
A Combined Continuous-Time/Discrete-Event
Computation Model for Heterogeneous

Simulation Systems

Andreas Franck1 and Volker Zerbe2

1 Mission Level Design GmbH Ilmenau,
Ehrenbergstrasse 11,

98693 Ilmenau, Germany
2 Technische Universität Ilmenau,

Department of Automatic Control and System Engineering,
P.O.Box 100565,

98684 Ilmenau, Germany

Abstract. Complex electronic systems contain components that have to
be described by many different model types. An efficient design process
requires to validate these models through all phases of development, [7].
It is therefore required to have multi-domain tools that can analyze these
complex systems in an integrated way. MLDesigner a design tool of the
latest generation is in the process of developing, [9].
In this paper, we describe a model of computation that combines
continuous-time and discrete-event elements. We show that the devel-
oped formalism is well suited for frameworks like MLDesigner supporting
heterogeneous modeling and simulation.

1 Introduction

1.1 Heterogeneous Modeling and Simulation

Heterogeneous modeling and simulation permits analysis and design of complex
systems.

Instead of modeling a system as a whole, using a complex description lan-
guage, in heterogeneous modeling every components is modeled by a suitable
representation.

These submodels are combined and executed together to analyze the overall
system behaviour.

An important research project in the field of heterogeneous modeling and de-
sign is the Ptolemy Project, at the University of California, Berkeley. Research
focusses on modeling, simulation, and design of concurrent, real-time, embed-
ded systems. In this project, two application programs have been developed,
Ptolemy 0.x [1], now called Ptolemy classic, and Ptolemy II [8], which is the
current research environment. Throughout this paper, we refer to the heteroge-
neous modeling and simulation concepts of the Ptolemy project and furthermore
MLDesigner.

X. Zhou et al. (Eds.): APPT 2003, LNCS 2834, pp. 565–576, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



566 A. Franck and V. Zerbe

Essential to the concept of heterogeneous simulation is the notion of a model
of computation (MoC). A model of computation defines the semantics of the
models formulated in this MoC. Many models of computations have been de-
veloped and are in use, although in limited fields of application. Examples of
computational models are Finite State Machines, Petri Nets or Dataflow graphs.

A model of computation defines the following characteristics of a model:

– The way how behaviour of the model is described.
– How these model descriptions are executed.
– For the case that models are described by sets of components, the model of

computation defines how model components interact.

In Ptolemy, a model of computation is encapsulated in a domain. A do-
main is a set of C++ classes in which all aspects of simulation specific to the
computational model are implemented.

Heterogeneous simulation frameworks often allow arbitrary couplings of do-
mains. This requires thall all domains share a common interface which permits
interaction between heterogeneous model parts. This interface has to define:

– How information is exchanged between different components.
– How to coordinate the execution of interacting components.

In Ptolemy classic, this interface is called EventHorizon [2].

1.2 Continuous-Time Computation Models

Computation Model The characteristic property of continuous-time for-
malisms is that the trajectories of input-, output- and state-values are continuous
in time.

Mathematically, this class of systems is modeled by systems of ordinary dif-
ferential equations (ODE). The change of a state variable is described by its
time derivative ẋ(t).

ẋ(t) = f(x, u, t) (1)
y(t) = g(x, u, t) (2)

A system model is described by its differential equation (1) and an output
equation (2), where u(t) is the input, x(t) is the state and y(t) is the systems
output.

Signal Form. At every instant of the simulation interval, inputs, outputs and
states have a distinct value. Therefore, signals in continuous-time models are
continuous functions. The resulting signal form is shown in Figure 1.



A Combined Continuous-Time/Discrete-Event Computation Model 567

Fig. 1. Signal Form of a Continuous-Time Wave

Modeling. Besides mathematical representation like ODE and simulation lan-
guages as CSSL (Continuous System Simulation Language), graphical oriented
modeling of continuous-time systems is becoming predominant. In applications
like Simulink from Mathworks, models are created and manipulated as inter-
connected blocks, defining the dynamics of the system. Besides the easy-to-use
interface, the visual representation often reflects the structure of the modeled
system.

Furthermore, most visual interfaces are hierarchical, permitting the combina-
tion of submodels into modules and using these modules as blocks. This allows
hierarchical structuring of complex models and reusability of existing compo-
nents. These features are essential to modern system development.

Simulation. Simulation of continuous-time models uses numerical methods for
solving systems of ordinary equations, more precisely initial value problems.
These algorithms are often called numerical integration methods.

Starting with an initial value x0, the trajectories of the state and output val-
ues is approximated at a finite number of time points in the integration interval.

Numerical methods for solving ODE systems is an area of extensive research.
A large number of different algorithms is available, with different accuracy, com-
putational effort and suitability for distinct classes of problems. Therefore, con-
tinuous simulation applications must include different integration algorithms and
offer capabilities to configure these algorithms according to the system to be sim-
ulated.

Limitations. These numerical methods generally require the differential equa-
tion f(x(t), u(t), t) and input trajectory u(t) to be smooth. More precisely, these
functions must be, dependending on the used ODE solver, sufficiently differen-
tiable.

For real systems, these requirements are often not met. One cause is discon-
tinuity in the state transition function. Systems with friction or hysteresis effects
show such behaviour.

Often, input functions change their values discontinuously. Escpecially in
systems where continuous components interact with digital devices.



568 A. Franck and V. Zerbe

Fig. 2. Signals in Discrete-Event Simulations

Most numerical algorithms fail or decrease or have significantly reduced ac-
curacy when stepping over discontinuity points. Therefore, practical simulation
software must offer facilities to manage discontinuity points and handle them
appropriately. This feature is usually called breakpoint handling.

1.3 The Discrete-Event-Formalism

In Discrete-Event (DE) models, evolution of the system state is modeled as a
finite set of discrete state changes. These changes can occur at arbitrary distinct
points of the underlying, usually real-valued, time base and are called events. A
formal definition of this computational model can be found in [3], where it is
introduced as DEVS (Discrete Event Specified System) formalism.

Modeling. In modern design-tools, Discrete-Event models are usually designed
at the coupled model level and represented a graphical form. Examples of such
tools are BONeS, a commercial network simulator from Cadence Design Systems,
or the DE domain in MLDesigner.

In such coupled models, informations between different blocks are transmit-
ted in form of messages associated with a usually real-valued timestamp. These
messages are also called discrete events. Therefore, signals in Discrete-Event-
models are sequences of events, as depicted in Figure 2.

Simulation. The heart of a Discrete-Event-simulator, often called scheduler, is
a priority queue structure usually named event queue or event calendar. Model
components schedule events to be processed by inserting them into this queue.
The scheduler executes these events sequentially, according to the order of the
time stamps.

Discrete-Event and Heterogeneous Simulation. Among different models
of computation, the Discrete-Event-formalism has a special role. It has been
stated that DE is suited to represent the input-output-behaviour of models for-
mulated in other models of computation. Zeigler [3]:



A Combined Continuous-Time/Discrete-Event Computation Model 569

Fig. 3. Basic DEV&DESS-Model (according to [3])

“. . . DEVS is capable of expressing models formulated in the other ma-
jor formalisms . . ., so that these can be integrated into an all-DEVS
simulation environment supporting multiformalism modeling.”

Therefore, the discrete-event-formalism is well suited to define the interface
for communication between model components in a heterogeneous simulation
environment.

2 Combined Continuous / Discrete-Event Models of
Computation

In section (1.2), we described limitations of pure continuous-time formalisms.
For real-world applications, this model of computation has to be extended.

Combined continuous/Discrete-Event models of computation [4] form a well-
defined and especially expressive extension of pure continuous-time formalisms.

In [5], this formalism is introduced as DEV&DESS (discrete event and dif-
ferential equation defined system specification) and formally defined. Here, we
will give only a short, non-formal description.

2.1 The Computational Model

As depicted in Figure (3), a combined model consists of a continuous and a
Discrete-Event component.

Both model parts may contain inputs, outputs and states of their respective
types. Characteristic of the combined model of computation is the way these
components influence each other. These interactions are also called events and
can occur as:

Time events, related to events in pure Discrete-Event models. They are ini-
tiated in the discrete part, but possibly change the state in the continuous
part, too.



570 A. Franck and V. Zerbe

External input Events, input messages that occur at the input ports of the
Discrete-Event-partition. They are similiar to time events and are handled
in the same way.

State events, initiated by the continuous model part. A state event is triggered
when a condition that depends on continuous state or input values, is satis-
fied. In general, this condition can be expressed by a state event equation:

C(u(t), x(t), t) = 0 (3)

Only after an integration step algorithm can it be determined if a state event
occured within this time period. This is because the event condition depends
on values that change continuously.

2.2 The CTDE-Domain

To investigate this computational model presented here, we developed a new
domain called CTDE-domain (Continuous-Time/Discrete-Event). We developed
representation forms for combined models, and simulation algorithms.

2.3 Model Structure

To represent combined continuous/discrete-event models, we chose a graphi-
cal form. Models are represented as graphs of interconnected blocks with input
and output ports. We define the base element of the modeling language, the
general hybrid block. This block is closely related to the atomic DEV&DESS
model introduced in section (2.1). This element may contain both continuous
and discrete-event elements, and have an arbitrary combination of discrete and
continuous input and output ports.

As an example of a general hybrid block, the general integrator block is
shown in Figure (4). Beside the continuous input and state output of a pure
continuous integrator, it contains a discrete input for resetting the state value
and a saturation output, which signals reaching the upper or lower limit as a
discrete event.

Pure continuous or discrete blocks are special cases of the general hybrid and
can be modeled using this atomic element. This allows a uniform representation
of all blocks in a combined model.

Specific to the CTDE-domain is the coexistence of two distinct signal forms.
Couplings between continuous ports are continuous wavefroms and have value-
semantics. Over connections between discrete ports messages are transmitted as
discrete events.

Direct connections between discrete and continuous ports are not allowed in
CTDE, but must be modeled by the distinct insertion of conversion Blocks. This
allows static checks of the model structure before simulation startup and helps
in avoiding modeling errors in the design.



A Combined Continuous-Time/Discrete-Event Computation Model 571

Fig. 4. Hybrid Block Example: General Integrator

2.4 Simulation Algorithm

Much like the model structure, the simulator is divided into a Discrete-Event
and a Continuous-Time component. These parts interact as follows:

At a given time in the simulation interval, the Discrete-Event scheduler pro-
cesses all events with the current timestamp. After that, the simulator changes
to the continuous part. In this mode, the trajectory of the continuous states is
approximated by a numerical ODE solver. At the time of the next scheduled
discrete event, execution changes back to the Discrete-Event scheduler.

Detection and processing of state events requires special treatment. In the
graphical model representation used in the CTDE domain, state event conditions
are modeled as Blocks, called state event generators. Since state event conditions
depend on continuous variables, they must be handled in the continuous part of
the simulator. After each step of the ODE solver, the state event generator blocks
are queried if a state event occured during the current step. In this case, this
integration step has to be rejected. Integration will be repeated with adjusted
step sizes until the event condition is met with sufficient accuracy. For this case,
the simulator immediately changes into the Discrete-Event mode and executes
the action triggered by the state event as an ordinary discrete event.

Simulation algorithms for combined continuous/discrete-event simulators are
treated in more detail in [4] and [3].

2.5 Example: Bouncing Ball-Model

Here, we show an example commonly used for demonstrating the handling of
state-events. A ball bounces repeatedly on a surface. The impact is modeled by
a state-event-generator, the block ZeroCrossingDetector, which ensures that
the time of the hit is determined accurately.



572 A. Franck and V. Zerbe

Fig. 5. Model of the bouncing-ball system

Fig. 6. Bouncing-Ball-Demo: Position of the ball

This model formulated in the CTDE domain shows the combination of con-
tinuous and discrete dynamics clearly. Whereas the movement of the ball is
modeled with continuous elements and signals (solid lines), the signaling of the
impact, calculation of the reflected velocity and inverting the movement is mod-
eled using discrete logic (dotted lines).

3 Combined Formalisms in Heterogeneous Simulations

At the first glance, a combined model of computation contradicts the concept of
heterogeneous modeling and simulation. Instead of modeling each subsystem in



A Combined Continuous-Time/Discrete-Event Computation Model 573

an appropriate formalism and to combine these models for simulation, a larger
and more complex formalism was created.

In our opinion, the combined continuous/discrete models of computation
shows several advantages that make them especially suited for integration into
heterogeneous simulation environments.

Therefore, we compare the CTDE domain with an implementation of a pure
continuous-time formalism. As an example, we chose the CT-domain (Continu-
ous Time) from Ptolemy II [6]. This domain implements a model of computation
based on ODE’s represented in a graphical form. Additionally, CT offers facil-
ities to interact with Discrete-Event-models. This kind of model interaction is
called Mixed-Signal-Simulation.

3.1 Signals

Because of their signal form, continuous signals cannot be represented by a finite
amount of data. Therefore, continuous signals are not suitable for communica-
tion between model components. In section 1.3 it was stated that the Discrete-
Event formalism, and the event sequence as the associated signal form, are suit-
able semantics for interaction between components in a heterogeneous simula-
tion framework. Therefore, a continuous-time domain mixed-signal-simulation,
or more generally, heterogeneous simulation, must implement facilities to handle
discrete-event signals.

In Ptolemy II, two additional classes of blocks, EventInterpreters and Event-
Generators are introduced to perform the conversion between continuous and
discrete waveforms. These elements have to be inserted at the boundaries of
continuous models.

In CTDE, discrete-event signals are an integral part of the domain. Neither
the comptutional model nor the hierarchy of the modeling elements has to be
extended to realize interaction with heterogeneous components.

3.2 Modeling

The choice of the general hybrid block as the base element of modeling increases
the expressiveness of the modeling language. There are elements that cannot, or
not effectively, be expressed as combinations of discrete, continuous and signal-
conversion blocks. The ResetIntegrator used in the Bouncing-Ball demo is an
example for such an element.

Another difference in the modeling methodology is the structure of a mixed-
signal model. In a pure continuous-time computation model such as the Ptolemy
II CT-Domain, every model part with discrete dynamics has to be encapsulated
in a separate submodel. In CTDE of MLDesigner, the model structure can be
chosen according to the logical partitioning of the system. Again, the Bouncing-
Ball demo serves as an example where integration of continuous and discrete
dynamics into a single model makes sense and is more concise.

In modeling environments like Ptolemy, composition of heterogeneous com-
ponents is done by means of hierarchical embedding. A submodel formulated in



574 A. Franck and V. Zerbe

(a) Top-Level-Model with continuous plant (b) Controller
model as dataflow
graph

Fig. 7. Example (3.4): Continuous-time plant with Discrete-Time Controller

Fig. 8. Example (3.4): Continuous values

a different formalism is inserted as a block into the embedding model. Since het-
erogeneous components communicate with the CTDE domain through Discrete-
Event semantics, these submodels are handled as pure discrete blocks. Since
discrete elements form a special case of the general hybrid block, no special
treatment is necessary. In pure Continuous-Time models of computation, these
submodels form a separate class of modeling elements.

3.3 Simulation

As shown above, in the CT domain in Ptolemy II, the model representation was
extended by three classes of blocks (EventInterpreters, EventGenerators and



A Combined Continuous-Time/Discrete-Event Computation Model 575

bloccks representing submodels) to permit mixed-signal simulation. Since these
element classes need to be handled by the simulator separately, this makes the
simulation algorithms more complicate and cumbersome.

In contrast, the CTDE has need to extend the model of computation to
allow interaction with heterogeneous model components. This results in a better
structured simulator design and (presumably) better efficiency.

3.4 Example: Discrete Controller

As an example of a Mixed-Signal-model formulated in the CTDE domain, we
present closed-loop control consisting of a continuous plant and a discrete-
time controller (Figure 7). The discrete controller, more precisely a deadbeat-
algorithm, is modeled as a dataflow graph in the SDF domain (Figure 7(b)).

The coupling between the model components is modeled by dedicated ele-
ments for signal conversion. These elements enable the designer to accurately
model the behaviour of systems combining digital and continuous components.

The results of a simulation run are depicted in Figure (8).

4 Conclusion

In this article, we present a model of computation that combines dicrete-event
and continuous dynamics in a single model description.

This formalism forms a distinct model of computation and is especially suited
for integration in heterogeneous modeling and simulation environments, imple-
mented in MLDesigner. This extended computational model permits to simulate
complex continuous and mixed-signal models accurately.

The use of well-defined and better structured simulation algorithms simplifies
simulation software design.

References

1. Buck, J.; Ha, S.; Lee, E.; Messerschmitt, D.; Ptolemy: A framework for simulat-
ing and prototyping heterogeneous systems. Int. Journal of Computer Simulation,
special issue on Simulation Software Development 4/1994, p. 155–182

2. Chang, W. T.; Ha, S.; Lee, E. A.; Heterogeneous simulation - mixing discrete event
models with dataflow. Journal of VLSI Signal Processing 15/1997, p. 127–144

3. Zeigler, B. P.; Praehofer, H.; Kim, T. G.; Theory of Modeling and Simulation.
second. ed. Academic Press, 2000

4. Cellier, F. E.; Combined Continuous/Discrete System Simulation by Use of Digital
Computers: Techniques and Tools. PhD thesis, ETH Zurich, 1979

5. Praehofer, H.; Auring, F.; Reisinger, G.; An environment for DEVS-based multi-
formalism simulation in common Lisp/CLOS. Discrete Event Dynamic Systems:
Theory and Applications, 3/1993, p. 119–149

6. Liu, J. Continuous time and mixed-signal simulation in ptolemy ii. Ms report, Uni-
versity of California, Berkeley, 12/1998



576 A. Franck and V. Zerbe

7. Zerbe, V.; Mission Level Design of Control Systems. In: Proceedings of SCI/ISAS
5th International Conference on Information Systems, 1999, p. 237–243

8. II., J. D.; Goel, M.; Hylands, C.; Kienhus, B.; Lee, E. A.; Ptolemy II: Heteroge-
neous Concurrent Modelling and Design in Java. 1.0 ed. Department of Electrical
Engineering and Computer Science, University of California, Berkeley, 2001

9. MLDesigner: http://www.mldesigner.com


	Introduction
	Heterogeneous Modeling and Simulation
	Continuous-Time Computation Models
	The Discrete-Event-Formalism

	Combined Continuous / Discrete-Event Models of Computation
	The Computational Model
	The CTDE-Domain
	Model Structure
	Simulation Algorithm
	Example: emph {Bouncing Ball-Model}

	Combined Formalisms in Heterogeneous Simulations
	Signals
	Modeling
	Simulation
	Example: Discrete Controller

	Conclusion

