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Abstract. A natural example of a function algebra is R(T), the class
of provably total computable functions (p.t.c.f.) of a theory T in the
language of first order Arithmetic. In this paper a simple characterization
of that kind of function algebras is obtained. This provides a useful tool
for studying the class of primitive recursive functions in R(T). We prove
that this is the class of p.t.c.f. of the theory axiomatized by the induction
scheme restricted to (parameter free) A;(T)—formulas (i.e. X1—formulas
which are equivalent in T to II;—formulas).

Moreover, if T is a sound theory and proves that exponentiation is a
total function, we characterize the class of primitive recursive functions
in R(T) as a function algebra described in terms of bounded recursion
(and composition). Extensions of this result are related to open problems
on complexity classes. We also discuss an application to the problem on
the equivalence between (parameter free) Xj—collection and (uniform)
Aj—induction schemes in Arithmetic.

The proofs lean upon axiomatization and conservativeness properties
of the scheme of A;(T)-induction and its parameter free version.

1 Introduction

A function algebra is a family of functions that can be described as the smallest
class of functions that contains some initial functions and is closed under certain
operators. Classical examples of function algebras include the class of primitive
recursive functions, PR, classes £", (n > 1), in the Grzegorczyk hierarchy and
the class of Kalmér elementary functions, £ (see [6L13]). Another important ex-
ample is given by R(T), the class of provably total computable functions (p.t.c.f.)
of a theory T in the language of first order Arithmetic. The class R(T) can be
used to obtain independence results for T and to separate it from other theories.
On the other hand, if a function algebra, C, is the class of p.t.c.f. of a theory, T,
then proof-theoretic and model-theoretic properties of T can be used to estab-
lish results on C. This increases the methods available in the study of function
algebras by adding to them techniques from Proof Theory and Model Theory.
As surveyed in [6], function algebras provide machine-independent characteri-
zations of many complexity classes and offer an alternative view of important
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open problems in Complexity Theory. In this way, classes of p.t.c.f. constitute a
link among Complexity Theory, Proof Theory and Model Theory that has been
exploited in the work on Bounded Arithmetic (see [12]).

In this paper we present a new example of the fruitful interactions among
fragments of Arithmetic, function algebras and computational complexity. Given
a function algebra, C, we introduce the algebra ¢ defined as the smallest class
containing the basic functions (zero, successor and projections) and closed under
composition and C-bounded recursion. We study the relationship between C and
EC when C is the class of p.t.c.f. of a theory T. If C = R(T) then

— (Theorem[) CNPR C &C. Moreover, if C is closed under bounded minimiza-
tion, £C is the closure of CNPR under composition and bounded recursion.

— (Theorem [)) Assume that C is closed under bounded minimization. Then
CNPR = EC if and only if there exists a theory T' such that £¢ = R(T").

For the proof of these results the concept of a Ag—generated function algebra
is introduced. A function algebra, C, is Ag—generated if (it contains Grzegorcyk’s
class M? and) each function in C can be obtained as a composition of two
functions in C with Ag-definable graph. We prove (see Theorem[I)) that a function
algebra is Ag—generated if and only if it is the class R(T) for some theory T
(extending IAy).

If C € PR is closed under bounded minimization, then Theorem [ states
that C = £C if and only if £ is Ag-generated. This fact has interesting appli-
cations to complexity classes as FPH (computable functions in the Polynomial
Time Hierarchy, that is, [J;2, 0 in S. Buss’ terminology, see [10]) and FLTH
(computable functions in the Linear Time Hierarchy, see [6]). Both classes are
contained in PR and are Ag—generated and closed under bounded minimization:

— FLTH = M? = R(IA¢) (see [6L16]), and
— FpH = R(IAo + 1) (see [10]), where IAg + (2 is the theory introduced by
A. Wilkie and J. Paris in [I7].

But E7FTH = £2 = FrinspacE (R.W. Ritchie, see [6]) and £7PH = Fpspace
(D.B. Thompson, see [6]). Therefore, by Theorem [ it follows that:

1. If FPSPACE is Ag—generated then FPSPACE = FPH.
2. If FLINSPACE is Ag—generated then FLINSPACE = FLTH. Or, equivalently,
&2 = M? if and only if £2 is Ay—generated.

These facts suggest that a deeper knowledge of structural properties of Ag—
generated function algebras (specially, construction of non Ag—generated func-
tion algebras) could be relevant in the study of complexity classes. They also
raise a natural question: if C = R(T) and £° is Ag—generated, is there a natural
theory T' such that R(T') = £? We obtain an answer to this question from
the study of induction schemes for A;—formulas. Let IA;(T)~ be the theory
axiomatized by induction scheme restricted to parameter free A, (T)—formulas.

— (Theorem ) R(IA,(T)") =CNPR.
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So, from Theorem Bl we get that, if C is closed under bounded minimization
and £¢ is Ag-generated, then £¢ = R(I1A,(T)™).

Next step is to find conditions ensuring £¢ is Ag-—generated. Classes £ are
a generalization of Grzegorcyzk’s classes £™ and it is well-known that if expo-
nential function is in £", then bounded recursion can be reduced to bounded
minimization (see [6,[I3]). But bounded minimization has a straightforward for-
mulation in the language of first order Arithmetic and as a consequence (for
n > 3) £" is Ap—generated. The key ingredients in the proof of this fact are
exponential function (which allows for coding of sequences of arbitrary length)
and X;—collection principle (as a suitable formulation of the combinatorial prin-
ciples involved). These arguments lead to a natural condition for £° to be a
Ap-generated function algebra and relate the study of £ to the problem on the
equivalence between the schemes of X;—collection and A;—induction in Arith-
metic (see [7]). In [3,5], L. Beklemishev obtains Ilo—axiomatized theories that
are not closed under X;—collection rule or A;—induction rule. He proposes classes
of p.t.c.f. as a tool to separate the fragments IA; and BX;. Recently (see [I5])
T. Slaman has proved that IA; + exp is equivalent to BX; + exp (where exp is
a Il,—sentence expressing that exponentiation defines a total function with Ay
definable graph (see [10])). So, Beklemishev’s approach must fail. Nevertheless,
as we shall show, classes of p.t.c.f. could be used to obtain positive results on
fragments of Arithmetic. Motivated by Beklemishev’s work in [3L[4L[5], we study
the classes of p.t.c.f. of the theories IA;(T) and LA;(T) introduced in [9], and
their relationship with the uniform counterpart of Slaman’s result.

Theorem [B] holds for C closed under bounded minimization. We prove that if
Theorem [ also holds under the (apparently weaker) following hypothesis:

(IC) C=7R(T) and T extends IA;(T),

then a (weak) uniform counterpart of Slaman’s result can be obtained, namely,
theories BX| +exp and UILA; + exp are equivalent, modulo I1;-true sentences
(see Theorem [7)). Last equivalence can be also obtained from Slaman’s theorem
and X3—conservativeness between I4; +exp and UIA; +exp (see corollary 6 in
[E]). However, we present an independent approach stressing the role of function
algebras via classes of p.t.c.f.

Our main tools for the proofs are axiomatization and conservativeness results
for IA,,4+1(T) and Herbrand analyses, essentially along the lines presented by
W. Sieg in [14]; however, we work in a model-theoretic framework, following J.
Avigad’s work in [I].

2 Fragments of Arithmetic and Function Algebras

Through this paper we deal with classes of p.t.c.f. of a number of theories. We are
mainly interested in characterizations of these classes as function algebras. So,
first of all, we introduce the theories and classes of functions we are concerned
with. These theories are axiomatized by axiom schemes expressing classical prin-
ciples in Arithmetic as induction, minimization and collection.
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Let £ = {0,1, <, +, -} be the language of first order Arithmetic. The induction
and minimization axioms for a formula ¢(x, ¥) with respect to x are, respectively,

I, . (0) = ¢(0,7) AV [p(x, V) — p(x + 1,7)] — Vo p(z, ),
L, . (V) = 3z ¢(z,0) — 3z (o, V) AVz < (2, 0)).

The collection axiom for a formula ¢(z,y,¥) with respect to x,y is
By o y(2,0) =Ve < z3ye(z,y,¥) — FuVe < 23y <up(z,y, D).

As usual, we write I, instead of I, , and similarly we use L, and B,,.

All theories considered in this paper are extensions of P~ a finite set of IT;
formulas whose models are the nonnegative part of a discretely ordered commu-
tative ring (see [1I]). Other theories are defined by restricting the schemes just
introduced to formulas in the classes X, or IT,, in the Arithmetical Hierarchy. If
I'is a class of formulas of £, then II' = P~ +{I, : ¢ € I'}. The theory LI is sim-
ilarly defined using L, instead of I,. For collection, BI' = IAg+{B, : ¢ € I'},
where Aj denotes the class of bounded formulas of £ (see [10L11]).

Induction schemes for A, ;—formulas will be also considered, 1A, is the
theory given by:

P~ + {Vz (¢(z,0) < ¢(x,0)) = L,(0) : p(x,0) € Xpyr, ¥(z,0) € Il 41}

If parameters, ¥, are not allowed, then we obtain the theory IA, ;. The
uniform version of induction scheme, UIA, 11, was introduced by R. Kaye. It
is defined by considering the scheme V&'Vz (¢(x,0) < ¢ (z, V) — VU1, (V). This
theory is also studied by Beklemishev in [5], where it is denoted by sIA;.

Definition. Let T be a theory in the language £. We say that f: w* — wis a
provably total computable function of T if there exists a formula ¢(Z,y) € X
such that

1. TEVZ3lye(Z,y).
2. Forall ay,...,ax,bew, f(@)=b<= N E ¢(a,b).

Where A denotes the standard model of Arithmetic whose universe is the
set of natural numbers, w. In such a case, we say that ¢(Z,y) defines f in T.

This definition is sensitive to changes in the language of the theory. If T is a
theory in a language £’ extending £, then R(T) will denote the class obtained
by considering X'; (£")—formulas instead of X;—formulas.

The class R(T) has turned out to be a natural object, its closure properties
(under certain operators) reflecting axiom schemes (or inference rules) provable
in T. Thus, closure under primitive recursion corresponds to Xj—induction and
bounded minimization to Xj—collection (see [2]). In particular, R(IX;) = PR
and R(IAg + exp) = €.

It is easy to check that if @ C Thy, (N) and T is a sound theory (that
is, N' = T) then R(T) = R(T + @) (see [14]). The class R(T) is determined
by Thy, (T) (the set of IIs—sentences provable in T). The converse also holds
modulo I1;—-true sentences.
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Proposition 1. Let T, and Ty be Ils—axiomatized sound extensions of 14y.
The following conditions are equivalent:

1. R(Ty) = R(Ts).
2. T1 + r:[‘hn1 (./\/) <— Ty + ’]:‘hn1 (N)

Proof. We only prove (1) = (2). By symmetry, it is enough to show that
T1+Thy, (N) = Ts. Let (z,y) be a Ag—formula such that Ty - Vz 3y 0(z, y).
Let 6'(x,y) be the formula 0(x,y) AVz < y—60(z,z). Since Ty = IAg, Ts
VzIly @' (x,y). Let f be the computable function defined by ¢ in A. Then,
f € R(T2); so, by (1), f € R(T1). Hence, there is ¢(x,y) € X1 defining f in
T;. Thus, N | ¢(z,y) < 0 (x,y). In particular, N' = Vo, y (p(x,y) — 0'(z,y));
so, since this last formula is a IT; sentence, Ty + Thy, (N) FVx Iy b(z,y). O

Functions with a Ag—definable graph will play a prominent role throughout
this work. Let us introduce the following notation.

We denote by A the class of sets A definable in the standard model. The
graph of a function f is denoted by Gr(f) = {(@,b) € w**1: f(@) =b}.IfCisa
class of functions, then C, denotes the class of subsets of w* whose characteristic
functions are in C. Finally, given f, g : w* — w, we write f < g to mean that for
each @ € w*, f(@) < g(a).

One of the aims of this work is to obtain descriptions of R(T) as a function
algebra generated by means of some operators from a small set of basic functions.
The considered classes of basic functions will always contain the set

B={S, 0}U{ll’: 1<i<n}

where S, O : w — w are given by S(a) =a+1 and O(a) =0, and I} : V" — w,
by II"*(a1,...,a,) = a;. As operators, beside composition, we consider:

Bounded minimization, p<: If g : w™*! — w, then f = u<(g) is the function
f:w™tl — w defined by

~ Jmin({z: g(a,z)=0}), if 3z <b(g(d@,z) = 0);
oy, am,b) = { 0, otherwise.

Bounded recursion, BR: A function f : w™*! — w is defined from g : W™ — w,
h:w't? — wand C: w"! — w by bounded recursion, if f < C and

f(Z,0) =g(@); f(@y+1)=h(Z,y, [(Z,y)).

In this case we write, f = BR¢(g,h) and we shall say that f is defined by
C-bounded recursion from g and h.

Let F be a class containing B. In this paper, C(F) will denote the closure of F
under composition and E(F) the closure of F under composition and bounded
recursion. We also consider the following slight (but crucial) modification of
closure under bounded recursion.

Definition. £7 is the smallest class of functions containing B and closed un-
der composition and F-bounded recursion; that is, closed under C-bounded
recursion for every C € F.
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Let us observe that &7 C PR and if F C &7, then C(F) C &7 C E(F).

Grzegorezyk’s classes, £, can be described in the form £7. For instance, let
Po, P1 and P2 be, respectively, the classes of functions C(B), C(B U {+}) and
C(BU {+, x}), then, for j =0, 1,2, it holds that £¥7 = &7 (see [13]).

The basic function algebra in this paper will be Grzegorczyk’s class M?2: the
closure of BU {+, x} under composition and p< (see [6,I3]). As we shall see
(Proposition B]), M? is the class R(I4q) and, therefore, all function algebras
considered in this paper contain it. This motivates the following definition.

Definition. An F-algebra is a family, C, of computable functions containing B
and closed under composition. We shall say that C is rudimentary if M? C C.

A pairing function is available in M?. Let J : w? — w be Cantor’s function:

J(a,b) = (a+b)(a2+b+1) ta

Its lateral inverses K, L are given by K(a) = (112)<o(Fy < a(J(z,y) = a))
and L(a) = (pz)<qa(3z < a(J(z,2) = a)). Then J,K,L € M?. We shall write
(x,y) = J(x,y) and (2)o = K(2), (2)1 = L(2).

Basic properties of M? are summed up in next proposition (see [6] or [13]).

Proposition 2. 1. A = M2

2. For each f : w* — w, the following conditions are equivalent:
(a) f e M2
(b) Gr(f) € AY and there exists a term t of L such that f < t.

As a consequence a characterization of R(IAp) can be obtained. A proof-
theoretic proof of this result was obtained by G. Takeuti (see [16]).

Proposition 3. M? = R(IA4).

Hence, for every extension, T, of 1Ay the class R(T) is a rudimentary F—
algebra. Now we introduce a necessary and sufficient condition under which a
rudimentary F—algebra is the class of p.t.c.f. of some theory. The following results
seem to be folklore and have appeared more or less explicitly in the literature (see
proposition 4.1 in [2] and previous remarks in that paper). However, Theorem
[0 below does not seem to be known. As it was remarked in the Introduction, it
provides interesting insights on open problems in Complexity Theory.

Lemma 1. Let C be a rudimentary F-algebra and f : w* — w such that
Gr(f) € AS. If there exists g € C such that f < g, then f € C.

Proof. Let h: w**1 — w given by h(a@,b) = (uz)<p[f(@) = z]. Since Gr(f) € A,
then Gr(h) € A)). By Proposition[2-(2), h € M? C C. Let g € C such that f < g.
Then f(a@) = h(a, g(a@)). Since C is closed under composition, f € C. O

Lemma 2. Let T be an extension of I1Ag. Then for each f € R(T) there exists
g € R(T) such that Gr(g) € Ay and f =K og.
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Proof. For each f € R(T) and ¢(&,y, 2) € Ag such that 3z (&, y, z) defines f
in T, let ¥(&,v) € Ap be the formula

Fy,z <v(y,2) =v A p(T,y,2) AVZ < z2-0(Z,y,2)).

Then T + VZ 3y (Z,y). Let g be the function defined in N by (%, v). Then
9 € R(T), Gr(g) € AJ and [(@) = K(g()). 0

The above lemma motivates the following definition.

Definition. Let C be a rudimentary F—algebra. We say that C is a Ag—generated
F-algebra if for each f € C there exist g1, g2 € Cy such that f = g1 o gs.

The following result shows that Ag—generated F—algebras correspond to classes
of p.t.c.f. of extensions of 1A.

Theorem 1. The following conditions are equivalent:

1. C is a Ag—generated F-algebra.
2. There exists a (sound) L—theory, T, extending 1A, such that R(T) = C.

Proof. (2)=(1): It follows from Proposition [§ and Lemma

(1)=(2): For each f € Co = {h € C: Gr(h) € AJ}, let O(z,y) be a Ay
formula defining f in M. Let I' = {Vx 3y 0s(z,y) : f € Co, [ : w — w}. Next
claim is a slight generalization of proposition 4.2 in [2] and it can also be proved
along the lines sketched there.

Claim: R(IAg + I') = C(M2 U Cp).

Thus, R(IAg+ 1) = C(M?2UCy) = C, last equality since C is Ag— generated.
O

3 Axiomatizing A, ;(T)-Induction

The aim of this section is to characterize the class of primitive recursive functions
in R(T), where T is an extension of IAg, as the class of p.t.c.f. of a suitable
theory. To this end, we consider the class of A, 1(T)—-formulas:

Api1(T) = {¢(z,7) € X411 : there exists ¢(x,0) € II,41, TE ¢ — 9}

When the schemes of induction and minimization are restricted to these
classes of formulas we obtain the theories IA, 11 (T) and LA,,+1(T) introduced
in [9]. There the following version of the collection scheme is also considered

B*An—i-l(T) = IAO + {Btp,w,y(zvﬁ) e € HTH 3?! @(%?Jvﬁ) € ATL+1 (T)}
Let us state here some basic properties of these theories, for details and proofs
see [9). If p € X411 and ¢ € 1,41 then ¢ < ¢ is a IT,,o—formula. Therefore,
— If Thy, ,(T)=Thp, ,(T') then 1A, 1(T) < 14,1 (T).

n+2 nt2



362 A. Cordoén-Franco et al.

A similar result holds for minimization and collection. The following basic
properties will be used without explicit mention.

— LAn+1(T) — IAn+1(T) and B*A7L+1(T) = 1X,.
— If T is an extension of 1Y, then LA, 1 (T) = B*A,,+1(T).

As noticed in [9], last property follows by an argument that mimics the proof
of Gandy’s Theorem, LA; = BX, given in [10], lemma 1.2.17. A variation of
that argument, considering also lemma 1.2.16 in [I0], gives us that

Lemma 3. Thy, ,(T) + LA, 1(T) < Thy, ,(T) + B*A,1(T).

The following notion, introduced in [9], has turned out to be useful for the
study of A,,4+1(T)-induction.

Definition. We say that T has A, ;—induction if T = IA,,11(T).

Theories 1A, +1(T) and LA, +1(T) are II,,;3—axiomatizable. But adding to

them Thy, ., (T), their quantifier complexity is reduced to I1,, 2.

Lemma 4. Thy, ,(T) +1A4,11(T) and Thy, ,,(T) + LA, 1(T) are I, o~

axiomatizable.

In this section we shall obtain a useful axiomatization of IA,, 1 (T) in terms of
I¥, 11 and Thy, ., (T). To this end we introduce the disjunction of two theories,
which corresponds to intersection between classes of p.t.c.f.

If Ty and T5 are theories in the language £, then TV T2 denotes the theory
axiomatized by the set of formulas {1 V 2 : ¢1 € T and ¢ € Ta}.

Lemma 5. If T, Ty =— IAq then R(Tl V Tg) = R(Tl) n R(Tg)

Proof. Since Ty, To = T V T, it holds that R(T; V T2) C R(T1) N R(Ty).

Conversely, if f € R(T1) N R(Ts), then there exist ¢1(Z,y, 2), ¥2(Z,y,2) €
Ap such that 3z (Z,y,2) defines f in T;. Let 6y(F,u) € Ay the formula
(V1 (2, (u)o, (u)1) V (&, (u)o, (u)1)) and let 8(Z,y) be the formula

3 [00(7, (y, 2)) AV < (g, 2) 0 (7, w)]
Then 0(%,y) defines f in Ty V Ta. So, f € R(T1 V Ta). O

Next proposition is theorem 2.2 in [§]. Now it can be rephrased as follows.

Proposition 4. If 2 [~ Thy, ,(T) and A |= 1A, 1(T), then A = 1Y, 1.
Hence,
IAnJrl (T) - 12n+1 VvV Thy T)

Moreover, if T has A,+1-induction then 1A, 1(T) <= 1%, 11 V Thy

n+2(

).

n+2(

From this proposition, using Lemmal[d] a first result on R(T)NPR is obtained
for theories with A;—induction.
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Corollary 1. 1. PRNR(T) C R(IA(T)).
2. If T has Aj—induction then PR NR(T) = R(IA,(T)).

By Lemma Bl R(T) N PR is always a Aj—generated F-algebra. To get a
natural theory T’ such that R(T') = R(T) N PR without assuming that T
has A;—induction, we consider parameter free versions of IA,,1(T) and 1Y, 1,
denoted by IA,1(T)~ and IX] |, respectively.

Theorem 2. For each sound theory, T, R(1A,(T)") =R(T)NPR.
Proof. By a similar argument to that of theorem 2.2 in [§], it is shown that:

1A, 1(T)” = IEn-H N Thnn+2( ).

Since PR = R(I1X] ), by Lemmap PRNR(T) = R(IX] VT) C R(IA(T)™).
Let us prove R(IA1(T)~) € R(T) N PR. Obviously, R(IA;(T)”) C PR.
Now, let us observe that IA] is Yy—axiomatizable and, therefore,

T + Thy, (V) = T + IA] = T + IA(T)" = 1A,(T)".
So, by Proposition [l R(IA;(T)~) € R(T + Thy, (N)) = R(T). 0

4 C—Bounded Recursive Arithmetic: C—-BRA

In this section we characterize R(T) N PR in terms of bounded recursion. Our
main tool will be a version of the well-known system PRA (Primitive Recursive
Arithmetic). Our analysis of this theory follows the lines sketched in [IJ.

Definition. Let C be a rudimentary F—algebra. The theory C-BRA, C—Bounded
Recursive Arithmetic, is given by:

— Language: LS, = U,,, Li, where

e Ly = £ plus a function symbol By for each basic function, f € B.

e L;,; = L; plus a function symbol, f; for each term of L;, and a function
symbol f;, ;, 4 for each function g € C and terms t1(Z), t2(&,y, z) of L;
such that the function defined from ¢; and ¢o by primitive recursion is
bounded by g, i. e., h < g, where h : w1 — w is the function given by

h(f,O) :tl(f)v h(f’y+1) :tQ(fvy’ h(f7y))
— Axioms:
(1) P
( ) ( )—.T+1 BHin(l‘l,...,J)n):xi, BO(JI)ZO
(3) £(7) = (@),
(4) ft1,t2 g({E 0) - tl( )7 ft1,t2,9(m Y + 1) - t2(x y7ft1,t2 g(x y))
(5) Open Induction: The induction scheme for open formulas of £

It is routine to check that C-BRA satisfies the following properties stated
for PRA in [1].
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Lemma 6. It holds that:

1. InC-BRA the class of open formulas is closed under bounded quantification.
2. In C-BRA every Ag—formula is equivalent to an open formula.

3. C-BRA supports definition by cases.

4. C-BRA is universally axiomatizable.

Lemma 7. R(C-BRA) = &£°.

Proof. Obviously £¢ C R(C-BRA). Since C-BRA is a universal theory and
supports definition by cases, the result follows from Herbrand’s theorem. a

Next we investigate the relations between PR N R(T) and £C. The key in-
gredient is Theorem [3] below stating a conservation result between C-BRA and
LA{(T). In the proof of that theorem we use the model-theoretic framework
developed by Avigad in [I]. Let us recall some definitions and results from that
paper that will be used in what follows.

Definition. We say that a structure 2 is 3o—closed (or Herbrand saturated, in
Avigad’s terminology) if for each p(&) € 35 and @ € 2 such that B = ¢(a@), for
some B, A <y, B, it holds A = ¢(a@).

As it is proved in [1], every universal theory has a Ja—closed model. For these
models the following results hold (see [I], theorems 3.3 and 3.4):

Proposition 5. Let 20 be an J-closed model and 6(Z,y,Z) an open formula
such that A = V¥ 3y 6(Z,y,d). Then there exist a universal formula (Z, W) and
terms ty, ..., tx such that A |= I (d, ) and

): 7/)('5’ ’ZB) - 9(57 tl(fa Z} ’Iﬁ), Z) VeV e(fa tk(f7 27 ’U_j),g)

Proposition 6. Let Ty be a universal theory and let T be a theory in the
language of Ty. If every Jo—closed model of Ts is a model of Ty, then every
Vo—theorem of T is a theorem of Ts.

Last proposition is used in [I] to obtain new proofs of a number of conser-
vation results. In what follows we use it to prove our main conservation result.
First of all, we show that d;—closed models of C-BR A satisfy X;—collection.

Lemma 8. Let A = C-BRA be an Jp—closed model.

1. In A each Aj—formula is equivalent to an open formula.
2. AE=BXY;.

Proof. (1) Let p(z,y,v), ¥(z,y,v) € Ag and a € A such that
A=y e(z,y,a) = Vyo(z,y,a).

Let 0(x,y,v) be the formula o(x,y,v) V = (x,y,v). Then A = Ve Iy 0(x,y,a).
By Lemma [0] there exist g and 6y quantifier—free formulas such that

C-BRA F (pg < o) A (6 <+ 0).
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Then A | Vo Jy Oy(x,y,a) and, by Proposition [ (recall that C-BRA supports
definition by cases), there exist b € 2 and a term #(x,v,w) such that A |=
Va bp(x,t(x,a,b),a). As a consequence, A = Iy p(z,y,a) < ¢o(z,t(z,a,b),a).
(2) By Lemma [6] the class of open formulas is closed in C-BRA under
bounded quantification. Since C-BRA proves open induction, a standard ar-
gument (see lemma 1.2.12 in [I0]) shows that minimization scheme for open
formulas holds in C-BRA. So, by (1), 2 = LA;. But LA; < BX; (see [10]
lemmas 1.2.16, 1.2.17), hence 2 = BX;. O

Theorem 3. Let T be a (sound) IIy—axiomatized extension of 1Ay and C =
R(T). For each IIy—sentence 0, if LA (T) - 0 then C-BRA 6.

Proof. Since C-BRA is a universal theory, following [I], we prove that every
Jo—closed model of C-BRA, 2, is a model of LA;(T). Then the result follows
by Proposition @l In a first step we prove 2 |= 14 (T).

Let p(z,y, ), ¥(z,y,0) € Ag such that T + Jy p(x,y,¥) « Yyu(z,y, 7). We
may assume that T F o(z,y1,9) A p(z,92,9) — y1 = y2 (if not, we take as
¢ the formula ¢(x,y,7) AVz < y—p(x, z,7)). Let (x,y,0) € Ag the formula
o(z,y,7) vV (x,y,v). Then,

T Vo 3y (0(z,y, V) AVz < y—b(z, z,7)).

Since T is a sound theory, the formula 0(x,y,v) AVz < y —0(x, z,U) defines a
p.t.c.f. of T, say f. Then N = Vy (¢(z,y,7) — y < f(z,¥)). Now, we continue
the proof as in [I], theorem 4.1.

Let 20 be an J3—closed model of C-BRA and ¢y an open formula equivalent
to ¢ in C-BRA. Let us see that A =I5, ,,. Assume that, for some @ € %,

2 = Jy o(0,y,a@) AVa By eolx, y, @) — Jy po(z + 1,y,a)).

Then, as in [I], since C-BRA supports definition by cases, by Proposition [l
there exist b, ¢ € 2 and a function symbol g(x,y, ¥, W) such that

2 ': ()00(07 ) Ei) A VIZ’, Y (900(1,7 Y, 6:) - (,00(1’ + 13 g(ﬂf, Y, G_:, 5)3 C_i))
Let us denote by ¢ the function defined by g in A. Let hg : w2 — w be
defined in N by

o o g, 2, 0,4), if go(x + 1, g(x, 2,7, 0), 0);
ho(@,y, 2,9, ) = {O, otherwise.

Then hg € EC. Let f; be the function defined by primitive recursion as follows:

fO(Oa Y, 777 u_j) =Y, fO(x + 17 Y, 67 u_j) = ho(l’, Y, fO(xa Y, 177 ’LU), 177 U_j)
Then fo(xvyaﬁa ’lﬁ) S f’(ll?,y,??,’lf}) = f(ﬂ? + 1’6) + Y. SO7 fO S gcv since it
is defined by f’~bounded recursion and f’ € C. Let fy be the function symbol
corresponding to fo. Then 2 satisfies that

- - -,

©0(0,£0(0,¢,d,b),d@) ANV (wo(x, fo(z,c,a,b),d) — go(z+ 1,fo(x+1,¢,d,b),ad)).



366 A. Cordén-Franco et al.

Since 2 satisfies open induction, 2 = Va o (x, fo(z, ¢, @, g), d). Hence, it fol-
lows that 2 = Vz Jy ¢(z,y,d). So, A =I1A,(T).

Let us see that A = LA;(T). We distinguish two cases:

1. If A |~ T then, since T is ITy—axiomatized, by Proposition ] 2 = I1.5.
2. If A =T, then, by Lemmal[8 2 = T + BX; hence, A = LA (T). O

As a consequence, we get some results relating £¢ and CNPR. The notion of
Ao-generativeness provides a necessary and sufficient condition for £ = CNPR.

Theorem 4. Let C be a Ag—generated F-algebra. Then

1. PRNC is Ap—generated.
2. PRNC C ¢ = EPRNC C E(PRNC).
3. If C is closed under bounded minimization, then £¢ = E(PR NC).

Proof. By Theorem[I] there is a sound extension of IAg, T, such that R(T) = C.

(1) Since CNPR = R(T V1), by Theorem [l C N PR is Ap—generated.
(2) By Corollary [l PRNC C R(IA(T)). Moreover, by Theorem [3land Lemma
M R(IA{(T)) C EC; s0, PRNC C EC. Tt is trivial that EEPR C E(CNPR).

Now, let us see that £ = £°"PR_ It is enough to prove that ¢ C £CNPR,
We proceed by induction on the definition of f € £°. The critical step is the
definition by C-bounded recursion. But, let us observe that if f € £° is defined
by C-bounded recursion, then f is bounded by a function g1 € C and by a
function go € PR (in fact, f € PR). We prove that in this case f is bounded by
a function h € CNPR.

Let 91(Z,y, 2), ¥2(Z,y,2) € Ag such that 3z (Z,y,2) and Iz (F,y, 2)
define g; and g2 in T and 1Y, respectively. Let 0y (Z, u) € Ay be the formula

{ (P1(Z, (w)o, (w)1) V 2(Z, (u)o, (u)1)) A
Vo < u (=1 (&, (v)o, (v)1) A =2(T, (v)o, (v)1))-

Then 3z 0y(%, (y,z)) defines in T V IX; a function h such that for all
d € w, h(d) = ¢1(a@) or h(d@) = g2(@). So, h € R(T VIX)) = CNPR and,
since f < g1 and f < go, we have f < h.
(3) Since C is closed under p<, each function in C is bounded by a nondecreasing
function also in C. By induction on the construction of f € EPRNC it is proved
that each element of £¢ (= £PRNC) is bounded by an element of PR N C. So,
ECNPR is closed under bounded recursion. Hence, (3) follows from part (2). O

Theorem 5. Let C be a Ag—generated F-algebra. If C is closed under bounded
minimization, then the following conditions are equivalent:

1. €% is Ag-generated. Or, by Theoremd, "R is Ay-generated.
2. € =CNPR.
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Proof. (2) = (1): By Theorem [ C N PR is Ap—generated; so, (1) holds.

(1) = (2): Let Fy be the class of all functions in £ having a Ag—definable
graph. Then £¢ = C(F). By the proof of part (3) of Theorem [l each function
in £¢ is bounded by a function in C. Since £C is a rudimentary F-algebra, by
Lemma [ Fy C C and, as a consequence, £ = C(Fy) € CNPR. On the other
hand, by Theorem @ C N PR C £C. This proves (2). ad

Corollary 2. The following statements are equivalent:

1. £% is a Ay-generated F-algebra.
2. M? = &2
3. There exists an extension of 1A, T, such that £* = R(T).

Now we give a characterization of R(IA;(T)) in terms of C-bounded recur-
sion.

Theorem 6. Let T be a sound extension of 1Ay + exp and C = R(T). IfC is
closed under bounded minimization, then

R(IA(T)) = R(LA(T)) = ¢ =CNPR.

Proof. Without loss of generality we can assume that T is Il axiomatized.

First we prove the result for T satisfying I} = T. Then C = CNPR. By
Propositiond] LA, (T) = IA;(T) = T; hence, T+LA(T) < LA,(T). By
Lemmaf] T+ LA, (T) < T+B*A;(T), so R(LA{(T)) = R(T+B*A,(T)).
In [9] (see remark 2.8), it is proved that T + B*A;(T) < [T, 21—CR] (the
closure of T under unnested applications of Xj—collection rule). Therefore, by
corollary 5.6 in [2], since T F exp we get

R(LA(T)) = R([T, Z,-CR]) = E(C).

By Theorem B(3), £¢ = E(CNPR); so, R(LA{(T)) = £°, since C = CN PR.
As a consequence, £€ is Ag-generated and, by Theorem B, £ = C. Now the
result follows from the chain of inclusions below:

R(LA(T)) = £° = € C R(IA(T)) € R(LA(T)).

Let us prove the general case. Let T be the theory IX; V T. By Lemma [5
R(T!) = R(T) N R(IX}). Since I1X; = T! = 1A, + exp, by previous case
R(LA{(T!)) = ER(TY = R(T!), and by Theorem @ ER(T) = glNPR — g€
So, £€ is Ap-generated and, by Theorem Bl £¢ = C NPR. By Theorem 3]

R(LAL(T)) CE° =CNPR C R(IA(T)) C R(LA(T)).
This concludes the proof of the theorem. a

The hypothesis on C in Theorem[6, namely, C is closed under u<, is equivalent
to the existence of a theory T’ such that C = R(T') and T' extends LA, (T’).
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Below we discuss if this hypothesis can be weakened. This is related to the prob-
lem on the equivalence between UIA; and BX] . Here, BX| denotes parameter
free X1—collection (see [9] for a deeper background on these theories).

First of all, let us observe that the hypothesis cannot be omitted. In [3]
Beklemishev obtains f € £ (C PR) such that C = C(£2 U {f}) is not closed
under bounded recursion. Let T be the theory given by I1Ag+exp+ “f is total”.
Then R(T) = C and, since IX; = T, as in the first part of the proof of Theorem
B R(LA(T)) =E(C). So, C=CNPR # R(LA,(T)).

A suitable hypothesis on C to be used in Theorems [Al and [@] instead of the
closure under bounded minimization is the following one:

(IC) There exists a theory T such that C = R(T) and T has A;—induction.

Observe that if Theorem [[] holds under hypothesis (IC), so does Theorem
Next lemma allows us to avoid using Theorem F-(3) in the proof of Theorem

Lemma 9. Let T be a sound Il;—axiomatized extension of 1Ay + exp. Let
C = R(T). Then E(C) = C(C U EC).

Proof. By the first part of the proof of Theorem[Gl E(C) = R(T +LA{(T)). Let
T¢ be the theory obtained by extending C-BRA as follows:

For each formula ¢(Z,y) € Ap such that T F VZ 3y p(Z,y), we add a new
symbol function f, and take as an axiom the formula

(%) =y & ¢(T,y) ANVz < y-p(T, 2).

Since each Ag—formula is equivalent in C-BRA to an open formula, T¢ is a
universal theory and supports definition by cases. Then, by a standard Herbrand
analysis we get that R(T¢) = C(C U &°).

Moreover, every do—closed model of T¢ is a model of T + BX, since it is a
Jo—closed model of C-BRA (Lemma []). So, as in Theorem [l we get that for
each formula 6 € 115,

T+BYXY,F0=— TcH0.

Since T I exp, then E(C) = R(T+BX;) C R(T¢) = C(CUEC) CE(C). O
We conclude studying the equivalence between UIA; and BX; .

Proposition 7. Assume that Theorem [} holds under hypothesis (IC).
Let T be a Il,—axiomatized extension of Thy, (N)+exp. If T has Ai-induction
then T extends LA;(T).

Proof. As noticed in the proof of Lemma[@ R(T +LA;(T)) = E(C). Moreover,
by Lemma[@ E(C) = C(CU &) and by Theorem [, £¢ = R(IA:(T)). So,

E(C) = C(CUECS) C R(T +1A,(T)) C R(T +LA(T)) = E(C).

Therefore, R(T) = R(T + LA;(T)), since T has A;—induction. By Lemma [4]
T + LA (T) is Il axiomatizable. Hence, by Proposition[[] T <= T +LA;(T)
(recall that T extends Thyz, (V). In particular, T = LA;(T). O



Provably Total Primitive Recursive Functions: Theories with Induction 369

Theorem 7. Assume that Theorem [A holds under hypothesis (IC). Then

BX +Thy, (N) +exp <= UIA; + Thy, (V) + exp.

Proof. 1t is known that BX] = UIA;; so, we only prove that

UIA; + Thy, (N) + exp = BX[ + Thy, (N) + exp.

Let 2 = UIA; +Thy, (N)+exp and T = Thy, (2). Then it is easy to check that
T has A;-induction and extends Thy, (V) + exp. By Proposition[7] T extends
LA (T). As a consequence, T extends B*A;(T), since LA (T) = B*A;(T).

From this it follows that 2 = BX] (see remark 2.5.3 in [9]). O
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