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Abstract. Unsigned circular permutations are used to represent tours
in the traveling salesman problem as well as the arrangement of gene
loci in circular chromosomes. The minimum number of segment reversals
required to transform one circular permutation into another gives some
measure of distance between them which is useful when studying the 2-
opt local search landscape for the traveling salesman problem, and, when
determining the phylogeny of a group of related organisms. Computing
this distance is equivalent to sorting by (a minimum number of) reversals.
In this paper we show that sorting circular permutations by reversals
can be reduced to the same problem for linear reversals, and that it
is NP-hard. These results suggest that for most practical purposes any
computational tools available for reversal sort of linear permutations will
be sufficiently accurate.
These results entail the development of the algebraic machinery for deal-
ing rigorously with circular permutations.

1 Introduction

A circular permutation can be thought of as a necklace with n distinct beads.
Rotating and flipping the necklace do not change the object but one necklace
may be transformed into any other by cutting it in two places, reversing one
segment and rejoining the ends, or a composition of such operations. This paper
addresses the problem of finding a minimum length sequence of segment reversals
required to transform one circular permutation into another.

Tours in the symmetric traveling salesman problem are precisely circular
permutations of the cities. In the context of the traveling salesman problem,
segment reversal is called a 2-opt move and is used to define a combinatorial
landscape which is subjected to local search techniques in order to find local
minima [11].

Among others, Boese [4] suggests a correlation between the values of local
minima and their distance from other local minima – the so called “big valley”
hypothesis which informs a number of successful heuristics for traversing the
landscape. Boese uses the number of breakpoints (pairs which are adjacent in
one permutation, but not the other) as an estimate of reversal distance. Our
motivation for the present work is to have a more accurate measure of reversal
distance for the purpose of investigating the big valley hypothesis.

Historically, the question of determining reversal distance between circular
permutations was first posed in 1982 by Watterson et. al. [14] in the context of
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computational biology. A circular permutation models the arrangement of gene
loci around a circular chromosome such as is found in bacterial and mitochondrial
DNA. While point mutations occur freqently, the order of gene loci is quite
stable over the generations. When the gene order does change, it is usually by
segment reversal [5]. Therefore, the reversal distance between two chromosomes
is a measure of their evolutionary distance.

Watterson’s paper gives the first rudimentary bounds on the reversal distance
where it is noted that since each reversal can eliminate at most two breakpoints,
half the number of breakpoints is a lower bound on the reversal distance. A
simple ratchet algorithm is given to show that for circular permutations of n
points, at most n reversals are required to transform one permutation into any
other.

This paper sparked a great deal of interest but subsequent investigations
focussed on the simpler case of linear chromosomes. In the remainder of this
section we review the progress made in the linear case.

1.1 Sorting Linear Permutations by Reversal

As we shall see, the problem of finding a minimum length sequence of reversals
transforming one permutation into another is equivalent to sorting a permutation
by (a minimum number of) segment reversals. Henceforth we use the initials SBR
to refer to this problem.

Kececioglu and Sankoff [9,10] give a greedy algorithm for sorting a permu-
tation σ by reversal bounded above by the number b(σ) of breakpoints which is
therefore a 2-approximation algorithm. Computing upper and lower bounds on
reversal distance, Kececioglu and Sankoff go on to give an algorithm for com-
puting an exact reversal sort for linear permutations.

Bafna and Pevzner [2] improved on these results by formulating a 7
4 -

approximation algorithm to sort a permutation by reversals. Along the way
they defined the problem of sorting signed permutations by reversals, where
each point has not only a position, but also an orientation. Signed permuta-
tions are arguably more significant biologically as genes have extension as well
as position.

Using elaborate graph theoretic constructions, Caprara [5] solved in the af-
firmative a longstanding conjecture of Kececioglu and Sankoff that sorting by
reversals is NP-hard. In contrast Hannenhalli and Pevzner [8] give a polynomial
algorithm which sorts signed permutations.

David A. Christie [6] finds a polynomial time 3
2 -approximation algorithm for

sorting unsigned permutations by reversals, and this remains the best known
approximation factor.

Bounding approximability of SBR, Berman and Karpinski [3] show that it is
NP-hard to approximate the reversal length of a linear permutation to a factor
better than 1.0008.
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1.2 Notational Preliminaries

Formalizing the notion of a circular permutation is a delicate matter and clarity is
well served by taking some pains to carefully define the notion of a permutation.

Linear Permutations. Rather than regarding a permutation as a function from
a set to itself, we distinguish the set Σ of n objects being permuted, from the
ordered set [n] = {0, 1, . . . n−1} of positions in which we place each object. Then
a permutation is a bijection π : Σ → [n] such that aπ denotes the position in
which we place object a ∈ Σ, that is, permutations act on the right. Occasionally,
it will be convenient to visualize all the objects of Σ in their positions under π
as (π0π1 . . . πn−1), which is to say πi = iπ−1.

Fix some permutation ι : Σ → [n]. Then ι defines a canonical ordering of
the elements of Σ and ι will be called the identity permutation. Then Σ =
{ι0, . . . , ιn−1}. (Identifying the sets [n] and Σ would enable us to revert to the
usual notions of permutation and identity.)

A reversal ρ(i, j) (with i < j in [n]) of a linear permutation is a bijec-
tion on the set of positions whose effect can be visualized as reversing the seg-
ment from position i to position j, transforming (π0 . . . πiπi+1 . . . πj . . . πn−1)
into (π0 . . . πjπj−1 . . . πi+1πiπj+1 . . . πn−1). Precisely, for x ∈ Σ define

ρ(i, j) : [n] −→ [n]

x �−→
{

i + j − x if i ≤ x ≤ j
x otherwise.

then it is easy to see that πρ(i, j) = (π0 . . . πjπj−1 . . . πiπj+1 . . . πn−1) as re-
quired.

Circular Permutations. The notion of circular permutation we are trying to
capture is an arrangement of the elements of Σ around the vertices of a regular
n-gon subject to the condition that, like a necklace, rotating the n-gon, or flipping
it over does not change the circular permutation that it represents.

Arbitrarily, we label the vertices of the n-gon by the elements of Zn from
0 at the twelve o’clock position and proceed clockwise up to n − 1. A circular
arrangement of the elements of Σ around the vertices of the n-gon is then a
bijection π : Σ → Zn. In a similar way to the treatment of linear permutations,
fix an arbitrary circular arrangement ι : Σ → Zn and refer to ι as the identity
arrangement. For i ∈ Zn define the elementary rotation r : Zn → Zn by ir = i⊕1
and canonical reflection s : Zn → Zn by is = �i, where ⊕ and � denote
addition and negation (or subtraction) in Zn. For example, (π0π1π2π3π4)r =
(π4π0π1π2π3) and (π0π1π2π3π4)s = (π0π4π3π2π1).

The maps r and s generate all 2n rotations and reflections of the regular
n-gon. Together, these form the dihedral group Dn, which has presentation

〈r, s | s2, rn, rs = srn−1〉. (1)
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To capture the idea that π, πr and πs all represent the same circular permuta-
tion, define a circular permutation to be the set πDn for some circular arrange-
ment π. It is then clear that πDn = πrDn = πsDn as required. Any circular
arrangement in πDn defines a linear permutation by identifying Zn with [n].
Call such a permutation a linearization of πDn and denote the set of all 2n
linearizations of πDn by lin(πDn).

For i, j ∈ Zn, define the interval [i, j] to be the set {i, i⊕ 1, . . . , j � 1, j}. For
example if n is 6 then [3, 1] = {3, 4, 5, 0, 1} while [1, 3] = {1, 2, 3}.

Let x ∈ Σ. Then a circular reversal ρc(i, j) is defined by

ρc(i, j) : Zn → Zn

x �−→
{

i ⊕ j � x if x ∈ [i, j]
x otherwise.

As an example of the way a circular reversal acts on a circular arrangement,
notice that when n = 6,

(π0π1π2π3π4π5)ρc(1, 3) = (π0π3π2π1π4π5)

and
(π0π1π2π3π4π5)ρc(4, 1) = (π5π4π2π3π1π0).

The technical report [12] inspired a number of notational decisions in this
section. In particular, the symbols used to denote reversal, arithmetic in Zn and
intervals appear also in [12].

1.3 Mathematical Preliminaries

In the linear case, the problem one attempts to solve is to find, for two permu-
tations σ and τ a minimum length sequence of reversals α1, . . . , αk such that
σα1 . . . αk = τ , however

σα1 . . . αk = τ if and only if
ιτ−1σα1 . . . αk = ι

and since ι is the identity permutation, we see that a minimum length sequence
of reversals transforming σ into τ is equivalent to a minimum length sequence of
reversals which transforms ιτ−1σ into ι, which is to say, the sequence of reversals
sorts ιτ−1σ. The reversal distance between a permutation π and the identity will
be called the reversal length of the permutation and denoted l(π).

In the circular case, the primary problem is to find, given two circular ar-
rangements σ and τ , a minimum length sequence of circular reversals αc

1, . . . , αc
k

such that σαc
1 . . . αc

k ∈ τDn. Once again, notice that σαc
1 . . . αc

k ∈ τDn if and only
if ιτ−1σαc

1 . . . αc
k ∈ ιDn. Regarding ιDn as the identity circular permutation, we

see that the sequence αc
1, . . . , αc

k sorts the circular arrangement ιτ−1σ.
The reversal distance between a circular arrangement and the identity will

be called the reversal length of the arrangement.
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For the remainder of the paper, fix some n as the size of Σ and let r denote
the elementary rotation and s the canonical reflection in Dn. We give some
useful facts describing the interaction of circular reversals with the elements of
the dihedral group Dn.

Lemma 1.

sρc(i, j) = ri⊕jρc(j ⊕ 1, i � 1).

Proof. Noting that for any x ∈ Zn, x ∈ [i, j] if and only if �x ∈ [�j,�i] we have

xsρc(i, j) =
{

i ⊕ j ⊕ x if x ∈ [�j,�i]
�x otherwise

while

xri⊕jρc(j ⊕ 1, i � 1) =
{

(j ⊕ 1) ⊕ (i � 1) � (x ⊕ i ⊕ j) if x ⊕ i ⊕ j ∈ [j ⊕ 1, i � 1]
x ⊕ i ⊕ j otherwise

=
{�x if x ∈ [1 � i, �1 � j], subtracting i ⊕ j everywhere

x ⊕ i ⊕ j otherwise

=
{

x ⊕ i ⊕ j if x ∈ [�j, �i]
�x otherwise

as required.

The reader may easily verify the following equations.

Eqn − I rρc(i, j) = ρc(i � 1, j � 1)r
Eqn − II sρc(i, j) = ρc(�j,�i)s
Eqn − III ρc(i, j) = sri⊕jρc(j ⊕ 1, i � 1) = ρc(j ⊕ 1, i � 1)sri⊕j

Eqn − IV ρc(i ⊕ 1, i) = sr2i⊕1

Eqn-I and Eqn-II ensure that for any ρc(i, j) and any d ∈ Dn, dρc(i, j) =
ρc(i′, j′)d for some i′, j′ ∈ Zn. Suppose there is a sequence α1, . . . , αk of reversals
such that σα1 . . . αk ∈ ιDn. Then for any τ ∈ σDn, τ = σd so that σ = τd−1

and

σα1 . . . αk = τd−1α1 . . . αk

= τβ1 . . . βkd−1 ∈ ιDn

for some reversals β1, . . . , βk, so that τβ1 . . . βk ∈ ιDn. Consequently, τ has
length at most k. By symmetry, this shows that any two circular arrangements
in the same circular permutation have the same length, so we may speak of the
reversal length of a circular permutation πDn and denote it by lc(πDn).
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Proposition 2. The following table expresses each non-identity element of Dn

as a minimum length product of linear reversals.

Element of Dn As reversals
Orientation preserving elements
ri, i ∈ {1, 2} ρ(0, n − i)ρ(1, n − 1)
ri, 2 < i < n − 2 ρ(0, n − i − 1)ρ(n − i, n − 1)ρ(0, n − 1)
ri, i ∈ {n − 2, n − 1} ρ(1, n − 1)ρ(0, i)
Orientation reversing elements
s ρ(1, n − 1)
sri, 0 < i < n − 2 ρ(0, i)ρ(i + 1, n − 1)
sri, i ∈ {n − 2, n − 1} ρ(0, i)

Proof. To verify the equality of the expressions on the left and right is an easy
exercise. The proof that the expressions on the right hand side are of minimum
length is tedious and inessential to the development of the remainder of the
paper, so we omit it.

2 Reducing Circular SBR to Linear SBR

It is clear that if a sequence α1, . . . , αk sorts a linearization of πDn then it cer-
tainly sorts some circular arrangement of πDn so that the reversal length of πDn

is bounded above by the minimum reversal length amongst its linearizations.

Theorem 3. If πDn can be sorted in m circular reversals, then there is some
linearization σ ∈ lin(πDn) which can be sorted in at most m linear reversals.

A direct result is that lc(πDn) is bounded below by the minimum length amongst
its reversals so that together with the observation above, we have

Corollary 4. lc(πDn) is precisely the minimum value of l(σ) for any lineariza-
tion σ of πDn.

Proof (of theorem). By way of a basis for an induction on m, suppose πDn has
reversal length 0. Then π ∈ ιDn, whence ι = πt for some t ∈ Dn. Consequently,
the linearization πt of πDn is sorted and has a reversal length of 0 as required.

Now suppose πDn has reversal length m. That is, there is a sequence of
circular reversals αc

1, . . . , αc
m such that παc

1 . . . αc
m ∈ ιDn. Put π0 = π and for

1 ≤ i ≤ m, set πi = παc
1 . . . αc

i .
By the inductive hypothesis, there is some linearization σ1 ∈ lin(π1Dn) which

is sortable in m−1 linear reversals. Say γ2, . . . , γm is a sequence of linear reversals
sorting σ1.

We now focus on the relationship between the linear permutation σ1 and the
circular arrangement π1 = π0α1 = π0ρ

c(i, j) for some i, j ∈ Zn. The presentation
at (1) shows that an element of the dihedral group may always be written as a
rotation, or as a reflection followed by a rotation, giving us only two cases to
consider: Case (i) σ1 = π1r

k; Case (ii) σ1 = π1sr
k.
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In Case (i) σ1 = π0ρ
c(i, j)rk, and by Eqn-I σ1 = π0r

kρc(i ⊕ k, j ⊕ k). There
are three subcases to consider: as elements of Z either (a) i ⊕ k ≤ j ⊕ k, (b)
i ⊕ k = j ⊕ k ⊕ 1, or (c) i ⊕ k > j ⊕ k ⊕ 1. In case (a), set σ0 = π0r

k and
γ1 = ρ(i⊕k, j⊕k). This gives σ0γ1 = σ1 and the sequence γ1, γ2, . . . , γm linearly
sorts σ0 = π0r

k as required. In case (b), Eqn-IV gives ρc(i⊕k, j⊕k) = sr2j⊕2k⊕1

so that

σ1 = π0r
ksr2j⊕2k⊕1

= π0sr
2j⊕k⊕1

Putting σ0 = π0sr
2j⊕k⊕1 and γ1 = 1Zn , gives the required sequence of linear

reversals. In case (c) Eqn-III gives ρc(i⊕k, j⊕k) = sri⊕j⊕2kρc(j⊕k⊕1, i⊕k�1)
so that

σ1 = π0r
kρc(i ⊕ k, j ⊕ k)

= π0r
ksri⊕j⊕2kρc(j ⊕ k ⊕ 1, i ⊕ k � 1)

= π0sr
i⊕j⊕kρc(j ⊕ k ⊕ 1, i ⊕ k � 1)

Since i ⊕ k > j ⊕ k ⊕ 1, j ⊕ k ⊕ 1 ≤ i ⊕ k � 1 so that ρ(j ⊕ k ⊕ 1, i ⊕ k � 1) is
a linear reversal. Putting σ0 = π0sr

i⊕j⊕k, and γ1 = ρ(j ⊕ k ⊕ 1, i ⊕ k � 1) then
ensures that the sequence γ1, . . . , γm sorts σ0 linearly as required.

In Case (ii)

σ1 = π1sr
k

= π0ρ
c(i, j)srk

= π0sρ
c(�j,�i)rk

= π0sr
kρc(k � j, k � i).

As above, there are three subcases to consider: as elements of Z either (a) k�j ≤
k� i, (b) k�j = k� i⊕1, or (c) k�j > k� i⊕1. In case (a) put σ0 = π0sr

k and
γ1 = ρ(k � j, k � i) and γ1, . . . , γm is the required sequence of linear reversals
which sorts σ0. In case (b), Eqn-IV gives ρc(k � j, k � i) = sr2k�2i⊕1 so that

σ1 = π0sr
ksr2k�2i⊕1

= π0r
k�2i⊕1

Putting σ0 = π0r
k�2i⊕1 and γ1 = 1Zn , gives the required sequence of linear

reversals. Finally, in case (c) Eqn-III gives ρc(k � j, k � i) = sr2k�i�jρc(k � i ⊕
1, k � j � 1) so that

σ1 = π0sr
kρc(i ⊕ k, j ⊕ k)

= π0sr
ksr2k�i�jρc(k � i ⊕ 1, k � j � 1)

= π0r
k�i�jρc(k � i ⊕ 1, k � j � 1)
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Since k � j > k � i ⊕ 1, k � i ⊕ 1 ≤ k � j � 1 so that ρ(k � i ⊕ 1, k � j � 1) is
a linear reversal. Putting σ0 = π0r

k�i�j , and γ1 = ρ(k � i ⊕ 1, k � j � 1) then
ensures that the sequence γ1, . . . , γm sorts σ0 linearly as required. �

In summary, we see that given an algorithm L to solve the minimum length
SBR problem for linear permutations, in order to solve SBR for some circular
permutation πDn, we need only apply L to each of the 2n linearizations of πDn,
and take the shortest solution.

3 Circular Sort by Reversals Is NP-Hard

By recourse to a result of Berman and Karpinski [3] on the inapproximability of
linear SBR, we show that circular SBR is NP-hard. The core of our proof is the
following

Lemma 5. Let α1, . . . , αm be a sequence of circular reversals taking σ to an
element of ιDn. Then there is a sequence β1, . . . , βk of linear reversals such that
k ≤ m and σβ1 . . . βk ∈ ιDn.

Proof. Proceed by induction on m. The m = 0 case is trivial. If α1 is a linear re-
versal, put β1 = α1 and appeal to the inductive hypothesis with the permutation
σβ1.

Therefore we may assume that α1 is not a linear reversal. That is: α1 =
ρc(x, y) with x > y. There are two cases: (i) α1 = ρc(i+1, i); and (ii) α1 = ρc(i, j)
with i > j + 1.

In case (i) Eqn-IV gives αc
1 = sr2i⊕1. By use of Eqn-I and Eqn-II

σα1 . . . αm = σsr2i⊕1α2 . . . αm

= σα′
2 . . . α′

msr2i⊕1

so that σα′
2 . . . α′

m ∈ ιDn and we are finished by appeal to the inductive hypoth-
esis.

In case (ii) Eqn-III gives α1 = sri⊕jρ(j ⊕ 1, i � 1) and i > j + 1 ensures
j ⊕ 1 ≤ i � 1. By Eqn-III we have α1 = ρ(j ⊕ 1, i � 1)sri⊕j .

Therefore

σα1 = σρ(j ⊕ 1, i � 1)sri⊕jα2 . . . αm

= σρ(j ⊕ 1, i � 1)α′
2 . . . α′

msri⊕j ∈ ιDn

so that setting β1 = ρ(j ⊕ 1, i � 1), σβ1 is circularly sorted in m − 1 circular
reversals, which completes the proof by appeal to the inductive hypothesis.

As an immediate consequence of Lemma 5 and Proposition 2 we have

Proposition 6. For any linear permutation σ,

lc(σDn) ≤ l(σ) ≤ lc(σDn) + 3.�
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Theorem 7 (Restatement of Theorem 6 in [3]). For any positive ε1, ε2 it
is NP-hard to distinguish linear permutations with 2240k breakpoints that have
length below (1236 + ε1)k from those whose length is above (1237 − ε2)k.

In particular, setting k = 4m and bounding ε1, ε2 we have

Corollary 8. For 0 < ε1, ε2 < 1
10 it is NP-hard to distinguish between linear

permutations with 2440×4m breakpoints that have length below l = (1236+ε1)4m
and those with length above u = (1237 − ε2)4m. Note that

u − l = 4m − (ε1 + ε2)4m > 3
1
5
m > 3.

Finally, we are in a position to prove

Theorem 9. The problem of computing the reversal length of a circular permu-
tation is NP-hard.

Proof. We show that the problem of estimating the length of a linear permu-
tation with precision determined by Corollary 8 can be reduced in constant
time to the problem of computing the reversal length of the associated circular
permutation. Consequently the latter problem must be NP-hard.

To estimate the length of a linear permutation σ, compute the reversal length
lc(σDn) of the corresponding circular permutation. The reversal length of σ is
then approximated by Proposition 6.

With l and u defined as in Corollary 8, let σ be a permutation whose reversal
length l(σ) is either below l or above u. We show that l(σ) < l if and only if
lc(σDn) < l. The forward direction is immediate from the statement of Propo-
sition 6. For the reverse direction, if lc(σDn) < l then lc(σDn) + 3 < u since we
defined l and u to be at least 3 apart. Since lc(σDn) + 3 is an upper bound on
l(σ), we have that l(σ) < u, whence by definition of σ, l(σ) < l.

4 Conclusion

We showed that determining a reversal sort for circular permutations can be
reduced to finding a minimum length sort amongst its 2n linearizations (Theorem
3).

Using an inapproximability result on linear SBR, it is shown that determining
reversal distance between circular permutations is NP-hard (Theorem 9).

In practical terms, to approximate reversal length for a circular permutation
it is sufficient to compute it for one of its linearizations using any of the programs
already developed for this purpose (for example [10], [2]). This estimate will be
accurate to within three reversals (Proposition 6) and NP-hardness of SBR for
circular permutations assures us that using tools for linear permutations is likely
to be as efficient as developing specific algorithms for circular permutations.

In case reversal lengths in a given situation are so small that an error margin
of three is significant, Bafna and Pevzner’s theorem [2, Theorem 5] concerning
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the expected reversal length of a random permutation suggests that n will also
be small. Therefore it may well be feasible to compute the length of the 2n
linearizations for an exact result. This will be the subject of a future experimental
investigation.

References

1. David A. Bader, Bernard M. E. Moret, Mi Yan, A linear time algorithm for com-
puting inversion distance between signed permutations with an experimental study,
Journal of Computational Biology, Volume 8, Number 5, 2001 pp. 483–491.

2. V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25 (1996), 272–289.

3. P. Berman, M. Karpinski, On some tighter inapproximability results (extended ab-
stract), in “Automata, languages and programming (Prague, 1999)”, Lecture Notes
in Comput. Sci., 1644, pp. 200–209, Springer, Berlin, 1999.

4. K. D. Boese, Cost Versus Distance In the Traveling Salesman Problem, Technical
Report CSD-950018, UCLA Computer Science Department, May 1995.

5. Alberto Caprara, Sorting Permutations by Reversals and Eulerian Cycle Decom-
positions SIAM Journal on Discrete Mathematics, Volume 12, Number 1 (1999)
pp. 91–110.

6. David A. Christie, A 3/2-approximation algorithm for sorting by reversals, in Pro-
ceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 244–252, San Francisco, California, 25–27 January 1998.

7. Michael R. Garey and David S. Johnson, “Computers and Intractability”,
W. H. Freeman, New York, 1979.

8. S. Hannenhalli, P. A. Pevzner, Transforming cabbage into turnip: a polynomial
algorithm for sorting signed permutations by reversals, Journal of ACM, 46, 1–27,
1999.

9. John Kececioglu and David Sankoff, Efficient bounds for oriented chromosome-
inversion distance Proceedings of the 5th Symposium on Combinatorial Pattern
Matching, Springer-Verlag Lecture Notes in Computer Science 807, 307–325, 1994.

10. John Kececioglu and David Sankoff, Exact and approximation algorithms for sort-
ing by reversals, with application to genome rearrangement Algorithmica 13, 180–
210, 1995.

11. S. Lin and B. Kernighan, An efficient heuristic for the traveling salesman problem,
Operations Research, 21(2):498–516, 1973.

12. J. Meidanis, M. E. M. T. Walter and Z. Dias, Reversal distance of signed circu-
lar chromosomes, Technical Report IC-00-23 (December 2000), Instituto de Com-
putação, Universidade Estadual de Campinas,
http://www.ic.unicamp.br/ic-tr-ftp/2000/Abstracts.html

13. S. Micali and V. Vazirani, An O(
√|V ||E|) algorithm for finding maximum match-

ings in general gaphs, Proceedings of the 21st Symposium on Foundations of Com-
puter Science, 17–27, 1980, (cited in [10]).

14. G. Watterson, W. Ewens, T. Hall and A. Morgan, The chromosome inversion
problem, J. Theor. Biol. 99 (1982), 1–7.

http://www.ic.unicamp.br/ic-tr-ftp/2000/Abstracts.html

	Introduction
	Sorting Linear Permutations by Reversal
	Notational Preliminaries
	Mathematical Preliminaries

	Reducing Circular SBR to Linear SBR
	Circular Sort by Reversals Is NP-Hard
	Conclusion

