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Abstract. In this paper we design a dynamic dictionary for the priced
information model initiated by [2,3]. Assume that a set S consisting of
n elements is given such that each element has an associated price, a
positive real number. The cost of performing an operation on elements
of S is a function of their prices. The cost of an algorithm is the sum
of the costs of all operations it performs. The objective is to design
algorithms which incur low cost. In this model, we propose a dynamic
dictionary, supporting insert, delete, and search for keys drawn from a
linearly ordered set. As an application we show that the dictionary can
be used in computing the trapezoidal map of a set of line segments.

1 Introduction

Priced Information Model: Assume that each input element has an associ-
ated price, a positive real number. When an algorithm performs an operation
on an element, then it is charged a cost which is a function of the price of the
element. For example, the cost of a comparison operation between two elements
could be the sum of their prices. The cost of an algorithm is the total sum of the
costs of all operations it performs. In this paper we wish to design algorithms
that incur low cost with respect to the “cheapest proof”. A proof is a certifi-
cate that the output produced by the algorithm is correct. For example, if the
problem is to search for a key in a sorted list, then the proof consists of either
an element of the list that matches the query, or a pair of consecutive elements
such that the key of the query is between their keys. The cost of the proof is
proportional to either the price of the element that matches the query or the
sum of the prices of the two neighboring elements to the query. The competitive
ratio of an algorithm is defined to be the maximum ratio between the cost of
the algorithm and the cost of the cheapest proof over all possible inputs. In this
model, the solution to a problem involves (i) describing the cost of a cheapest
proof, (ii) designing a competitive algorithm and (iii) analyzing its cost.

In this paper we propose a dynamic dictionary and use this to design a com-
petitive algorithm for computing the trapezoidal map of a set of line segments;
a fundamental problem in computational geometry. This study is inspired by
the work of Charikar et al. [2,3] on query strategies for priced information. Their
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motivation comes from the broad area of electronic commerce, where the priced
information sources in several domains (e.g., software, legal information, pro-
priety information, etc.) charge for their usage. The unit-cost comparison tree
model has been traditionally used for evaluating algorithms. The work of [2,3,4,5]
generalizes this model to accommodate variable costs. Geometric algorithms are
usually designed and proven in the conventional “Real Random Access Machine”
model of computation. Key features of this model include indirect addressing of
any word in unlimited memory in unit time, words stored are infinite precision
real numbers, and the basic operations (e.g., add, multiply, k-th root) are per-
formed in constant time. To correctly implement a geometric algorithm, exact
computation is extremely important. Unfortunately, the exact computation is
very expensive and simple geometric tests, which take constant time in the Real
RAM model, may require several operations. One way to model this is to asso-
ciate prices to elements, and an operation involving an element needs to pay a
cost which is a function of its price. Then an efficient algorithm aims to minimize
the total cost of all the operations it performs.
Previous Work: We outline some of the fundamental problems such as search-
ing, maximum finding, and sorting studied under the priced information model.

Theorem 1 ([2]). For any cost function a query element can be searched
in a sorted array of n-elements within a competitive ratio of log2 n +
O(

√
log n log log n).

Theorem 2 ([2]). The maximum of n elements can be found within a compet-
itive ratio of 2n − 3 for any set of costs for the comparisons.

What happens if the cost of the comparison operation is just the sum of the
prices of the corresponding elements? In this case the problem of computing the
maximum is much easier and can be solved by following a natural algorithm.
Sort the elements w.r.t. their cost. Incrementally compute the maximum by
examining the elements one by one, starting at the least cost element. The total
cost of this algorithm is bounded by 2

∑n
i=1 ci, where ci is the price of the i-th

element. Hence the competitive ratio of this algorithm is at most 2. It turns out
that the general problem of sorting a set of items with arbitrary cost functions is
highly non-trivial and has the flavor of the famous “Matching Nuts and Bolts”
problem [6]. Given two lists of n numbers each such that one list is a permutation
of the other, how should we sort the lists by comparisons only between numbers
in different lists? In our setting comparisons within the list will be very expensive
compared to comparisons across the list. If we modify the cost of the comparison
operation to be the sum of the prices of the elements involved, then this problem
can be solved quite easily. First sort the elements with respect to the price. Now
incrementally sort the elements starting with the element with the least price.
For example we can build a binary search tree to maintain the sorted order. It
is easy to see that the cost of inserting an element is bounded by 2 log2 n times
its cost, since all the elements in the tree have lower price when this element is
inserted. Therefore this algorithm is O(log n) competitive.
New Results: In this paper we propose O(log n) competitive algorithms in the
priced information model for the following problems; the cost of an operation is
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proportional to the sum of the prices of the elements involved in that operation.

1. A dynamic dictionary supporting insertion, deletion and searching of a key
value in a linear ordered set consisting of n elements (Section 2).

2. The trapezoidal map of a set of n line segments (Section 3).

Result 1 can be viewed as a generalization of Theorem 1. Here we discuss dynamic
dictionaries, whereas Theorem 1 is for static search queries. To the best of our
knowledge Result 2 is the first instance where a problem from computational
geometry has been studied under the priced information model.

2 Dynamic Dictionary

In this section we describe a dynamic search data structure in the priced infor-
mation model. The elements are drawn from a total order. We allow a sequence
of operations comprising of insertion of an element, deletion of an element and
searching a query value. Each element has an associated price, and the cost of
accessing an element is proportional to its price. Without loss of generality we
will refer to the key value associated with an element x by x itself. Assume that
the least possible price is 1. First we introduce an abstract data type and show
how the various operations are performed and then outline how they are realized
using 2-3 search trees.

2.1 Hierarchical Structure

Assume that currently the data structure consists of a set S of n elements.
The elements are partitioned into cost groups, and elements within cost group
i have prices in the range (2i−1, 2i] for i ≥ 0. Let g(x) denote the cost group
of the element x ∈ S. The elements are placed in a hierarchical structure
H represented as a tree. The top level of H represents the whole set S. The
hierarchy is described by the following recursive procedure, which is invoked by
the call Hierarchy(S,0). In a nutshell the main idea is to partition S recursively
using the key values of groups. First partition S using the elements of the
“cheapest” group (namely group 0 values) to obtain subsets Z0, · · · , Zk. These
subsets are recursively partitioned by the elements of “expensive” groups (i.e.
groups consisting of elements with geometrically increasing prices). For an
illustration see Figure 1. To simplify notation, a leaf node storing the value yi

will be referred to as the node yi.

Procedure Hierarchy (X,i)
Input: A non-empty set X, such that X ⊆ S and all elements of X are in the
cost group i or bigger (i.e. each element of X has price > 2i−1.)
Output: The hierarchical structure H, for X, represented as a tree.

1. Compute the set Y = {x ∈ X : x in cost group i}.
2. If Y = ∅ then Hierarchy (X,i + 1).
3. If Y �= ∅ then
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Fig. 1. Illustration of the hierarchy H.

a) Let Y = {y1, y2, · · · , yk}, such that y1 < y2 < · · · < yk, for some k ≥ 1.
b) Compute the sets Zj = {z ∈ X \ Y : yj < z < yj+1}, j = 1, 2, · · · , k − 1.

Compute Z0 = {z ∈ X \ Y : z < y1} and Zk = {z ∈ X \ Y : z > yk}.
c) For j, j = 0, 1, · · · , k, if Zj �= ∅ then Hierarchy(Zj , i + 1).
d) Create a node representing X. Give this node children

r0, y1, r1, · · · , rk−1, yk, rk, where ri (0 ≤ i ≤ k) is the root of the tree
representing Zi.

The hierarchical structure H has the following properties. All elements of S
appear as leaves in H. A postorder traversal of the leaves of H results in the
sorted order of the elements of S, and a node at level i in H (root is at level 0)
represents only elements of groups ≥ i.

2.2 Search

Next we describe the search procedure. The objective of the search for a query
value q is to locate an element x ∈ S such that q = x. In case there does not
exists such an element in the set S, then report two elements x, y ∈ S, such
that x < q < y, and x and y are the left and right neighbors of q in the sorted
order among the elements of S ∪ {q}, respectively. The main idea is to sieve
through the hierarchy, starting at the top level, and descending down by the aid
of the y-values. The search terminates when it reaches a leaf node. The search
procedure is described next.

Procedure Search(q, S)
Input: Set S stored in a hierarchical structure and a query value q.
Output: An element x ∈ S such that q = x, if such x exists. Otherwise, the left
and the right neighbors of q in S.

1. left-neighbor := nil and right-neighbor := nil.
2. X := S and Found := False.
3. While X �= ∅ and Found = False do

Let {Z0, y1, Z1, y2, Z2 · · · , Zk−1, yk, Zk} be the children of the node repre-
senting X in the hierarchy H, where y1 < y2 < · · · < yk, and all elements in
the set Zi, i ∈ {1, · · · , k − 1}, have values in the range (yi, yi+1), elements in
Z0 have values smaller than y1 and elements in Zk have values larger than
yk (see Figure 1).
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a) If q = yj , for some j ∈ {1 · · · k} then report yj and Found := True.
b) If q < y1 then right-neighbor := y1 and X := Z0.
c) If q > yk then left-neighbor := yk and X := Zk.
d) If yj < q < yj+1 then left-neighbor := yj , right-neighbor := yj+1 and

X := Zj .
4. If Found = False then report left-neighbor and right-neighbor.

Lemma 1. Let x and y be the neighbors of q in S ∪ {q}, and let the price of x
be at least the price of y. Let g(x) denote the group of x. Then Search(q, S) does
not visit an element of any group having index bigger than g(x).

Proof Sketch: Consider the case where q �∈ S. Let q have two neighbors x, y ∈ S.
W.l.o.g. assume that x < y. Let x and y be in groups g(x) and g(y), resp. Observe
that g(y) ∈ {0, · · · , g(x)}. The search starts at S and then sieves through H using
the yi values of groups starting with group 0. In each step we consider the current
set X which consists of elements of groups ≥ i. We locate q among its children
{Z0, y1, Z1, y2, Z2 · · · , Zk−1, yk, Zk}, and depending upon the outcome we either
terminate the search or proceed with one of the sets Zj ’s. Note that Zj ⊆ X
and elements of Zj are of groups ≥ i + 1. Consider the scenario when the search
reaches the elements of group g(y). Since q < y and there is no element of S
between q and y, the search procedure assigns y as the right neighbor of q (Step
3b or 3d). After that in each iteration of the while loop Step 3c will be executed
till the set Zj becomes empty. At that point the left neighbor of q will be x,
since there are no elements of S between x and y, and x < y. Hence the search
only visits elements up to the group g(x). �

2.3 Insert

Next we discuss the procedure for inserting an element q belonging to the group
g(q) in the hierarchy H. We first locate the left and the right neighbors, say x
and y, respectively, of q in S using the Search(q, S) procedure. Without loss of
generality we assume that g(x) ≥ g(y). Depending upon the relative order of
g(q), g(x) and g(y) we have different cases.
Case 1: g(x) ≥ g(y) ≥ g(q). Starting at the leaf node containing x follow the
path upwards in the hierarchy H and stop at the last node, say X, that represents
only elements of groups ≥ g(q). Let Zi be the child of X that contains x as one of
its descendants. Let yi and yi+1 be the left and the right neighbors of Zi among
the children of X. It is possible that none or only one of these neighbors exist;
those cases can be handled using a similar approach. Observe that if g(y) = g(q)
then y = yi+1, and if g(y) > g(q) then y is a descendent of the node Zi, since
yi < x < q < y < yi+1. The insertion of node q is achieved by performing
the following two operations: (a) Remove all elements in the set Zi that have
larger value than q. Form a new set Z ′

i consisting of the removed elements. (b)
Insert two new nodes between Zi and yi+1 as children of X. The first one is the
leaf node consisting of the element q, and the second one is Z ′

i representing the
hierarchy of elements in the set Z ′

i.
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Case 2: g(q) ≥ g(x) ≥ g(y). Let node X be the parent node of the leaf node
containing x in the hierarchy H. Refer to node x as yi and consider the node
Zi following the terminology used in Figure 1. Since the right neighbor of x is y
before the insertion of q, and g(x) ≥ g(y), this implies that Zi = ∅. Insertion of
q is achieved by simply inserting q in the set Zi.
Case 3: g(x) ≥ g(q) ≥ g(y). Starting at the leaf node x traverse the path
upwards in the hierarchy and stop at the last node, say X, which represents
only elements of groups up to and including g(q). If g(x) = g(q) = g(y) then
insert q as a child between x and y at the node X. If g(q) > g(y) then insert q
as the rightmost child at the node X.

Lemma 2. Let q be the element to be inserted in the hierarchy H. Let its neigh-
bors in S be x and y, where x < q < y, and let g(x) ≥ g(y). Insertion of q,
depending upon one of the above three cases, results in a new hierarchy H′. The
algorithm only visits elements up to the cost group max{g(x), g(q)}.

2.4 Delete

In this section we outline the procedure for deleting an element q from the
hierarchy H storing the elements of the set S. First locate the neighbors x and y
of q using the search procedure Search(S, q). This requires modifying the Search
procedure as follows. After finding an element yi that equals q among the children
of the node X, the search continues for the left neighbor x = max{Zi−1} and the
right neighbor y = min{Zi} of q. In the following we assume that g(x) ≥ g(y),
the other case g(y) ≥ g(x) can be handled similarly.
Case 1: g(x) ≥ g(y) ≥ g(q). Let node X be the parent of the leaf node contain-
ing q = yi+1. Following the notation of Figure 1 let {Z0, y1, Z1, · · · , yi, Zi, q =
yi+1, Zi+1, yi+2, · · · , Zk−1, yk, Zk} be the children of the node representing X,
where y1 < y2 < · · · < yk and all elements in the set Zi have values in the range
(yi, yi+1) for i ∈ {1, k − 1}, and Z0 has values smaller than y1 and Zk has values
larger than yk. Deletion of q can be achieved by removing the leaf node q and
forming a new hierarchy by taking the union of the two hierarchies Zi and Zi+1.
Case 2: g(q) ≥ g(x) ≥ g(y). Let node X be the parent node of the leaf node
containing x in the hierarchy H. Refer to node x as yi and consider the node
Zi following the terminology used in Figure 1. Note that q is stored in the
hierarchy at Zi, and moreover this is the only element stored in this hierarchy,
since g(x) ≥ g(y). Deletion of q is achieved by setting Zi := ∅.
Case 3: g(x) ≥ g(q) ≥ g(y). Remove the leaf node q.

Lemma 3. Let q be the element to be deleted in the hierarchy H. Let its neigh-
bors in S be x and y, where x < q < y, and let g(x) ≥ g(y). Deletion of q,
depending upon one of the above three cases, results in a new hierarchy H′. The
algorithm only visits elements up to the cost group max{g(x), g(q)}.

2.5 Implementation

We have described an abstract data type, called hierarchies, and the associated
operations insert, delete and search. In this section we illustrate how we can
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realize this using 2-3 search trees. A 2-3 tree is a tree in which each vertex, that
is not a leaf, has 2 or 3 children, and every path from the root to a leaf is of the
same length. A 2-3 tree can be used to store elements from a totally ordered set.
This can be done by assigning the elements to the leaves of the tree in the left to
the right order. Each internal node stores a set of intervals describing the range
of key values in the left, middle and the right subtrees. The following theorem
summarizes the relevant results on 2-3 trees.

Theorem 3. ([1]) Given a 2-3 tree on n elements, drawn from a totally ordered
universe, each of the following operations can be performed in O(log n) time:
(a) Insertion of an element. (b) Deletion of an element. (c) Searching for a key
value. (d) Merging two 2-3 trees where all the key values in one tree are smaller
than all the key values in the other tree. (e) Splitting a 2-3 tree into two 2-3 trees
based on a key value, say q, where one tree will consist of all elements whose key
values are ≤ q and the other tree will consist of all elements with key values > q.

We represent the hierarchy H using 2-3 trees as follows. Recall that H was
recursively defined, where a node X represents elements of groups ≥ i (see
Figure 1 and the procedure Hierarchy(X, i)). Those children of node X which
are leaves, namely y1, · · · , yk, are represented in a 2-3 tree T (X). In T (X)
the elements are stored at the leaves. Each child yi of X is stored as a leaf
node in T (X), since a 2-3 tree stores elements only in its leaves. The leaf node
corresponding to yi, 1 ≤ i ≤ k, in T (X) stores a pointer to T (Zi), which is the
recursively defined 2-3 tree for Zi. The leaf node corresponding to y1 stores an
additional pointer to T (Z0). Next we illustrate how search, insert and delete
can be performed.

Searching: For searching an element q ∈ S, we follow the procedure Search(q, S)
on the tree T (S) corresponding to the hierarchy H representing the set S. Refer
to Figure 1 for the notation. The leaf nodes {y1, · · · , yk} of S are represented in
a 2-3 tree T (S). We locate q in T (S) and as a result we either find a leaf node
yj = q and the search terminates or find two leaf nodes yj and yj+1 such that
yj < q < yj+1. In that case we need to perform the search in the hierarchy Zj ,
i.e. in the corresponding tree T (Zj), recursively.

Lemma 4. An element can be searched in the hierarchical data structure storing
the elements of the set S within a competitive ratio of O(log n), where n = |S|.

Proof: The cheapest proof for membership of q ∈ S is an element xj that equals
q, and the cheapest proof of non-membership is a pair of queries to two adjacent
elements xj and xj+1 such that xj < q < xj+1. Hence the cost of the cheapest
proof is either the price of xj or sum of the prices of xj and xj+1. Recall from
the procedure Hierarchy that the leaf nodes associated to node X belong to the
cost group i, i.e. the prices of these nodes are in the range (2i−1, 2i]. Let the
search procedure examine elements in groups 0, 1, 2, · · · , l. The total number of
elements in these groups is at most n, and the total number of comparisons
made within a group with respect to the query q is at most 2 log n + C, for
some constant C. Hence the cost of searching using the 2-3 tree data structure
will be at most (2 log n + C)

∑l
i=0 2i ≤ (2 log n + C)2l+1. As noted in Lemma 1,
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the search does not examine any elements of the groups larger than that of the
neighbors of q in S. Therefore the cost of the cheapest proof is > 2l−1. Hence
the competitive ratio, i.e. the ratio of the cost of the algorithm to the cost of
the cheapest proof is at most (2 log n+C)2l+1

2l−1 = 8 log n + 4C.�

Insert: Insertion of an element q in the hierarchy H requires searching for neigh-
bors of q, possibly splitting part of the hierarchy from a leaf node up to an an-
cestor node (Case 1, Section 2.3), and inserting q as a leaf node. We have already
discussed how searching can be realized.

The splitting can be realized as follows. Assume that we wish to split H with
respect to the key value q as in Case 1 of the insert procedure in Section 2.3.
Recall that each (non-leaf) node X of H is realized by a 2-3 tree, T (X), and
the leaves of T (X) point to recursively defined 2-3 trees of the sub-hierarchies
associated with X. Splitting H with respect to the key value q amounts to
splitting each of the associated 2-3 trees on the path from the leaf node containing
x up to the node in H representing groups ≥ g(q). Each of these 2-3 trees can
be split with respect to the key value q resulting in two 2-3 trees. One of these
trees represent key values smaller than q and the other one represents key values
larger than q. The number of operations performed for each split is at most
logarithmic in the size of the tree. The actual insertion of q in H can be done
by inserting q in a 2-3 tree corresponding to the group g(q), as dictated by one
of the cases in Section 2.3.

The analysis of insertion is similar to that of searching. The cheapest proof
involves the price of q and the sum of the prices of the neighbors of q in S ∪{q}.
The total cost of performing the insertion is the sum of the costs of searching
the neighbors of q and then performing the split and actual insertion. The
searching is performed among the 2-3 trees representing groups 0, · · · , g(x),
where x is the neighbor of q with the highest price. The split is performed on
the 2-3 trees representing groups g(x) up to g(q). Insertion of q is performed
in a 2-3 tree representing the group g(q). Hence each of the standard 2-3 tree
operations (search, insert, split) are performed on 2-3 trees representing groups
0, · · · , max{g(y), g(x), g(q)}, where x and y are neighbors of q in S ∪{q}. Similar
to searching, the insertion of an element in the set S, |S| = n, can be done
within a competitive ratio of O(log n).

Delete: Deletion of an element q from the hierarchy H requires searching for q
and its neighbors in S, merging of two sub-hierarchies, and the deletion of the
leaf node q. Merging of the two sub-hierarchies as required in Case 1 of Section
2.4 can be achieved as follows. Following the notation of Section 2.4, recall that x
and y are neighbors of q in S, x < y, and g(x) ≥ g(y). The parent of the leaf node
containing q is X in H, and x (resp. y) is contained in the child node Zi (resp.
Zi+1) of X. For each internal node X ′ (resp., Y ′) in H on the path from the leaf
containing x (resp., y) up to Zi (resp. Zi+1), there is an associated 2-3 tree T (X ′)
(resp., T (Y ′)). Moreover the key values stored in T (X ′) are smaller than in T (Y ′)
and each 2-3 tree represents key values of a particular cost group. Merging of the
sub-hierarchies Zi and Zi+1 is achieved by merging the corresponding 2-3 trees
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which belong to the same cost group. The total number of operations required
to merge two 2-3 trees is given by Theorem 3. The actual deletion of q in H
corresponds to deleting q from a 2-3 tree representing elements of the cost group
g(q), as given by one of the cases in Section 2.4.

Theorem 4. A dynamic dictionary representing a set consisting of n priced ele-
ments drawn from a total order can be maintained. It supports insertion, deletion
and searching of a key value and each of these operations can be achieved within
a competitive ratio of O(log n) in the priced information model. The cost of an
operation is the sum of the prices of the elements involved in that operation.

3 Trapezoidal Maps

Let S be a set of n non-crossing line segments in the plane enclosed in a bounding
box R. The trapezoidal map T (S) of S is obtained by drawing two vertical
extensions from each endpoint of every segment s ∈ S. One of the extensions
goes upwards and the other one downwards till it reaches either a segment of S
or the boundary of R. The trapezoidal map is the subdivision induced by the
segments in S, the bounding box R and the vertical extensions. Observe that
each face of T (S) has one or two vertical sides and exactly two non-vertical
sides, and hence each face is either a trapezoid or a triangle. The problem is
to compute a trapezoidal map T (S) of a set S of n non-crossing line segments
where each segment has an associated price. The cost of the cheapest proof for
the trapezoidation is at least the total sum of the prices of all the boundary
elements in all faces of T (S). The cost of a vertical extension l is the sum of the
prices of the two segments in S to which l is incident.

Traditionally, in the uniform cost model, this problem is solved using the
plane sweep paradigm as follows. Sort the end points of the segments with respect
to increasing x-coordinate and insert them into an event queue. Sweep a vertical
line from the left to the right and at each event point, the trapezoidal map of
all the segments to the left has been computed. Maintain the y-sorted order
of all segments intersecting the sweep line. At an event point either a segment
is inserted in the sweep line data structure or it is deleted from it. When a
segment is inserted/deleted the vertical extensions of its end-point are computed
by finding out its neighbors in the y-sorted order of the segments maintained on
the sweep line. Moreover after inserting/deleting the sweep line data structure
is suitably updated.

In the cost model we make use of dynamic dictionaries to represent the y-
sorted order of the segments intersecting the sweep line. The operations that are
required on this data structure includes (a) inserting a new segment (i.e. insert a
key value) (b) deleting an existing segment (i.e. delete a key value) (c) searching
for neighbors of a query value. In addition to this we need an event list, which
consists of end-points of segments in the x-sorted order.

Next we discuss the computation of the trapezoidal map T (S) of a set S
consisting of n (possibly intersecting) segments. In addition to computing vertical
extensions of the endpoints of segments, we need to compute vertical extensions
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at each intersection point. Now the set of events includes endpoints of segments
and intersection points. Observe that if two segments a and b intersect then they
will be adjacent to each other on the sweep line at least once (e.g just before the
sweep line reaches the intersection point). Event points are processed as follows:
Left endpoint: Suppose segment l needs to be inserted, and let a and b be the
neighboring segments of l on the sweep line data structure, where a is above l
and b is below l. First we locate a and b and then insert l in the sweep line data
structure. Since a and l (and similarly b and l) have become adjacent, we check
whether they intersect to the right of the sweep line. If so then their intersection
point is inserted in the event queue. Draw upward (downward) vertical extension
from the left endpoint of l to the segment a (resp. b).
Right endpoint: Suppose segment l needs to be deleted and let a and b be the
neighboring segments as before. First locate l and its neighbors a and b. Draw
vertical extensions from the right endpoint of l to a and b and delete l. Now
a and b have become adjacent and it is possible that they intersect and their
intersection point is to the right of the sweep line. If a and b have been adjacent
at some point on the sweep line before l was even inserted then their intersec-
tion point is already present in the event queue. Therefore we search for the
intersection point in the event queue, and if it is not present then we insert it.
Intersection point: Suppose the sweep line reaches the intersection point v of
segments l and l′ and let the segment a (resp. b) is just above (resp. below) v.
Furthermore assume that l and a were adjacent, and similarly l′ and b were ad-
jacent, on the sweep line just before it reaches v. First locate v and the segments
a and b on the sweep line data structure and draw the vertical extensions from
v to a and b. Furthermore now the segments a and l′, and similarly b and l, have
become adjacent. Insert their intersection point into the event queue, if required.

Theorem 5. The trapezoidal map of a set of n priced line segments can be
computed within a competitive ratio of O(log n).
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