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Abstract. We say that, for k ≥ 2 and � > k, a tree T is a (k, �)-leaf
root of a graph G = (VG, EG) if VG is the set of leaves of T , for all edges
xy ∈ EG, the distance dT (x, y) in T is at most k and, for all non-edges
xy �∈ EG, dT (x, y) is at least �. A graph G is a (k, �)-leaf power if it has
a (k, �)-leaf root. This new notion modifies the concept of k-leaf power
which was introduced and studied by Nishimura, Ragde and Thilikos
motivated by the search for underlying phylogenetic trees. Recently, a
lot of work has been done on k-leaf powers and roots as well as on their
variants phylogenetic roots and Steiner roots. For k = 3 and k = 4,
structural characterisations and linear time recognition algorithms of k-
leaf powers are known, and, recently, a polynomial time recognition of
5-leaf powers was given. For larger k, the recognition problem is open.

We give structural characterisations of (k, �)-leaf powers, for some k
and �, which also imply an efficient recognition of these classes, and in
this way we also improve and extend a recent paper by Kennedy, Lin
and Yan on strictly chordal graphs and leaf powers.

Keywords: (k, �)-leaf powers, leaf powers, leaf roots, strictly chordal
graphs, linear time algorithms.

1 Introduction

Nishimura, Ragde and Thilikos [20] introduced the notion of k-leaf power and
k-leaf root, motivated by the following: “. . . a fundamental problem in compu-
tational biology is the reconstruction of the phylogeny, or evolutionary history,
of a set of species or genes, typically represented as a phylogenetic tree . . .”. The
species occur as leaves of the phylogenetic tree.

Let G = (VG, EG) be a finite undirected graph. For k ≥ 2, a tree T is a k-leaf
root of G if VG is the leaf set of T and two vertices x, y ∈ VG are adjacent in
G if and only if their distance dT (x, y) in T is at most k, i.e., xy ∈ EG ⇐⇒
dT (x, y) ≤ k. The graph G is a k-leaf power if it has a k-leaf root. Obviously,
a graph is a 2-leaf power if and only if it is the disjoint union of cliques, i.e.,
it contains no induced P3. See [17] for the related notions of phylogenetic root
and Steiner root and [2,3,4,6,9,11,14,15,16,21] for recent work on leaf powers
(including characterisations of 3- and 4-leaf powers) and their variants. It is
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well known that every k-leaf power is a strongly chordal graph. For k ≥ 6, no
characterisation of k-leaf powers and no efficient recognition is known.

In this paper, we modify the notion of k-leaf power and k-leaf root in the fol-
lowing natural way: For k ≥ 2 and � > k, a tree T is a (k, �)-leaf root of a graph
G = (VG, EG) if VG is the set of leaves of T , for all edges xy ∈ EG, dT (x, y) ≤ k
and, for all non-edges xy �∈ EG, dT (x, y) ≥ �. A graph G is a (k, �)-leaf power if
it has a (k, �)-leaf root. Thus, every k-leaf power is a (k, k + 1)-leaf power, and
every (k, �)-leaf power is an (i, j)-leaf power, for all i and j with k ≤ i < j ≤ �.
In particular, every (k, �)-leaf power is simultaneously a k′-leaf power, for all k′

with k ≤ k′ ≤ �−1. In a similar way, Steiner roots and powers can be generalised.
In [16], Kennedy, Lin and Yan study so-called strictly chordal graphs which

were originally defined via (rather complicated) hypergraph properties but finally
turn out to be exactly the (dart,gem)-free chordal graphs [14]. It is not hard to see
that a graph is (dart,gem)-free chordal if and only if it results from substituting
cliques into the vertices of a block graph (i.e., a graph whose blocks are cliques).
We will show that these graphs are exactly the (4, 6)-leaf powers which explains
various of their properties, and the same class appears as (k, �)-leaf powers for
infinitely many other values of k and �, e.g., as (6, 10)-leaf powers and in general
as (4 + 2i, 6 + 4i)-leaf powers, for i ≥ 0. Moreover, it is known from [2,11,21]
that 3-leaf powers (i.e., (3, 4)-leaf powers) are exactly the (bull,dart,gem)-free
chordal graphs which in turn result from substituting cliques into the vertices
of a tree. By a simple argument, every class of (3 + 2i, 4 + 4i)-leaf powers, for
i ≥ 0, is also exactly the same class of (bull,dart,gem)-free chordal graphs.

We give structural characterisations of (k, �)-leaf powers, for some k and �
(and in particular for (8,11)-leaf powers) which also imply efficient recognition
of these classes. Most of the proofs are omitted due to space constraints of this
extended abstract.

2 Basic Notions and Results

Throughout this paper, let G = (V, E) be a finite undirected graph without
loops and multiple edges and with vertex set V and edge set E, and let |V | = n,
|E| = m. For a vertex v ∈ V , let NG(v) = N(v) = {u | uv ∈ E} denote the (open)
neighbourhood of v in G, and let NG[v] = N [v] = {v} ∪ {u | uv ∈ E} denote the
closed neighbourhood of v in G. A clique is a set of vertices which are mutually
adjacent. A stable set is a set of vertices which are mutually non-adjacent.

A vertex subset U ⊆ V is a module in G if, for all v ∈ V \ U , either v is
adjacent to all vertices of U or v is adjacent to none of them. A clique module in
G is a module which induces a clique in G. A vertex z ∈ V distinguishes x, y ∈ V
if zx ∈ E and zy /∈ E. Two vertices x, y ∈ V are true twins in G if they have
the same neighbors in G and are adjacent to each other.

Let dG(x, y) (or d(x, y) for short if G is understood) be the length, i.e., number
of edges, of a shortest path in G between x and y. Let Nk

G(x) = {y | dG(x, y) = k}
and let Gk = (V, Ek) with xy ∈ Ek if and only if dG(x, y) ≤ k denote the k-th
power of G.
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For U ⊆ V , let G[U ] denote the subgraph of G induced by U . Throughout
this paper, all subgraphs are understood to be induced subgraphs. Let F denote
a set of graphs. A graph G is F-free if none of its induced subgraphs is in F .

For k ≥ 1, let Pk denote a chordless path with k vertices and k − 1 edges,
and, for k ≥ 3, let Ck denote a chordless cycle with k vertices and k edges. A
diamond (or K4 −e, see Figure 1) consists of four vertices a, b, c, d and five edges
ab, ac, bc, bd and cd.

��������	
���� �

�

Fig. 1. Diamond, bull, dart and gem

For k ≥ 2, let Sk denote the (complete) sun with 2k vertices u1, . . . , uk and
w1, . . . , wk such that u1, . . . , uk is a clique, w1, . . . , wk is a stable set and, for
i ∈ {1, . . . , k}, wi is adjacent to ui and ui+1 (index arithmetic modulo k).

A graph is chordal if it contains no induced Ck, k ≥ 4. A graph is strongly
chordal if it is chordal and sun-free - see e.g. [5] for various characterisations of
chordal and strongly chordal graphs. In particular, in a chordal graph G, the max-
imal cliques of G can be arranged in a tree TG (a so-called clique tree of G) such
that for every vertex v, the maximal cliques containing v form a subtree of TG.

In [10,18,22], it is shown that the class of strongly chordal graphs is closed
under powers:

Proposition 1 ([10,18,22]). If G is strongly chordal then, for every k ≥ 1, Gk

is strongly chordal.

A graph is a block graph if its 2-connected components (which are also called
blocks) are cliques. It is well known that the following holds:

Proposition 2. A graph G is a block graph if and only if G is diamond-free
and chordal.

In [17], the notion of k-th Steiner root of an undirected graph G, k ≥ 1, is defined
as follows: A tree T = (VT , ET ) is a k-th Steiner root of the graph G = (VG, EG)
if VG ⊆ VT and xy ∈ EG if and only if dT (x, y) ≤ k. In this case, G is a k-th
Steiner power. The vertices in VT \ VG are called Steiner nodes in T .

In [6], we say that a graph G is a basic k-leaf power if G has a k-leaf root
T such that no two leaves of T are attached to the same parent vertex in T (a
so-called basic k-leaf root). Obviously, for k ≥ 2, the set of leaves having the
same parent node in T form a clique, and G is a k-leaf power if and only if G
results from a basic k-leaf power by substituting cliques into its vertices. If T is
a basic k-leaf root of G then T minus its leaves is a (k − 2)-th Steiner root of G.
Summarising, the following obvious equivalence holds:
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Proposition 3. For a graph G, the following conditions are equivalent for all
k ≥ 2:

(i) G has a k-th Steiner root.
(ii) G is an induced subgraph of the k-th power of a tree.
(iii) G is a basic (k + 2)-leaf power.

Similar to basic k-leaf roots, we say that a (k, l)-leaf root T is basic if no two
leaves x and y of T have a distance satisfying 2 ≤ dT (x, y) ≤ l − k + 1.

3 Some Basic Facts on (k, �)-Leaf Powers

The following facts are well known for k-leaf powers (see, e.g., [2]) and can easily
be shown for (k, l)-leaf powers.

Proposition 4

(i) Every induced subgraph of a (k, l)-leaf power is a (k, l)-leaf power.
(ii) A graph is a (k, l)-leaf power if and only if each of its connected components

is a (k, l)-leaf power.

Let T be a k-leaf root of a graph G. Then, by definition, G is isomorphic to the
subgraph of T k induced by the leaves of T . Since trees are strongly chordal and
induced subgraphs of strongly chordal graphs are strongly chordal, Proposition 1
implies:

Proposition 5. For every k ≥ 1, k-leaf powers are strongly chordal.

This strengthens the fact that k-leaf powers are chordal, which is observed in
some previous papers dealing with k-leaf powers, and also implies that (k, �)-leaf
powers are strongly chordal. The converse implication is not true: In [1], based
on [7], an example of a strongly chordal graph is given which is no k-leaf power,
for any k ≥ 2.

The following simple facts are helpful:

Proposition 6

(i) For k ≤ k′ < �, if G is a (k, �)-leaf power then it is a (k′, �)-leaf power.
(ii) For k < �′ ≤ �, if G is a (k, �)-leaf power then it is a (k, �′)-leaf power.
(iii) If G is a (k, �)-leaf power then it is a (k+2i, �+2i)-leaf power, for all i ≥ 1.
(iv) If G is a (k, �)-leaf power then it is a (k + i(k − 2), � + i(� − 2))-leaf power,

for all i ≥ 1.

Proof. (i) and (ii) are obviously true, by definition. (iii) is shown by subdividing
each edge of a (k, l)-leaf root T of G containing a leaf of T . (iv) is shown by
subdividing each edge of T not containing a leaf of T . 
�

Thus, obviously every k-leaf power is also a (k + 2)-leaf power but it is not
known whether every k-leaf power is also a (k +1)-leaf power. For 3-leaf powers,
however, it is noted in [2]:
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Proposition 7. Every 3-leaf power is a k-leaf power, for all k ≥ 3.

By the proof of Proposition 6 (iv), every 3-leaf power is a (4,6)-leaf power. By
Proposition 6 (iii), we get the next proposition which also implies Proposition 7:

Proposition 8. Every (4, 6)-leaf power is a k-leaf power, for all k ≥ 4, and, in
general, every (k, k + 2)-leaf power is an �-leaf power, for all k ≤ �.

A graph H = (VH , EH) results from a graph G = (VG, EG) by substituting a
clique Q into a vertex v ∈ VG (or substituting a vertex v by a clique Q), if VH is
the union of VG \{v} and the vertices in Q, and EH results from EG by removing
all edges containing v, adding all clique edges in Q and adding all edges between
vertices in Q and in NG(v).

Proposition 9. For every graph G and for every k ≥ 2 and � > k, G is a
(k, �)-leaf power if and only if every graph resulting from G by substituting its
vertices by cliques is a (k, �)-leaf power.

Proof. If T is a (k, �)-leaf root for the (k, �)-leaf power G = (V, E), and G′ is the
result of substituting a clique Q into a vertex u ∈ V , then attach all vertices in
Q at the same parent in T as u and skip u; the resulting tree T ′ is a (k, �)-leaf
root for G′. The converse direction obviously holds. 
�

4 Metric Properties of (k, �)-Leaf Powers

Obviously, a graph is P3-free if and only if it is the disjoint union of cliques, and
G is a 2-leaf power if and only if it is P3-free.

Proposition 10. Let G be a (k, �)-leaf power.

(i) If � > 2k − 2 then G is P3-free.
(ii) If � = 2k − 2 then P3 has a unique (k, �)-leaf root.

Proof. Let T be a (k, �)-leaf root of G, and suppose that G contains a P3 with
vertices a, b, c and edges ab and bc. Then dT (a, b) ≤ k and dT (b, c) ≤ k, i.e.,
dT (a, c) ≤ 2k−2. On the other hand, dT (a, c) ≥ � since ac �∈ E. Thus, � ≤ 2k−2.
If � = 2k − 2 then a (k, �)-leaf root of the P3 has distance exactly � between a
and c, and the leaf b is attached to the central vertex of the path between a and
c. This is obviously the only (k, �)-leaf root of the P3 abc. 
�

A well known fact for distances in trees found by Buneman [8] (respectively, for
block graphs found by Howorka [13]) is the following characterisation in terms
of a four-point condition:

Theorem 1. Let G = (V, E) be a connected graph.

(i) G is a tree if and only if G contains no triangles and G satisfies the following
four-point condition: For all u, v, x, y ∈ V ,

(∗) dG(u, v) + dG(x, y) ≤ max{dG(u, x) + dG(v, y), dG(u, y) + dG(v, x)}.
(ii) G is a block graph if and only if G satisfies (∗), for all u, v, x, y ∈ V .
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From now on, let G be a (k, �)-leaf power with (k, �)-leaf root T . We apply this
four-point condition to various induced subgraphs of G such as P4 as well as
diamond, dart and gem (see Figure 1).

Proposition 11. Let the four vertices a, b, c, d with non-edge ad induce a dia-
mond in G. Then dT (b, c) ≤ 2k − �.

Proof. According to condition (∗), dT (a, d)+dT (b, c) ≤ max{dT (a, b)+dT (c, d),
dT (a, c) + dT (b, d)} ≤ 2k holds since ab, cd, ac, bd ∈ E. Since ad /∈ E, we have
dT (a, d) ≥ �. Thus dT (b, c) ≤ 2k − �. 
�

Proposition 12. Let the four vertices a, b, c, d with edges ab, ac, bc, bd and cd
induce a diamond in G such that b and c can be distinguished in G. Then 2� ≤
3k − 2.

Proof. According to Proposition 11, dT (b, c) ≤ 2k − �. Let z be a vertex which
distinguishes b and c, say bz ∈ E and cz �∈ E. Then dT (b, z) ≤ k and dT (c, z) ≥ �.
The T -paths Pbz between b and z and Pbc between b and c have at least two
vertices in common, namely b and its parent, say b′. Let x be the last common
vertex of Pbz and Pbc. Then dT (x, b) + dT (x, c) ≤ 2k − �, by Proposition 11, and
dT (x, b)+dT (x, z) ≤ k, which implies that dT (x, c)+dT (x, z)+2dT (x, b) ≤ 3k−�.
On the other hand, 2dT (x, b) ≥ 2 and dT (x, c) + dT (x, z) ≥ �, which implies
� + 2 ≤ 3k − �, i.e., 2� ≤ 3k − 2. 
�

Corollary 1. If dart or gem is a (k, �)-leaf power then 2� ≤ 3k − 2.

Proposition 13. Let the four vertices a, b, c, d with edges ab, bc and cd induce
a P4 in G. Then dT (a, d) ≥ 2� − k.

Proof. According to condition (∗), dT (a, c)+dT (b, d) ≤ max{dT (a, b)+dT (c, d),
dT (a, d) + dT (b, c)} holds. Since ac /∈ E and bd /∈ E and T is a (k, �)-leaf root of
G, we have dT (a, c)+dT (b, d) ≥ 2�. On the other hand, since ab ∈ E and cd ∈ E,
we have dT (a, b) + dT (c, d) ≤ 2k, and this sum cannot be the maximum of the
two sums on the right hand side of inequality (∗). Thus dT (a, c) + dT (b, d) ≤
dT (a, d) + dT (b, c) holds, which implies that dT (a, d) ≥ 2� − k. 
�

Proposition 14. If 2� ≤ 3k − 2 then dart and gem are (k, �)-leaf powers.

5 Characterisations of (4, 6)-Leaf Powers

The characterisation of (4, 6)-leaf powers given in this section is very similar to
the following one for 3-leaf (i.e., (3, 4)-leaf) powers:

Theorem 2 ([2,11,21]). The following conditions are equivalent:

(i) G is a 3-leaf power.
(ii) G is (bull, dart, gem)-free chordal.
(iii) G results from substituting cliques into the vertices of a tree.

Now we consider the class of (4, 6)-leaf powers. Recall that every (4, 6)-leaf power
is a k-leaf power, for all k ≥ 4. In [16], the authors study so-called strictly chordal
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graphs which are defined via (rather complicated) hypergraph properties but
finally turn out to be exactly the (dart,gem)-free chordal graphs as Corollary
2.2.2. in [14] says:

Proposition 15 ([14]). G is strictly chordal if and only if it is (dart, gem)-free
chordal.

The next theorem has been our motivation for defining and investigating the
notion of (k, l)-leaf powers:

Theorem 3. The following conditions are equivalent:

(i) G is a (4, 6)-leaf power.
(ii) G is (dart, gem)-free chordal (i.e., strictly chordal).
(iii) G results from substituting cliques into the vertices of a block graph.

For the proof of Theorem 3 (which is omitted due to space constraints) we use:

Proposition 16. Every block graph is a (basic) (4, 6)-leaf power, and a (basic)
(4, 6)-leaf root of a given block graph can be determined in linear time.

Now Theorem 3 together with Proposition 16 implies:

Corollary 2. Strictly chordal graphs are k-leaf powers for all k ≥ 4, and a k-leaf
root of G can be determined in linear time.

Corollary 2 is one of the main results (namely Theorem 4.1) in [16]. It has also
been mentioned in [16] that strictly chordal graphs can be recognised in linear
time. We give a simpler proof for it.

Corollary 3. (4, 6)-leaf powers (and thus also strictly chordal graphs) can be
recognised in linear time.

Proof. By Theorem 3, we know that a graph G is a (4, 6)-leaf power if and only
if G results from substituting cliques into the vertices of a block graph, and we
check the last condition in the following way. For a given graph G, first check
whether G is chordal. If not then G is not a (4, 6)-leaf power, else determine a
clique tree of G (which can be done in linear time, see, e.g., [23]). It is well known
(see, e.g., [19]) that the minimal separators of G are given as the intersections
of cliques which are adjacent in the clique tree.

In a block graph, the minimal separators are the cut vertices. If G results
from substituting cliques into the vertices of a block graph, then the cliques
which replace cut vertices are pairwise disjoint minimal separators (which are
also clique modules).

Thus, determine the minimal separators in G, check whether they are pairwise
disjoint (if not, G is no (4, 6)-leaf power), shrink them to one vertex, respectively,
and check whether the resulting graph G′ is a block graph. If yes, G results from
substituting cliques into the (cut) vertices of the block graph G′, otherwise G is
no (4, 6)-leaf power. 
�
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6 The Main Results

Very similar to Proposition 16, we obtain:

Proposition 17. Every block graph is a (5, 7)-leaf power, and a (5, 7)-leaf root
of a given block graph can be determined in linear time.

Theorem 4

(i) For all k, � with k ≥ 2 and � > 2k − 2, the class of (k, �)-leaf powers is the
class of P3-free graphs, i.e., disjoint unions of cliques.

(ii) For all k, � with odd k = 2i + 1, i ≥ 1, and � = 4i, the class of (k, �)-leaf
powers is the class of 3-leaf powers, i.e., graphs obtained from substituting
cliques into trees.

(iii) For all k, � with k ≥ 2 and 2� > 3k − 2 but � ≤ 2k − 2 and not the situation
of (ii), the class of (k, �)-leaf powers is the class of (4, 6)-leaf powers, i.e.,
graphs obtained from substituting cliques into block graphs.

Proof.
(i): This follows from Proposition 10 and the obvious fact that disjoint
unions of cliques have (k, �)-leaf roots with k ≥ 2 and � > 2k − 2 by simply
connecting the central vertices of stars realising cliques by paths which are long
enough.

(ii): The case k = 3 and thus i = 1 is the case of 3-leaf powers, and we can
refer to Theorem 2. For larger odd k, we first have to show that every (3,4)-
leaf power is a (2i + 1,4i)-leaf power; to show this we subdivide the internal
edges of a (3,4)-leaf root T , more precisely, we replace every internal edge of a
(3,4)-leaf root T by a P4 (P6, respectively) and obtain a (5,8)-leaf root ((7,12)-
leaf root, respectively), and we perform in the same way for larger k. Conversely,
(2i+1,4i)-leaf powers are dart- and gem-free, by Corollary 1, since, for k = 2i+1
and � = 4i, the inequality 2� ≤ 3k − 2 in Corollary 1 is not fulfilled. We claim
that (2i + 1,4i)-leaf powers are also bull-free: By Proposition 10, every P3 has a
unique (2i + 1,4i)-leaf root since � = 4i = 2(2i + 1) − 2 = 2k − 2. Let a, b, c, d, e
induce a bull with the P4 abcd with edges ab, bc, cd and vertex e adjacent to
b and c. Then the unique (2i + 1,4i)-leaf root for the P4 is a path of length
6i−1 between a and d, and b and c are attached as leaves to this path such that
dT (a, b) = 2i+1, dT (b, c) = 2i+1 and dT (c, d) = 2i+1. Now a, b, e induce a P3,
and e, c, d induce a P3, whose roots are unique and require that dT (b, e) = 2i+1
and dT (e, c) = 2i+1, which leads to a contradiction. Thus, (2i+1,4i)-leaf powers
are bull-, dart- and gem-free chordal, and, by Theorem 2, they are 3-leaf powers.

(iii): For k = 2 and k = 3 there is nothing to prove. As 2� > 3k − 2, by
Corollary 1, (k, l)-leaf powers in this case are dart- and gem-free. As they are
also chordal, by Theorem 3, they are (4, 6)-leaf powers. For the other direction,
again by Theorem 3, it suffices to show that every block graph has a basic (k, l)-
leaf root. And, by Proposition 6, it suffices to show this for the largest possible
l, for every k, i.e., for the (k, l)-pairs (4, 6), (5, 7), (6, 10), (7, 11) and so on, i.e.,
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for the (k, l)-pairs (4 + 2i, 6 + 4i), (5 + 2i, 7 + 4i), for all i ≥ 0. Proposition 16
and Proposition 17 together with their proofs deal with the case i = 0. In the
case i = 0, we start with block roots which are stars whose edges are subdivided
exactly once. For a general i ≥ 0, we use the same construction with stars whose
edges are subdivided exactly i + 1 times. 
�

For the graphs H1, . . . , H8 in Theorem 5 see Figure 2. Rautenbach [21] has shown
that a graph without true twins is a 4-leaf power if and only if it is (H1, . . . , H8)-
free chordal. In [6], the following more detailed characterisation is shown:

Theorem 5. G is a basic 4-leaf power if and only if G is (H1, . . . , H8)-free
chordal. In particular, G is the square of a tree if and only if G is 2-connected
(H1, . . . , H5)-free chordal.

In fact, the forbidden subgraphs H1, . . . , H5 are responsible for the blocks of a
basic 4-leaf power, and H6, H7, H8 represent the gluing conditions of blocks.

In Theorem 6 characterising the (8, 11)-leaf powers, we additionally need graph
H9 which is given in Figure 2 and replaces the role of H8 as a gluing condition.

�� ��
�� �� ��

�� �� �� ��

Fig. 2. Some forbidden subgraphs; the graphs H1, . . . , H8 characterise basic 4-leaf
powers.

Theorem 6. The (8, 11)-leaf powers are exactly the graphs obtained from substi-
tuting cliques into (H1, . . . , H7, H9)-free chordal graphs, i.e., the basic (8, 11)-leaf
powers are exactly the (H1, . . . , H7, H9)-free chordal graphs.

Corollary 4. (8, 11)-leaf powers can be recognised in polynomial time.

7 Conclusion

In this paper, we gave structural characterisations of (k, �)-leaf powers, for some
k and � which imply efficient recognition of these classes, and in this way we
improve and extend a recent paper [16] by Kennedy, Lin and Yan on strictly
chordal graphs and leaf powers. Our main results are presented in Theorem 4
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and 6. Other characterisations can be expected for “limit” classes (i.e., for every
k, the largest l which is not yet covered by Theorem 4) such as (12,17)-leaf
powers. We expect that our new notion of (k, �)-leaf powers will shed new light
on the open problem of characterising and recognising k-leaf powers for k ≥ 6. We
also have a characterisation of (6, 8)-leaf powers in terms of induced subgraphs
of squares of block graphs as well as in terms of forbidden induced subgraphs
which will be described in a forthcoming paper.
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