to consider
statements that are unlikely in order to limit the scope of the ontology. Statements
that are either too broad or too specific are unlikely to be used and provide no useful
information.

Noy et al. [14] state that one of the best ways to determine the scope of the
ontology is to list a set of competency questions that can be answered using the

 Security Ontology to Facilitate Web Service Description and Discovery 171

ontology. For our purposes we did the same by composing a list of security
requirements and capabilities for both the resource requestor and the provider. From
the requestor’s perspective, security requirements can be stated in terms of specific
mechanisms or in terms of abstract security objectives. From the resource provider’s
perspective, security requirements are similar to the notion of policy and can express
concepts such as authentication and access control. The provider’s capabilities include
protocols and mechanisms that the provider possesses and security policies it adheres
to. The actual list of the requirements and capabilities statements we created can be
found in [3]. The most current OWL files for the ontology are located at [15].

3.2 Brief Introduction to OWL

We chose OWL to represent our ontologies because of its power to express meaning
and semantics and complex relationships. This section gives a very broad overview of
OWL to assist readers in understanding the following sections. Readers that are
familiar with OWL concepts should skip this section. Readers that are interested in
further details of OWL should refer to [8, 16] for additional information.

The basic concepts in OWL are classes, individuals and properties. The basic
construct in OWL are classes. Classes describe concepts in the knowledge domain.
For example, the class Soda could refer to all classes of carbonated beverages.
Individuals or instances are specific members of the class. For example, Mountain
Dew and Dr. Pepper can be instances of the Soda class. The Soda class itself can have
subclasses that represent concepts that are more specific than its parent class. The
classes Diet Soda and Decaf Soda can represent classes of sodas that are diet and
contain no caffeine, respectively.

Properties can further define relationships between classes, constrain classes or
describe various attributes of classes. There are two types of properties; object
properties and datatype properties. Object properties relate instances of one class to
instances of another class. An example of an object property can be manufacturedBy
to represent the ownership relationship between various Soda instances and Soda
Manufacturer instances. The manufacturedBy property can be defined to have a
domain of the class Soda, and a range of the class Soda Companies. Then, an instance
such as Mountain Dew can be declared to be manufactured by the Pepsi Corporation.
Datatype properties relate instances of a class to RDF literals or XML Schema
Datatypes. An example of a datatype property can be hasSugar to determine whether
a soda instance contains sugar or not. In this case, the domain for the property would
be the Soda class, and the range would be a Boolean.

Similar to the Subclass relationship, properties can also be defined as subproperties of
other properties. Subproperties have domains and ranges that are subsets of the parent
property. Properties themselves can also contain further information by being defined as
being transitive, symmetric, etc using constructs such as TransitiveProperty, Symmetric
Property, etc.

Restrictions can be placed on these properties so that classes can only contain
a specific number of instances (minCardinality, maxCardinality) of a property. For
example, we can restrict the Soda class so that it can possess only one manufacturedBy
property value. Property restrictions can also be placed on values so that the range of the
property must contain all values, some values or a particular value from a class. For

172 A. Kim, J. Luo, and M. Kang

example, we can restrict the manufacturedBy property to only contain values from the
class of Soda Companies.

Additional expressive powers of OWL come from OWL Class Constructors and
OWL Axioms. For example, the unionOf construct can be used to represent the class
of all sodas that are diet and contain no caffeine. Other constructs defined in OWL
include IntersectionOf, ComplementOf, etc. An example of a class axiom is the
equivalentClass. The equivalentClass construct defines two classes to have the same
instances. A class defined as Pop can be declared as an equivalentClass of Soda, to
address the terminology of the Midwestern U.S. region. Similarly, the sameAs
construct can be used to create different names for the same individual or instance.

Throughout this paper, we represent classes as text within a circle, instances as
regular text, properties as italicized text, with the relationship between domain and
range of the property shown with a dotted line.

OWL has three sublanguages, OWL-Lite, OWL-DL, and OWL-Full with
increasing levels of expressiveness. We use OWL-DL to develop our ontologies since
OWL DL provides strong expressiveness sufficient for what we intend to express,
while retaining computational completeness and decidability for reasoning systems.

3.3 Organizational Structure of NRL Security Ontology

We chose OWL to create our ontologies because it provides a rich vocabulary for
describing classes and properties [8, 16]. It is widely used in many communities that
have begun to develop ontologies of their own knowledge domains [17].

There are seven separate ontologies that make up the NRL Security Ontology:

1. Main Security ontology: an ontology to describe security concepts that are the
starting point in which users begin to identify various security components

2. Credentials ontology: an ontology to specify various authentication credentials
such as passwords or PIN numbers for user authentication

3. Security Algorithms ontology: an ontology to describe various security
algorithms such as algorithms for encryption, digital signatures, and key
exchange

4. Security Assurance ontology: an ontology to specify different assurance
standards used to specify the level of trust that can be placed on a security
component or product

5. Service Security ontology: an ontology to facilitate security annotation of
semantic Web services using OWL-S (Profile), an ontology to describe Web
services

6. Agent Security ontology: an ontology to enable querying of security information
from the agent (consumer) prospective used as an alternative method of querying
with the OWL-S Profile particularly when the agent is not a Web service and
cannot use the OWL-S profile

7. Information Object ontology: an ontology to describe security of input and output
parameters of Web services used specifically to specify whether an input/output
parameter is encrypted, what algorithm is used for the encryption, etc.

 Security Ontology to Facilitate Web Service Description and Discovery 173

Main Security
Ontology

Credentials
Ontology

Security
Algorithms
Ontology

Property to specify
type of credential

Property to specify
security algorithm

Information
Object
Ontology

Link to OWL-S
Ontology by
subclass

Service
Security
Ontology

Link to OWL-S
Ontology by
subclass

Property to specify
security algorithms

Security
Assurance
Ontology

Property to specify
assurance level

Agent
Security
Ontology

Allows for
querying

Property to specify
assurance level

OWL-S
Ontology
OWL-S
Ontology

Property to specify
security concepts as
requirements and
capabilities

Property to specify security
concepts as requirements
and capabilities

Fig. 2. Graphical Representation of Security-Related Ontologies and Their Relationships

The Service Security, Agent Security, and Information Object ontologies are based
closely on corresponding DAML Security ontologies while the others are new. The
Credentials, Security Algorithms, and Security Assurance ontologies provide values for
properties defined for concepts in the Main Security ontology. They enable concepts
from the Main Security ontology to be described in more detail with respect to types of
credentials used, supported algorithms, and associated levels of assurance. For example,
a concept such as Security Protocol in the Main Security ontology can be further refined
by properties that take as range values algorithms, credentials, and assurance levels. The
Service Security ontology provides the means to use security concepts from the Main
Security ontology in the Web services framework. The Agent Service ontology enables
creation of security-related queries using security concepts from the Main Security
ontology for consumers that are not themselves Web services. The Information Object
ontology allows for annotation of Web service inputs and outputs using the Security
Algorithms ontology. The relationship among these ontologies is represented in
Figure 2. The ontology depicted in gray represents OWL-S, a set of core ontologies
created specifically to describe Web services. We chose to use OWL-S since it uses
OWL constructs and provides rich semantic description of Web services.

Next, we present a brief explanation of classes, properties and relationships in each
ontology. The actual OWL files for the NRL Ontology can be found in [3, 15].

Main Security Ontology (securityMain.owl). The core ontology in the NRL security
ontology set is the Main Security ontology (Figures 3a and 3b). It imports the Credentials

174 A. Kim, J. Luo, and M. Kang

SecurityConceptSecurityObjective

SecurityPolicySecurityMechanism

Confidentiality

UserAuthentication

MessageIntegrity

Availability

Authorization

Trust

HostTrust

SecurityProtocol

CommercialPolicy MilitaryPolicy

BLPClarkWilson

ChineseWall

supportsSecurityObjective
Range:SecurityObjective class (multiple values)

HostMechanism NetworkMechanism
Application
Mechanism

RBAC

Safehost VPN

MLSPump

OnionRouter

ReplayPrevention

Restriction Class
{supportsSecurityObjective
= “Authorization”}

KeyManagement

MessageAuthentication

CovertChannelPrevention

hasAlgorithm
Range: &SecurityAlgorithms; Algorithm

Separation
ServiceMechanism

hasAssurance
Range: &SecurityAssurance;
Assurance

SoapFirewall
VMM

hasAssurance
Range: &SecurityAssurance;
Assurance

TrafficHiding

reqCredential
Range: &Credentials;Credential

Anonymity

Fig. 3a. Main Security Ontology

SecurityProtocol

SignatureProtocol AuthenticationProtocol EncryptionProtocolNetSecurityProtocol KeyManagement
Protocol

reqCredential
Range: &Credentials;Credential

Kerberos

SSL
TLS (sameAs: SSL)
SSHSAML XKMS

RestrictionClass
{supportsSecurityObjective
= Confidentiality}

RestrictionClass
{supportsSecurityObjective
= KeyManagement}

RestrictionClass
{supportsSecurityObjective
= UserAuthentication}

RestrictionClass
{supportsSecurityObjective
= MessageAuthentication}

IPSec XML-EncXML-DSig

hasAlgorithm
Range: &SecurityAlgorithms; Algorithm

hasEncryptionAlgorithm
(Range: &SecurityAlgorithms;
EncryptionAlgorithms)

hasSignatureAlgorithm
(Range: &SecurityAlgorithms;
SignatureAlgorithms)

LoginProtocol

hasAssurance
Range: &SecurityAssurance; Assurance

Fig. 3b. Security Protocol Class of the Main Security Ontology

ontology, Security Algorithms ontology, and Security Assurance ontology as object
properties. The top class, ‘SecurityConcept’ possesses three subclasses: ‘Security
Protocol’, ‘SecurityMechanism’ and ‘SecurityPolicy’. Due to space limitat-ions, the
SecurityProtocol class, along with its children and properties are depicted separately in
Figure 3b.

In the computer science literature, security objectives are goals that attempt to
minimize risks and vulnerabilities to assets, policies partition the system into secure and
insecure states (while stating which security objectives are to be upheld), and
mechanisms and protocols enforce the policy [12, 13]. While some may argue that the
distinction between security protocols and security mechanisms is blurred, we define

 Security Ontology to Facilitate Web Service Description and Discovery 175

security protocols as an agreed upon series of steps to accomplish a task while security
mechanisms are implementations of protocols [18]. We specifically differentiate them
here to provide the ability to describe security concepts in both manners.

The Main Security ontology has a separate class called ‘SecurityObjective’ that
enables users to specify security objectives for the ‘SecurityConcept’ class using the
supportsSecurityObjective property. For example, IPSec is declared to have
Confidentiality, MessageAuthentication, and TrafficHiding as its supportsSecurity
Objective property values. Security objectives also enable users to search for
protocols, mechanisms, or policies based on the security objective they require. For
example, users can query, “find all instances that provide confidentiality” and receive
a list of all the security concepts that have a value of Confidentiality in their
supportsSecurityObjective property.

Another way we can use ‘SecurityObjective’ is to enable security descriptions
when concrete security information is unavailable at the time. For instance, assume
that an enterprise application planner designs two applications, App1 and App2, and
the military requirement states that these two should have separation between them.
However, at the planning stage, it is unknown in what (security) environment these
applications will be deployed. In computer security, the environment is a factor in
determining the type of security mechanism to be used. The enterprise application
planner can still use the ontology to specify the security objective of Separation as a
requirement. When the application is moved to a real system and ready to be
deployed, the application deployer can then search for instances in the
‘SecurityConcept’ class that provide Separation, and choose one that is available in
his environment. In this case, VPN happens to be the only mechanism that provides
separation, so he can replace the Separation requirement with a VPN requirement.

Credential

ElectronicToken

Debit
Card

OnetimePasswdCookiePassword Certificate

BiometricToken

Passport Badge
Drivers
License

Credit
Card

Military
ID Voice Fingerprint

X.509Certificate

name
value
path

version
serialNumber
issuer
notBefore
notAfter

RBACCertificate

role

PhysicalToken

CACCard

Smart
Card

expDate

minLength

Address

atAddress

IPAddress Domain

CryptographicKey

PrivateKey DigitalSignature

Fig. 4. Credentials Ontology

176 A. Kim, J. Luo, and M. Kang

Credentials Ontology (credentials.owl). Authentication is one of the most funda-
mental security requirements in a networked environment. The Credentials ontology
allows for specification of credentials used for authentication purposes (Figure 4).
Concepts in the Security Main ontology can refer to a specific credential through their
reqCredential property. While we adopted some of the notations in the DAML
Credential ontology, we improved upon it by reorganizing and creating classes to be
more intuitive from a computer security perspective, categorizes credentials into
physical token, electronic token, and biometric token, using the basic ‘what you have’,
‘what you know’, and ‘what you are’ concepts of authentication [18]. Arranging the
subclasses in this manner allows for easily extending the ontology if the need arises,
since all basic authentication mechanisms fall into one of these three categories.

Under the ‘PhysicalToken’ class, we kept many of the classes from the DAML
Credential ontology under their ‘IDCard’ class. In addition, we created a class to
describe military IDs and an instance to represent CAC (Common Access Card) cards
used in the military. The ontology can be extended to add properties such as issuing
agency, expiration date, issue date, etc. Under the ‘ElectronicToken’ class, we
provide subclasses that enable authentication based on host address, certificates,
passwords, and cryptographic keys to name a few. Additional properties were added
to describe certificates including the issuer, version and serial number under the
Certificate class. In order to support role-based (RBAC) certificates [19], an
‘RBACCertificate’ class was created as a subclass of the Certificate class with a role
property. The ‘BiometricToken’ class represents credentials that pertain to human
traits. For now, only ‘Voice’ and ‘Fingerprint’ subclasses are defined here.

EncryptionAlgorithm

Algorithm

SignatureAlgorithmKeyExchangeAlgorithm

SymmetricAlgorithm AsymmetricAlgorithm

DES (keylength = 64)

AES

Blowfish

TripleDES (hasNSALevel = &assurance;type3)

RSA

ECC

HashAlgorithm MACAlgorithm

SHA-1

MD4

DiffieHellman
Oakley

modeOfOperation

CAST

keyLength

ChecksumAlgorithm

isNISTStandard

hasNSALevel

CRC-16

CRC-8

CRC-32
KEA

RIPEMD

MD5

HMAC

SHA-256 CBC-MAC

Skipjack (hasNSALevel = &assurance;type2)

CRAYON (hasNSALevel = &assurance;type1)

Fig. 5. Security Algorithms Ontology

 Security Ontology to Facilitate Web Service Description and Discovery 177

When the Security Main ontology uses the Credentials ontology through its
reqCredential property, there is no cardinality restriction. Therefore, multifactor
credential requirements (cases where two or more types of authentication is required,
such as the use of a smart card with a PIN) can easily be represented by specifying
two or more credentials for the reqCredential property values.

Security Algorithms Ontology (securityAlgorithms.owl). The Security Algorithms
ontology was created to enable description of various security algorithms (Figure 5).
The Security Main ontology can use the Security Algorithms ontology to specify the
types of algorithms that are supported by various security protocols and mechanisms.
The algorithms are classified into key exchange algorithms, encryption algorithms,
checksum algorithms, and signature algorithms. In particular, the symmetric
encryption algorithms can further be described by the type of certification level it
received from the NSA (hasNSALevel property), the modes of operation that the
algorithm can support, and the various key lengths that are available.

Security Assurance Ontology (securityAssurance.owl). The Security Assurance
ontology provides a way to describe standardized assurance methods for security
protocols, mechanisms, and algorithms (Figure 6). They can be described in terms of
their assurance level using the hasAssurance property from the Main Security ontology.
The ‘Assurance’ class is classified according to different assurance methods: ‘Standard’,
‘Accreditation’, ‘Evaluation’, and ‘Certification’. This ontology is the least compete of
all our ontologies. However, we have added classes to describe the Common Criteria
and TCSEC evaluations, and the FIPS and NSA standards [20].

Assurance

Accreditation Evaluation Certification

TCSEC

(comment:
Orange Book)

DivisionA DivisionB DivisionC DivisionD

C1

C2

Standard

FIPS

byOrganization (Range:string)

DITSCAP

B1

B2

B3

A1

FIPS140-2
FIPS46-3
FIPS180-2

CommonCriteria

EAL1
EAL2
EAL3
EAL4
EAL5
EAL6
EAL7

NSA

Type1
Type2
Type3
Type4

Fig. 6. Security Assurance Ontology

178 A. Kim, J. Luo, and M. Kang

&profile:ServiceParameter

&SecurityMain;SecurityConcept

securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

securityCapability (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

&SecurityMain;SecurityObjective

&profile;Profile

serviceParameter (range: &profile;ServiceParameter)

ParamValues

unionOf

Fig. 7. Service Security Ontology

Service Security Ontology (serviceSecurity.owl). OWL-S [21] is an OWL-based
semantic markup description language that provides a core set of constructs for
describing Web services specifically. It provides a set of ontologies called Profile,
Process, and Grounding to describe Web services. The Profile describes services in
terms of what the service does (and can also be used to describe what is requested of a
service), the Process describes how to use it, and the Grounding specifies how to
interact with it.

In order for the NRL Security Ontology to be used in the Web service context, a
link must be made to the OWL-S ontologies so that security related information can
be included in an OWL-S specification. Specifically, we decided to add security
specifications to the OWL-S Profile since it provides features to specify
characteristics of a service, and security is a characteristic. Additionally, clients can
also use OWL-S Profile to describe the service they request, without having to create
a Process or Grounding as well. In the future, we may expand the ontology to enable
security specifications to be attached to other OWL-S ontologies as well.

The Service Security ontology was developed to link the NRL Security Ontology
to the OWL-S Profile in a similar manner that to the Service Security Extension
ontology from the DAML security ontology. In the Service Security ontology, a new
class called ParamValues is defined as the union of ‘SecurityConcept’ and
‘SecurityObjective’ from the Main Security ontology. This ParamValue is then
defined as a subclass of the ‘ServiceParameter’ class in the OWL-S Profile ontology
(Figure 7). This enables security annotations to be described as service parameters.
The OWL-S Profile also contains a serviceParameter property that can have
ServiceParameter as its value1. Extending the definition of the Profile class by
declaring two properties, securityRequirement and securityCapability as subproperties
of the serviceParameter property enables the OWL-S Profile to include security
requirements and security capabilities in its service description. We continue the use

1 Note that the OWL-S Profile ontology has a property and class of the same name, service

parameter. However, the property starts with a lowercase letter, while the class starts with an
uppercase letter. Thus, serviceParameter refers to a property while ServiceParameter refers to
a class.

 Security Ontology to Facilitate Web Service Description and Discovery 179

securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

securityCapability (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

AgentSecurityProfile

Fig. 8. Agent Security Ontology

of the terminology of ‘security capability’ and ‘security requirement’ from [4].
Furthermore, we defined the range for these subproperties as ParamValues so they
accept values from ‘SecurityConcept’ or ‘SecurityObjective’ classes. This allows
security requirements and capabilities to be stated in terms of either a particular
security objective, or a specific security mechanism.

Agent Security Ontology (agentSecurity.owl). Not only do Web services have
security capabilities and requirements that need to be described, but the service consumer
also possesses its own set of security capabilities and requirements. The Agent Security
ontology allows consumers to describe this security-related information to query Web
services to find ones that have compatible requirements and capabilities (Figure 8). The
DAML Security Ontologies have an agent security ontology as well that ours is based
upon. We decided to maintain the use of a separate agent security ontology to describe
consumer-side security specifications for two reasons. First, when the consumer itself is
also a Web service, it can still use the OWL-S Profile to describe its security
requirements and capabilities. However, we cannot expect the consumer to always be a
Web service. It can be a Web browser or end-user application. In these cases, it makes
sense to have a separate ontology for consumer-side specifications. Second, when
consumers describe their security specifications, they can either describe them as their
own requirements and compare that to the service’s capabilities, or they can describe the
capabilities they want from their ideal service, and match that against various service
capability descriptions. Using the agent security ontology allows users to easily
differentiate between these two methods of security specification. For the latter case, the
consumer can use the OWL-S profile to describe its ideal service. For the former case,
they use the agent security ontology to describe their own requirements, and
matchmaking is done accordingly. This issue is further discussed in Section 4.2.

InformationObject

EncInfObj SigInfObj

baseObject (range: Thing)
cryptoAlgUsed (range: &SecurityAlgorithms;Algorithm)

Fig. 9. Information Object Ontology

180 A. Kim, J. Luo, and M. Kang

Since in a truly semantic Web, a semantically-aware program would be working on
behalf of the user, we use the term ‘agent’ to represent this concept. The ontology
defines an ‘AgentSecurityProfile’ class with the properties securityCapability and
securityRequirement that can hold values from the ‘SecurityConcept’ and ‘Security
Objective’ classes.

Information Object Ontology (InfObj.owl). The Information Object ontology is
based very closely on a DAML ontology of the same name, created to capture
encrypted or signed input/output data of Web services. It has an ‘InfObj’ class and
two subclasses, ‘EncInfObj’ (Encrypted Information Object) and ‘SigInfObj’ (Signed
Information Object) (Figure 9). The ‘InfObj’ class is used as the range for input and
output parameters of services described with OWL-S. The ontology has the
cryptoAlgUsed property to specify the algorithm used to encrypt or sign the object. In
the original DAML ontology, the cryptoAlgUsed property pointed to a set of
algorithms defined within the DAML Information Object ontology. However, we felt
that the two concepts of information object and security algorithms were so dissimilar
that they did not belong within the same ontology file. Hence, in the NRL Information
Object ontology, the cryptoAlgUsed property points to classes in the Security
Algorithms ontology.

3.4 Design Objectives Revisited

At the beginning of Section 3 we outlined a set of objectives expected to be achieved
by the NRL Security Ontology. This subsection discusses whether those design
objectives were met and to what degree.

1. Describe security related information not only for Web services, but for all
types of resources: The NRL Security Ontology enables us to describe security
information of various types of resources. We can describe security protocols that
are specific to Web services such as XML-enc and SAML, but also include many
protocols and mechanisms such as IPSec, Kerberos and SSH that are generally
applied to any resource.

2. Provide the ability to annotate security related information in various levels of
detail for various environments: The ontology can provide specific details of
security mechanisms through properties such as the types of algorithms supported,
required key length, types of credentials used, and expiration dates. Classes and
instances were created that enable description of resources relevant to a military
environment as well as for commercial use.

3. Create ontologies that are easy to extend and provide reusability: The
ontologies are created with a class hierarchy that makes sense from a security
perspective. For example, the Main Security Ontology concepts were created with
the notion of security objectives, policies that support objectives, and mechanisms
that enforce the policy. Classes in the Credential ontology were created with the
classification of authentication mechanisms (‘what you know’, ‘what you have’,
and ‘what you are’) kept in mind. Because classes were organized in this manner,
following the convention of computer security professionals, it is easier to extend
the ontologies. For example, when a new instance needs to be created, it is simple
to figure out which class it should belong to. It is also easier to create properties
with the correct domain and range values.

 Security Ontology to Facilitate Web Service Description and Discovery 181

4. Bridge the gap between the operational people that understand the business
logic and the security people that understand the security requirements,
particularly in the context of enterprise applications: Both parties may want to
add security requirements into the enterprise application but from different
perspectives. The operational people can specify security requirements on the
enterprise application from a high-level perspective (e.g. security objectives) even
if they’re not familiar with the technical aspects or know what environment the
application will be running in and what mechanisms will be available. This allows
the operational people to still communicate the basic security requirements they
need to the security people. The security people can view these security
specifications, and along with their knowledge of deployment environment and
available mechanisms, provide more specific security requirements in a context-
appropriate manner that can later be viewed by the operation people if necessary.

In the next section, we will provide some examples of how to apply these ontologies
to annotate resources with security information.

4 Application of NRL Security Ontology to a Service Oriented
Architecture

The NRL Security Ontology was designed to describe security-related information of
resources in general. In this section, we demonstrate how to annotate Web services in
a Service Oriented Architecture. In particular, we focus on:

• How to annotate Web services with security requirements and capabilities
• How to create queries for finding Web services with given security requirements

and capabilities
• How to perform matchmaking between queries and service descriptions in the

SOA context

4.1 Annotating Web Services with Security Descriptions

OWL-S introduces a set of ontologies to provide “essential knowledge about a
service.” In particular, the OWL-S Profile ontology is used to describe “what does a
Web service require of the user(s) or other agents and provide for them” [22]. The
semantic annotation of Web services can be extended with the NRL Security ontology
to describe the security specifications of the services. Thus, we extended the
definition of the Profile class in the OWL-S Profile ontology. The Service Security
ontology that was described in section 3.3 shows the linkage between OWL-S Profile
ontology and NRL Security ontology.

In this manner, security requirements and capabilities are attached as properties to
the service profile. Security capabilities are defined as security features that the
service is capable of while security requirements are features that must be satisfied by
any entity using the service. Security requirements and capabilities can possess values
from the Security Main ontology. The values may be abstract notions, such as a
security objective, or detailed mechanisms, such as a specific protocol with a given
algorithm.

182 A. Kim, J. Luo, and M. Kang

Profile

ServiceParameter

ServiceCategory

&Service:Service

“string”
serviceName

serviceParameter

serviceCategory

&SecurityMain:
SecurityConcept

&SecurityMain:
SecurityObjective

&ServiceSecurity:
ParamValues:

unionOfsecurityCapability

securityRequirement

Fig. 10. Graphical Depiction of Relationship between Profile, Service and Security Main

In describing security capabilities and security requirements, we make some basic
assumptions. Security requirements are those that need to be satisfied by the other
party. Therefore, if an entity (service or consumer) has a service requirement, it is
implied that they also have that particular capability, so it does not need to be re-
stated as a capability. For instance, if a service requires the consumer to use SSL, it
implies that the service is capable of using SSL as well. Therefore, if the service states
the use of SSL as a requirement, it does not need to state it as a capability. On the
other hand, just because an entity lists a capability, it does not mean that this is a
requirement of that entity. For example, many security protocols such as SSH, SSL,
and IPSec provide a list of encryption algorithms that they support (i.e. are capable
of), but do not require the other party to possess.

We created a simple Service ontology to semantically describe the category of the
business service. The concepts in the Service ontology are defined as subclasses of
the ServiceCategory concept in the OWL-S Profile ontology so that they can be used
in conjunction with the Profile. Having the Service ontology described in this manner
enables users to use the ServiceCategory concept in two ways; describing service
categorizations based on some classification scheme, or using the Service ontology
provided here. This Service ontology was created ad-hoc, in order to provide a
semantic business service description and is no where near complete. Therefore, it is
not worth describing here. Figure 10 shows the relationship between the OWL-S
Profile, NRL Service Security Ontology, NRL Security Main Ontology and the
sample Service ontology.

Next, we provide two example service profiles for some imaginary services, Acme
Stock Quotes and Anya’s Rare Books, using all these ontologies. A graphical
depiction of the service profiles are shown in Figure 11. As can be seen in the figure,
security capabilities and requirements are attached to the service profile through the
use of properties (i.e., securityRequirement and securityCapability). These take

 Security Ontology to Facilitate Web Service Description and Discovery 183

concepts from the Security Main ontology, which in turn may use concepts from other
ontologies in the NRL Security Ontology. A snippet of the OWL code for these
service profiles can be found in the Appendix.

As can be noted in Figure 11, when credentials are used as range values for the
reqCredential property, the class values are attached. Credentials are so varied for
each organization and individual, that it is not possible to represent all instances of
them. For example, an X.509 Certificate is one mechanism used for authentication.
Each user can have at least one, and each can be issued by a trusted 3rd party
organization. To create possible instances of X.509 certificates for each user with
property annotations such as issuedBy was deemed unreasonable. Therefore, when
creating service profiles, we simply allow various credentials (classes) to be used as
property range values.

Profile

Anya’s Rare Book Service

BookSellerService
service
Category

SoapFirewall

EAL4
hasAssurance

security
Capability

SoapFirewall

EAL4
hasAssurance

security
Capability

SSL
security
Capability

security
Requirement

LoginProtocol

Password
reqCredential

minLength
“8”

security
Requirement

LoginProtocol

Password
reqCredential

minLength
“8”

service
Name

Profile

Acme Stock Quote Service

service
Category

security
Capability

SoapFirewall

EAL4

hasAssurance

security
Capability

SoapFirewall

EAL4

hasAssurance

StockQuoteService

SSL

Password

DES

reqCredential

hasAlgorithm

security
Capability

modeOfOperation
“CBC, ECB”

SSL

Password

DES

reqCredential

hasAlgorithm

security
Capability

modeOfOperation
“CBC, ECB”

Service
Name

security
Requirement

LoginProtocol

X.509Certificate
reqCredential

“NRL”
issuer

“Acme Stocks” “Anya’s Rare Books”

Fig. 11. Graphical Depiction of Profiles for Two Services

4.2 Creating Queries to Find Services

To query for a resource, there are two parts to be considered. One is the security
description and the other is the non-security description. We define everything not
related to security as non-security descriptions. If an agent is looking for a travel
reservation service or a book buying service, this would fall under the non-security
description category. Under this definition, specific objects within the service
description such as price and credit card number are also part of the non-security

184 A. Kim, J. Luo, and M. Kang

description. These objects may require security specifications to be attached to them,
such as adding the requirement of confidentiality to a credit card number, but the
objects themselves are not security related (although they may contain private or
sensitive information). Security requirements for such objects can be specified using
the Information Object ontology. The security descriptions are the security
capabilities and requirements that the agent possesses (and thus should be satisfied by
a potential service).

When creating these queries with security descriptions, there are two approaches
that can be used depending on how the security requirements and capabilities are
stated. The first approach is to state the query in terms of the security descriptions of
the service profile. In other words, consumers state their security statements
(capabilities and requirements) in terms of their ideal service. Thus, consumer
requirements are stated as potential service capabilities and consumer capabilities are
stated as potential service requirements. Non-security descriptions are described as
potential service descriptions (e.g., service category). Using this method, the
consumer uses OWL-S to create a service profile similar to that of section 4.1
describing what kind of service they are looking for. In this case, the query becomes
this pseudo profile, which can be compared directly to potential service profiles to
check for compatibility, providing a one-to-one mapping of capabilities-to-
capabilities and requirements-to-requirements.

The second approach creates queries in terms of the requirements and capabilities
of the agent itself using the Agent Security ontology. The Agent Security ontology
defines an AgentSecurityProfile class to which security capabilities and requirements
can be attached through given properties. This enables agent descriptions to be
created in a similar manner to service profiles. The drawback of this approach is that
while the security information of an agent can be described, the Agent Security
ontology does not provide a means to describe non-security parameters. The non-
security part (i.e., service category) has to be created within a service profile query
and used in conjunction with the Agent Security Profile. Despite this drawback, we
believe that in many cases, this may be a more efficient way to create queries because
the security specifications (of an agent or service) can be generated independent of
other descriptions. Most likely, a consumer’s agent description will be generated
when the agent is first created. Using this agent description as a query to find
potential services is more efficient than having to create new queries. Keeping the
security part separate from the non-security aspect of the query allows users to reuse
their security descriptions. Thus, whether searching for a travel service, or book
selling service or any other service, only the non-security part of the query needs to be
changed, and as long as the agent’s capabilities and requirements remain the same, the
security part of the query need only be created once and remain intact. Figure 12
shows an example query created using the AgentSecurityProfile class.

We have also created a prototype system and set of tools that facilitate ontology
browsing, query creation and matchmaking. In our prototype, OWL documents
(ontologies and service descriptions) are imported into the registry (UDDI) data
structures using a lossless translation scheme that fully supports property annotations
and allows for semantic query processing [23, 24]. The associated tools support both
methods of creating queries. However, the prototype and tools are not the scope of
this paper. Interested readers are directed to [25] for further information.

 Security Ontology to Facilitate Web Service Description and Discovery 185

AgentSecurityProfile

Agent Query

security
Capability

LoginProtocol

Password
reqCredential

minLength
“8”

security
Capability

LoginProtocol

X.509Certificate
reqCredential

“NRL”
issuer

SSL

AES
hasAlgorithm

security
Requirement

AgentSecurityProfile

Agent Query

security
Capability

LoginProtocol

Password
reqCredential

minLength
“8”

security
Capability

LoginProtocol

Password
reqCredential

minLength
“8”

security
Capability

LoginProtocol

X.509Certificate
reqCredential

“NRL”
issuer

security
Capability

LoginProtocol

X.509Certificate
reqCredential

“NRL”
issuer

SSL

AES
hasAlgorithm

security
Requirement

SSL

AES
hasAlgorithm

security
Requirement

Fig. 12. Graphical Depiction of Example Agent Security Profile

4.3 Reasoning and Matching Algorithm

We have stated that both resource consumers (i.e., agents) and providers may have
security requirements and capabilities. Matchmaking looks for a two-way
correspondence between these requirements and capabilities. When querying for
services using the first method described in section 4.2, the matching algorithm is
quite simple. It is just a matter of the pseudo profile being a subset of the actual
service profiles. However, when describing agent security information with the latter
approach, the matching algorithm is more complex. The service security requirements
are compared to agent security capabilities and service security capabilities are
compared to agent security requirements. In order for a match of security concepts to
occur between a service provider and an agent, two conditions should be met. First,
the service provider’s security capabilities should satisfy all the agent’s security
requirements. Second, the service provider’s security requirements should all be
satisfied by the agent’s security capabilities. This implies that the list of capabilities
from one side should subsume the list of requirements from the other (Table 1).

Every single agent security requirement must have a corresponding security
capability on the service provider side to satisfy it. Likewise, every single server
security requirement must have a corresponding security capability on the agent side
that satisfies the requirement. This also implies that the security capabilities of each
side do not need to be satisfied: there may be many security capabilities that a service

186 A. Kim, J. Luo, and M. Kang

or agent possesses, but it is not required that there is a corresponding security
requirement that necessitates it. Hence the matchmaker must be able to perform two
tasks. First, it must be able to determine the level of match between each specific
security requirement from one entity and a specific security capability from another
entity. Second, it must use those levels of match to determine if the set of security
requirements is matched by the set of security capabilities. In other words, the
matchmaker must determine the level at which each requirement is matched to a
security capability, and then the overall level of match between the requester and the
provider. This will be explained in detail later in the section.

Table 1. The Matching between Agent and Service Provider Requirements and Capabilities

Agent Service Provider
Security Requirements ⊆ Security Capabilities
Security Capabilities ⊇ Security Requirements

These specific matching concepts are not new. Several semantic matching

algorithms have been proposed [4, 26-30] with similar ideas. The majority of these
[26-30] support only one-way matching of non-security service descriptions to agent
queries as opposed to requirement-capability matching. They do not consider two-
way matching since their focus is on matching non-security aspects; they do not
consider cases where there may be non-security requirements from the service
provider-side and non-security capabilities on the agent-side to be expressed. The last
proposed matchmaking algorithm [4] performs requirement-capability matching for
both sides. However, it does not take into account property attributes. Consequently,
it will not support cases where both the requirement and capability point to the same
concept but the concepts are annotated with different properties. For example, the
agent and service provider may both use SSH (stated as a requirement on one side and
a capability on the other), but if the agent requires SSH using TripleDES and the
service provider is only capable of SSH with AES then these two should not match.
Our matchmaker extends their matching algorithm by performing requirement-
capability matching, taking into account property annotations.

Specifically, when describing security information of resources, the ability to
include properties in the matching algorithm is very important. This is due to the fact
that security information can require detailed descriptions that make extensive use of
properties. Complex statements can be made with multiple layers of properties. For
example, there could be a security requirement that requires the use of XML-enc
(securityRequirement property) with a symmetric encryption algorithm (hasAlgorithm
property) that has been declared a type 3 algorithm from the NSA (hasNSALevel
property).

In particular, when a concept is annotated with properties, we consider it to be
more restrictive than the same concept with no (or less) property annotations. For
example, a requirement for a user to input a password is not as restrictive as a
requirement for a password that is at least 8 characters long. A requirement to use
SSH is less restrictive than one that states using SSH with a specific encryption
algorithm such as DES.

 Security Ontology to Facilitate Web Service Description and Discovery 187

There are four possible levels of match for each requirement-capability pair:
perfect match, close match, possible match, and no match in decreasing order of
matching. The first task of the matchmaker is to determine the kind of match.

Perfect Match cases. Perfect matches occur when both one’s capability and the
other’s requirement point to the same concept. The same concept can mean the exact
same concept, or two concepts declared as equivalent in the ontology. There are two
ways this can occur:

• Case 1. Both the requirement and capability specify the exact same ontology
concept. The instances and property values specified by both sides are identical.
This is the trivial case. For example, if an agent query states that it requires the
service to possess a VPN (Virtual Private Network) that possesses a Common
Criteria EAL4 rating and a service describes its capability as possessing a VPN
with a Common Criteria rating of EAL 4 then these two are a perfect match.

• Case 2. The requirement and capability refer to equivalent concepts, and if
properties are specified, the properties are identical or equivalent. For example, an
agent’s requirement specifies SSL and the service provider’s capability is listed as
TLS. In the Main Security ontology, these two concepts are listed as equivalent
classes; hence they are identical and will produce a perfect match. We sometimes
call this an equivalence match to differentiate from the first case. This case is worth
noting because it shows that our matching algorithm can fully support OWL
equivalence classes and the sameAs construct. It can also provide more matches for
a given query. Another reason to treat it as a separate case is for instances where
users may not be aware that some concepts have identical meaning, or that they are
considered identical in an ontology.

Close Match cases. A close match occurs when one’s requirement is more general (i.e.,
described in less detail) than the other’s capability. There are three ways this can occur:

• Case 1. The requirement specifies a more general concept at a higher level in the
ontological hierarchy. For example, the agent’s capability is stated as DES while
the service provider’s requirement asks for a symmetric encryption algorithm. DES
is an instance of the ‘SymmetricAlgorithm’ class and thus lower in the hierarchy.
We assume that the service provider specified its requirement as a higher level
concept because it does not care which specific algorithm is used as long as it is a
symmetric encryption algorithm. Therefore, we can assume a match.

• Case 2. The requirement and capability have the same concept, but the capability
is specified in more detail (i.e., property). For example, the agent’s capability is
specified as AES with 256 bit keys while the service provider’s requirement asks
for AES (with no properties). AES with 256 bit keys is a more specific instance of
AES so we can assume that there is a match.

• Case 3. The requirement is stated in terms of a security objective while the
capability is stated in terms of a security concept that supports that specific
objective. For example, the agent’s requirement is stated as the objective of
Confidentiality and the service provider’s capability is given as XML-Enc which
has the supportsSecurityObjective value of Confidentiality. Since the requirement
is looking for anything that supports Confidentiality and XML-Enc does support it,
we view this as a match.

188 A. Kim, J. Luo, and M. Kang

In these three cases, it may seem that the matches are indeed similar to the perfect
match cases, and in most cases this may turn out to be true. However, we cannot
guarantee that this will always be the situation, so we distinguish them as close
matches instead. For instance, in case 2, while the AES standard specifies mandatory
key lengths that must be supported, some vendors may also provide optional key
lengths in addition to the standard. Therefore, while one side may specify AES as a
general requirement, it does not mean it will support all possible vendor-specific key
lengths. Similar arguments for close matches can be made for the other two cases.

Possible Match cases. A possible match occurs when one’s requirement is more
specific (i.e., defined in more detail) than the other’s capability. This is the opposite
of a close match. A possible match does not rule out the possibility of a match, but the
information available cannot ensure the capability can match the requirement. Further
negotiation between the consumer and service provider may be required. There are
three ways this can occur:

• Case 1. The requirement specifies a more specific concept (lower in the
hierarchy). For example, the agent’s capability is stated as symmetric encryption
algorithm while the service provider’s requirement asks for DES. The symmetric
encryption algorithm that the agent is capable of could be DES, but it is not
certain. Therefore, it is only a partial match.

• Case 2. The requirement and capability refer to the same concept, but the
requirement specifies a more refined concept (i.e. property). For example, the
capability is stated as AES while the requirement asks for AES with 256-bit keys.
The AES specified in the capability could be possible of 256-bit key encryption,
but it is not certain. Therefore, it is only a partial match.

• Case 3. The requirement is stated in terms of a security concept while the
capability is stated in terms of a security objective that is supported by the security
concept. For example, the agent’s requirement is stated as confidentiality while the
service provider’s capability is stated as XML-Enc which supports confidentiality.
The agent may be capable of using XML-Enc, but it is not certain. All we can
deduce is that the agent is capable of confidentiality. Therefore, it is only a partial
match.

No Match cases. No match occurs when one’s capability and the other’s requirement
are disparate without the possibility of matching. There are two ways this can occur:

• Case 1. The requirement and capability point to two unrelated concepts. For
example, the requirement states it requires DES and the capability states its
capability as RSA. These concepts have no hierarchical relationship to each other
and so are unrelated. There can be no match.

• Case 2. The requirement and capability point to the same concept but have
different specifics (i.e. properties) with respect to that concept. For example, the
requirement points to AES in CBC mode while the capability states AES in CFB
mode. The capability and requirement can both use AES, but they require modes of
operation; one is a block cipher the other is a stream cipher so they are not
compatible.

 Security Ontology to Facilitate Web Service Description and Discovery 189

For the second task of the matchmaker, it must attempt to match every requirement on
one side against every capability on the other side. The degree of match for a single
requirement is its highest level of match it has against all of the possible capabilities.
The overall level of match between the agent and the service provider is the same as
the lowest degree of match of any of the requirement-capability pairs. There are four
possibilities:

• If at least one of the requirements is not matched, then the agent is not matched to
the service provider. The requestor will not be able to use the service.

• If all the requirement-capability pairs are at least possible matches, then there is a
possible match between the agent and the service provider. This means there is not
enough information to determine one way or the other whether the agent can use
the service. Additional information or negotiation will be needed to make that
determination.

• If all the requirement-capability pairs are at least close matches, then it is highly
probable that the agent can indeed use the service.

• If all the requirement-capability pairs are perfect matches, then obviously the agent
can use the service.

In the following section, we will provide an example of the matching process between
a service description and an agent query.

4.4 Application of the Matching Algorithm

In the previous subsections we examined how to actually describe services and create
queries using the security ontologies, and how the matching algorithm works. In this
subsection, we will show how to apply the matching algorithm to the service and
agent profiles from the previous subsections.

Recapping the previous sections, we had two service profiles (Figure 9). One for a
stock quote service, and the other for a book selling service. We also created an agent
security profile (Figure 10) that can be used as a query in finding a compatible
service. For the purposes of this paper, we will ignore the Service Category part of the
service profile and only focus on the matching of security requirements and
capabilities.

Given these two service descriptions and the agent query, the matching algorithm
would match the requestor’s capabilities to the provider’s requirements and the
requestor’s requirements to the provider’s capabilities in the following manner
(Tables 2 and 3):

Table 2. Matching Agent Capabilities to Stock Quote Service’s Requirements

Service Security Requirement Agent Security Capability Match Level
Login with password that has a
min. length of 8

No Match
Login with X.509 Certificate issued
by NRL Login with X.509 Certificate

issued by NRL
Perfect Match

190 A. Kim, J. Luo, and M. Kang

Table 3. Matching Stock Quote Service’s Capabilities to Agent’s Requirements

Service Security Capability Agent Security Requirement Match Level
SOAP Firewall with Common
Criteria level EAL4

No Match

SSL

SSL with AES algorithm

Possible Match

• In Table 2, there is only one service security requirement that must be satisfied. Of
the two possible capabilities that the agent possesses, the first one is no match, but
the second capability is a perfect match. Hence, there is an agent capability that
perfectly matches the service’s requirement

• In Table 3 there is one agent security requirement that has to be fulfilled. While the
first service capability listed does not match at all, the second service capability
possesses the same concept of SSL, but with less detail. This is Case 2 of the
possible match situation. Overall, it is possible that the agent security requirement
may be satisfied by one of the capabilities of the service

Since the lowest level of match in the sets of requirement-capability pairs is possible
match, the matchmaker will declare the service to be a possible match. The requester
is not certain whether it can use the service. It must obtain additional information or
negotiate with the provider to make that decision.

Using the same query, and matching it to the second service profile, Anya’s Book
Service (figure 10), we get the following results summarized in Tables 4 and 5.

Table 4. Matching Agent Capabilities to Anya’s Book Service’s Requirements

Service Security Requirement Agent Security Capability Match Level
Login with password that has a
min. length of 8

Perfect Match
Login with password that has a min.
length of 8 Login with X.509 Certificate

issued by NRL
No Match

Table 5. Matching Anya’s Book Service’s Capabilities to Agent’s Requirements

Service Security Capability Agent Security Requirement Match Level
SOAP Firewall with Common
Criteria level EAL4

No Match

SSL with DES, AES, and
DiffieHellman algorithm

SSL with AES algorithm

 Close Match

• In Table 4, there is only one service security requirement that must be satisfied. Of

the two possible capabilities that the agent possesses, the first one is a no match,
but the second capability is a perfect match. Hence, there is an agent capability that
perfectly matches the service’s requirement

• In Table 5 there is one agent security requirement that has to be fulfilled. While the
first service capability listed does not match at all, the second service capability
possesses the same concept of SSL, but with less detail. This is Case 2 of the close
match situation.

 Security Ontology to Facilitate Web Service Description and Discovery 191

Since the lowest level of match in the sets of requirement-capability pairs is close
match, the matchmaker will declare the service to be a close match.

Given this query and the two services, Anya’s Book Service would be a better
match to the agent, since it is a close match whereas the Stock Quote Service is a
possible match.

5 Conclusion and Future Work

Annotating resources with metadata enables them to be machine-understandable and
facilitates automatic discovery and invocation. Most work in the area thus far has focused
on annotation of resources in terms of functionality. However, security is an important
issue especially in a network-centric environment. Most resources on the network are
protected by some sort of security mechanisms. Satisfying functional requirements alone
may not guarantee access to desired resources. As a result, annotation of resources in
terms of security is just as important as annotation in terms of functionality.

In this paper, we presented the NRL Security Ontology for making security
annotations. It is much more comprehensive than security ontologies previously available
in terms of the number of concepts, the properties of the concepts, and the type of
resources that can be described. Its organization is also more intuitive so that it is easier
to use as well as to extend. New properties and instances can be added without
modifying the overall class hierarchy. We demonstrated how the ontology can be
applied to the Web services in a Service Oriented Architecture to describe security
capabilities and requirements. A matchmaking algorithm was presented to perform
requirement-capability matchmaking that takes into account not just the concepts, but
also the properties of the concept. This is important because security annotations make
extensive use of property attributes. The ability to take them into account makes this
matching algorithm much more refined than previous work. Although not presented here,
we also created a set of tools that enable browsing of ontologies, composing queries, and
searching the UDDI for services that match the set of queries [25].

The creation of these ontologies is an iterative process. Additional instances and
properties will always be needed to express new security statements. Classes and
properties may be added and deleted as the security community continues to evaluate and
refine the security ontologies. Additional ontologies are still needed to address issues
such as privacy policies, access control, survivability, and QoS. We hope this work will
serve as a catalyst in the development of standardized security-related ontologies with
contributions from both the security community and the semantic Web community.

References

1. IA Architecture and Technical Framework: Executive Summary of the End-to-End IA
Component of the GIG Integrated Architecture, National Security Agency Information
Assurance Directorate (2004)

2. Kim, A., Luo, J., Kang, M.: Security Ontology for Annotating Resources. In: Meersman,
R., Tari, Z. (eds.) On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE. LNCS, vol. 3761, pp. 1483–1499. Springer, Heidelberg (2005)

3. Kim, A., Luo, J., Kang, M.: Security Ontology for Annotating Resources. Naval Research
Lab, NRL Memorandum Report, NRL/MR/5540-05-641, p. 51, Washington, DC (2005)

192 A. Kim, J. Luo, and M. Kang

4. Denker, G., Kagal, L., Finin, T., Paolucci, M., Sycara, K.: Security for DAML Web
Services: Annotation and Matchmaking. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, pp. 335–350. Springer, Heidelberg (2003)

5. Denker, G., Nguyen, S., Ton, A.: OWL-S Semantics of Security Web Services: a Case
Study. In: 1st European Semantic Web Symposium, Heraklion, Greece (2004)

6. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Authorization
and Privacy for Semantic Web Services. In: AAAI Spring Symposium, Workshop on
Semantic Web Services, Stanford, California (2004)

7. W3C: DAML+OIL, Reference Description (March 2001) http:// www.w3.org/ TR/
daml+oil-reference

8. W3C: OWL Web Ontology Language Overview (2004) http://www.w3.org/TR/owl-
features/

9. IETF and W3C Working Group: XML Encryption (2001) http:// www.w3c.org/
Encryption/2001

10. IETF and W3C Working Group: XML Signature (2003) http://www.w3c.org/Signature
11. OASIS SSTC: Security Assertion Markup Language (SAML) 2.0 Technical Overview,

Working Draft (2005) http://www.oasis-open.org/committees/download.php/12938/sstc-
saml-tech-overview-2.0-draft-06.pdf

12. Bishop, M.: Computer Security: Art and Science. Addison-Wesley, Boston, MA (2002)
13. Pfleeger, C.P., Pfleeger, S.L.: Security in Computing, 3rd edn. Prentice-Hall, New Jersey

(2003)
14. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your

First Ontology, Stanford Knowledge Systems Laboratory, KSL-01-05 (2001)
15. Naval Research Lab 4SEA Project: NRL Ontology Files (2005)

http://chacs.nrl.navy.mil/projects/4SEA/ontology.html
16. W3C Recommendation: OWL Web Ontology Language Guide, vol. 2005, W3C (2004)
17. DAML Ontology Library: http://www.daml.org/ontologies/
18. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley and Sons, Inc., New York

(1996)
19. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Artech

House, Norwood, MA (2003)
20. Committee on National Security Systems: National Information Assurance (IA) Glossary,

Ft. Meade, MD, p. 85 (2003) http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf
21. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-S:
Semantic Markup for Web Services (2003) http://www.daml.org/services/owl-
s/1.1/overview/

22. DAML: OWL-S 1.1, DAML Program.
23. Luo, J., Montrose, B., Kang, M.: An Approach for Semantic Query Processing with UDDI.

In: Meersman, R., Tari, Z., Herrero, P. (eds.) On the Move to Meaningful Internet Systems
2005: OTM 2005 Workshops. LNCS, vol. 3762, pp. 89–98. Springer, Heidelberg (2005)

24. Luo, J., Montrose, B., Kim, A., Khashnobish, A., Kang, M.: Adding OWL-S Support to
the Existing UDDI Infrastructure. In: IEEE International Conference on Web Services
(ICWS 2006), Chicago, USA (2006)

25. Kang, M., Kim, A., Luo, J., Montrose, B., Khashnobish, A.: Ontology-based Security
Specification Tools for SOA. In: 17th Information Resource Management Association
Conference (IRMA 06), Washington, DC (2006)

 Security Ontology to Facilitate Web Service Description and Discovery 193

26. Srinivasan, N., Paolucci, M., Sycara, K.: Adding OWL-S to UDDI, Implementation and
Throughput. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387,
Springer, Heidelberg (2005)

27. Jaeger, M., Tang, S.: Ranked Matching for Service Descriptions using DAML-S. In:
Enterprise Modelling and Ontologies for Interoperability (EMOI), INTEROP 2004, Riga,
Latvia (2004)

28. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in
UDDI. In: Web Services, E-business and Semantic Web Workshop (ESSW02) (2002)

29. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Service
Standards. In: 1st International Conference on Web Service (ICWS’03), Las Vegas,
Nevada (2003)

30. Colgrave, J., Akkiraju, R., Goodwin, R.: External Matching in UDDI. In:
Proceedings of the International Conferences on Web Services (ICWS 2004), San
Diego, California, USA (2004)

Appendix. OWL Files for Service Profiles and Agent Security
Profiles Used in Examples

For sake of brevity, namespace declarations and other material have been omitted

• Service Profiles (From Figure 10)

<!-- Security Requirements -->

<!-- Requirement1: Can do a Login Protocol that accepts
passwords -->
<credentials:Password rdf:ID="userPassword">
 <credentials:minLength
rdf:datatype="&xsd;int">8</credentials:minLength>
</credentials:Password>

<security:Login_Protocol rdf:ID="Requirement1">
 <security:reqCredential rdf:resource="UserPassword"/>
</security:Login_Protocol>

<!-- Requirement2: Can do a Login Protocol that accepts
certificates signed by NRL -->
<credentials:X.509Certificate rdf:ID="X.509">
 <credentials:issuer
rdf:datatype="&xsd;string">NRL</credentials:issuer>
</credentials:X.509Certificate>

<security:Login_Protocol rdf:ID="Requirement2">
 <security:reqCredential rdf:resource="X.509"/>
</security:Login_Protocol>

<!-- Security Capabilities -->
<!-- Capability1: Possess a SOAP Firewall w/ EAL4 assurance -->
<security:SoapFirewall rdf:ID="Capability1">
 <security:hasAssurance rdf:resource="&assurance;EAL4"/>
</security:SoapFirewall>

194 A. Kim, J. Luo, and M. Kang

<!-- Capability2: Can do SSL with DES, AES and DiffieHellman -->

<security:SSL rdf:ID="Capability2">
 <security:hasEncryptionAlgorithm
rdf:resource="&algorithms;DES"/>
 <security:hasEncryptionAlgorithm
rdf:resource="&algorithms;AES"/>
 <security:hasEncryptionAlgorithm
rdf:resource="&algorithms;DiffieHellman"/>
</security:SSL>

<!-- Capability3: Can do SSL with password and DES algorithm in
CBC/ECB modes -->

<algorithms:DES rdf:ID="ModedDES">
 <algorithms:modeOfOperation
rdf:datatype="&xsd;string">CBC</algorithms:modeOfOperation>
 <algorithms:modeOfOperation
rdf:datatype="&xsd;string">ECB</algorithms:modeOfOperation>
</algorithms:DES>

<security:SSL rdf:ID="Capability7">
 <security:reqCredential rdf:resource="UserPassword"/>
 <security:hasEncryptionAlgorithm rdf:resource="ModedDES"/>
</security:SSL>

<!-- Service Descriptions using Requirements and Capabilities
 defined above. -->

<profile:Profile rdf:ID="Acme Stock Purchasing">
 <profile:serviceName>Acme Stocks</profile:serviceName>
 <profile:textDescription>We pick and buy stocks
 </profile:textDescription>
 <service:securityRequirement rdf:resource="#Requirement2"/>
 <service:securityCapability rdf:resource="#Capability1"/>
 <service:securityCapability rdf:resource="#Capability3"/>
</profile:Profile>

<profile:Profile rdf:ID="AnyaBookService">
 <profile:serviceName>Anya's Rare Books</profile:serviceName>
 <profile:textDescription>We only deal with rare books,
published before 1943</profile:textDescription>
 <service:securityRequirement rdf:resource="#Requirement1/>
 <service:securityCapability rdf:resource="#Capability1"/>
 <service:securityCapability rdf:resource="#Capability2"/>
</profile:Profile>

• Example Agent Security Profile (From Figure 11)

<!-- Security Requirements -->
<!—Requirement1: Can do SSL with AES -->

 Security Ontology to Facilitate Web Service Description and Discovery 195

<security:SSL rdf:ID="Requirement1">
 <security:hasEncryptionAlgorithm
rdf:resource="&algorithms;AES"/>
</security:SSL>

<!-- Security Capabilities -->
<!-- Capability1: Can do LoginProtocol accepts passwords -->
<credentials:Password rdf:ID="UserPassword">
 <credentials:minLength rdf:datatype="&xsd;int">8
 </credentials:minLength>
</credentials:Password>

<security:Login_Protocol rdf:ID="Capability1">
 <security:reqCredential rdf:resource="UserPassword"/>
</security:Login_Protocol>

<!-- Capability2: Can do a Login Protocol that accepts
certificates signed by NRL -->
<credentials:X.509Certificate rdf:ID="X.509">
 <credentials:issuer rdf:datatype="&xsd;string">NRL
 </credentials:issuer>
</credentials:X.509Certificate>

<security:Login_Protocol rdf:ID="Capability2">
 <security:reqCredential rdf:resource="X.509"/>
</security:Login_Protocol>

<!-- Agent Security Profiles -->
<!—This Agent Query will find one service (from ServiceProfile)
-->
<agent:AgentSecurityProfile rdf:ID="AgentQuery">
 <agent:securityRequirement rdf:resource="#Requirement1"/>
 <agent:securityCapability rdf:resource="#Capability1"/>
 <agent:securityCapability rdf:resource="#Capability2"/>
</agent:AgentSecurityProfile>

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 1–38, 2007.
© Springer-Verlag Berlin Heidelberg 2007

 Semantic Matching: Algorithms and Implementation*

Fausto Giunchiglia, Mikalai Yatskevich, and Pavel Shvaiko

Department of Information and Communication Technology,
University of Trento,

38050, Povo, Trento, Italy
{fausto,yatskevi,pavel}@dit.unitn.it

Abstract. We view match as an operator that takes two graph-like structures
(e.g., classifications, XML schemas) and produces a mapping between the
nodes of these graphs that correspond semantically to each other. Semantic
matching is based on two ideas: (i) we discover mappings by computing seman-
tic relations (e.g., equivalence, more general); (ii) we determine semantic rela-
tions by analyzing the meaning (concepts, not labels) which is codified in the
elements and the structures of schemas. In this paper we present basic and op-
timized algorithms for semantic matching, and we discuss their implementation
within the S-Match system. We evaluate S-Match against three state of the art
matching systems, thereby justifying empirically the strength of our approach.

1 Introduction

Match is a critical operator in many well-known metadata intensive applications, such
as schema/ontology integration, data warehouses, data integration, e-commerce, etc.
The match operator takes two graph-like structures and produces a mapping between
the nodes of the graphs that correspond semantically to each other.

Many diverse solutions of match have been proposed so far, see [43,11,40,42] for
recent surveys, while some examples of individual approaches addressing the match-
ing problem can be found in [1,2,5,6,10,11,13,16,30,32,33,35,39]1.We focus on a
schema-based solution, namely a matching system exploiting only the schema infor-
mation, thus not considering instances. We follow a novel approach called semantic
matching [20]. This approach is based on two key ideas. The first is that we calculate
mappings between schema elements by computing semantic relations (e.g., equiva-
lence, more general, disjointness), instead of computing coefficients rating match
quality in the [0,1] range, as it is the case in most previous approaches, see, for exam-
ple, [11,13,32,39,35]. The second idea is that we determine semantic relations by ana-
lyzing the meaning (concepts, not labels) which is codified in the elements and the
structures of schemas. In particular, labels at nodes, written in natural language, are
automatically translated into propositional formulas which explicitly codify the la-
bels’ intended meaning. This allows us to translate the matching problem into a

* This article is an expanded and updated version of an earlier conference paper [23].

1 See www.OntologyMatching.org for a complete information on the topic.

2 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

propositional validity problem, which can then be efficiently resolved using (sound
and complete) state of the art propositional satisfiability (SAT) deciders, e.g., [31].

A vision of the semantic matching approach and some of its implementation were
reported in [20,21,25]. In contrast to these works, this paper elaborates in more detail
the element level and the structure level matching algorithms, providing a complete
account of the approach. In particular, the main contributions are: (i) a new schema
matching algorithm, which builds on the advances of the previous solutions at the
element level by providing a library of element level matchers, and guarantees cor-
rectness and completeness of its results at the structure level; (ii) an extension of the
semantic matching approach for handling attributes; (iii) an evaluation of the per-
formance and quality of the implemented system, called S-Match, against other state
of the art systems, which proves empirically the benefits of our approach. This article
is an expanded and updated version of an earlier conference paper [23]. Therefore,
three contributions mentioned above were originally claimed and substantiated in
[23]. The most important extensions over [23] include a technical account of: (i) word
sense disambiguation techniques, (ii) management of the inconsistencies in the match-
ing tasks, and (iii) an in-depth discussion of the optimization techniques that improve
the efficiency of the matching algorithm.

The rest of the paper is organized as follows. Section 2 introduces the semantic
matching approach. It also provides an overview of four main steps of the semantic
matching algorithm, while Sections 3,4,5,6 are devoted to the technical details of
those steps. Section 7 discusses semantic matching with attributes. Section 8 intro-
duces the optimizations that allow improving efficiency of the basic version of the al-
gorithm. The evaluation results are presented in Section 9. Section 10 overviews the
related work. Section 11 provides some conclusions and discusses future work.

2 Semantic Matching

In our approach, we assume that all the data and conceptual models (e.g., classifica-
tions, database schemas, ontologies) can be generally represented as graphs (see [20]
for a detailed discussion). This allows for the statement and solution of a generic (se-
mantic) matching problem independently of specific conceptual or data models, very
much along the lines of what is done in Cupid [32] and COMA [11]. We focus on
tree-like structures, e.g., classifications, and XML schemas. Real-world schemas are
seldom trees, however, there are (optimized) techniques, transforming a graph repre-
sentation of a schema into a tree representation, e.g., the graph-to-tree operator of Pro-
toplasm [7]. From now on we assume that a graph-to-tree transformation can be done
by using existing systems, and therefore, we focus on other issues instead.

The semantic matching approach is based on two key notions, namely:

- Concept of a label, which denotes the set of documents (data instances) that
one would classify under a label it encodes;

- Concept at a node, which denotes the set of documents (data instances) that
one would classify under a node, given that it has a certain label and that it is
in a certain position in a tree.

 Semantic Matching: Algorithms and Implementation 3

Our approach can discover the following semantic relations between the concepts
at nodes of two schemas: equivalence (=); more general (); less general ();
disjointness (⊥). When none of the relations holds, the special idk (I do not know) 2
relation is returned. The relations are ordered according to decreasing binding
strength, i.e., from the strongest (=) to the weakest (idk), with more general and less
general relations having equal binding power. Notice that the strongest semantic rela-
tion always exists since, when holding together, more general and less general
relations are equivalent to equivalence. The semantics of the above relations are the
obvious set-theoretic semantics.

A mapping element is a 4-tuple 〈IDij, ai, bj, R〉, i =1,...,NA; j =1,...,NB where IDij is a
unique identifier of the given mapping element; ai is the i-th node of the first tree, NA
is the number of nodes in the first tree; bj is the j-th node of the second tree, NB is the
number of nodes in the second tree; and R specifies a semantic relation which may
hold between the concepts at nodes ai and bj. Semantic matching can then be defined
as the following problem: given two trees TA and TB compute the NA × NB mapping
elements 〈IDij, ai, bj, R′〉, with ai ∈ TA, i=1,..., NA; bj ∈ TB, j =1,..., NB; and R′ is the
strongest semantic relation holding between the concepts at nodes ai and bj. Since we
look for the NA × NB correspondences, the cardinality of mapping elements we are
able to determine is 1:N. Also, these, if necessary, can be decomposed straightfor-
wardly into mapping elements with the 1:1 cardinality.

Let us summarize the algorithm for semantic matching via a running example. We
consider small academic courses classifications shown in Figure 1.

Fig. 1. Parts of two classifications devoted to academic courses

2 Notice idk is an explicit statement that the system is unable to compute any of the declared

(four) relations. This should be interpreted as either there is not enough background knowl-
edge, and therefore, the system cannot explicitly compute any of the declared relations or, in-
deed, none of those relations hold according to an application.

4 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

Let us introduce some notation (see also Figure 1). Numbers are the unique identi-
fiers of nodes. We use “C” for concepts of labels and concepts at nodes. Thus, for ex-
ample, in the tree A, CHistory and C4 are, respectively, the concept of the label History
and the concept at node 4. Also, to simplify the presentation, whenever it is clear from
the context we assume that the concept of a label can be represented by the label it-
self. In this case, for example, CHistory becomes denoted as History. Finally, we some-
times use subscripts to distinguish between trees in which the given concept of a label
occurs. For instance, HistoryA, means that the concept of the label History belongs to
the tree A.

The algorithm takes as input two schemas and computes as output a set of map-
ping elements in four macro steps:

− Step 1: for all labels L in two trees, compute concepts of labels, CL.

− Step 2: for all nodes N in two trees, compute concepts at nodes, CN.

− Step 3: for all pairs of labels in two trees, compute relations among CL’s.

− Step 4: for all pairs of nodes in two trees, compute relations among CN’s.

The first two steps represent the preprocessing phase, while the third and the
fourth steps are the element level and structure level matching respectively3. It is im-
portant to notice that Step 1 and Step 2 can be done once, independently of the spe-
cific matching problem. Step 3 and Step 4 can only be done at run time, once the two
trees which must be matched have been chosen. We also refer in the remainder of the
paper to the element level matching (Step 3) as label matching and to the structure
level matching (Step 4) as node matching.

We view labels of nodes as concise descriptions of the data that is stored under the
nodes. During Step 1, we compute the meaning of a label at a node (in isolation) by
taking as input a label, by analyzing its real-world semantics (e.g., using WordNet
[37] 4), and by returning as output a concept of the label. Thus, for example, by writ-
ing CHistory we move from the natural language ambiguous label History to the concept
CHistory, which codifies explicitly its intended meaning, namely the data (documents)
which are about history.

During Step 2 we analyze the meaning of the positions that the labels of nodes
have in a tree. By doing this we extend concepts of labels to concepts at nodes. This is
required to capture the knowledge residing in the structure of a tree, namely the con-
text in which the given concept of label occurs [17]. Thus, for example, in the tree
A, when we write C4 we mean the concept describing all the documents of the
(academic) courses, which are about history.

Step 3 is concerned with acquisition of “world” knowledge. Relations between
concepts of labels are computed with the help of a library of element level semantic
matchers. These matchers take as input two concepts of labels and produce as output a

3 Element level matching (techniques) compute mapping elements by analyzing schema entities

in isolation, ignoring their relations with other entities. Structure-level techniques compute
mapping elements by analyzing how schema entities appear together in a structure, see for
more details [42,43].

4 WordNet is a lexical database for English. It is based on synsets (or senses), namely structures
containing sets of terms with synonymous meanings.

 Semantic Matching: Algorithms and Implementation 5

semantic relation (e.g., equivalence, more/less general) between them. For example,
from WordNet [37] we can derive that course and class are synonyms, and therefore,
CCourses = CClasses.

Step 4 is concerned with the computation of the relations between concepts at
nodes. This problem cannot be resolved by exploiting static knowledge sources only.
We have (from Step 3) background knowledge, codified as a set of relations between
concepts of labels occurring in two trees. This knowledge constitutes the background
theory (axioms) within which we reason. We need to find a semantic relation (e.g.,
equivalence, more/less general) between the concepts at any two nodes in two trees.
However, these are usually complex concepts obtained by suitably combining the cor-
responding concepts of labels. For example, suppose we want to find a relation be-
tween C4 in the tree A (which, intuitively, stands for the concept of courses of history)
and C4 in the tree B (which, intuitively, stands for the concept of classes of history). In
this case, we should realize that they have the same extension, and therefore, that they
are equivalent.

3 Step 1: Concepts of Labels Computation

Technically, the main goal of Step 1 is to automatically translate ambiguous natural
language labels taken from the schema elements’ names into an internal logical lan-
guage. We use a propositional description logic language5 (LC) for several reasons.
First, given its set-theoretic interpretation, it “maps” naturally to the real world se-
mantics. Second, natural language labels, e.g., in classifications, are usually short ex-
pressions or phrases having simple structure. These phrases can often be converted
into a formula in LC with no or little loss of meaning [18]. Third, a formula in LC can
be converted into an equivalent formula in a propositional logic language with boo-
lean semantics. Apart from the atomic propositions, the language LC includes logical
operators, such as conjunction (), disjunction (), and negation (¬). There are also
comparison operators, namely more general (), less general (), and equivalence
(=). The interpretation of these operators is the standard set-theoretic interpretation.

We compute concepts of labels according to the following four logical phases, be-
ing inspired by the work in [34].

1. Tokenization. Labels of nodes are parsed into tokens by a tokenizer which recog-
nizes punctuation, cases, digits, stop characters, etc. Thus, for instance, the label
History and Philosophy of Science becomes 〈history, and, philosophy, of, science〉.
The multiword concepts are then recognized. At the moment the list of all multi-
word concepts in WordNet [37] is exploited here together with a heuristic
which takes into account the natural language connectives, such as and, or, etc. For
example, Earth and Atmospheric Sciences becomes 〈earth sciences, and,

5A propositional description logic language (LC) we use here is the description logic ALC lan-
guage without the role constructor, see for more details [4]. Note, since we do not use roles, in
practice we straightforwardly translate the natural language labels into propositional logic
formulas.

6 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

atmospheric, sciences〉 since WordNet contains senses for earth sciences, but not
for atmospheric sciences.

2. Lemmatization. Tokens of labels are further lemmatized, namely they are morpho-
logically analyzed in order to find all their possible basic forms. Thus, for instance,
sciences is associated with its singular form, science. Also here we discard from
further considerations some pre-defined meaningless (in the sense of being useful
for matching) words, articles, numbers, and so on.

3. Building atomic concepts. WordNet is queried to obtain the senses of lemmas iden-
tified during the previous phase. For example, the label Sciences has the only one
token sciences, and one lemma science. From WordNet we find out that science
has two senses as a noun.

4. Building complex concepts. When existing, all tokens that are prepositions, punc-
tuation marks, conjunctions (or strings with similar roles) are translated into logical
connectives and used to build complex concepts out of the atomic concepts con-
structed in the previous phase. Thus, for instance, commas and conjunctions are
translated into logical disjunctions, prepositions, such as of and in, are translated
into logical conjunctions, and words like except, without are translated into nega-
tions. Thus, for example, the concept of label History and Philosophy of Science is
computed as CHistory and Philosophy of Science = (CHistory CPhilosophy) CScience, where
CScience = 〈science, {sensesWN#2}〉 is taken to be the union of two WordNet senses,
and similarly for history and philosophy. Notice that natural language and is con-
verted into logical disjunction, rather than into conjunction (see [34] for detailed
discussion and justification for this choice).

The result of Step 1 is the logical formula for concept of label. It is computed as a full
propositional formula were literals stand for atomic concepts of labels.

In Figure 2 we present the pseudo-code which provides an algorithmic account of
how concepts of labels are built. In particular, the buildCLab function takes the
tree of nodes context and constructs concepts of labels for each node in the tree.
The nodes are preprocessed in the main loop in lines 220-350. Within this loop, first,
the node label is obtained in line 240. Then, it is tokenized and lemmatized in lines
250 and 260, respectively. The (internal) loop on the lemmas of the node (lines 270-
340) starts from stop words test in line 280. Then, WordNet is queried. If the lemma
is in WordNet, its senses are extracted. In line 300, atomic concept of label is created
and attached to the node by the addACOLtoNode function. In the case when Word-
Net returns no senses for the lemma, the special identifier SENSES_NOT_FOUND is
attached to the atomic concept of label6. The propositional formula for the concept of
label is iteratively constructed by constructcLabFormula (line 340). Finally,
the logical formula is attached to the concept at label (line 350) and some sense filter-
ing is performed by elementLevelSenseFiltering7.

6 This identifier is further used by element level semantic matchers in Step 3 of the matching

algorithm in order to determine the fact that the label (lemma) under consideration is not con-
tained in WordNet, and therefore, there are no senses in WordNet for a given concept.

7 The sense filtering problem is also known under the name of word sense disambiguation
(WSD), see, e.g., [29].

 Semantic Matching: Algorithms and Implementation 7

Node struct of
 int nodeId;
 String label;
 String cLabel;
 String cNode;
 AtomicConceptAtLabel[] ACOLs;
AtomicConceptOfLabel struct of
 int id;
 String token;
 String[] wnSenses;
200. void buildCLab(Tree of Nodes context)
210. String[] wnSenses;
220. For each node in context
230. String cLabFormula=””;
240. String nodeLabel=getLabel(node);
250. String[] tokens=tokenize(nodeLabel);
260. String[] lemmas=lematize(tokens);
270. For each lemma in lemmas
280. if (isMeaningful(lemma))
290. if (!isInWordnet(lemma))
300. addACOLtoNode(node, lemma, SENSES_NOT_FOUND);
310. else
320. wnSenses= getWNSenses(token);
330. addACOLtoNode(node, lemma, wnSenses);
340. cLabFormula=constructcLabFormula(cLabFormula, lemma);
350. setcLabFormula(node, cLabFormula);
360. elementLevelSenseFiltering(node);

Fig. 2. Concept of label construction pseudo code

The pseudo code in Figure 3 illustrates the sense filtering technique. It is used in
order to filter out the irrelevant (for the given matching task) senses from concepts of
labels. In particular, we look whether the senses of atomic concepts of labels within
each concept of a label are connected by any relation in WordNet. If so, we discard all
other senses from atomic concept of label. Otherwise we keep all the senses. For ex-
ample, for the concept of label Sites and Monuments before the sense filtering step we
have 〈Sites, {sensesWN#4}〉 〈Monuments, {sensesWN#3}〉. Since the second sense of
monument is a hyponym of the first sense of site, notationally Monument#2 Site#1,
all the other senses are discarded. Therefore, as a result of this sense filtering step we
have 〈Sites, {sensesWN#1}〉 〈Monuments, {sensesWN#1}〉.
elementLevelSenseFiltering takes the node structure as input and dis-

cards the irrelevant senses from atomic concepts of labels within the node. In particu-
lar, it executes two loops on atomic concept of labels (lines 30-120 and 50-120).
WordNet senses for the concepts are acquired in lines 40 and 70. Then two loops on
the WordNet senses are executed in lines 80-120 and 90-120. Afterwards, checking
whether the senses are connected by a WordNet relation is performed in line 100. If
so, the senses are added to a special set, called refined senses set (lines 110, 120). Fi-
nally, the WordNet senses are replaced with the refined senses by saveRefined-
Senses.

8 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

10.void elementLevelSenseFiltering(Node node)
20. AtomicConceptOfLabel[] nodeACOLs=getACOLs(node);
30. for each nodeACOL in nodeACOLs
40. String[] nodeWNSenses=getWNSenses(nodeACOL);
50. for each ACOL in nodeACOLs
60. if (ACOL!=nodeACOL)
70. String[] wnSenses=getWNSenses(ACOL);
80. for each nodeWNSense in nodeWNSenses
90. for each wnSense in wnSenses
100. if (isConnectedbyWN(nodeWNSense, focusNodeWNSense))
110. addToRefinedSenses(nodeACOL,nodeWNSense);
120. addToRefinedSenses(focusNodeACOL, focusNodeWNSense);
130. saveRefinedSenses(context);

140. void saveRefinedSenses(context)
150. for each node in context
160. AtomicConceptOfLabel[] nodeACOLs=getACOLs(node);
170. for each nodeACOL in NodeACOLs
180. if (hasRefinedSenses(nodeACOL))
190. //replace original senses with refined

Fig. 3. The pseudo code of element level sense filtering technique

4 Step 2: Concepts at Nodes Computation

Concepts at nodes are written in the same propositional description logic language as
concepts of labels. Classifications and XML schemas are hierarchical structures
where the path from the root to a node uniquely identifies that node (and also its
meaning). Thus, following an access criterion semantics [26], the logical formula for
a concept at node is defined as a conjunction of concepts of labels located in the path
from the given node to the root. For example, in the tree A, the concept at node four is
computed as follows: C4 = CCourses CHistory.

Further in the paper we require the concepts at nodes to be consistent (satisfiable).
The reasons for their inconsistency are negations in atomic concepts of labels. For ex-
ample, natural language label except_geology is translated into the following logical
formula Cexcept_geology =¬Cgeology. Therefore, there can be a concept at node represented
by a formula of the following type Cgeology … ¬ Cgeology, which is inconsistent. In
this case the user is notified that the concept at node formula is unsatisfiable and
asked to decide a more important branch, i.e., (s)he can choose what to delete from
the tree, namely Cgeology or Cexcept_geology. Notice that this does not sacrifice the system
performance since this check is made within the preprocessing (i.e., off-line, when the
tree is edited)8. Let us consider the following example: CN = … CMedieval CModern.
Here, concept at node formula contains two concepts of labels, which are as from
WordNet disjoint. Intuitively, this means that the context talks about either Medieval
or Modern (or there is implicit disjunction in the concept at node formula). Therefore,

8 In general case the reasoning is as costly as in the case of propositional logic (i.e., deciding

unsatisfiability of the concept is co-NP hard). In many real world cases (see [25] for more de-
tails) the corresponding formula is Horn. Thus, its satisfiability can be decided in linear time.

 Semantic Matching: Algorithms and Implementation 9

in such cases, the formula for concept at node is rewritten in the following way:
CN =(CMedieval CModern) ...

The pseudo code of the second step is presented in Figure 4. The buildCNode
function takes as an input the tree of nodes with precomputed concepts of labels and
computes as output the concept at node for each node in the tree. The sense filtering
(line 620) is performed by structureLevelSenseFiltering in the way simi-
lar to the sense filtering approach used at the element level (as discussed in Figure 3).
Then, the formula for the concept at node is constructed within buildcNodeFor-
mula as conjunction of concepts of labels attached to the nodes in the path to the
root. Finally, the formula is checked for unsatisfiability (line 640). If so, user is asked
about the possible modifications in the tree structure or they are applied automati-
cally, specifically implicit disjunctions are added between disjoint concepts
(line 650).

600. void buildCNode(Tree of Node context)
610. for each node in context
620. structureLevelSenseFiltering (node,context);
630. String cNodeFormula= buildcNodeFormula (node, context);
640. if (isUnsatisifiable(cNodeFormula))
650. updateFormula(cNodeFormula);

Fig. 4. Concepts at nodes construction pseudo code

Let us discuss how the structure level sense filtering operates. As noticed before,
this technique is similar to the one described in Figure 3. The major difference is that
the senses now are filtered not within the node label but within the tree structure. For
all concepts of labels we collect all their ancestors and descendants. We call them a
focus set. Then, all WordNet senses of atomic concepts of labels from the focus set
are compared with the senses of the atomic concepts of labels of the concept. If a
sense of atomic concept of label is connected by a WordNet relation with the sense
taken from the focus set, then all other senses of these atomic concepts of labels are
discarded. Therefore, as a result of sense filtering step we have (i) the WordNet
senses which are connected with any other WordNet senses in the focus set or (ii) all
the WordNet senses otherwise. After this step the meaning of concept of labels is rec-
onciled with respect to the knowledge residing in the tree structure. The pseudo code
in Figure 5 provides an algorithmic account of the structure level sense filtering
procedure.

The structureLevelSenseFiltering function takes a node and a tree of
nodes as input and refines the WordNet senses within atomic concepts of labels in the
node with respect to the tree structure. First, atomic concepts at labels from the ances-
tor and descendant nodes are gathered into the focus set (line 420). Then, a search for
pairwise relations between the senses attached to the atomic concepts of labels is per-
formed (lines 440-520). These senses are added to the refined senses set (lines 530-
540) and further saveRefinedSenses from Figure 3 is applied (line 550) in order
to save the refined senses.

10 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

400.void structureLevelSenseFiltering (Node node, Tree of Nodes context)
410. AtomicConceptOfLabel[] focusNodeACOLs;
420. Node[] focusNodes=getFocusNodes(node, context);
430. AtomicConceptOfLabel[] nodeACOLs=getACOLs(node);
440. for each nodeACOL in nodeACOLss
450. String[] nodeWNSenses=getWNSenses(nodeACOL);
460. for each nodeWNSense in nodeWNSenses
470. for each focusNode in focusNodes
480. focusNodeACOLs=getACOLs(focusNode);
490. for each focusNodeACOL in focusNodeACOLs
500. String[] fNodeWNSenses=getWNSenses(focusNodeACOL);
510. for each fNodeWNSense in nodeWNSenses
520. if (isConnectedbyWN(nodeWNSense, fNodeWNSense))
530. addToRefinedSenses(nodeACOL,nodeWNSense);
540. addToRefinedSenses(focusNodeACOL, focusNodeWNSense);
550. saveRefinedSenses(context);

Fig. 5. The pseudo code of structure level sense filtering technique

5 Step 3: Label Matching

5.1 A Library of Label Matchers

Relations between concepts of labels are computed with the help of a library of ele-
ment level semantic matchers [24]. These matchers take as input two atomic concepts
of labels and produce as output a semantic relation between them. Some of them are
re-implementations of well-known matchers used in Cupid [32] and COMA [11]. The
most important difference is that our matchers ultimately return a semantic relation,
rather than an affinity level in the [0,1] range, although sometimes using customizable
thresholds.

Our label matchers are briefly summarized in Table 1. The first column contains
the names of the matchers. The second column lists the order in which they are exe-
cuted. The third column introduces the matchers’ approximation level. The relations
produced by a matcher with the first approximation level are always correct. For ex-
ample, name brand as returned by WordNet. In fact, according to WordNet name is
a hypernym (superordinate word) of brand. Notice that name has 15 senses and brand
has 9 senses in WordNet. We use sense filtering techniques to discard the irrelevant
senses, see Sections 3 and 4 for details. The relations produced by a matcher with the
second approximation level are likely to be correct (e.g., net = network, but hot = ho-
tel by Prefix). The relations produced by a matcher with the third approximation level
depend heavily on the context of the matching task (e.g., cat = dog by Extended gloss
comparison in the sense that they are both pets). Note, matchers by default are exe-
cuted following the order of increasing approximation level. The fourth column
reports the matchers’ type. The fifth column describes the matchers’ input.

We have three main categories of matchers: string-, sense- and gloss- based match-
ers. String-based matchers exploit string comparison techniques in order to produce the
semantic relation, while sense-based exploit the structural properties of the WordNet
hierarchies and gloss-based compare two textual descriptions (glosses) of WordNet
senses. Below, we discuss in detail some matchers from each of these categories.

 Semantic Matching: Algorithms and Implementation 11

Table 1. Element level semantic matchers implemented so far

Matcher name Execution
Order

Approximation
level

Matcher type Schema info

Prefix 2 2
Suffix 3 2

Edit distance 4 2
N-gram 5 2

Labels

Text Corpus 13 3

String-based

Labels + Corpus
WordNet 1 1

Hierarchy distance 6 3
Sense-based WordNet senses

WordNet Gloss 7 3
Extended WordNet Gloss 8 3

Gloss Comparison 9 3
Extended Gloss Comparison 10 3
Semantic Gloss Comparison 11 3

Extended semantic gloss com-
parison

12 3

Gloss-based WordNet senses

5.1.1 Sense-Based Matchers
We have two sense-based matchers. Let us discuss how the WordNet matcher works.
As it was already mentioned, WordNet [37] is based on synsets (or senses), namely
structures containing sets of terms with synonymous meanings. For example, the
words night, nighttime and dark constitute a single synset. Synsets are connected to
one another through explicit (lexical) semantic relations. Some of these relations (hy-
pernymy, hyponymy for nouns and hypernymy and troponymy for verbs) constitute
kind-of and part-of (holonymy and meronymy for nouns) hierarchies. For instance,
tree is a kind of plant. Thus, tree is hyponym of plant and plant is hypernym of tree.
Analogously, from trunk being a part of tree we have that trunk is meronym of tree
and tree is holonym of trunk.

The WordNet matcher translates the relations provided by WordNet to semantic re-
lations according to the following rules:

- A B, if A is a hyponym, meronym or troponym of B;
- A B, if A is a hypernym or holonym of B;
- A = B, if they are connected by synonymy relation or they belong to one synset

(night and nighttime from the example above);
- A ⊥ B, if they are connected by antonymy relation or they are the siblings in the

part of hierarchy.

5.1.2 String-Based Matchers
We have five string-based matchers. Let us discuss how the Edit distance matcher
works. It calculates the number of simple editing operations (delete, insert and
replace) over the label’s characters needed to transform one string into another, nor-
malized by the length of the longest string. The result is a value in [0,1]. If the value
exceeds a given threshold (0.6 by default) the equivalence relation is returned, other-
wise, Idk is produced.

12 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

5.1.3 Gloss-Based Matchers
We have six gloss-based matchers. Let us discuss how the Gloss comparison matcher
works. The basic idea behind this matcher is that the number of the same words oc-
curring in the two WordNet glosses increases the similarity value. The equivalence re-
lation is returned if the number of shared words exceeds a given threshold (e.g., 3).
Idk is produced otherwise. For example, suppose we want to match Afghan hound and
Maltese dog using the gloss comparison strategy. Notice, although these two concepts
are breeds of dog, WordNet does not have a direct lexical relation between them, thus
the WordNet matcher would fail in this case. However, the glosses of both concepts
are very similar. Maltese dog is defined as a breed of toy dogs having a long straight
silky white coat. Afghan hound is defined as a tall graceful breed of hound with a long
silky coat; native to the Near East. There are 4 shared words in both glosses, namely
breed, long, silky, coat. Hence, the two concepts are taken to be equivalent.

5.2 The Label Matching Algorithm

The pseudo code implementing Step 3 is presented in Figure 6. The label matching
algorithm produces (with the help of matchers of Table 1) a matrix of relations be-
tween all the pairs of atomic concepts of labels from both trees.

700. String[][] fillCLabMatrix(Tree of Nodes source,target);
710. String[][]cLabsMatrix;
720. String[] matchers;
730. int i,j;
740. matchers=getMatchers();
750. for each sourceAtomicConceptOfLabel in source
760. i=getACoLID(sourceAtomicConceptOfLabel);
770. for each targetAtomicConceptOfLabel in target
780. j= getACoLID(targetAtomicConceptOfLabel);
790. cLabsMatrix[i][j]=getRelation(matchers,
 sourceAtomicConceptOfLabel,targetAtomicConceptOfLabel);
795. return cLabsMatrix
800. String getRelation(String[] matchers,
 AtomicConceptOfLabel source, target)
810. String matcher;
820. String relation=”Idk”;
830. int i=0;
840. while ((i<sizeof(matchers))&&(relation==”Idk”))
850. matcher= matchers[i];
860. relation=executeMatcher(matcher,source,target);
870. i++;
880. return relation;

Fig. 6. Label matching pseudo code

fillCLabMatrix takes as input two trees of nodes. It produces as output the
matrix of semantic relations holding between the atomic concepts of labels in both
trees. First, the element level matchers of Table 1, which are to be executed (based on
the configuration settings), are acquired in line 740. Then, for each pair of atomic
concepts of labels in both trees, semantic relations holding between them are deter-
mined by using the getRelation function (line 790).

 Semantic Matching: Algorithms and Implementation 13

getRelation takes as input an array of matchers and two atomic concepts of
labels. It returns the semantic relation holding between this pair of atomic concepts of
labels according to the element level matchers. These label matchers are executed
(line 860) until the semantic relation different from Idk is produced. Notice that exe-
cution order is defined by the matchers array.

The result of Step 3 is a matrix of the relations holding between atomic concepts of
labels. A part of this matrix for the example in Figure 1 is shown in Table 2.

Table 2. cLabsMatrix: matrix of relations among the atomic concepts of labels

 Classes History Modern Europe

Courses = idk idk idk
History idk = idk idk

Medieval idk idk ⊥ idk
Asia idk idk idk ⊥

6 Step 4: Node Matching

During this step, we initially reformulate the tree matching problem into a set of node
matching problems (one problem for each pair of nodes). Finally, we translate each
node matching problem into a propositional validity problem. Let us first discuss in
detail the tree matching algorithm. Then, we consider the node matching algorithm.

6.1 The Tree Matching Algorithm

The tree matching algorithm is concerned with decomposition of the tree matching
task into a set of node matching tasks. It takes as input two preprocessed trees ob-
tained as a result of Steps 1,2 and a matrix of semantic relations holding between the
atomic concepts of labels in both trees obtained as a result of Step 3. It produces as
output the matrix of semantic relations holding between concepts at nodes in both
trees. The pseudo code in Figure 7 illustrates the tree matching algorithm.

900.String[][] treeMatch(Tree of Nodes source, target, String[][]
cLabsMatrix)
910. Node sourceNode,targetNode;
920. String[][]cNodesMatrix, relMatrix;
930. String axioms, contextA, contextB;
940. int i,j;
960. For each sourceNode in source
970. i=getNodeId(sourceNode);
980. contextA=getCnodeFormula (sourceNode);
990. For each targetNode in target
1000. j=getNodeId(targetNode);
1010. contextB=getCnodeFormula (targetNode);
1020. relMatrix=extractRelMatrix(cLabsMatrix, sourceNode,
 targetNode);
1030. axioms=mkAxioms(relMatrix);
1040. cNodesMatrix[i][j]=nodeMatch(axioms,contextA,contextB);
1050. return cNodesMatrix;

Fig. 7. The pseudo code of the tree matching algorithm

A B

14 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

treeMatch takes two trees of Nodes (source and target) and the matrix of
relations holding between atomic concepts of labels (cLabsMatrix) as input. It
starts from two loops over all the nodes of source and target trees in lines 960-1040
and 990-1040. The node matching problems are constructed within these loops. For
each node matching problem we take a pair of propositional formulas encoding con-
cepts at nodes and relevant relations holding between the atomic concepts of labels
using the getCnodeFormula and extractRelMatrix functions respectively.
The former are memorized as contextA and contextB in lines 980 and 1010. The
latter are memorized in relMatrix in line 1020. In order to reason about relations
between concepts at nodes, we build the premises (axioms) in line 1030. These are a
conjunction of the concepts of labels which are related in relMatrix. For example,
the semantic relations in Table 2, which are considered when we match C4 in the tree
A and C4 in the tree B are ClassesB = CoursesA and HistoryB = HistoryA. In this case
axioms is (ClassesB ↔ CoursesA)∧(HistoryB ↔ HistoryA). Finally, in line 1040, the
semantic relations holding between the concepts at nodes are calculated by node-
Match and are reported as a bidimensional array (cNodesMatrix). A part of this
matrix for the example in Figure 1 is shown in Table 3.

Table 3. cNodesMatrix: matrix of relations among the concepts at nodes (matching result)

 C1 C4 C14 C17

C1 =
C4 =
C12 ⊥ ⊥
C16 ⊥ ⊥

6.2 The Node Matching Algorithm

Each node matching problem is converted into a propositional validity problem. Se-
mantic relations are translated into propositional connectives using the rules described
in Table 4 (second column).

Table 4. The relationship between semantic relations and propositional formulas

The criterion for determining whether a relation holds between concepts of nodes is
the fact that it is entailed by the premises. Thus, we have to prove that the following
formula:

 (axioms) → rel(contextA , contextB), (1)

A B

 Semantic Matching: Algorithms and Implementation 15

is valid, namely that it is true for all the truth assignments of all the propositional
variables occurring in it. axioms, contextA, and contextB are as defined in the tree
matching algorithm. rel is the semantic relation that we want to prove holding be-
tween contextA and contextB. The algorithm checks the validity of Eq. 1 by proving
that its negation, i.e., Eq. 2, is unsatisfiable.

axioms ∧¬ rel(contextA , contextB) (2)

Table 4 (third column) describes how Eq. 2 is translated before testing each seman-
tic relation. Notice that Eq. 2 is in Conjunctive Normal Form (CNF), namely it is a
conjunction of disjunctions of atomic formulas. The check for equivalence is omitted
in Table 4, since A=B holds if and only if A B and A B hold, i.e., both axi-
oms∧contextA∧¬contextB and axioms∧contextB∧¬contextA are unsatisfiable formulas.

We assume the labels of nodes and the knowledge derived from element level se-
mantic matchers to be all globally consistent. Under this assumption the only reason
why we get an unsatisfiable formula is because we have found a match between two
nodes. In fact, axioms cannot be inconsistent by construction. Consistency of contextA
and contextB is checked in the preprocessing phase (see, Section 4 for details). How-
ever, axioms and contexts (for example, axioms∧contextA) can be mutually inconsis-
tent. The situation occurs, for example, when axioms entails negation of the variable
occurring in the context. In this case, the concepts at nodes are disjoint. In order to
guarantee the correct behavior of the algorithm we perform the disjointness test first.
It does not influence the algorithm correctness in general but allow us to obtain the
correct result in this special case.

Let us consider the pseudo code of a basic node matching algorithm, see Figure 8.
In line 1110, nodeMatch constructs the formula for testing disjointness. In line
1120, it converts the formula into CNF, while in line 1130 it checks the CNF formula
for unsatisfiability. If the formula is unsatisfiable the disjointness relation is returned.

1100.String nodeMatch(String axioms, contextA, contextB)
1110. formula= And(axioms, contextA, contextB);
1120. formulaInCNF=convertToCNF(formula);
1130. boolean isOpposite= isUnsatisfiable(formulaInCNF);
1140. if (isOpposite)
1150. return “ ”;
1160. String formula=And(axioms,contextA,Not(contextB));
1170. String formulaInCNF=convertToCNF(formula);
1180. boolean isLG=isUnsatisfiable(formulaInCNF)
1190. formula=And(axioms, Not(contextA), contextB);
1200. formulaInCNF=convertToCNF(formula);
1210. boolean isMG= isUnsatisfiable(formulaInCNF);
1220. if (isMG && isLG)

1230. return “=”;
1240. if (isLG)
1250. return “ ”;
1260. if (isMG)
1270. return “ ”;
1280. return “Idk”;

Fig. 8. The pseudo code of the node matching algorithm

16 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

Then, the process is repeated for the less and more general relations. If both rela-
tions hold, then the equivalence relation is returned (line 1220). If all the tests fail, the
idk relation is returned (line 1280). In order to check the unsatisfiability of a proposi-
tional formula in a basic version of our NodeMatch algorithm we use the standard
DPLL-based SAT solver [31].

From the example in Figure 1, trying to prove that C4 in the tree B is less general
than C4 in the tree A, requires constructing the following formula:

((ClassesB ↔ CoursesA)∧(HistoryB ↔ HistoryA)) ∧

(ClassesB∧HistoryB) ∧¬ (CoursesA∧HistoryA)

The above formula turns out to be unsatisfiable, and therefore, the less general re-
lation holds. Notice, if we test for the more general relation between the same pair of
concepts at nodes, the corresponding formula would be also unsatisfiable. Thus, the
final relation retuned by the NodeMatch algorithm for the given pair of concepts at
nodes is the equivalence.

7 Semantic Matching with Attributes

So far we have focused on classifications, which are simple class hierarchies. If we
deal with, e.g., XML schemas, their elements may have attributes, see Figure 9.

Fig. 9. Two simple XML schemas

Attributes are 〈attribute−name, type〉 pairs associated with elements. Names for the
attributes are usually chosen such that they describe the roles played by the domains
in order to ease distinguishing between their different uses. For example, in the tree A,
the attributes PID and Name are defined on the same domain string, but their intended
use are the internal (unique) product identification and representation of the official
products’ names, respectively. There are no strict rules telling us when data should be
represented as elements, or as attributes, and obviously there is always more than one
way to encode the same data. For example, in the tree A, PIDs are encoded as strings,
while in the tree B, IDs are encoded as ints. However, both attributes serve for the
same purpose of the unique products’ identification. These observations suggest two
possible ways to perform semantic matching with attributes: (i) taking into account
datatypes, and (ii) ignoring datatypes.

The semantic matching approach is based on the idea of matching concepts, not
their direct physical implementations, such as elements or attributes. If names of at-
tributes and elements are abstract entities, therefore, they allow for building arbitrary

 Semantic Matching: Algorithms and Implementation 17

concepts out of them. Instead, datatypes, being concrete entities, are limited in this
sense. Thus, a plausible way to match attributes using the semantic matching ap-
proach is to discard the information about datatypes. In order to support this claim, let
us consider both cases in turn.

7.1 Exploiting Datatypes

In order to reason with datatypes we have created a datatype ontology, OD, specified
in OWL [45]. It describes the most often used XML schema built-in datatypes and re-
lations between them. The backbone taxonomy of OD is based on the following rule:
the is-a relationship holds between two datatypes if and only if their value spaces are
related by set inclusion. Some examples of axioms of OD are: float double, int ⊥
string, anyURI string, and so on. Let us discuss how datatypes are plugged within
the four macro steps of the algorithm.

Steps 1,2. Compute concepts of labels and nodes. In order to handle attributes, we ex-
tend propositional description logics with the quantification construct and datatypes.
Thus, we compute concepts of labels and concepts at nodes as formulas in the de-
scription logics ALC(D) language [38]. For example, in the tree A in Figure 9, C4,
namely, the concept at node describing all the string data instances which are the
names of electronic photography products is encoded as follows: ElectronicsA
(PhotoA CamerasA) ∃NameA.string.

Step 3. Compute relations among concepts of labels. In this step we extend our library
of element level matchers by adding a Datatype matcher. It takes as input two
datatypes, it queries OD and retrieves a semantic relation between them. For example,
from axioms of OD, the Datatype matcher can learn that float double, and so on.

Step 4. Compute relations among concepts at nodes. In the case of attributes, the node
matching problem is translated into an ALC(D) formula, which is further checked for
its unsatisfiability using sound and complete procedures. Notice that in this case we
have to test for modal satisfiability, not propositional satisfiability. The system we use
is Racer [27]. From the example in Figure 9, trying to prove that C7 in the tree B is
less general than C6 in the tree A, requires constructing the following formula:

((ElectronicsA=ElectronicsB) (PhotoA=PhotoB)

 (CamerasA=CamerasB) (PriceA=PriceB) (float double))

(ElectronicsB (CamerasB PhotoB) ∃PriceB.float) ¬

(ElectronicsA (PhotoA CamerasA) ∃PriceA.double)

It turns out that the above formula is unsatisfiable. Therefore, C7 in the tree B is
less general than C6 in the tree A. However, this result is not what the user expects. In
fact, both C6 in the tree A and C7 in the tree B describe prices of electronic products,
which are photo cameras. The storage format of prices in A and B (i.e., double and
float respectively) is not an issue at this level of detail.

Thus, another semantic solution of taking into account datatypes would be to build
abstractions out of the datatypes, e.g., float, double, decimal should be abstracted to
type numeric, while token, name, normalizedString should be abstracted to type string,

18 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

and so on. However, even such abstractions do not improve the situation, since we
may have, for example, an ID of type numeric in the first schema, and a conceptually
equivalent ID, but of type string, in the second schema. If we continue building such
abstractions, we result in having that numeric is equivalent to string in the sense that
they are both datatypes.

The last observation suggests that for the semantic matching approach to be cor-
rect, we should assume that all the datatypes are equivalent. Technically, in order to
implement this assumption, we should add corresponding axioms (e.g., float = double)
to the premises of Eq. 1. On the one hand, with respect to the case of not considering
datatypes (see, Section 7.2), such axioms do not affect the matching result from the
quality viewpoint. On the other hand, datatypes make the matching problem computa-
tionally more expensive by requiring to handle the quantification construct.

7.2 Ignoring Datatypes

In this case, information about datatypes is discarded. For example, 〈Name, string〉 be-
comes Name. Then, the semantic matching algorithm builds concepts of labels out of
attributes’ names in the same way as it does in the case of elements’ names, and so on.
Finally, it computes mapping elements using the algorithm of Section 6. A part of the
cNodesMatrix with relations holding between attributes for the example in Figure 9 is
presented in Table 5. Notice that this solution allows a mappings’ computation not
only between the attributes, but also between attributes and elements.

Table 5. Attributes: the matrix of semantic relations holding between concepts of nodes (the
matching result) for Figure 9

The task of determining mappings typically represents a first step towards the ulti-
mate goal of, for example, data translation, query mediation, agent communication,
and so on. Although information about datatypes will be necessary for accomplishing
an ultimate goal, we do not discuss this issue any further since in this paper we con-
centrate only on the mappings discovery task.

8 Efficient Semantic Matching

The node matching problem in semantic matching is a CO-NP hard problem, since it
is reduced to the validity problem for the propositional calculus. In this section we
present a set of optimizations for the node matching algorithm. In particular, we show
that when dealing with conjunctive concepts at nodes, i.e., the concept at node is a

 Semantic Matching: Algorithms and Implementation 19

conjunction (e.g., C7 in the tree A in Figure 1 is defined as AsianA LanguagesA), the
node matching tasks can be solved in linear time. When we have disjunctive concepts
at nodes, i.e., the concept at node contains both conjunctions and disjunctions in any
order (e.g., C3 in the tree B in Figure 1 is defined as CollegeB (ArtsB SciencesB)), we
use techniques allowing us to avoid the exponential space explosion which arises due
to the conversion of disjunctive formulas into CNF. This modification is required
since all state of the art SAT deciders take CNF formulas in input.

8.1 Conjunctive Concepts at Nodes

Let us make some observations with respect to Table 4 (Section 6.2). The first obser-
vation is that the axioms part remains the same for all the tests, and it contains only
clauses with two variables. In the worst case, it contains 2×nA×nB clauses, where nA
and nB are the number of atomic concepts of labels occurred in contextA and contextB,
respectively. The second observation is that the formulas for testing less and more
general relations are very similar and they differ only in the negated context formula
(e.g., in the test for less general relation contextB is negated). This means that Eq. 2
contains one clause with nB variables plus nA clauses with one variable. In the case of
disjointness test contextA and contextB are not negated. Therefore, formula Eq. 2 con-
tains nA + nB clauses with one variable.

8.1.1 The Node Matching Problem by an Example
Let us suppose that we want to match C16 in the tree A and C17 in the tree B in
Figure 1. The relevant semantic relations between atomic concepts of labels are
presented in Table 2. Thus, axioms is as follows:

(courseA↔classB)∧(historyA↔historyB) ∧

¬(medievalA∧modernB)∧ ¬(asiaA∧europeB)
(3)

which, when translated in CNF, becomes:

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧

(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB) ∧ (¬asiaA∨¬europeB)
(4)

As from Step 2, contextA and contextB are constructed by taking the conjunction of
the concepts of labels in the path from the node under consideration to the root.
Therefore, contextA and contextB are:

courseA∧historyA∧medievalA∧asiaA (5)

classB∧historyB∧modernB∧europeB (6)

while their negations are:

¬courseA∨¬historyA∨¬medievalA ∨¬asiaA (7)

¬classB∨¬historyB∨¬modernB∨¬europeB (8)

20 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

So far we have concentrated on atomic concepts of labels. The propositional for-
mulas remain structurally the same if we move to conjunctive concepts at labels. Let
consider the following example:

Fig. 10. Two simple classifications (obtained by modifying, pruning the example in Figure 1)

Suppose we want to match C2 in the tree A and C2 in the tree B in Figure 10. Axi-
oms required for this matching task are as follows: (courseA↔classB)∧
(historyA↔historyB)∧(medievalA⊥modernB)∧(asiaA⊥europeB). If we compare them
with those of Eq. 3 and Eq.4, which represent axioms for the above considered exam-
ple in Figure 1, we find out that they are the same. Furthermore, as from Step 2, the
propositional formulas for contextA and contextB are the same for atomic and for con-
junctive concepts of labels as long as they “globally” contain the same formulas. In
fact, concepts at nodes are constructed by taking the conjunction of concepts at labels.
Splitting a concept of a label with two conjuncts into two atomic concepts has no ef-
fect on the resulting matching formula. The matching result for the matching tasks in
Figure 10 is presented in Table 6.

Table 6. The matrix of relations between concepts at nodes (matching result) for Figure 10

8.1.2 Optimizations
Tests for less and more general relations. Using the observations in the beginning
of Section 8.1 concerning Table 4, Eq. 2, with respect to the tests for less/more
general relations, can be represented as follows:

(9)

where n is the number of variables in contextA, m is the number of variables in con-
textB. The Ai’s belong to contextA, and the Bj’s belong to contextB. s, k, p are in the
[0..n] range, while t, l, r are in the [0..m] range. q, w and v define the number of par-
ticular clauses. Axioms can be empty. Eq. 9 is composed of clauses with one or two
variables plus one clause with possibly more variables (the clause corresponding to
the negated context). The key observation is that the formula in Eq. 9 is Horn, i.e.,
each clause contains at most one positive literal. Therefore, its satisfiability can be de-
cided in linear time by the unit resolution rule [9]. Notice, that DPLL-based SAT
solvers require quadratic time in this case [47].

 Semantic Matching: Algorithms and Implementation 21

In order to understand how the linear time algorithm works, let us prove the unsat-
isfiability of Eq. 9 in the case of matching C16 in the tree A and C17 in the tree B in
Figure 1. In this case, Eq. 9 is as follows:

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧

 (historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧

courseA∧historyA∧medievalA ∧asiaA ∧

(¬classB∨¬historyB∨¬modernB∨¬europeB)

(10)

In Eq.10, the variables from contextA are written in bold face. First, we assign true to
all unit clauses occurring in Eq. 10 positively. Notice these are all and only the
clauses in contextA. This allows us to discard the clauses where contextA variables oc-
cur positively (in this case: courseA∨¬classB, historyA∨¬historyB). The resulting
formula is as follows:

classB∧historyB∧¬modernB∧¬europeB∧
(¬classB∨¬historyB∨¬modernB∨¬europeB)

(11)

Eq. 11 does not contain any variable derived from contextA. Notice that, by assign-
ing true to classB, historyB and false to modernB, europeB we do not derive a contra-
diction. Therefore, Eq. 10 is satisfiable. In fact, a (Horn) formula is unsatisfiable if
and only if the empty clause is derived (and it is satisfiable otherwise).

Let us consider again Eq. 11. For this formula to be unsatisfiable, all the variables
occurring in the negation of contextB (¬classB∨¬historyB∨¬modernB∨¬europeB in
our example) should occur positively in the unit clauses obtained after resolving axi-
oms with the unit clauses in contextA (classB and historyB in our example). For this to
happen, for any Bj in contextB there must be a clause of form ¬Ai∨Bj in axioms, where
Ai is a formula of contextA. Formulas of the form ¬Ai∨Bj occur in Eq. 9 if and only if
we have the axioms of form A = Bj and Ai Bj. These considerations suggest the fol-
lowing algorithm for testing satisfiability:

− Step 1. Create an array of size m. Each entry in the array stands for one Bj in Eq. 9.

− Step 2. For each axiom of type Ai=Bj and Ai Bj mark the corresponding Bj.

− Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.

To complete the analysis, let us now suppose that we have not “europe”, but “ex-
cept europe” as a node of the tree depicted in Figure 1. This means that contextB con-
tains the negated variable ¬europeB. Eq. 10 in this case is rewritten as follows:

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧

courseA∧historyA∧medievalA ∧asiaA ∧
(¬classB∨¬historyB∨¬modernB∨europeB)

(12)

Suppose that we have replaced all the occurrences of ¬europeB and europeB in the
formula with europenB and ¬europenB respectively. In fact, we replace the variable
with the new one which represents its negation. Notice that this replacement does not
change the satisfiability properties of the formula. Truth assignment satisfying the
new formula will satisfy the original formula after inverting the truth value of the new

22 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

variable (europenB in our example). Notice also that the replacement changed the
clause with europeB variable in axioms (¬asiaA∨europenB in Eq. 13).

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨europenB)∧

courseA∧historyA∧medievalA∧asiaA ∧
(¬classB∨¬historyB∨¬modernB∨¬europenB)

(13)

Let us assign to true the unit clauses occurring in Eq. 13 positively. This allows us to
discard a number of clauses. A simplified formula is depicted as Eq. 14.

classB∧historyB∧¬modernB∧europeB∧
(¬classB∨¬historyB∨¬modernB∨¬europenB)

(14)

This formula is satisfiable by assigning classB, historyB, europeB to true and mod-
ernB to false. Therefore, less general relation does not hold between the concept at
node Asia and the concept at node Except Europe.

In order to construct an optimized algorithm for determining satisfiability of Eq. 13
let us compare Eq. 10 and Eq. 13. The parts of the formula representing contexts are
the same. The differences are in axioms part of the formula and they are introduced
by a variable replacement. Let us analyze how the replacement of the variable with its
negations influences various classes of clauses in axioms, see Table 7.

Table 7. The correspondence between axioms and clauses

Let us concentrate on three classes of propositional clauses depicted in the second row
of Table 7. As from Eq. 9, we have only these classes of clauses in axioms. The axioms
from which the particular class of clauses can be derived are described in the first col-
umn. Rows 2-5 demonstrate how the replacement of variables with its negation influ-
ences the clause. The first observation from Table 7 is that the new class of clauses
(Ai∨Bj) is introduced in axioms. The variables derived from both contextA and contextB
occur in these clauses positively. This means that the clauses of form Ai∨Bj are discarded
from the formula after unit propagation and cannot influence its satisfiability properties.
The second observation is that all other clauses in Eq. 13 belong to the same classes as
ones in Eq. 10. Therefore, the general observation made for Eq. 10 (namely, the formula
is satisfiable if and only if there are clauses ¬Ai∨Bj in axioms for any Bj in contextB) holds
for Eq. 13. As from Table 7, we have the clauses ¬Ai∨Bj in Eq. 13 in three cases:

− There are axioms Ai = Bj and Ai Bj, where Ai and Bj occur in contexts of the
original formula positively.

 Semantic Matching: Algorithms and Implementation 23

− There are axioms Ai = Bj and Bj Ai, where Ai and Bj occur in contexts of the
original formula negatively.

− There are axioms Ai⊥Bj, where Ai occurs in contextA of the original formula
positively and Bj occurs in contextB of the original formula negatively.

These considerations suggest the following algorithm for testing the satisfiability (no-
tice Step1 and Step 3 remain the same as in the previous version):

− Step 1. Create an array of size m. Each entry in the array stands for one Bj in Eq. 9.
− Step 2a. If Ai and Bj occur positively in contextA and contextB respectively, for each

axiom Ai=Bj and Ai Bj mark the corresponding Bj.
− Step 2b. If Ai and Bj occur negatively in contextA and contextB respectively, for each

axiom Ai=Bj and Bj Ai mark the corresponding Bj.
− Step 2c. If Bj occurs negatively in contextB and Ai occurs positively in contextA for

each axiom Ai⊥Bj mark the corresponding Bj.
− Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.

The pseudo code of the optimized algorithm is presented in Figure 11.

1155. if (contextA and contextB are conjunctive)
1156. isLG=fastHornUnsatCheck (contextA, contextB, axioms,“ ”);
1157. isMG=fastHornUnsatCheck (contextB, contextA, axioms,“ ”,“ ”);
1158. else

1500.boolean fastHornUnsatCheck(String context, neg_context, axioms,
rel, neg_rel)

1510. int m=getNumOfVar(String neg_context);
1520. boolean array[m];
1530. for each axiom in axioms
1540. String Ai= getFirstVariable(axiom);
1550. String Bj= getSecondVariable(axiom);
1560. int j=getNumberInContext(Bj);
1570. if((occurs_positevely (Ai, context))&&
 (occurs_positevely (Bj, neg_context)))
1580. if((getAType(axiom)=”=”)||(getAType(axiom)=rel))
1590. array[j]=true;
1600. if ((occurs_negatively (Ai, context))&&
 (occurs_negatively (Bj, neg_context)))
1610. if((getAType(axiom)=” ”)||(getAType(axiom)=neg_rel))
1620. array[j]=true;
1630. if ((occurs_positevely (Ai, context))&&
 (occurs_negatively (Bj, neg_context)))
1640. if(getAType(axiom)=” ”)
1650. array[j]=true;
1660. for (i=0; i<m; i++)
1670. if (!array[i])
1680. return false;
1690. return true;

”,“

Fig. 11. Optimization pseudo code of tests for less and more general relations

24 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

Thus, nodeMatch can be modified as in Figure 11 (the numbers on the left indi-
cate where the new code must be positioned). fastHornUnsatCheck implements
the three steps above. Step 1 is performed in lines (1510-1520). Then, a loop on axi-
oms (lines 1530-1650) implements Step 2. The final loop (lines 1660-1690) imple-
ments Step 3.

Disjointness test. Using the same notation as before in this section, Eq. 2 with respect
to the disjointness test can be represented as follows:

(15)

For example, the formula for testing disjointness between C16 in the tree A and C17 in
the tree B in Figure 1 is as follows:

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧

courseA∧historyA∧medievalA ∧asiaA ∧ classB∧historyB∧modernB∧europeB
(16)

Eq. 16 is Horn, and thus, similarly to Eq. 10, the satisfiability of this formula can
be decided by the unit propagation rule. After assigning true to all the variables in
contextA and propagating the results we obtain the following formula:

classB∧historyB∧¬modernB∧¬europeB∧ classB∧historyB∧modernB∧europeB (17)

If we further unit propagate classB and historyB (this means that we assign them to
true), then we obtain the contradiction modernB∧¬modernB∧europeB∧¬europeB.
Therefore, the formula is unsatisfiable. This contradiction arises because (¬medie-
valA∨¬modernB) and (¬asiaA∨¬europeB) occur in Eq. 16, which, in turn, are derived
(as from Table 4) from the disjointness axioms modernB⊥medievalA and
asiaA⊥europeB. In fact, all the clauses in Eq. 15 contain one positive literal except for
the clauses in axioms corresponding to disjointness relations. Thus, the key intuition
here is that if there are no disjointness axioms, then Eq. 15 is satisfiable. However, if
there is a disjointness axiom, atoms occurring there are also ensured to be either in
contextA or in contextB, hence, Eq. 15 is unsatisfiable. Therefore, the optimization
consists of just checking the presence/absence of disjointness axioms in axioms.

To complete the analysis suppose that we have negated variable in contextB in the
same fashion as described in the example with negations given before in this section.
Then, Eq. 16 can be rewritten as follows:

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨¬europeB)∧

 courseA∧historyA∧medievalA ∧asiaA ∧ classB∧historyB∧modernB∧¬europeB
(18)

As in the case of less general relation all the occurrences of the negated variable
are replaced with a new variable representing its negation (i.e., ¬europeB and europeB

are replaced by europenB and ¬europenB respectively), see Eq. 19.

 Semantic Matching: Algorithms and Implementation 25

(¬courseA∨classB)∧(courseA∨¬classB)∧(¬ historyA∨historyB)∧
(historyA∨¬historyB) ∧ (¬medievalA∨¬modernB)∧ (¬asiaA∨europenB)∧

courseA∧historyA∧medievalA ∧asiaA ∧ classB∧historyB∧modernB∧europenB
(19)

After the unit propagation of the variables derived from contextA we obtain

classB∧historyB∧¬modernB∧europenB∧ classB∧historyB∧modernB∧europenB (20)

Eq. 20 is satisfiable. This means that the concept at node Asia is not disjoint with the
concept at node Except Europe. The replacement introduces the new class of clauses
Ai∨Bj. However, such clauses are discarded after the unit propagation, and therefore,
do not influence the satisfiability of the formula. As from Table 7, all other clauses in-
troduced after the replacement belong to the same classes as ones in Eq. 16. This
means that the major observation made in this section, namely the fact that the satisfi-
ability of Eq. 16 can be decided by checking the presence/absence of the clauses of
form ¬Ai∨¬Bj holds for Eq. 19. As from Table 7, we have the clauses of form
¬Ai∨¬Bj in Eq. 19 in the following three cases:

− There are axioms of form Ai⊥Bj, where both Ai and Bj occur in contexts of the
original formula positively.

− There are axioms of form Bj Ai and Ai=Bj, where Ai occurs negatively in contextA
of the original formula and Bj occurs positively in contextB of the original formula.

− There are axioms of form Ai Bj and Ai=Bj, where Ai occurs positively in contextA
of the original formula and Bj occurs negatively in contextB of the original formula.

Thus, the pseudo code of nodeMatch should be modified as shown in Figure 12.

1105.if (contextA and contextB are conjunctive)
1106. isOpposite=optimizedUnsatTestForDisjointness (axioms, contextA,

contextB);
1107.else

1300. optimizedUnsatTestForDisjointness (axioms, contextA, contextB);
1310. for each axiom in axioms
1320. String Ai= getFirstVariable(axiom);
1330. String Bj= getSecondVariable(axiom);
1340. if ((occurs_positively (Ai, contextA))&&
 (occurs_positively (Bj, contextB)))
1350. if (getAType(axiom)=” ”)
1360. return true;
1370. if ((occurs_negatively (Ai, contextA))&&
 (occurs_positively (Bj, contextB)))
1380. if((getAType(axiom)=” ”)||(getAType(axiom)=” ”))
1390. return true;
1400. if ((occurs_positevely (Ai, contextA))&&
 (occurs_negatively (Bj, contextB)))
1410. if((getAType(axiom)=” ”)||(getAType(axiom)=” ”))
1420. return true;

 1430. return false;

Fig. 12. Disjointness test optimization pseudo code

26 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

optimizedUnsatTestForDisjointness check three conditions listed
above. The first condition is checked in lines 1340-1360. In lines 1370-1390
the second condition is checked. Finally, the third condition is checked in lines
1400-1420.

8.2 Disjunctive Concepts at Nodes

8.2.1 The Node Matching Problem by an Example
Now, we allow for the concepts at nodes to contain conjunctions and disjunctions in
any order. Suppose, we want to match C5 in the tree A and C5 in the tree B in Figure 1.
The relevant part of cLabsMatrix is shown in Table 8.

Table 8. cLabsMatrix: matrix of relations among the atomic concepts of labels

 Classes Mechanics Optics Statistics Dynamics Kinematics

Courses =
Biology
Zoology
Botany

Neurobiology
Genetics

Physiology

As from Table 4, the axioms is as follows:

(courseA ↔classB) (21)

Eq.21 in CNF then becomes:

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) (22)

As from Step 2, contextA and contextB are:

classB ∧ (mechanicsB∨opticsB∨thermodynamicsB)∧
(staticsB∨dynamicsB ∨kinematicsB)

(23)

courseA ∧ (biologyA∨ zoologyA∨botanyA) ∧
(neurobiologyA ∨geneticsA∨ physiologyA)

(24)

The negations of contextA and contextB, in turn, are:

¬ classB ∨ (¬mechanicsB∧¬opticsB∧¬thermodynamicsB) ∨
 (¬staticsB∧¬dynamicsB∧¬kinematicsB)

(25)

 ¬ courseA ∨ (¬biologyA∧¬zoologyA∧¬botanyA) ∨
 (¬neurobiologyA∧¬geneticsA∧ ¬physiologyA)

(26)

The matching result for this task is presented in Table 9.

A B

 Semantic Matching: Algorithms and Implementation 27

Table 9. cNodesMatrix: matrix of relations among the concepts at nodes (matching result)

 C1 C2 C5

C1 = idk idk
C2 idk idk idk
C5 idk idk idk

8.2.2 Optimizations
As from Table 4, axioms is the same for all the tests. However, contextA and contextB

may contain any number of disjunctions. Some of them are coming from the concepts
of labels, while others may appear from the negated contextA or contextB (e.g., see
tests for less/more general relations). Thus, for instance, as from Table 4 in case of
test for less general relation we obtain the following formula:

(¬courseA ∨ classB)∧(courseA∨¬classB)∧ (mechanicsB∨opticsB∨
thermodynamicsB) ∧ (staticsB∨dynamicsB ∨kinematicsB) ∧ ((¬biologyA ∧
¬zoologyA∧¬botanyA) ∨ (¬neurobiologyA∧¬geneticsA∧ ¬physiologyA))

(27)

With disjunctive concepts at nodes, Eq. 2 is a full propositional formula and no hy-
pothesis can be made on its structure. As a consequence, its satisfiability must be
tested using a standard DPLL SAT solver. Thus, for instance, CNF conversion of Eq.
27 is as follows:

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) ∧ (mechanicsB∨opticsB ∨thermody-
namicsB) ∧ (staticsB∨dynamicsB ∨kinematicsB) ∧ ((¬ courseA ∨ ¬biol-

ogyA∨¬neurobiologyA)∧ (¬courseA∨¬biologyA∨¬geneticsA)∧ (¬ courseA ∨
¬biologyA∨¬physiologyA)∧ (¬courseA∨¬zoologyA∨¬neurobiologyA)∧(¬

courseA ∨ ¬zoologyA∨¬geneticsA)∧ (¬courseA∨¬zoologyA∨¬physiologyA)∧
(¬ courseA ∨ ¬botanyA∨¬neurobiologyA)∧ (¬courseA∨¬botanyA ∨¬genet-

icsA) ∧ (¬courseA ∨ ¬botanyA∨¬physiologyA))

(28)

In order to avoid the space explosion, which may arise when converting a formula
into CNF (see for instance Eq. 28), we apply a set of structure preserving transforma-
tions [41,19]. The main idea is to replace disjunctions occurring in the original for-
mula with newly introduced variables and explicitly state that these variables imply
the subformulas they substitute. Consider for instance Eq. 27. We obtain:

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) ∧ (mechan-
icsB∨opticsB∨thermodynamicsB) ∧(staticsB∨dynamicsB ∨kinematicsB) ∧

new1∧new2∧(new1→ ¬biologyA∨¬zoologyA∨¬carA) ∧
(new2→¬neurobiologyA∨¬geneticsA∨ ¬physiologyA)

(29)

where new1 and new2 stand for newly introduced variables. Eq. 29 is converted into
CNF as follows:

(¬courseA ∨ classB) ∧ (courseA∨ ¬classB) ∧ (mechan-
icsB∨opticsB∨thermodynamicsB) ∧(staticsB∨dynamicsB ∨kinematicsB) ∧

new1∧new2∧(¬new1∨ ¬biologyA∨¬zoologyA∨¬carA) ∧
(¬new2∨¬neurobiologyA∨¬geneticsA∨ ¬physiologyA)

(30)

A B

28 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

Notice that the size of the propositional formula in CNF grows linearly with re-
spect to number of disjunctions in original formula. To account for this optimization
in nodeMatch all calls to convertToCNF are replaced with calls to opti-
mizedConvertToCNF, (see Figure 13):

1120. formulaInCNF=optimizedConvertToCNF(formula);
...
1170. formulaInCNF=optimizedConvertToCNF(formula);
...
1200. formulaInCNF=optimizedConvertToCNF(formula);

Fig. 13. The CNF conversion optimization pseudo code

9 Evaluation

In this section, we present the performance and quality evaluation of the matching
system we have implemented, called S-Match. In particular, we evaluate basic and
optimized versions of our system, called (S-MatchB) and (S-Match) respectively,
against three state of the art matchers, namely Cupid [32], COMA [11]9, and SF [35]
as implemented in Rondo [36]. All the systems under consideration are fairly compa-
rable because they are all schema-based. They differ in the specific matching tech-
niques they use and in the way they compute mappings.

9.1 Evaluation Set-Up

The evaluation was performed on seven matching tasks from different application
domains, see Table 10. There are three matching tasks from a business domain
(#1,3,5). The first business example (#1) describes two company profiles: a Standard
one (mini) and Yahoo Finance (mini), while, #5, represents their full versions. The
third business example (#3) deals with BizTalk10 purchase order schemas. There is
one matching task from an academy domain (#2). It describes courses taught at Cor-
nell University (mini) and at the University of Washington (mini). Finally, there are
three matching tasks on general topics (#4,6,7) as represented by the well-known web
directories, such as Google11, Yahoo12, and Looksmart13. Table 10 provides some in-
dicators of the complexity of these test cases14.

The reference mappings (also called expert mappings) for some of these problems
(namely for the tasks #1,2,3) were established manually. Then, the results computed

 9 We thank to Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with Cupid and

COMA. In the evaluation we use the version of COMA described in [11]. A newer version of
the system COMA++ exists but we do not have it.

10 http://www.microsoft.com/biztalk/
11 http://www.google.com/Top/
12 http://dir.yahoo.com/
13 http://www.looksmart.com/
14 Source files and description of the schemas tested can be found at our project web-site, ex-

periments section: http://www.dit.unitn.it/~accord/

 Semantic Matching: Algorithms and Implementation 29

Table 10. Some indicators of the complexity of the test cases

 # Matching task Max. depth # nodes # labels Concepts at nodes

 1 Yahoo(mini)-
Standard(mini)

2/2 10/16 22/45
Conjunctive
Disjunctive

2 Cornell-Washington 3/3 34/39 62/64
Conjunctive
Disjunctive

3 CIDX – Excel 3/3 34/39 56/58
Conjunctive
Disjunctive

4 Looksmart-Yahoo 10/8 140/74 222/101
Conjunctive
Disjunctive

5 Yahoo-Standard 3/3 333/115 965/242
Conjunctive
Disjunctive

6 Google-Yahoo 11/11 561/665 722/945
Conjunctive
Disjunctive

7 Google-Looksmart 11/16 706/1081 1048/1715
Conjunctive
Disjunctive

by the systems have been compared with expert mappings. It is worth noticing that
the task of creation of expert mappings is an error-prone and a time consuming one.
Even if for the moment of writing this paper we have created expert mappings for the
biggest matching tasks (#6,7) of Table 10, we do not report these findings in this pa-
per. Addressing in full detail the emerged issues along that process as well as the
matching results achieved is out of scope of this paper, see for some details [3,22].
Thus, in this evaluation study we focus mostly on the performance characteristics of
S-Match, involving large matching tasks, namely schemas with hundreds and thou-
sands of nodes. Notice, scalability properties of matching systems is among the most
important problems of schema matching (in general) these days, see e.g., [7,12].
Quality characteristics of the S-Match results which are presented here address only
medium size schemas. We acknowledge that a large-scale quality evaluation is also of
high importance. However, we view it as a separate direction, requiring (beyond some
preliminary results of [3,22]) further in-depth investigations. Thus, we pose it as
future work.

There are three further observations that ensure a fair (qualitative) comparative
study. The first observation is that Cupid, COMA, and Rondo can discover only the
mappings which express similarity between schema elements. Instead, S-Match,
among others, discovers the disjointness relation which can be interpreted as strong
dissimilarity in terms of other systems under consideration. Therefore, we did not take
into account the disjointness relations when specifying the expert mappings. The sec-
ond observation is that, since S-Match returns a matrix of relations, while all other
systems return a list of the best mappings, we used some filtering rules. More pre-
cisely we have the following two rules: (i) discard all the mappings where the relation
is idk; (ii) return always the core relations, and discard relations whose existence is
implied by the core relations. Finally, whether S-Match returns the equivalence or
subsumption relations does not affect the quality indicators. What only matters is the
presence of the mappings standing for those relations.

As match quality measures we have used the following indicators: precision, re-
call, overall, and F-measure. Precision varies in the [0,1] range; the higher the value,
the smaller the set of wrong mappings (false positives) which have been computed.
Precision is a correctness measure. Recall varies in the [0,1] range; the higher the

30 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

value, the smaller the set of correct mappings (true positives) which have not found.
Recall is a completeness measure. F-measure varies in the [0,1] range. The version
computed here is the harmonic mean of precision and recall. It is a global measure of
the matching quality, growing with it. Overall is an estimate of the post match efforts
needed for adding false negatives and removing false positives. Overall varies in the
[-1, 1] range; the higher it is, the less post-match efforts are needed. As a performance
measure we have used time. It estimates how fast systems are when producing map-
pings fully automatically. Time is very important for us, since it shows the ability of
matching systems to scale up.

In our experiments each test has two degrees of freedom: directionality and use of
oracles. By directionality we mean here the direction in which mappings have been
computed: from the first schema to the second one (forward direction), or vice versa
(backward direction). We report the best results obtained with respect to directional-
ity, and use of oracles allowed. We were not able to plug a thesaurus in Rondo, since
the version we have is standalone, and it does not support the use of external thesauri.
Thesauri of S-Match, Cupid, and COMA were expanded with terms necessary for a
fair competition (e.g., expanding uom into unitOfMeasure, a complete list is available
at the URL in footnote 14).

All the tests have been performed on a P4-1700, with 512 MB of RAM, with the
Windows XP operating system, and with no applications running but a single match-
ing system. The systems were limited to allocate no more than 512 MB of memory.
All the tuning parameters (e.g., thresholds, combination strategies) of the systems
were taken by default (e.g., for COMA we used NamePath and Leaves matchers
combined in the Average strategy) for all the tests. S-Match was also used in default
configuration, e.g., threshold for string-based matchers was 0.6. This threshold has
been defined after experimentation on several schema matching tasks (see for details
the URL in footnote 14). Finally, all the element level matchers of the third approxi-
mation level (e.g., gloss-based matchers) were not involved in the evaluation since all
the matching tasks under consideration were successfully resolved by the matchers of
Table 1 which belong to the first and the second approximation levels; see [22] for the
preliminary evaluation results of matchers belonging to the third approximation level
as well as for the tasks where they are useful.

9.2 Evaluation Results

We present the time performance results for all the tasks of Table 10, while quality
results, as from the previous discussion are possible to estimate only for some of the
matching tasks (#1,2,3). The evaluation results for the matching problems #1,2,3 are
shown in Figure 14.

For example, in Figure 14.2, since all the labels at nodes in the given test case were
correctly encoded into propositional formulas, all the quality measures of S-Match
reach their highest values. In fact, as discussed before, the propositional SAT solver is
correct and complete. This means that once the element level matchers have found all
and only the mappings, S-Match will return all of them and only the correct ones.

 Semantic Matching: Algorithms and Implementation 31

Fig. 14.1. Evaluation results: Yahoo Finance (mini) vs. Standard (mini), test case #1

Fig. 14.2. Evaluation results: Cornell (mini) vs. Washington (mini), test case #2

Fig. 14.3. Evaluation results: CIDX vs. Excel, test case #3

For a pair of BizTalk schemas: CIDX vs. Excel, S-Match performs as good as
COMA and outperforms other systems in terms of quality indicators. Also, the opti-
mized version of S-Match works more than 4 times faster than COMA, more than 2
times faster than Cupid, and as fast as Rondo.

32 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

Fig. 15.1. Execution times: Looksmart vs. Yahoo, test case #4

The time performance results obtained for the matching tasks #4,5,6,7 of Table 10
are presented in Figure 15. Cupid went out of memory on all the tasks. Therefore, we
present the results for other systems.

In the case of Looksmart-Yahoo matching problem the trees contain about hundred
nodes each. S-Match works about 18% faster than S-MatchB and about 2% slower
than COMA. SF, in turn, works about 3 times faster than S-Match. The relatively
poor improvement (18%) occurs because our optimizations are implemented in a
straightforward way. More precisely, on small trees (e.g., test case #4) a big constant
factor15 dominates the growth of all other components in S-Match computational
complexity formula.

On Yahoo-Standard matching problem S-Match works about 40% faster than
S-MatchB. It performs 1% faster than COMA and about 5 times slower than SF. The
relatively small improvement in this case can be explained by noticing that the maxi-
mum depth in both trees is 3 and that the average number of labels at nodes is about 2.
The optimizations cannot significantly influence the system performance.

Fig. 15.2. Execution times: Yahoo vs. Standard, test case #5

The next two matching problems are much bigger than the previous ones. They
contain hundreds and thousands of nodes. On these trees SF went out of memory.

15 This is also known in the literature as an implementational constant.

 Semantic Matching: Algorithms and Implementation 33

Therefore, we provide the results only for the other systems. In the case of Google-
Yahoo matching task S-Match is more than 6 times faster than S-MatchB. COMA per-
forms about 5 times slower than the optimized version. These results suggest that the
optimizations described in this paper are better suited for big trees. In the case of the
biggest matching problem, involving Google-Looksmart, S-Match performs about 9
times faster than COMA, and about 7 times faster than S-MatchB.

Fig.15.3. Execution times: Google vs. Yahoo, test case #6

Fig. 15.4. Execution times: Google vs. Looksmart, test case #7

Having considered matching tasks of Table 10, we conclude that S-Match performs
(in terms of execution time) slightly slower than COMA and SF on the schemas with
one up to three hundred of nodes (see, Figures 15.1-15.2). At the same time, S-Match
is considerably faster on the schemas with more than five hundreds nodes (see, Fig-
ures 15.3-15.4), thereby indicating system scalability.

9.3 Evaluation Summary

Quality measures. Since most matching systems return similarity coefficients, rather
than semantic relations, our qualitative analysis was based on the measures developed
for those systems. Therefore, we had to omit information about the type of relations
S-Match returns, and focus only on the number of present/absent mappings. We to-
tally discarded from our considerations the disjointness relation, however, its value
should not be underestimated, because this relation reduces the search space.

34 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

We pose a large-scale qualitative evaluation of the system as future work. Thus, in
our evaluation we have focused only on the overall qualitative system results, hence,
not discussing exhaustively element level matchers, e.g., by showing impact of each
of them on the matching results (see, for some preliminary results [22]). Also, it is
worth mentioning that, e.g., string-based matchers, have already been extensively
evaluated in [11,44].

Performance measures. Time is an important indicator, because when matching in-
dustrial-size schemas (e.g., with hundreds and thousands of nodes, which is quite
typical for e-business applications), it shows scalability properties of the matchers and
their potential to become industrial-strength systems. It is also important in web ap-
plications, where some weak form of real time performance is required (to avoid hav-
ing a user waiting too long for the system respond).

10 Related Work

At present, there exists a line of semi-automated schema matching systems, see, for
instance [5,10,13,14,32,30,35,39,49,28,46]. A good survey and a classification of
matching approaches up to 2001 is provided in [42], an extension of its schema-based
part and a user-centric classification of matching systems is provided in [43], while
the work in [14] considers both [42, 43] as well as some other classifications.

In particular, for individual matchers, [43] introduces the following criteria which
allow for detailing further (with respect to [42]), the element and structure level of
matching: syntactic techniques (these interpret their input as a function of their sole
structures following some clearly stated algorithms, e.g., iterative fix point computa-
tion for matching graphs), external techniques (these exploit external resources of a
domain and common knowledge, e.g., WordNet [37]), and semantic techniques (these
use formal semantics, e.g., model-theoretic semantics, in order to interpret the input
and justify their results).

The distinction between the hybrid and composite matching algorithms of [42] is
useful from an architectural perspective. [43] extends this work by taking into account
how the systems can be distinguished in the matter of considering the mappings and
the matching task, thus representing the end-user perspective. In this respect, the fol-
lowing criteria are proposed: mappings as solutions (these systems consider the
matching problem as an optimization problem and the mapping is a solution to it, e.g.,
[13,35]); mappings as theorems (these systems rely on semantics and require the
mapping to satisfy it, e.g., the approach proposed in this paper); mappings as likeness
clues (these systems produce only reasonable indications to a user for selecting the
mappings, e.g., [32,11]).

Let us consider the closest to S-Match schema-based state of the art systems in
light of the above criteria.

Rondo. The Similarity Flooding (SF) [35] approach, as implemented in Rondo [36],
utilizes a hybrid matching algorithm based on the ideas of similarity propagation.
Schemas are presented as directed labeled graphs. The algorithm exploits only syntac-
tic techniques at the element and structure level. It starts from the string-based
comparison (common prefixes, suffixes tests) of the nodes’ labels to obtain an initial

 Semantic Matching: Algorithms and Implementation 35

mapping which is further refined within the fix-point computation. SF considers the
mappings as a solution to a clearly stated optimization problem.

Cupid. Cupid [32] implements a hybrid matching algorithm comprising syntactic
techniques at the element (e.g., common prefixes, suffixes tests) and structure level
(e.g., tree matching weighted by leaves). It also exploits external resources, in particu-
lar, a precompiled thesaurus. Cupid falls into the mappings as likeness clues category.

COMA. COMA [11] is a composite schema matching system which exploits syntac-
tic and external techniques. It provides a library of matching algorithms; a framework
for combining obtained results, and a platform for the evaluation of the effectiveness
of the different matchers. The matching library is extensible, it contains 6 elementary
matchers, 5 hybrid matchers, and one reuse-oriented matcher. Most of them imple-
ment string-based techniques (affix, n-gram, edit distance, etc.); others share
techniques with Cupid (tree matching weighted by leaves, thesauri look-up, etc.); re-
use-oriented is a completely novel matcher, which tries to reuse previously obtained
results for entire new schemas or for its fragments. Distinct features of COMA with
respect to Cupid, are a more flexible architecture and a possibility of performing itera-
tions in the matching process. COMA falls into the mappings as likeness clues
category.

Reduction of semantic heterogeneity is typically performed in two steps. So far, we
have concentrated on the first step, namely on determining correspondences between
semantically related entities. The second step is the ultimate goal of the matching ex-
ercise, which can be data translation, query answering, and so on. Here, mappings
are taken as input and are analyzed in order to generate, e.g., query expressions that
automatically translate/exchange data instances between the information sources, see,
for example, [16,48]. Notice that taking as input semantic relations, instead of coeffi-
cients in the [0,1] range, potentially enables, e.g., data translation systems to produce
better results, since, for example, in such systems as Clio [16], the fist step is to inter-
pret the correspondences by giving them a clear semantics.

11 Conclusions

We have presented a new semantic schema matching algorithm and its optimizations.
Our solution builds on top of the past approaches at the element level and introduces a
novel (with respect to schema matching) techniques, namely model-based techniques,
at the structure level. We conducted a comparative evaluation of our approach imple-
mented in the S-Match system against three state of the art systems. The results em-
pirically prove the strength of our approach.

Future work includes development of an iterative and interactive semantic matching
system. It will improve the quality of the mappings by iterating and by focusing user’s
attention on the critical points where his/her input is maximally useful. S-Match works
in a top-down manner, and hence, mismatches among the top level elements of schemas
can imply further mismatches between their descendants. Therefore, next steps include
development of a robust semantic matching algorithm. Also, we are planning to extend
the semantic matching approach by computing the overlapping relation (with the inter-
section semantics). This relation might be useful when, e.g., input schemas encode a

36 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

domain of interest at different levels of details. Finally, we are going to develop a testing
methodology which is able to estimate quality of the mappings between schemas with
hundreds and thousands of nodes. Initial steps have already been done; see for details
[3]. Here, the key issue is that in these cases, specifying expert mappings manually is
neither desirable nor feasible task, thus a semi-automatic approach is needed. Compari-
son of matching algorithms on large real-world schemas from different application
domains will also be performed extensively.

References

1. Atzeni, P., Cappellari, P., Bernstein, P.: Model-independent schema and data translation.
In: Proceedings of EDBT, pp. 368–385 (2006)

2. Atzeni, P., Cappellari, P., Bernstein, P.: Modelgen: model independent schema translation.
In: Proceedings of ICDE, pp. 1111–1112 (2005)

3. Avesani, P., Giunchiglia, F., Yatskevich, M.: A large scale taxonomy mapping evaluation.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 67–81. Springer, Heidelberg (2005)

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook. Cambridge University Press, Cambridge (2002)

5. Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and
structured data sources. SIGMOD Record, pp. 54–59 (1999)

6. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach and an ap-
plication. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 130–145. Springer, Heidelberg (2003)

7. Bernstein, P., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema matching.
SIGMOD Record 33(4), 38–43 (2004)

8. Davis, M., Longemann, G., Loveland, D.: A machine program for theorem proving. Jour-
nal of the ACM 5(7) (1962)

9. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7, 201–215 (1960)

10. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering com-
plex semantic matches between database schemas. In: Proceedings of SIGMOD, pp. 383–
394 (2004)

11. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching ap-
proaches. In: Bressan, S., Chaudhri, A.B., Lee, M.L., Yu, J.X., Lacroix, Z. (eds.) CAiSE
2002 and VLDB 2002. LNCS, vol. 2590, pp. 610–621. Springer, Heidelberg (2003)

12. Doan, A., Halevy, A.: Semantic integration research in the database community: A brief
survey. AI Magazine, Special Issue on Semantic Integration (2005)

13. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: Proceed-
ings of ECAI, pp. 333–337 (2004)

14. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (to appear)
15. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and

evaluating automatic semantic reconciliation. The VLDB Journal 14(1), 50–67 (2005)
16. Haas, L.M., Hernandez, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from research

prototype to industrial tool. In: Proceedings of SIGMOD, pp. 805–810 (2005)
17. Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on “I Linguaggi e le

Macchine” XVI, 345–364 (1993)

 Semantic Matching: Algorithms and Implementation 37

18. Giunchiglia, F., Marchese, M., Zaihrayeu, I.: Encoding Classifications into Lightweight
Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 80–94.
Springer, Heidelberg (2006)

19. Giunchiglia, E., Sebastiani, R.: Applying the Davis-Putnam procedure to non-clausal for-
mulas. In: Proceedings of AI*IA, pp. 84–94 (1999)

20. Giunchiglia, F., Shvaiko, P.: Semantic matching. The Knowledge Engineering Review
Journal 18(3), 265–280 (2003)

21. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an implementa-
tion of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS
2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)

22. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Discovering Missing Background Knowl-
edge in Ontology Matching. In: Proceedings of ECAI, pp. 382–386 (2006)

23. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic schema matching. In: Proceedings
of CoopIS, pp. 347–365 (2005)

24. Giunchiglia, F., Yatskevich, M.: Element level semantic matching. In: McIlraith, S.A.,
Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, Springer, Heidel-
berg (2004)

25. Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient semantic matching. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 272–289. Springer, Hei-
delberg (2005)

26. Guarino, N.: The role of ontologies for the Semantic Web (and beyond). Technical report,
Laboratory for Applied Ontology, ISTC-CNR (2004)

27. Haarslev, V., Moller, R., Wessel, M.: RACER: Semantic middleware for industrial pro-
jects based on RDF/OWL, http://www.sts.tu-harburg.de/ r.f.moeller/racer/

28. He, B., Chang, K.C.-C.: Automatic Complex Schema Matching across Web Query Inter-
faces: A Correlation Mining Approach. ACM Transactions on Database Systems 31(1),
346–395 (2006)

29. Ide, N., Veronis, J.: Word Sense Disambiguation: the state of the art. Computational lin-
guistics 24(1), 1–40 (1998)

30. Kang, J., Naughton, J.F.: On schema matching with opaque column names and data val-
ues. In: Proceedings of SIGMOD, pp. 205–216 (2003)

31. Le Berre, D.: SAT4J: A satisfiability library for Java, http://www.sat4j.org/
32. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proceed-

ings of VLDB, pp. 49–58 (2001)
33. Madhavan, J., Bernstein, P., Doan, A., Halevy, A.: Corpus-based schema matching. In:

Proceedings of ICDE, pp. 57–68 (2005)
34. Magnini, B., Serafini, L., Speranza, M.: Making explicit the semantics hidden in schema

models. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
Springer, Heidelberg (2003)

35. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A versatile graph matching
algorithm. In: Proceedings of ICDE, pp. 117–128 (2002)

36. Melnik, S., Rahm, E., Bernstein, P.: Rondo: A programming platform for generic model
management. In: Proceedings of SIGMOD, pp. 193–204 (2003)

37. Miller, A.G.: WordNet: A lexical database for English. Communications of the
ACM 38(11), 39–41 (1995)

38. Pan, J.Z.: Description Logics: reasoning support for the Semantic Web. PhD thesis, School
of Computer Science, The University of Manchester (2004)

38 F. Giunchiglia, M. Yatskevich, and P. Shvaiko

39. Modica, G.A., Gal, A., Jamil, H.M.: The use of machine-generated ontologies in dynamic
information seeking. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.)
CoopIS 2001. LNCS, vol. 2172, pp. 433–448. Springer, Heidelberg (2001)

40. Noy, N.: Semantic Integration: A survey of ontology-based approaches. SIGMOD Re-
cord 33(4), 65–70 (2004)

41. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation (2), 293–304 (1986)

42. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The
VLDB Journal 10(4), 334–350 (2001)

43. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data
Semantics IV, 146–171 (2005)

44. Stoilos, G., Stamou, G.B., Kollias, S.D.: A String Metric for Ontology Alignment. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
624–637. Springer, Heidelberg (2005)

45. Smith, M.K., Welty, C., McGuinness, D.L.: OWL web ontology language guide. Techni-
cal report, World Wide Web Consortium (W3C) (February 10, 2004),
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

46. Su, W., Wang, J., Lochovsky, F.: Holistic Schema Matching for Web Query Interface. In:
Proceedings of EDBT, pp. 77–94 (2006)

47. Tsetin, G.: On the complexity proofs in propositional logics. Seminars in Mathematics 8
(1970)

48. Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under schema
changes. The VLDB Journal 13(3), 274–293 (2004)

49. Ziegler, P., Kiefer, C., Sturm, C., Dittrich, K., Bernstein, A.: Detecting Similarities in On-
tologies with the SOQA-SimPack Toolkit. In: Proceedings of EDBT, pp. 59–76 (2006)

Semantics-Guided Clustering of Heterogeneous
XML Schemas

Pasquale De Meo1, Giovanni Quattrone1,
Giorgio Terracina2, and Domenico Ursino1

1 DIMET, Università Mediterranea di Reggio Calabria, Via Graziella, Località Feo di
Vito, 89060 Reggio Calabria, Italy

2 Dipartimento di Matematica, Università della Calabria, Via Pietro Bucci, 87036
Rende (CS), Italy

demeo@unirc.it, quattrone@unirc.it,
terracina@mat.unical.it, ursino@unirc.it

Abstract. In this paper we illustrate an approach for clustering seman-
tically heterogeneous XML Schemas. The proposed approach is driven
by the semantics of the involved Schemas that is defined by means of the
interschema properties existing among concepts represented therein; in-
terschema properties taken into account by our approach are synonymies
(indicating that two concepts have the same meaning), hyponymies (de-
noting that a concept has a more specific meaning than another one), and
overlappings (indicating that two concepts are neither synonyms nor one
hyponym of the other, but represent, to some extent, the same reality).
An important feature of our approach consists of its capability of being
integrated with almost all the clustering algorithms already proposed in
the literature. Both a theoretical and an experimental analysis on the
complexity of our approach are presented in the paper. They show that
our approach is scalable and particularly suited in application contexts
characterized by a great number and a large variety of XML Schemas.

1 Introduction

Clustering is the process of grouping a set of physical or abstract objects into
classes of similar objects, called clusters [21], in such a way that those objects
belonging to the same cluster are as similar as possible, whereas those ones
belonging to different clusters are as dissimilar as possible.

Clustering has its roots in many areas, including Data Mining, Statistics,
Biology and Machine Learning. Its applications are extremely various and range
from Economy to Finance, from Biology to Sociology, and so on. Clustering can
play a key role also in the Web; in fact, in this scenario, numerous applications
that largely benefit of clustering have been proposed [6,8].

In the Web context, a specific activity in which clustering can play a key role
consists of grouping semantically heterogeneous information sources. In fact, cur-
rently, both the number and the semantic heterogeneity of information sources

S. Spaccapietra et al. (Eds.): Journal on Data Semantics IX, LNCS 4601, pp. 39–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

40 P. De Meo et al.

available on the Web are strongly increasing. As a consequence, it appears ex-
tremely important the definition of approaches for clustering them into homo-
geneous classes.

On the contrary, as for data representation format and data exchange, the
World Wide Web Consortium foretells a certain uniformity for the future and,
to this purpose, proposes the usage of the XML language.

The growing importance of both clustering and XML stimulated, in the past,
various researchers to study clustering techniques for XML sources [9,27,33,36].
Many of these techniques were “structural”, i.e., they aimed at defining groups of
structurally similar XML sources [9,33]. Clearly, the structural similarity (resp.,
dissimilarity) of two information sources is an indicator of their semantic simi-
larity (resp., dissimilarity); however, often, it could be not sufficient [3,15,34]. As
an example, consider a list of orders (i.e., a list of products bought by a customer
in a commercial transaction); in an XML Schema this list could be represented
in very different ways. In a first representation we could have an element, order,
containing two sub-elements, product and customer; in a second representa-
tion we could have three elements, product, customer and order, at the same
level, and we could implement their relationships by means of key/keyref con-
structs. Clearly, these two representations would lead to documents extremely
different from a structural point of view; nonetheless, these documents might be
extremely similar from a semantic standpoint.

In the literature various methods for defining information source semantics
have been proposed; one of the most commonly adopted methods is based on the
exploitation of the so-called interschema properties, [2,3,34,38], i.e., terminolog-
ical and structural relationships existing among concepts belonging to different
information sources. The most important interschema properties are synonymies
(indicating that two concepts have the same meaning), homonymies (denoting
that two concepts have different meanings, yet having the same name), hy-
ponymies/hypernymies (indicating that a concept has a more specific meaning
than another one) and overlappings (denoting that two concepts are neither syn-
onyms nor one hyponym of the other, but represent, to some extent, the same
reality).

In order to better understand the importance of interschema properties, con-
sider the following example. Let S1 be an XML Schema concerning vegetables
and let S2 be an XML Schema about factories; assume that both S1 and S2 con-
tain the element “plant”. If we consider only their name, we could erroneously
conclude that the element “plant” of S1 and the element “plant” of S2 repre-
sent the same concept; on the contrary, if we consider their semantics, we could
state that an interschema property (i.e., an homonymy) holds between these two
elements and, consequently, that they represent different concepts.

In the literature some approaches for clustering XML sources, taking into ac-
count their semantic similarities, have been proposed too [27,36]. However, in
these approaches, source similarity is determined by considering only concept
similarities that, in the context of interschema properties, correspond to syn-
onymies. In our opinion they are extremely interesting; however, they could be

Semantics-Guided Clustering of Heterogeneous XML Schemas 41

further refined if, in addition to synonymies, also other interschema properties,
such as hyponymies and overlappings, would be considered.

This paper aims at providing a contribution in this setting; in fact, it presents
an approach for clustering semantically heterogeneous information sources; the
proposed approach takes not only synonymies, but also hyponymies and over-
lappings, into account.

In order to clarify the importance of hyponymies and overlappings in the
clustering process, consider the following example. Let S1 be an XML Schema
having an element house, described by four sub-elements, namely bedroom,
bathroom, kitchen and garden. Let S2 be an XML Schema containing the ele-
ment firstfloor, characterized by the sub-elements kitchen and lounge, and
the element secondfloor, characterized by the sub-elements garden, bedroom,
bathroom and garret. Now, neither firstfloor nor secondfloor would be
recognized as synonymous with house and, consequently, the corresponding
portions of schemas would be considered completely distinct by a clustering
approach taking only synonymies into account. However, both firstfloor and
secondfloor should be considered overlapping with house, since the informa-
tion content of house is distributed over them. As a consequence, a clustering
approach taking also overlappings into account would recognize that there is a
form of similarity also in these portions of S1 and S2 and, hence, would compute
more refined clusters.

We point out that the present paper has not been conceived for defining a
new clustering algorithm; on the contrary, it aims at allowing the application, to
our reference context, of most of the existing clustering algorithms. As a matter
of fact, in the literature, a great number of clustering algorithms, characterized
by extremely various features, already exists, and other ones will be presumably
proposed in the future. As a consequence, allowing the application of all these
algorithms to our reference context would provide the user with the availability
of a large variety of clustering tools, characterized by different peculiarities.

The key for reaching such a result is the exploitation of the so called Dis-
similarity Matrix [21]; this is, in fact, the data structure which almost all the
clustering algorithms already proposed in the literature operate upon. The rows
and the columns of this matrix represent the objects to cluster; its generic ele-
ment M [i, j] denotes the distance, i.e., the dissimilarity, between the objects i
and j. Generally, M [i, j] is a non-negative number that is as closer to 0 as i and
j are similar.

Our approach exploits interschema properties for finding the dissimilarity de-
gree between two XML Schemas and, consequently, for constructing the Dissim-
ilarity Matrix. Since some clustering algorithms require the involved objects to
be represented as points in a metric space (see Section 3.5), in order to allow the
applicability of the maximum possible number of clustering algorithms to our
reference context, we define the dissimilarity among XML Schemas by exploiting
a suitable euclidean space.

The outline of the paper is as follows: Section 2 describes a technique for
extracting interschema properties. Section 3 provides a detailed description of

42 P. De Meo et al.

the proposed approach. The experiments we have carried out for evaluating its
performance are presented in Section 4. Some possible applications are described
in Section 5. Related works are examined in Section 6. Finally, in Section 7, we
draw our conclusions.

2 Preliminaries

As pointed out in the Introduction, the clustering approach we are presenting
in this paper requires interschema properties concerning involved sources to be
provided as input. These properties might be derived by applying any approach
proposed in the literature for this purpose (see, for example, [3,14,17,31,34,38]).
In order to illustrate the main features of an interschema property extraction
task, in this section we describe an approach for deriving interschema properties;
this approach has been already presented in detail in [11]. Interschema properties
we are considering in this paper are synonymies, hyponymies/hyperonymies and
overlappings.

The interschema property extraction approach we are introducing in this sec-
tion is specialized for XML, almost automatic, semantic, and takes the inten-
sional component of the involved XML sources into account. It is based on the
observation that, given two concepts belonging to different information sources,
an interesting and powerful way for determining their semantics consists of ex-
amining their neighborhoods, since the concepts and the relationships which they
are involved in contribute to define their meaning [38]. In addition, it exploits
two further indicators for defining the semantics of involved data sources in a
more precise fashion; these indicators are the types and the cardinalities of the
elements and the attributes belonging to the XML Schemas into consideration.

In XML Schemas, concepts are expressed by elements or attributes. Since, for
the interschema property extraction task, it does not appear relevant to distin-
guish concepts represented by elements from concepts represented by attributes,
we introduce the term x-component for denoting an element or an attribute in
an XML Schema.

In order to compute the neighborhood of an x-component, it is necessary to
define a “Semantic Distance” between two x-components of the same schema;
this distance considers how much the corresponding x-components are semanti-
cally related. To this purpose we introduce some boolean functions that allow
the strength of the relationship existing between two x-components xν and xμ

of an XML Schema S to be determined. These functions are:

– veryclose(xν , xμ), that returns true if and only if: (i) xμ = xν , or (ii) xμ is
an attribute of xν , or (iii) xμ is a simple sub-element of xν ;

– close(xν , xμ), that returns true if and only if: (i) xμ is a complex sub-element
of xν , or (ii) xμ is an element of S and there exists a keyref constraint
stating that an attribute of xν refers to a key attribute of xμ;

– near(xν , xμ), that returns true if and only if either veryclose(xν , xμ) = true
or close(xν , xμ) = true;

Semantics-Guided Clustering of Heterogeneous XML Schemas 43

– reachable(xν , xμ), that returns true if and only if there exists a sequence
of distinct x-components x1, x2, . . . , xn such that: x1 = xν , near(x1, x2) =
near(x2, x3) = . . . = near(xn−1, xn) = true, xn = xμ.

The exploitation of the functions introduced above allows each pair 〈xν , xμ〉
of an XML Schema to be associated with a coefficient called Connection Cost.
It is a measure of the correlation degree existing between xν and xμ and indi-
cates how much the concept expressed by xν is semantically close to the concept
represented by xμ; in other words, it represents the ability of the concept associ-
ated with xμ to characterize the concept associated with xν . More formally, the
Connection Cost from xν to xμ, denoted by CC(xν , xμ), is defined as:

CC(xν , xμ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if veryclose(xν , xμ) = true
1 if close(xν , xμ) = true
Cνμ if reachable(xν, xμ)= true and near(xν , xμ)=false
∞ if reachable(xν, xμ) = false

Here Cνμ = minxα (CC(xν , xα) + CC(xα, xμ)) for each xα such that reach-
able(xν, xα) = reachable(xα, xμ) = true.

Finally, given a non-negative integer i, we define the ith neighborhood of an
x-component xν of an XML Schema S as the set of x-components of S having
a Connection Cost from xν lesser than or equal to i. More formally, the ith

neighborhood of xν is defined as:

nbh(xν , i) = {xμ| xμ is an x-component of S, CC(xν , xμ) ≤ i}

In order to verify if an interschema property holds between two x-components,
our approach compares their neighborhoods, their cardinalities and their data
types. In addition, it exploits a thesaurus storing lexical synonymies holding
among the terms of a language; specifically, it uses the English language and
WordNet [32]. If necessary, different (possibly already defined) domain-specific
thesauruses might be exploited.

Since neighborhood comparison plays a key role in the interschema property
extraction task, we first introduce it and, then, illustrate the property extraction
task in detail.

2.1 Neighborhood Comparison

Given two x-components xν and xμ, belonging to different XML Schemas, and
two corresponding neighborhoods nbh(xν , v) and nbh(xμ, v), there could exist
different relationships between them.

Specifically, three possible relationships, namely similarity, comparability and
generalization, could be taken into account. All of them are derived by computing
suitable objective functions on the maximum weight matching associated with
a bipartite graph obtained from the x-components of nbh(xν , v) and nbh(xμ, v).

In the following we indicate by BG(xν , xμ, v) = 〈NSet(xν , xμ, v), ESet(xν ,
xμ, v)〉 the bipartite graph associated with nbh(xν , v) and nbh(xμ, v); when it

44 P. De Meo et al.

is not confusing, we shall use the notation BG(v) instead of BG(xν , xμ, v). In
BG(v), NSet(v) = PSet(v) ∪ QSet(v) represents the set of nodes; there is
a node in PSet(v) (resp., QSet(v)) for each x-component of nbh(xν , v) (resp.,
nbh(xμ, v)). ESet(v) is the set of edges; there is an edge between p ∈ PSet(v) and
q ∈ QSet(v) if: (i) a lexical synonymy between the names of the x-components
xp and xq, associated with p and q, is stored in the reference thesaurus; (ii) the
cardinalities of xp and xq are compatible; (iii) their data types are compatible
(this last condition must be verified only if xp and xq are attributes or simple
elements). Here, the cardinalities of two x-components are considered compatible
if the intersection of the intervals defined by them is not empty. Compatibility
rules associated with data types are analogous to the corresponding ones valid
for high level programming languages.

The maximum weight matching for BG(v) is the set ESet′(v) ⊆ ESet(v) of
edges such that, for each node x ∈ PSet(v)∪QSet(v), there is at most one edge
of ESet′(v) incident onto x and |ESet′(v)| is maximum (for algorithms solving
the maximum weight matching problem, see [18]).

Neighborhood Similarity. Intuitively, two neighborhoods (and, more in gen-
eral, two sets of objects) are considered similar if most of their components are
similar.

For determining if nbh(xν , v) and nbh(xμ, v) are similar, we construct BG(xν ,

xμ, v) and, then, we compute the objective function φBG(v) = 2|ESet′(v)|
|PSet(v)|+|QSet(v)| .

Here |ESet′(v)| represents the number of matches associated with BG(v), as well
as the number of similarities involving nbh(xν , v) and nbh(xμ, v). 2|ESet′(v)| in-
dicates the number of matching nodes in BG(v), as well as the number of similar
x-components present in nbh(xν , v) and nbh(xμ, v). |PSet(v)|+|QSet(v)| denotes
the total number of nodes in BG(v), as well as the total number of x-components
associated with nbh(xν , v) and nbh(xμ, v). Finally, φBG(v) represents the share
of matching nodes in BG(v), as well as the share of similar x-components present
in nbh(xν , v) and nbh(xμ, v).

We say that nbh(xν , v) and nbh(xμ, v) are similar if, given the bipartite graph
BG(v), φBG(v) > 1

2 ; such an assumption derives from the consideration that two
sets of objects can be considered similar if the number of similar components is
greater than the number of the dissimilar ones or, in other words, if the number
of similar components is greater than half of the total number of components.

It is possible to prove that the worst case time complexity for determining if
nbh(xν , v) and nbh(xμ, v) are similar is O(p3), where p is the maximum between
|nbh(xν , v)| and |nbh(xμ, v)|.

Neighborhood Comparability. Intuitively, two neighborhoods nbh(xν , v)
and nbh(xμ, v) are comparable if there exist at least two (quite large) sub-
sets XSetν of nbh(xν , v) and XSetμ of nbh(xμ, v) that are similar. Similar-
ity between XSetν and XSetμ is computed by constructing a bipartite graph
BG(XSetν , XSetμ) starting from the x-components of XSetν and XSetμ, and
by computing φBG in a way analogous to that we have seen previously. Com-
parability is a weaker property w.r.t. similarity. As a matter of fact, if two

Semantics-Guided Clustering of Heterogeneous XML Schemas 45

neighborhoods are similar, they are also comparable. However, it could happen
that two neighborhoods are not similar but they are comparable because they
have quite large similar subsets.

More formally, two neighborhoods nbh(xν , v) and nbh(xμ, v) are comparable
if there exist two subsets, XSetν of nbh(xν , v) and XSetμ of nbh(xμ, v), such
that: (i) |XSetν| > 1

2 |nbh(xν , v)|; (ii) |XSetμ| > 1
2 |nbh(xμ, v)|; (iii) φBG(XSetν ,

XSetμ) > 1
2 . In this definition, conditions (i) and (ii) guarantee that XSetν and

XSetμ are representative (i.e., quite large); we assume that this happens if they
involve more than half of the components of the corresponding neighborhoods;
condition (iii) guarantees that XSetν and XSetμ are similar.

It is possible to prove that: (i) the worst case time complexity for determining
if nbh(xν , v) and nbh(xμ, v) are comparable is O(p3), where p is the maximum
between |nbh(xν , v)| and |nbh(xμ, v)|; (ii) if nbh(xν , v) and nbh(xμ, v) are similar,
then they are also comparable.

Neighborhood Generalization. Consider two neighborhoods α and β and
assume that: (1) they are not similar; (2) most of the x-components of β match
with x-components of α; (3) most of the x-components of α do not match with
x-components of β. If all these conditions hold, then it is possible to conclude
that the reality represented by α is richer than that represented by β and,
consequently, that α is more specific than β or, conversely, that β is more general
than α. The following definition formalizes this reasoning.

Let xν and xμ be two x-components belonging to different XML Schemas.
We say that nbh(xν , v) is more specific than nbh(xμ, v) (and, consequently,
that nbh(xμ, v) is more general than nbh(xν , v)) if: (i) they are not similar,
and (ii) the objective function ϕBG(xν , xμ, v) = |ESet′(v)|

|QSet(v)| , associated with the
bipartite graph BG(v), is greater than 1

2 ; here, BG(v) has been previously
defined, ESet′(v) represents the set of matching edges associated with BG
whereas QSet(v) is the set of nodes of BG corresponding to the x-components
of nbh(xμ, v).

The reasoning underlying this definition derives from the observation that
ϕBG(xν , xμ, v) represents the share of x-components belonging to nbh(xμ, v)
matching with the x-components of nbh(xν , v). If this share is sufficiently high
then most of the x-components of nbh(xμ, v) match with the x-components of
nbh(xν , v) (condition (2)) but, since nbh(xν , v) and nbh(xμ, v) are not similar
(condition (1)), most of the x-components of nbh(xν , v) do not match with the
x-components of nbh(xμ, v) (condition (3)). As a consequence, it is possible to
conclude that nbh(xν , v) is more specific than nbh(xμ, v).

It is possible to prove that the worst case time complexity for determining if
nbh(xν , v) is more specific than nbh(xμ, v) is O(p3), where p is the maximum
between |nbh(xν , v)| and |nbh(xμ, v)|.

2.2 Interschema Property Derivation

As previously pointed out, in order to verify if an interschema property holds
between two x-components xν and xμ, belonging to different XML Schemas, it

46 P. De Meo et al.

is necessary to examine their neighborhoods. Specifically, first it is necessary to
consider nbh(xν , 0) and nbh(xμ, 0) and to verify if they are comparable. In the
affirmative case, it is possible to conclude that xν and xμ refer to analogous “con-
texts” and, presumably, define comparable concepts. As a consequence, the pair
〈xν , xμ〉 is marked as candidate for an interschema property. However, observe
that nbh(xν , 0) (resp., nbh(xμ, 0)) takes only attributes and simple sub-elements
of xν (resp., xμ) into account; as a consequence, it considers quite a limited
context. If a higher severity level is required, it is necessary to verify that other
neighborhoods of xν and xμ are comparable before marking the pair 〈xν , xμ〉 as
candidate. Such a reasoning is formalized by the following definition.

Definition 1. Let S1 and S2 be two XML Schemas. Let xν (resp., xμ) be
an x-component of S1 (resp., S2). Let u be a severity level. We say that the
pair 〈xν , xμ〉 is candidate for an interschema property at the severity level u if
nbh(xν , v) and nbh(xμ, v) are comparable for each v such that 0 ≤ v ≤ u. �

It is possible to prove that the worst case time complexity for verifying if 〈xν , xμ〉
is a candidate pair at the severity level u is O(u × p3), where p is the maximum
between |nbh(xν , u)| and |nbh(xμ, u)|.

Now, in order to verify if a synonymy, a hyponymy or an overlapping holds,
at the severity u, for a candidate pair 〈xν , xμ〉 it is necessary to examine the
neighborhoods of xν and xμ and to determine the relationship holding among
them. Specifically:

– A synonymy holds between xν and xμ at the severity level u if nbh(xν , v)
and nbh(xμ, v) are similar for each v such that 0 ≤ v ≤ u.

– xν is said a hyponym of xμ at the severity level u if nbh(xν , v) is more specific
than nbh(xμ, v), for each v such that 0 ≤ v ≤ u.

– An overlapping holds between xν and xμ at the severity level u if: (i) xν

and xμ are not synonymous; (ii) neither xν is a hyponym of xμ nor xμ is a
hyponym of xν .

The previous assumptions derive from the following considerations: (i) if two
x-components are comparable at the severity level u and their neighborhoods
are also similar, then it is possible to conclude that they represent the same
concept and, consequently, they can be considered synonymous; (ii) if two x-
components are comparable at the severity level u but the neighborhoods of one
of them, say xν , are more specific than the neighborhoods of the other, say xμ,
then it is possible to conclude that xν has a more specific meaning than xμ

or, in other words, that xν is a hyponym of xμ; (iii) if two x-components are
comparable at the severity level u but neither their neighborhoods are similar
nor the neighborhoods of one of them are more specific than the neighborhoods
of the other, then it is possible to conclude that they represent partially similar
concepts and, consequently, that an overlapping holds between them.

As for the computational complexity of the interschema property derivation,
it is possible to state that the worst case time complexity for computing syn-
onymies, hyponymies and overlappings at the severity level u is O(u×p3), where
p is the maximum between |nbh(xν , u)| and |nbh(xμ, u)|.

Semantics-Guided Clustering of Heterogeneous XML Schemas 47

Finally, it is possible to prove that the worst case time complexity for deriving
all interschema properties holding between two XML Schemas S1 and S2 at the
severity level u is O(u × q3 × m2), where q is the maximum cardinality of a
neighborhood of S1 or S2 and m is the maximum between the number of complex
elements of S1 and the number of complex elements of S2.

3 Description of the Proposed Approach

3.1 Introduction

As pointed out in the Introduction, the main focus of the proposed approach is
the clustering of semantically heterogeneous XML Schemas.

Our approach receives: (i) a set SchemaSet = {S1, S2, . . . , Sn} of XML
Schemas to cluster; (ii) a dictionary IPD storing the interschema properties
(synonymies, hyponymies/hypernymies and overlappings) involving concepts be-
longing to Schemas of SchemaSet.

IPD is constructed by applying the approach for the interschema property
derivation illustrated in Section 2.2. In the following we shall assume that IPD
is sorted on the basis of the names of the involved elements and attributes; if this
is not the case, our approach preliminarily applies a suitable sorting algorithm
on it.

Before providing a detailed description of the behaviour of our approach, it
is necessary to introduce some definitions that will be largely exploited in the
following.

Let Si be an XML Schema. As introduced in Section 2, an x-component of Si

is an element or an attribute of Si; it is characterized by its name, its typology
(stating if it is a simple element, a complex element or an attribute) and its data
type. The set of x-components of Si is called XCompSet(Si). In the following we
shall denote with P =

∑n
i=1 |XCompSet(Si)| the total number of x-components

belonging to the Schemas of SchemaSet.
We define now some functions that will be extremely useful in the following;

they receive two x-components xν and xμ and return a boolean value; these
functions are:

– identical(xν, xμ), that returns true if and only if xν and xμ are two synony-
mous x-components having the same name, the same typology and the same
data type;

– verystrong(xν , xμ), that returns true if and only if xν and xμ are two syn-
onymous x-components having the same typology but different names or
different data types;

– strong(xν , xμ), that returns true if and only if xν and xμ are two synonymous
x-components having different typologies;

– hweak(xν , xμ), that returns true if and only if xν and xμ are related by an
hyponymy property;

– oweak(xν , xμ), that returns true if and only if xν and xμ are related by an
overlapping property.

48 P. De Meo et al.

Proposition 1. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet;
finally, let xν and xμ be two x-components belonging to two distinct Schemas of
SchemaSet. The computation of the functions identical(xν, xμ), verystrong(xν ,
xμ), strong(xν , xμ), hweak(xν , xμ) and oweak(xν , xμ) costs O(log P).

Proof. Observe that at most one kind of interschema properties can exist be-
tween two x-components of different Schemas. As a consequence, the maximum
cardinality of IPD is O(P 2). The computation of each function mentioned above
implies the search of the corresponding pair in IPD. Since this dictionary is or-
dered, it is possible to apply the binary search on it. This costs O(log(P 2)) =
O(2 log P) = O(log P). �

Starting from the functions defined previously, it is possible to construct the
following support dictionaries:

– Identity Dictionary ID, defined as:

ID = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), identical(xν , xμ) = true};

– Very Strong Similarity Dictionary V SSD, defined as:

V SSD = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), verystrong(xν , xμ) =
true};

– Strong Similarity Dictionary SSD, defined as:

SSD = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), strong(xν , xμ) = true};

– HWeak Similarity Dictionary HWSD, defined as:

HWSD = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), hweak(xν , xμ)= true};

– OWeak Similarity Dictionary OWSD, defined as:

OWSD = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), oweak(xν , xμ) = true}.

The construction of these dictionaries is carried out in such a way that they
are always ordered w.r.t. the names of the involved x-components.

Proposition 2. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet.
The construction of ID, V SSD, SSD, HWSD and OWSD costs O(P 2 × log P).

Proof. The construction of each dictionary is carried out by verifying the corre-
sponding function for each of the O(P 2) pairs of x-components. Proposition 1
states that this task costs O(log P); as a consequence, the total cost of the con-
struction of all dictionaries is O(P 2 × log P). �

Semantics-Guided Clustering of Heterogeneous XML Schemas 49

3.2 Example

Consider the set of XML Schemas SchemaSet = {S1, S2, S3, S4, S5} shown in
Figures 1, 2, 3, 4 and 5, respectively. The pairs of complex elements stored in
the corresponding Interschema Property Dictionary are shown in Table 11.

The complex elements of SchemaSet belonging to ID, V SSD, HWSD and
OWSD2 are the following3:

ID = {〈 shop[S3], shop[S4] 〉}

V SSD = {〈customer[S3], client[S4]〉, 〈music[S3], composition[S4]〉,
〈shop[S3], store[S5]〉, 〈shop[S4], store[S5]〉, 〈subject[S1], course[S2]〉}

HWSD = {〈student[S1], PhDstudent[S2]〉}

OWSD = {〈composition[S4], CD[S5]〉, 〈lecturer[S1], professor[S2]〉,
〈music[S3], CD[S5]〉}

As an example, the pair 〈 shop[S3], shop[S4] 〉 belongs to ID because shop[S3]
and shop[S4] have the same name, the same typology, the same data type and a
synonymy between them is registered in IPD. Analogously, the pair 〈 subject[S1],
course[S2] 〉 belongs to V SSD because a synonymy between subject[S1] and
course[S2] is registered in IPD but these elements have different names. The
other properties stored in V SSD, HWSD and OWSD have been determined
by applying analogous reasonings.

3.3 Construction of the Dissimilarity Matrix

As specified in the Introduction, one of the key features of our approach is the
construction of the Dissimilarity Matrix. In fact, once this structure has been
constructed, it is possible to apply on it a large variety of clustering algorithms
already proposed in the literature. In order to allow the application of the max-
imum possible number of clustering algorithms, we have decided to exploit a
metrics for measuring the dissimilarity between two XML Schemas.

Since involved XML Schemas could be semantically heterogeneous and since
we want to group them on the basis of their relative semantics, our definition of
metrics must necessarily be very different from the classical ones; specifically, in
our case, it must be strictly dependent on the interschema properties that are
the way we exploit for defining inter-source semantics.

1 Due to space constraints, in this example, and in the following ones, we show only
properties concerning complex elements and disregard those ones involving simple
elements and attributes.

2 Note that SSD is not shown here because each of its tuples refers to attributes or
simple elements.

3 Here and in the following, whenever necessary, we use the notation x[S] for indicating
the x-component x of the XML Schema S.

50 P. De Meo et al.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="lecturer">

<xs:complexType>

<xs:attribute name="identifier" type="xs:ID"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="cultural_area" type="xs:string"/>

<xs:attribute name="subjects" type="xs:IDREFS"/>

<xs:attribute name="start_date" type="xs:date"/>

<xs:attribute name="end_date" type="xs:date"/>

<xs:attribute name="salary" type="xs:integer"/>

<xs:attribute name="contracts" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="student">

<xs:complexType>

<xs:attribute name="identifier" type="xs:ID"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="enrollment_year" type="xs:integer"/>

<xs:attribute name="attends" type="xs:IDREFS"/>

</xs:complexType>

</xs:element>

<xs:element name="subject">

<xs:complexType>

<xs:attribute name="identifier" type="xs:ID"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="argument" type="xs:string"/>

<xs:attribute name="duration" type="xs:integer"/>

<xs:attribute name="attended_by" type="xs:IDREF"/>

<xs:attribute name="teached_by" type="xs:IDREFS"/>

</xs:complexType>

</xs:element>

<!-- Declaration of root -->

<xs:element name="university">

<xs:complexType>

<xs:sequence>

<xs:element ref="lecturer" maxOccurs="unbounded"/>

<xs:element ref="student" maxOccurs="unbounded"/>

<xs:element ref="subject" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Fig. 1. The XML Schema S1

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="professor">

<xs:complexType>

<xs:attribute name="identifier" type="xs:ID"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="type" type="xs:string"/>

<xs:attribute name="cultural_area" type="xs:string"/>

<xs:attribute name="courses" type="xs:IDREFS"/>

<xs:attribute name="projects" type="xs:string"/>

<xs:attribute name="roles" type="xs:string"/>

<xs:attribute name="references" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="PhDstudent">

<xs:complexType>

<xs:attribute name="identifier" type="xs:ID"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="enrollment_year" type="xs:integer"/>

<xs:attribute name="advisor" type="xs:string"/>

<xs:attribute name="thesis" type="xs:string"/>

<xs:attribute name="research_interests" type="xs:string"/>

<xs:attribute name="refrences" type="xs:string"/>

</xs:complexType>

</xs:element>

<xs:element name="course">

<xs:complexType>

<xs:attribute name="identifier" type="xs:ID"/>

<xs:attribute name="name" type="xs:string"/>

<xs:attribute name="argument" type="xs:string"/>

<xs:attribute name="duration" type="xs:integer"/>

<xs:attribute name="responsible" type="xs:IDREF"/>

<xs:attribute name="program" type="xs:string"/>

<xs:attribute name="number_of_students"

type="xs:integer"/>

<xs:attribute name="lecture_hall" type="xs:string"/>

</xs:complexType>

</xs:element>

<!-- Declaration of root -->

<xs:element name="department">

<xs:complexType>

<xs:sequence>

<xs:element ref="professor" maxOccurs="unbounded"/>

<xs:element ref="PhDstudent" maxOccurs="unbounded"/>

<xs:element ref="course" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Fig. 2. The XML Schema S2

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="customer">

<xs:complexType>

<xs:attribute name="SSN" type="xs:string" use="required"/>

<xs:attribute name="firstName" type="xs:string"/>

<xs:attribute name="lastName" type="xs:string"/>

<xs:attribute name="address" type="xs:string"/>

<xs:attribute name="gender" type="xs:string"/>

<xs:attribute name="birthDate" type="xs:date"/>

<xs:attribute name="profession" type="xs:string"/>

<xs:attribute name="purchases" type="xs:IDREFS"/>

</xs:complexType>

</xs:element>

<xs:element name="music">

<xs:complexType>

<xs:attribute name="code" type="xs:ID" use="required"/>

<xs:attribute name="artist" type="xs:string"/>

<xs:attribute name="title" type="xs:string"/>

<xs:attribute name="pubYear" type="xs:integer"/>

<xs:attribute name="genre" type="xs:string"/>

<xs:attribute name="support" type="xs:string"/>

</xs:complexType>

</xs:element>

<!-- Definition of root element -->

<xs:element name="shop">

<xs:complexType>

<xs:sequence>

<xs:element ref="customer" maxOccurs="unbounded"/>

<xs:element ref="music" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Fig. 3. The XML Schema S3

Semantics-Guided Clustering of Heterogeneous XML Schemas 51

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="client">

<xs:complexType>

<xs:attribute name="SSN" type="xs:string" use="required"/>

<xs:attribute name="firstName" type="xs:string"/>

<xs:attribute name="lastName" type="xs:string"/>

<xs:attribute name="address" type="xs:string"/>

<xs:attribute name="phone" type="xs:string"/>

<xs:attribute name="email" type="xs:string"/>

<xs:attribute name="purchases" type="xs:IDREFS"/>

</xs:complexType>

</xs:element>

<xs:element name="composition">

<xs:complexType>

<xs:attribute name="id" type="xs:ID"/>

<xs:attribute name="artist" type="xs:string"/>

<xs:attribute name="title" type="xs:string"/>

<xs:attribute name="song" type="xs:string"/>

<xs:attribute name="year" type="xs:integer"/>

<xs:attribute name="genre" type="xs:string"/>

</xs:complexType>

</xs:element>

<!-- Definition of root element -->

<xs:element name="shop">

<xs:complexType>

<xs:sequence>

<xs:element ref="client" maxOccurs="unbounded"/>

<xs:element ref="composition" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Fig. 4. The XML Schema S4

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CD">

<xs:complexType>

<xs:attribute name="id" type="xs:string" use="required"/>

<xs:attribute name="title" type="xs:string"/>

<xs:attribute name="year" type="xs:integer"/>

<xs:attribute name="artist" type="xs:IDREF"/>

<xs:attribute name="genre" type="xs:string"/>

<xs:attribute name="price" type="xs:integer"/>

<xs:sequence>

<xs:element name="song" type="xs:string"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="artist">

<xs:complexType>

<xs:attribute name="SSN" type="xs:ID"/>

<xs:attribute name="firstName" type="xs:string"/>

<xs:attribute name="lastName" type="xs:string"/>

<xs:attribute name="address" type="xs:string"/>

<xs:attribute name="email" type="xs:string"/>

<xs:attribute name="web_address" type="xs:string"/>

<xs:attribute name="music_CDs" type="xs:IDREFS"/>

</xs:complexType>

</xs:element>

<!-- Definition of root element -->

<xs:element name="store">

<xs:complexType>

<xs:sequence>

<xs:element ref="artist" maxOccurs="unbounded"/>

<xs:element ref="CD" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

Fig. 5. The XML Schema S5

Table 1. The pairs of complex elements stored in the Interschema Property Dictionary
associated with S1, S2, S3, S4 and S5

First x-component Second x-component semantic relationship

university[S1] department[S2] overlapping
lecturer[S1] professor[S2] overlapping
student[S1] PhDstudent[S2] hyponymy
subject[S1] course[S2] synonymy
customer[S3] client[S4] synonymy
music[S3] composition[S4] synonymy
shop[S3] shop[S4] synonymy
shop[S3] store[S5] synonymy
music[S3] CD[S5] overlapping
shop[S4] store[S5] synonymy
composition[S4] CD[S5] overlapping

52 P. De Meo et al.

Our notion of metrics is based on a suitable, multi-dimensional euclidean
space. It has P dimensions, one for each x-component of the involved XML
Schemas; in the following it will be denoted by the symbol 	P .

An XML Schema Si can be represented in 	P by means of a point Qi ≡
[qi

1, q
i
2, . . . , q

i
ν , . . . , qi

P]. The value of the generic coordinate qi
ν is obtained by

means of the following formula:

qi
ν = ξ(xν) · ψ(xν , Si, ID, V SSD, SSD, HWSD, OWSD)

ξ(xν) discriminates the complex elements w.r.t. the simple ones and the at-
tributes. This is necessary because a complex element is presumably more char-
acterizing than either a simple element or an attribute for defining the semantics
of a concept. ξ is defined in the following way:

ξ(xν) =
{

1 if xν is a complex element
γ if xν is either a simple element or an attribute

Here, γ belongs to the real interval [0, 1].
ψ(xν , Si, ID, V SSD, SSD, HWSD, OWSD) indicates how much Si is capa-

ble of representing the semantics expressed by the concept associated with xν ;
it is defined as follows:

ψ(xν , Si, ID, V SSD, SSD, HWSD, OWSD) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if xν ∈ XCompSet(Si)
αI if xν �∈ XCompSet(Si), ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ ID
αV S if xν �∈ XCompSet(Si), ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ V SSD
αS if xν �∈ XCompSet(Si), ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ SSD
αHW if xν �∈ XCompSet(Si), ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ HWSD
αOW if xν �∈ XCompSet(Si), ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ OWSD
0 otherwise

Here, αI , αV S , αS , αHW and αOW belong to the real interval [0, 1]. An ex-
perimental study on the optimal values for αI , αV S , αS , αHW , αOW and γ is
illustrated in Section 4.3.

Proposition 3. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet.
Let Si be a Schema of SchemaSet. The worst case time complexity for determin-
ing the point Qi associated with Si in 	P is O(|XCompSet(Si)| × P × log P).

Proof. In order to determine Qi, functions ξ and ψ must be evaluated for each
dimension of 	P . Let us consider the νth dimension. The cost of ξ is constant.
ψ requires to perform a search in ID, V SSD, SSD, HWSD and OWSD for
each x-component of Si. Since these dictionaries are ordered, this search can
be performed in O(log P). As a consequence, the total cost of the function ψ is
O(|XCompSet(Si)| × log P).

This evaluation must be repeated for each of the P dimensions; as a conse-
quence, the total cost for determining Qi is O(|XCompSet(Si)| × P × log P).

�

Semantics-Guided Clustering of Heterogeneous XML Schemas 53

Corollary 1. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas; let
P be the total number of x-components relative to the Schemas of SchemaSet.
The worst case time complexity for determining, in 	P , the points associated
with all Schemas of SchemaSet is O ((

∑n
i=1 |XCompSet(Si)|) × P × log P) =

O(P 2 × log P). �

We are now able to introduce our notion of distance between two XML Schemas
and, consequently, to construct the Dissimilarity Matrix. Specifically, the dis-
tance between two XML Schemas Si and Sj , belonging to SchemaSet, is com-
puted by determining the euclidean distance between the corresponding points
in 	P and by normalizing this distance in such a way to obtain a value in the real
interval [0, 1], as required by clustering algorithms. This is obtained by means
of the following formula:

d(Qi, Qj) =

√
∑P

ν=1

(
qi
ν − qj

ν

)2

√
∑P

ν=1 (ξ (xν))2

Here, the numerator represents the classical euclidean distance between two
points; the denominator represents the maximum distance possibly existing be-
tween two points in the considered space and is exploited for normalizing the
numerator4.

Proposition 4. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet;
finally, let QSet = {Q1, Q2, . . . , Qn} be the set of points in 	P associated with
all Schemas of SchemaSet. The worst case time complexity for constructing the
Dissimilarity Matrix is O(n2 × P).

Proof. In order to construct the Dissimilarity Matrix, it is necessary to compute
the distance for each of the O(n2) pairs of points in QSet.

The computation of this distance requires the computation of the sums at
both the numerator (whose cost is O(P)) and the denominator (whose cost is,
again, O(P)) of d(Qi, Qj).

Therefore, the total cost of the matrix construction is O(n2) × O(2P) =
O(n2 × P). �

The previous reasonings show that, for constructing the Dissimilarity Matrix,
two phases are necessary. The former aims at determining the points in the metric
space corresponding to the involved XML Schemas; this activity costs O(P 2 ×
log P) (see Corollary 1). The latter aims at computing the reciprocal distances
among the previously defined points and costs O(n2 × P) (see Proposition 4).

4 Recall that qi
ν = ξ(xν) · ψ(xν , Si, ID, V SSD, SSD, HWSD,OWSD) and that the

maximum (resp., minimum) value of ψ is equal to 1 (resp., 0).

54 P. De Meo et al.

Table 2. The Dissimilarity Matrix computed for S1, S2, S3, S4 and S5

- S1 S2 S3 S4 S5

S1 0 0.44 0.78 0.77 0.74
S2 0.44 0 0.80 0.79 0.76
S3 0.78 0.80 0 0.20 0.42
S4 0.77 0.79 0.20 0 0.38
S5 0.74 0.76 0.42 0.38 0

3.4 Example (cnt’d)

Consider the set of XML Schemas SchemaSet = {S1, S2, S3, S4, S5} introduced
in Section 3.2.

In order to show an example of the computation of the generic coordinate of
a point, we illustrate the computation of the coordinate corresponding to the
x-component course[S2] for the point associated with S1. In this case we have
that:

– ξ(course[S2]) = 1, because course[S2] is a complex element;
– ψ(course[S2], S1, ID, V SSD, SSD, HWSD, OWSD) = αV S because S1 in-

cludes subject[S1] and 〈subject[S1], course[S2]〉 ∈ V SSD.

As a consequence, the final value of the coordinate corresponding to course[S2]
for the point associated with S1 is 1 · αV S = αV S .

In the same way, all the coordinates of all involved Schemas can be computed.
After each point corresponding to an XML Schema of SchemaSet has been

determined, it is possible to compute the distance between each pair of points
and, consequently, the Dissimilarity Matrix.

The Dissimilarity Matrix computed for αI = 0.95, αV S = 0.90, αS = 0.80,
αHW = 0.60, αOW = 0.60 and γ = 0.40 is shown in Table 25. This matrix
indicates that the nearest (i.e., the most similar) pair of distinct XML Schemas
is 〈S3, S4〉; in fact, the distance between the points corresponding to them is only
0.20. This implies that most of the x-components belonging to S3 and S4 are
related by some interschema property and, consequently, that, overall, S3 and
S4 are very similar. On the contrary, the farthest (i.e., the most dissimilar) pair
of XML Schemas is 〈S2, S3〉 whose distance is 0.80. This indicates that many
of the x-components of S2 and S3 are not related each other and, consequently,
that, overall, the two Schemas represent quite different information.

3.5 Application of the Pre-existing Clustering Algorithms on the
Constructed Dissimilarity Matrix

Once the Dissimilarity Matrix has been defined, it is possible to apply on it a
large variety of clustering algorithms previously proposed in the literature. These
5 A complete discussion on how these coefficients values have been selected can be

found in Section 4.3.

Semantics-Guided Clustering of Heterogeneous XML Schemas 55

differ for their time complexity, for their result accuracy, as well as for their
behaviour. Therefore, it is clear that the choice of the clustering algorithm to be
adopted in a certain domain strictly depends on its main features. In order to
evaluate this fact we have considered three clustering algorithms, characterized
by different features. For implementation purposes, we have chosen to apply
three algorithms available in WEKA [42], one of the most popular Data Mining
tools; specifically, we have chosen to apply K-Means, Expectation Maximization
and Farthest First Traversal.

In this section we provide a brief overview of the behaviour of these algorithms
when applied to our reference context.

K-Means [30]. When applied to our reference context, K-Means receives a
parameter k and partitions the set of points of 	P in k clusters.

The worst case time complexity of K-Means is O(n × k × t), where n is the
cardinality of SchemaSet, k is the desired number of clusters, and t is the number
of iterations necessary for the algorithm to converge. Typically, k and t are much
smaller than n; therefore, the worst case time complexity of K-Means can be
considered linear against the cardinality of SchemaSet; for this reason K-Means
is relatively scalable for clustering large sets of XML Schemas.

A difficulty in the application of K-Means to our context regards its sensitivity
to noise and outliers: this implies that, if there exist some Schemas semantically
very different from the others, K-Means could return not particularly satisfactory
results. Another drawback of K-Means consists of its necessity to preventively
know the best value for k; if this information is not available, a try-and-check
approach should be adopted for determining it. Clearly, this would increase the
time necessary to the algorithm for providing the final results.

Expectation Maximization [12,43]. Expectation Maximization (hereafter,
EM) models involved objects as a collection of k Gaussians6, where k is the
number of clusters to be derived. For each involved object, EM computes a
degree of membership to each cluster.

The implementation of EM is very similar to that of K-Means. As with K-
Means, EM begins with an initial guess of the cluster centers (Expectation step)
and iteratively refines them (Maximization step). It terminates when a para-
meter, measuring the quality of obtained clusters, no longer shows significant
increases. EM is guaranteed to converge to a local maximum, that often coin-
cides with the global one.

An important feature of this algorithm is its capability of modelling quite a
rich set of cluster shapes. Moreover, it can be instructed to determine by itself
the best number of clusters to be derived, even if the user can directly specify
such an information, if he wants.

The quite refined statistical model underlying EM allows it to often obtain
optimal results; for this reason EM is frequently adopted in a large variety of

6 Although Gaussians are the generally used distributions in EM , other different dis-
tributions might be considered.

56 P. De Meo et al.

application contexts. Moreover, its capability of automatically determining the
best number of clusters makes it particularly suited for our reference context.

Farthest First Traversal [23]. The basic idea of Farthest First Traversal
(hereafter, FFT) is to get k points out of n, that are mutually “far” from
each other; in our reference context, the points to cluster are the points of 	P

associated with XML Schemas.
FFT operates as follows: first it randomly selects a point Q1 and puts it

into the so-called “Traversed Set” TS. After this, it performs k − 1 iterations
for constructing TS; during each iteration it inserts into TS the point Qi hav-
ing the maximum distance from TS; the distance of Qi from TS is defined as
d(Qi, TS) = minQj∈TS d(Qi, Qj), where d(Qi, Qj) could be any dissimilarity
measure between two points (in our approach it is the dissimilarity measure
defined in Section 3.3).

After TS has been constructed, each point Qi ∈ TS is chosen as the centroid
of a cluster; then, for each point Qk �∈ TS, the algorithm computes its distance
from the various centroids and puts Qk in the cluster whose centroid has the
minimum distance from it.

FFT requires the user to specify the number k of clusters to be constructed;
moreover, the quality of its results might be influenced by the choice of the initial
point Q1 of TS. However, the worst case time complexity of this algorithm is
O(n × k), where n is the cardinality of SchemaSet and k is the number of
clusters to be obtained. As a consequence, it is scalable and particularly suited
in application contexts, like ours, where objects to be clustered could be very
numerous.

3.6 Example (cnt’d)

Consider the Dissimilarity Matrix derived in Section 3.4 and shown in Table 2.
The application of EM (i.e., the application of that clustering algorithm that
does not require the number of desired clusters as input) returns two clusters,
namely C1 = {S1, S2} and C2 = {S3, S4, S5}. The application of K-Means and
FFT , when it is specified that the number of desired clusters is equal to 2,
returns the same clusters C1 and C2 returned by EM . A further application of
K-Means and FFT , with a number of desired clusters equal to 1 (resp., 3, 4 and
5) returns less accurate results and, consequently, confirms that the best number
of clusters for this example is 2.

4 Experiments

4.1 Description of the Exploited Information Sources

In order to verify the validity of our approach we have performed various exper-
iments. Specifically, we have considered 97 XML Schemas belonging to various
application contexts, such as Biomedical Data, Project Management, Property
Register, Industrial Companies, Universities, Airlines, Scientific Publications and
Biological Data.

Semantics-Guided Clustering of Heterogeneous XML Schemas 57

Table 3. Main features of the XML Schemas adopted in our experiments

Application context Number Maximum Minimum, Average and Minimum, Average and
of Schemas depth of Maximum Number of Maximum Number of

Schemas x-components complex elements

Biomedical Data 33 9 12 - 25 - 44 3 - 9 - 18
Project Management 9 6 35 - 40 - 46 5 - 6 - 9
Property Register 6 6 61 - 72 - 77 13 - 15 - 17
Industrial Companies 15 5 20 - 26 - 48 5 - 7 - 10
Universities 15 7 12 - 16 - 20 3 - 5 - 9
Airlines 2 4 12 - 13 - 13 4 - 4 - 4
Scientific Publications 2 6 17 - 18 - 18 8 - 9 - 9
Biological Data 15 9 230 - 322 - 658 33 - 55 - 221

These Schemas have been derived from specific Web sites or public sources. As
an example, some XML Schemas relative to Biomedical Data have been derived
from http://www.biomediator.org. Some of the Schemas relative to Project Man-
agement, Property Register and Industrial Companies have been derived from
Italian Central Government Office information sources and are shown at the
address http://www.mat.unical.it/terracina/tests.html. Some of the Schemas
relative to Universities have been downloaded from the address http://anhai.cs.
uiuc.edu/archive/domains/courses.html. Schemas relative to Airlines have been
found in [35]. Schemas relative to Scientific Publications have been supplied by
the authors of [27]. Finally, Schemas relative to Biological Data have been down-
loaded from specialized sites; among them we cite http://smi-web.stanford.edu/

projects/helix/pubs/ismb02/schemas/. The main features of the XML Schemas
that we have considered in our experiments are described in Table 3.

4.2 Description of the Adopted Measures

The accuracy measures of a clustering approach can be subdivided into: (i)
external measures, that compare the results obtained by the approach into ex-
amination with the clusters defined by a domain expert and considered correct;
(ii) internal measures, that evaluate the capability of the considered approach
to produce homogeneous clusters.

External measures. In the following we introduce (and tailor to our refer-
ence context) some of the most popular external measures for the evaluation of
clustering approaches [1].

Let SchemaSet be the set of XML Schemas which the clustering task must be
performed on; we indicate with ClSet∗ = {Cl∗1, Cl∗2 , . . . , Cl∗l } the set of correct
classes defined by a domain expert, and with ClSet = {Cl1, Cl2, . . . , Clk} the
set of clusters produced by the algorithm to evaluate. Accuracy measures we
have considered are:

– Precision (hereafter, Pre). The Precision of a cluster Clj w.r.t. a class Cl∗i
is defined as Pre(Cl∗i , Clj) = |Clj∩Cl∗i |

|Clj| . The total Precision of a clustering
approach, when applied on SchemaSet, is defined as:

Pre =
�|ClSet∗|

i=1

�
|Cl∗i |

|SchemaSet| ·
�
max1≤j≤|ClSet| Pre(Cl∗i , Clj)

��

58 P. De Meo et al.

– Recall (hereafter, Rec). The Recall of a cluster Clj w.r.t. a class Cl∗i is defined
as Rec(Cl∗i , Clj) = |Clj∩Cl∗i |

|Cl∗i | . The total Recall of a clustering approach, when
applied on SchemaSet, is defined as:

Rec =
�|ClSet∗|

i=1

�
|Cl∗i |

|SchemaSet| ·
�
max1≤j≤|ClSet| Rec(Cl∗i , Clj)

��

– F-Measure. F-Measure represents the harmonic mean between Precision and
Recall; it is defined as F -Measure(Cl∗i , Clj) = 2 · Pre(Cl∗i ,Clj)·Rec(Cl∗i ,Clj)

Pre(Cl∗i ,Clj)+Rec(Cl∗i ,Clj)
.

The total F-Measure of a clustering approach, when applied on SchemaSet,
is defined as:

F -Measure =
�|ClSet∗|

i=1

�
|Cl∗i |

|SchemaSet| ·
�
max1≤j≤|ClSet| F -Measure(Cl∗i , Clj)

��

– Overall. Overall measures the effort needed for adding false negatives and re-
moving false positives from the set of clusters returned by the system to eval-
uate. It is defined as: Overall(Cl∗i , Clj) = Rec(Cl∗i , Clj) ·

(
2 − 1

Pre(Cl∗i ,Clj)

)
.

The total Overall of a clustering approach, when applied on SchemaSet, is
defined as:

Overall =
�|ClSet∗|

i=1

�
|Cl∗i |

|SchemaSet| ·
�
max1≤j≤|ClSet| Overall(Cl∗i , Clj)

��

– Entropy. Entropy provides a measure of the purity of clusters w.r.t. classes;
it is defined as:

Entropy =
�|ClSet|

j=1

�
|Clj |

|SchemaSet| ·
�|ClSet∗|

i=1 [−pij ln (pij)]
�

where pij is the probability that an XML Schema of a cluster Clj belongs
to the class Cl∗i .

Values of Precision, Recall and F-Measure fall in the real interval [0, 1], whereas
values of Overall vary between −∞ and 1. The higher the value of these mea-
sures is, the better the accuracy of the approach into examination will be. Values
of Entropy belong to the real interval [0, ln (|ClSet∗|)]; the lower Entropy is, the
purer produced clusters will be.

Internal measures. Two interesting internal measures for evaluating clustering
techniques are:

– Uncoupling Degree. This measure has been derived from the coupling bound
measure introduced in [37]. Specifically, let Cli and Clj be two clusters and
let τ be a number in the real interval [0, 1]; we define the set CU τ

ij of the
τ -uncoupled pairs between Cli and Clj as: CU τ

ij = {〈Sa, Sb〉 | Sa ∈ Cli, Sb ∈
Clj , d(Sa, Sb) ≥ τ}, where d(Sa, Sb) represents the distance (i.e., the dissim-
ilarity) between Sa and Sb; in our approach d(Sa, Sb) is computed by means
of the formula introduced in Section 3.3.

The τ -Uncoupling Degree Uncτ
ij between two clusters Cli and Clj is de-

fined as the ratio between the τ -uncoupled pairs relative to Cli and Clj and
the total number of possible pairs relative to Cli and Clj ; in other words,
Uncτ

ij = |CUτ
ij|

|Cli|·|Clj| .

Semantics-Guided Clustering of Heterogeneous XML Schemas 59

Finally, the Uncoupling Degree Uτ is defined as Uτ = min 1≤i,j≤|ClSet|
i�=j

Uncτ
ij .

Uτ belongs to the real interval [0, 1] and measures the capability of a clus-
tering algorithm to return sufficiently separated clusters; given a value of τ ,
the higher Uτ is, the higher the separation between clusters will be.

– Cohesiveness Degree. This measure has been derived from the cohesiveness
parameter introduced in [37]. Specifically, given a cluster Cli and a real
number τ ∈ [0, 1], we define the set of τ -cohesive pairs as CCτ

i = {〈Sa, Sb〉 |
Sa, Sb ∈ Cli, Sa �= Sb, d(Sa, Sb) ≤ τ}.

The τ -Cohesiveness Degree of a cluster Cli is defined as the ratio be-
tween the number of τ -cohesive pairs and the total number of pairs of XML
Schemas in Cli; specifically, Cohesτ

i = |CCτ
i |

|Cli|·(|Cli|−1) .
Finally, the Cohesiveness Degree Cτ is defined as Cτ =min1≤i≤|ClSet| Cohesτ

i .
Cτ belongs to the real interval [0, 1] and measures the capability of an algo-
rithm to produce cohesive clusters, i.e., clusters composed by very “similar”
XML Schemas.

As pointed out in [37], a clustering algorithm should produce very cohesive
and sufficiently uncoupled clusters; therefore, the higher the values of internal
measures are, the better the performance of the algorithm will be.

4.3 Tuning of the Parameters Exploited by Our Approach

As pointed out in Section 3.3, our approach exploits some parameters; therefore,
before carrying out any test, we had to experimentally find the values to be
associated with them for guaranteeing the optimal (or, at least, a sub-optimal)
value of accuracy measures. In order to perform such an evaluation, we have
applied K-Means, EM and FFT on the Dissimilarity Matrixes constructed by
our approach and we have considered various values of the parameters to tune;
after this, we have computed Precision, Recall and Entropy on returned clusters.

In this activity an important issue concerned the number of clusters to be
provided as input to K-Means and FFT (remember that EM is capable of au-
tomatically deriving this information). The number of clusters that we have
specified in K-Means and FFT is 8; this number has been determined from the
convergence of the following observations:

– The XML Schemas involved in our tests belonged to 8 different application
domains; now, it is plausible that two Schemas belonging to different domains
should belong to different clusters. However, it might happen that two or
more clusters originate from the same domain and, consequently, that two
Schemas belonging to the same domain actually belong to different clusters.
As a consequence, the observation that the initial application domains were
8 might be not sufficient to conclude that the best number of clusters in our
tests is 8.

– The execution of EM (that, as previously pointed out, is capable of auto-
matically derive the best number of clusters) returned exactly 8 clusters for
the involved Schema set.

60 P. De Meo et al.

The convergence of these two evidences allowed us to conclude that the best
number of clusters to be provided as input to K-Means and FFT was exactly 8.

Since the number of possible combinations for parameter values was signif-
icant, we have subdivided our tuning activity in two phases: the former one
aimed at determining rough optimal parameter values; the latter one aimed at
performing an analysis for refining the previously obtained rough optimal values.

In the first phase we have subdivided the possible parameter values in four
intervals7, namely: Low (hereafter L), corresponding to the interval [0, 0.4],
Medium (hereafter M), corresponding to the interval (0.4, 0.7], High (hereafter
H), corresponding to the interval (0.7, 0.9], and Very High (hereafter V H), cor-
responding to the interval (0.9, 1]. For each of these intervals we have considered
the corresponding mean value as its representative (e.g., the representative value
for M was 0.55). Observe that defined intervals have not the same length. This
choice has been made for speeding up the second phase of our tuning activity.
In fact, we estimated that, presumably, most of the values of the considered
parameters would have been quite high, especially those involved in the func-
tion ψ; in fact, almost all considered parameters express the role of interschema
properties in improving the quality of the clustering activity and, as informally
shown in the Introduction (and as experimentally shown in this and in the next
subsections), this role is quite important. As a consequence of this assumption,
in order to reduce the effort to find the refined optimal values during the second
phase, we considered smaller intervals for high values and longer intervals for
low ones; this allowed us to restrict the range of variation of the most occurring
intervals and, consequently, to focus our attention only on the most plausible
parameter values. However, it is worth pointing out that this assumption does
not limit the possibility that a parameter has a low value; it only implies that a
longer time is necessary during the refinement phase for determining the exact
value of this parameter.

After this, we have computed Precision, Recall and Entropy for all the possible
combinations of values that could be assigned to the involved parameters within
the set {L, M , H , V H}.

Table 4 shows the values of Precision, Recall and Entropy for some of the
combinations that we have considered. At the end of these tests we have found
that our approach shows the best results for αI = V H , αV S = H , αS = H ,
αHW = M , αOW = M , and γ = L, which correspond to the following rough
values: αI = 0.95, αV S = 0.80, αS = 0.80, αHW = 0.55, αOW = 0.55, and
γ = 0.20.

It is worth noticing that the “farther” from these optimal values the com-
binations are, the worse the values of Precision, Recall and Entropy are. The
examination of Table 4 allows a further, interesting feature to be observed; in
fact, it is possible to note that Precision increases when Recall increases, and
vice versa. Such an interesting trend can be explained by the following reasoning.
An increase of Precision implies that the predicted distribution of XML Schemas

7 Recall that the values of all involved parameters can vary within the real interval
[0,1].

Semantics-Guided Clustering of Heterogeneous XML Schemas 61

Table 4. Results obtained during the first phase of our tuning activity

K-Means EM FFT

αI αV S αS αHW αOW γ Precision Recall Entropy Precision Recall Entropy Precision Recall Entropy

VH VH VH VH VH VH 0.73 0.77 0.45 0.80 0.78 0.34 0.79 0.74 0.42
VH VH VH H H H 0.76 0.83 0.41 0.84 0.84 0.31 0.83 0.79 0.38
VH VH VH L L L 0.79 0.86 0.38 0.86 0.87 0.29 0.86 0.83 0.36
VH VH H M M M 0.82 0.91 0.35 0.90 0.92 0.27 0.89 0.87 0.33
VH H H M L M 0.81 0.90 0.36 0.89 0.91 0.27 0.88 0.86 0.33
VH H H M M L 0.84 0.94 0.33 0.92 0.95 0.25 0.91 0.90 0.31
H VH VH M M L 0.80 0.88 0.37 0.88 0.89 0.28 0.87 0.85 0.35
H VH VH L L M 0.77 0.84 0.40 0.84 0.85 0.31 0.83 0.80 0.38
H H H VH VH L 0.77 0.83 0.41 0.84 0.84 0.31 0.83 0.80 0.38
H H H M M M 0.81 0.90 0.36 0.89 0.91 0.27 0.88 0.86 0.33
M VH VH H M L 0.78 0.86 0.39 0.86 0.87 0.29 0.85 0.82 0.36
M H H L M L 0.80 0.87 0.38 0.87 0.88 0.29 0.86 0.84 0.35
M M H H H M 0.76 0.82 0.42 0.83 0.83 0.32 0.82 0.78 0.39
M M M H H VH 0.71 0.75 0.46 0.78 0.76 0.35 0.77 0.72 0.44
L M M M L L 0.76 0.82 0.42 0.83 0.83 0.32 0.82 0.78 0.39
L L L H H VH 0.69 0.71 0.49 0.75 0.72 0.37 0.75 0.68 0.46
L L L M M M 0.74 0.79 0.44 0.81 0.80 0.33 0.80 0.76 0.41
L L L L L L 0.72 0.76 0.46 0.79 0.77 0.35 0.78 0.73 0.43

into the various clusters is more accurate and, consequently, that the fraction of
true positives increases. However, since, in our tests, XML Schemas into consid-
eration are fixed, an increase of true positives implies a decrease of the number
of misclassified Schemas and, consequently, an improvement of Recall.

In order to make a further verification on the correctness of the optimal rough
parameter values selected by the previous test and to verify the generality of
our clustering approach we have performed a further test aiming at applying
k-fold cross validation [21] on Schemas into consideration. This technique was
originally introduced in statistics; afterwards, it has been extended to estimate
the accuracy of machine learning and data mining techniques: for instance, it
has been widely applied to determine the accuracy of a classifier. In order to
apply k-fold cross validation, the set of input Schemas must be partitioned into
k mutually exclusive subsets F1, F2, . . . , Fk called folds; the various folds should
approximately have the same cardinality.

In our application context, k-fold cross validation has been implemented as
follows. First, we randomly partitioned input Schemas into 8 folds such that 7 of
them contained 12 Schemas and the last one comprised 13 Schemas. After this,
we have performed an iterative procedure; during the ith iteration (i = 1..8)
we have exploited all folds except Fi for training parameter values and we have
used Fi for testing obtained results. Both training and testing were based on the
computation of Precision, Recall and Entropy.

For each computation of accuracy measures, we first applied EM , because it
does not require the number of desired clusters to be specified. After this, we
verified if the number of clusters returned by EM was also optimal for K-Means
and FFT ; this last verification was performed by means of a try-and-check
procedure (i.e., we considered various values for the number of desired clusters
and selected that value capable of guaranteing the best performances). At the
end of this activity, we have found that, in all our tests, the number of clusters
identified by EM was always optimal.

As far as the training sub-task of k-fold cross validation is concerned, the
best parameter combinations were: {αI = V H, αV S = H, αS = H, αHW =

62 P. De Meo et al.

Table 5. Results obtained during the second phase of our tuning activity

K-Means EM FFT

αI αV S αS αHW αOW γ Precision Recall Entropy Precision Recall Entropy Precision Recall Entropy

0.95 0.80 0.80 0.55 0.55 0.20 0.840 0.941 0.330 0.921 0.952 0.251 0.910 0.903 0.310
1,00 0.90 0.90 0.68 0.68 0.40 0.839 0.937 0.335 0.917 0.949 0.252 0.907 0.897 0.315
1,00 0.90 0.90 0.60 0.60 0.30 0.844 0.949 0.317 0.929 0.954 0.246 0.919 0.909 0.297
1,00 0.90 0.90 0.42 0.45 0.40 0.849 0.957 0.305 0.937 0.959 0.242 0.927 0.917 0.285
1,00 0.90 0.85 0.68 0.68 0.20 0.844 0.948 0.318 0.928 0.954 0.246 0.918 0.908 0.298
1,00 0.85 0.85 0.50 0.50 0.20 0.845 0.950 0.315 0.930 0.955 0.245 0.920 0.910 0.295
0.98 0.90 0.90 0.50 0.50 0.10 0.845 0.951 0.314 0.931 0.955 0.245 0.921 0.911 0.294
0.98 0.90 0.90 0.42 0.42 0.20 0.843 0.947 0.320 0.927 0.953 0.247 0.917 0.907 0.300
0.98 0.85 0.85 0.68 0.70 0.20 0.848 0.955 0.308 0.935 0.958 0.243 0.925 0.915 0.288
0.98 0.85 0.85 0.50 0.50 0.20 0.844 0.947 0.320 0.927 0.954 0.247 0.917 0.907 0.300
0.95 0.90 0.90 0.50 0.52 0.10 0.843 0.946 0.321 0.926 0.953 0.247 0.916 0.906 0.301
0.95 0.90 0.80 0.60 0.60 0.40 0.851 0.963 0.307 0.944 0.963 0.241 0.938 0.925 0.281
0.95 0.85 0.85 0.42 0.50 0.10 0.837 0.935 0.338 0.915 0.947 0.253 0.905 0.895 0.318
0.95 0.80 0.85 0.60 0.60 0.20 0.844 0.949 0.317 0.929 0.954 0.246 0.919 0.909 0.297
0.95 0.80 0.80 0.60 0.58 0.40 0.846 0.953 0.311 0.933 0.956 0.244 0.923 0.913 0.291
0.92 0.80 0.80 0.50 0.50 0.10 0.833 0.927 0.350 0.907 0.943 0.257 0.897 0.887 0.330
0.92 0.72 0.72 0.60 0.60 0.40 0.838 0.936 0.336 0.916 0.948 0.252 0.906 0.896 0.316
0.92 0.72 0.72 0.50 0.50 0.20 0.829 0.919 0.362 0.899 0.939 0.261 0.889 0.879 0.342
0.92 0.72 0.72 0.42 0.40 0.10 0.823 0.907 0.380 0.887 0.933 0.267 0.877 0.867 0.360

M, αOW = M, γ = L} for i = 1, 3, 4, 7 and 8; {αI = V H, αV S = H, αS =
H, αHW = M, αOW = L, γ = M} for i = 2 and 6; {αI = V H, αV S = V H, αS =
H, αHW = M, αOW = M, γ = M} for i = 5. For each iteration, the testing
sub-task confirmed the correctness of trained values. This allowed us to draw
two important conclusions:

– the results about the optimal rough parameter values obtained by the pre-
vious method (i.e., that the best rough parameter values where {αI =
V H, αV S = H, αS = H, αHW = M, αOW = M, γ = L}) are confirmed
by the current test;

– our clustering approach is general, i.e., it does not suffer from overlearning
problems.

In the second phase of this experiment, we tried to refine the rough con-
figuration of parameter values obtained during the first phase. Specifically, we
considered several values to be assigned to each parameter within the optimal in-
terval found for it during the first phase. The results of this analysis, for some of
the considered configurations, are presented in Table 5. From the analysis of this
table, we may observe that the best performances (i.e., the best values of Pre-
cision, Recall and Entropy) are obtained for αI = 0.95, αV S = 0.90, αS = 0.80,
αHW = 0.60, αOW = 0.60 and γ = 0.40.

As for this second phase, we have not performed k-fold cross validation since,
in spite of its great time expensiveness, in the first phase it totally confirmed the
results of the other parameter tuning method (that is, also, the method adopted
in the second phase).

The results we obtained for αI , αV S , αS , αHW , αOW and γ allow us to
conclude that, in our application context, synonymies are more important than
overlappings and hyponymies; these results confirm the idea, generally accepted
in the literature, that synonymies are more important than hyponymies and
overlappings for characterizing concept semantics. However, the quite high values
of αHW and αOW show that also these last kinds of properties play a sufficiently

Semantics-Guided Clustering of Heterogeneous XML Schemas 63

important role in characterizing the semantics of a concept. Analogously, the
results we have obtained for γ confirm our reasoning, expressed in Section 3.3,
when we say that complex elements are more characterizing than simple elements
and attributes for determining the semantics of a concept, even if, in any case,
these last play an important role.

4.4 Evaluation of the Impact of Our Approach for Dissimilarity
Matrix Computation on the Clustering Quality

The quality of results produced by any clustering algorithm strongly depends on
the Dissimilarity Matrix received in input, since it summarizes the relationships
existing among the objects into examination. Clearly, a sophisticated approach
for the calculation of the Dissimilarity Matrix causes an increase of the computa-
tional cost, on one hand, but allows an improvement of the accuracy of obtained
results, on the other hand.

Since our approach for the computation of the Dissimilarity Matrix is quite
complex, we have planned to quantify the improvement it produces on the result
accuracy w.r.t. an approach that takes into account the semantics of the involved
Schemas in a simpler way. The “simplified” definition of the semantic distance
existing between two XML Schemas, exploited in this test (called dS in the
following), considers only the fraction of the dissimilarity properties existing
between them. Specifically, dS is defined as:

dS(Si, Sj) = 1 − |sim(Si)|+|sim(Sj)|
|XCompSet(Si)|+|XCompSet(Sj)|

where sim(Si), (resp., sim(Sj)) indicates the set of x-components of Si (resp.,
Sj) involved in at least one synonymy with an x-component of Sj (resp., Si).

It is worth pointing out that this dissimilarity measure is really used in the
literature; moreover, we observe that it is not a metrics; for this reason, in this
test, we have adopted FFT as clustering algorithm, since it does not necessarily
need a metric space.

In this test we have performed two analyses, devoted to consider external and
internal measures, respectively.

Analysis of external measures. In a first series of experiments we have com-
pared the values of external measures, obtained by applying our approach and
the “simplified” one. Table 6 shows the obtained results; from its examination
we deduce that our approach allows a substantial improvement on the quality
of results; specifically, if compared with the “simplified” one, Precision increases
of 20%, Recall improves of 13%, F-Measures increases of 16%, Overall improves
of 46% and Entropy decreases of 17%.

Analysis of internal measures. The computation of internal measures de-
pends on the parameter τ , specifying when two XML Schemas can be considered
uncoupled or cohesive (see Section 4.2). In our analysis we have considered vari-
ous values of τ and, for each of them, we have computed the Uncoupling and the
Cohesiveness Degrees, obtained by exploiting our approach and the “simplified”

64 P. De Meo et al.

Table 6. Comparison of the accuracy of our approach w.r.t. the accuracy of the “sim-
plified” one

Measure Precision Recall F-Measure Overall Entropy

Our Approach 0.94 0.93 0.93 0.86 0.28
“Simplified” Approach 0.78 0.82 0.80 0.59 0.34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

U
n

co
u

p
lin

g
 D

eg
re

es

Our approach
"Simplified" approach

Fig. 6. Variation of Uncoupling Degree
against τ , obtained by exploiting our ap-
proach and the “simplified” one

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

C
o

h
es

iv
en

es
s

D
eg

re
e

Our approach
"Simplified" approach

Fig. 7. Variation of Cohesiveness Degree
against τ , obtained by exploiting our ap-
proach and the “simplified” one

one. Figures 6 and 7 show the corresponding results. Also in this case the im-
provement we have obtained is significant; in fact, the maximum increase of the
Uncoupling Degree (resp., the Cohesiveness Degree) determined by exploiting
our approach is obtained for τ = 0.40 (resp., τ = 0.50) and is equal to 0.33
(resp., 0.27).

4.5 Analysis of the Robustness of Our Approach

As pointed out in Section 3.3, our approach is based on the interschema prop-
erties stored in IPD. In order to measure its robustness against errors in IPD,
we have carried out some variations in the correct dictionary and, for each of
them, we have computed the values of external measures returned by it. This
analysis is important because, if the number of involved XML Schemas is high, it
is compulsory to (semi-)automatically compute IPD; clearly, (semi-)automatic
techniques are more error-prone than manual ones.

The variations we have performed in the correct dictionary are: (a) the re-
moval of 10% of correct properties; (b) the removal of 20% of correct properties;
(c) the removal of 30% of correct properties; (d) the removal of 50% of correct
properties; (e) the insertion of 10% of wrong properties; (f) the insertion of 20%
of wrong properties; (g) the insertion of 30% of wrong properties; (h) the in-
sertion of 50% of wrong properties. In this experiment we have exploited both
K-Means and EM and FFT for performing clustering activity.

Semantics-Guided Clustering of Heterogeneous XML Schemas 65

Table 7. Variations of the values of external measures in presence of errors in IPD

K-Means EM FFT

Case Precision Recall Entropy Precision Recall Entropy Precision Recall Entropy

No error 0.85 0.96 0.31 0.94 0.96 0.24 0.94 0.93 0.28
(a) -10% 0.85 0.88 0.34 0.94 0.88 0.26 0.94 0.84 0.31
(b) -20% 0.85 0.80 0.37 0.94 0.80 0.29 0.93 0.77 0.34
(c) -30% 0.84 0.73 0.40 0.94 0.73 0.31 0.93 0.70 0.37
(d) -50% 0.84 0.67 0.44 0.93 0.67 0.34 0.93 0.64 0.40
(e) +10% 0.78 0.96 0.34 0.86 0.96 0.27 0.86 0.92 0.31
(f) +20% 0.71 0.96 0.38 0.79 0.96 0.30 0.78 0.92 0.35
(g) +30% 0.65 0.95 0.42 0.72 0.95 0.33 0.71 0.92 0.39
(h) +50% 0.59 0.95 0.47 0.65 0.95 0.37 0.65 0.91 0.43

Table 7 illustrates obtained results. From its analysis we can observe that
our approach is quite robust against errors present in IPD; however, at the
same time, it shows a good sensitivity against these errors since, if the correct
properties that are removed or the wrong properties that are added are excessive,
the result accuracy significantly decreases.

4.6 Evaluation of the Impact of Hyponimies and Overlappings on
the Quality of Results

In this section we analyze the impact of hyponimies and overlappings on the
quality of clusters derived by our system. In fact, most of the approaches pre-
viously proposed in the literature consider only synonymies and do not take
hyponymies and overlappings into account (see, below, Section 6). In order to
quantify the importance of these last kinds of properties, we carried out the
following operations:

– We ran our prototype on the input Schemas reported in Table 3 by setting
coefficients αI , αV S , αS , αHW , αOW and γ to the values that guarantee the
best performances, i.e. we set αI = 0.95, αV S = 0.90, αS = 0.80, αHW =
0.60, αOW = 0.60 and γ = 0.40; we call Configuration A this scenario. This
task generated a set CLSetA of clusters.

– We ran our prototype on the input Schemas reported in Table 3 by setting
αHW = 0 and αOW = 0; in this way, we forced our approach to disregard
hyponymies and overlappings stored in IPD; this implies that the compu-
tation of the distance function d(Qi, Qj) is only affected by synonymies. In
this case, the value of αI , αV S , αS and γ exploited in Configuration A might
be inadequate; in other words, the hypothesis that αHW = 0 and αOW = 0
requires to appropriately re-tune the values of αI , αV S , αS and γ.

As a consequence of the previous reasoning, we have re-tuned αI , αV S ,
αS and γ for αHW = 0 and αOW = 0; this task has been performed by
applying the same methodology described in Section 4.3. Specifically: (i) we
have considered various intervals for αI , αV S , αS and γ (namely L, M , H
and V H); (ii) we have applied K-Means, EM and FFT for producing a
set of clusters; (iii) we have computed Precision, Recall and Entropy for all
possible combinations of these intervals; (iv) we have selected those intervals
guaranteing the highest accuracy; (v) we have performed a refinement task

66 P. De Meo et al.

Table 8. Accuracy of our approach in Configuration A and Configuration B

K-Means EM FFT

Configuration Precision Recall Entropy Precision Recall Entropy Precision Recall Entropy

Configuration A 0.85 0.96 0.31 0.94 0.96 0.24 0.94 0.93 0.28
Configuration B 0.77 0.82 0.39 0.84 0.85 0.32 0.81 0.82 0.34

0

20

40

60

80

100

20 30 40 50 60 70 80 90

|SchemaSet|

T
im

e
(s

e
c
)

EM

K-Means

FFT

Fig. 8. Response Time against the cardinality of SchemaSet

for finding the best values (among those admissible in the selected intervals)
for αI , αV S , αS and γ.

At the end of these tests we have found that, under the condition that
αHW = 0 and αOW = 0, our approach shows the best performance for
αI = 0.98, αV S = 0.90, αS = 0.85 and γ = 0.40; we call Configuration B
this scenario and CLSetB the set of obtained clusters.

– We compared CLSetA and CLSetB with the set of classes CLSet∗ provided
by human experts (see Section 4.2). This comparison allowed Precision, Re-
call and Entropy, associated with Configurations A and B, to be determined.

The results of this experiment are reported in Table 8. From the analysis of
this table we observe that the results associated with Configuration A are always
better than those obtained with Configuration B. Such a trend can be justified
as follows: if we ignore the contribution of hyponymies and overlappings, two
concepts linked by this kind of properties are considered completely distinct;
this influences the position, in the vectorial space, of the points associated with
the corresponding Schemas (specifically, their distance is overestimated), which
negatively influences the performance of any clustering algorithm.

4.7 Response Time

We have conducted an experimental study on our test Schemas to compute
the increase of the Response Time caused by an increase of the cardinality of

Semantics-Guided Clustering of Heterogeneous XML Schemas 67

SchemaSet (i.e., the number of XML Schemas to be clustered). In this ex-
periment we have adopted all the three clustering techniques considered in this
paper, i.e., K-Means, EM and FFT . All tests have been performed on a machine
with a Pentium IV 2.6 GHz CPU and 1 Gb of RAM.

In Figure 8 we plot the average Response Time of our approach as a function
of the cardinality of SchemaSet. From the analysis of this figure we can observe
that the increase of the Response Time is “softer” than that we could expect
from the theoretical, worst case, analysis. In our opinion this is a very interesting
result because it shows that our approach is really adequate in those contexts
characterized by numerous data sources to be clustered.

Furthermore, we can note that EM is more time consuming than K-Means or
FFT . This behaviour, along with the results presented in the previous sections,
confirm the theoretical results about these algorithms (see [21,42]), specifying
that EM is generally more time consuming, but also more precise, than K-Means
and FFT .

5 Applications

Data source clustering has a large variety of applications; among them we cite
the extraction of relevant information from semi-structured data sources [8], the
change detection in semi-structured information sources [6], the DTD induction
from a set of XML documents [33], and the query optimization in XML sources
[28].

In this section we provide a brief overview of five applications that, in our
opinion, are well suited and tailored when data sources to be clustered are XML
documents.

5.1 User-Guided Organization of Web Sites

This application is based on the assumption that information stored in a Web site
has both an objective and a subjective component; in fact, the same site can be
perceived under different points of view by different visitors (think, for example,
to the site of Ferrari visited by a car collector, a supporter and a stockholder).
This observation makes it particularly interesting an approach that, given a user,
clusters the Web sites he visits on the basis of his perception of them (think,
for example, to the possibility to supply a personalized access to e-commerce,
e-government or e-learning providers).

Let u be a user; the categorization of the Web sites of his interest can be
obtained by: (i) associating an intelligent agent with each visited site; this agent
registers in a Site Profile Pi (stored as an XML document) the content of the
site Si as it is perceived by u (see [19] for details about the behaviour of this
agent); (ii) organizing the Site Profiles thus obtained into a Cluster Hierarchy.

This last activity requires the following problems to be solved:

– The number of basic clusters (i.e., the clusters at the bottom of the Hierar-
chy) and, more in general, the number of sites considered for a user cannot

68 P. De Meo et al.

SB

EC
Basic

Clusters

.

Fig. 9. Structure of the proposed Cluster Hierarchy

grow indefinitely. Thus, some mechanism for limiting this number must be
defined.

– The perception a user has of a site can change over time (think, for example,
to a Ferrari supporter that becomes a car collector); if this happens, it could
be necessary to move the corresponding Site Profile from a basic cluster to
another one appearing to be closer to the new perception. In this sense, the
Hierarchy must be dynamic and requires a continuous checking. However,
making a redo operation at each new access does not lead to a feasible
approach: some less naive strategy, guaranteing, at each time, an acceptable
correctness of site classification, is necessary.

– It may happen that a new site cannot be classified into any correct basic
cluster.

Clearly enough, in order to construct the Cluster Hierarchy in such a way that
user interests are properly modelled, the semantics of the involved Site Profiles
must be carefully taken into account. In this perspective, interschema properties,
possibly existing among concepts represented in the involved Site Profiles, play
a relevant role.

We describe, now, an approach for both constructing and maintaining the
Cluster Hierarchy that can solve the problems outlined above. It exploits a sup-
port buffer SB, storing a certain number of Site Profiles; SB implements also
an index on the basic clusters of the Hierarchy in such a way that each Site
Profile of SB points to the basic cluster it belongs to. There is an Extra Cluster
EC that collects all currently unclassified Site Profiles. The whole structure is
depicted in Figure 9.

The construction and the maintenance of the Cluster Hierarchy requires the
following three activities to be performed:

Semantics-Guided Clustering of Heterogeneous XML Schemas 69

– A new Site Profile Pi must be inserted in the Hierarchy. If SB is not full, Pi

is stored therein. If SB is full, a Site Profile Pj is selected (according to the
Least Recently Used strategy) to be removed. After its removal, a counter
CR is increased, Pi is inserted in SB and an attempt to classify Pi into one of
the existing basic clusters is performed; if this is not possible, Pi is classified
into EC.

– A periodic check must be performed on all Site Profiles of SB to verify if
some of them appear to be no longer correctly clustered. Let Pi be one of
these profiles. Pi must be moved from the current cluster to that having
the highest similarity with it, or to EC, in case no cluster appears to be
sufficiently similar. In any case, a counter CM is increased.

– A periodic check must be carried out to verify the Hierarchy consistency.
A good measure of the Hierarchy inconsistency degree is given by the value
CR + CM , since it counts how many times a Site Profile is removed from
some cluster without updating the Cluster Hierarchy. If CR + CM is greater
than a certain threshold, representing the maximum tolerated inconsistency
degree, then CR and CM are set to 0, the current Cluster Hierarchy is deleted
and a new one is constructed by applying, on the Site Profiles of SB, the
algorithm described in Section 3. After this operation EC is emptied.

It is worth pointing out that, in all these activities, it is necessary the com-
putation of a distance measure between XML Schemas (the Site Profiles) which
takes their relative semantics into account. This is exactly what is done by the
distance function d introduced in Section 3.3.

5.2 E-Service Providers-Guided Organization of Users

This application is the dual of the previous one. In this case there is a Provider
and many users accessing its services; the application aims at constructing a
Cluster Hierarchy classifying users according to their perception of the Provider’s
services.

The Provider associates an intelligent agent with each user, monitoring his
behaviour and registering, in a User Profile (organized as an XML source), the
services provided by it that appear of interest for the user. An agent performing
this task is described in [41].

The Cluster Hierarchy is constructed and maintained by means of the method-
ology described in the previous section; the only difference is that SB stores User
Profiles and not Site Profiles and that clusters represent groups of users having
the same interests.

5.3 Customized E-Service Portals

A Cluster Hierarchy can be exploited for implementing a challenging application
in the context of e-service Portals. These generally provide a user with a set of
categories helping him to choose the sites of his interest.

The Cluster Hierarchy could be exploited for constructing a Portal front-end,
adapting itself to user preferences; in this way a different, personalized, Portal
organization is presented to each user.

70 P. De Meo et al.

The customized front-end is dynamically built on the basis of the Cluster
Hierarchy associated with the user contacting the Portal.

This application needs an agent, called u-agent, for each user, and an agent,
called p-agent, for the Portal. Each site handled by the Portal should have an
associated XML Schema.

The application behaves as follows: let u be a user contacting the Portal;
the u-agent associated with u applies the approach illustrated in Section 5.1
for constructing and maintaining a Cluster Hierarchy representing a user-guided
categorization of information of interest for u.

When u contacts the Portal, his u-agent and the Portal’s p-agent start a
negotiation. Specifically, the u-agent sends its Cluster Hierarchy to the p-agent
that tries to classify its sites into the basic clusters of the Hierarchy. It could
happen that some Portal sites cannot be classified in any basic cluster of the
Hierarchy; these sites are collected in a dummy basic cluster that is inserted as
a child node of the root.

At this point, Portal sites are categorized according to the Cluster Hierarchy of
u, representing his profile; therefore, their customized organization is completed
and a Portal front-end reflecting this organization can be presented to u; this
front-end is organized in such a way that u is provided with a Hierarchy of
site categories, reflecting the structure of his Cluster Hierarchy, except for the
presence of the dummy category.

5.4 Integration of Our System with LDAP Protocol and Other
Directory Services

Our system can be fruitfully integrated with LDAP protocol [26] and, more
in general, with other directory services. LDAP (Lightweight Directory Access
Protocol) is an open industry standard supporting the search of information con-
cerning people, computers, network devices and applications. LDAP organizes
available information in hierarchies of directories. In order to handle directory
information, LDAP adopts an XML-based language called DSML (Directory Ser-
vice Markup Language); this language has been conceived for bridging the gap
between classical and XML-based applications operating on directory services.
LDAP relies on a client-server model. Each user is directly assisted by either
an LDAP server or an LDAP-collaborating application; if an LDAP server can-
not satisfy a client request it specifies the URL of another LDAP server storing
required information; this behaviour is known as referral mechanism.

A first fruitful integration of our system with LDAP might be as follows.
In LDAP, a user typically submits an XPath query that is mapped onto an
LDAP query [26]. This could be processed by means of traditional techniques;
as an example, a DSML directory could be represented by means of a set of
linked tables [28]; in this case the evaluation of an LDAP query would require a
certain number of joins among inferred tables. This would negatively influence
query processing activity: in fact, the execution of a join is computationally
expensive and, in several cases, the number of joins to be performed might be
very high [28,39]. Our system might provide a contribution to solve this problem;

Semantics-Guided Clustering of Heterogeneous XML Schemas 71

in fact, by exploiting it, DSML directories might be grouped in clusters and,
for each cluster, a representative Schema might be constructed. At this point,
queries could be processed against cluster representative Schemas; this would
significatively reduce the number of joins to be executed.

A further problem about LDAP querying consists in the high distribution of
LDAP directories [26]. As a consequence, in order to process an LDAP query,
it is necessary to contact several LDAP servers and exchange a large amount
of messages among them. This would lead to an increase of query response
time (because a query is routed through several servers) and data load (because
LDAP servers exchange a large amount of messages). As in the previous case, we
can alleviate these problems by grouping available directories into homogeneous
clusters and by evaluating a query against cluster representatives.

5.5 XML Indexing

Our approach can be fruitfully applied for supporting XML document index-
ing (see [4] for a comprehensive survey). Roughly speaking, an index is a data
structure that provides a quick access to the information stored in a database.
Indexes are usually exploited for speeding up querying activities.

Due to the intrinsic tree-based structure of XML documents, XML indexing is
quite a difficult task; in fact, XML indexes must be capable of storing information
about both the position of elements in a document and the paths connecting the
root of the corresponding tree to the various nodes [4,24,40]. As a consequence,
XML indexes are often complex and quite large data structures; for instance,
[13] observes that indexed data might be even larger than the corresponding
documents. In this case indexes might not fit in main memory and this would
cause unacceptable long delays in query answering.

Our approach might provide a contribution in this setting; in fact, it might be
exploited for grouping input Schemas into homogeneous clusters and for build-
ing a representative Schema for each cluster. In this case indexes might be con-
structed on representative Schemas instead of on original Schemas.

This idea shares some similarities with some, well known, indexing techniques.
As an example, [4] observes that not all paths in an XML document are equally
interesting and relevant and proposes to construct partial indexes containing
only a small subset of the most common paths; as shown in [5], partial indexes
can ensure a good accuracy. Our approach follows this philosophy; in fact, a
representative Schema summarizes the main features of a collection of Schemas
and, clearly, contains only the most common paths.

As a consequence, our approach would reduce the space required for storing
indexes and would speed up query processing activity even if it would produce
approximate answers to user queries. Therefore, it could be an effective solution
in those contexts in which the exigency of quickly returning (possibly approxi-
mate) query answers outweights the need of exact results.

One of these scenarios is on-line decision support systems; in this case users
and analysts explore large XML data sets by means of declarative interfaces (of-
ten based on XQuery) and use appropriate tools for visualizing query

72 P. De Meo et al.

answers and for detecting interesting patterns in retrieved data; the success of
this application strongly depends on the capability of producing timely (even if
approximate) feedbacks to users.

6 Related Work

In this section we compare our approach with other related ones already pre-
sented in the literature.

Approach of [36]. In [36] an approach for clustering DTDs is proposed. It
operates as follows: first it applies any clustering algorithm for grouping elements
of the involved DTDs in a set of clusters. After this, it creates one array for each
DTD, having one component for each cluster; the ith component of the array
indicates how many elements of the corresponding DTD belong to the ith cluster.
Finally, it applies any clustering algorithm on the set of constructed arrays.

There are some similarities between our approach and that described in [36].
Specifically: (i) both of them construct a “vector”-based representation of the
involved Schemas that, next, is provided in input to a clustering algorithm; (ii)
both of them have been specifically conceived for XML.

The main differences between the two approaches are the following: (i) in
[36] the computation of the similarity degree between two DTDs privileges their
structural properties (i.e., the hierarchical organization of the corresponding el-
ements); on the contrary, our approach considers interschema properties, that
define a semantic information; (ii) the clustering activity performed during the
first phase allows the approach described in [36] to carry out a preliminary re-
duction of the number of involved elements; this feature is not present in our
approach; however, errors possibly occurring during this initial clustering activ-
ity could negatively influence the final results.

XClust. In [27] the system XClust, defining a DTD clustering technique as a
part of a more complex DTD integration approach, is proposed. In XClust each
DTD is modelled by means of a tree; this representation allows the definition
of a similarity measure for each pair of elements belonging to different DTDs;
these measures are, then, exploited for computing the similarity degree of two
DTDs. Once the similarity degree associated with each pair of available DTDs
has been computed, a hierarchical clustering algorithm is applied.

The main similarities between our approach and XClust are the following:
(i) both of them have been specifically conceived for XML; (ii) both of them
operate on the intensional component of involved information sources.

As for differences between the two approaches we observe that: (i) XClust
considers only synonymies and does not take hyponymies and overlappings into
account; (ii) XClust aims mainly at constructing a global DTD from a set of
input ones; the clustering activity, in XClust, is used for producing the global
DTD; on the contrary, the clustering activity is the main purpose of our system.

Approach of [22]. In [22] an approach for clustering structured information
sources present in the Web is proposed. It assumes the existence, for each

Semantics-Guided Clustering of Heterogeneous XML Schemas 73

application domain, of a hidden model containing a finite vocabulary of at-
tributes; this assumption allows sources to be clustered by means of a specific
algorithm called MD (Model Differentiation).

The main similarities between our approach and that described in [22] are the
following: (i) both of them define a suitable mechanism for representing involved
sources; (ii) both of them exploit semantic information; specifically, our approach
uses interschema properties whereas the approach of [22] considers the hidden
model.

The main differences between the two approaches are the following: (i) the
approach presented in [22] requires a deep analysis of the extensional component
of involved information sources; this analysis produces very satisfactory results
but requires a significant pre-processing phase for constructing, among others,
the hidden model; (ii) the approach proposed in [22] has been specifically con-
ceived for analyzing structured information sources present in the Web; on the
contrary, our approach is specialized for XML Schemas.

Approach of [33]. In [33] an approach for clustering XML documents is de-
scribed. It models available documents by means of ordered trees and exploits
a dynamic programming algorithm for defining a similarity measure for them.
Finally, it uses a hierarchical clustering algorithm to group documents into ho-
mogeneous classes.

There exist some similarities between our approach and that described in [33].
Specifically: (i) both of them propose a suitable model for representing involved
information sources; in our case this model has a “vectorial” nature whereas, in
the approach of [33], it is based on trees; (ii) both of them are flexible, in the
sense that they allow the exploitation of any clustering algorithm.

As for the main differences between the two approaches, we observe that: (i)
for computing the similarity degree among involved sources, the approach de-
scribed in [33] considers structural information whereas our approach exploits
the semantic one; (ii) our approach focuses on XML Schemas whereas the ap-
proach of [33] has been conceived to operate on XML documents.

Approach of [9]. In [9] an approach for clustering XML documents is proposed.
It represents available documents by means of ordered trees and measures their
similarity by means of a dynamic programming algorithm; after this, it con-
structs a labelled graph G, whose nodes represent XML documents and whose
arcs denote the corresponding similarity degrees; finally, it applies the Prim al-
gorithm for partitioning the set of nodes of G and associates a cluster with each
partition.

There are some similarities between our approach and that presented in [9];
in fact, (i) both of them have been specifically conceived for XML; (ii) both of
them define a suitable mechanism for representing information sources; this is
“vector”-based in our approach and tree-based in the approach of [9].

The main differences existing between the two approaches are the following: (i)
in order to compute document similarity, the approach described in [9] exploits
the structural information of involved sources whereas our approach considers
the semantic one; (ii) the approach illustrated in [9] operates on the extensional

74 P. De Meo et al.

component of the information sources into consideration; on the contrary, our
approach works on the intensional one.

Approach of [7]. [7] presents an approach for clustering XML documents on
the basis of their structural similarities. This approach represents each document
by means of a tree and applies tree matching algorithms for identifying the
structural similarities existing among available trees. In this way, it is possible
to partition available documents into homogeneous classes and, then, to define,
for each class, a tree (called XML cluster representative), summarizing the main
characteristics of its documents. This partitioning is, finally, refined by applying
a suitable hierarchical clustering algorithm called XRep.

There exist some similarities between our approach and that described in
[7]. Specifically: (i) both of them propose a suitable formalism for representing
involved information sources; in our approach this formalism has a “vectorial”
nature whereas, in the approach of [7], it is based on trees; (ii) both of them
operate on XML sources.

The main differences between the two approaches are the following: (i) for
computing similarities existing between two XML documents, the approach of
[7] exploits structural information, whereas our approach uses the semantic one;
(ii) the approach of [7] is quite sophisticated; as a consequence, it produces
very refined results but requires quite a complex pre-processing phase; on the
contrary, our approach is lighter, even if the results it obtains are satisfactory;
(iii) the approach of [7] is extensional whereas our own is intensional.

Approach of [28]. In [28] an approach for clustering XML documents accord-
ing to their structural similarities is proposed. This approach works as follows:
for each XML document D, it constructs a suitable directed graph sg(D) called
structural graph. It also defines a notion of distance between structural graphs;
specifically, given two structural graphs sg(D1) and sg(D2), their distance is
computed as the ratio between the number of common edges between sg(D1)
and sg(D2) and the maximum between the number of edges of sg(D1) and that
of sg(D2). This notion of distance is quite interesting; in fact, it is capable of cap-
turing structural similarities between two documents that are usually neglected
by simpler approaches, like the Jaccard Coefficient and the Cosine Similarity
Coefficient; in addition, its computation is quicker than that of other metrics,
like those based on tree edit distance. The defined distance between structural
graphs is exploited for clustering input XML documents; clustering activity is
performed by means of S-GRACE, a hierarchical clustering algorithm derived
by ROCK [20].

We can recognize some similarities between our approach and that of [28].
Specifically, both of them: (i) allow a fast and scalable clustering of XML data
sources; (ii) define a formalism for both representing XML data sources and
assessing their similarity; this formalism is “vector”-based in our approach and
graph-based in the approach of [28]; (iii) require a limited amount of memory for
their execution; in fact, structural graphs (required by the approach of [28]) and
intensional information (required by our approach) are, generally, small enough
to be stored in main memory.

Semantics-Guided Clustering of Heterogeneous XML Schemas 75

As for the main differences between them, we observe that: (i) the approach
of [28] is extensional whereas our own is intensional; (ii) for the computation
of data source similarity, the approach of [28] exploits structural information
whereas our own uses interschema properties, i.e., semantic information; (iii) for
performing the clustering task, the approach of [28] exploits an ad-hoc algorithm
whereas our own allows a large variety of, both classical and new, clustering
algorithms to be adopted.

As a final remark, we argue that some differences between the approach
of [28] and our own (e.g., extensional/intensional, structure-based/semantics-
based) make them complementary and capable of taking various facets of the
same reality into account. As a consequence, it could be possible to define a
system that executes both of them on the same XML sources and combines the
results obtained by them in such a way to produce a final, more accurate, result.

Approach of [16]. In [16] an approach for clustering XML documents, taking
their similarities into account, is described. This approach represents each XML
document as a suitable sequence of real numbers (time series). The evaluation of
the similarity degree existing between two XML documents D1 and D2 is, then,
performed by comparing the time series T1 and T2 associated with D1 and D2;
such a comparison is performed by computing the Discrete Fourier Transform
(DFT) of T1 and T2.

We can highlight some similarities between our approach and that of [16]. In
fact, (i) both of them “linearize” the structure of an XML source; specifically,
the approach of [16] represents it as a numerical sequence, whereas our approach
adopts a “vector”-based representation; (ii) both of them are specific for XML
sources.

As for the main differences, we can observe that: (i) the approach of [16] re-
turns very accurate results but needs a deep analysis of the structural properties
of an XML document; (ii) it does not consider semantic similarities among the
concepts of involved sources; on the contrary, in our approach, this information
plays an important role; (iii) the approach of [16] is extensional whereas ours is
intensional.

Approach of [44]. In [44] a framework exploiting matrix algebra for clustering
XML documents is presented. Specifically, let C be a collection of XML docu-
ments; let Di be a document of C; let ni be the number of tags of Di; finally, let
m be the number of distinct XML elements in the documents of C. Di can be
represented as a ni ×m matrix Mi such that Mi[l, k] indicates how much the tag
tl of Di can be represented by the element ek. After the matrixes corresponding
to the XML documents of C have been determined, a similarity coefficient is
computed for each pair of them; these coefficients are exploited by a clustering
technique for producing the final clusters.

We can recognize some similarities between our approach and that of [44].
Specifically, both of them: (i) consider a “vector”-based framework for repre-
senting XML sources, and (ii) have been specifically conceived for managing
XML sources.

76 P. De Meo et al.

As for the main differences between them, we observe that: (i) the approach
of [44] considers only synonymies whereas our approach handles a wide range
of interschema properties; (ii) the approach of [44] is quite sophisticated and
precise, since it computes various statistics on the terms occurring in an XML
source (e.g., the frequency of a term in a document); this allows accurate results
to be obtained but requires a significant computational effort.

Approach of [10]. In [10] an approach for clustering XML documents is pro-
posed. This approach represents each document as a tree; the distance between
two documents Di and Dj is computed as the edit distance between the corre-
sponding trees Ti and Tj . Initially, the approach creates a cluster for each tree
and computes a matrix M whose generic element M [i, j] denotes the distance
between Ti and Tj . After this, it iteratively selects the most similar clusters
and merges them; this process is repeated until to a stop condition is satisfied.
Finally, for each obtained cluster, a representative element, i.e., a document ca-
pable of capturing the structural specificities of the documents belonging to it,
is constructed.

The main similarities between our approach and that of [10] are the following:
(i) both of them have been specifically conceived for handling XML sources;
(ii) both of them define a methodology for computing the distance between
two XML sources; distance computation relies on interschema properties in our
approach, and on a dynamic programming algorithm, capable of determining
the edit distance between two trees, in the approach of [10].

As for the main differences between the two approaches, we can observe that:
(i) the approach of [10] is extensional whereas our own is intensional; (ii) the
approach of [10] is quite sophisticated, since it performs complex operations, like
tree merging or tree pruning; as a consequence, it can obtain accurate results;
however, since exploited algorithms work on the extensional component of in-
volved XML data sources, they could suffer from scalability problems when the
size of input data sources becomes large.

Approach of [29]. In [29] an approach for clustering XML documents referring
to the same “piece of reality” is proposed. This approach first represents an
XML document D as an unordered and labelled tree TD; then, it maps TD

into a “high-dimensional” array AD (i.e., an array that could be mapped into a
high-dimensional Euclidean space); after this, it applies tools based on Principal
Component Analysis [25] for reducing the dimensionality of input arrays; finally,
it applies K-Means on the set of “reduced arrays” for constructing the final
clusters.

As for the main similarities between our approach and that of [29] we can
observe that: (i) both of them use a “vector”-based model for representing XML
sources; (ii) in both of them an XML source is represented by means of a weighted
array whose entries range in the real interval [0, 1].

As for the main differences between them we observe that: (i) the approach
of [29] tries to reduce the dimensionality of involved arrays; this feature is
not present in our approach; (ii) the approach of [29] has been conceived for
clustering XML documents whereas our approach operates on XML Schemas;

Semantics-Guided Clustering of Heterogeneous XML Schemas 77

(iii) the algorithms underlying the approach of [29] are quite sophisticated; as
a consequence, they might return very accurate results; however, in many real
cases, they might be prohibitively time-expensive; on the contrary, our approach
is based on the analysis of the intensional component of an XML data source
and, therefore, is quite “light”.

In our opinion the approach of [29] and our own might be integrated. Specifi-
cally, given a large collection of XML documents, possibly associated with differ-
ent XML Schemas, our approach could be applied for determining a set of classes
C1, C2, . . . , Ck, each containing a set of similar XML Schemas. After this, the
approach of [29] could be applied for clustering the documents of each class.

Approach of [45]. In [45] an approach for clustering a set D = {D1, D2, . . . ,
Dn} of XML documents is proposed. This approach is based on the concept of e-
path; an e-path is a set of nested elements labelled with the same tag; an e-path
might be present in more than one document of D. The approach constructs
a matrix M whose generic element M [i, j] is set equal to 1 if and only if the
document Di contains the e-path pj. The distance between two documents Di

and Dk is computed by applying the XOR bitwise operator to the ith and the
kth rows of M . This distance is exploited by the approach for performing the
clustering activity.

We can recognize some similarities between our approach and that of [45].
Specifically, both of them: (i) use a “vector”-based model for representing a
collection of XML sources; (ii) apply a fast methodology for computing the
distance between two XML sources; in fact, our approach is polynomial against
the number of x-components of the involved Schemas whereas the number of
steps performed by the approach of [45] is proportional to the number of all
available e-paths existing in D.

As for the main differences between them we can observe that: (i) our ap-
proach operates on XML Schemas whereas the approach of [45] manages XML
documents; (ii) in the approach of [45] the coefficients exploited for representing
an XML document are 0 or 1; on the contrary, our approach uses a discrete
set of values belonging to the real interval [0, 1]; (iii) the computation of the
Dissimilarity Matrix relies on e-paths in the approach of [45], whereas it is based
on x-components in our approach.

7 Conclusions

In this paper we have presented an approach that exploits interschema properties
for clustering semantically heterogeneous XML Schemas. We have seen that
our approach takes the semantics of involved Schemas into account and can be
easily integrated with most of the clustering techniques already proposed in the
literature.

After a technical description of our approach, we have shown various experi-
mental results that we have obtained by applying it to a large number of semanti-
cally heterogeneous XML Schemas. Then, we have illustrated some applications

78 P. De Meo et al.

that can highly benefit of it. Finally, we have presented a comparison between
our approach and other related ones previously proposed in the literature.

In our opinion the approach presented in this paper could be improved in
several directions. Specifically, we plan to further refine the technique for the
computation of the Dissimilarity Matrix by taking other interschema properties
into account. In addition, we would like to exploit our approach as the core of
new methodologies for producing fast and approximate answers to XML queries,
for constructing user communities in which involved members share their knowl-
edge or cooperate for solving a problem and, finally, for better handling task
assignments in an organization.

Acknowledgments

The authors thank Giuseppe Meduri for his contribution to the implementation
of the proposed approach.

References

1. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proc. of the
International Conference on Knowledge Discovery and Data Mining (KDD’02),
Edmonton, Alberta, Canada, pp. 436–442. ACM Press, New York (2002)

2. Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured
and structured data sources. SIGMOD Record 28(1), 54–59 (1999)

3. Castano, S., De Antonellis, V., De Capitani di Vimercati, S.: Global viewing of
heterogeneous data sources. IEEE Transactions on Data and Knowledge Engi-
neering 13(2), 277–297 (2001)

4. Catania, B., Maddalena, A., Vakali, A.: XML document indexes: A classification.
IEEE Internet Computing 9(5), 64–71 (2005)

5. Chung, C., Min, J., Shim, K.: APEX: an adaptive path index for XML data. In:
Proc. of the ACM International Conference on Management of Data (SIGMOD
’02), Madison, Wisconsin, USA, pp. 121–132. ACM Press, New York (2002)

6. Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In:
Proc. of the IEEE International Conference on Data Engineering (ICDE ’02), San
Jose, California, USA, pp. 41–52. IEEE Computer Society Press, Los Alamitos
(2002)

7. Costa, G., Manco, G., Ortale, R., Tagarelli, A.: A tree-based approach to cluster-
ing XML documents by structure. In: Boulicaut, J.-F., Esposito, F., Giannotti, F.,
Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 137–148. Springer,
Heidelberg (2004)

8. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data
extraction from large Web sites. In: Proc. of the International Conference on Very
Large Data Bases (VLDB’01), pp. 109–118. Morgan Kaufmann, San Francisco
(2001)

9. Dalamagas, T., Cheng, T., Winkel, K., Sellis, T.K.: A methodology for clustering
XML documents by structure. Information Systems 31(3), 187–228 (2006)

10. De Francesca, F., Gordano, G., Ortale, R., Tagarelli, A.: Distance-based clustering
of XML documents. In: Proc. of the International Workshop on Mining Graphs,
Trees and Sequences (MGTS ’03), pp. 75–78, Cavtat-Dubrovnik, Croatia (2003)

Semantics-Guided Clustering of Heterogeneous XML Schemas 79

11. De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: Extraction of synonymies,
hyponymies, overlappings and homonymies from XML Schemas at various “sever-
ity” levels. In: Proc. of the International Database Engineering and Applications
Symposium (IDEAS 2004), Coimbra, Portugal, pp. 389–394. IEEE Computer So-
ciety, Los Alamitos (2004)

12. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society Series B 30(1),
1–38 (1977)

13. Deschler, K.W., Rundensteiner, E.A.: MASS: a multi-axis storage structure for
large XML documents. In: Proc. of ACM International Conference on Information
and Knowledge Management (CIKM 2003), New Orleans, Louisiana, USA, pp.
520–523. ACM Press, New York (2003)

14. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering
complex semantic matches between database schemas. In: Proc. of the ACM In-
ternational Conference on Management of Data (SIGMOD 2004), Paris, France,
pp. 383–394. ACM Press, New York (2004)

15. Fankhauser, P., Kracker, M., Neuhold, E.J.: Semantic vs. structural resemblance
of classes. ACM SIGMOD RECORD 20(4), 59–63 (1991)

16. Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection
of XML structural similarity. IEEE Transactions on Knowledge Data Engineer-
ing 17(2), 160–175 (2005)

17. Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling
and evaluating automatic semantic reconciliation. The International Journal on
Very Large Databases 14(1), 50–67 (2005)

18. Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM
Computing Surveys 18, 23–38 (1986)

19. Garruzzo, S., Modafferi, S., Rosaci, D., Ursino, D.: X-Compass: an XML agent
for supporting user navigation on the Web. In: Andreasen, T., Motro, A., Chris-
tiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 197–211.
Springer, Heidelberg (2002)

20. Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for cate-
gorical attributes. Information Systems 25(5), 345–366 (2000)

21. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2001)

22. He, B., Tao, T., Chang, K.C.-C.: Organizing structured Web sources by query
schemas: a clustering approach. In: Proc. of the ACM International Conference on
Information and Knowledge Management (CIKM 2004), Washington, Columbia,
USA, pp. 22–31. ACM Press, New York (2004)

23. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.
International Journal on Digital Libraries 10(2), 180–184 (1985)

24. Jiang, H., Lu, H., Wang, W., Chin, B.: XR-Tree: Indexing XML Data for Efficient
Structural Joins. In: Proc. of the International Conference on Data Engineering
(ICDE 2003), Bangalore, India, pp. 253–263. IEEE Computer Society, Los Alami-
tos (2003)

25. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)
26. Koutsonikola, V.A., Vakali, A.: LDAP: Framework, practices, and trends. IEEE

Internet Computing 8(5), 66–72 (2004)
27. Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: clustering XML schemas for

effective integration. In: Proc. of the ACM International Conference on Infor-
mation and Knowledge Management (CIKM 2002), McLean, Virginia, USA, pp.
292–299. ACM Press, New York (2002)

80 P. De Meo et al.

28. Lian, W., Cheung, D.W., Mamoulis, N., Yiu, S.: An efficient and scalable algo-
rithm for clustering XML documents by structure. IEEE Transactions on Knowl-
edge and Data Engineering 16(1), 82–96 (2004)

29. Liu, J., Wang, J.T.L., Hsu, W., Herbert, K.G.: XML clustering by principal com-
ponent analysis. In: Proc. of the IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2004), Boca Raton, Florida, USA, pp. 658–662.
IEEE Computer Society, Los Alamitos (2004)

30. MacQueen, J.B.: Some methods for classification and analysis of multivariate
observations. In: Proc. of the International Symposium on Mathematics, Statistics
and Probability, Berkeley, California, USA, pp. 281–297. University of California
Press (1967)

31. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid.
In: Proc. of the International Conference on Very Large Data Bases (VLDB 2001),
Roma, Italy, pp. 49–58. Morgan Kaufmann, San Francisco (2001)

32. Miller, A.G.: WordNet: A lexical database for English. Communications of the
ACM 38(11), 39–41 (1995)

33. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents.
In: Proc. of the International Workshop on the Web and Databases (WebDB
2002), pp. 61–66, Madison, Wisconsin, USA (2002)

34. Palopoli, L., Saccà, D., Terracina, G., Ursino, D.: Uniform techniques for deriving
similarities of objects and subschemes in heterogeneous databases. IEEE Trans-
actions on Knowledge and Data Engineering 15(2), 271–294 (2003)

35. Passi, K., Lane, L., Madria, S.K., Sakamuri, B.C., Mohania, M.K., Bhowmick,
S.S.: A model for XML Schema integration. In: Bauknecht, K., Tjoa, A.M.,
Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 193–202. Springer,
Heidelberg (2002)

36. Qian, W., Zhang, L., Liang, Y., Qian, H., Jin, W.: A two-level method for cluster-
ing DTDs. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 41–52.
Springer, Heidelberg (2000)

37. Qian, Y., Zhang, K.: A customizable hybrid approach to data clustering. In: Mat-
sui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 485–489. Springer,
Heidelberg (2004)

38. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

39. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.:
Relational databases for querying XML documents: limitations and opportunities.
In: VLDB’99. Proc. of Very Large DataBase Conference, Edinburgh, Scotland,
UK, pp. 302–314. Morgan Kaufmann, San Francisco (1999)

40. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang,
C.: Storing and querying ordered xml using a relational database system. In:
SIGMOD ’02. Proc. of the ACM International Conference on Management of
Data, Madison, Wisconsin, USA, pp. 204–215. ACM Press, New York (2002)

41. Terziyan, V., Vitko, O.: Intelligent information management in mobile electronic
commerce. Artificial Intelligence News. Journal of Russian Association of Artificial
Intelligence 5 (2002)

42. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco, California, USA (2000)

43. Xu, L., Jordan, M.I.: On convergence properties of the EM algorithm for gaussian
mixtures. Neural Computation 8(1), 129–151 (1996)

Semantics-Guided Clustering of Heterogeneous XML Schemas 81

44. Yang, J., Cheung, W.K., Chen, X.: Integrating element and term seman-
tics for similarity-based XML document clustering. In: WI’05. Proc. of the
IEEE/WIC/ACM International Conference on Web Intelligence, Compiegne-
Cedex, France, pp. 222–228. IEEE Computer Society Press, Los Alamitos (2005)

45. Yoon, J.P., Raghavan, V., Chakilam, V.: BitCube: A three-dimensional bitmap
indexing for XML documents. In: SSDBM 2001. Proc. of the International Confer-
ence on Scientific and Statistical Database Management, Fairfax, Virginia, USA,
pp. 158–167. IEEE Computer Society, Los Alamitos (2001)

	A Formal Framework for Adaptive Access Control Models
	References

	Creating Ontologies for Content Representation?The OntoSeed Suite
	The \textsf{OntoSeed} Tool

	Putting Things in Context: A Topological Approach to Mapping Contexts to Ontologies
	Security Ontology to Facilitate Web Service Description and Discovery
	Introduction
	Existing Security-Related Ontologies
	NRL Security Ontology
	Domain and Scope of the Ontology
	Brief Introduction to OWL
	Organizational Structure of NRL Security Ontology
	Design Objectives Revisited

	Application of NRL Security Ontology to a Service Oriented Architecture
	Annotating Web Services with Security Descriptions
	Creating Queries to Find Services
	Reasoning and Matching Algorithm
	Application of the Matching Algorithm

	Conclusion and Future Work
	References

	Semantic Matching: Algorithms and Implementation
	Introduction
	Semantic Matching
	Step 1: Concepts of Labels Computation
	Step 2: Concepts at Nodes Computation
	Step 3: Label Matching
	A Library of Label Matchers
	The Label Matching Algorithm

	Step 4: Node Matching
	The Tree Matching Algorithm
	The Node Matching Algorithm

	Semantic Matching with Attributes
	Exploiting Datatypes
	Ignoring Datatypes

	Efficient Semantic Matching
	Conjunctive Concepts at Nodes
	Disjunctive Concepts at Nodes

	Evaluation
	Evaluation Set-Up
	Evaluation Results
	Evaluation Summary

	Related Work
	Conclusions
	References

	Semantics-Guided Clustering of Heterogeneous XML Schemas
	References

