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Abstract. A system for generating neural networks to control simu-
lated agents is described. The networks develop during the lifetime of the
agents in a process guided by the genotype and affected by the agent’s
experience. Evolution was used to generate effective controllers of this
kind for orientation and discrimination tasks as introduced by Beer. This
scheme allows these behaviours to be generated quickly and effectively
and may offer insights into the effects of developmental processes on cog-
nition. For example, development may allow environmental regularities
to be recognised without genetic prespecification. Possible future research
into the abilities of these controllers to adapt to radical changes and to
undertake widely varying tasks with a single genotype is described.

1 Introduction

Much of the agent-based modelling in Adaptive Systems research involves us-
ing evolution to find genetic ‘blueprints’ for controllers which perform a given
task. A natural extension to this idea is to incorporate a developmental process
that allows one to use evolution to find genetic ‘recipes’ for generating useful
controllers.

The use of a developmental process to generate phenotype and behaviour
from a genotype may have several advantages over the direct specification of the
phenotype in the genotype. It may allow some of the work required to perform a
task to be done during the development process (responding to the regularities
found in a given environment, perhaps) rather than requiring evolution to solve
these problems. It may also offer the ability to produce complex behaviours later
in the lifetime of the agent, building upon simpler behaviours acquired earlier.
In the longer term there are rich possibilities for this work to feed into biological
and psychological studies of development and cognition.

Thus it is interesting to investigate developmental processes in the design of
controllers. This paper presents the first steps in the design of a developmen-
tal controller which seeks to build upon the work already done in agent-based
evolutionary modelling in two ways: first, it is based upon continuous-time re-
current neural networks [I] which have been studied extensively, and second it
deals with ‘minimally cognitive’ tasks as defined by Beer [II19]. By taking this
approach we are able to understand these new systems using our understanding
of existing systems.

Since systematic study is essential in exploring a new area, so far these con-
trollers have been evolved to perform extremely simple tasks. However, already
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some very interesting consequences of the developmental process have been ob-
served. In section [6lit will be argued that the abilities and scientific interest of
these controllers may be expected to increase as the complexity of the tasks they
are required to perform increases.

2 Background

2.1 The Importance of Development in Living Systems

Recent work in neuroscience has uncovered a much greater incidence of struc-
tural change (including significant growth and death of neurons) in brains than
previously expected. This change occurs even after brain development is com-
plete. It is increasingly believed that this kind of structural change is vital for
cognition and memory.

Recent studies have shown that newly generated neurons not only appear in
the brain, but that they become involved in its functional activity. For example,
van Praag et al [20] characterised new neurons in adult mice over time after
their appearance and found that they developed morphologies similar to those
of mature neurons. They were able to show strong evidence that these new cells
received synaptic input from their neighbours and were functionally incorporated
into the hippocampal network.

Meanwhile, momentum for the general view that change is vital and pervasive
in adult brains is continuing to grow [14]. For example, Ivanco and Greenough
[11] argue that the changes brought about by learning and experience are ex-
hibited as physical changes indicating functional reorganisation, and that the
mechanisms that bring these changes about may be the same mechanisms that
repair tissue after damage to the brain.

The use of neural network models by neuroscientists to investigate the role
of structural change in real brains is becoming common ([4], [13],[16],[17], [18]).

If cell growth and death and synaptic plasticity are important to the cognitive
capabilities of animals, it is reasonable to assume that in order to produce cogni-
tive capabilities in artificial agents we will need to allow for analogous processes
of structural change.

2.2 Adaptive Systems Approaches

In the early 1990s several researchers approached the problem of developmen-
tal neural networks. Most of the work done at this time used string and graph
rewriting grammars to model the development process. Perhaps the most suc-
cessful of these models was that of Gruau [7J8]9], who used a graph rewriting
grammar coupled with a tree-like genotype to create modular neural networks
that were grown in a development phase before the lifetime of an agent. Thus
the development was decoupled from the experience and sensory capabilities of
the agent and encapsulated in a very abstract mathematical model.

In 1995 Jakobi [12] designed a developmental neural network scheme involv-
ing models of DNA molecules, protein transcription and diffusion and a genomic
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regulatory network. A controller was seeded at the beginning of an agent’s life-
time with a single unit and others grew according to the rules of the genotype
and protein interactions. This development occurred within a two-dimensional
controller space, and took place before the agent’s lifetime began.

After several years with very little activity, momentum has been growing
recently behind research into developmental controllers [I5].

Elliot and Shadbolt [3] have successfully shown that obstacle avoidance be-
haviour can be generated in a real robot by the use of a hand-designed (as
opposed to evolved) developmental system that models some of the processes
found in neuroscience.

There is a growing level of interest in plasticity in neural networks, especially
in terms of their synaptic connections. Several pieces of work have been done
using Floreano and Mondada’s plastic neural networks [2J5]6], to investigate the
potential benefits of this limited form of structural change in controllers.

3 Method

The environments and tasks modelled are designed to be identical to some of
those used by Beer [1] in his research into minimally cognitive behaviours. In
addition, the controllers used are closely linked with Beer’s continuous-time re-
current neural networks (CTRNNs).

In parallel with the developmental experiments, replications of Beer’s exper-
iments (using CTRNN controllers identical to those used in [I]) on the tasks
used were undertaken. These may serve as controls to quantify the performance
and the behaviour of the controllers.

3.1 Continuous-Time Recurrent Neural Networks

Neurons in both the developmental networks and the standard CTRNNs are
governed by the following equation: [I]

Yit = Yit—A + (?) (_yi,t—A + Zj WjiZjt—A + Si)
where Y j denotes the sum over all neurons j connected to neuron ¢, and

Zit = Ty e

’ 1+exp(—(yi,t+bi))

and y; ; is the cell potential of neuron 4 at time ¢, A is the time step size being
used (0.1 in this work), 7; is the time constant of neuron ¢, z; ; is the firing rate of
neuron ¢ at time ¢, w; ; is the weight of the connection from neuron j to neuron
1, S; is the amount of sensory input to neuron ¢ and b; is the bias of neuron 1.
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3.2 Developmental Neural Networks

The design of the developmental controllers is intended to strike a balance be-
tween biological inspiration and pragmatic assumptions about what kind of con-
trollers will generate useful behaviours in a reasonable time. Development takes
place during the lifetime of the agent.

The concepts inspired by biological development are: growth from smaller
towards larger networks, an identical genotype for each unit and the use of
simulated chemical gradients that specify which part of the genome is relevant
to a given unit.

The general scheme is as follows: the controller is located within a two-
dimensional space. Certain areas of the space correspond to the agent’s sensors
(neurons within those areas receive input from the corresponding sensor) and
certain areas correspond to motors (the firing rates of neurons in these areas
affect the action of the corresponding motor) as illustrated in figure [l The
controller is seeded at the beginning of the agent’s life with one neuron per
sensor on the agent.

Chemical B

el’lale
IR

Sensors Effectors

Fig. 1. The controller is a two-dimensional space with two chemical gradients over it,
and specific sensor and effector regions.

There are two chemical gradients across the space, running horizontally and
vertically. When a neuron is created, the levels of chemicals locally and the
parent neuron’s cell potential (if it has a parent) serve as inputs to functions the
output of which provide the new neuron’s time constant, bias, and energy. The
shape of those functions is defined by the genotype.

At every time step the neuron’s cell potential and the local chemical levels
are fed into functions defined by the genotype to give the amount by which
that neuron’s ‘growth sum’ will change. When the growth sum goes beyond a
threshold - if the neuron has any remaining energy - the neuron grows a new
‘child’ neuron, using functions defined by the genotype to determine the angle
and distance at which to grow the new neuron. A connection is created linking
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from the parent to the child, and its weight is found using a function defined
by the genotype. The energy of the parent neuron is decreased by 1 whenever it
grows a child. If a neuron already exists at the point in the space where a new
one is to be grown, a link is formed to the existing neuron instead.

The functions mentioned above are designed to approximate an arbitrary
function using the following form:

NC NS
Po=Y_ > (aijisin(a; o+ a;;3))

i=1 j=1

where p,, is a property of the neuron (n = 1,...,7), a; ;% is a genetically-
determined value, z; is the local concentration of chemical ¢ or the cell potential,
N, is the number of chemicals + 1 for cell potential (= 3 in this work), N; is a
constant (10 in this work).

The genotype is a list of 630 real values, since 7 x N, x Ng x 3 = 630.
The 7 occurs because there are 7 properties: bias, time constant, energy, growth
increment, direction of growth, distance to grow and new connection weight. So
the genotype may be thought of as a vector function, taking 3 inputs (chemical
1, chemical 2 and cell potential) and having 7 outputs.

3.3 Minimally Cognitive Behaviours

The environment and agent are designed to be exact replicas of those used in [I]
including relative distances and speeds.

The environments in which the agents behave are extremely simplified situa-
tions designed to encapsulate certain fundamental elements of cognition. Agents
themselves are circular and able to move only left and right at the bottom of
a two-dimensional environment. Objects fall from above the agents and tasks
require either ‘catching’ (matching horizontal positions when vertical positions
are matched) or ‘avoiding’ objects in different circumstances.

Agents have distance-sensitive ray sensors (analogous to infra-red sensors on
real robots) which produce large input when an object crosses a ray close to the
agent and small input when it crosses far away. These sensors are arranged in a
fan shape pointing out from the top of the agent over an angular range of 7/6
(figure [2).

3.4 Genetic Algorithm

A generational, asexual genetic algorithm using rank selection with elitism (4%
elitist fraction) on a population size of 50 is used, with real-valued genotypes.
In CTRNNs mutation is performed by adding a random displacement vector
whose direction is uniformly distributed on the M-dimensional hypersphere and
whose magnitude is a Gaussian random variable with mean 0 and variance 10.
In developmental networks mutation involves randomly selecting 5 of the 630
real values on the genotype and randomising them within their allowed ranges.
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««««««
NNNNN

Fig. 2. Left: The agent has ray distance sensors and may move left and right in the
environment. Right: Fitness vs. generation. The best fitness achieved with a develop-
mental controller in the orientation experiment far out-performed the best achieved by
a CTRNN.

The fitness of an agent over several presentations is calculated as follows:

F =045f,, +0.45f, + 0.1f.

where f,, is the mean fitness over the presentations, f,, is the fitness achieved
in the worst (lowest fitness) presentations, and f. is the fitness awarded for
attributes of the controller. f,,, fi, and f. are € [0: 1] and thus F € [0: 1].

In CTRNN controllers f. is always equal to 1, and in developmental con-
trollers f. is equal to the mean (over the presentations) of the quantity x/W
where x is the horizontal position of the rightmost neuron in the controller at
the end of the agent’s lifetime and W is the width of the controller space. So
agents are rewarded for growing from the seed neurons on the left towards the
motor region on the right.

4 Experiments and Results

The simulated environment was 400 wide by 275 high (the units are arbitrary)
and contained the agent (which was circular with radius 15), and objects: circles
of radius 13 and squares (called ‘diamonds’ since they were rotated by 45°) of
side 26.

Orientation. In the first experiments circles were dropped at varying speeds
and directions from the top of the environment and agents were required simply
to orient themselves to the circles, catching them. Fitness for a single presenta-
tion was awarded as F, =1 — % where d was the distance between the agent
and the circle at the end of the presentation and W was the width of the envi-
ronment (i.e. the maximum possible distance). The final fitness of an agent was
found by combining fitnesses for each presentation as specified in section [3.41
The developmental controllers performed at least as well at this task as stan-
dard CTRNN controllers. In fact, over the course of 20 evolutionary runs of each
type (2000 generations in each), the maximum fitness acquired for developmen-
tal controllers (0.98 - the maximum possible was 1) was significantly higher than
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that acquired for CTRNNs (0.82), and 8 of the 20 developmental runs achieved
a fitness higher than 0.82.

Discrimination. The second set of experiments involved the agents discrimi-
nating between objects of different shapes. Circular or diamond-shaped objects
were dropped vertically from the top of the environment at different horizontal
positions and fitness was awarded as follows:

4 when the object was a diamond

d . .
F, = { 1 — 5 when the object was a circle
D

where d was the distance between the agent and the object at the end of the
presentation (capped to be < D) and D was a maximum distance less than the
width of the environment.

In these experiments the developmental controllers performed reasonably
well, with the best agents, when examined manually, clearly correctly discrim-
inating in 15 of 20 presentations. However, CTRNN controllers perform better
at this task, with the best controllers correctly discriminating in 18 of 20 pre-
sentations.

5 Analysis

A number of interesting interactions and dynamics arise in the evolved solutions
to the tasks described above. These fall into several categories:

Specialisation. A potential advantage of the use of developmental controllers
over standard CTRNNs is that development allows the agent to specialise ac-
cording to the environment in which it finds itself. Of course, in the tasks so
far studied the need for specialisation does not appear pressing to an observer,
but specialisation did occur in some cases. For example, as shown in figure [3] the
same agent (in this case in the discrimination task) developed different controller
structures depending on the environmental conditions. The behaviours exhibited
by this agent are shown in figure 4

While the tendency to specialise may have negatively impacted the perfor-
mance of agents in this simple task (due to problems with consistency), it seems
likely that this feature will be extremely useful when tackling more difficult and
complex tasks (see section [G]).

Indirect genotype-phenotype mapping. The mapping between genotype
and phenotype in the simulations described is indirect, in contrast with much
of the work being done in agent-based robotics today. The advantages of this,
beyond its biological inspiration, are that it allows smooth changes of interesting
kinds (such as rotations of whole sub-trees of neurons due to the change in angle
of a single growth), it allows for modularity and genotype reuse (for example
similar structures may be developed at the top and bottom of the controller
if the vertical chemical gradient is insignificant in a certain area), and most of
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Fig. 3. The controller structures grown by a single agent under different environmental
conditions. The two structures on the left show the controller when circles are dropped
at different horizontal positions. The two on the right show what happens when di-
amonds are dropped. Circles must be caught and diamonds avoided. Sensor neurons
(with which the controller is seeded at the beginning of a lifetime) appear on the left,
and effector neurons on the right.

Fig. 4. The behaviour of the agent with the controller illustrated in figure [B] The
horizontal line shows the horizontal position of the falling object over time. The other
line shows the position of the agent.

all it is scalable to large numbers of neurons without a corresponding increase
in genotype length. This allows the evolutionary process to find solutions with
appropriate numbers of neurons without this constraint being imposed from
outside.

Neutrality and rich fitness landscapes. The fitness landscape of these con-
trollers contains a great deal of neutrality; for example, the growth of a neuron
into an area of the space which does not affect the motors has no effect on
behaviour.

Moreover, the fact that solutions were found to the problems studied in
reasonable timescales implies that the landscape is quite rich with effective so-
lutions, despite the relatively vast size of the genotype (630 values as compared
with 12 and 47 values in the CTRNN versions of the orientation and discrim-
ination tasks respectively). This suggests that the space of all developmental
controllers is quite densely packed with interesting behaviours.

6 Conclusions and Future Work

The experiments described here represent the first steps in the design of devel-
opmental controllers that satisfy two key criteria: that they should encapsulate
some of the properties of development that are useful for producing complex
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and interesting behaviours, and that they should be simple enough to allow for
evolution of such interesting behaviours in a reasonable time. This early work
goes towards justifying the assertion that the latter criterion may be satisfied,
since the controllers evolved respectably in comparison with CTRNNs. In re-
gard to the former criterion, some of the potential of development has been
shown, notably the development of controllers specifically suited to particular
environmental conditions, but future work will be aimed at showing further that
development is useful in producing more interesting behaviours.

Initial directions will be towards understanding the capabilities of these con-
trollers as they are by testing them with more complex environments and tasks,
and then working towards increasing the power of the controllers by discovering
how to maximise the advantages of developmental processes and minimise the
disadvantages. Adjustments are likely to be required, especially to the nature
of the functions described in section B2 Some of the drawbacks of the current
design are becoming clear, including a high chance of catastrophic mutations,
and local fitness maxima caused by the unidirectional nature of the development
process.

Development in biological organisms can allow the regularities in the envi-
ronment to be automatically incorporated during the organism’s lifetime into its
cognitive faculties, rather than predicted and prespecified in the genotype. This
effect may allow artificial developmental controllers to lift some of the cognitive
burden away from direct evolutionary control, into the developmental process.
Thus environments with existing but varying regularities could be used to test
whether developmental controllers can more easily take advantage of these reg-
ularities than conventional controllers. An extreme case of this would be asking
a controller to perform two different behaviours in two completely different en-
vironments, distinguishable only by the sensory input the agent receives in each
environment.

Another way in which developmental processes are of benefit is in adaptation
to radical changes to an agent or its environment. For example as an organism
grows larger over its lifetime developmental processes allow it to cope with this
change. Interesting experiments may be imagined involving predictable but rad-
ical changes to an agent’s environment. For example, an agent that first has to
navigate a corridor before emerging into an open space where it has to perform
some other task (approaching a certain area, say) may well benefit from being
fitted with a developmental controller that can change in structure at the cru-
cial moment to perform a different behaviour. Developmental processes may also
benefit agents that need to adapt to unpredictable changes as well.

Along with the goal of producing controllers capable of complex and interest-
ing behaviours, a long term goal of this work is to shed light on the relationship
between development and cognition. If the results of experiments such as Held’s
[10] demonstration of links between behaving and learning in kittens could be
reproduced in an artificial system, the benefits of artificial systems could be put
to good use in understanding the nature of such systems in general terms.
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