
Deterministic Rendezvous in Graphs

Anders Dessmark1, Pierre Fraigniaud2, and Andrzej Pelc3

1 Dept. of Computer Science, Lund Univ., Box 118, S-22100 Lund, Sweden.
andersd@cs.lth.se

2 CNRS, LRI, Univ. Paris Sud, 91405 Orsay, France. http://www.lri.fr/˜pierre
3 Dép. d’Informatique, Univ. du Québec en Outaouais, Hull, Québec J8X 3X7,

Canada. pelc@uqo.ca

Abstract. Two mobile agents having distinct identifiers and located
in nodes of an unknown anonymous connected graph, have to meet at
some node of the graph. We present fast deterministic algorithms for this
rendezvous problem.

1 Introduction

Two mobile agents located in nodes of a network, modeled as an undirected
connected graph, have to meet at some node of the graph. This task is known
as the rendezvous problem in graphs, and in this paper we seek efficient deter-
ministic algorithms to solve it. If nodes of the graph are labeled then agents can
decide to meet at a predetermined node and the rendezvous problem reduces to
graph exploration. However, in many applications, when rendezvous is needed in
an unknown environment, such unique labeling of nodes may not be available,
or limited sensory capabilities of the agents may prevent them from perceiving
such labels. Hence it is important to be able to program the agents to explore
anonymous graphs, i.e., graphs without unique labeling of nodes. Clearly, the
agents have to be able to locally distinguish ports at a node: otherwise, an agent
may even be unable to visit all neighbors of a node of degree 3 (after visiting
the second neighbor, the agent cannot distinguish the port leading to the first
visited neighbor from that leading to the unvisited one). Consequently, agents
initially located at two nodes of degree 3, might never be able to meet. Hence we
make a natural assumption that all ports at a node are locally labeled 1, . . . , d,
where d is the degree of the node. No coherence between those local labelings is
assumed. We also do not assume any knowledge of the topology of the graph or
of its size. Likewise, agents are unaware of the distance separating them.

Agents move in synchronous rounds. In every round, an agent may either
remain in the same node or move to an adjacent node. We consider two scenarios:
simultaneous startup, when both agents start executing the algorithm at the
same time, and arbitrary startup, when starting times are arbitrarily decided by
the adversary. In the former case, agents know that starting times are the same,
while in the latter case, they are not aware of the difference between starting
times, and each of them starts executing the rendezvous algorithm and counting
rounds since its own startup. The agent who starts earlier and happens to visit

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 184–195, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 824.882] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Deterministic Rendezvous in Graphs 185

the starting node of the later agent before the startup of this later agent, is not
aware of this fact, i.e, we assume that agents are created at their startup time
and not waiting in the node before it.

An agent, currently located at a node, does not know the other endpoints of
yet unexplored incident edges. If the agent decides to traverse such a new edge,
the choice of the actual edge belongs to the adversary, as we are interested in
the worst-case performance. We assume that, if agents get to the same node in
the same round, they become aware of it and rendezvous is achieved. However, if
agents cross each other along an edge (moving in the same round along the same
edge in opposite directions) they do not notice this fact. In particular, rendezvous
is not possible in the middle of an edge. The time used by a rendezvous algorithm,
for a given initial location of agents in a graph, is the worst-case number of rounds
since the startup of the later agent until rendezvous is achieved, where the worst
case is taken over all adversary decisions, whenever an agent decides to explore
a new edge adjacent to a currently visited node, and over all possible startup
times (decided by the adversary), in case of the arbitrary startup scenario.

If agents are identical, i.e., they do not have distinct identifiers, and execute
the same algorithm, then deterministic rendezvous is impossible even in the
simplest case when the graph consists of two nodes joined by an edge, agents are
initially located at both ends of it and start simultaneously: in every round both
agents will either stay in different nodes or will both move to different nodes,
thus they will never meet. Hence we assume that agents have distinct identifiers,
called labels, which are two different integers written as binary strings starting
with 1, and that every agent knows its own label. Now, if both agents knew both
labels, the problem can be again reduced to that of graph exploration: the agent
with smaller label does not move, and the other agent searches the graph until
it finds it. However, the assumption that agents know each other may often be
unrealistic: agents may be created in different parts of the graph in a distributed
fashion, oblivious of each other. Hence we assume that each agent knows its
own label but does not know the label of the other. The only initial input of a
(deterministic) rendezvous algorithm executed by an agent is the agent’s label.
During the execution of the algorithm, an agent learns the local port number by
which it enters a node and the degree of the node.

In this setting, it is not even obvious that (deterministic) rendezvous is at all
possible. Of course, if the graph has a distinguished node, e.g., a unique node of
a given degree, agents could decide to meet at this node, and hence rendezvous
would be reduced to exploration (note that an agent visiting a node becomes
aware of its degree). However, a graph may not have such a node, or its existence
may be unknown and hence impossible to use in the algorithm. For example, it
does not seem obvious apriori if rendezvous can be achieved in a ring.
The following are the two main questions guiding our research:
Q1. Is rendezvous feasible in arbitrary graphs?
Q2. If so, can it be performed efficiently, i.e., in time polynomial in the number
n of nodes, in the difference τ between startup times and in labels L1, L2 of the
agents (or even polynomial in n, τ and log L1, log L2)?

186 A. Dessmark, P. Fraigniaud, and A. Pelc

Our results. We start by introducing the problem in the relatively simple
case of rendezvous in trees. We show that rendezvous can be completed in time
O(n + log l) on any n-node tree, where l is the smaller of the two labels, even
with arbitrary startup. We also show that for some trees this complexity cannot
be improved, even with simultaneous startup. Trees are, however, a special case
from the point of view of the rendezvous problem, as any tree has either a central
node or a central edge, which facilitates the meeting (incidentally, the possibility
of the second case makes rendezvous not quite trivial, even in trees). As soon as
the graph contains cycles, the technique which we use for trees cannot be applied.
Hence it is natural to concentrate on the simplest class of such graphs, i.e., rings.
We prove that, with simultaneous startup, optimal time of rendezvous on any
ring is Θ(D log l), where D is the initial distance between agents. We construct
an algorithm achieving rendezvous with this complexity and show that, for any
distance D, it cannot be improved. With arbitrary startup, Ω(n + D log l) is a
lower bound on the time required for rendezvous on an n-node ring. Under this
scenario, we show two rendezvous algorithms for the ring: an algorithm working
in time O(n log l), for known n, and an algorithm polynomial in n, l and the dif-
ference τ between startup times, if n is unknown. For arbitrary graphs, our main
contribution is a general feasibility result: rendezvous can be accomplished on
arbitrary connected graphs, even with arbitrary startup. If simultaneous startup
is assumed, we construct a generic rendezvous algorithm, working for all con-
nected graphs, which is optimal for the class of graphs of bounded degree, if the
initial distance between agents is bounded.

Related work. The rendezvous problem has been introduced in [16]. The vast
literature on rendezvous (see the book [3] for a complete discussion and more
references) can be divided into two classes: papers considering the geometric
scenario (rendezvous in the line, see, e.g., [10,11,13], or in the plane, see, e.g., [8,
9]), and those discussing rendezvous in graphs, e.g., [1,4]. Most of the papers, e.g.,
[1,2,6,10] consider the probabilistic scenario: inputs and/or rendezvous strategies
are random. A natural extension of the rendezvous problem is that of gathering
[12,15,17], when more than 2 agents have to meet in one location. To the best of
our knowledge, the present paper is the first to consider deterministic rendezvous
in unlabeled graphs assuming that each agent knows only its own identity.

Terminology and notation. Labels of agents are denoted by L1 and L2. The
agent with label Li is called agent i. (An agent does not know its number, only
its label). Labels are distinct integers represented as binary strings starting with
1. l denotes the smaller of the two labels. The difference between startup times
of the agents is denoted by τ . The agent with earlier startup is called the earlier
agent and the other agent is called the later agent. In the case of simultaneous
startup, the earlier agent is defined as agent 1. (An agent does not know if it is
earlier or later). We use the word “graph” to mean a simple undirected connected
graph. n denotes the number of nodes in the graph, ∆ the maximum degree, and
D the distance between initial positions of agents.

Deterministic Rendezvous in Graphs 187

2 Rendezvous in Trees

We introduce the rendezvous problem in the relatively simple case of trees. In this
section we assume that agents know that they are in a tree, although they know
neither the topology of the tree nor its size. Trees have a convenient feature from
the point of view of rendezvous. Every tree has either a central node, defined as
the unique node minimizing the distance from the farthest leaf, or a central edge,
defined as the edge joining the only two such nodes. This suggests an idea for a
natural rendezvous algorithm, even for arbitrary startup: explore the tree, find
the central node or the central edge, and try to meet there. Exploring the tree is
not a problem: an agent can perform DFS, keeping a stack for used port numbers.
At the end of the exploration, the agent has a map of the tree, can identify the
central node or the central edge, and can find its way either to the central node
or to one endpoint of the central edge, in the latter case knowing which port
corresponds to the central edge. In the first case, rendezvous is accomplished
after the later agent gets to the central node. In the second case, the rendezvous
problem in trees can be reduced to rendezvous on graph K2 consisting of two
nodes joined by an edge. We now show a procedure for rendezvous in this simplest
graph.

The Procedure Extend-Labels, presented below, performs a rendezvous on
graph K2 in the model with arbitrary startup. The procedure is formulated
for an agent with label L. Enumerate the bits of the binary representation of
L from left to right, i.e., starting with the most significant bit. The actions
taken by agents are either move (i.e., traverse the edge) or stay (i.e., remain in
place for one round). Rounds are counted from the starting round of the agent.
Intuitively, the behavior of the agent is the following. First, transform label L
into the string L∗ by writing bits 10 and then writing twice every bit of L. Then
repeat indefinitely string L∗, forming an infinite binary string. The agent moves
(stays) in round i, if the ith position of this infinite string is 1 (0). Below we give
a more formal description of the algorithm.

Procedure Extend-Labels
In round 1 move.
In round 2 stay.
In rounds 3 ≤ i ≤ 2�log L� + 4, move if bit �(i − 2)/2� of L is 1, otherwise stay.
In rounds i > 2�log L� + 4 behave as for round 1 + (i − 1 mod 2�log L� + 4).

The following illustrates the execution of Procedure Extend-Labels for label 101:
1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 · · ·

Theorem 1. Procedure Extend-Labels performs rendezvous on graph K2 in at
most 2�log l� + 6 rounds.

Proof. Assume, without loss of generality, that agent 1 starts not later than
agent 2. Rounds are counted from the startup of agent 2. The proof is divided
into four cases.
Case 1. τ is odd. In this case, either agent 1 stays in the second round or a
rendezvous is accomplished in one of the first two rounds. If agent 1 stays in the

188 A. Dessmark, P. Fraigniaud, and A. Pelc

second round, since this is an odd round for this agent, it also stays in the third
round. In the third round, however, agent 2 moves, as its action corresponds to
the most significant bit of L2, which is 1. Thus rendezvous is accomplished no
later than in round 3.
Case 2. τ is even and not divisible by 2�log L1� + 4. In this case, the actions
of agent 1 in the first two rounds are decided by the same bit in L1. Thus, the
actions of the two agents will be different in one of the rounds and a rendezvous
is accomplished no later than in round 2.
Case 3. τ is even and divisible by 2�log L1� + 4, and �log L1� = �log L2�. In
this case, at least one bit must be different in both labels. Let b be the position
of this bit. In round 2b + 1 the behavior of the two agents is different, and a
rendezvous is accomplished. Thus, rendezvous is accomplished no later than in
round 2�log L1� + 3.
Case 4. τ is even and divisible by 2�log L1� + 4, and �log L1� �= �log L2�. In
this case, the actions of the agent with the smaller label are different in rounds
2�log l� + 5 and 2�log l� + 6, while the other agent performs the same action.
This results in a rendezvous no later than in round 2�log l� + 6. ��

We can now formulate the following general algorithm for rendezvous in trees.

Algorithm Rendezvous-in-Trees
(1) Explore the tree
(2) if there is a central node then go to this node and stay;

else go to one endpoint of the central edge;
execute Procedure Extend-Labels;

Theorem 2. Algorithm Rendezvous-in-Trees performs rendezvous on any n-
node tree in O(n + log l) rounds. On the other hand, there exist n-node trees
on which any rendezvous algorithm requires time Ω(n + log l), even with simul-
taneous startup.

Proof. The upper bound follows the fact that exploration of an n-node tree can
be done in time O(n). Now, consider an n-node tree, with n = 2k, consisting
of two stars of degree k − 1 whose centers are joined by an edge. Suppose that
agents are initially located in centers of these stars and start simultaneously.
The adversary can prevent an agent from finding the edge joining their initial
positions for 2(k−1) ∈ Ω(n) rounds. (After each unsuccessful attempt, the agent
has to get back to its starting node.) This proves the lower bound Ω(n) on the
time of rendezvous. In order to complete the proof, it is enough to show the lower
bound Ω(log l). We prove it in the simpler case of the two-node graph. (This also
proves that Procedure Extend-Label is optimal for the two-node graph.) It is easy
to extend the argument for our tree.

For any integer x > 2 and any rendezvous algorithm working in t < x − 1
rounds, we show two labels L1 and L2 of length x, such that the algorithm fails
if agents placed on both ends of the edge have these labels. Let Si be the binary
sequence of length t describing the move/stay behavior of agent i (if the agent
moves in round r, the rth bit of its sequence is 1, otherwise it is 0). Since Si is a
function of Li, and there are only 2t < 2x−1 possible sequences Si, it follows that

Deterministic Rendezvous in Graphs 189

there exist two distinct labels L1 and L2 of length x, such that S1 = S2. Pick
those two labels. During the first t rounds, agents exhibit the same move/stay
behavior, and hence they cannot meet. ��

3 Rendezvous in Rings

In this section we assume that agents know that the underlying graph is a ring,
although, in general, they do not know its size.

3.1 Simultaneous Startup

We provide an algorithm that performs rendezvous on a ring in the simultaneous
startup model, and prove that it works in an asymptotically optimal number of
rounds. In order to simplify the presentation, we first propose two algorithms
that work only under certain additional conditions, and then show how to merge
these algorithms into the final algorithm, working in all cases. Our first algo-
rithm, Similar-Length-Labels, works under the condition that the lengths of the
two labels are similar, more precisely, �log log L1� = �log log L2�. Let the ex-
tended label L∗

i , be a sequence of bits of length 2�log log Li�+1, consisting of the
binary representation of label Li preceded by a (possibly empty) string of ze-
ros. For example, the label 15 corresponds to the binary sequence 1111, while
the label 16 corresponds to 00010000. The algorithm is formulated for an agent
with label L and corresponding extended label L∗. Let m = 2�log log L�+1 be the
length of L∗. The algorithm works in stages numbered 1, 2, . . . until rendezvous
is accomplished. Stage s consists of m phases, each of which has 2s+1 rounds.

Algorithm Similar-Length-Labels
In phase b of stage s do:
if bit b of L∗ is 1 then

(1) move for 2s−1 rounds in an arbitrary direction from the starting node;
(2) move for 2s rounds in the opposite direction;
(3) go back to the starting node

else stay for 2s+1 rounds.

Lemma 1. Algorithm Similar-Length-Labels performs rendezvous in O(D log l)
rounds on a ring, if �log log L1� = �log log L2�.

Proof. If �log log L1� = �log log L2�, the lengths of the extended labels of both
agents are equal, and therefore any phase b of any stage s of agent 1 starts and
ends at the same time as for agent 2. Since L1 �= L2, one of the agents is moving
while the other is staying in at least one phase b of every stage. During stage s,
every node at distance 2s−1 from the starting point of the agent will be visited.
Thus, in phase b of stage s, where s is the smallest integer such that 2s−1 ≥ D,
the agent that moves in this phase meets the agent that stays in this phase. The
number of rounds in this stage is O(D log l), which also dominates the sum of
rounds in all previous stages. ��

190 A. Dessmark, P. Fraigniaud, and A. Pelc

Our second algorithm, Different-Length-Labels, works under the condition
that �log log L1� �= �log log L2�. Let the activity number bi for agent i be 1 if
Li = 1, and 2 + �log log Li� otherwise. The algorithm is formulated for an agent
with label L and activity number b. The algorithm works in stages. Stage s
consists of s phases. Phase p of any stage consists of 2p+1 rounds.

Algorithm Different-Length-Labels
In stage s < b, stay;
In stage s ≥ b, stay in phases p �= s − b + 1;
In phase p = s − b + 1 of stage s ≥ b, move for 2p−1 rounds in an arbitrary
direction, move in the opposite direction for 2p rounds, and go back to the
starting node.

Lemma 2. Algorithm Different-Length-Labels performs a rendezvous in
O(D log l) rounds, if �log log L1� �= �log log L2�.
Proof. If �log log L1� �= �log log L2�, the agents have different activity numbers.
Assume, without loss of generality, that l = L1 Hence b1 < b2. In stage s ≥ b1,
agent 1 visits every node within distance 2s−b1 from its starting node (in phase
s− b1 +1). Hence, rendezvous is accomplished in stage s, where s is the smallest
integer such that 2s−b1 ≥ D, i.e., s = b1 + �log D�. Stage s consists of O(2s)
rounds and dominates the sum of rounds in all previous phases. The required
number of rounds is thus O(2b1+log D) = O(D log l). ��

We now show how to combine Algorithm Similar-Length-Labels with Algo-
rithm Different-Length-Labels into an algorithm that works for entirely unknown
labels. The idea is to interleave rounds where Algorithm Similar-Length-Labels is
performed with rounds where Algorithm Different-Length-Labels is performed.
However, this must be done with some care, as an agent cannot successfully
switch algorithms when away from its starting node. The solution is to assign
slices of time of increasing size to the algorithms. At the beginning of a phase
of each of the algorithms, the agent is at its starting node. If it can complete
the given phase of this algorithm before the end of the current time slice, it
does so. Otherwise it waits (at its starting node) until the beginning of the next
time slice (devoted to the execution of the other algorithm), and then proceeds
with the execution of the halted phase in the following time slice. (Note that,
while one agent remains idle till the end of a time slice, the other agent might
be active, if Algorithm Similar-Length-Labels is executed and the label lengths
are in different ranges.)

It only remains to specify the sequence of time slices. Let time slice t consist
of 2t+1 rounds (shorter slices than 4 rounds are pointless). It is now enough
to notice that the phases up for execution during a time slice will never have
more rounds than the total number of rounds in the slice. As a phase of an
algorithm has never more than twice the number of rounds of the preceding
phase, at least a constant fraction of every time slice is actually utilized by the
algorithm. Exactly one of the algorithms has its condition fulfilled by the labels,
and this algorithm accomplishes a rendezvous in O(D log n) rounds, while the
other algorithm has been assigned at most twice as many rounds in total.

Deterministic Rendezvous in Graphs 191

Theorem 3. In the simultaneous startup model, the minimum time of ren-
dezvous in the ring is Θ(D log l).

Proof. The upper bound has been shown above. For the lower bound, if D = 1,
then the lower bound proof from the previous section is easy to modify for the
ring. Thus assume that D > 1. We actually prove a lower bound for the weaker
task cross-or-meet in which the two agents have either to meet at the same node,
or to simultaneously traverse an edge in the two opposite directions. Clearly, an
algorithm solving cross-or-meet in r rounds for two agents at distance D solves
cross-or-meet in at most r rounds for two agents at distance D − 1. Thus we
assume without loss of generality that D is even. Define an infinite sequence of
consecutive segments of the ring, of D/2 vertices each, starting clockwise from
an arbitrary node in the ring. Note that the starting nodes of the agents are
located in two different segments, with one or two segments in between. Note
also that the two agents have the same position within their segments. Divide all
rounds into periods of D/2 rounds each, with the first round as the first round of
the first period. During any period, an agent can only visit nodes of the segment
where it starts the period and the two adjacent segments.

Suppose that port numbers (fixed by the adversary at every node) yield an
orientation of the ring, i.e., for any node v, the left neighbor of the right neighbor
of v is v. The behavior of an agent with label L, running algorithm A, yields
the following sequence of integers in {−1, 0, 1}, called the behavior code. The tth
term of the behavior code of an agent is −1 if the agent ends time period t in the
segment to the left of where it began the period, 1 if it ends to the right and 0
if it ends in the segment in which it began the period. In view of the orientation
of the ring, the behavior of an agent, and hence its behavior code, depends only
on the label of the agent. Note that two agents with the same behavior code
of length x, cannot accomplish cross-or-meet during the first x periods, if they
start separated by at least one segment: even though they may enter the same
segment during the period, there is insufficient time to visit the same node or
the same edge.

Assume that there exists an algorithm A which accomplishes cross-or-meet
in Dy/6 rounds. This time corresponds to at most y/2 periods. There are only
3y/2 < 2y behavior codes of length y/2. Hence it is possible to pick two distinct
labels L1 and L2 not greater than 2y, for which the behavior code is the same.
For these labels algorithm A does not accomplish cross-or-meet in Dy/6 rounds.
This contradiction implies that any cross-or-meet algorithm, and hence any ren-
dezvous algorithm, requires time Ω(D log l). ��

3.2 Arbitrary Startup

We begin by observing that, unlike in the case of simultaneous startup, Ω(n)
is a natural lower bound for rendezvous time in an n-node ring, if startup is
arbitrary, even for bounded distance D between starting nodes of the agents.
Indeed, since starting nodes can be antipodal, each of the agents must at some
point travel at distance at least n/4 from its starting node, unless he meets
the other agent before. Suppose that the later agent starts at the time when

192 A. Dessmark, P. Fraigniaud, and A. Pelc

the earlier agent is at distance n/4 from its starting node v. The distance D
between the starting node of the later agent and v can be any number from 1
to an, where a < 1/4. Then rendezvous requires time Ω(n) (counting, as usual,
from the startup of the later agent), since at the startup of the later agent the
distance between agents is Ω(n). On the other hand, the lower bound Ω(D log l)
from the previous subsection is still valid, since the adversary may also choose
simultaneous startup. Hence we have:

Proposition 1. In the arbitrary startup model, the minimum time of ren-
dezvous in the n-node ring is Ω(n + D log l).

We now turn attention to upper bounds on the time of rendezvous in the ring
with arbitrary startup. Our next result uses the additional assumtion that the
size n of the ring is known to the agents. The idea is to modify Procedure Extend-
Labels. Every round in Procedure Extend-Labels is replaced by 2n rounds: the
agent stays, respectively moves in one (arbitrary) direction, for this amount of
time. Recall that in the Procedure Extend-Labels the actions of the two agents
differ in round 2�log l� + 6 at the latest (counting from the startup of the later
agent). In the modified procedure, time segments of activity or passivity, lasting
2n rounds, need not be synchronized between the two agents (if τ is not a multiple
of 2n) but these segments clearly overlap by at least n rounds. More precisely,
after time at most 2n(2�log l� + 6), there is a segment of n consecutive rounds
in which one agent stays and the other moves in one direction. This must result
in a rendezvous. Thus we have the following result which should be compared
to the lower bound from Proposition 1. (Note that this lower bound holds even
when agents know n.)

Theorem 4. For a ring of known size n, rendezvous can be accomplished in
O(n log l) rounds.

The above idea cannot be used for rings of unknown size, hence we give a
different algorithm working without this additional assumption. We first present
the idea of the algorithm. Without loss of generality assume that L1 > L2. Our
goal is to have agent 1 find agent 2 by keeping the latter still for a sufficiently long
time, while agent 1 moves along the ring. Since agents do not know whose label
is larger, we schedule alternating segments of activity and passivity of increasing
length, in such a way that the segments of agent 1 outgrow those of agent 2.
The algorithm is formulated for an agent with label L.
Algorithm Ring-Arbitrary-Startup
For k = 1, 2, . . . do
(1) Move for kL rounds in one (arbitrary) direction;
(2) Stay for kL rounds.

Theorem 5. Algorithm Ring-Arbitrary-Startup accomplishes rendezvous in
O(lτ + ln2) rounds.

Proof. Without loss of generality assume that L1 > L2. First suppose that
agent 2 starts before agent 1. Agent 1 performs active and passive segments of
length kL1 from round k(k − 1)L1 + 1 to round k(k + 1)L1. The length of the

Deterministic Rendezvous in Graphs 193

time segment of agent 1, containing round t, is �1/2 +
√

1/4 + (t − 1)/L1�L1.
Similarly, the length of the seqment of agent 2, containing round t, is �1/2 +√

1/4 + (t + τ − 1)/L2�L2. There exists a constant c such that after round cn2

every passive segment of agent 2 is of length greater than n. It now remains to
establish when the active segments of agent 1 are sufficiently longer than those
of agent 2. When the difference is 2n or larger, there are at least n consecutive
rounds where agent 1 moves (and thus visits every node of the ring), while agent
2 stays. In the worst case L1 = L2 + 1 = l + 1 and the inequality �1/2 +√

1/4 + (t − 1)/(l + 1)�(l + 1) − �1/2 +
√

1/4 + (t + τ − 1)/l�l ≥ 2n is satisfied
by some t ∈ O(lτ + ln2).

If agent 2 starts after agent 1, the condition that the length of the passive
segments of agent 2 is of length at least n is still satisfied after round cn2, for
some constant c, and the second condition (concerning the difference between
the agents’ segments) is satisfied even sooner than in the first case.

Rendezvous is accomplished by the end of the segment containing round
t ∈ O(lτ+ln2). Since the length of this segment is also O(lτ+ln2), this concludes
the proof. ��

In the above upper bound there is a factor l instead of log l from the simul-
taneous startup scenario. It remains open if l is a lower bound for rendezvous
time in the ring with arbitrary startup.

4 Rendezvous in Arbitrary Connected Graphs

Simultaneous startup. For the scenario with simultaneous startup in arbitary
connected graphs, we will use techniques from Section 3.1, together with the
following lemma.
Lemma 3. Every node within distance D of a node v in a connected graph of
maximum degree ∆, can be visited by an agent, starting in v and returning to v,
in O(D∆D) rounds.

Proof. Apply breadth-first search. There are O(∆D) paths of length at most D
originating in node v. Thus, in O(D∆D) rounds, all of these paths are explored
and all nodes within distance D are visited. ��

We keep the exact pattern of activity and passivity from the interleaving
algorithm of Section 3.1 but replace the linear walk from the starting node
by a breadth-first search walk: if alloted time in a given phase is t, the agent
performs breadth-first search for t/2 rounds and then backtracks to the starting
node. Since the only difference is that we now require a phase of length O(D∆D)
to accomplish rendezvous, instead of a phase of length O(D) for the ring, we get
the following result.
Theorem 6. Rendezvous can be accomplished in O(D∆D log l) rounds in an
arbitrary connected graph with simultaneous startup.

Note that agents do not need to know the maximum degree ∆ of the graph
to perform the above algorithm. Also note that the above result is optimal for

194 A. Dessmark, P. Fraigniaud, and A. Pelc

bounded distance D between agents and bounded maximum degree ∆, since
Ω(log l) is a lower bound.
Arbitrary startup. We finally show that rendezvous is feasible even in the most
general situation: that of an arbitrary connected graph and arbitrary startup.
The idea of the algorithm is to let the agent with smaller label be active and the
agent with larger label be passive for a sufficiently long sequence of rounds to
allow the smaller labeled agent to find the other. This is accomplished, as in the
correspending scenario for the ring, by an increasing sequence of time segments
of activity and passivity. However, this time we need much longer sequences of
rounds. The algorithm is formulated for an agent with label L.
Algorithm General-Graph-Arbitrary-Startup For k = 1, 2, . . . do
(1) Perform breadth-first search for k10L rounds;
(2) Stay for k10L rounds.

Theorem 7. Algorithm General-Graph-Arbitrary-Startup accomplishes ren-
dezvous.

Proof. Without loss of generality assume that L1 > L2. First suppose that agent
2 starts before agent 1. There exists a positive integer t such that, after t rounds,
we have: (1) the length of (active) segments of agent 2 is > nn, and (2) length
of (passive) segments of agent 1 is at least three times larger than the active
(and passive) segments of agent 2. Statement 1 is obviously correct, since the
lengths of the segments form an increasing sequence of integers. Statement 2
is true, since the ratio of the length of segments of agent 1 and the length of
segments of agent 2 is

√
10L1 t

10L2 (t+τ) ≥
√

10t
(t+τ) ≥ 3, for sufficiently large t. (This is

the reason for choosing base 10 for time segments of length k10L). Hence, after
t rounds, two complete consecutive segments of agent 2 (one segment active and
one segment passive) are contained in a passive segment of agent 1. Since the
active segment of agent 2 is of size larger than nn, this guarantees rendezvous. If
agent 2 starts after agent 1, the above conditions are satisfied even sooner. ��

Note that the argument to prove correctness of Algorithm Ring-Arbitrary-
Startup cannot be directly used for arbitrary connected graphs. Indeed, in the
general case, it is not sufficient to show that an arbitrarily large part of an active
segment of one agent is included in a passive segment of the other. Instead, since
breadth-first search is used, we require a stronger property: the inclusion of an
entire active segment (or a fixed fraction of it). This, in turn, seems to require
segments of size exponential in L. We do not know if this can be avoided.

5 Conclusion

The rendezvous problem is far from beeing completely understood even for rings.
While for simultaneous startup, we established that optimal rendezvous time is
Θ(D log l), our upper bound on rendezvous time in rings for arbitrary startup
contains a factor l, instead of log l. It remains open if l is also a lower bound
in this case. For arbitrary connected graphs we proved feasibility of rendezvous

Deterministic Rendezvous in Graphs 195

even with arbitrary startup but our rendezvous algorithm is very inefficient in
this general case. The main open problem is to establish if fast rendezvous is
possible in the general case. More specifically: question Q2 from the introduction
remains unsolved in its full generality.

Acknowledgements. Andrzej Pelc is supported in part by NSERC grant OGP
0008136 and by the Research Chair in Distributed Computing of the Université
du Québec en Outaouais. This work was done during the first and second au-
thors visit at the Research Chair in Distributed Computing of the Université du
Québec en Outaouais.

References

1. S. Alpern. The rendezvous search problem. SIAM J. on Control and Optimization
33(3), pp. 673–683, 1995.

2. S. Alpern. Rendezvous search on labelled networks. Naval Reaserch Logistics 49,
pp. 256–274, 2002.

3. S. Alpern and S. Gal. The theory of search games and rendezvous. Int. Series
in Operations research and Management Science, number 55, Kluwer Academic
Publishers, 2002.

4. J. Alpern, V. Baston, and S. Essegaier. Rendezvous search on a graph. Journal of
Applied Probability 36(1), pp. 223–231, 1999.

5. S. Alpern and S. Gal. Rendezvous search on the line with distinguishable players.
SIAM J. on Control and Optimization 33, pp. 1270–1276, 1995.

6. E. Anderson and R. Weber. The rendezvous problem on discrete locations. Journal
of Applied Probability 28, pp. 839–851, 1990.

7. E. Anderson and S. Essegaier. Rendezvous search on the line with indistinguishable
players. SIAM J. on Control and Optimization 33, pp. 1637–1642, 1995.

8. E. Anderson and S. Fekete. Asymmetric rendezvous on the plane. Proc. 14th
Annual ACM Symp. on Computational Geometry, 1998.

9. E. Anderson and S. Fekete. Two-dimensional rendezvous search. Operations Re-
search 49, pp. 107–118, 2001.

10. V. Baston and S. Gal. Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution. SIAM J. on Control and Optimiza-
tion 36, pp. 1880–1889, 1998.

11. V. Baston and S. Gal. Rendezvous search when marks are left at the starting
points. Naval Res. Log. 48, pp. 722–731, 2001.

12. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous
oblivious robots with limited visibility, Proc. 18th Annual Symposium on The-
oretical Aspects of Computer Science (STACS 2001), LNCS 2010, pp. 247–258,
2001.

13. S. Gal. Rendezvous search on the line. Operations Research 47, pp. 974–976, 1999.
14. J. Howard. Rendezvous search on the interval and circle. Operation research 47(4),

pp. 550–558, 1999.
15. W. Lim and S. Alpern. Minimax rendezvous on the line. SIAM J. on Control and

Optimization 34(5), pp. 1650–1665, 1996.
16. T. Schelling. The strategy of conflict. Oxford University Press, Oxford, 1960.
17. L. Thomas. Finding your kids when they are lost. Journal on Operational Res.

Soc. 43, pp. 637–639, 1992.

	Introduction
	Rendezvous in Trees
	Rendezvous in Rings
	Simultaneous Startup
	Arbitrary Startup

	Rendezvous in Arbitrary Connected Graphs
	Conclusion

