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Abstract. We study deterministic fault-tolerant gossiping protocols in directed
Geometric Radio Networks (in short, directed GRN). Unpredictable node and link
faults may happen during every time slot of the protocol’s execution.

We first consider the single-message model where every node can send at most
one message per time slot. We provide a protocol that, in any directed GRN G of n
nodes, completes gossiping in O(nΔ) time (where Δ is the maximal in-degree of
G) and has message complexity O(n2 ). Both bounds are then shown to be optimal.

As for the combined-message model, we give a protocol working in optimal
completion time O(DΔ) (where D is the maximal source eccentricity) and mes-
sage complexity O(Dn). Finally, our protocol performs the (single) broadcast
operation within the same optimal time and optimal message complexity O(n).

1 Introduction

In a radio network, every node (station) can directly transmit to some subset of the
nodes depending on the power of its transmitter and on the topological characteristics
of the surrounding region. When a node u can directly transmit to a node v, we say
that there is a (wireless) directed link (u, v). The set of nodes together with the set
of these links form a directed communication graph that represents the radio network.
In the radio network model [BGI92, CGR02, CGGPR00, CR06], the communication
is assumed to be synchronous: this allows to focus on the impact of the interference
phenomenon on the network performance. When a node sends a message, the latter is
sent in parallel on all outgoing links. However, since a single radio frequence is used
(see [ABLP89, BGI92, CGGPR00]), when two or more neighbors of a node transmit
at the same time slot, a collision occurs (due to interference) and the message is lost.
So, a node can recover a message from one of its incoming links if and only if this link
is the only one bringing in a message. The broadcast task consists of sending a source
message from a given source node to all nodes of the network. The completion time of
a broadcast protocol is the number of time slots required by the protocol to inform all
(reachable) nodes. A node is informed if it has received the source message.
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Another important task in radio networks is gossiping, i.e., n simultaneous and inde-
pendent broadcast operations, each one from a different node [CGR02, CMS03, GPX05].
The completion time of a gossiping protocol is the number of time slots the proto-
col requires so that every source message m is received by all nodes reachable from
the source of m. We will consider two transmission models: the single-message model
[BII93] and the combined-message one [CGR02]: in the former every node can transmit
and receive at most one source message per time-slot while, in the latter, source mes-
sages can be arbitrarily combined and sent/received in one time slot [CGR02, GPX05].
Broadcasting and gossiping are fundamental communication tasks in radio networks
and they are the subject of several research works in both algorithmic and networking
areas [BGI92, CGR02, CGGPR00, PR97, R96]. It is reasonable to claim that almost
all major theoretical questions related to such tasks can be considered closed as far as
static networks are considered: the network never changes during the entire protocol’s
execution (see Subsection 1.1).

However, radio networks are typically adopted in scenarios where unpredictable
node and link faults happen very frequently. Node failures happen when some hard-
ware or software component of a station does not work, while link failures are due to
the presence of a new (artificial or natural) hurdle that does not allow the communica-
tion along that link. In ad-hoc networking, while it is sometimes reasonable to assume
that nodes (thus the protocol) know the initial topology, nothing is known about the
duration and the location of faults. Such faults may clearly happen even during the ex-
ecution of a protocol. In the sequel, such kind of faults will be called dynamical faults
or, simply, faults.

Theoretical results on broadcast and gossiping protocols in any scenario where the
network topology may change during the protocol’s execution are very few (see Sub-
section 1.1).

The Model of Faulty Networks. We follow a high-level approach by considering ad-
versarial networks [AS98, ABBS01, CMS04, P02, S01]. Arbitrary dynamical faults are
decided by a deterministic adaptive adversary. We analyze the completion time and the
message complexity (i.e. maximum number of transmitted messages) of broadcast and
gossiping protocols with respect to worst-case adversary’s strategies.

The (worst-case) completion time of a Fault-tolerant Broadcast (in short, FB) pro-
tocol on a network G is defined as the maximal number (with respect to any possi-
ble adversarial strategy) of time slots required to inform all nodes reachable from the
source in the unpredictable fault-free part of the network. More precisely, according
to the fault-tolerance model adopted in [KKP98, P02, CMS04], a fault pattern F is a
function (managed by the adaptive adversary) that maps every time-slot t to the subset
F (t) of nodes and links that are faulty during time slot t. The residual subgraph GF is
the graph obtained from G by removing all those nodes and links that belong to F (t),
for some time-slot t during the protocol’s execution. Then, a FB protocol for a graph G
is a broadcast protocol that, for any source s, and for any fault pattern F , guarantees
that every node, which is reachable from s in the residual subgraph GF , will receive the
source message. The residual eccentricity of a node v is its eccentricity in the residual
graph. The eccentricity of v is the maximal oriented distance (i.e. number of hops) from
v to a reachable node.
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The above definitions can be easily extended to Fault-tolerant Gossiping (in short
FG) protocols: For any source s, message ms must be received by every node reachable
from s in GF , for any choice of fault pattern F .

It is important to remark that if a node v is not reachable from a source in the residual
subgraph, then the arrival of ms to v is not considered in the analysis of the completion
time. This assumption might be considered too strong but it is necessary. Indeed, it is
easy to see that any attempt to consider larger residual subgraphs makes the worst-case
completion time of any deterministic FG protocol infinite. This is well-explained by the
following simple game. Consider k informed nodes that are in the in-neighborhood of a
non informed node w. It is easy to see that any deterministic protocol, trying to inform
w, fails forever against the following simple adversary’s strategy: if at least two of the
k in-neighbors transmit then the adversary leaves all edges on, while if there is exactly
one of them transmitting, then the adversary makes only this link faulty. Observe that
w is always connected to the informed part of the network but it will never receive the
message (w is indeed not in the residual graph).

On the other hand, broadcasting and gossiping (and their analysis) in the residual
graph is much harder than the same operation in fault-free radio networks. This is
mainly due to the presence of unknown collisions that the adversary can produce at any
time-slot on the residual graph too. As a matter of fact, while the completion time of
broadcast on general fault-free radio networks of source eccentricity D is O(D+log3 n)
[GPX05], it turns out that there is a class of radio networks of constant source eccen-
tricity where the same operation, in the above fault model, requires Θ(n

√
n) time slots

[CMS04]. So, in general graphs of “small” source eccentricity, the completion time gap
may be exponential. The lower bound Ω(n

√
n) in [CMS04] provides also a strong ev-

idence of the significant difference between dynamical faults (on the residual graph)
and permanent faults: in the latter network scenario, worst-case broadcasting time is
O(n log2 n) [CGR02].

Our Results. We investigate directed Geometric Radio Networks, in short directed
GRN [ENW00, KKKP00, CKOZ03, CCPRV01, DP07]. A directed GRN G(V, E) is
constructed by arbitrarily placing n nodes on the Euclidean plane; then, to each node v
a transmission range rv ≥ 0 is assigned. These transmission ranges uniquely determine
the set E of directed links: (u, v) ∈ E iff d(u, v) ≤ ru, where d(u, v) denotes the
Euclidean distance between u and v. When all nodes have the same transmission range,
the resulting graph is symmetric: this restriction is denoted as symmetric GRN.

We provide the first optimal bounds on the completion time and message complexity
of FG protocols (and FB ones) in directed GRN for both single-message and combined-
message models. More precisely, for the first model, given any directed GRN G of n
nodes and maximal in-degree Δ, our FG protocol works in O(nΔ) time-slots and it has
message complexity O(n2). Such bounds are then shown to be optimal.

Then, we consider the combined-message model and provide an FG protocol that
works in optimal O(DΔ) time-slots (D denotes the maximal residual source eccentric-
ity) and it has message complexity O(n2). We emphasize that this is the first FG proto-
col whose completion-time does not (explicitly) depend on n. Furthermore, the protocol
can be easily analyzed for the (single) broadcast task: in this case, the completion time
is still O(DΔ) while the message complexity reduces to O(n). Both upper bounds are
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again optimal and, as for time complexity, it improves over the best (polynomial-time
constructible) FB upper bound for general graphs by an O(log3 n) factor ([CMS04] -
see Subsection 1.1).

Adopted Techniques. Since the fault pattern is unpredictable, an FG protocol must
have the following “connectivity” property: it must consider all possible paths from a
source to any node reachable from that source. To this aim, our protocols make an itera-
tive use of collision-free families. A collision-free family is a set family (defined on the
out-neighborhoods of the input graph - see Definition 2.1) that induces a transmission
scheduling that somewhat guarantees the above connectivity property and yields no col-
lision. So, when a node is scheduled as transmitter, its message is safely received by all
its out-neighbors in the residual graph. This important fact is one of the key ingredients
to get optimal message complexity (and thus energy efficiency) of our protocols. On
the other hand, the size of the collision-free family is a linear factor in the completion
time of our FG protocols. A crucial step in our protocol design is thus the efficient con-
struction of a collision-free family for the input graphs. We indeed provide an algorithm
that constructs an optimal-size collision-free family for any directed GRN working in
time O(n2).

We observe that, given access to a collision-free family for the input graph, our pro-
tocols run in a fully-distributed fashion. However, in order to construct such optimal
collision-free family it is necessary to know the initial graph topology. In Section 3,
we also provide an efficient distributed construction of collision-free families under a
much weaker knowledge condition: each node construct its own scheduling (so, “its”
component of the collision-free family) by assuming that it only knows its position and
a good approximation of the minimal distance among nodes. We then prove that if the
(unknown) initial topology is well spread [CPS04], the returned collision-free family
has optimal size, thus yielding the same protocol’s performance given by the central-
ized construction. Well spread instances (see Definition 3.8) are a natural and broad
generalization of grid networks. Due to lack of space, some proofs are omitted and they
are available in the full version [CMPS07].

1.1 Related Works

Permanent Faults. In [KKP98], the authors consider the broadcast operation in pres-
ence of permanent unknown node faults for two restricted classes of networks. They
derive a Θ(D+log min{Δ, t}) bound where D is the source eccentricity in the residual
graph and t is the number of faults. More recently, the issue of permanent-fault-tolerant
broadcasting in general networks has been studied in [CGGPR00, CGR02, CMS03]. In
these papers, several lower and upper bounds on the completion time of broadcasting are
obtained in the unknown fault-free network model. We observe that the results obtained
in unknown networks apply to general networks with permanent faults. In particular, in
[CMS03], an Ω(n log D) lower bound for the broadcast completion time is proved. The
best general upper bound is O(n log2 n) [CGR02]. In [CMS03], the authors provide a
protocol having O(DΔ log2 n) completion time.

In [GL02], a gossiping protocol for unknown networks is given that works in
O(n1.5 log2 n) time. [CMS03] provides a permanent-fault tolerant gossiping protocol
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having O(DΔ2 log2 n) completion time. The above results work for the combined-
message model. As for the single-message model, in [CMS03], a deterministic gossip-
ing protocol is given that has O(nΔ2 log3 n) completion time. We also mention the pro-
tocol for unknown directed GRN working in O(n) time given in [DP07], even though
it does not work for faulty networks.

Dynamical Faults. We emphasize that all the above protocols do not work in presence
of dynamical faults. As mentioned before, this is mainly due to the collisions yielded
by any unpredictable wake-up of a faulty node/link during the protocol execution. Our
dynamical fault model has been studied in [CMS04] where the round robin strategy is
proved to be optimal for general graphs. Then, they show the existence of a determinis-
tic FG protocol having O(DΔ log n) completion time. The protocol is based on a prob-
abilistic construction of ad-hoc strongly-selective families [CMS03, I02] for general
graphs. Such families have a weaker property than collision-free ones: this weakness
yields a not efficient message complexity. By adopting the efficient construction of such
families in [I97], they can efficiently construct a FG protocol having O(DΔ log3 n)
completion time. These protocols only hold for the combined-message model. In [PP05]
an initial graph is given and, at each time slot, every node is faulty with probability p,
where p is a fixed positive constant such that 0 < p < 1. They prove an O(opt log n)
bound for the broadcast completion time where opt is the optimal completion time in
the fault-free case. They also prove that it is impossible to achieve O(opt + logn) com-
pletion time.

It is not hard to see that, when the graph is symmetric, any distance-2 coloring
[C06] of size k yields a collision-free family of size k and viceversa. For some classes
of undirected graphs, there are efficient constant-factor approximation algorithms that
find a distance-2 coloring. In particular, for unit disk graphs [C06, CCJ90, SM97] a 7-
approximation algorithm is presented in [SM97]. Since symmetric GRN in the plane are
equivalent to unit disk graphs, the latter algorithm can be used to construct a collision-
free family for this class of symmetric radio networks. However, this coloring algorithm
does not work for directed GRN.

2 Collision-Free Families and Fault-Tolerant Gossiping

In this section we introduce collision-free families and we show how to exploit them to
design fault-tolerant gossiping protocols.

Definition 2.1 (Collision-free families). Let G(V, E) be a directed graph and let V ′

be the set of nodes that have at least one out-neighbor. A collision-free family S for G
is a partition S = {S1, . . . , Sk} of V ′, such that, for each S ∈ S and for each x, y ∈ S
with x �= y, Nout(x) ∩ Nout(y) = ∅.

In the sequel, we assume that, given any directed graph G(V, E), we have at hand a
collision-free family S = {S1, S2, . . . , Sk} for G. In Section 3 we will then show how
to construct collision-free families of small size.

Single-Message Model. In this model every transmission can contain only one of the
source messages. We assume that each message contains the unique ID number of its
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source so that different messages have different ID’s. The following FG protocol makes
use of message IDs to define a priority queue in every node.

Protocol PRIO-SELECT(S) consists of a sequence of consecutive phases. Each phase
consists of k = |S| time-slots. At the very beginning, the priority queue of every node
u contains only mu. At the beginning of every phase, every node v extracts (if any) the
message m̂ of highest priority (i.e. the maximal ID number) from its priority queue.
Then, at time-slot j of a phase, node v acts according to the following rules

- If v ∈ Sj and m̂ exists then v transmits m̂.
- In all other cases, v acts as receiver. If v receives a message m for the first time then

m is enqueued, otherwise it is discarded.

Theorem 2.2. Given a collision-free family S of size k for a directed graph G,
PRIO-SELECT(S) completes fault-tolerant gossiping in G within O(nk) time slots and
message complexity O(n2).

Combined-Message Model. In this model, source messages can be arbitrarily com-
bined and sent in one transmission.

Protocol MULTI-SELECT(S). Each node v keeps the set Mold(v) of the messages al-
ready sent by node v and the set Mnew(v) of the messages that node v has to send. At
the beginning of the protocol, Mnew(v) contains only the source message of node v and
the set Mold(v) is empty. The protocol consists of a sequence of consecutive phases.
Each phase consists of k = |S| time-slots. All phases are identical. At time slot j of a
phase, node v acts according to the following rules

- If v ∈ Sj and Mnew(v) is not empty then v transmits all the messages in Mnew(v)
and moves all these messages to the set Mold(v);

- In all other cases, v acts as receiver. When v receives a message m, if it is not in
Mold(v) then it is added to Mnew(v). Otherwise m is discarded.

Theorem 2.3. Given a collision-free family S of size k for a directed graph G,
MULTI-SELECT(S) completes fault-tolerant gossiping in G within O(Dk) time-slots
and message complexity O(Dn), where D is the maximal residual source eccentricity.
Moreover, an easy adaptation of MULTI-SELECT(S) for the broadcast operation works
with the same completion time while the message complexity reduces to O(n).

3 Explicit Constructions of Collision-Free Families

Centralized Construction. Given a set V of points (i.e. nodes) in R
2 and a range

assignment r : V → R
+, the directed GRN is uniquely determined and it will be

denoted as Gr(V ). Indeed, for each node v ∈ V , let B(v) be the closed disk of center
v and radius r(v), i.e., B(v) = {x ∈ R

2 : d(v, x) � r(v)}. We define the in-
neighborhood of a node v ∈ V as the set N in(v) = {w ∈ V : v ∈ B(w)}. We define
Δ(v) = |N in(v)| and the maximal in-degree of Gr(V ) as Δ = maxv∈V Δ(v).

We will show that, given any directed GRN Gr(V ) as input, the following algorithm
CFF returns a collision-free family S for Gr(V ) of size O(Δ). Since Ω(Δ) is a trivial
lower bound for such families, the one returned by CFF is asymptotically optimal.
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The algorithm constructs every set of S by inserting nodes whose range disks are
pairwise disjoint. Nodes are inserted in a non increasing order w.r.t. their ranges. This
set construction is repeated until no node of V ′ is left outside S.

Algorithm CFF (a finite set V ⊆ R
2, a function r : V → R

+)
1 Let X := V ′ = {v ∈ V : Nout(v) �= ∅}; S := ∅; i := 0;
2 while X �= ∅ do
3 i := i + 1; Si := ∅; U := ∅; Y := X;
4 while Y �= ∅ do
5 Choose v ∈ Y such that r(v) is maximum;
6 if U ∩ B(v) = ∅ then
7 Si := Si ∪ {v}; U := U ∪ B(v);
8 Y := Y − {v};
9 S := S ∪ {Si}; X := X − Si;
10 return S .

It is easy to see that, by using standard data structures, the algorithm works in O(n2)
time. Moreover, family S returned by the algorithm is collision free by construction.
We now provide a preliminary bound on the size of S. For every v ∈ V ′, we define the
set I(v) of all nodes of V ′ that could interfere with v and that have range not smaller
than the range of v, i.e., I(v) = {w ∈ V ′ : B(v) ∩ B(w) �= ∅ and r(w) � r(v)}.

Lemma 3.1. Family S has size at most maxv∈V ′ |I(v)|.

Proof. At every iteration of the external loop (line 2), a new set of S is constructed.
Consider the i-th iteration and let v ∈ V ′ be any node not yet inserted in any of sets
S1, S2, . . . , Si−1 constructed in the previous iterations. For every j = 1, 2, . . . , i − 1,
Sj must contain at least one node in I(v). Indeed, assume by contradiction that there
exists j � i − 1 such that Sj ∩ I(v) = ∅. Then, for every w ∈ Sj with r(w) � r(v),
it holds that B(w) ∩ B(v) = ∅. When the algorithm selects v in line 5, the condition
at line 6 is true, so v should be inserted in Sj : a contradiction. Since the sets of S
are pairwise disjoints, the number of iterations of the external loop does not exceed
maxv∈V ′ |I(v)|. 
�

Our next goal is to prove that maxv∈V ′ |I(v)| ∈ O(Δ). To this aim, we will show that,
for every v ∈ V ′, we can partition R

2 into a constant number of regions so that each
region contains at most Δ nodes of I(v).

Lemma 3.2. For every v ∈ V ′, it holds that |B(v) ∩ I(v)| � Δ.

Proof. Nodes in I(v) have range at least r(v). Hence, all nodes of I(v) in B(v) are
points of N in(v), i.e., I(v) ∩ B(v) ⊆ N in(v). 
�

We now consider the region outside disk B(v) and define the circular crown

Cλ(v) = {y ∈ R
2 : r(v) < d(v, y) � λr(v)}, where λ > 1.

Lemma 3.3. Let 1 < λ < 2 and let k ∈ N be large enough such that cos 2π
k � λ/2.

Then, for any v ∈ V ′, Cλ(v) contains at most kΔ nodes of I(v).
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Proof. Consider a polar coordinate system centered in v and consider the partition
of Cλ(v) defined by the regions ]r(v), λr(v)] × [ϑi, ϑi+1[ where ϑi = 2πi

k for i =
0, 1, . . . , k−1. Then, since cos 2π

k � λ/2, it is easy to see that the square of the maximal
distance between two points in the same region is r(v)2 +λ2r(v)2 − 2λr(v)2 cos 2π

k �
r(v)2. For any w ∈ I(v), it holds that r(w) � r(v), so w is in the in-neighborhood of
all points in the same region of w. So, in every region there are at most Δ points of I(v)
and, since there are k regions in Cλ(v), the thesis follows. 
�

Consider the function g(λ) = λ2+2λ−1
2λ2 and observe that 1/2 < g(λ) < 1, for any

λ > 1. It is possible to prove that, if k is such that cos 2π
k � g(λ), then for any a � b �

λ it holds that

a2 + b2 − 2ab cos
2π

k
� (a − 1)2. (1)

We will use this fact in proving next Lemma.

Lemma 3.4. Let λ > 1 and let k ∈ N be large enough such that cos 2π
k � g(λ). Then,

for any v ∈ V ′, there are at most kΔ nodes of I(v) outside B(v) ∪ Cλ(v).

Proof. Consider a polar coordinate system centered in v, and define a partition of the
space outside B(v) ∪ Cλ(v) in the regions [λr(v), +∞[ × [ϑi, ϑi+1[ where ϑi = 2πi

k
for i = 0, 1, . . . , k − 1. Let x = (�x, ϕx) and y = (�y, ϕy) two nodes of I(v) that lie
in the same region and suppose wlog that �x � �y . Then, two constants a, b ∈ R exist
with a � b � λ such that �x = a · r(v) and �y = b · r(v). We thus get

d(x, y)2 = �2
x + �2

y − 2�x�y cos (ϕx − ϕy) � r(v)2
(

a2 + b2 − 2ab cos
2π

k

)

where in the inequality we used the fact that x and y lie in the same region. From (1),
we get d(x, y)2 � r(v)2(a − 1)2 = (a · r(v) − r(v))2 = (�x − r(v))2. Since x ∈ I(v),
it must hold that B(x) ∩ B(v) �= ∅, so �x − r(v) � r(x), and d(x, y)2 � r(x)2.
Therefore, y lies in B(x) and, thus, x ∈ N in(y). It follows that, for every region T , if
y ∈ T ∩ I(v) is a node with minimum distance from v, i.e, a node with minimum �y ,
then T ∩ I(v) ⊆ N in(y). This implies that in every region there are at most Δ points
of I(v): since the regions are k, the thesis follows. 
�

Lemma 3.5. Let 1 < λ < 2 and let k ∈ N be such that cos 2π
k � max

{
λ
2 , g(λ)

}
.

Then, for any v ∈ V ′, it holds that |I(v)| � (1 + 2k)Δ.

Proof. Consider the partition of R
2 into the three sets: B(v), Cλ(v), and the com-

plement of B(v) ∪ Cλ(v). By combining Lemmas 3.2, 3.3, and 3.4, we get |I(v)| �
(1 + k + k)Δ. 
�

Theorem 3.6. Algorithm CFF returns a collision-free family S for Gr(V ) of size at
most cΔ, where c � 33.

Proof. Family S is collision-free for Gr(V ) by construction. Let λ be such that 1 <
λ < 2. From Lemmas 3.1 and 3.5, we obtain |S| � maxv∈V ′ |I(v)| � (1 + 2k)Δ,
with k ∈ N such that cos(2π/k) � max{λ/2, g(λ)}. Then, in order to minimize k,
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we choose λ such that λ/2 = (λ2 + 2λ − 1)/(2λ2). Consider the function f(λ) =
λ3 − λ2 − 2λ + 1. Then f(1) = −1 and f(2) = 1, so there exists a solution between 1
and 2. By numerical arguments, we can set λ ≈ 1.8 and get

cos
2π

k
� max

{
λ

2
,

λ2 + 2λ − 1
2λ2

}
, for any k � 16. 
�

Distributed Construction. Let us consider GRN Gr(V ) where r(v) = R for each
v ∈ V (so Gr(V ) is symmetric). Directed GRN will be discussed at the end of this
section. Our distributed construction of a collision-free family for Gr(V ) is based on
the following idea. Consider a partition of R

2 into squares small enough to guarantee
that in each square there is at most one node of V . Then we partition the set of such
small squares so that the distance between two squares in the same set of the partition
is at least 2R. Finally, consider the subsets of V obtained by collecting all nodes in the
same set of squares.

Let γ = min{d(u, v) : u, v ∈ V, u �= v}. For any x ∈ R we define [x] as
the nearest integer to x. We now assume that each node knows its own position, the
transmission range R and the minimum distance γ. In the following protocol, ε > 0 is
an arbitrary small constant: we need it in order to have strict inequalities.

PROTOCOL FOR NODE u (position (xu, yu), transmission range R, min distance γ)
1 Define λ = γ/

√
2 − ε;

2 Define k = �(2R + ε)/λ� + 1;
3 Define x̂u = [xu/λ] and ŷu = [yu/λ];
4 Return f(u) = (x̂u mod k, ŷu mod k);

Let us consider the family S = {Si,j}i,j=0,1,...,k−1 where Si,j = {u ∈ V : f(u) =
(i, j)}. We now show that S is a collision-free family.

Theorem 3.7. Family S is collision-free family of size O(R2/γ2) for Gr(V ).

Sketch of the Proof. By definition of k (line 2 of Protocol) we have that |S| = k2 ∈
O(R2/γ2). Let u, v ∈ Si,j with u �= v. Assume, by contradiction, that Nout(u) ∩
Nout(v) �= ∅ and let w ∈ Nout(u) ∩ Nout(v). So d(u, w) � R and d(v, w) � R.
By triangular inequality we get d(u, v) � 2R, but this is a contradiction, because since
u, v are two different nodes in the same set of the family, by construction it must be
d(u, v) > 2R. 
�
We now show that when nodes are well spread, the size of the family is asymptotically
optimal.

Definition 3.8 (Well spread instances). Let V ⊆ R
2 be a set of n points in the Eu-

clidean plane. Let γ and Γ be respectively the minimal and the maximal distance be-
tween two points in V . Let c be any positive constant, set V is said c-well spread if
Γ/γ � c

√
n.

Observe that square-grid networks are the most regular case of c-well spread instances
where c =

√
2 [CPS04].
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Theorem 3.9. If V ⊆ R
2 is a c-well spread instance, then R2/γ2 ∈ O(c2Δ), where Δ

is the maximal degree of Gr(V ).

Proof. There exists a disk of radius Γ that contains all the n nodes. That disk can be
covered with O(Γ 2/R2) disks of radius R. Then there exists a disk U with radius R

such that it contains Ω
(

nR2

Γ 2

)
nodes. Since V is c-well spread, n/Γ 2 ∈ Ω(1/c2γ2)

and so disk U contains Ω(R2/c2γ2) nodes. It follows that R2/γ2 ∈ O(c2Δ). 
�

Our distributed construction also works for directed GRN where parameter R is re-
placed by the maximal node range Rmax. Theorem 3.7 holds with Rmax in place of R
and Theorem 3.9 holds with Rmin in place of R, where Rmin is the minimal node range.
Thus if Rmax ∈ O(Rmin) the construction is still optimal.

4 Optimal Bounds

The results obtained in the previous two sections allow us to get optimal bounds for
fault-tolerant protocols.

Single-Message Model

Corollary 4.1. Given a directed GRN Gr(V ), there exists an explicit FG protocol hav-
ing completion time O(nΔ) and message complexity O(n2), where Δ is the maximal
in-degree of Gr(V ).

There exists a distributed FG protocol that, on any c-well spread symmetric GRN
Gr(V ), completes gossiping in O(nc2Δ) time slots and has message complexity O(n2).
The protocol requires the knowledge of the minimal distance γ.

Theorem 4.2. For any sufficiently large n and Δ, such that n−Δ ∈ Ω(n), there exists
a GRN Gr(V ) of n nodes and maximal in-degree Δ such that, for any FG protocol for
Gr(V ), an adversary’s fault-pattern F exists such that the protocol is forced to execute
Ω(nΔ) time-slots and to have message complexity Ω(n2).

Combined-Message Model

Corollary 4.3. Given a directed GRN Gr(V ), there exists an explicit FG protocol hav-
ing completion time O(DΔ) and message complexity O(Dn), where D is the maximal
residual source eccentricity.

There exists a distributed FG protocol that, on any c-well spread symmetric GRN
Gr(V ), completes gossiping in O(Dc2Δ) time slots and has message complexity
O(Dn). The protocol requires the knowledge of the minimal distance γ.

As for the (single) broadcast operation, the same protocols work in the same com-
pletion time while the message complexity reduces to O(n) that is optimal.

Theorem 4.4. For any n, Δ and D such that DΔ � n, there exists a GRN Gr(V ) of
n nodes and maximal in-degree Δ such that, for any FB protocol for Gr(V ), there are
a source s ∈ V and an adversary’s fault-pattern F , yielding source eccentricity D,
such that the protocol is forced to execute Ω(DΔ) time-slots and to have message
complexity Ω(n).
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As for the case D ·Δ > n, we observe that a lower bound Ω(n
√

n) holds for FB proto-
cols on directed GRN of unbounded maximal in-degree and residual source eccentricity
D = Θ(

√
n). This result is an easy consequence of the lower bound for arbitrary graphs

proved in [CMS04]: The graph yielding such lower bound is indeed a GRN of maximal
in-degree Δ = Θ(n).

5 Open Questions

It is an open question whether the O(Dn) bound for the FG message complexity is op-
timal. Another future work is that of extending our distributed construction of collision-
free families to other important classes of radio networks. Finally, an interesting issue
is that of designing randomized FG protocols. Such protocols may yield a much better
completion time on the residual graph and, more importantly, they might have good
performances outside the residual graph too.
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