
Encapsulating Reaction-Diffusion Computers

Andrew Adamatzky

Faculty of Computing, Engineering and Mathematical Sciences,
University of the West of England, Bristol BS16 1QY, United Kingdom

andrew.adamatzky@uwe.ac.uk

Abstract. Reaction-diffusion computers employ propagation of chem-
ical and excitation waves to transmit information; they use collisions
between traveling wave-fronts to perform computation. We increase ap-
plicability domain of the reaction-diffusion computers by encapsulating
them in a membrane, in a form of vegetative state, plasmodium, of true
slime mold. In such form reaction-diffusion computers can also realize
Kolmogorov-Uspensky machine.

1 From Reaction-Diffusion Computers to Plasmodium

In reaction-diffusion computers [2,4] data are presented by initial concentra-
tion profile or configuration of disturbance (e.g. sites of stimulation of excitable
media), information is transfered by spreading wave patterns, computation is
implemented in collisions of wave-fronts, and final concentration profile repre-
sents results of the computation. Reaction-diffusion computers are theoretically
and experimentally proved to be capable for quite sophisticated computational
tasks, including image processing, computational geometry, logics and arith-
metics, and robot control, see extensive overview of theoretical and experimental
results in [4].

There is a particular feature of reaction-diffusion chemical computers. In their
classical, and so far commonly accepted form, the media are ‘fully conductive’
for chemical or excitation waves. Every point of a two- or three-dimensional
medium can be involved in propagation of chemical waves and reactions between
diffusing chemical species. Once reaction is initiated in a point, it spreads all over
the computing space by target and spiral waves. Such, analogues to one-to-all
broadcasting in massive-parallel systems, phenomena of wave-propagation are
employed to solve problems ranging from Voronoi diagram construction to robot
navigation [2,4]. We could not however quantize information (e.g. assign logical
values to certain waves) or implement one-to-one transmission in fully reactive
media.

Till quite recently the only way to direct and quantize information in a chem-
ical medium was to geometrically constrain the medium. Thus, only reactive or
excitable channels are made, along which wave travel. The waves collide with
other waves at the junctions between the channels, and implement certain logical
gates in result of the collision, see overview in Chapter 1 of e.g. [4].

J. Durand-Lose and M. Margenstern (Eds.): MCU 2007, LNCS 4664, pp. 1–11, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 A. Adamatzky

(a) (b)

(c) (d)

Fig. 1. Examples of localized propagations in real-world systems: (a) localized waves of
combustion, (b) fragment of wave front of lichen colony, (b) propagating plasmodium,
(c) wave-fragment in sub-excitable Belousov-Zhabotinsky system

Using sub-excitable media is yet another way of quantizing information. In
sub-excitable media a local disturbance leads to generation of mobile localization,
wave-fragment which travels for a reasonably long distance without changing its
shape [36]. Presence of a wave-fragment in a given domain of space signifies log-
ical truth, absence of the fragment logical falsity. A full power of collision-based
computing can be applied then [3]. Such mobile localization are typical nat-
ural phenomena occurring in situations when system lacks resources to realize
in full its development potential (Fig.1), e.g. experience deficiency of combus-
tive material (Fig.1a), illumination (Fig.1b), nutrients in substate (Fig.1c), and
excitability (Fig.1d).

Also there is a range of problems, where chemical processor could not cope
without external support. Shortest path is one of such problems. One can use
excitable medium to outline a set of all collision-free paths in a space with ob-
stacles [4], but to select and visualize the shortest path amongst all possible
one needs to use external cellular-automaton processor, or conceptually supply

Encapsulating Reaction-Diffusion Computers 3

excitable chemical medium with some kind of field of local pointers [4]. Ex-
perimental setups, e.g. [39] which claim to directly compute a shortest path
in chemical media are indeed employing external computing resources to store
time-lapsed snapshots of propagating wave-fronts and to calculate intersection of
wave-fronts. Such usage of external resources dramatically reduce fundamental
values of the computing with propagating patterns. This is caused mainly by
uniformity of spreading wave-fronts, their inability to sharply select directions
toward locations of data points, and also because excitable systems usually do
not form stationary structures or standing waves.

Ideally, we would prefer to combine advantages of ‘free space’1 computing in
fully reactive media with precision and simplicity of logical representation of
geometrically constrained media. This can be done by encapsulating reaction-
diffusion system in an elastic membrane.

There is a real-world system which strongly resembles encapsulated reaction-
diffusion system. P. Polycephalum is a single cell with many nucleus which be-
have like amoeba, or even young neuroblast and this is why it play so perfectly
role of computing substrate for our algorithm of growing spanning tree. In its
main vegetative phase, called plasmodium, slime mold actively searches for nutri-
ents. When next source of food is located plasmodium forms a vein of protoplasm
between previous and current sources of food. Growing and feeding plasmodium
exhibits characteristic rythmic contractions with articulated sources. The con-
traction waves are associated with waves of potential change, and the waves
observed in plasmodium [48] are similar that found in excitable chemical sys-
tems, like Belousov-Zhabotinsky medium. The following wave phenomena were
discovered experimentally [48]: undisturbed propagation of contraction wave in-
side the cell body, collision and annihilation of contraction waves, splitting of
the waves by inhomogeneity, and formation of spiral waves of contraction. These
are closely matching dynamics of pattern propagation in in excitable reaction-
diffusion chemical systems.

The plasmodium has already proved to be a unique fruitful object to de-
sign various schemes of non-classical computation [10,11,45], including shortest
path [31,31,33] and even design of controllers for robots [46].

In the paper we highlight novel aspects of our studies in computing with
propagating localizations. Firstly, we demonstrate the spanning tree construc-
tion – the problem unsolvable in ‘classical’ reaction-diffusion computer without
help of external hardware devices – can be solved in plasmodium of Physarum
polycephalum. Secondly, we outline a refreshing approach to universality of bio-
logical substrates by constructing Physarum machine, which is an experimental
implementation of Kolmogorov-Uspensky machine.

2 Spanning Trees

In 1991 we proposed an algorithm of computing spanning tree of a finite planar set
based on formation of a neurite tree in a development of a single neuron [1]. Our
1 Thanks to Jonathan Mills for the term.

4 A. Adamatzky

(a) (b)

(c) (d)
Fig. 2. Approximating spanning tree by plasmodium: (a) data set of planar points,
(b) tree represented by protoplasmic strands/veins of the plasmodium, (c) extracted
spanning tree, (d) spanning tree of 500 points computed by simulated plasmodium

idea was to place a neuroblast somewhere on the plane amongst drops of chemical
attractants, positions of which represent points of a given planar set. Then neurite
tree starts to growand spans the given planar set of chemo-attractantswith acyclic
graph of axonal and dendritic branches.Due to lateral circumstances experimental
implementation of the algorithm was not possible at the time of its theoretical
investigation [1]. Recent experimental developments in foraging behaviour of P.
Polycephalum [31,31,33,46,10,11,45] convinced us that our algorithm for growing
spanning tree can be implemented by living plasmodium.

The scoping experiments were designed as follows. We either covered con-
tainer’s bottom with a piece of wet filter paper and placed a piece of living
plasmodium on it, or just planted plasmodium on a bottom of bare container
and fixed wet paper on the container’s cover to keep humidity high. Oat flakes
placed at the positions of given planar points to be spanned by a tree. The
containers were stored in the dark except during periods of observation.

Encapsulating Reaction-Diffusion Computers 5

Once placed in the container and recovered the plasmodium starts to ex-
plore the surrounding space. Numerous pseudopodia emerge, frequently branch
and proceed. The plasmodium growth from its initial position by protoplasmic
pseudopodia detecting, by chemotaxis, relative locations of closest sources of
nutrients. When another source of nutrients, element of the given planar set, is
reached the relevant part of the plasmodium reshapes and shrinks to a protoplas-
mic strand, or a tube. This tube connects initial and newly acquired sites. This
protoplasmic strand represents an edge of the computed spanning tree. Planar
points distributed in a Petri dish are usually spanned by a protoplasmic vein
tree in 1-3 days, depending on diameter of the planar set, substrate and other
conditions.

Let us have a closer look at the set of 16 points (Fig. 2a) to be spanned.
We represented the set by a positions of oat flakes (source of nutrients), placed
flakes on the moistened filter paper, placed a piece of plasmodium at one of the
flakes. In two days plasmodium spanned set of flakes. Edges of the tree are visi-
ble as dark protoplasmic strands, connecting dark irregular shapes of oat flakes
(Fig. 2b). Manually enhances picture of the spanning tree is shown in Fig. 2c.
Tree computed by plasmodium in our experiments satisfactory match trees com-
puted by clasical techniques, e.g. by Jaromczyk-Supowit method [24,40], see [8].
Even when represented in simulation, the algorithm works pretty well on large
data sets (Fig. 2d).

3 Phyrasum Machines

We demonstrate that plasmodium of Physarum polycephalum is an ideal biolog-
ical sibstrate for implementation of Kolmogorov-Uspensky machines [7].

Kolmogorov-Uspensky machine (KUM) [28,29] is defined on a colored/labeled
undirected graph with bounded degrees of nodes and bounded number of col-
ors/labels. KUM operates, modify their storage, as follows. Select an active
node in the storage graph. Specify local active zone, the node’s neighborhood.
Modify the active zone: add new node with the pair of edges, connecting the
new node with the active node; delete a node with the pair of incident edges;
add/delete edge between the nodes. A program for KUM specifies how to re-
place neighborhood of active node with new neighborhood, depending on labels
of edges connected to the active node and labels of the nodes in proximity of
the active node [14]. All previous and modern models of real-world computa-
tion are heirs of KUM: Knuth’s linking automata [27], Tarjan’s Reference Ma-
chines [41], Schönhage’s storage modification machines [34,35]. When restrictions
on bounded in- and out-degrees of the machine’s storage graph are lifted, the
machine becomes Random Access Machine.

Functions computable on Turing machines (TM) are computed in on KUM,
and any sequential device are simulated by KUM [23]. KUM can simulate TM
in real time, but not vice verse [22]. KUM’s topology is much more flexible than
that of TM, and KUM is stronger then any ‘tree-machine’ [38].

6 A. Adamatzky

In 1988 Gurevich [23] suggested that an edge of KUM is not only informa-
tional but also physical entity and reflects physical proximity of the nodes (thus
e.g. even in three-dimensional space number of neighbors of each node is polyno-
mially bounded). What would be the best natural implementation of KUM? A
potential candidate should be capable for growing, unfolding, graph-like storage
structure, dynamically manipulating nodes and edges, and should have a wide
range of functioning parameters. Vegetative stage, plasmodium, of a true slime
mold Physarum polycephalum satisfies all these requirements.

The scoping experiments were designed as follows. We either covered con-
tainer’s bottom with a piece of wet filter paper and placed a piece of living
plasmodium2 on it, or just planted plasmodium on a bottom of a bare con-
tainer and fixed wet paper on the container’s cover to keep humidity high. Oat
flakes were distributed in the container to supply nutrients and represent part,
or data-nodes, of Physarum machine. The containers were stored in the dark
except during periods of observation. To color oat flakes, where required, we
used SuperCook Food Colorings3: blue (colors E133, E122), yellow (E102, E110,
E124), red (E110, E122), and green (E102, E142). Flakes were saturated with
the colorings, then dried.

Nodes: Physarum machine has two types of nodes: stationary nodes, presented
by sources of nutrients (oat flakes), and dynamic nodes, sites where two or more
protoplasmic veins originate (Fig. 3). At the beginning of computation, station-
ary nodes are distributed in the computational space, and plasmodium is placed
at one point of the space. Starting in the initial conditions the plasmodium
exhibits foraging behavior, and occupies stationary nodes (Fig. 3).

Edges: An edge of Physarum machine is a strand, or vein, of protoplasm con-
necting stationary and/or dynamic nodes. KUM machine is an undirected graph,
i.e. if nodes x and y are connected then they are connected by two edges (xy)
and (yx). In Physarum machine this is implemented by a single edge but with
periodically reversing flow of protoplasm [25,30].

Data, results and halting: Program and data are represented by a spatial
configuration of stationary nodes. Result of the computation over stationary
data-node is presented by configuration of dynamics nodes and edges. The initial
state of a Physarum machines, includes part of input string (the part which
represents position of plasmodium relatively to stationary nodes), empty output
string, current instruction in the program, and storage structure consists of one
isolated node. That is the whole graph structure developed by plasmodium is the
result of its computation, “if S is a terminal state, then the connected component
of the initial vertex is considered to be the “solution”” [29]. Physarum machine
halts when all data-nodes are utilized.

Active zone: In KUM storage graph must have some active node. This is an
inbuilt feature of Physarum machine. When plasmodium resides on a substrate

2 Thanks to Prof. Soichiro Tsuda for providing me with P. polycephalum culture.
3 www.supercook.co.uk

www.supercook.co.uk

Encapsulating Reaction-Diffusion Computers 7

(a) (b)

(c) (d)

Fig. 3. An example of computational process in Physarum machine. Photographs (a)–
(d) are taken with time lapse circa 24 hours.

with poor or no nutrients, then just one or few nodes generate actively spreading
protoplasmic waves. In these cases the protoplasm spreads as mobile localizations
similarly to wave-fragments in sub-excitable Belousov-Zhabotinsky medium [36].
An example of single active node, which is just started to develop its active
zone, is shown in (Fig. 4). At every step of computation in KUM there is an
active node and some active zone, usually nodes neighboring to active node.
The active zone has limited complexity, in a sense that all elements of the zone
are connected by some chain of edges to the initial node. In general, size of
active zone may vary depending on computational task. In Physarum machine
an active node is a trigger of contraction/excitation waves, which spread all over
the plasmodium tree and cause pseudopodia to propagate, shape to change and
even protoplasmic veins to annihilate. Active zone is comprised of stationary or
dynamic nodes connected to active node with veins of protoplasm.

Bounded connectivity: In contrast to Schönhage machine KUM has bounded
in- and out-degree of the storage graph. Graphs developed by Physarum are
predominantly planar graphs. Moreover, if we put a piece of vein of protoplasm
on top of another vein of protoplasm, the veins fuse [37]. Usually, not more

8 A. Adamatzky

Fig. 4. Basic operations: (a) single active node is generating active zone at the begin-
ning of computation, (b) addressing of green-coloured data-node, (c) and (d) imple-
mentation of add node, add edge, remove edge operations

then three protoplasmic strands join each other in one given point of space. It
is reported that average degree of minimum spanning tree is around 1.99, and
of relative neighborhood graph around 2.6 [17]. Graphs produced by standard
procedures for generating combinatorial random planar graphs show a limited
growth of average degree with number of nodes or edges, the degree stays around
4 when number of edges increase from 100 to 4000 [9]. We could assume that
average degree of storage graph in Physarum machines is a bit higher then degree
of spanning trees but less then degree of random planar graphs.

Addressing and labeling: Every node of KUM must be uniquely addressable
and nodes and edges labeled [29]. There is no direct implementation of such ad-
dressing in Physarum machine. With stationary nodes this can be implemented
either by coloring the nodes, or by tuning humidity of the oat flakes. Coloring
the stationary nodes could be another solution. An example of experimental
implementation of addressing is shown in Fig. 4b.

Basic operations: A possible set of instructions for Physarum machine could
be as follows. Common instruction would include input, output, go, halt,
and internal instructions: new, set, if [19]. At present state of experimental
implementation we assume that input is done via distribution of sources of

Encapsulating Reaction-Diffusion Computers 9

nutrients, while output is recorded optically. Instruction set causes pointers
redirection, and can be realized by placing fresh source of nutrients in the ex-
perimental container, preferably on top of one of the old sources of nutrients.
When new node is created all pointers from the old node point to the new node.
Let us look at the experimental implementation of core instructions.
add node: To add a stationary node b to node a’s neighborhood, plasmodium
must propagate from a to b, and form a protoplasmic vein representing edge
(ab). To form a dynamic node, propagating pseudopodia must branch into two
or more pseudopodia, and the site of branching will represent newly formed
node.
remove node: To remove stationary node from Physarum machine, plasmod-
ium leaves the node. Annihilating protoplasmic strands forming a dynamic node
at their intersection, remove the dynamic node.
add edge: To add an edge to a neighborhood, active node generates propagating
processes which establish a protoplasm vein with one or more neighboring nodes.
remove edge: When protoplasmic vein annihilates, e.g. depending on global
state or when source of nutrients exhausted, edge represented by the vein is re-
moved from Physarum machine (Fig. 4cd). The following sequence of operations
is demonstrated in Fig. 4cd: node 3 is added to the structure by removing edge
(12) and forming two new edges (13) and (23).

References

1. Adamatzky, A.: Neural algorithm for constructing minimal spanning tree. Neural
Network World 6, 335–339 (1991)

2. Adamatzky, A.: Computing in non-linear media and automata collectives. IoP,
Bristol (2001)

3. Adamatzky, A. (ed.): Collision-Based Computing. Springer, Heidelberg (2003)
4. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers.

Elsevier, Amsterdam (2005)
5. Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Comput-

ers. Luniver Press (2006)
6. Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute

spanning tree (submitted)
7. Adamatzky, A.: Physarum machine: implementation of Kolmogorov-Uspensky ma-

chine in biological substrate. Parallel Processing Letters (in press, 2007)
8. Adamatzky, A.: Growing spanning trees in plasmodium machines, Kybernetes (in

press, 2007)
9. Alber, J., Dornm, F., Niedermeier, R.: Experiments on Optimally Solving NP-

complete Problems on Planar Graphs. Manuscript (2001),
http://www.ii.uib.no/~frederic/ADN01.ps

10. Aono, M., Gunji, Y.-P.: Resolution of infinite-loop in hyperincursive and nonlocal
cellular automata: Introduction to slime mold computing. In: Computing Antici-
aptory Systems. AIP Conference Proceedings, vol. 718, pp. 177–187 (2001)

11. Aono, M., Gunji, Y.-P.: Material implementation of hyper-incursive field on slime
mold computer. In: Computing Anticiaptory Systems. AIP Conference Proceed-
ings, vol. 718, pp. 188–203 (2004)

http://www.ii.uib.no/~frederic/ADN01.ps

10 A. Adamatzky

12. Bardzin’s, J.M.: On universality problems in theory of growing automata. Doklady
Akademii Nauk SSSR 157, 542–545 (1964)

13. Barzdin’, J.M., Kalnins, J.: A universal automaton with variable structure. Auto-
matic Control and Computing Sciences 8, 6–12 (1974)

14. Blass, A., Gurevich, Y.: Algorithms: a quest for absolute definitions. Bull. Europ.
Assoc.TCS 81, 195–225 (2003)

15. van Emde Boas, P.: Space measures for storage modification machines. Information
Process. Lett. 30, 103–110 (1989)

16. Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S.: UC 2006.
LNCS, vol. 4135. Springer, Heidelberg (2006)

17. Cartigny, J., Ingelrest, F., Simplot-Ryl, D., Stojmenovic, I.: Localized LMST and
RNG based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc
Networks 3, 1–16 (2005)

18. Cloteaux, B., Rajan, D.: Some separation results between classes of pointer al-
gorithms. In: DCFS ’06: Proceedings of the Eighth Workshop on Descriptional
Complexity of Formal Systems, pp. 232–240 (2006)

19. Dexter, S., Doyle, P., Gurevich, Y.: Gurevich abstract state machines and
Schönhage storage modification machines. J. Universal Computer Science 3, 279–
303 (1997)

20. Dijkstra, E.A.: A note on two problems in connection with graphs. Numer. Math. 1,
269–271 (1959)

21. Gacs, P., Leving, L.A.: Casual nets or what is a deterministic computation, STAN-
CS-80-768 (1980)

22. Grigoriev, D.: Kolmogorov algorithms are stronger than Turing machines. Notes
of Scientific Seminars of LOMI (in Russian) 60, 29–37 (1976) (English translation
in J. Soviet Math. 14(5) 1445–1450 (1980))

23. Gurevich, Y.: On Kolmogorov machines and related issues. Bull. EATCS 35, 71–82
(1988)

24. Jaromczyk, J.W., Kowaluk, M.: A note on relative neighborhood graphs. In: Proc.
3rd Ann. Symp. Computational Geometry, pp. 233–241 (1987)

25. Kamiya, N.: The protoplasmic flow in the myxomycete plasmodium as revealed by
a volumetric analysis. Protoplasma 39, 3 (1950)

26. Kirkpatrick, D.G., Radke, J.D.: A framework for computational morphology. In:
Toussaint, G.T. (ed.) Computational Geometry, pp. 217–248. North-Holland, Am-
sterdam (1985)

27. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1.
Addison-Wesley, Reading, Mass (1968)

28. Kolmogorov, A.N.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176
(1953)

29. Kolmogorov, A.N., Uspensky, V.A.: On the definition of an algorithm. Uspekhi
Mat. Nauk (in Russian), 13, 3–28 (1958) (English translation: ASM Translations
21(2), 217–245 (1963))

30. Nakagakia, T., Yamada, H., Ueda, T.: Interaction between cell shape and con-
traction pattern in the Physarum plasmodium. Biophysical Chemistry 84, 195–204
(2000)

31. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Research in Mi-
crobiology 152, 767–770 (2001)

32. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Na-
ture 407, 470 (2000)

33. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an
amoeboid organism. Biophysical Chemistry 92, 47–52 (2001)

Encapsulating Reaction-Diffusion Computers 11

34. Schönhage, A.: Real-time simulation of multi-dimensional Turing machines by stor-
age modification machines. Project MAC Technical Memorandum, vol. 37. MIT,
Cambridge (1973)

35. Schönhage, A.: Storage modification machines. SIAM J. Comp. 9, 490–508 (1980)
36. Sedina-Nadal, I., Mihaliuk, E., Wang, J., Perez-Munuzuri, V., Showalter, K.: Wave

propagation in subexcitable media with periodically modulated excitability. Phys.
Rev. Lett. 86, 1646–1649 (2001)

37. Shirakawa, T.: Private communication (February 2007)
38. Shvachko, K.V.: Different modifications of pointer machines and their computa-

tional power. In: Tarlecki, A. (ed.) Mathematical Foundations of Computer Science
1991. LNCS, vol. 520, pp. 426–435. Springer, Heidelberg (1991)

39. Steinbock, O., Tóth, A., Showalter, K.: Navigating complex labyrinths: optimal
paths from chemical waves. Science 267, 868–871 (1995)

40. Supowit, K.J.: The relative neighbourhood graph, with application to minimum
spanning tree. J. ACM 30, 428–448 (1988)

41. Tarjan, R.E.: Reference machines require non-linear time to maintain disjoint sets,
STAN-CS-77-603 (March 1977)

42. Tero, A., Kobayashi, R., Nakagaki, T.: A coupled-oscillator model with a conserva-
tion law for the rhythmic amoeboid movements of plasmodial slime molds. Physica
D 205, 125–135 (2005)

43. Teuscher, C., Adamatzky, A. (eds.): Unconventional Computing 2005: From Cel-
lular Automata to Wetware. Luniver Press (2005)

44. Tirosh, R., Oplatka, A., Chet, I.: Motility in a “cell sap” of the slime mold
Physarum Polycephalum. FEBS Letters 34, 40–42 (1973)

45. Tsuda, S., Aono, M., Gunji, Y.-P.: Robust and emergent Physarum-computing.
BioSystems 73, 45–55 (2004)

46. Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot Control: From Silicon Circuitry to
Cells. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS,
vol. 3853, pp. 20–32. Springer, Heidelberg (2006)

47. Uspensky, V.A.: Kolmogorov and mathematical logic. The Journal of Symbolic
Logic 57, 385–412 (1992)

48. Yamada, H., Nakagaki, T., Baker, R.E., Maini, P.K.: Dispersion relation in oscil-
latory reaction-diffusion systems with self-consistent flow in true slime mold. J.
Math. Biol. (2007)

	Encapsulating Reaction-Diffusion Computers
	From Reaction-Diffusion Computers to Plasmodium
	Spanning Trees
	Phyrasum Machines

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

