


ANALYSIS 
AND DESIGN OF 

ALGORITHMS 

SECOND EDITION 

BY AMRINDER ARORA 
The George Washington University 



Bassim Hamadeh, CEO and Publisher 

Michael Simpson, Vice President of Acquisitions 

Jamie Giganti, Managing Editor 

Jess Busch, Senior Graphic Designer 

Amy Stone, Acquisitions Editor 

Luiz Ferreira, Senior Licensing Specialist 

Claire Yee, Interior Designer 

Copyright © 20~S by Cognella, Inc. All rights reserved. No part of this publica­

tion may be reprinted, reproduced, transmitted, or utilized in any form or by 

any electronic, mechanical, or other means, now known or hereafter invented, 

including photocopying, microfilming, and recording, or in any information 

retrieval system without the written permission of Cognella, Inc. 

First published in the United States of America in 2ms by Cog nella, Inc. 

Trademark Notice: Product or corporate names may be trademarks or regis­

tered trademarks, and are used only for identification and explanation without 

intent to infringe. 

Image found on cover, adapted from the original: 

Copyright © 20n Depositphotos/file404 

Printed in the United States of America 

www.cognella.com 800-200-3908 



CONTENTS 

ACKNOWLEDGEMENTS 

PREFACE 

SECTION I: THE BASICS 

CHAPTER 1: INTRODUCTION AND BARE ESSENTIALS 

1.l 

1.2 

1·4 

1·5 

1.6 

1·7 

What is an algorithm? 

Practical Applications of Algorithms 

What is meant by "Analyzing 
an Algorithm"? 

Why Should We Analyze Algorithms? 

How to Analyze a Given Algorithm (Program) 

Pre-requisites 

Pop Quiz for the Pre-Requisites 

CHAPTER 2: ASYMPTOTIC ANALYSIS AND NOTATION 

2.l 

2.2 

2·3 

2·4 

2·5 

2.6 

Big 0 Notation 

Big Omega Notation 

Small Oh (0) Notation 

Small Omega (w) Notation 

Theta Notation 

Main Difference between Big 0 and Small 0 

XIII 

XV 

1 

3 

3 

5 

6 

6 

7 

7 

8 

9 

lO 

II 

II 

l2 

l2 

l2 

2.7 Analogy with Comparison Functions for Real Numbers 1.2 

2.8 Home Exercises 



CHAPTER 3: DATA STRUCTURES 15 

3·1. Record 1.5 

3. 2 Linked List 1.6 

3·3 Stack 1.6 

3·4 Queue 1.7 

3·5 Set 1.7 

3.6 Map 1.8 

3·7 Graph and Tree Data Structures 1.8 

3.8 Heaps 22 

3·9 Home Exercises 22 

SECTION II: ALGORITHM DESIGN TECHNIQUES 25 

CHAPTER 4: DIVIDE AND CONQUER 27 

4·1. Solving Recurrence Relations 28 

4. 2 The Divide and Conquer Template 32 

4·3 Binary Search 33 

4·4 Merge Sort 33 

4·5 Quicksort 35 

4.6 Median Finding 37 

4·7 Closest Pair of Points 39 

4.8 Matrix Multiplication 40 

4·9 Summary 42 

4·1.0 Home Exercises 42 

CHAPTER 5: GREEDY METHOD 45 

5·1. Optimal Substructure 46 

5. 2 Sorting Using Greedy Method 46 

5·3 Merging Sorted Lists 47 



5·4 Knapsack Problem 48 

5·5 Minimum Spanning Tree 5l 

5. 6 A Word of Caution (Don't be greedy with greedy!) 54 

5·7 Home Exercises 55 

Historical Note 56 

CHAPTER 6: DYNAMIC PROGRAMMING 57 

6.l Optimal Substructure 59 

6.2 Overlapping Sub-problems 59 

6·3 Dynamic Programming Template 60 

6·4 Matrix Chain Multiplication 60 

6·5 All Pairs Shortest Path (APSP) 64 

6.6 Maximum Value Contiguous 
Subsequence (MVCS) 66 

6·7 Longest Increasing Subsequence (LIS) 68 

6.8 Summary 70 

6·9 Home Exercises 70 

Historical Note 72 

Extra Reading 72 

CHAPTER 7: GRAPH TRAVERSAL TECHNIQUES 73 

7·l Classification of Edges 75 

7. 2 Depth First Search (DFS) 75 

7·3 First Application of DFS: Connectivity 77 

7·4 Second Application of DFS: Minimum 
Spanning Trees in Uniformly Weighted Graphs 78 

7·5 Third Application of DFS: Biconnectivity 78 

7.6 Breadth First Search (BFS) 80 

7·7 Home Exercises 82 

CHAPTER 8: BRANCH AND BOUND 83 

8.l Example Problems 84 



8.2 Branch and Bound Template 84 

8·3 Applying B&B to O/l Knapsack Problem 85 

8·4 Applying B&B to Job Assignment Problem 86 

8·5 Home Exercises 87 

Miscellaneous Notes 87 

SECTION III: INTRINSIC HARDNESS OF PROBLEMS 89 

CHAPTER 9: NP COMPLETENESS 9 1 

g.l Turing Machine Refresher 92 

g.2 Equivalency of a "Problem" and a "Language" 92 

9·3 Classes P and NP 93 

9·4 NP-Completeness 95 

9·5 Example NP-Complete Problems 97 

g.6 NP-Complete vs. NP-Hard l02 

9·7 Summary l02 

g.8 Home Exercises l03 

CHAPTER 10: SLAYING THE NP-HARDNESS DRAGON 105 

10.l Strategy l: Solving Within a Context l06 

10.2 Strategy 2: Finding an Algorithm with a Lower Exponent 
l07 

10·3 Strategy 3: Using an Approximation Algorithm l08 

10·4 Summary llO 

CHAPTER 11: THEORY OF LOWER BOUNDS 1 11 

1l.l Lower Bound on Sorting ll2 

1l.2 Lower Bound on Searching 1.1.4 

11.·3 Finding Minimum, Maximum, and Median 1.1.4 

11.·4 An Adversary Argument for Finding Both 
Minimum and Maximum Numbers in an Array 1.1.5 

11.·5 Matrix Multiplication 1.1.7 

11..6 Lower Bounds on Graph Problems 1.1.7 



11.·7 

11..8 

Lower Bounds on Puzzles 

Summary 

SECTION IV: CONCLUSIONS AND AUXILIARY 

1.1.8 

1.1.8 

MATERIALS 119 

CHAPTER 12: WRAPPING UP 121 

12.1. 

12.2 

Specialize, but Not Over Specialize 

Suggested Projects 

APPENDIX A: HOW DO WE LEARN? 

APPENDIX B: MORE GRAPH THEORY AREAS 

APPENDIX C: MINIMUM SPANNING TREE 

APPENDIX D: TIME COMPLEXITY OF UNION 

FIND DATA STRUCTURE 

APPENDIX E: FACILITY LOCATION PROBLEM 

APPENDIX F: STRING MATCHING 

INDEX 

WORKS CITED 

1.22 

1.22 

125 

127 

129 

131 

133 

135 

137 

139 



"There's no secret about success. 
Did you ever know a successful man who didn't tell you all about it?" 

Kin Hubbard 

"Eighty percent of success is showing up. " 
Woody Allen 



TABLE OF FIGURES 

Figure 1: A visual comparison of n2 /2 and 
n(n-l)/2 + 3n + 7 curves. The dropping of 
the lower level terms is the typical first 
step in asymptotic analysis. 

Figure 2: Example graph for a biconnectivity 
problem. This graph is not biconnected as 
deletion of node E makes the graph disconnected. 

Figure 3: Reducing problem B to problem A. 
If such a reduction exists, then we can 
conclude that problem A, is at least as hard 
as problem B (assuming the reduction itself 
does not dominate the algorithm for problem A). 

Figure 4: Transforming an instance of CSAT 
problem into an instance of clique problem. 
A vertex is created for each literal, and 
each vertex is connected to all vertices in 
other clauses, except the vertices that 
correspond to their negations. For example, 
the top left vertex corresponding to 
first x is connected to all 6 vertices 

1 

9 

77 

95 

in other clauses, except n(x). 96 

Figure 5: Reduction from Independent Set to 
Vertex Cover problem. Since Independent Set 
is known to be an NP-hard problem, this 
proves that Vertex Cover is NP-hard 
problem also. 97 

Figure 6: Construction of a TSP tour given a Spanning 
Tree: we can construct a tour by following the vertices in 
sequence of their DFS numbers. Iftriangle inequality holds, 
then the weight of the TSP tour is at most twice the 
weight of the spanning tree. l07 

Figure 7: A decision tree for the three-element 
input sequence {1.2, 5, 8} l1.1. 



Figure 8: Adversary's strategy for maximizing 
the number of comparisons for finding both 
maximum and minimum numbers. Adversary 
thinks of numbers in terms of buckets Q, W, L, 
and x. 1.]] 



ACKNOWLEDGEMENTS 

T his book would never have been possible if the universe had not 

conspired in a very specific way. Starting with my own education, 
I am forever indebted to my parents and my sister for believing in me and 
providing the environment of learning. My advisor and now colleague 

Hyeong-Ah Choi provided me the kind oftraining that makes endeavors 
of this kind even remotely possible. In the recent years, my wife and 
three bouncy kids-Roman, Jessica and Nayan-have exercised a lot of 

patience in affording me the time to write and revise this book. 
I would also like to thank the very patient staff at Cognella with 

all the designs, redesigns, re-redesigns and "proofs" of so many 

versions. 
A very special thanks to David Balash, also of the George 

Washington University, who guest authored the chapter u (Theory 
of Lower Bounds). David was an excellent student and remains a 

good friend. He is the owner and chief computer scientist of the IT 
consulting company One Ten Logic and an active member of the 

computer science community at the university. 
Most importantly, I would like to thank countless students who 

gave me the much needed feedback during the lectures and various 
study sessions. You are the collaborators-front and center-and this 

book is ultimately dedicated to you all. 

XIII 



PREFACE 

W e live in a speed world, in which the model of learning has 

transformed from "let me learn it all" model to "I will learn it as 

needed" model. Students no longer read voluminous books, and instead 

rely on the lectures and course outline to get the overall picture, and 

then get the specific answers they need from Wikipedia, Google, watch­

ing videos on YouTube, and visiting many question/answer and forums 

websites. Thus, the books have lost their role of being the leading edge 

and instead, have become the trailing edge wherein they compete with 

these non-traditional sources. While there are many algorithms books 

currently available, many of them were written prior to this complete 

transformation ofthe learning model. 

This book was written with a specific purpose in mind-a full 

course in design and analysis of algorithms in no more than ~50 easy 

to read pages that can be read from coverto cover in less than 4 hours. 

Keeping this strict limit was necessary to maintain the viability ofthis 

book actually being read, as opposed to becoming a reference mate­

rial. Naturally, such a small limit on the number of pages forces us to 

hand select some of the material. Towards the end, 1 felt the desire 

to increase the page limit. Thankfully, in this edition at least, 1 have 

resisted that temptation. 1 venture to guess that other books have 

been written with a similar limit in mind, but over the coming edi­
tions, growto include more "essential" material. You are well advised 

xv 



XVI I ANALYSIS AND DESIGN OF ALGORITHMS 

to grab this edition of the book before the author also falls to such temptation 
in the coming editions. 

This book is divided into 4 broad sections. 

• Basics-Data structures, asymptotic notation, etc. 

• Design-Algorithmic design techniques 
• Ana Iysis-NP-completeness and proving inherent complexity of problems 
• Summary-Conclusions and auxiliary material 

In the "Design" section, we discuss the following a Igorithmic design techniques. 

• Divide and Conquer 

• Greedy Method 
• Dynamic Programming 
• Graph traversal methods 

• Branch and bound 

One of the key observations that I have made from teaching the graduate 

course in algorithms class over multiple years is the rigor required by this class. 
Many students come into this class with some aspect of their mathematical 
background missing. Other students who have been working for a few years 
find that some of the mathematical material seems "vaguely familiar" and 

nothing else. Those essential mathematical topics are frequently mentioned in 
the book-the students need to return to those topics often. Those topics will 

ensure that while you can read this book in a few hours from end to end, you 
will need to spend many more hours making the best of the material in your 
capacity of a computer scientist. 

The students are encouraged to use this book as an accompaniment to their 
study sessions. Algorithms, in some respects even more than other topics, re­
quires a clarity of thought that can perhaps more easily be achieved by speak­

ing and explaining, than by listening and reading. Every time you are asked to 
explain the topic of dynamic programming to someone, your knowledge and 
understanding of the topic increases. [More of this is covered in Appendix A.] 

The best way to read this book (and many other books) is to remember to 

finesse the concepts presented in this book, and apply them in your everyday 

work. Read the chapters in different frames of mind, at leisure and consider dif­
ferent variations of problems presented herein. Observe how minor variations 
affect the complexity of those problems. 

Another observation that I have made is that there is an almost direct cor­

relation between grades and number of classes attended. There is also a strong 
correlation between grades and time spent on course, which manifests in form 



PREFACE I XVII 

of emails, and other activities done by the student. There is an even stronger 
correlation between grades, homework assignments and projects-not many 
students finished with a top grade after losing easy points on assignments or 
projects. Perhaps Woody Allen was referring to algorithms when he said that 
80% of success is showing up. 



SECTION 1 

THE BASICS 

T he coming 3 chapters coverthe basics. We discuss what is 
an algorithm, study and review the asymptotic notation 

and data structures that are used repetitively in the rest of 
the book. Many of the readers may be well versed with these 
foundation elements. Forthis reasons, these chapters are very 
brief. It is highly recommended that you read these chapters 
regardless. You may be surprised by some concepts mentioned 
therein. You can also refer to other books and background 
materials, such as [~] [2] [3] [4] [5] [6] [7] [8] [9] and [~o], etc. 



INTRODUCTION AND 
BARE ESSENTIALS 

CHAPTER 1 

1.1 WHAT IS AN ALGORITHM? 

A n algorithm is generally defined in one oftwo following ways: 

• A precise statement to solve a problem on a computer 

• A sequence of definite instructions to do a certain job 

Wikipedia says: "(In mathematics, computing, and related sub­

jects) An algorithm is an effective method for solving a problem 

using a finite sequence of instructions." 

Algorithms have existed for a long time, with Euclid's algorithm 

for finding the greatest common divisor having been described 

back around 300 BC Incidentally, it is still known as a fairly effective 

algorithm, and is a standard first programming assignment. The 

algorithm can be described in English, without using any mathemati­

cal notation as follows. You are given two numbers, and you need 

to find the greatest common divisor of these two numbers. For 

example, given 35 and 20, the greatest common divisor is 5, and 

given 27 and 48, the greatest common divisor is 3. The algorithm 

goes as follows: divide the larger number with the smaller number, 

and obtain the remainder. If the remainder is zero, then the smaller 

3 



4 I ANALYSIS AND DESIGN OF ALGORITHMS 

number is the greatest common divisor. Otherwise, consider the remainder as 

your new "smaller" number, the previous smaller number as your new larger 

number, and go backtothe divide step. [The unsaid part is that this will always 

terminate and that eventually we will find that the remainder is zero.] 

Describing even a simple algorithm in English can be tricky and prone to 

errors in boundary conditions. Therefore, going forward we will be using a 

standard mathematical notation to describe algorithms. 

Let us use insertion sort as our next example. The goal ofthis algorithm is to 

sort the given list of numbers in the increasing order. For example, given a list 

[5,8,2,101, the algorithm should produce the sorted list of [2,5,8, 10}. 
Insertion sort works by growing a sorted list, and by inserting a new number 

in the list in every iteration (hence the name insertion sort). Consider the fol­

lowing pseudo-code for describing insertion sort. 

II Given an array A of n numbers 
II Sorts the array A 
for j = 2 to n { 

} 

key = A [j] 
i = j - 1 
II A[j] is added in the sorted sequence A[l.. j-1] 
while «i ~ 0) and (A[i] > key» { 

A[i + 1] = A[i] 
i = i-I 

} 
A[i] = key 

From this pseudo-code, we can attempt to estimate the best case running 

time, the worst case running time and the average case running time. We 

observe that the for loop runs n-l times, but the while loop can run a vari­

able number of times based on the actual values in the array. In the worst case 

scenario, it may run i times, and in the best case, it may run 0 times. 

For our third example, let us turn to the searching problem. We are given a 

sorted list of numbers, and we are asked to find if a certain number exists in 

the list or not. The commonly known Binary Search algorithm compares the 

middle element ofthe array with the given number, and depending upon the 

result, focuses on either the left ha If or the rig ht ha If of the array. 



INTRODUCTION AND BARE ESSENTIALS I 5 

II Given a sorted array A 
II Finds if a given "value" exists in A or not 
BinarySearch(A[0 .. N-l], value, low, high) 
{ 

} 

if (hi gh < low) 
return -1 I I not found 

mid = (low + high) I 2 
if (A[mid] > value) 

return BinarySearch(A, value, low, mid-I) else 
if (A[mid] < value) 
return BinarySearch(A, value, mid+l, high) 
else 
return mid I I found 

1.2 PRACTICAL APPLICATIONS OF ALGORITHMS 

Practical applications of algorithms are found quite abundantly and can be 

very diverse. Here are some practical applications: 

• Find relevant web pages for a given search term 

• Analyze thousands of casual pictures taken by hundreds of different 

cameras to track an individual 

• Given millions of "x knew y at time til statements and millions of stock 

transactions, detect insider-trading 

• Given a grocery list and the layout of a store, find the quickest way to 

collect all items 

• Given gas prices in a city and the places that you need to go, find a path 

that minimizes your cost 

• Given a person's song history and a large song database, find a song that 

they may like hearing next. 

• Given many recipes and ingredients, find the maximum number of dishes 

you can make 

• Given a candidate's answers to 10 questions, find the next 5 questions 

that maximize your confidence in assessing their level 

• Given thousands of image fi les, separate the ones ta ken at nig ht from the 

ones taken during the day 



6 I ANALYSIS AND DESIGN OF ALGORITHMS 

• Given a list of train stations and a map of tracks, create a schedule that 

minimizes the sum oftravel time across all users. 

1.3 WHAT IS MEANT BY "ANALYZING 
AN ALGORITHM"? 

Assuming a given algorithm is functionally correct, analyzing it typically 

requires us to answer the following two questions: 

(i) How long will the algorithm take to run, in best case, worst case and 

average case? 

(ii) How much memory will it require, in best case, worst case and aver­

age case? 

We may also want to know if there are some inputs on which the answer 

varies considerably, and what the average case values would be if the input is 

limited to certain range. 

Depending upon the type of algorithm, analyzing an algorithm may have 

many other meanings as well. 

• If the algorithm is an approximation algorithm, analyzing an algorithm 

requires us to find the approximation ratio. 

• If the algorithm is an online algorithm, analysis involves competitive 

ratio. 

• If the algorithm is a prediction algorithm, analysis involves many metrics 

such as accuracy and precision. 

1.4 WHY SHOULD WE ANALYZE ALGORITHMS? 

For a given problem, there may be many algorithms that solve the problem 

correctly. One algorithm may be more complicated than other, but the other 

may be more readable and more eloquent. Similarly, one algorithm may be 

very efficient on certain inputs, and very inefficient on some other inputs. 

Having a mechanism to analyze the algorithm in terms of one standard nota­

tion allows us to compare many different algorithms. 

Another very practical reason to analyze algorithms is to perform a priori 

estimation of performance. Algorithms are packaged in form of software pro­

grams which run on a wide variety of devices (computers, mobile phones, 

tablets, TVs, GPS receivers). Those software programs are marketed using a 



INTRODUCTION AND BARE ESSENTIALS I 7 

variety of eye catching advertisements and marketing buzz words. Having 
a mathematical analysis of the algorithms implemented by those software 
programs allows us to understand their performance parameters. 

1.5 HOW TO ANALYZE A GIVEN ALGORITHM 
(PROGRAM) 

To analyze a given algorithm, firstly we agree on a model of computation (the 
computation model). A computation model that closely reflects today's ma­
chines is the Random-Access Machine (the RAM model). In this model, math 

operations (addition, subtraction, division and multiplication) take one unit 

of time, simple logic operations (comparison of two numbers) and read and 
write operations take one unit oftime also. Further, we can access any memory 
location (including registers, etc.) in a unit time as well. We will be using this 

computation model in the rest of the book. 
Here are some simple observations that we can make in analyzing the time 

complexity of given programs. 

• When analyzing an if-then-else condition, consider the arm that takes 

the longer time. However, in some cases, doing so repeatedly may yield a 
result that is a significant over-approximation. Therefore, a more careful 
analysis may be required in those situations. 

• When considering a while loop (or equivalently, a for loop or repeat 
loop), multiply the number of times the loop runs with the time complex­
ity of the function inside the loop. 

• When considering nested loops, we need to multiply the number of 
times each loop runs, with the time complexity of the function inside the 
innermost loop. 

1.6 PRE-REQUISITES 

This book significantly depends on the reader having the appropriate Math 
background. The following topics are assumed to be well understood. In case 

a deeper explanation is required for these topics, excellent textbooks are 
available for these topics, although going through these materials will take a 
semester or so. So, if you find yourself lacking in these topics, you may want to 

take a different class first, and then return to algorithms in a future semester. 

• Sets and functions 



8 I ANALYSIS AND DESIGN OF ALGORITHMS 

• Logs and exponents 
• Recurrence relations 
• Mathematic series, such as arithmetic progression, geometric progres­

sion, arithmetic-geometric progression and their sums 

1.7 POP QUIZ FOR THE PRE-REQUISITES 

The following questions can serve as a quick check of readiness to consume the 

material in this book. You should be able to answer all ofthe questions in order 
to extractthe maximum advantage out ofthis book. (The material in this book 
does not cover what may be needed to answer these questions.) 

~. Consider A and B are two sets, such that IAI = 50, and IA - BI = 20, and 
IBI = 85. Find the value of IB - AJ. 

2. Given that 1091; = 0.3010 and 109103 = 0.4771, find the value of/09610. 
3. Given that T(n) = T(n-1) + n2 can you find a closed-form expression 

for T(n)? 
4. What is the sum ofthe following series: 

~n i i 
L...J ;=1 

5. What is the sum ofthe following series: 

I;=li2i 

6. Which of the following two terms is larger: 
~ nA 2 I: i 2 

or .Lt 1 i 



ASYMPTOTIC ANALYSIS 
AND NOTATION 

CHAPTER 2 

A symptotic analysis is a method of analyzing the performance of al­

gorithms when applied to very large inputs. The goal of asymptotic 
analysis is to arrive at the asymptotic notation-a simple articulation of 
the space or time performance of the algorithm, for example to sayan 
algorithm has 8(n) or 8(n2) or 8(n log n) time complexity. 

There are usually two aspects 
of the asymptotic analysis- """' ,.-_________ _ 

(i) take a given algorithm, given 
in pseudo-code or another format sooo 

and to arrive at a closed form 
expression, and (ii) reduce the 
closed form expression to a sim­

pler format. 

For example, consider an 
algorithm that takes an array 
as an input, compares each 

pair of elements, iterates the 
array three times, and checks 
the last element seven times. 

In that case, the running time of 
this algorithm may be written 

30001------

2000 

1000 

Figure 1: A visual comparison 
of n' /2 and n(n-1)/2 + 3n + 7 
curves. The dropping of the 
lower level terms is the typical 
nrst step in asymptotic analysis. 

9 



10 I ANALYSIS AND DESIGN OF ALGORITHMS 

as n(n-l)j2 + 3n + 7. This isthe closed form expression thatwe may have arrived 

at after a visual inspection of the algorithm. 

In the second phase, we simplify this polynomial expression. As n becomes 

larger, as we plot the performance of this algorithm, we observe that the final 

two terms (3n and 7) do not affect the curve. In fact, drawing that curve against 
the curve of much simpler expression n2j2, we can observe that the two curves 

are nearly the same. This represents the first step in simplifying the closed form 

expression-simply drop the "lower level" terms. The second step is a similar 

simplification-simply drop the constant multiple ofthe highest-level term, for 
example, using n2 instead of n2j2. This idea allows us to ignore some constant 

time jumps in performance-for example, something that makes an algorithm 

twice as fast. 

Asymptotic notation is an important tool at our disposal to articulate and 

communicate the running time and space usage of algorithms. An algorithm 

may be complicated and its running time may depend upon the input. Even 

on a given input, it may be difficult to specify exactly how long an algorithm 

will take. The asymptotic notation allows us to specify those attributes in very 

simple terms such as being able to say, "Algorithm A has D(n) running time", 

something that we could easily tell someone over the phone-' 

The implicit purpose of the asymptotic notation is that it allows us to com­

pare algorithms in terms oftheir running time or space usage. Even though the 

algorithms may have many idiosyncrasies, using asymptotic analysis, and after 

we arrive at asymptotic notation, we can compare which algorithm performs 

better as the input size grows. 

The concise idea: Asymptotic analysis is the technique. Asymptotic nota­

tion is the output, which allows us to easily communicate the performance of 

algorithms. 

2.1 BIG 0 NOTATION 

We define D(g(n)) to be the set of all functions f(n) such that there exist con­

stants no and c such that 0 ~ f(n) ~ c g(n) for all n ~ no. (Asymptotic analysis is 

usually used for positive functions only, so we assume thatf(n) ~ 0.) 

Thus, by very definition, D(g(n)) is a set of functions. However, we abuse 

this notion sometimes by sayingf(n) = D(g(n)) when we mean thatf(n) is in 

1 We sometimes use the telephone conversation analogy. In its simplistic form, the telephone 
conversation includes questions and answers that we can ask each other over an old fashioned 
telephone line, without the benefit of any video, screen sharing, etc. It is an attempt to articulate 
our concepts in simple terms, and ignore all details that can indeed be ignored. 



ASYMPTOTIC ANALYSIS AND NOTATION I 11 

the set O(g(n)). [Perhaps the fact that the mathematical symbol E is not easily 
typeset may have played a role in this abuse of notation becoming prevalent.] 

For example, n = O(2n), 2n = O(n) and n = O(n2). To prove each of these 
statements, the reader should find the constants no and c such thatf(n):<; c g(n) 
for all n ~ no. We can prove al13 ofthese assertions, and many others by making 
the observation that if f(n) can be written in linear terms as f(n) = Qono + Q

1 
n1 + 

... + Qmnm, then we can writef(n) = O(nm). 

2.2 BIG OMEGA NOTATION 

We write that f(n) = fl(g(n)) if there exist constants no and c such that 
f(n) ~ c g(n) for all n ~ no. 

We observe that big omega notation is the inverse of the Big 0 notation. 

That is,J(n) = O(g(n)) if and only if g(n) = fl(f(n)). 

2.3 SMALL OH (0) NOTATION 

We define o(g(n)) to be the set of all functions f(n) such that for ANY constant 
c> 0, there exists no such that 0:<; f(n) < c g(n) for all n ~ no. As in the case of 
other asymptotic notations, we frequently writef(n) = o(g(n)) when we mean 

thatf(n) is in the set o(g(n)). 
For example, n = o(n2). 
One way of proving thatf(n) = o(g(n)) is to show the existence of constant 

no for any constantc > O.An equivalent way isto prove that limn-7J(n)jg(n) = o. 
One very helpful tool in evaluating limits is L'Hopital's rule, which states 

that assuming certain conditions apply, limn-7~f(n)jg(n) = limn-7~f'(n)jg'(n), 
where f'(n) and g'(n) represent the first derivatives of functions f(n) and g(n) 
respectively. 

For example, using L'Hopital's rule, we can easily observe that limn-7~ 

(log(nY'3)jn = o. We can evaluate this limit as follows. 

limn-7~ (log(nY'3)jn = limn-7~ (21og(nY'2)jn II Apply L'Hopital's rule 
= limn-7J41og(n))jn II Apply L'Hopital's rule again 
= limn-7~ 4jn II Apply L'Hopital's rule yet 

again 

=0. 

Therefore, we can conclude that log(nY'3 = o(n). 



12 I ANALYSIS AND DESIGN OF ALGORITHMS 

2.4 SMALL OMEGA (w) NOTATION 

We write that f(n) = w(g(n)) if for any constant c > 0, there exists no such that 

f(n) ~ c g(n) ~ 0, for all n ~ no. 
For example, n3 = w(n2). 
We observe that the small omega notation is inverse of Small Oh notation. 

That isJ(n) = o(g(n)) if and only if g(n) = w(f(n)). 

2.5 THETA NOTATION 

Theta notation is used to identify functions that can be considered asymptoti­

cally equivalent. That is, functionf(n) = 8(g(n)) if and only iff(n) = O(g(n)) and 

g(n) = O(f(n)). 

2.6 MAIN DIFFERENCE BETWEEN BIG 0 AND 
SMALL 0 

The subtle difference between big a and small a (and equivalently between 

big Omega and small omega) functions may be sometimes hard to spot. They 

seem to convey almost the same thing. However, a crucial difference between 

big a and small a is that in the case of big a, we have the libertyto choose both 

the constants c and no. In the case of small a, our statement is much stronger. 

We are in fact saying that for any constant c, we can find a constant no such 

that the inequality holds. This is a considerable difference. When we say that 

f(n) = o(g(n)), we are explicitly saying that even if we multiply the function f(n) 
by any large constant, the function g(n) will ultimately grow larger thanf(n) 
for large values of n. 

2.7 ANALOGY WITH COMPARISON FUNCTIONS FOR 
REAL NUMBERS 

It can sometimes be helpful to think of asymptotic functions as we think about 

the relationship between real numbers. Given two real numbers x and y, we 

can ask these 5 questions: x 5 y, X < y, x = y, x > y, x ~ y. Answering one of these 

questions may automatically answer another of those 5 questions, or it may 

not. For example, if x 5 y, then we know that x> y is not true, but we do not 

know if x <y or not. Analogously, when we make a claim thatf(n) = O(g(n)), we 

do not know iff(n) = o(g(n)) or not. 



ASYMPTOTIC ANALYSIS AND NOTATION I 13 

Tip: Using the analogy of less than equal relationship (.$') for big 0, strictly less 
than relationship «) for small 0, equal relationship (=) for theta, larger than 
equal relationship (~) for big Omega and strictly greater relationship (» for 

small omega can sometimes be helpful. 

Once the analogy has been established, we can extend itto ask which ofthe 
properties of real numbers apply to asymptotic functions. For example, "the 
greater than or equal to" is a transitive property. if x ~ y andy ~ z, then x ~ z. is 

the same statement true for big 0 notation as well? From the definition of big 
o notation, we observe that it is indeed true, and we claim the following. 

SMALL 0 BIG 0 0 BIG (1 SMALL OMEGA 

TRANSITIVITY Yes Yes Yes Yes Yes 

REFLEXIVITY No Yes Yes Yes No 

SYMMETRY No No Yes No No 

As mentioned earlier, there is transpose symmetry between big 0 with 

big 0 functions, and between small 0 and small w functions. That is, if f(n) = 
O(g(n)), then g(n) = D(f(n)) and similarly, if f(n) = o (g(n)) then g(n) = w(f(n)). 

Finally, we investigate the property oftrichotomy. For real numbers x and 

y, we can a Iways say that either x < y or x = y or x> y. For asymptotic functions 
f(n) and g(n), we may be unable to prove any asymptotic function between 
f(n) and g(n). For example, consider f(n) = sin(n) and g(n) = cos(n). 

2.8 HOME EXERCISES 

~. What is the time complexity of the following program? 

j = 1 
while (j < n) { 

k = 2 

} 

while (k < n) { 

} 
j++ 

Sum += a[j]*b[k] 
k = k * k 



14 I ANALYSIS AND DESIGN OF ALGORITHMS 

2. What is the time complexity ofthe following programs: 

j = 1 
while (j < n) { 

k = j 

} 

while (k < n) { 
If (k is odd) 

k++ 
else 

k += 0.01 * n 
} 
j += 0.1 * n 

j = 2 
while (j < n) { 

k = 2 

} 

while (k < n) { 
Sum += a[k]*b[k] 
k = k * k 

} 
k = log n 
j += j 12 

3· Given hen) = O(g/n)) and !zen) = O(gin)), prove that hen) + 
!zen) = O(g/n) + gin)). 

4· Given hen) = O(g/n)) and !zen) = O(gin)), prove thath(n) hen) = 
O(g/n) gin)). 

5. For each ofthe following questions, answer how the given two func­
tions compare asymptotically. 

a. Polynomial, logs and exponential: 
i. n17 and 2n 

ii. (n+3j6 and (1.0Sl 
iii. (1 .0Sl and (1.06l 
iv. 2n'2 and 10n 

v. n100 and 2jn 

vi. n2 and (log n]B° 
vii. n log nand nl.l log log log n 

viii. n and (log nY + (log log nl 
b. Factorial/Combinatorial 

i. n! and n6 

ii. e(n,nI3) and n4 

c. Floors and Ceilings 
i. (ceil nY and (floor nl 



DATA STRUCTURES 

CHAPTER 3 

I n this chapter, we provide a brief overview of the various data struc­

tures that will be helpful in the coming chapters. As a quick recapitula­
tion, a data structure is a structure to hold data, which allows a specific 
set of operations to be performed on the data set. 

There are two general problems that one can come across when 
dealing with data structures: 

1. Choosing an appropriate data structure: Given a data set 
and the operations to be supported, choose a data structure 
that allows those operations to be done efficiently. 

2. Designing a good data structure: Given a data set and the 
operations to be supported, design a data structure (organi­
zation) that allows those operations to be done efficiently. 

Given a problem, we typically start by choosing the right data 
structure. If no data structure is found, then we may need to design a 

data structure that meets our requirements of efficiency. 

3.1 RECORD 

A record allows the packaging of related data elements (called 

fields). Most high level languages allow the userto define customized 

15 



16 I ANALYSIS AND DESIGN OF ALGORITHMS 

records. In C#/Java/PHPNB.NET and other object oriented programming 
languages, this is called "class"'. In C, this is called "struct". Older languages 
such as COBOL, and newer languages such as Ruby and Groovy support this 

concept as well. 

3.2 LINKED LIST 

A (singly) linked list is a sequence of records, where every record has a pointer 
to the next record. A special pointer called "first" has the reference to the first 

record. 

Most implementations of linked lists though are doubly linked due to very 
low additional overhead of making a linked list double linked. 

A doubly linked list is a sequence of records, where every record has a 

pointer to the next record, and a pointer to the previous record. Special point­
ers called "first" and "last" have references to the first and the last records. 

3.3 STACK 

A stack is a data structure that allows us to add a data item, to remove a data 

item, and to peek at the last item that was added. When removing an item, the 
last item that was added (pushed) is the one that gets removed (popped). For 
that reason, stack is also referred to as a last in first out (LIFO) data structure. 

Here is a brief description of these operations: 

• Push (an object)-This adds the given object to the stack, which is now 

on top of the stack. 
• PopO-This returns the object that was on top of the stack, and removes 

it from the stack. 

• TopO-This returns an object, without actually removing it from the 
stack. This is sometimes also referred to as peekO, because we are just 
taking a peek at the top of the stack, but we are not actually removing it. 

Implementation of Stacks 
Stacks exist as common data structures in the libraries of most high-level pro­

gramming languages. For example, in Java, Stack is provided in the java.util. 

Stack class.' If we need to implement Stacks as a programming exercise, we 

1 In Object Oriented paradigm, definition of "class" packages data elements, as well as related 
operations. 
2 In Java, it is now recommended that we use a double ended queue (java.util.deque) instead 
of the stack class. 



DATA STRUCTURES I 17 

can use a variety of mechanisms. For example, to implement stacks using an 
array, we can use an array S[1:N], and use a special pointer to the "top" of the 
stack. When pushing something on the stack, we can increment the pointer. 

When popping, we can decrement the pointer. 
Similarly, to implementstacks using a double linked list, we can use a special 

pointer to the "top" of the stack. When pushing something on the stack, we 

can advance the "top" pointer. When popping, we can move the "top" pointer 
back one step. 

3.4 QUEUE 

Analogous to a Stack, a queue is a first in first out (FIFO) data structure that 

allows two basic operations: 

• dequeueO: Returns the first element 
• enqueue(t): Adds an element t to the end of the queue. 

It is quite appropriate to use a Queue data structure to model a physical 

world queue such as a customer service queue. The customers come and enter 
the queue at the end ("enqueue") and as a customer service representative 
frees up, they can serve a customer ("dequeue"). 

Implementation of Queues 

Queues are typically included in standard libraries. For example, in Java, the 
Queue is defined in java.util.Queue as an interface, with many implementa­

tions available. To implement a queue using a doubly linked list, we can use 
two special pointers-tail and head. The queue can then be represented as tail 

~ .... ~ head. When enqueuing an item, we move tail pointer one step to the 
left. When dequeuing an item, we move head one step to the left. 

To implement a queue using an array, we can use "head" and "tail" indexes. 

When enqueuing an item, we decrement the tail index. When dequeuing an 
item, we decrement the head index. 

3.5 SET 

A set is a data structure that ensures that only a single copy of an element is 
included. Two main methods are provided in this data structure: 

• add(x): Adds the element x. If the element x is already present, it is not 
added again. 

• contains(x): Checks if the set contains the element x or not. 



18 I ANALYSIS AND DESIGN OF ALGORITHMS 

If a set is implemented using a simple linked list, both of these methods 

require the entire list to be traversed in the worst case, and thereby require 

O(n) time. For this reason, sets are typically implemented using either a binary 

tree (more on this in the coming sections) or using hashing. 

Set implementations are included in most high-level languages. In Java, Set 

is an interface with TreeSet and HashSet as two implementation classes. 

3.6 MAP 

A map (also called an Associative Array) is a data structure that allows storing 

of elements using a given key value. Three main methods are provided in this 

data structure: 

• put(k,v): Adds the key k and associates it to value v. Ifthe key k is already 

present, the value v may replace the previously associated value. 

• get(k): Returns the value associated with key k. If key k is not present, this 
method returns an empty value (null). 

• contains(k): Checks ifthe map contains the key k or not. 

Similar to a set, maps are typically implemented using either a binary tree 

or using hashing. In Java, Map is an interface with TreeMap and HashMap as 

two implementation classes. 

Collections API in Java 

In Java, sets and lists (and occasionally maps) are typically considered 

as part of the Collections API. Most of the interfaces provide additional 

methods such as sizeO, which returns the number of elements in that 

set, list or map. Some ofthe implementation classes are better suited to 

handle multiple threads accessing that collection. 

3.7 GRAPH AND TREE DATA STRUCTURES 

3.7.1 Graph 

A graph G = (V,E) is an ordered pair, defined by a set V of vertices, and set 

E of edges. Each edge in E connects two vertices Vi and v
2

' which are in V. 
A graph can be directed or undirected. Ifthe graph is directed, then each edge 

is defined as an ordered pair (Vi' V) and the edge is said to exist from Vi to v2' 

and not from v
2 

to v]" If the graph is undirected, then each edge is defined as 

an unordered pair (Vi' V) and the edge is said to exist between the vertices 



DATA STRUCTURES I 19 

V
l 

and v
Z

' or equivalently between Vz and vr Here are some more definitions 
typically used in graph theory: 

• If (x,y) is a directed edge, then x is said to be adjacent to y, and y is adja­
cent from x. 

• In the case of undirected graphs, if {x,y} is an edge, we simply say that x 
andy are adjacent (or x is adjacent to y, or y is adjacent to x). Also, we can 

saythatxisthe neighborofy. 
• The indegree of a node x is the number of nodes adjacent to x. 
• The outdegree of a node x is the number of nodes adjacent from x. 

• The degree of a node x in an undirected graph is the number of neighbors 
ofx. 

• A path from a node x to a node y in a graph is a sequence of node x, xl' 

xZ ' ••• , xn' y, such that x is adjacent to X l ' X l is adjacent to xZ' ... , and xn is 
adjacent to y. 

• The length of a path is the number of edges that comprise that path. 

• A cycle is a path that begins and ends at the same node. 
• The distance from node x to node y is the length of the shortest path 

from xtoy. 
• We say a graph is connected if there is at least one path between every 

pair of vertices. 

Graph Representations 
Graphs are generally represented in one of the following two ways: 

(i) Adjacency Matrix: Using a matrix A[l .. n, 1 .. n] where A[i,j] = 1 if 
(i,j) is an edge, and is 0 otherwise. If the graph is undirected, then the 

adjacency matrix is symmetric about the main diagonal. 
(ii) Adjacency List: Using an array Adj[l .. n] of pointers, where Adj[i] is a 

linked list of nodes which are adjacent to i. 

Tradeoffs between space and time complexity when considering adjacency 
matrix and adjacency list representations: The matrix representation requires 

more memory, since it has a matrix cell for each possible edge, whether that 
edge exists or not. In adjacency list representation, the space used is directly 
proportional to the number of edges. If the graph is sparse (very few edges), 

then adjacency list may be a more efficient choice. 
However, the time required to look up whether an edge exists or not 

is higher in the case of an adjacency list representation. For this reason, an 



20 I ANALYSIS AND DESIGN OF ALGORITHMS 

adjacency list representation is typically used only in case of sparse matrices or 
when memory space is at a premium. 

3.7.2 Tree 

A tree is a connected acyclic graph (i.e., it has no cycles). It is easy to prove 

that a tree with n vertices must have n-1 edges. It is also easy to prove that 
following three characterizations of trees are equivalent: 

(i) A tree is a connected acyclic graph 
(ii) A tree is a connected graph on n vertices and n-1 edges 
(iii) A tree is a graph with n vertices and n-1 edges that does not have any 

cycles. 

We further observe that in a tree, there is a unique path between every pair 

of vertices. 
We refer to a tree as a rooted tree if one of the nodes is designated as a 

root (the top node). Following definitions are generally used in the context of 

rooted trees: 

• A leafnode is a node that has no children 

• Ancestors of a node x are all the nodes on the path from x to the root, 
including x and the root 

• Subtree rooted at x is the tree consisting of x, its children and their chil­

dren, and so on and so forth all the way down 
• Height of a tree is the maximum distance from the root to any node. 

3.7.3 Binary Tree 

A binary tree is a (rooted) tree where every node has at most two children: left 

child and right child. The subtree rooted at the left child node is then referred 

to as the left subtree and the subtree rooted at the right child node is similarly 
referred to as the right subtree. 

Within the context of binary trees, following two related concepts are often 

used. 
A full binary tree is a binary tree where every non-leaf has two children and 

all the leaves are atthe same level. Ifthe root is defined to be at level 0, then the 
number of nodes in level} is 2i. A full binary tree of height h has 2 h+l -1 nodes. 

An almost complete binary tree of n nodes is the binary tree in which all 
the leaves are at the bottom two adjacent levels and there are no gaps between 

the leaves. 



DATA STRUCTURES I 21 

We observe that a simple array a[l .. nJ can represent a full or an almost 
complete binary tree using the following simple arithmetic: 

• a[l J is the root of the tree 
• Forthe node aDJ, the child nodes are a[2jJ and a[2j + 1J 
• For the node aDJ, the parent node is aD/2J, where division is considered 

integer division. 

3.7.4 Binary Search Trees 

A binary search tree (BST) is a binary tree where every node contains a value, 
and for every node x, all the nodes of the left subtree of x have values 5 x, and 
all nodes in the right subtree of x have values;:: x. 

BST supports 3 operations: insert(x), delete(x) and search(x). The height of 

search trees represents a bound on the searching time, so keeping the height 
bounded is a common objective in binary search trees. Further, since the data 
is typically mutable, it is important that the operations insert and delete opera­

tions maintain the balanced height property, and yet, do not have a significant 
overhead in maintaining that property. 

Red Black and AVL trees are interesting implementations of height bal­

anced binary search trees that allow searches, sequential access, insertions, 
and deletions in logarithmic time. 

3.7.5 B-tree 

B-tree (which is different from a binary tree!) is a one of the self-balancing 

search trees. B-tree is a generalization of a binary search tree in that a node 

can have more than two children, and that different nodes can have different 
number of children. 

Due to the inherent flexibility present in their structure, B-trees are very 

well suited to handle mutable data, and for that reason, B-trees are commonly 
used in actual system implementations of databases and file systems. While the 
implementation of a B-tree is more complex than that of a binary search tree 

such as a red black tree, the overall performance is generally better with B-trees. 

3.7.6 2-3 Trees 

A 2-3 tree is a tree where every internal node (that is, a node with children) has 
either two children (2-node) and one data element or three children (3-nodes) 
and two data elements. Leaf nodes have no children and one or two data ele­

ments. 2-3 Trees can be considered a special instance of B-trees. 



22 I ANALYSIS AND DESIGN OF ALGORITHMS 

3.8 HEAPS 

A min heap (or a max heap) is a data structure that enforces a priority on the 

items. Smaller items are retrieved from the min heap before larger items. It 

supports three basic operations. 

• Insert(x): Inserts the item x and ensures that heap property of the data 

structure is maintained. 

• MinimumO: Returns the minimum element, but does not remove it from 

the heap. 

• Extract_MinO: Returns the minimum element and removes it from the 

heap data structure. 

[Correspondingly, a max heap supports insert(x), MaximumO and Extract_ 

MaxO operations.] 

Heaps are often implemented using a tree and in that case they are referred 

to as heap trees. In the case of minimum heap trees, the following constraint is 

satisfied: all children of a node must be largerthan or equal to the parent node. 

The children nodes do not themselves need to be in any particular order. 

In case a heap is implemented using a binary tree, it is referred to as a binary 

heap. 

A heap may be implemented using a non-binary tree, that is, a tree that 

allows more than two child nodes. Similarly, a heap may be implemented using 

a collection of trees, for example, a Fibonacci heap. 

A heap is also referred to as "priority queue", and is one of the implementa­

tion classes of the Queue data structure defined in the preceding sections. 

3.9 HOME EXERCISES 

~. Write pseudo code for following operations, considering that heap is 

an almost complete binary tree implementation using an array 

a. Insert(x) 

b. Extract_minO 

2. Prove by induction that a full binary tree of height h has 2h+l_1 nodes. 

3. Write pseudo code for following operations, considering that the 

binary search is an almost complete binary tree implementation using 

an array 

c. Insert(x) 

d. Delete(x) 

e. Search(x) 



DATA STRUCTURES I 23 

4. (Trichotomy-Extended) Given two functions f(n) and g(n), both 

strictly increasing with n, is it possible thatf(n) and g(n) cannot be 

compared asymptotically? Either prove that such two functions can 

always be compared asymptotically, or give a counter example, such 

that neither f(n) is in O(g(n)) nor isg(n) in O(f(n)). 
5. Suppose an array is being used to handle a list of objects, such as cus­

tomers. In such a case, how can we support delete operation for a cus­
tomer?Two obvious mechanisms are: (i) leave "holes" (null elements) 

in the array, and (ii) shift the elements to the left when an element 

gets deleted. What are the pros and cons of these two approaches? 

Can you think of other approaches? 



SECTION II 
LGORITFIM DESIGN 

TECHNIQUES 

I n this section, we begin our core objective on how to design 

efficient algorithms. We study the following design tech­

niques: (i) divide and conquer, (ii) greedy method, (iii) dynamic 

programming, and (iv) branch and bound. We will also review 

graph traversal methods, which do not form a distinct algorithm 

design technique, but are a very helpful component nonetheless. 

There is no silver bullet for deciding which algorithmic 

design technique to apply, but there are numerous hints and 

patterns that we can utilize in deciding which algorithm design 

technique to use. Our goal will be to investigate, understand 

and memorialize those patterns, and become adept at dis­

cerning those hints. 



DIVIDE AND CONQUER 

CHAPTER 4 

Divide and conquer is an algorithmic design technique to solve 

complex problems by breaking a problem instance into smaller in­

stances ofthe problem and combining the results. It is a recursive meth­

odology and involves calling the same algorithm on smaller instances of 

the same problem. 

The phrase "divide and conquer" is used in other contexts as well, 

such as management and politics. It may also referto an informal way 

of breaking down a task, such as "organizing a party" into subtasks 
such as "decide the guest list", "prepare invitation cards" and "decide 

catering menu". However, in Computer Science, divide and conquer 

is a formal paradigm and the preceding example of party organiza­

tion task would not be considered a divide and conquer approach 

within the computer algorithms context. When using the divide and 

conquer algorithm design technique, the smaller instances of the 

problem created during the divide step must be instances of the 

same problem. 

Two typically used accompaniments of divide and conquer are: 

(i) Induction for proving correctness, and 

(ii) Recurrence relation solving for computing time (and/or 

space) complexity 

27 



28 I ANALYSIS AND DESIGN OF ALGORITHMS 

Since divide and conquer algorithms are recursive algorithms at heart, we 

begin by defining a recursive algorithm: A recursive algorithm is an algorithm 
that calls itself. A hackneyed joke about recursion is: "In order to learn recur­

sion, you must first learn recursion." 

We start with the example of the quintessential recursive algorithm to sort 

a given array. 

II A generic recursive algorithm to sort an array 
Algorithm sort (Array a) 
Begin 

End 

If (input is small enough) { 
Solve using a different method and return 

} 
sort (subarray consisting of nrst half of a) 
sort (subarray consisting of second half of a) 
do_something_else(); 

When analyzing algorithms constructed using the divide and conquer tech­

nique, we will frequently come across recurrence relations. A brief overview of 

the same is provided next. 

4.1 SOLVING RECURRENCE RELATIONS 

(Definition) A recurrence relation is an equation that recursively defines a 

sequence, using some initial terms that are given. For example, a recurrence 

relation may be given as: 

T(1) = 1 
T(n) = T(n-1) + n for n > 1 

For this example, we can easily calculate T(n) to be n(n+1)j2 using the 

concept of arithmetic progression. 

Consider a different example: T(n) = T(nj2) + T(nj2) + n2 for n > 1; division 

is assumed to be integer division. [When T(1) is not specified, we usually as­

sume T(1) to be any constant value, such as c or 1.] Given this definition, we 

want to find a closed form expression for T(n). 



DIVIDE AND CON~UER I 29 

Another example of recurrence relations is: T(n) = a T(n/b) + f(n). The 

recurrence relations of this form appear very frequently in divide and conquer 

algorithms. In this case, a is the number of sub-problems that you create in the 

"divide" step, and nib is the size of the individual sub-problems created and 

f(n) is the time spent in dividing and merging. For example: 

• T(n) = T(n/2) + c: A divide and conquer algorithm wherein each step cre­

ates one sub-problem of half the size of the original problem, and where 

a constant time of c units is spent in dividing and merging 

• T(n) = 3 T(n/4) + 1: A divide and conquer algorithm wherein each step 

creates 3 sub-problems of one-fourth the size of the original problem, 

and where a unit time is spent in dividing and merging 

Intuitively, all other things being equal, an algorithm is more efficient if it 

creates fewer sub-problems or ifthe sub-problems are of smaller size. We will 

attempt to validate this intuition when we learn to solve the recurrence rela­

tions next. 

There are three general approaches for solving recurrence relations: 

• Substitution method: Guess a solution and prove by induction 

• Recursion tree unfolding method: Expand and analyze the pattern 

• Mastertheorem: A cookbook method that allows us to solve some special 

cases without intricate analysis by characterizing the given recurrence 

relation as one of predefined cases. 

4.1.1 Substitution Method 

In this method, we "guess" a solution, and prove it using principle of math­

ematical induction. This may be best explained using an example. 

Consider a given recurrence relation, such as, T(n) = 2 T(n/2) + cn. In order 

to use the substitution method, we first "guess" the solution. Suppose we first 

guess thatthe solution is T(n) = O(n log n). 
To prove this using induction, we first assume T(m) ~ k m log m for all m < n. 

[We observe that while we have not assigned an exact value to the constant k, 
we have picked the constant k nevertheless. Ifwe are only able to prove that 
T(n) ~ k' n log n,for some value ofk' > k, that will not be sufficient to prove our 
hypothesis.} 



30 I ANALYSIS AND DESIGN OF ALGORITHMS 

Therefore, using the recurrence relation and the induction hypothesis we 
obtain that: 

T(n) = 2 T(n/2) + en 
52 kn/2 log (n/2) + en 
= kn log n - (k - e)n 
5 k n log n, as long as k;;:: e. 

// log (n/2) = log n-1 

Therefore, there exists a constant k for which the hypothesis is true. 

However, this induction hypothesis does not satisfy the base case of induc­
tion, if T(1) > 0, since 10g(1) is O. Therefore, we need to adjust the induction 
hypothesis, to satisfy the base case. In this specific example, we can say: T(m) 
5 km log m + k'm. Using the recurrence relation, we then obtain that T(n) 5 
2 [k n/210g n/2 + k ' n/2 J + en, which is less than or equal to k n log n + k'n as 
long as k ;;:: e and the base case is also satisfied as long as k' ;;:: T(1). Thus, we 

conclude that T(n) = O(n log n). 

4.1.2 Recursion Tree (Unfolding) Method 

In this method, we "unfold" (that is, expand) the recurrence relation, analyze 
the pattern that emerges, and use mathematical series to solve the recurrence. 

For example, let us consider T(n) = T(n/2) + 1. If we expand this recur­

rence, we obtain that T(n/2) = T(n/2Z) + 1, and therefore: T(n) = T(n/2Z) + 2. 
Expanding it one more time, we obtain that T(n) = T(n/23) + 3. In more general 
terms, we obtain that T(n) = T(n/2k) + k. When k = logz n, we have T(n) = T(1) 
+ logz n, or in other terms, T(n) = 8(log n). 

As another example, let us consider T(n) = 3 T(n/2) + 1. If we expand this re­
currence, we obtain that T(n/2) = 3 T(n/2Z) + 1. That is, T(n) = 3z T(n/2Z) + 3 + 1. 
Expanding this k times, we obtain T(n) = 3k T(n/2k) + 3k-1 + 3k-Z + .. + 1. Using 

geometric progression, this can be rewritten as, T(n) = 3k T(n/2k) + (3k - 1)/2. 
Assuming T(1) = e and using k = logzn, we obtain T(n) = 3k (e+1j2), that is, T(n) = 
8(3k). Since ]!'/ogzn is the same as n lllogz3, we conclude that T(n) = 8(n ll logz3). 

Tip: We frequently observe nAlogba as a component in our solutions when 
solving recurrence relations of the form T(n) = a T(n/b) + fen). 

4.1.3 Master Theorem 

Master theorem is a cookbook solution method for the recurrence relations 
of the form T(n) = a T(n/b) + f(n), that examines values a, band f(n) to de­

termine a closed form expression for T(n). While the substitution method and 
the recursion tree unfolding method can be used for recurrence relations of 



DIVIDE AND CON~UER I 31 

other forms as well, master theorem is a method expressly for the recurrence 
relations of the form T(n) = a T(njb) + f(n). 

Before stating the actual master theorem, we can observe from the pre­

vious sections that the expression nlliogba appears rather frequently in such 
recurrence relations. 

Specifica Ily, master theorem states: 

Case ~. 
Case 2. 

Case 3. 

If f(n) = erne) where c < 10gb a, then T(n) = e(nlliogb a) 
If it is true, for some constant k ~ 0, that f(n) = erne logk n) 
where c = 10gb a, then T(n) = erne logk+l n) 

If it is true that erne) where c> 10gb a, then T(n) = erne) 

Intuition behind the master theorem 

Wh ile this is not a forma I proof of the master theorem, we can use the recur­
sion tree unfolding method to develop some intuition for this method. 

If we unfold the recurrence relation T(n) = a T(njb) + f(n), we get an ex­

pression like: 

T(n) = ak T(njbk) + f(n) + af(njb) + ... + ak f(njbk) 

For k z logbn, njbk = 1, and we can assume T(njbk) = c. 

Then, T(n) = all(logbn) + f(n) + af(njb) + ... + ak f(njbk) 
= c. nll(logba) + f(n) + af(njb) + ... + ak f(njbk) 

We note that there are about logbn terms. We observe that there are three 
cases, which correspond to the cases specified in the master theorem: 

Case ~. 

Case 2. 

Case 3. 

If f(n) is very small, say a constant, then the first term domi­

nates, the other terms can be ignored 
If f(n) = e(nll(logba)), then there are log n terms, and each term 
is same asf(n). Specifically, we observe that af(njb) = f(n) in 

this case. Therefore, T(n) = f(n) log n. 
Iff(n) istoo large, thenf(n) terms dominate. Specifically, from 
all of the f(n) terms, f(n) itself dominates. 

Applying MasterTheorem to Example Recurrences 

~. T(n) = 2 T(nj2) + n log n 
a=b=2 
f(n) = n log n 

logba = 1 
f(n) = e(nll(logba) log n) 



32 I ANALYSIS AND DESIGN OF ALGORITHMS 

Therefore, by MasterTheorem, 

T(n) = ern log2 n) 
2. T(n) = 3 T(n/2) + n2 

a =3, b = 2 
f(n) = n2 

logba = log} 
f(n) = e(n2) where 2 > 10g

b 
a 

Therefore, T(n) = e(n2) 

4.2 THE DIVIDE AND CONQUER TEMPLATE 

The divide and conquer algorithms typically begin by first generalizing the 

problem to a notation that can solve problems other than the one that was 

directly posed. We refer to this as the "generalization" step. It may be a bit 

counterintuitive that a generalization, that is, making the problem harder, 

actually helps in solving it, but finding the right generalization is sometimes 

the key to solve a problem efficiently. One reason that a generalization may be 

helpful is that when invoking the algorithm recursively, the problem instances 

can be different, and a more general problem structure allows us to invoke the 

same algorithm forthose different problems. 

This is what Wikipedia says about this step: " ... it is often necessary to 

replace the original problem by a more general or complicated problem in 

orderto get the recursion going, and there is no systematic method for finding 

the proper generalization." 

Here is the general template. 

Step ~. 

Step 2. 

Step 3. 

Step 4. 

If the input J is small, solve it directly using a brute force, or 

another trivial method. 

Divide inputJ into two or more partsJ
1
,J2' ... 

Call the algorithm recursively on individual inputs UJ' J2' .. .) to 

get sub-solutions (51' 52' .. .) 
Merge the sub-solutions 51,52' ... into a global solution 5 



DIVIDE AND CON~UER I 33 

4.3 BINARY SEARCH 

We consider the problem of searching for a given number in a sorted array. 

The well-known binary search algorithm operates by comparing the given 

number to the midpoint ofthe array, and then deciding which half of the array 

to search further. 

II Given a sorted array A and key, searches for that 
key 
BinarySearch (A, low, high, key) 

If (high - low < 5) { 

} 

II Search iteratively through the array and 
return 

Mid = (low + high) I 2 
If (key < A[mid]) { 

Return BinarySearch (A, low, mid, key) 
} else { 

Return BinarySearch (A, mid+l, high, key) 
} 

In each iteration, the binary search algorithm is able to eliminate one half of 

the array. The recurrence relation can therefore be written as: T(n) = T(n/2) + c, 

where the constant c represents the cost of computing the mid-point and com­

paring it to the given key. 

By using the recursion tree unfolding method, we can obtain a closed form 

expression of T(n) = 8(log n) for this recurrence relation. 

Therefore, the binary search algorithm runs in 8(log n) time. 

4.4 MERGE SORT 

Consider the classic problem of sorting a given array, which may be invoked 

with the simple command: Sort(Array a). To apply the divide and con­

quer template, we first generalize the problem as follows: Given an array 

and indexes i and j (start and end), sort that portion of the array. 

The Merge Sort algorithm solves this problem by recursively sorting the 

first and the second halves of the given array, and then merging the sorted 

sections. The pseudo-code is given here: 



34 I ANALYSIS AND DESIGN OF ALGORITHMS 

II Given an unsorted array and bounds 
II Recursive algorithm MergeSort sorts that array 
segment 
Algorithm MergeSort (input: Array a, int i, int j) { 

if (j - i < THRESHOLD) { 

} 

InsertionSort(a,i ,j) 
} 
int k=(i+j)/2 
MergeSort(a,i ,k) 
MergeSort(a,k+l,j) 
Merge(a,i ,k,k+l,j) 

4.4.1 Merging 

In the last line of the merge sort algorithm, we need to merge two lists repre­
sented by two different sections of the array. That leads us to the question of 
merging two lists effectively. We consider the following intuitive method: 

• Compare the first elements of the two lists 
• The smaller ofthe two elements is added to the merged list 

• We keep repeating while both the lists are non-empty. If one of the lists 
becomes empty, we append the non-empty list to the merged list. 

In the worst case, merging two lists of x andy elements respectively using 

this merging algorithm may require x + y - 1 comparisons. 

4.4.2 Time Complexity of Merge Sort 

Time complexity of merge sort can be written using the following recurrence 
relation. 

T(n) = 2T(n/2) + ern) 

Using the methods for solving recurrence equations discussed previously, 
we can conclude that T(n) = ern log n). 



DIVIDE AND CONQUER I 35 

4.5 QUICKSORT 

Invented in ~960 by C. A. R. Hoare, Quicksort is a very widely used and well­

studied sorting algorithm'. It is a fairly easy to implement algorithm and sorts 

the array in-place, that is, without requiring extra space. 

Quicksort begins by selecting a "partition" element, and then partition­

ing the array into "left" and "right" portions (not necessarily equal) based on 

the partition element. Quicksort is also a divide and conquer algorithm, and 

involves two recursive calls to sort the left and right sides. The pseudo-code for 
Quicksort is given next: 

II Algorithm quicksort to sort [p .. r] portion of array A 
quicksort(A,p,r) 

if (p < r) { 

} 

find a partition element, q II The "central" 
problem 
partition (A,p,r,q) 
quicksort(A,p,q-l) 
quicksort(A,q+l,r) 

4.5.1 Central problem in Quicksort 

The central problem in Quicksort is how to find a good partition element. 

Once a partition element is found, it is straightforward to partition ef­

ficiently around that partition element so that the partitioning element (q) is 

its final position, every element smaller than q is to the left of q, and every 

element larger than q is to the right of q. A simple algorithm for partitioning 

can be given as: evaluate each element in the array A and move elements less 

than or equal to q to the array B, and move elements greater than q to array C. 
Copy all the elements of the array B, the element q and the array C to form 

the new partitioned array A'. A better algorithm for partitioning can use two 

pointers to start from each end of the array and swap the elements that are in 

wrong place relative to element q. 

4.5.2 Time Complexity Analysis of Quicksort 

From the pseudo-code of the partition routine, we can observe that the par­

titioning algorithm runs in linear time. The recurrence relation can then be 

written as: 

~ In his ~975 doctoral thesis at Stanford University, Sedgewick analyzed many variations of 
Quicksort algorithm. 



36 I ANALYSIS AND DESIGN OF ALGORITHMS 

T(n) = T(n) + T(n) + en, where n1 + nz = n-l 

The values n~ and n2, and therefore, the recurrence relation, depends on 
the kind of split caused by the partition element. In the worst case, we may see 
a very bad split every time, and the recurrence relation can be written as: T(n) = 
T(n-l) + en, assuming that T(O) = O. This leads to the closed form expression 
for the worst case complexity of O(nz). In the best case, we may see a perfectly 

even split every time, and in that case, the recurrence relation can be written 

as: T(n) = 2 T(n/2) + en, which our analysis of Merge Sort algorithm leads us 
to the closed form expression of T(n) = O(n log n). However, the probability 

of observing a perfectly even split or a perfectly uneven split every time is very 
low. Therefore, we need to analyze Quicksort in the average case to assess its 

running time. 

We make the following observation about partitioning. If a partition ele­
ment is selected randomly, it has a l/n probability of being the n-th largest 
element. Stated differently, it has a 50% chance of being between the 25th and 
75th percentile elements. Let us define such a partition to be a "good" partition 

element. If we find a partition element that is not good (along the lines of this 
definition), then we may simply discard it, and select a different partition ele­

ment. Since probabilistically, there is a 50% chance of it being a good partition 
element, the expected number of times that we have to try before finding a 
good partition element is 2. In that case, we can write the average case recur­
rence relation as: T(n) = T(n) + T(n) + 2en, where we are guaranteed that 

both n
1 

and nz are between n/4 and 3n/4. In this case, the number of recursive 
calls before we reach an array of size 1 is limited to log4/3n. At each level, the 
time spent in the partitioning phase is no more than 2en. Therefore, in the 

average case, the total running time is O(n log n). 
Average case can also be analyzed using recurrence relations by writing 

T(n) as follows: 

This yields the same O(n log n) answer, although the analysis is slightly 
more complicated. 

Comparing Merge Sort and Quicksort 

Merge Sort and Quicksort are both divide and conquer algorithms. 
However, Quicksort spends more time upfront (in partitioning), and 

after the recursive calls, there is no need to merge. Merge Sort makes 
the recursive calls with little preliminary work, and then spends the time 

in merging the results from the recursive calls. 



DIVIDE AND CONQUER I 37 

4.6 MEDIAN FINDING 

Median finding problem is defined as follows. We are given an unsorted array 

of numbers, and we need to find the median number. A simple solution is to sort 

the array, and then find the middle element (or the average of the two middle 

elements in case the array length is even). This solution requires O(n log n) 
time for the sorting phase. Is there a more efficient algorithm? 

We first generalize the median finding problem to instead find the k-th 

smallest element in the given range of the array. Finding the median of the 
entire array is akin to finding the (nj2)th-smallest element. The generalized 

problem is also referred to as "selection" problem or "order statistics". 

Having generalized the problem, we can use the ideas presented in the 

average case analysis of Ouicksort algorithm to design divide and conquer al­

gorithms to find the median in linear, that is, O(n) time. There are two distinct 

algorithm, which we describe next. 

4.6.1 QuickSelect Algorithm-Probabilistic Version 

The probabilistic version of the OuickSelect algorithm is defined as follows. 

OuickSelectProbabilistic (A, i,j, k): Returns k-th smallest element in the (i,j) 
range of given array. 

1. Partition the given array using a random partition element. 

2. Repeat step 1, until the partition is "good", that is, each of the parti­

tions contains at least a quarter ofthe elements. Suppose the index of 

the good partition element in array A is q. 

3. If k > q ofthe left partition, invoke the algorithm recursively on the right 

partition, otherwise invoke the algorithm recursively on the left partition. 

Asymptotic Analysis of Probabilistic QuickSelect 

When a random partition element is used on an array of size n, there is a ljn 
probability that the partition element will split the array into two sections of 

sizes j and n-j-l, for each value of j from 0 to n-l. Therefore, there is a 50% 
probability that the partition will be "good", that is, each of the partitions 

contains at least a quarter of the elements. 

Therefore, the expected number of times that step 1 needs to be repeated 

before we find a good partition is 2. (Why? Consider an event that happens 

with a probability p. Say the expected number of times before you observe the 

event is E. Then, we can write, E = p.l + (1-p}(E+l) by observing that after 

one attempt, the event either occurs with probability p, and with probability 



38 I ANALYSIS AND DESIGN OF ALGORITHMS 

1-p it doesn't occur and therefore we need E more attempts to observe the 
event. That equation then leads to pE = 1.) 

The recursive call will then be made on an array of size no more than 3n/4 
where n was the original length. Therefore, the recurrence relation can be 

written as: 

T(n) = 2en + T(3n/4) 

Using any of the methods for solving recurrence relations, we can observe 
that T(n) = O(n). 

4.6.2 QuickSelect Algorithm-Median of Medians Version 

Next variation of the OuickSelect algorithm uses the same recursion logic in 
the divide and conquer but uses a slightly different mechanism to achieve a 

good partition. Instead of using a random partition element and probabilistic 
analysis, we can use the approach defined as follows. 

OuickSelect (A, k): Returns k-th smallest element in given array 

~. Divide the array into groups of 5. There are n/5 groups. 
2. Sort the small groups using insertion sort. Since each group is of 

5 elements, it takes a constant amount of time to sort those groups. 
3. Collect all the n/5 med ians from the n/5 groups. 
4. Find the median of the medians by recursively calling the OuickSelect 

algorithm. We observe that there are 3n/10 of elements smaller than 
the med ian of medians and 3n/10 of elements larger than median of 
medians. 

5. Partition the array on the median of medians. 
6. Similartothe probabilistic algorithm, invoke the algorithm recursively 

on the left or the right partition depending on the value of k and the 

size of the partition. 

Asymptotic Analysis of Median of Medians QuickSelect 
We observe that the steps~, 2,3 and 5 all require linear amount of time. Step 4 

is a recursive call to find the median of medians. Step 6 is another recursive call 
after removing at least 3n/1 0 of elements. The recurrence relation can thus be 
written as: 

T(n) = en + T(n/5) + T(7n/10) 

We can prove that T(n) is linear, that is O(n), by using substitution method. 
Our induction hypothesis is that T(rn) 5 10 ern for all values of rn < n. 



Therefore, 

T(njS) ~ 2en 
T(7nj10) ~ 7en 
T(n) ~ en + 2en + ten = 10 en 

DIVIDE AND CON~UER I 39 

Therefore, the equality holds for n, and by principle of mathematical induc­

tion, inequality holds for all values of n. 

4.7 CLOSEST PAIR OF POINTS 

The closest pair of points problem is defined as follows: Given n points on the 

two-dimensional plane, find the pair of points such that the distance between 

them is smaller than any other pair of points. 2 

A naive algorithm to solve this problem requires O(n2) time to compute all 

pair-wise differences and then find the closest pair. A divide and conquer algo­

rithm that finds the closest pair in O(n log n) time can be constructed as follows: 

~. Split the set of points into two equal-sized subsets byfinding the median 
ofthe x-dimensions ofthe points. (From our learnings from the previous 

sections, this can be done in linear time.) We define the vertical line on 
that median x-dimension to be the "dividing vertical" ofthe set of points. 

2. Solve the problem recursively subsets to the left and right subsets. 

Define oto be the minimum among the minimum distances in the left 

and the right subsets. 

3. Find the minimal distance among the pair of points in which one 

point lies on the left of the dividing vertical and the second point 

lies to the right. We only need to examine the points that are within 

a distance 0 of the dividing vertical, since otherwise the distance 

between them cannot be less than o. Define the minimal distance 

thus found to be 0'. 
4. The final answer is the minimum among 0 and 0'. 

The main complication in this divide and conquer algorithm is in Step 3. If 

we assume that the Step 3 can be accomplished in linear time, then the overall 

recurrence relation will look like: T(n) = 2 T(nj2) + en, which we can solve to 

get T(n) = O(n log n). 
We argue that Step 3 can indeed be done in linear time by making the fol­

lowing set of observations: 

2 This problem is different from a related problem wherein we are given a point, and we want 
to find the nearest neighbor from that given point. 



40 I ANALYSIS AND DESIGN OF ALGORITHMS 

~. Each point p on the left side of the vertical line only needs to be com­

pared with a set of points Sp that are: (i) on the right side of the vertical 

line, (ii) within 0 x-distance from the dividing vertical line, and (iii) 0 

y-distance of the point p. There cannot be more than six points in set 

Sp' otherwise there would be a pair of points that would have distance 

less than 0, contradicting the definition of o. 
2. Since there are only n/2 points on one side of the vertical line, that 

implies that there are only 3n pairwise comparisons to be made in 

Step 3 of the algorithm. 

This isthe main idea of Step 3. Some more implementation details, such as, 

how to find the set of points Sp without increasing the time complexity are left 

as an exercise to the reader. 

4.8 MATRIX MULTIPLICATION 

Given matrices A and B of size n x n each, the product C of the two matrices 

is defined as follows. [, the element in the i-th row and j-th column of C is 
IJ 

obtained by pairwise multiplying the elements of i-th row of A withj-th column 

in B. One may compute each entry in the third matrix one at a time. This leads 

to a straight forward algorithm to compute each element ofthe product matrix 

in O(n) time, and the entire product matrix in O(n3) time. 

For many years, this straightforward algorithm was the best-known algo­

rithm. In ~969, Volker Strassen published the first algorithm that pointed out 

that the standard approach is not optimal. 

Strassen's divide and conquer algorithm for matrix multiplication is de­

scribed as follows: 

~. Firstly, we assume thatA and B are square matrices of size 2k, that is, n 

is a power of 2. If they are not ofthis size, we fill the missing rows and 

columns with zeroes. This structure allows us to divide the problem 

into sub-problems. 

2. We partition A into 4 equally sized block matrices as: A ll' A l2' A 21 and 

A
22

· Similarly we partition B into B
ll

, B
l
2' B

21
, B 22 and C into C

ll
, C

l
2' C

21
, 

C
22

. We observe that each of the smaller block matrices is of size 2k-1. 
3. [Only an observation, not an actual step in the algorithm:] We can 

compute the product matrix Cas Cll = A ll B 11 + A 12 B 21" Similarly, C12 = 
A ll B 12 + A 12 B 22' C21 = A 21 B ll + A 22 B 21 and C22 = A 21 B 12 + A 22 B 22 · 



DIVIDE AND CON~UER I 41 

4. The trick that is used in this a Igorithm is that instead of computing the 

8 products, we compute 7 intermediate products, defined as follows. 

• Ml = (A ll + A22) (Bll + Bz) 
• Mz = (Azl + A22) Bll 
• M3 = All (BIZ - Bz) 
• M4 = Azz (BZl - Bll) 
• Ms = (A ll + A12) Bzz 
• M6 = (A2J - All) (Bll + B12) 

• M7=(Alz -Az)(Bzl +B22) 
5. We can now express the final product matrix in terms of intermediate 

matrices as follows: 

• ell = Ml + M4 - Ms + M7 
• elZ = M3 + Ms 
• eZl = Mz + M4 
• ezz = Ml - Mz + M3 + M6 

4.8.1 Time Complexity Analysis of Strassen's Algorithm 

Strassen's algorithm involves 7 recursive calls for the multiplication operations 

and a constant number of addition/subtraction operations. Addition/subtrac­
tion operations involving n x n matrices require O(nZ) time, as each element can 

be calculated in a constant time. The recurrence relation can then be written as: 

T(n) = 7 T(n/2) + c nZ 

We can solve this recurrence relation to T(n) = O(nll/o9z7), that is, O(nZ.Sl
). 

Therefore, Strassen's algorithm is asymptotically faster than the straight­

forward O(n3) algorithm. Many other algorithms have been designed since 

Strassen's breakthrough algorithm that are asymptotically superior; an ex­
ample being an O(nZ.37S) algorithm by Coppersmith and Winograd. 

4.8.2 Understanding Strassen's Algorithm 

The defin itions of intermediate matrices in Strassen'salgorithm are not intuitive, 

and may appearto be ad hoc. In orderto build our intuition regarding Strassen's 

algorithm, we can start with an easier problem of multiplying complex num­

bers. Suppose we are given two complex numbers Z l = x + {y and Zz = u + iv. The 

productz
3 
= Z l · Zz is then defined as (xu - vy) + i(xv + uy). This product requires 

4 individual multiplications and 2 addition/subtraction operations. A different 

way to compute Z3 can be by first computing 3 products PI = (x+y)(u+v), Pz = xu 
and P

3 
= vy. Then, Z3 can be written as (pz - pJ + i(Pl - Pz - pJ. This alternate 



42 I ANALYSIS AND DESIGN OF ALGORITHMS 

method involving 3 individual multiplications and 5 addition/subtraction oper­

ations shows the concept of rearranging terms to reduce costly multiplication 

operations. 

Suppose we rename the A ll' A ll' A 21 and A 22 matrices in Step 2 of Strassen's 
algorithm to a, b, e and d, and rename matrices B ll, B 1l' B 21, B 22 to (x,y, z and w). 

Then, our problem can be restated as: computing expressions (a x + b z), (ay + 
b w), (e x + d z) and (ey + d w) using only 7 multiplication operations. 

4.9 SUMMARY 

Divide and Conquer is a formal algorithm design technique with numerous 

practical algorithms. This technique often involves the use of recurrence rela­

tions to represent their computational complexity, which can be solved using 

master theorem, substitution method or simply by unfolding and analyzing 

the expression. 

For sorting an array of numbers, Merge Sort runs in O(n log n) time. 
Quicksort also runs in O(n log n) time on average. While we mostly focus on 

worst case analysis, we observe that in case of Quicksort, average case analysis 

is actually closer to best case analysis. 
A linear time algorithm to find the median (or k-th largest or smallest 

element) in an unsorted array exists that operates without sorting. While 

asymptotically the algorithm is linear time, the constant hidden in the linear 

expression is rather large, necessitating caution when using this algorithm. 

4.10 HOME EXERCISES 

~. Review the merging algorithm described in Section 4-4.~. Can you 

argue that it is optimal, that is, there exist two lists that will require 

these many comparisons? Alternatively, can you find a better merg­

ing algorithm? 

2. Given an unsorted list of integers a1, al' ... an' design an algorithm 
that checks if there is a pair at aj that adds up to exactly M. The time 

complexity of your algorithm should be O(n log n) or better. 

3. In the QuickSelect algorithm-probabilistic version, if we define a 
"good" partition to be such that each partition is at least one-third of 

the original size, is the resulting algorithm still linear time? 

4. In the QuickSelect algorithm-median of medians version, if we use 

groups of size 7 instead of size 5, is the resulting algorithm still linear 



DIVIDE AND CON~UER I 43 

time? Is the resulting algorithm better, or worse? What if we use 

groups of size 3? 

5. You are given a sequence of n numbersA(1), ... , A (n), with a very spe­

cial property, that adjacent numbers are "off" by no more than 1. For 

example, here is a valid sequence: [100,99,99, 98,99,100,100,101, 
102,103,104, 105, 104, 103, 103, 103, 102}. Say the first number in 

the sequence isx, the last one isy, and you are given a number z, such 

that x < z < Y. You have to find the location of z in the sequence (or 

report that it does not exist). The time complexity of your algorithm 

should be O(log n) or better. 

6. Consider the "closest pair of points" problem. Suppose we simply sort 

the points by their x-dimensions in the first step, in O(n log n) time 

instead of using the linear time median finding algorithm. How does 

this change the time complexity of the entire algorithm? 

7. Given an array of n unsorted numbers, give a linear time algorithm to 

find if there exists a number in the array that exists at least 10% ofthe 

time, that is, at least nil 0 times. (For example, ifthe array has 1000 
elements, a number that appears 100 or more times.) 

8. Design and implement an algorithm for function power(integer a, 
integer n) that computes an, in O(log n) time. 

9. Consider n people standing in a circle, marked from 1 to n. Suppose 

every second standing person is asked to sit down, and this process 

continues in the circle until only one person is left standing. What is 

the initial index of the last person left standing? 

~o. Consider the problem of multiplying two complex numbers Z1 = U + iv 
and Z2 = W + ix, where the product is Z1 Z2= (uw - xv) + i(vw + ux). We 
observe that the product requires 4 multiplications: uw, xv, vw and ux. 
Can you rewrite this in a way so that it only involves 3 multiplications 

instead of 4? 



GREEDY METHOD 

CHAPTER 5 

I n this chapter, we describe greedy method-a technique to build a 

complete solution by making a sequence of "best selection" steps. 
The exact "best selection" depends upon actual problem, but the impor­
tant distinction is that the focus is simply on "what is best step from this 

point", as opposed to characterizing the "best solution overall". 
Applications of greedy method are very broad, with examples in 

numerous fields. We list some of these applications and also specify 

the optimality of the greedy approach for that problem. 

• Sorting (Selection Sort, which is suboptimal) 

• Merging sorted lists (Optimal) 
• Knapsack (Optimality depends upon the type) 
• Minimum Spanning Tree (Kruskal's algorithm, Optimal) 

• Character Encoding (Hoffman Encoding, Optimal) 

Firstly though, we learn about an important property, using which 

can try to characterize the problems in which greedy method works 
and in which case it doesn't. 

45 



46 I ANALYSIS AND DESIGN OF ALGORITHMS 

5.1 OPTIMAL SUBSTRUCTURE 

A problem is said to have optimal substructure if the sub-solutions of an 

optimal solution of the problem are themselves optimal solutions for their 

sub-problems. 

This can be best observed by way of an example. Suppose we have found 
the shortest path from node a to node b in a graph, and suppose that shortest 

path is [a, Xl' Xz ... Xi ... Xj ... XII bj. 
Then we can prove that the portion of xito >s on that path is a shortest path 

from Xi to Xj as well. (Proof outline: Hypothetically, if there existed another 
shorter path from Xi to x/ then we could construct a shorter path from a to b by 

using the shorter path from Xi to x/ thus contradicting the claim that the said 
path is the shortest path between nodes a and b.) 

5.2 SORTING USING GREEDY METHOD 

A simple sorting algorithm using greedy method can be described as follows: 

• Select the minimum element 
• Move it to the beginning 
• Continue doing this forthe remaining array 

II Given an unsorted array of numbers 
II Sorts the array using the greedy method 
Algor ithm Select i onSort (Ar ray a [1. . n]) 
For i = 1 to n-1 

For j = i +1 to n 
If (a[iJ > a[j]) swap (a[i], a[j]) 

In the i-th iteration of the outer loop, the i-th smallest element is selected 

and placed at a[i] (hence the name selection sort). The algorithm swaps the 
elements a[i] and a[j] only if a[i] is strictly larger than a[j]i equal elements are 

not swapped. Therefore, the selection sort algorithm is stable, that is, equal 
elements stay in the same relative order as in the input list. Stability is an im­
portant characteristic of sorting algorithms in scenarios where the elements 

have more than one sortable attribute. 
Due to the two nested loops, the SelectionSort algorithm takes O(nZ) time. 

Considering the other sorting algorithms discussed in the Divide and Conquer 



GREEDY METHOD I 47 

section that require O(n log n), we know that this algorithm is not optimal in 
terms of the time that it takes. 

5.3 MERGING SORTED LISTS 

We consider an interesting problem next. We are given many sorted lists, and 

we want to merge all the lists into one consolidated list, by merging two lists 
at a time using the merge process defined in Merge Sort algorithm. We need 
to determine the order (that is, the sequence) in which to merge the lists. 

A brief example can demonstrate that the order can significantly affect the 
overall number of comparisons requiredto merge the lists. Suppose we have three 
lists of sizes 2M, 5M, 10M, and let us consider two alternate merge sequences: 

i. If we merge the lists of sizes 5M and 10M first, then using the merge 
process described in the merge sort algorithm, we observe that it 

requires 5M + 10M - 1, that is, approximately 15M comparisons in 
the worst case. After that, we have two lists of sizes 2M and 15M. To 
merge those lists requires approximately 17M comparisons, thereby 

resulting in 32M total comparisons. 
ii. If we merge the list of size 2M with the lists of size SM, that requires 

approximately 7M comparisons, and after that we have two lists of 

size 7M and ~oM. Merging those lists requires approximately ~7M 
comparisons, thereby resulting in 24M total comparisons. 

Therefore, simply using the second sequence saves approximately 2S% in 
terms of total number of comparisons in this specific example. 

5.3.1 Greedy Algorithm 

The greedy approach can be to merge the two shortest remaining lists. After 

that point, the new list is inserted into the pool of lists, and the process is 
repeated. (As an example of the greedy technique, the algorithm makes its 
choice only on the basis of two shortest lists, and the decision is not influenced 

by the sizes of the larger lists.) 
To implement this greedy algorithm, we need a data structure that allows 

usto: 

(i) Remove the two smallest elements 
(ii) Add an element 

(iii) Repeat these steps until we have only one element 



48 I ANALYSIS AND DESIGN OF ALGORITHMS 

5.3.2 Implementation 

Although we can implement these steps using a variety of data structures such 

as a binary search tree, we can also use a slightly simpler data structure of 
a heap. 

II Finds the merge sequence, given an array 
II that contains the sizes of the lists 
Algorithm MergeSequence (Input: Array L[l. .n], L[i] is 
the size of the i-th list) 

Build the original heap 
For i = 1 to n-l 

Remove two smallest elements from the heap 
II 2 log (n) time for two delete operations 

Add a new element correspondi ng to the merged 
list 

II log(n) time for one insert operation 

The total time complexity of the merge sequencing algorithm is: O(n log n), 
where n is the number of lists to merge. We should observe carefully that this 
time complexity is in terms of n, the number of lists to merge. The number n 
has no correlation with the number of elements in any of those lists. Similarly, 

the goal ofthe merge sequence algorithm is only to create the correct merge 
sequence -the actual merging of lists can happen after the sequence has been 
determined. 

5.3.3 Proof of Correctness 

The greedy algorithm suggested above can be shown to be optimal using the 
similar proof by contradiction as outlined in the optimal substructure. 

5.4 KNAPSACK PROBLEM 

Next we present a central problem in optimization that manifests almost every 
day, albeit in different form each time. This problem is generally referred to 

as a "knapsack" problem, in which we are given a knapsack of fixed weight 
capacity and a set of items of varying weight and reward values. Our goal is 
to select a subset of items such that the sum of the selected items does not 

exceed the weight capacity of the knapsack and the reward achieved from the 
selected items is maximized. 



GREEDY METHOD I 49 

Problem Definition 
Input: A weight capacity C, and n items of weights W[l:nJ and reward value 
R[l:n}. 
To do: Determine which items to select so thatthe total weight ofthe selected 
items is :5 C, and the total reward value is maximized. 
An Example 

We are given 4 items, with weight values [104, 291,200, 213J and correspond­
ing rewards values [500, 1000, 550, BOO}. The weight capacity of the knapsack 
is500. 

We observe that we cannot select the items 2 and 4 together. Even though 
those items have high rewards values (1000 and BOO respectively), their total 
weight is 504, which exceeds the capacity of the knapsack. If we select the 

items 2 and 3, we can achieve a total reward of 1550. 

An Intuitive Ordering and the Essence ofthe Problem 
The items that have a higher reward to weight ratio present a more attractive 
choice to be considered in the knapsack. However, for the example shown 

above, the reward to weight ratio of the 4 items are [4.B1, 3.44, 2.75, 3.76}. 
Therefore, the items 1 and 4 are more attractive than items 2 and 3 based on 
their reward to weight ratios. 

As the example shows, we may have a scenario in which the knapsack is not 
full, and ignoring some items with the high reward to weight ratio may achieve 
a total reward value. This is the essence of the knapsack problem. 

5.4.1 Greedy Algorithm for Fractional Knapsack Problem 

We consider a fractional version of the problem, in which we have the option 
of selecting fractional portions of the items. This is a significant relaxation of 
the original knapsack problem and instantly, the problem of the knapsack not 

filling up completely is eliminated. This enables a greedy algorithm, which 
simply orders the items using reward to weight ratio, to achieve the maximum 
possible reward value. 

The greedy algorithm can then be described as follows. 

~. Sort the items using their reward to weight ratio. 

2. Starting with the item with the highest reward to weight ratio, con­
tinue selecting the item until the weight of the selected items equals 

the weight capacity of the knapsack. 



50 I ANALYSIS AND DESIGN OF ALGORITHMS 

For the example presented above, the greedy algorithm finds the solution 
in the following steps: 

• (Initial state) No item selected, selected reward = 0, selected weight = 0, 
remaining weight capacity = 500 

• All of item 1, item reward = 500, selected reward = 500, selected weight 

= 104, remaining weight capacity = 396 

• All of item 4, item reward = 800, selected reward = 1300, selected 
weight = 317, remaining weight capacity = 183 

• 183/291 fraction of item 2, item reward = 628.87, selected reward = 
1928.87, selected weight = 500, remaining weight capacity = O. 

The algorithm terminates when there is no weight capacity remaining, with 
a total reward value of 1928.87. 

5.4.2 Practical Applications and Variations 

Knapsack problem can be used to model many kinds of optimization prob­
lems, such as, advertising channel selection. The reward value of the channel 
can correspond to the expected revenue to be realized by using that channel. 

Many different variations appear frequently based on the actual constraints 
pertaining to the business domain. Here are some examples: 

~. An item cannot be selected partially (either select an advertising 
channel or not) 

2. An item can be selected multiple times 

3. An item can only be selected if another specific item is selected 
4. An item cannot be selected if another specific item is selected 
5. An item can only be selected if all of the other specified items are 

selected. 
6. Only one of a specific group of items can be selected. 

5.4.3 General Solution Using Integer Linear Programming 

We can model a general knapsack problem using an integer linear program­
ming formulation. Let x[i] represent whether or not the item i is selected, 
where x[i] is 0 or 1. The weight of the part taken from item i is x[i}*W[ij. 
The corresponding reward is x[i}*R[ij. The problem then is to find the values 
of the array x[l:n] so that x[l]R[l] + x[2]R[2] + ... + x[n]R[n] is maximized 
subject to the constraint that x[l]W[l] + x[2]W[2] + ... + x[n]W[n] :£ C. If an 

item can be selected multiple times, we can allow x[i] to be any integer. If we 



GREEDY METHOD I 51 

are considering multiple constraint knapsack problem, we can include those 

constraints in the integer linear programming model as well. 

5.5 MINIMUM SPANNING TREE 

Given a graph (as defined in Section 3.7), we define a spanning tree of a graph 

to be a tree that contains all nodes in the graph (i.e., spans the entire graph), 
and the edges ofthe tree are a subset of the edges of the graph. In other words, 

if we select n-l edges from the graph that create a tree, the nodes of the graph 

and the n-l selected edges constitute a spanning tree. Clearly, this is possible 

only if the graph is a connected graph. 

The weight of the spanning tree is defined as the sum of weights of edges 

in the tree. 

A spanning tree with the minimum weight amongst all the spanning trees 

is called a minimum spanning tree. Since many spanning trees may have the 

same minimum weight, minimum spanning tree may not be unique. 

5.5.1 Problem Definition 

Problem: Minimum Spanning Tree (MST) 

Input: Given a weighted connected graph G = (V,E), where w[i,j] is the weight 

of edge between vertices i and}. We also use notation wee) to represent the 

cost of edge e wherever convenient. 

Objective: Find a minimum-weight spanning tree of G. [Since the minimum 

spanning tree does not have to be unique, we can find any minimum spanning 
tree.] 

5.5.2 Kruskal's Greedy Algorithm 

There are three commonly known greedy algorithms for finding the minimum 

spanning tree: Kruskal's algorithm, Prim's algorithm and Boruvka's algorithm. 

All three are interesting algorithms, however, we study Kruskal's algorithm 

here, primarily because it shows the greedy property and the local choice 

property clearly. As a bonus, Kruskal's algorithm also allows us to introduce a 

new data structure. 

Every greedy algorithm can use a different greedy choice or policy. Kruskal's 

algorithm uses the following selection policy: Select the minimum weighted 

edge that does NOT create a cycle. The algorithm can be described as follows. 



52 I ANALYSIS AND DESIGN OF ALGORITHMS 

II Given a graph and its weight matrix 
II Find a minimum spanning tree 
Algorithm KruskalMST (in:G, W[l:n,l:n]; out:T) 

Sort edges by weight: e[l], e[2], .. e[m]. 
Initialize counter j = 1 
Initialize tree T to empty 
While (number of edges in Tree < n-l) { 

} 

If adding the edge e[j] does not create a cycle, 
add edge e[j] to tree T 

Increment j 

Using Disjoint-Set Data Structure 
There are two operations in Kruskal's algorithm that require our careful con­

sideration. To check whether adding an edge creates a cycle or not, we need to 
determine if the two end points of the edge are already connected. Similarly, 

when we add an edge, we need to update our records about which vertices are 
connected to each other.' These two questions can be answered efficiently if we 
consider "sets" of vertices, where a set is defined by the collection of vertices that 

are connected to each other. If we want to find whether or not two vertices are 
connected to each other, it is akin to asking ifthe two vertices are in the same set. 

The data structure that supports the two stated operations is generally 
referred to as the disjoint-set data structure or the union-find data structure. 

The data structure supports the following two operations: 

• Find(x): This returns the "set" that contains the element x 
• Union(x,y): Merges the two sets containing elementsx andy 

Union Find data structure (and the algorithm that manages the data struc­

ture) has many different variations, but here are some common characteristics 
of those implementations: 

• Each set is identified by a "leader" node. 
• Each node has a pointerto its parent node. For a leader node, this pointer 

points to itself. 
• When we call "find" on a node, we recursively navigate to its parent node 

until we find the leader node. We return the leader node to identify the 

set containing that element. 

1 It is easy to observe that besides the two end points of the edge, many other vertices also 
become connected when an edge is added. 



GREEDY METHOD I 53 

• Each leader maintains a rank property (or height, depending upon the 
implementation variation) as well. 

• When we perform a union operation, we make the tree with smaller rank 
(or height) to be a child of the tree with the larger rank (or height). If the 

two trees are of equal rank, we choose one randomly and increment the 
rank of the tree that is assigned to be the parent. 

We provide a more detailed explanation of the time complexity Union Find 
data structure in Appendix D, but for the purpose of time complexity analysis 

of Kruskal's algorithm, it suffices for us to know that each ofthe union and find 
operations take O(log n) time where n is the total number of elements in the 
disjoint set data structure. 

Time complexity analysis of Kruskal's Algorithm 

We use the standard notation of using n forthe number of nodes and m forthe 
number of edges. In the initialization step, we need Oem log m) time to sort the 

edges by weight. Since m is no more than n2
, log (m) is bounded by 2 log (n). 

Therefore, we can write this step to take Oem log n) time. ' 
Inside the while loop, we use two Find operations to check if adding an edge 

will create a cycle or not. This requires Oem log n) time, since we can execute 
this step at most once per edge. 

When adding an edge, we use one Union Operation. Since we add n-l 
edges, this step requires O(n log n) time. 

Therefore, in total, we require Oem log n + n log n) time. Since m is larger 
than n, we can write this as Oem log n) time. 

Proof of Correctness of Kruskal's Algorithm 

To prove that Kruskal's algorithm finds a minimum spanning tree, we can use a 
proof by contradiction. To prove this statement, we need to prove two distinct 

claims: 

Claim 1.. The tree produced by Kruskal's algorithm on a connected weighted 
graph G, is infact a spanning tree. 

Proof This is true because: 

• T is acyclic: This is true by construction (We add an edge only if it does 
not create a cycle.) 

• T is spanning. Every vertex v is included in T, because the incident edges 
of v must have been considered in the algorithm. The least weighted 

2 Forthe same reason, it is quite rare to see log m factor when studying asymptotic analysis of 
graph algorithms. It is almost always replaced by log n. 



54 I ANALYSIS AND DESIGN OF ALGORITHMS 

edge amongst that set of edges would have been included because it 

could not have created a cycle. 

• T is connected, i.e., T is not a forest. Suppose that T is not connected. 

Then T has at least two components. Since graph G itself is connected, 

then the two components of T must be connected by some edges in G, 

not in T. The least weight edge amongst this set of edges would have 

been included in T because it could not have created a cycle. This contra­

dicts the hypothesis that T is not connected. 

Claim 2: T is a spanning tree of minimum weight. 
Proof We can prove this using contradiction. Let T' be a minimum-weight 

spanning tree, such that amongst all the minimum spanning trees, T' has the 

highest number of edges in common with T. If T = T', then T is a minimum 

weight spanning tree. If T:t T', then there exist an edge e E T'that is not in T. 
Further, T u {e} contains a cycle C such that: 

a. Every edge in C has weight no more than wee). (This follows from the 

sequence in which the edges were added to T.) 
b. There is some edge fin Cthat is not in T'. (Because T' is an MST and does 

not contain the cycle C.) 

Consider the tree Til constructed by removing edge e, and adding edge f 
That is, Til = T' \ {e} u {f}. Then, we observe that: 

a. Til is a spanning tree. 

b. Til has more edges in common with Tthan T'. 
c. Weight(T''):5 Weight(T'). (This is true because w(f) 5 w(e).) 

Therefore Til is also a minimum spanning tree, and it has one more edge in 

common with T compared to T'. This contradicts the hypothesis that T' is an 

MSTwith the highest number of edges in common with T. 

5.6 A WORD OF CAUTION (DON'T BE GREEDY 
WITH GREEDY!) 

Greedy algorithms are very easy to apply, and therefore, are prone to overuse. 

Numerous times students answer a question using greedy algorithm, because 

they are generally easy to design. However, many times greedy algorithms are 

a wrong choice, since they produce suboptimal results. 



GREEDY METHOD I 55 

This is a key take away: it is notjustifted to use greedy algorithm to pro­

duce a suboptimal solution, where another algorithmic technique (such as 

Divide & Conquer) would have resulted in an optimal solution. 

Greedy algorithms may be simple to design and may be "efficient", that 

is, they may have time complexity that is asymptotically less than other algo­

rithms. However, optimality is usually more important than efficiency. As 

an example, suppose you are trying to maximize the number of flights that 

you can schedule using 3 aircrafts. The number of flights represents the "busi­

ness value" of the schedule. The time complexity merely represents a "cost of 

computation" ofthat schedule. If one algorithm (greedy) runs in 5 minutes, but 

only schedules 7 flights, and another algorithm (based on dynamic program­

ming) runs in 2 hours, but schedules 8 flights, the second algorithm is likely 

superior. 

5.7 HOME EXERCISES 

1. Interval scheduling: Suppose you are given a list of lectures with their 

start time and end times. How can you choose the maximum number 

of non-overlapping lectures? 

2. You are asked to be the organizer for n parties and are provided with 

their start and end times. (For example: P1: 7 AM - 9 AMi P2: 8 AM 

to 3 PMi P3: 4 AM to 8 AM.) You can only be organizing one party 

at a time, so you need to choose. For every party that you organize, 

you are given a fixed reward (1000$) irrespective of the length of the 

party. How do you select the parties to maximize your reward? What 

is the time complexity of your algorithm in terms of n? 

3. Given a set of symbols and their frequency of usage, find a binary 

code for each symbol, such that: 

a. Binary code for any symbol is not the prefix of the binary code of 

another symbol. 

b. The weighted length of codes for all the symbols (weighted by the 

usage frequency) is minimized. 

4. Argue whether or not you would apply Greedy technique to the fol­

lowing problems: 

a. Chess 

b. Sorting 

c. Shortest path computation 

d. Knapsack 



HISTORICAL NOTE 

A famous greedy algorithm was invented by David Huffman in ~95~, while 

he was a student at MIT and chose to do a term paper (instead of taking a 

final exam, of course). The professor, Robert M. Fano, assigned a term paper 

on the problem of finding the most efficient binary code. Huffman, unable to 

prove any codes were the most efficient, was about to give up when he hit 

upon the idea of using a frequency-sorted binary tree and quickly proved this 

method the most efficient. In doing so, the student outdid his professor, who 

had worked with information theory inventor Claude Shannon to develop a 

similar code. By building the tree from the bottom up instead of the top down, 

Huffman avoided the major flaw of the suboptimal Shannon-Fano coding. The 

resulting algorithm, conveniently named "Huffman coding", is referenced in 

one ofthe home exercises above. 



DYNAMIC PROGRAMMING 

CHAPTER 6 

Dynamic Programming (commonly abbreviated as DP) is an algo­

rithm design technique that builds its solution by constructing 

solutions to smaller instances ofthe same problem. It is similar to divide 

and conquer technique, but it is also different in a subtle but significant 

way: DP builds the solution to many sub-problems that mayor may not 

be required (bottom up traversal), rather than by solving specifically the 
sub-problems that are required (top down traversal).' 

An example of difference between top down and bottom up 

traversal may be observed by using a program to calculate Fibonacci 

numbers. As we may recall, Fibonacci Numbers are defined recur­

sively as follows: 

• f(1) =f(2) = 1 
• f(n) = f(n-l) + f(n-2) 

1 It may appear counter-intuitive to solve sub-problems that may not be needed, 
and in a way, that is the beauty of Dynamic Programming. Next few sections will 
expand on this intuition and counter-intuition. 

57 



58 I ANALYSIS AND DESIGN OF ALGORITHMS 

A simple recursive program to compute n-th Fibonacci number can be writ­

ten as follows: 

function nb(int n) { 
if (n ~ 2) { 

return 1; 
} 
return nb(n-1) + nb(n-2); 

} 

To estimate the time complexity of this algorithm, we can simply run this 

program and plot the time (in milliseconds, for example) against n. The follow­

ing table is an output of such program, although your own results may vary 

depending upon the actual computer and programming environment. 

n TIME (MSEC) 

~o 0 

20 1 

30 8 

40 922 

50 113770 

We can construct an alternate solution to compute Fibonacci numbers as 

follows: 

long a[] = new long[n + 1]; 
a[l] = a[2] = 1; 
for (int i = 3; i ~ n ; i++) { 

a[i] = a[i - 1] + a[i - 2]; 
} 
return a [n] ; 

This solution also looks quite similar, and we can compare the two solutions 

by finding the computation time ofthe two programs for same values of n (and 

running the two programs on the same computer). 



DYNAMIC PROGRAMMING I 59 

N TIME (MSEC) 

RECURSIVE DP 

10 0 0 

20 1 0 

30 8 0 

40 922 0 

50 113770 0 

We can easily observe that the dynamic programming solution outper­

forms the recursive program quite spectacularly, even though the programs 
look quite similar. This simple example highlights Dynamic Programming 
as a computation technique that stores the results of sub-solutions to avoid 

repeated solving of sub-problems. DP is an especially useful technique when 
we can observe two properties: 

• Optimal substructure 
• Overlapping sub-problems 

In the coming sections, we study more about these two properties. 

6.1 OPTIMAL SUBSTRUCTURE 

As discussed in the case of greedy method, a problem is said to have opti­

mal substructure if the sub-solutions of an optimal solution of the problem 
are themselves optimal solutions for their sub-problems. 

The example presented above discusses that if we find the shortest path 

from node a to node b to be [a, xl' x2 ••• Xi ... Xj ... XrI bi, then the portion of Xi to 
x. on that path is a shortest path from x. to x. as well. 

J I J 

6.2 OVERLAPPING SUB-PROBLEMS 

We observe thatthe calculation of 5th Fibonacci number, that is, fib(5) requires 
computation of 3 rd and 4th Fibonacci numbers, that is, fib(4) and fib(3). However, 

fib(4) requires computation of fib(3) and fi b(2). 
Therefore, we observe that fib(3) and fib(4) are not disjoint (In fact fib(3) 

is entirely included within fib(4)). Therefore, when calculating fib(5), we are 

solving overlapping sub-problems. 
Similar overlapping sub-problems situation can be observed in many board 

games (such as, chess), selection problems, and shortest distance problems. 



60 I ANALYSIS AND DESIGN OF ALGORITHMS 

6.3 DYNAMIC PROGRAMMING TEMPLATE 

Next, we describe the dynamic programming template that can be consistently 

used to apply dynamic programming design technique for a given problem. 

The template consists of four steps. 

Step ~. 

Step 2. 

Step 3. 

Step 4. 

Notation: In this step, we develop a mathematical notation 

that can express any solution and any sub-solution for the 

problem at hand. This is typically the hardest step and during 

the course of this template, we may need to revisit the nota­

tion to add more parameters to ensure that the notation is 

sufficiently generalized. 

Optimality: In this step, we prove that the Optimal 
Substructure (Principle of Optimality) holds. This allows us 

prove that the dynamic programming will in fact produce 

result that is optimal. 

Recurrence: In this step, we develop a recurrence relation that 

relates a solution to its sub-solutions, using the math notation 

of step ~. If we observe that recurrence relation cannot easily 

be formed, we may need to generalize the notation further. 

Similarly if we observe that some parameters of the notation 

do not play any role in the recurrence, we may eliminate them 

from the notation. 

Algorithm: Writing the algorithm is usually straight forward. 

We iterate over all the parameters ofthe recurrence relation to 

compute the results for the actual problem that needed to be 

solved. 

This template will become clear over the next few sections as we consider 

specific problems and use the DP template for those problems. 

Mnemonic NORA (Notation - Optimality- Recurrence -Algorithm) ) 

can sometimes be helpful in remembering the template. 

6.4 MATRIX CHAIN MULTIPLICATION 

Next, we consider a matrix chain multiplication problem2. We are given n ma­

trices AI' A, ... An of dimensions r
l 

XCI' rz x C2' ••• , rn x cn' respectively. Our goal 

2 Although it may sound similar, matrix chain multiplication is a different problem from matrix 
multiplication problem that we studied in an earlier section on divide and conquer algorithms. 



DYNAMIC PROGRAMMING I 61 

is to compute the product Al Az ... An' Specifically, we need to determine the 
order in which we should multiply the matrices pairwise. 

Before we attempt to solve the problem, three observations are in order. 

Observation 1. 

Observation 2. 

Observation 3. 

For two matricesAl and Az of dimensions rl x ell rz x ez 
to be multipliable, e

l 
must be equal to rz. Therefore, 

extending that argument to matrix chain multiplica­

tion problem, e
j 

must be equal to r
j
+
l 

for 1 ::; j < n for 
the problem to be well defined. 

The cost/time to multiply two matrices of sizes, (a x b) 
and (b x e) can be computed as follows: The product 
matrix is of dimensions (a x e), and to compute each 

element of the product matrix, we need to perform 
b scalar multiplication operations, and b add itions 
operations. Therefore, the cost/time can be given 

as abck, where k represents the cost for: (one scalar 
multiplication + one scalar addition). Since we are only 
comparing relative costs, we can drop the constant 

k in our further discussions and define the cost/time 
simply as abc, that is, the product of their dimensions. 
Given three matrices, Al, Az and A3, we can multiply 

them as ((A l A) A) or as (A/Az A)). In either case, 
we observe an equivalent final product matrix, even 
though the cost can be different. For example, when 

computing (A l Az A) as ((A l A)A), the cost will be 

(rl el ez + rl ez e). Similarly, when computing (A l AzA) 
as (A/Az A)), the cost will be (rz ez e3 + rl rz e). This 
observation is the crux of the problem - how to select 

the order of multiplication which minimizes the cost. 

An example can further help us develop our understanding ofthis problem. 
Suppose we are given 3 matrices: 

• Al of dimensions 3 x 5 
• Az of dimensions 5 x 7 

• A3 of dimensions 7 x 2 

The sequence (A l A) A3 takes 3 *5*7 + 3*7*2 = 147 operations, while the 
sequence A/Az A) takes 5*7*2 + 3 *5*2 = 100 operations even though, both 
calculations return same product matrix as the final result. 



62 I ANALYSIS AND DESIGN OF ALGORITHMS 

Next, we apply the DP template to the matrix chain multiplication, follow­

ing the four steps from the template in the process. 

6.4.1 Notation 

We develop a notation Mij to denote the cost of multiplying the chain of matri­

cesA .... A .. We observe that this notation can represent the cost of the solution 
I } 

or any sub-solution at hand. We can also define M(i,i) to be 0 for all i, since 

no multiplication is required. Ultimately, we need to find M(1,n) - the cost of 

multiplying all n matrices. 

6.4.2 Principle of Optimality 

To prove that the principle of optimality holds, we observe that every way of 

multiplying a sequence of matrices can be represented by a binary tree, where 

the leaves are the matrices, and the internal nodes are intermediary products. 

Suppose tree T corresponds to a computation sequence tree for Ai ... Ai" 
Tree T has a left sub-tree L and a right sub-tree R, where L corresponds to 

multip lying B = Ai ... Ak, and R to multiplying C = Ak+
1 

•• • Aj' for some integer k 
(i ::; k::; )-1). Then, the cost oftree Tis given by: cost(L) + cost(R) + cost(BC). We 

need to prove that if Tis an optimal tree, then L is an optimal tree of Ai .. . Ak and 

R is an optimal tree for Ak+1 ••• Ai" 
We can prove this by contradiction. 
Suppose we are able to find a tree L' strictly better than L. That is, cost(L') 

< cost(L). Then, we can derive T' by replacing L with L'. Cost of tree T' is then 

given as cost(L') + cost(R) + cost(BC), which is lower than cost(T). This contra­

dicts the optimality of T. 
We can arrive at a similar contrad iction if we suppose that we are able to 

find a tree R' better than R. 
Therefore, if T is an optimal tree, then L is an optimal tree of Ar . .A

k 
and R is 

an optimal tree for A
k
+

1 
•• • Ai' and the principle of optimality holds. 

6.4.3 Recurrence Relation 

Next, we develop a recurrence relation that relates a solution Mij to sub­
solutions, where the sub-solutions are defined as M. and M, where i ::; x ::; j. 

IX X) 

We observe that g iven a value of k, the costM .. is given as M.k + Mk 1· + r.ckc .. 
I} I + .} I } 

Therefore, we can minimize Mij by finding the value of k that minim izes (Mik + 
M

k
+

1
.} + r

i 
c

k 
c), subject to the constraint i::; k ::;)-1. 



DYNAMIC PROGRAMMING I 63 

6.4.4 Algorithm 

In order to define the algorithm, we use the array notation M[i,jj instead of the 

subscript notation Mij as it lends itself better to an algorithmic representation. 
In this array, only the upper diagonal values of this array will be used, that is, 
va lues such that i 5 j. 

The algorithm can then be defined as follows. 

II Matrix Chain Multiplication - Dynamic Programming 
II Given a sequence of n matrices and their dimensions 
II Find a sequence of multiplication that minimizes 
cost 
Algorithm MeM_DP (in:n, r[l:n], c[l:n]) 

II Initialization Steps 
For i = 1 to n 

M[i,i] =0 
For i = 1 to n-1 

M[i,i+1] = r[i] * c[i] * c[i+1] 

II Iteration Step 
For j = 2 to n-1 

For i = 1 to n-j 
M[i,i+j] = mink {M[i,k] + r[i]*c[k]*c[j] + 
M[k+l,i+j]} 

From the algorithm, we can observe that in the iteration step, the loop runs 
D(n2) time, where n is the number of matrices given. Each step requires D(n) 
time to condition over the value of k. Thus, the overall time complexity of this 
algorithm is D(n3

). 

Implementation Note: The algorithm as defined only finds the minimum cost, 

not the actual sequence that we set out to find! However, we can easily adjust 
this algorithm to also save the value of k in a different array (say B, for break 

point) in the iteration step to memorialize the break point for each value of 
(i,j). Using that value of k, we can find the actual sequence of matrices that 
we need to multiply. For example, B(1,n) may be 31, which represents that 

we need to multiply matrices 1 through 31 and then 32 through n, and then 
multiply the two product matrices. Similarly, we can lookup B(1,31) to identify 
the breakpoint between 1 and 31 and continue this approach to find the exact 

sequence. Once the array B has been populated, the exact sequence can be 
looked up in linear time. 



64 I ANALYSIS AND DESIGN OF ALGORITHMS 

Finally, we make a mental notethatthis algorithm simply finds the sequence 
in which to multiply the matrices - not to be confused with matrix multiplica­

tion algorithm itself. The matrices may be very large or very small and the time 

to actually multiply them will depend on their dimensions. 

6.5 ALL PAIRS SHORTEST PATH (APSP) 

Next, we consider the all pairs shortest paths problem. We are given a 

weighted graph where the nodes are labeled l..n, and the weight of the graph 
is represented by matrix W, where W[i,j] represents the cost of the direct edge 
between nodes i andp The graph may be directed or undirected, that is, W[i,j] 
mayor may not be the same as W[j,ij. 

Our objective is to find the distance between every pair of nodes. 
As in the case of prior problem, we will apply the dynamic programming 

template by following the four steps. 

6.5.1 Notation 

As our first try, we could try to use the notation D(i,j) to represent the length of 
the shortest path from ito j. However, this notation by itself does not allow us 

to represent the solution recursively in terms of its sub-solutions. For example, 
we do not know if D(1,3) is a sub-solution for D(2,S), vice versa, or if neither of 
those is the case. 

The exact notation, one that may be a bit counter-intuitive, but one that 
does allow us to represent the solution recursively in terms of its sub-solutions 

is the following: 
Let D(k)(i,j) denote the length of the shortest path from node ito node j using 

nodes {1 ... k} as intermediate nodes. We observe that this notation does not say 
that we need to use k intermediate nodes. Rather, it says that we are allowed to 

use only the set of {lo ••• k} nodes as intermediate nodes. We may use none, or 
one, or two, or any number of intermediate nodes from this set, but we are not 
allowed to use any node outside ofthis set as an intermediate node. 

As a degenerate case of this notation, we observe that D(O)(i,j) signifies that 
we are not allowed to use any intermediate nodes, and therefore, D(O)(i,j)= W[i,jj. 

6.5.2 Principle of Optimality 

It is easy to prove that the principle of optimality holds in this case, as a portion 

of a shortest path must be a shortest path as well. This is true even if we are 
constrained to use a selected set of nodes as our intermediate nodes. 

3 In case no direct edge exists between nodes i and}, then W[i,}j can be setto a very high value, 
such as infinity. 



DYNAMIC PROGRAMMING I 65 

6.5.3 Recurrence Relation 

The notation D{kJ(i, j) as defined above allows us to form a very simple recur­

rence relation by observing that shortest path from node i to node 1 using 
nodes {1 ... k} as intermediate nodes either uses the node k as an intermediate 
node or it does not. If it does not use the node k, then D{kJ(i,j) must be the 
same as D(k-1J(i,j). In case it does use the node k, then D(kJ(i,j) can be written 

as the sum of paths from ito k, and from kto 1, and each of those paths would 
only use the set of nodes {1 ... k-l} as the intermediate nodes. Therefore, the 

simple recurrence relations can be written as follows: 

D(kJ(i,j)=min{D(k-lJ(i,j), D(k-1J(i,k) + D(k-1J(k,j)} 

6.5.4 Algorithm 

The recurrence relation can then be easily written in form of an iterative algo­
rithm. As usual, this step is an easy step of the DP template. 

II All Pairs Shortest Path - Dynamic Programming 
I I Given a graph with vertices {L.n} and the weight 
matrix 
II Find shortest paths between all pairs of nodes 
Algorithm APSP_DP (in: n, W[i ,j]) 

II Initialization step 
for i=l to n 

for j=l to n 
D(0) (i , j) := W[i ,j] 

II Build the solution in steps 
for k=l to n 

for i=l to n 
for j=l to n 

D(k)(i ,j)=min{D(k-1) (i ,j), D(k-1) (i ,k) + 
D(k-1) (k,j)} 

6.5.5 Algorithm Analysis 

Due to the three nested loops, it is trivial to observe that the time complexity 
of the algorithm is O(n3), where n is the number of the vertices in the graph. We 

observe that the m, the number of edges in the graph does not appear in the 
algorithm or in the time complexity. 

The space complexity of the algorithm is slightly more interesting. The 
array D, as defined above has three dimensions: i,1 and k, and this suggests 



66 I ANALYSIS AND DESIGN OF ALGORITHMS 

that we require O(n3) space for the algorithm. However, we observe that the 
computation of D(k) only depends upon D(k-l) array and therefore, once D(k) 

has been computed, there is no need for us to access D(k-l) . Thus, we can save 

space by not keeping the old values of D array, and simply keep two copies of 
the array D: the "previousD" and the "currentD". Then, we can simply using a 

counterto store the value of k. Based on the value of counter, we can interpret 
the superscript of the previousD and currentD matrices. 

Therefore, the algorithm can be tweaked to run in O(n2) space. 

6.6 MAXIMUM VALUE CONTIGUOUS 
SUBSEQUENCE (MVCS) 

Next, we study an interesting problem that highlights the importance of com­
ing up with an appropriate notation when using dynamic programming. 

The problem is quite simply defined. We are given an Array A(1..n), and we 
need to find a subarray A (i . .}), such that the sum of the elements in the subar­
ray is maximized. 

We can observe that if there were no negative elements in the array, then 
we could just select the entire array and return that as the subarray. Therefore, 
this problem is meaningful only when we have negative numbers in the array. 

As is often helpful, we begin with a brute force solution that finds the sum 
of all contiguous subarrays. 

6.6.1 Algorithm MVCS1 

II Brute force solution that nnds the sums of all 
II subarrays, and chooses the ma ximum 
Algorithm MVCS1_Bruteforce (int[] A) 
MaxValue = -innnity 
for i = 1 to n { 

for j = i to n { 
currSum = nndSubArraySum(A,i ,j) 
if CurrSum > MaxValue, then MaxValue = CurrSum 

} 
} 
Return Ma xValue 

Procedure nndSubArraySum(int[] A, int i , int j) 
double sum = 0 
for int k = i to j { 

sum = sum + A[k] 
} 
Return sum 



DYNAMIC PROGRAMMING I 67 

To calculate the time complexity, we observe that there are three nested loops 

(two inside the algorithm, and one in the subroutine). Thus, this brute force 
solution runs in O(n3) time. Can we do better? We observe that the routine to 

calculate the sums of subarrays can build upon the previous sum by adding the 

new element, and that idea is used in the next version of the algorithm. 

6.6.2 Algorithm MVCS2 

II Second version of the MVCS algorithm - Signincant 
II improvement in calculating the subarray sums 
Algorithm MVCS2(int[] A) 
InitSubArraySums(); II Calculates all the sums (once) 
MaxValue = -innnity 
for i = 1 to n { 

for j = i to n { 
currSum = SubArraySum[i] [j] 
If currSum > MaxValue. then MaxValue = currSum 

} 
} 
Return MaxValue 

II Procedure that initializes all the sub array sums 
Procedure InitSubArraySums() { 

} 

for int i = 1 to n { 

} 

double sum = 0 
for int k = i to n { 

} 

sum = sum + A(k) 
SubArraySum [i] [k] = sum 

MVCS2 algorithm runs in O(n2) time, and is a significant improvement over the 

MVCSl algorithm. However, an even faster dynamic programming algorithm 
exists, which we consider next. 

6.6.3 Algorithm MVCS3 

Consider the following notation. 

Suppose MVCS(i) represents the maximum value contiguous subarray that 
ends at position i. By our definition, this subarray must include the position i. 
MVCS(i) mayor may not include any elements before i. 



68 I ANALYSIS AND DESIGN OF ALGORITHMS 

The principle of optimality holds: if MVCS(i) includes any elements before 

i, then MVCS(i-1) must be the maximum value contiguous subarray ending at 

position i-l. 

The recurrence relation can be defined as follows: 

MVCS(i) = max (MVCS(i-l) + A[iJ, A[ij} 

Based on this recurrence relation, we can write the third version of the 

MVCS algorithm as follows. 4 

II MVCS algorithm, using Dynamic Programming. 
II MVCS(i) represents the value of maximum value 
contiguous 
II subarray ending at (and including) position i. 
Algorithm MVCS3(int[] A) 
MV C S [ 1 ] = A [ 1 ] 
MaxValue = MVCS[l] 
for i = 2 to n { 

} 

If (MVCS[i-l] > 0) { 
MVCS[i] = MVCS[i-l]+A[i] 

} else { 
MVC S [ i] = A [ i ] 

} 
If MVCS[i] > MaxValue, then MaxValue = MVCS[i] 

Return MaxValue 

This algorithm contains a single loop and runs in O(n) time, which is a 

remarkable improvement overthe MVCS2 algorithm. 

6.7 LONGEST INCREASING SUBSEQUENCE (LIS) 

As the MVCS problem showed, coming up with the right notation can some­

times be the crux of the dynamic programming solution. We may observe the 

same in another interesting problem that we consider next. 

We are given an array A(1 .. n) of numbers, and we want to find a subse­

quence (not necessarily contiguous) that is strictly increasing. 

For example, given an array [1, 7, 2,8,4,1,6,11,3,15,5,12, 14J, we can 

find the subsequence [1 . .2 . .3 .. 15J that is strictly increasing, and consists of 

4 When we transition from a logical notation to an algorithm, some things may change. For 
example, we use an array notation, MVCS[il, in the algorithm. Similarly, in the algorithm, MVCS 
presents the value of the subarray, ratherthan the subarray itself. 



DYNAMIC PROGRAMMING I 69 

4 elements. Can you find another subsequence that has 5, or perhaps 6 ele­
ments? For this problem, just the number of the elements in the increasing 

subsequence is of interest, not the values or the sums of those elements. 
Before giving an outline of the dynamic programming solution, we make 

two quick observations: 

(i) The size ofthe largest increasing subsequence can be no more than n, 
the size of the input array. 

(ii) Consider a binary string of size n. Each such binary string represents 
a subsequence (1 representing the elements included in the subse­

quence and 0 representing the elements left out of the subsequence), 
and there are 2n binary strings. Therefore, a brute force algorithm for 
this problem that examines all subsequences requires exponential 

time, and may not be a viable option for inputs of size larger than say 
20. This is in stark contrast to the MVCS problem where a na·(ve brute 
force algorithm only requires O(n3) time. 

6.7.1 Dynamic Programming Algorithm for LIS 

Suppose X(i) represents the size of longest strictly increasing subsequence 

that ends at position i. By our definition, such a sequence must include A[iJ, 
and therefore, each X(i) is at least 1. 

We can then write the recurrence relation to calculate the X values as 
follows. 

X(1)=l 
X(i) = max {XG}J + 1, such that} < i, and A[jJ < A[iJ 

6.7.2 Time Complexity 

We observe that to calculate each X(i), we need O(n) time, to examine the 

A[jJvalues againstA[iJ, for all} < i. 
Therefore, we can calculate all X(i) values in O(n2) time, and then find the 

largest one in O(n) time. Therefore, the overall time complexity of the algo­
rithm is O(n2). 

Considering that the brute force algorithm runs in exponential time, O(n2) 

time is quite impressive. An even faster O(n log n) algorithm is possible that 

uses binary search to find the largestvalue when updatingX(i) in the recurrence 
step. 



70 I ANALYSIS AND DESIGN OF ALGORITHMS 

6.8 SUMMARY 

Dynamic Programming is an algorithm design technique that seeks to prevent 

computation of same problem instances multiple times. Dynamic program­

ming template consists of four steps: developing a notation, proving the 

principle of optimality, writing the recurrence relation, and finally, writing the 

algorithm. From these four steps, developing a notation is often the hardest 

part of the problem as an incorrect notation may lead to an inefficient or incor­

rect algorithm. 

6.9 HOME EXERCISES 

~. In the context of matrix chain multiplication problem, consider a 

divide and conquer algorithm that finds the optimal value of "k" by 

defining the same recurrence relation as used in the dynamic pro­

gramming algorithm. Find the time complexity of such a divide and 

conquer algorithm. 

2. In the context of matrix chain multiplication problem, consider a 

greedy algorithm that simply chooses to first multiply two matri­

ces that minimize the cost of that multiplication operation. Give 
a specific example sequence of matrix dimensions in which the 

greedy algorithm does not minimize the overall cost of matrix chain 

multiplication. 

3. Implement the matrix chain multiplication DP algorithm, by adjusting 

the algorithm to find the actual multiplication sequence using the 

ideas described in the implementation note. 

4. ("Barbie's Array of Diamonds") Barbie has n diamonds. Each dia­

mond has two attributes: shiny value and weight value. Barbie wants 

to create a "diamond line" in which each diamond is both shinier and 

heavier than the previous one. She may not be able to use all her 

diamonds, but wants to maximize the number of diamonds in this dia­

mond line. Give a polynomial time algorithm for creating a diamond 

line with maximum number of diamonds. Assume that her initial list 

of diamonds is not in any specific order. 

5. ("Love (Skip) thy neighbor") Given a list of n positive numbers, your 

objective is to select the set of numbers that maximizes the sum of 

selected numbers, given the constraint that we cannot select two 

numbers that are located adjacent to each other. Describe a linear 

time algorithm for this problem. 

6. ("Around the block party planning") Consider a row of n houses rep­

resented as an array: A[l .. ni, where the phrase "next door neighbor" 



DYNAMIC PROGRAMMING I 71 

having its natural meaning. Each resident is assigned a "fun factor" 

F[l .. n], which represents how much fun they bring to a party. Your 

goal is to maximize the fun of a party that you are arranging, but with 

the constraint that you cannot select three consecutive neighbors. 

(50 for example, if you invite the A[5] and A[6] family, you cannot 

invite the A[4] or A[7] families.) Give an efficient algorithm to select 

the guest list. 

7. In the context of Maximum Value Contiguous problem, (i) What can be 

a greedy algorithm? (ii) What can be a Divide and Conquer algorithm? 
8. ("Canoeing on the cheap") You are canoeing down a river and there 

are n renting posts along the way. Before starting your journey, you 

are given, for each 1 ~ i ~ 1 ~ n, the fee f(i,j) for renting a canoe from 

post i to post). These fees are arbitrary. For example it is possible that 

f(1,3)= 10 and f(1,4) = 5. You begin at trading post 1 and must end 

at trading post n (using rented canoes). Your goal is to minimize the 

rental cost. Give the most efficient algorithm you can forthis problem. 

Prove that your algorithm yields an optimal solution and analyze the 

time complexity. 

9. ("Magical eggs and tiny floorsS") You are given 4 eggs and a 30 floor 

building. You need to figure outthe highestflooran egg can be dropped 

without breaking, assuming that (i) all eggs are identical, (ii) if an egg 

breaks after being dropped from one floor, then the egg will also break 

if dropped from all higher floors, and (iii) if an egg does not break after 

being thrown from a certain floor, it retains all of its strength and you 

can continue to use that egg. Your goal is to minimize the number of 

throws. From which floor do you drop the first egg? How do you handle 

this problem given generally m eggs and an n-floor building? 

~o. Given two strings (sequences of characters), the longest common 

subsequence (LC5) problem is to find the longest subsequence (not 

necessarily contiguous) that exists in both of the input strings. For 
example, given strings "mangoes" and "mementos", the subse­

quence "mnos" is common in both and is in fact the longest common 

subsequence. Given two strings of sizes n
1 

and n
2 

respectively, find a 

dynamic programming algorithm to find the longest common subse­

quence in O(nln) time. 
u. ("Maximum Value But Limited Neighbors") You are given an array 

a[l .. n] of positive numbers and an integer k. You have to produce an 

array b[l .. n], such that: (i) For each 1, b[j] is 0 or 1, (ii) Array b has 

5 This problem is found on many internet forums, and was apparently also used in a Google 
placement interview. 



72 I ANALYSIS AND DESIGN OF ALGORITHMS 

adjacent ls at most k times, and (iii) L~ja[jJ*b[jJ) is maximized. 

For example, given an array [100,300,400, 50J and integer k = 1, the 

array b can be: [0 11 OJ, which maximizes the sum to be 700. Or, given 

an array [10,100,300,400,50,4500,200,30, 90J and k = 2, the array 

b can be [1, 0, 1, 1, 0, 1, 1, 0, lJ which maximizes the sum to 5500. 

HISTORICAL NOTE 

The term "Dynamic Programming" was originally used in the ~940S by Richard 

Bellman to describe the process of solving problems where one needs to find 

the best decisions one after another. By ~953, he had refined this to the modern 

meaning, which refers specifically to nesting smaller decision problems inside 

larger decisions. Programming in this context refers to a tabular method of 

computing, not computer programming using Java or (! 

EXTRA READING 

We can mix the divide and conquer and dynamic programming design tech­

niques using Memoization6
. Memoization aims to prevent recomputations by 

storing (memorizing) the return values offunction calls. You can read more at: 

http://en.wikipedia.org/wiki/Memoization 

Many interesting problems for dynamic programming can be found at the 

MIT (SAIL website: http://people.csail.mit.edu/bdean/6.o46/dp/ 

6 The missing urn is not a typo! It is indeed memoization, and not memorization. 



GRAPH TRAVERSAL 
TECHNIQUES 

CHAPTER 7 

A fter a long day with algorithms, some light relaxation may be help­

ful. So, here is a puzzle. Suppose you have two water pitchers, one 
capable of holding 8 cotylas' of water, and the other capable of holding 
5 cotylas'. The pitchers are irregularly shaped and without markings, so 
you can't determine how much water is in either pitcher unless it is com­

pletely full or completely empty. You also have a faucet, and as much 
water as you'd like. Can you get exactly 3 cotylas of water? That seems 

straightforward-fill up the 8 cotyla pitcher, and transfer the water to 
the 5 cotyla pitcher. What remains in the first pitcher is 3 cotylas. 

However, can you obtain 1 cotyla? How about2 cotylas? 4 cotylas? 

6 cotylas? 7.5 cotylas? 
Each of those questions can be answered using simple reasoning 

and constructive proofs. 

However, in a more generalized sense, we could ask ourselves the 
question, given two pitchers with capacities A and B, can we get ex­
actly C units of water? To answerthat general question, we can model 

a "move of water" as follows. Suppose the two pitchers contain x 

1 In a saner world, the pitcher would be holding 5 gallons of water or slitres of wa­
ter. However, since the Metric and the British imperial/American systems refuse to 
converge, as a sign of small protest, I am using a unit of volume from ancient times. 
2 The cotyla was a measure of capacity among the Romans and Greeks. It is 
equivalentto about 280 ml. 

73 



74 I ANALYSIS AND DESIGN OF ALGORITHMS 

and y units of water. We can represent the state of the system as (x,y). Here is 
a list of all other states of the system that we can reach from the current state: 

• (O,y)/(x, O) II Empty first/second 
II Fill first/second • (A, y)/(x, B) 

• (A, x + y-A) II Pour water from second to first, x + y > A 

II Pour water from second to first, x + y ::; A 

II Pour water from first to second, x + y > B 
II Pour water from first to second, x + y ::; B 

• (x + y, 0) 
• (x + y - B, B) 

• (0, x + y) 

Using these observations, we can define an algorithm to solve the puzzles 
of this form as follows: 
II General algorithm to solve the puzzles of the form 

II Given two pitchers of capacities A and Band innnite 
II supply of water, can we get exactly C units? 
Algorithm solvePuzzle (int A, int B, int C) 

While (desired state not found) { 

} 

Make a transition step and reach a new state 
If new state is what we were looking for { 

exclaim ("Eureka Eureka") 
} 
If we have spent enough time { 

gi veup () 

} 

II And optionally . . 
giveFlimsyPhilosophicalProof("State not 
possible") 

However, the "algorithm" aswe have defined above contains some loopholes. 
The main loophole essentially is that we have not yet defined a mechanism to 
reach a new state. If we start with two pitchers of water, and keep moving the 
water from the first to the second in one step and from the second to the first in 
the next step, we may never reach any state other than those two states. Whi Ie 
we can try to account forthis specific cyclical condition in the algorithm, similar 
cyclical condition involving four or five or more states may be very difficult to 
identify. What we really need is a systematic way to explore all possible states. 

That sets the stage for us to introduce graph traversal techniques: A graph 

search (or traversal) technique is a method to systematically visit all the 

nodes ofthe graph. 



GRAPH TRAVERSAL TECHNIQUES I 75 

In order to use a graph traversal technique, we need to model the solution 
space in the form of a mathematical graph, wherein each vertex (or node) of 
the graph represents some meaningful state of the solution space, and each 

edge represents navigation from one state to another. 
There are two basic graph traversal techniques: 

(i) Depth-First Search (DFS) 
(ii) Breadth-First Search (BFS) 

Before we study the two techniques, we discuss the concept of edge clas­

sification, which is applicable to both the traversal techniques. 

7.1 CLASSIFICATION OF EDGES 

Given a graph G = (V,E), the edges ofthe graph can be classified in context of 
the forest G' produced by the traversal of G. Each edge in E can be classified in 

one of four possible ways: 

• Tree edges (aka Discovery Edges): Edge (u,v) is called a tree edge, if node 

v is first discovered by exploring edge (u,v). 
• Back edges: Edge (u, v) is ca lied a back edge if it connects a vertex u to an 

ancestor v, that is, v was discovered before u, and there is a path of tree 

edges from vto u. 
• Forward edge: Edge (u,v) is called a forward edge, if it connects a vertex 

u to a descendent v, that is, u was discovered before v, and there is a set 
of tree edges from u to v. 

• Cross edges: All other edges that are not classified as tree edges, back 
edges orforward edges are classified as cross edges. This catch-all defini­

tion ensures that all edges are classified even though we have not yet 
specified the traversal techniques themselves. 

7.2 DEPTH FIRST SEARCH (DFS) 

Depth First Search (DFS) graph traversal algorithm can be conceptually out­

lined as follows: 

~. Select an unvisited node s, visit it, and treat as the current node 
2. Find an unvisited neighbor ofthe current node, visit it, and make itthe 

new current node; 
3. If the current node has no unvisited neighbors, backtrack to the par­

ent ofthe current node, and make that the new current node. 



76 I ANALYSIS AND DESIGN OF ALGORITHMS 

4. Repeat the steps 2 and 3 until no more nodes can be visited. 

5. If any unvisited nodes remain, repeat from step 1. 

7.2.1 DFS Implementation 

Use of backtracking in the conceptual outline, step # 3 suggests that a stack is 

a good data structure for DFS implementation. 

II Depth nrst search - graph traversal algorithm 
Algorithm DFS(input: graph G) 

Stack T, int s, int x 
While (G has an unvisited node) do { 

s = an unvisited node 

} 

visit(s) 
T.push(s) 
While (T is not empty) { 

x = T. top () 

} 

if (x has an unvisited neighbor y) { 
visit(y) 
T.push(y) 

} else { 
T. pop () 

} 

An alternate algorithmic view that also marks the start and finish times for 

the exploration of each node can be considered as follows. 

dfs (Graph G) { 

II all vertices of G are first painted white 
while there is a white node u in G { 

dfs-visit(G, u) 

dfs-visit (Graph G, Vertex u) { 

the vertex u is painted gray 

u.s = time++ II u has now been discovered 

forall white successors vofu { 

dfs-visit(G, v) 

u is painted black 

uf = time++ II Exploration of u has finished 



GRAPH TRAVERSAL TECHNIQUES I 77 

Parenthesis Theorem: We can make an interesting observation-if the start 

of node u is marked as "(u", and the end as "u)", then the overall parenthetical 
expression is well-formed. For example: (u (v (z z) (w w) v) u). We never have a 

mal-formed expression. This is clear from the recursive nature ofthe algorithm. 

7.2.2 Time Complexity of DFS Algorithm 

To calculate the time complexity ofthe DFS algorithm, we observe that every 
node is "visited" exactly once during the course of the algorithm. Also, every 

edge (x,y) is "crossed" twice: one time when node y is checked from x to see 
if it is visited (if not visited, theny would be visited from x), and another time, 
when we back track fromy to x. 

Therefore, the time of DFS is O(n+jE/J, or O(n+m). 
If the graph is connected, the time is O(m) because the graph has at least 

n-1 edges, and so n+m ~ 2m + 1, and the time complexity can be written simply 

as O(m). 

7.2.3 DFS Edge Classification Theorem 

Theorem: In DFS, every edge of undirected graph G is either a tree edge or a 
back edge. (In other words, no forward or cross edges exist in G' produced by 
DFS traversal of G). 

Proof: We give a proof by contradiction that cross edges cannot exist G'. Let 
(x,y) be a cross edge, that is, x and yare in separate sub trees of the DFS tree. 

We consider two cases: 
Case ~: X was visited beforey. 
We observe that when a search for unvisited neighbors of x was conducted 

and none found, we backtracked from x, and did not return to x. 
However, sincey is a neighbor of x andy is not visited at time t, as per DFS, 

we would have visited y from x before the algorithm backtracks from x. That 

would makey a descendent of x. This is a contradiction. 
Case 2:y was visited before x. 
Similar reasoning applies as before, with the roles of x andy reversed. 

Therefore, in both case ~ and case 2 we reach a contradiction. Therefore, no 
such cross edge (x,y) can exist in a DFS tree. 

A similar proof that no forward edge can exist in a DFS traversal is left to 

the reader. 

7.3 FIRST APPLICATION OF DFS: CONNECTIVITY 

We generalize the problem of establishing graph connectivity to counting 
the number of connected components of the given graph. If the number of 



78 I ANALYSIS AND DESIGN OF ALGORITHMS 

components is one, then the graph is connected. Ifthe number of components 
is greater than one, then the graph is not connected. 

To countthe number of components, we use a counterto countthe number 
of times the outer while-loop iterates in the DFS algorithm (or, the number 
oftimes the dfs-visit routine gets invoked in the alternate view). The counter 

value when the algorithm terminates is equal to the number of connected 

components of the input graph G. This is because the body of the outer loop, 
that is, every iteration, fully traverses the connected component that conta ins 
the node v. 

Therefore, the DFS algorithm becomes a connectedness-testing algorithm 
that counts the number of components of a graph in O(n+m) time. We observe 
that if the number of components is greater than one, the algorithm can be 

used to identify the various connected components as well. 

7.4 SECOND APPLICATION OF DFS: MINIMUM 
SPANNING TREES IN UNIFORMLY WEIGHTED 
GRAPHS 

A trivial application of depth first search traversal algorithm is to find a mini­

mum spanning tree given a uniformly weighted graph, that is, a graph that has 
all edges with weight equal to one. Since all spanning trees have n nodes and 
n-l edges, all spanning trees are of the same weight. 

Thus, to find a minimum spanning tree in such graphs, it suffices to find any 
spanning tree. 

DFS yields a spanning tree (ifthe input graph is connected, otherwise, it is a 

spanning forest). For a uniformly weighted graph, thattree is a minimum span­
ning tree. The time to compute the tree is Oem), which is better than the Oem 
log n) time minimum spanning tree algorithm for general weighted graphs. 

7.5 THIRD APPLICATION OF DFS: BICONNECTIVITY 

Next we study biconnectivity-a non-trivial application of depth first search 
graph traversal algorithm. Biconnectivity informally means that every pair of 

nodes in a graph is connected using at least two different paths. To formally 
define biconnectivity, we use the following two definitions: 

• A node in a connected graph is called an articulation point ifthe deletion 
of that node disconnects the graph. 



GRAPH TRAVERSAL TECHNIQUES I 79 

• A connected graph is called biconnected if it has no articulation points. 

That is, the deletion of any single node does not cause the graph to get 

disconnected. 

The Biconnectivity Problem can then be formally defined as follows. 

Problem: Biconnectivity 

Input: A connected graph G 

Output: Determine whether or not 

the graph is biconnected. 

If the graph is not bicon­

nected, find all the articula­

tion points. 
Figure 2: Example graph for a 

An example input for the bicon- biconnectivity problem. This graph 

nected graph is shown in Figure 2. is not biconnected as deletion of 

Th is graph is not biconnected as node E make s the graph di sconnected. 

the node E is an articulation point 

(single point of failure). If there was one more edge, say between C and H, 

then Ewould not be an articulation point. Biconnectivity is of special interest in 

the case of networks, as an articulation point is a single point of failure. 

We observe that a non-root node is an articulation point if and only that 

node has a subtree from which no backward edge that ends at a proper ances­

tor of x. 

In order to determine if a given graph is biconnected, we introduce follow­

ing two labels for each node i: DFN[i] and L[ij. 

• DFN[i}: sequence in which i is visited. Thus, the first node visited (i.e., the 

root) has its DFN = 1. The second node visited has a DFN = 2, and so on. 

• L[i}: Lowest DFN number of node which can be reached from node i 
using zero or more tree edges, and then a single back edge; or DFN[i], 
whichever is lower. 

The DFN labels are easy to compute during the depth first search traversal 

using a simple counter. To determine the L[i], we notice that: 

L[x]=min{ 
DFN[x], 

) 

(DFN[y] / (x,y) is a back edge), 

(L[w] / for each child w of x) 

The entire biconnectivity algorithm using depth first search using these 

ideas is provided below. 



80 I ANALYSIS AND DESIGN OF ALGORITHMS 

II Biconnectivity algorithm, using depth nrst search 
II Uses: Stack T for DFS; labels DFN and L for 
biconnectivity 
Algorithm Biconnectivity_DFS(input: graph G) 
Stack T; 
Integer num = 1; 
Integer DFN[l:n], L[l:n], Parent[l:n] 
Node s = an unvisited node 
L[s] = DFN[s] = num++ 
mark s as visited 
T.push(s) 
While (stack T is not empty) do 

Node x = top(T) 
if (x has an unvisited neighbor y) then 

mark y as visited 
T.push(y) 
DFN[y] = num++ 
Parent[y] = x 
L [y] = DFN [y] 

else 
pop(T) 

for (every neighbor y of x) do 
if (y ! = parent [x] and DFN [y] < DFN [x]) then 

1* y is an ancestor of x, and (x,Y) is a back edge*1 
L[x] = min(L[x] ,DFN[y]) 

else if (x = Parent[y]) then 
L[x] = min(L[x] ,L[y]) 

if (L [y] ~ DFN [x] and xis not root) then 
return x as an articulation point 

if (s has more than one child) then 
return s as an articulation point 

return true II Graph G is biconnected 

7.6 BREADTH FIRST SEARCH (BFS) 

Breadth first search uses a fundamentally different procedure compared to 
depth first search. As the name suggests, we explore the breadth of a node 

before the depth. 
Like DFS, it starts with any node, which is designated as the root node. 

When exploring a node, all unvisited neighbors are designated as the child 
nodes of this node, and all child nodes are "scanned" before doing a "deep 

dive" into any of those nodes. Once all the neigh bors have been scanned, then 



GRAPH TRAVERSAL TECHNIOUES I 81 

the control shifts to the child nodes, and all of the child nodes are explored 
before any of the "grand child" nodes are explored. Therefore, this traversal 
mechanism ensures that nodes are explored in the order of their "level", that 

is, their distance from the designated root node. 

~. Select an unvisited node 5, visit it, have it be the root in a BFS tree 

being formed. Its level is called the current level. 
2. From each node x in the current level, in the order in which the level 

nodes were visited, visit all the unvisited neighbors of x. The newly 

visited nodes from this level form a new level that becomes the next 
current level. 

3. Repeat the previous step until no more nodes can be visited. 

4. Ifthere are still unvisited nodes, repeat from Step~. 

We observations that the first node visited in each level is the first node 

from which to proceed to visit new nodes. This first in first out nature of the 
algorithm suggests that a queue is the proper data structure to remember the 
order of the steps. 

7.6.1 BFS pseudocode 

Procedure BFS(input: graph G) 
Queue Q; Integer s, x 
while (G has an unvisited node) do 

s := an unvisited node 
visit(s) 
Enqueue(s,Q) 
While (Q is not empty) do 

x := Dequeue(Q) 
For (unvisited neighbor y of x) do 

visit(y) 
Enqueue(y,Q) 

7.6.2 Applications of BFS 

The applications of the breadth first search are virtually unlimited. As an ex­
ample, consider a robot that is looking for signs of life, in an infinite maze (such 

as the surface of a planet, with the topology of the planet defining the "walls" 
of the maze). How can the robot explore the search space systematically, 
without venturing too far from its home base? 

Similarly, there are many optimization problems in which the search 
space is not a physical search space like a planet, but is a virtual search space 



82 I ANALYSIS AND DESIGN OF ALGORITHMS 

comprising of the system parameters. As an example, consider the problem 

of building a new airplane. The length, the height, the weight, the wingspan 

are all parameters, and there are constraints on these parameters. These con­

straints may not be linear and may not lend themselves to a simple optimiza­

tion mechanism such as linear optimization. Instead, the solution space needs 

to be explored systematically and each point in the solution space needs to be 

evaluated. 

7.7 HOME EXERCISES 

~. Refer to the classification of edges discussed in Section 7.~. 

a. What types of edges can be found in a depth first search traversal 

of an undirected graph? Specifically, why can a forward edge not 

exist in a depth first search traversal of an undirected graph? 

b. What types of edges can be found in a breadth first search traversal 

of an undirected graph? 

c. What types of edges can exist in each of those cases if we consider 

directed graphs? 

2. Cyclic and acyclic graphs: A graph is called acyclic if it does not have 

any cycles. Prove that a directed graph is acyclic if the depth first 

traversal of the graph does not yield any back edges. 

3. Topological sort: Given a directed acyclic graph G = (V,E), a topologi­

cal sort T is an ordering of vertices, such that, for each directed edge 

(u,v) in E, u comes before v in T. 
a. Prove that if the exploration of node u is completed before the 

exploration of node v in a depth first search traversal of G, then 

there exists a topological ordering in which u comes before v. 
b. Using the above proof, modify the DFS algorithm to produce a 

topological ordering that adds vertices to a list as their exploration 

is finished. 

4. When you delete a non-leaf node of a tree, you create more than 1 

subtree. Given a tree with n nodes, give an algorithm to find a non­

leaf node v, such that deletion of node v leaves no subtree with more 

than n/2 nodes. 



BRANCH AND BOUND 

CHAPTER 8 

Branch and Bound is a general optimization technique that can be 

applied where other algorithmic design techniques fail. Sometimes 

abbreviated as B&B, branch and bound is a systematic method for solv­

ing optimization problems. As a technique, B&B is much slower than 

other algorithm design techniques and often leads to exponential time 

complexities in the worst case. However, the strength of branch and 

bound is that it can solve many problems that are intrinsically hard" 

and if applied carefully, can lead to algorithms that run reasonably fast 

on average. 

B&B method is credited to a ~960 paper by Ailsa Land and Alison 

Doig [u]. 

General idea of B&B is a BFS-like search for the optimal solution, 

where each node in the BFS tree represents a solution, that is, a point 

in the solution space. Solution space may be infinite, or it may be finite 

with an exponential number of points. Thus, a general, a complete 

BFS search would require an exponential amount of time. One key 

attribute of B&B is that not all nodes get explored fully. Rather, using 

carefully selected criteria, we can determine which node to expand 

and when, and which nodes to discard without further evaluation. 

1 We will study the intrinsic hardness of problems in a later chapter on 
NP-completeness. 

83 



84 I ANALYSIS AND DESIGN OF ALGORITHMS 

Problem specific insights are used to do as much pruning as possible, and the 
pruning strategy has a significant impact on the running time of the algorithm. 

Since B&B is usually used for hard problems, it is often acceptable to return 

solutions that are not optimal, but are within some performance bound of the 
optimal. A termination criterion is used to tell the algorithm when to stop 
based on the solution that has been found. Such solutions are referred to as ap­

proximate solutions, and the corresponding algorithms are generally referred 
to as approximation algorithms. 

8.1 EXAMPLE PROBLEMS 

We present some example problems to explore how B&B design technique can 

be applied for different applications. 

Job Assignment Problem: We are given n jobs and n resources, and an n x n 
cost matrix A where Aij is the cost for resource i to perform job j. Our objective 
is to find a one-to-one matching of the n resources to the n jobs so that the 

total cost is minimized. 

Traveling Salesperson Problem (TSP): Given a complete graph with n verti­
ces, the salesperson wishes to make a tour, visiting each city exactly once and 
finishing atthe city he starts from. Cost of going from city ito city j = C(i,j). 
0/1 Knapsack Problem: Given a set of items, each with a weight and a value, 
determine which items to include in a collection so that the total weight is less 

than a given limit and the total value is as large as possible. The 0/1 version of 
the knapsack problem is different from fractional knapsack in that we can only 
choose to take, or not take, an item-we cannot choose a fraction of an item. 

8.2 BRANCH AND BOUND TEMPLATE 

The B&B template consists of the following steps. The most difficult step 

typically is to model the solution space so that can be visualized in the form 
of a graph. It is important to observe that as in the case of the 0/1 knapsack 
problem, the problem and the solution definition may not have any mention 

or hint of a graph. Rather, the graph that we need to explore is a theoretical 
graph that models the solution space for the problem. 

[The steps that we outline below are considering a maximization problem. 

Steps can altered slightly in case of a minimization problem.] 

Step 1. Model the solution space in terms of a graph, where each node 
represents a partial or a complete solution, and each edge 
represents a step, a decision or a constraint in the solution 

building process. 



Step 2. 

Step 3. 

Step 4. 

BRANCH AND BOUND I 85 

Develop a strategy to assign an "upper bound" and a "lower 
bound" for a node. A lower bound refers to one possible so­

lution and the upper bound refers to the maximum possible 

solution. Strategy depends on the insights of the actual prob­

lem and the example problems that we cover in the coming 

sections will highlight this aspect. 

Conduct a breadth first search of the graph with the follow­
ing modifications: (i) Bound each node. (ii) Prune (discard) a 

node if the upper bound on that node is no larger than a lower 

bound of another node in the same level. (iii) Explore (branch) 

the nodes in the descending order of their lower bounds'. 
(Termination Step) Terminate the search if solution meets 

required performance bounds. 

8.3 APPLYING B&B TO 0/1 KNAPSACK PROBLEM 

The 0/1 knapsack problem is defined as follows: Given a set of items, each with 

a weight and a value, determine which items to include in a collection so that 

the total weight is less than a given limit and the total value is as large as pos­

sible. We must decide eitherto take an item, orto not take an item-we cannot 

take a fraction of any item. 

This is a maximization problem as the objective is to maximize the total 

value. 

As the following example shows, a greedy solution that takes the items in 

the order of maximum reward to weight ratio may not be optimal. Suppose we 

have 3 Items. Item 1 worth 60$ weighs 10 Ibs, item 2 worth 100$ weighs20 Ibs, 

item 3 worth 120$ weighs 30 Ibs, and the knapsack can hold 50 Ibs. 

Greedy solution orders the items in the order (item 1, item 2 and item 3). So, 

it takes item 1 and item 2, and realizes a total reward of $160. However, there 

is unused capacity in the knapsack of 20 Ibs, but the weight of item 3 exceeds 

the remaining capacity. An optimal solution can instead take items 2 and 3, and 

realize a reward of $220. 
In order to apply B&B template, we apply the following steps of the B&B 

template: 

Step 1. Modeling of the graph: We consider a node of the graph to 

denote whether or not an item has been selected. The root 

node signifies no items have been taken, and it has two nodes: 

2 A different order for branching is certainly possible 



86 I ANALYSIS AND DESIGN OF ALGORITHMS 

Step 2. 

Step 3. 

Step 4. 

Y1, and N1 to signify that the item 1 has been taken, and item 
1 has not been taken respectively. 
From any node, we can use the greedy algorithm to find a pos­

sible solution and therefore establish a lower bound on that 
node. Similarly, we can use a greedy algorithm and relax the 
o/1Constra intto allow the greedy algorithm to select fractional 

values, and therefore establish a theoretical upper bound on 
that node. We observe that the theoretical upper bound may 
not be feasible, but we can safely say that no value higher than 

the fractional knapsack result is possible. 
We can conduct a breadth first search of the graph thus cre­
ated, and we can explore the nodes either in the order of their 

lower bounds, or in the order of their upper bounds. We can 
use the bounds established in the Step 2 to prune the graph 
and to limit the exploration of a node. 

Depending upon the business context, we can establish 5% or 
2% or a different value as an acceptable approximation limit 
as termination criteria. This allows us to stop the exploration 
once we find a node within acceptable difference of the theo­

retical upper bound. This isjustifiable, since 0/1 knapsack is an 

intrinsically hard problem. 

8 .4 APPLYING B&B TO JOB ASSIGNMENT 
PROBLEM 

In this section, we apply B&B technique to the job assignment problem, which 
is defined as follows: We are given n jobs and n resources, and an n x n cost 

matrix A where Ail is the cost for resource i to perform job j. Our objective is to 
find a one-to-one matching of the n resources to the n jobs so that the total 

cost is minimized. 
The B&B template itself is largely the same, and we will focus our efforts 

for this problem in defining upper and lower bounds, instead of the template 

itself. 
We observe that this is a minimization problem, and therefore, we will be 

changing the interpretation of upper and lower bounds to reflect the nature of 
the optimization. The lower bound will now be a theoretical lower bound, and 
the upper bound will be based on an actual result. 



BRANCH AND BOUND I 87 

Upper bound: Since any permutation is a valid assignment (even if not a very 

good one), we can use an identity permutation (that is, job i is done by resource 

i) as a general upper bound. 

Lower bound: The lower bound asks: how much will it cost at minimum to do 

the job assignment? We can establish a lower bound on the job assignment 

problem based on the following two observations: 

(i) Each job must be done-so if we add minimum cost per job, then that 

must be minimum cost. 

(ii) Each person must do a job-so if we add minimum cost per resource, 

then that must be minimum cost 

Since each of the lower bounds holds independently, we can take the maxi­
mum ofthese two minimums, as a good "lower bound". 

8.5 HOME EXERCISES 

1. How can we apply B&B to Traveling Salesperson Problem? Define 

how the solution space is modeled as a graph. Further, define lower 

and upper bounds on a node. Consider two cases: (i) The original 

problem is based on a graph in Euclidian space and therefore satisfies 

the triangle inequality, and (ii) The original problem does not satisfy 

the triangle inequality. 

2. You are given a Boolean formula involving variables Xl' Xl' ... X
n

. The 

Boolean formula is of form (C
1 
AND CzAND C

3 
... AND C), where each 

clause is a disjunction (logical "or" function) of the X variables. You 

have to assign true/false values to the variables so as to maximize the 

number of clauses that evaluate to true. Present a branch and bound 

approach for this optimization problem. 

MISCELLANEOUS NOTES 

A blog post by Prof. Dick Lipton, a Professor of Computer Science at Georgia 

Tech, says this about Branch and Bound: I~ branch-and-bound algorithm 
searches the entire space of candidate solutions, with one extra trick: it throws 
out large parts of the search space by using previous estimates on the quantity 
being optimized." His December 2012 blog post "Branch and Bound-Why 

Does It Work?" explores the theoretical underpinnings of the B&B framework. 



SECTION III 
TRINS/C HARDNESS 

OF PROBLEMS 

T hus far, we have broadened our horizon in two significant 
ways. Firstly, we have moved beyond discussing exact time 

complexity of algorithms to asymptotic notation for the time 
complexity of algorithms. In other words, we are interested in 
classes of algorithms, and we group the algorithms that are 

asymptotically similar. Secondly, we have learnt algorithm design 
techniques, which can lead to many algorithms for specific 
problems. 

With those two significant generalizations, we can proceed 
to explore intrinsic hardness of problems. Our objective is to 

study classes of problems based on their intrinsic hardness. 
We begin this section with the following quote, often attrib­

uted to William James, a late ~9th/early 20th century American 

psychologist and philosopher. 

I~ny question can be made immaterial by subsuming all its 
answers under a common head .... The sovereign road to 
indifference, whether to evils or to goods, lies in the thought 
of the higher genus." 



NP COMPLETENESS 

CHAPTER 9 

T he quintessential book on NP-completeness by Garey and Johnson 

[u] begins by exploring the following plausible situation: Suppose 

you are given a very hard problem at work, and you are asked to solve it. 

You try and do not reach anything useful, to the point that you feel that 

your job is on the line. How do you then proceed? 

As the aforementioned book describes, there are a few excellent 

alternatives. 

Firstly, if you are able to reduce one of the famous open problems 

to the problem at hand, then you can conclude (and convey) that 

the problem at hand is a hard problem and there are experts who 

have been attempting to solve the famous open problem and have 

not been able to solve the problem at hand either (even though they 
haven't tried the problem at hand directly). 

Secondly, if you are ableto reduce the problem at hand to one ofthe 

other well-known problems, then you can utilize the solutions to the 

well-known problem in building the solution to the problem at hand. 

In this and the following chapter, we will address both of these 

ideas. 

In order to develop our formal understanding, we need to define 

a formal model of computation in terms of a Turing Machine. We 

begin with a refresher of Turing Machine. Following that, we will 

define P and NP, two important classes of problems, and discuss their 

interrelationships. 

91 



92 I ANALYSIS AND DESIGN OF ALGORITHMS 

9.1 TURING MACHINE REFRESHER 

A (deterministic) Turing machine is a device that manipulates symbols on a 

strip of tape according to a table of rules. Described in ~936 by Alan Turing 

who called it an "a-machine" (automatic machine), the Turing machine is not 

intended as practical computing technology, but rather as a hypothetical 

device representing a computing machine. 

The excellent textbook on automata theory by Hopcroft, Motwani and 

Ullman [~3] formally defines a (one-tape) Turing machine as a 7-tuple M = (Q, T, 
B,5, q(f F, 8), where: 

• Q is a finite, non-empty set of states 
• T is a finite, non-empty set of the tape alphabet/symbols 
• BE Tis the blank symbol-the symbol that exists on the tape by default, 

and the only symbol that can occur on the tape infinitely often at any step 

during the computation 

• L ~ T-{B} is the set of input symbols 

• qo E Q is the initial state 

• F ~ Q is the set of fina I or accepting states 
• 8: Q - F x T -') Q x Tx {Left, Right} is a partial function called the transition 

function, where Left is left shift and Right is right shift of the input tape. 

Given a word (i.e., a string) wwritten on the inputtape, the machine invokes 

the transition function at each character of the input to move from one state to 

another, writes the symbol on the input tape, and moves the input tape either 

to left or to right. If the machine M ends in one of the final states after reading 

the entire word w, then the mach ine M is said to accept the word w. Otherwise, 

the machine M is set to reject the word w. 

A non-deterministic Turing Machine is defined similar to the machine M 
above, except the transition function 8 maps each non-final state and tape 

symbol to a set of moves, where each move is a combination of state, tape 

symbol and {Left, Right}. The non-deterministic Turing Machine can make any 
of the moves in the set. 

9.2 EQUIVALENCY OF A "PROBLEM" AND A 
"LANGUAGE" 

Traditionally, we use the word "problem" to define our input and output pairs. 

For example, we define the sorting problem as follows; given an input list of n 

numbers, create an output list of n numbers, such that, (i) each number from 



NP COMPLETENESS I 93 

the input list is represented exactly once in the output list, and (ii) the output 

list is in a certain order. 

In formal computation models, we can also use the word "language" for 

the aforementioned scenario. The input list can be encoded as a string on the 

input tape of the Turing Machine M, the machine M can modify the contents of 

the input tape to produce the output. When the input has been processed suc­

cessfully, the machine M can enter an accepting final state and halt. In case of 

invalid input, the machine M can enter a non-accepting final state and halt. The 

string of the valid input is then said to belong to the language L corresponding 

to the sorting problem. The string of the invalid input is then said to not belong 

in the language L. 

Similarly, consider a decision problem: given an array of numbers and a 

number x, does the number exist in the array (the search problem)? The input 
to the problem (the array and the number x) can be encoded as a String w. If 

the answer to the problem instance is Yes, then the string w is set to belong 

to the language L corresponding to the search problem. If the answer to the 

problem instance is No, then the string w does not belong to L. 
Therefore, we can observe that the words "problem" and "language" can 

be used interchangeably within this context. Given a Turing Machine M, we can 

refer to the language L accepted by the machine M, or, equivalently, to the 

problem p solved by the machine M. 

In summary: Given a problem p, we can devise an encoding mechanism to 

characterize the language L corresponding to problem p. If we are able to 

design a Turing Machine M that accepts L, then the machine M is said to solve 

the problem p. 

9.3 CLASSES P AND NP 

Having defined the equivalence between problems and languages, we can now 

define classes of problems as classes (sets) of languages. Two very commonly 

used classes of problems are classes P and NP, defined as follows: 

• P = fLIL is accepted by a deterministic Turing Machine in polynomial 
time}. That is, there exists a Turing Machine, that takes at most Orne) 
steps to accept a string of length n, for each string in L. 

• NP = fLIL is accepted by a non-deterministic Turing Machine in polyno­

mial time}. That is, there exists a non-deterministic Turing Machine, that 

takes at most Orne) steps on each computation path to accept a string of 

length n, for each string in L. 



94 I ANALYSIS AND DESIGN OF ALGORITHMS 

We observe that the only difference in the two definitions is whether the 
Turing Machine is deterministic or non-deterministic. We further observe that 

P and NP are sets (classes) of languages, and using our prior discussion about 

relation between problems and languages, we can equivalently say that P and 
NP are classes of problems. 

Since every deterministic Turing Machine can also be considered a non­

deterministic Turing Machine (with a single move option in each case), every 
problem in P is also in NP. It is also easy to observe that the class P (and there­

fore, the class NP) is infinite. 

9.3.1 Is P = NP? 

Whether the classes P and NP are in fact the same, or if they are distinct, is 
one of the most important unanswered questions since ~960s. Observing the 
similar definitions of P and NP, the question of P vs. NP can be restated as: 
Are non-deterministic Turing machines really more powerful (efficient) than 

deterministic ones? In other words, does non-determinism help in the case of 
Turing Machines? 

We do know that in the case of finite state automata, there is no significant 
difference between the capabilities of deterministic or non-deterministic 

finite state automata. We also know that in the case of Pushdown Automata, 
there is indeed a difference between the capabilities of deterministic and non­

deterministic pushdown automata. However, in the case of Turing Machines, 
we simply do not know the answer (yet). 

Many optimization problems appear amenable only to brute force, i.e., 
(near) exhaustive enumeration, and many theoretical computer scientists are 
of the opinion that the classes P and NP are distinct. Nevertheless, there is no 

known answer for this question in public knowledge. ' 
Jack Edmonds, regarded as one of the most important contributors to the 

field of combinatorial optimization, and author of the blossom algorithm for 

constructing maximum matchings on graphs, said in ~966: 
The classes of problems which are respectively known and not known to 

have good algorithms are of great theoretical interest [. . .} I conjecture that 
there is no good algorithm for the traveling salesman problem. My reasons 
are the same as for any mathematical conjecture: (1) It's a legitimate 
mathematical possibility, and (2) I do not know. 

1 The premise of the movie "Travelling Salesman" (2012) is that the classes P and NP are the 
same, and some "well-connected" people know how to solve hard problems in polynomial time. 
(You can use this as yet another confirmation that NP-completeness is an exciting Hollywood 
topic.) 



NP COMPLETENESS I 95 

9.4 NP-COMPLETENESS 

Given any class of problems, we can informally define a "central" problem in 

that class to be a problem that (i) belongs to that class, and (ii) the solution to 

that problem serves as a strong foundation for other problems in that class. 

(We use a similar informal definition for an item in any set, for example, by 

saying that Tom Cruise is a "central" or a "quintessential" Hollywood actor.) 

Slightly more formally, we can define a problem p to be "complete" in the 

class C, if (i) problem p belongs in class C, and (ii) problem p can be used to 

solve all of the problems in class C using resources (time or space) that are 

comparable to solving the problem p itself. 

Specifically, forthe class NP, we define a problemXto be an NP-Complete 
problem if: (i) X is in NP, and (ii) Every problem in class NP is reducible to X in 

polynomial time. 

9.4.1 Cook-Levin Theorem 

To show that a problem is NP-complete, we need to show a reduction from 

every problem in NP to that problem. Since the class NP is an infinite class 

of problems, we cannot enumerate all the problems in NP, much less show 

a reduction from every problem in NP to the given problem. Therefore, the 

existence of an NP-complete problem must be shown using a proof that is not 

dependent on individual reductions. A famous theorem, discovered indepen­

dently by two computer scientists, and now commonly known as the Cook­

Levin theorem does exactly that. Before describing the Cook-Levin theorem, 

we describe the closely related Boolean satisfiability problem. 

Boolean Satisfiability (SAT) problem: We are given a boolean formula con­

sisting of multiple conjunctions (AND clauses) and disjunctions (OR clauses), 

and we have to find whether there is an assignment of true/false values to the 

literals, such thatthe entire formula is true. For example, consider the following 

boolean formula: 

(Xl or Xz or x3) and (Xl or n(x) or n(x)) and (n(xl) or Xz or n(x)) and (n(x) 
or n(x) or n(x)) and (n(xl) or Xz or x) and (Xl or n(x) or X) and (Xl or n(x) 
or n(x)) and (n(x

l
) or Xz or n(x)) 

Here n(xl) represents the negation of xl" That is, if Xl is true, then n(xl) is 

false, and vice versa. 

So, if we assign Xl = Xz = X3 = true, then overall clause becomes: 

(T orT orT) and (T or F or F) and (F orT or F) and (F or F or F) and 

(F orT orT) and (T or ForT) and (T or F or F) and (F orT or F), 

which becomes: T and T and T and F and T and T and T and T, which is false. 



96 I ANALYSIS AND DESIGN OF ALGORITHMS 

Therefore, this assignment does not satisfy this clause. Some other true/ 

false assignment to variables may satisfy this clause, or the formula may not 

be satisfiable. 

CNF and CSAT: A boolean formula is said to be in Conjunctive Normal Form 

(CNF) if it consists of conjunction of clauses, and each clause is a disjunction of 

literals ortheir negations. The boolean formula used in the SAT example above 

is in conjunctive normal form. 

Boolean Satisfiability problem where the input is a boolean formula in 

Conjunctive Normal Form is commonly referred to as Conjunctive SAT, or 

CSAT. 

Cook-Levin Theorem: Suppose we are given a NTM N and a string w of length 

n which is decided by N inf(n) or fewer nondeterministic steps. Then, there is 

an explicit CNF formula f of length O(f(nYJ which is satisfiable if and only if 

N accepts w. In particular, whenf(n) is a polynomial, f has polynomial length 

in terms of n. Therefore every language in NP reduces to CSAT in polynomial 

time. 

Thus, Cook-Levin theorem proves that every problem in NP is reducible to 

CSAT in polynomial time. We observe that CSAT is trivially in NP, and there­

fore, CSAT is an NP-complete problem. The set of NP-complete problems is 

commonly written as NPC, and the Cook-Levin theorem can also be written as: 

CSAT E NPC. 

9.4.2 Proving NP-Completeness for a Given Problem 

The proof of Cook-Levin theorem is quite involved. However, we can use the 

Cook-Levin theorem to prove that a given problem X is NP-complete simply 

by showing a reduction from CSATto X. This gives us a ready template to show 

that the given problem X is NP-Complete. 

Template to prove that problem X is NP-Complete: 

~. Show thatX is in NP, i.e., a polynomial time verifier exists for X. 

2. Select CSAT or another known NP-complete problem, S. 

3. Show a polynomial algorithm to reduce S to X, by transforming an 

instance of S into an instance of X. (A schematic of a reduction is 

shown in Figure 3.) 

So far we have introduced only CSAP as an NP-complete problem, but 

our list will grow soon, and therefore the template generalizes the step 2 to 

2 There are many related versions of satisfiability problem-general boolean satisfiabil­
ity (SAT), conjunctive satisfiability (CSAT) and conjunctive satisfiability where each clause has 
exactly three literals (3SAT). 



x 
•

_ ...... Reduction 
from 
StoA Input for i 

Problem S i 
, , 

R(x) 

NP COMPLETENESS I 97 

YeslNo 
AlgOritnm ........ 
forA 

Output for 
Pr'oblemB 

.. ...... - ...... -... -_ .... -- ............ -... -_ .. ~ -- ... - .......... -_ ........ --_ ...... - .. --_ ...... -- .. - .... --............ -... - ................... .. 

Figure 3: Reducing problem B to problem A. If such a reduction exists. then 
we can conclude that problem A. is at least as hard as problem B (assuming the 
reduction itself does not dominate the algorithm for problem A). 

identify a suitable NP-complete problem. Steps 2 and 3 are interrelated, and 

many times involve a trial and error process. We may select a problem but if we 

are not able to find a suitable transformation, we may need to go back to Step 

2 and select a different NP-complete problem. 

SOX RESTOX Mnemonic: It is a common mistake to reduce problem A to 

problem B, when attempting to prove the hardness of problem A. For example, 

when showing the NP-completeness of problem X using SAT, we need to 
reduce SAT to X (and not the other way around!) We suggest the mnemonic 

SOX RESTOX: S Outside the Box; Reduce S TO X. (Here, S may be SAT or 
another known NP-complete problem.) 

9.5 EXAMPLE NP-COMPLETE PROBLEMS 

In this section, we discuss more NP-Complete problems. For some of them, we 

also present hints or outlines of proofs of their NP-completeness. 

9.5.1 Clique 

A clique is a set of vertices such that there is an edge between each pair 

of vertices in that set. (The concept of clique is similarly used in context of 

people-a clique is a group of people who all know each other.) Clique prob­

lem, also sometimes written as k-Clique problem, is that given a graph G, we 

would like to identify whether or not G has a clique of size k. 
Represented in language terms, the problem can be equivalently written as: 

CLIQUE = {<G,k> I G is a graph with a clique of size kJ 

It is easy to observe that the Clique problem is in NP. A non-deterministic 

Turing Machine can randomly select k vertices and then check whether or not 

the k vertices are connected. Ifthe graph G indeed has a clique of size k, then 



98 I ANALYSIS AND DESIGN OF ALGORITHMS 

(Xl or X2 or X3) and 
(Xl or n(x2) or n(x3)) and 
(n(xl) or X3 or X4) 

transforms to n eX1) 
X3 

Figure 4: Tran s forming an in s tance of (SAT problem into an in s tance of 
cl ique problem. A vertex i s created for each literal. and each vertex i s 
connected to all vertices in other cl auses. except the vertices that correspond 
to their negations . For example . the top left vertex corresponding to fir s t xl i s 
connected to all 6 vertices in other clauses . except n (x,) . 

the machine will terminate in polynomial time in at least one of the many pos­

sible execution paths. Therefore, Clique problem is in NP. 

We now proceed to prove that there is a polynomial time reduction from 

every problem in NP to the clique problem, in other words, that clique problem 

is NP-hard. We will do so by showing a reduction from the CSAT problem to 

the clique problem.3 

Proof that Clique problem is NP-hard: To reduce the CSAT problem to a 

clique problem, we employ the following transition. Given an instance of CSAT 

with k clauses, we ma ke a vertex for each litera I, such as xl" Ifthe I itera I appears 

multiple times, we make multiple vertices corresponding to each appearance. 

We connect each vertex to the literals in other clauses that are not the nega­

tion of this literal. An example of this transformation is shown in Figure 4. We 

observe that if there exists a k-clique in this graph, then the kvertices must be 

in different groups and therefore correspond to literals from different conjunc­

tive clauses. Further, since no vertex is connected to its complement, we can 

set the literals corresponding to the vertices in the clique to true, and thereby 

obtain a satisfying assignment. 

Therefore, if we had a solver for the k-clique problem, we could use it to 

solve CSAT problem, and therefore k-clique problem is as hard as, or harder 

than the CSAT problem. In other words, k-clique is an NP-hard problem. 

3 This reduction presents an oft-repeated pattern. We will need to transform a problem in 
boolean logic into a problem in graph theory! In other transformations, we may need to tran­
scend similar differences. 



NP COMPLETENESS I 99 

9.5.2 Independent Set (IS) 

Very closely related to the clique problem is the independent set problem-an 

independent set is a set of vertices such that there are no edges between any 

two vertices in the set. In language terms, we can define the problem to be: 

INDEPENDENT SET = {<G,k> I where G has an independent set of size k J 
We can easily observe that Independent Set problem is an NP-hard problem 

since it is the dual ofthe clique problem. Given a graph G, we can construct the 
complement graph G'that has the same set of vertices, and an edge exists in G' 

if and only if the corresponding edge does not exist in graph G. A clique of size 

k exists in G if and only if an independent set of size k exists in G'. 
Therefore, we can reduce the clique problem to an independent set prob­

lem simply by creating its complement graph. 

9.5.3 Vertex Cover 

Vertex Cover problem is defined as follows. Given a graph G, we would like to 

find a sma Ilest set of vertices, such that every edge in G is incident upon at least 

one of the vertices in the selected set. 

Vertex Cover problem is very related to the Independent Set problem, and 

we can observe that given a vertex cover, the remaining set of vertices is an 

independent set. Therefore, if we can find the minimum vertex cover, we can 
also find the maximum independent set. We use this idea to reduce the inde­

pendent set problem to the vertex cover problem, which is shown in Figure 5. 

9.5.4 Hamiltonian Path and Hamiltonian Cycle 

Hamiltonian path problem and Hamiltonian cycle are two related problems, 

which attempt to find if there is a path (a cycle, in the case of Hami Itonian cycle 

problem) that includes every vertex exactly once. For example, given a graph 

on 4 vertices {a, b, c, d} and four edges {{a,b}, {b,c}, {c,d}, {a,d}}, we can easily 

G,k 

Input for . 
Independ~n t 
Set : 

, , 

Tronsforma tion G'll-k t 
YesjNo 

Algorithm for 
Vertex Co:ver .!IIIII. 

Output for 
Independent 
Set 

'--- ------- ------- ------_ .. ------ ------- -------- -------------- ------- ------- ------- ------
Figure 5: Reduction from Independent Set to Verte x Cover problem. Since 
Independent Set i s known to be an NP-hard problem . thi s proves that Vertex Cover 
i s NP-hard problem al so. 



100 I ANALYSIS AND DESIGN OF ALGORITHMS 

observe that this graph has a Hamiltonian cycle (a, h, c, d, a) and a Hamiltonian 

path (a, h, c, d). 
Hamiltonian path and Hamiltonian cycle are both computationally difficult 

problems, and are in fact both NP-complete. We do not give a proof of their 

NP-completeness here, rather we provide ideas for reducing each problem to 

the other. 

Reducing Hamiltonian Path problem to Hamiltonian Cycle problem: 

We can easily reduce the Hamiltonian Path to the Hamiltonian Cycle problem 

using the following transformation. Given a graph G = (V,£), construct a graph 

G' = (V; £], such that: 

V' = Vunion {z}, where z is a new vertex 

£' = £ union {(z, v) I all v in V} 

That is, G' has one more vertex, and n more edges. 

Claim: G has a Hamiltonian Path if and only if G' has a Hamiltonian Cycle. 

Proof We prove both sides of this claim. 

~. If G has a Hamiltonian path, say [Vl' V2' " v,J, then G'has a Hamiltonian 

cycle, which is [z, vl ' v2'" vn, z] 
2. If G' has a Hamiltonian cycle, then the cycle must enter and leave 

each vertex exactly once. The Hamiltonian cycle can be considered to 

begin with z and return to z without loss of generality. If we remove 

the two edges ofthe Hamiltonian cycle connected to z, the remaining 

set of edges were all present in the original graph G, and therefore, 

the remaining path is a Hamiltonian path in G. 

Reducing Hamiltonian Cycle problem to Hamiltonian Path problem: The 

transformation used in reducing Hamiltonian Cycle to the Hamiltonian Path is 

slightly more involved. We present the transformation, and also provide some 

guidance on how to think through such transformations. 

Given a graph G = (V,£), we would like construct a graph G' = (V;£], such 

that G has a Hamiltonian Cycle if and only if G' has a Hamiltonian Path. 

Our first instinct may be to remove an edge to transform a cycle to a path, 

however, we have to execute the transformation without knowing the actual 

Hamiltonian Cycle (and indeed, without knowing if a Hamiltonian Cycle even 

exists in the graph G or not). 

The second attempt can involve adding a new vertex connected to a ran­

dom vertex in G. This attempt does indeed have merit in the sense that the 

transformed graph G'will have a Hamiltonian Path if G has a Hamiltonian Cycle. 



NP COMPLETENESS I 101 

However, G' may have a Hamiltonian Path even if G only had a Hamiltonian 

Path and we connected the new vertex to one end ofthe Hamiltonian Path. 

To improve on this attempt, we add three vertices and some edges as 

defined below: 

V'= Vu{z, w,x} 
£' = £ u ({z, v), (w, adj(vl)}, {x, w}} 

We connect the new vertex zto a randomly selected vertex v
l

' and connect 

the new vertex w to all vertices adjacent to vr We connect the new vertex x to 

the new vertex w. 
Therefore, the transformed G' has 3 more vertices, and a few more edges. 
Claim: G has a Hamiltonian Cycle if and only if G' has a Hamiltonian Path. 

Proof: We prove both sides of this claim. 

Suppose G has a Hamiltonian cycle, then without loss of generality, we can 

view the Hamiltonian Cycle as beginning from and returning to vr Suppose 

the Hamiltonian Cycle is [Vl' Vz ... Vn' vi Since node vn is adjacent to node vl' 
therefore, there must be an edge {vn'w} in G'. We can construct a Hamiltonian 

Path in G' as [z, vi' Vz ... vn' w, xI Therefore G' has a Ham iltonian Path. 

Suppose G' has a Hamiltonian Path. Clearly, this path must begin and end at 

vertices z and x, since both of those vertices are only connected to one vertex 

each (v
l 

and w respectively). Therefore, this path must look like [z, v
l 

.. . . w, xI 
Suppose the last vertex before w is a vertex v

k
. We observe that in G', node w 

is only connected to vertices that are adjacent to v
l 

in G, therefore, the node v
k 

must be adjacent to node v
l 

in graph G. We can construct a Hamiltonian Cycle 

in Gas [Vl ... VII Vl] by reusing the portion of Hamiltonian Path between nodes 

v
l 

and v
k 

in G'. Therefore G has a Hamiltonian Cycle. 

9.5.5 Traveling Salesperson Problem (TSP) 

The famous "Traveling Salesperson Problem" (and now a major motion pic­

ture, see [~4]) is defined as follows. You are given a list of n cities and distances 

between each pair of cities. You need to visit all n cities exactly once, and return 

to your start city, and want to make the shortest trip possible. 

A decision version ofthis problem can be specified as: Given a graph G, does 

a trip existthat is of total cost less than equal to a given value c? 

There is no known polynomial time algorithm for this problem either. So, 

this problem is not known to be in class P. However, given a machine that can 

guess a tour, we can easily verify if the given tour is a valid tour with cost less 

than c or not. Therefore, the decision version of this problem is in class NP. 

We do not present a proof of NP-completeness ofTSP or show any reduc­

tions. However, we do observe that the brute force algorithm that evaluates 



102 I ANALYSIS AND DESIGN OF ALGORITHMS 

every possible tour needs to evaluate (n-i)! permutations4. Even for a small 

value of n, such as 30, this solution is computationally infeasible. For example, 

on a ~o GHz processor, such an algorithm will take more than 200 billion cen­

turies. In a later section, we will discuss a different exponential time algorithm 

which takes O(n2 2n). Although that time complexity is also exponential, that 

algorithm can solve the same problem instance in under a minute. 

9.6 NP-COMPLETE VS. NP-HARD 

NP-completeness is defined as a combination of two properties: (i) of being in 

the class NP, and (ii) of being provably as hard as any other problem in NP. 

If, for a problem P, we can only prove the second property, we say that the 

problem is NP-hard. However, until we can prove that the same problem is in 

NP, we cannot claim that the said problem is NP-complete. 

An example of this is the optimization version of the Traveling Salesperson 

Problem. This problem can be proven to be NP-hard. However, we do not know 
how to design a non-deterministic Turing Machine which can solve this prob­

lem in polynomial time. Therefore, this problem is NP-Hard, but not known to 

be NP-complete. 

9.7 SUMMARY 

In this chapter we studied P and NP -two classes of problems. P is the class of 

problems that can be solved in polynomial time using a deterministic Turing 

Machine. NP is the class of problems that can be solved in polynomial time 

using a non-deterministic Turing Machine. NP-complete is a subset of problems 

that are the hardest problems in class NP. Any problem in NP can be reduced to 
any NP-complete problem in polynomial times. 

We do not know whether classes P and N P are the same or not. We can know 

the answer if we manage to solve any NP-complete problem in polynomial 

time, or if we manage to prove that a certain NP-compete problem cannot be 

solved in polynomial time using a deterministic Turing Machine. 

To prove a problem X is NP-complete, we need to prove two properties: 

(i) Show Xis in NP 

4 First vertex of the tour can be fixed arbitrarily without loss of generality. 
5 This is not an outcome, rather the very definition of an NP-complete problem. 



NP COMPLETENESS I 103 

(ii) Select a well-known NP-complete problem, such as SAT, and reduce 

SAT to X. (The SOX RESTOX mnemonic may help in remembering the 
direction of reduction we need to show.) 

From a few reductions that we discussed, we may observe that reducing 

problems can be hard and takes practice. Many reductions need to trans­

form problem instances of one type (such as a boolean logic problem) to a 

problem instance of another type (such as a graph problem). Many contem­

porary research publications containing novel reductions have shown the NP­

completeness of thousands of problems and their variations. 

Although no polynomial time algorithm is known for any NP-complete 

problem, and may in fact not exist, there are reasonable and practical strate­

giesthat one can employ to solve NP-complete problems. We will discuss some 

of those strategies in the next chapter. 

9.8 HOME EXERCISES 

1. Show a polynomial time reduction from the Clique problem to the 

Vertex Cover problem. 

2. Given a graph G = (l1, E), a dominating set forthe graph G is a subset D 

of V such that every vertex not in D is adjacent to at least one member 

of D. The "Dominating Set" problem is defined as given a graph G 

and an integer k, to determine if the graph G has a dominating set 

of size k. Prove that the Dominating Set problem is an NP-complete 

problem. (Hint: Show a reduction from Vertex Cover problem to the 

Dominating set problem.) 

3. Finding a SpanningTree is an easily solvable polynomial time problem. 
Consider a "k-degree constrained Spanning Tree", wherein we have 

to find a spanning tree such that no vertex in the spanning tree has 

degree more than k. Show that the k-degree constrained spanning 

tree problem is NP-complete. 

4. Prove that the following problem is NP-complete: Given a graph G, 

and an integer k, find whether or not graph G has a simple cycle con­

sisting of k edges. A simple cycle is defined as one that does not have 

any repeating vertices. 



SLAYING THE NP­
HARDNESS DRAGON 

CHAPTER 10 

C onsiderthe scenario that you have encountered a problem at work 

and proved it to be NP-complete. Now what? Certainly, you can 

safely defend that you have not found a polynomial time algorithm for 

the problem (not yet, anyway), since many other distinguished com­

puter scientists have toiled for many years without finding a polynomial 

time solution for NP-complete problems. Further, it is entirely possible 

that a polynomial time solution forthe problem does not exist. 

However, the problem still needs a solution. Very rarely do 

legitimate business problems go away simply because they are 

difficult! Instead, much more likely is that by proving the problem's 

intrinsic hardness, you may be able to negotiate (i) a higher budget, 
(ii) acceptance of a less-than-perfect solution, (iii) solving a more 

limited problem, or a combination thereof. 

There are many strategies to consider when solving hard compu­

tation problems, NP-complete or otherwise. Here are at least four of 

them. 

Strategy 1. (Solve within a context) Look for simplifications in 

the context that render the problem solvable more 

quickly 

Strategy 2. (Find a better exponential algorithm) Look for 

improvements in running time that make the 

105 



106 I ANALYSIS AND DESIGN OF ALGORITHMS 

exponential \\bearable"-for example, an O(1.sn) algorithm 

is far better than a O(n!) algorithm, although they are both 

exponential 

Strategy 3. (Find an approximation algorithm) Understand performance 

bounds that are acceptable practically, and use approximation 

algorithms 

Strategy 4. (Use parallel computing and deploy more hardware) Use 

parallel processing, cloud computing, and server farms 

(Google, Facebook, and government agencies do it) 

In the coming few sections, we provide more details and examples for some 

of these strateg ies. 

10.1 STRATEGY 1: SOLVING WITHIN A CONTEXT 

This strategy focuses on finding the simplifications that occur in the context in 

which the problem is being solved. For example, consider a general scheduling 

problem where you are trying to book appointments, given available timeslots 

for multiple resources. Depending upon the exact details of the problem, the 

problem may be hard in general sense. However, the context of the problem 

may make it easier. For example, if you find that the scheduling problem is 

being solved for a dental practice and all appointments are of one of three 

durations, that may make the problem easierto solve. 

Consider another example. Suppose we are trying to solve the Maximum 

Independent Set (MIS) problem. For general graphs, this problem is NP­

complete. Again, the context ofthe problem may make it easier. For example, 

if you find that graph that you are being provided is a tree, you can solve the 

problem in a polynomial time very easily. We provide a recursive formulation 

for the MIS problem, based on which a dynamic programming algorithm can 

easily be constructed. 

10.1.1 Maximum Independent Set in Trees 

Consider a tree (or subtree) rooted at a node v. We use the following notations 

to capture the size of the independent sets for the subtree rooted at node v. 

NMIS(v): Size of the maximum independent set forthe tree rooted at node 

v, such that v is not in the set. 

MIS(v): Size of the maximum independent set forthe tree rooted at node v. 
We observe that in the base case, that is, if v is a leaf node, NMIS(v) = 0, 
MIS(v) = 1. 



SLAYING THE NP-HARDNESS DRAGON I 107 

We observe that in the recursive case, the following equations hold: 

NMIS(v) = Lu MIS(u) for all child nodes u of v (Ifthe current node v is not 

included, then we can include maximum independent sets from all subtrees) 

{ 

(1+ L NMIS(u)luisachiidnodeofv), } 
MIS(v) = max u 

NMIS(v) 

(The first operand refers to the case that the current node v is included. In that 

case, we can include the maximum independent sets from all subtrees, as long 

as those independent sets do not contain the root nodes themselves, as those 

nodes are adjacent to node v. The second operand refers to the case that the 
current node v is not included.) 

Based on this recursive formulation, a dynamic programming algorithm can 

easily be constructed that evaluates the NMIS and MIS values for each node, 
starting with the bottom of the tree. (We can first use a breadth first search 

algorithm to number the nodes and start evaluating these values in the reverse 
order of their BFS numbering.) 

10.2 STRATEGY 2: FINDING AN ALGORITHM WITH A 
LOWER EXPONENT 

Consider the famous traveling salesperson problem, in which we are given a 

weighted undirected graph G = (V,£) and we need to find a shortest tour that 

starts at a vertex, visits each vertex exactly once, and returns to the start vertex. 

Distance (also called weight) between adjacent vertices (u,v) is given in form of 

the function d(u,v). As discussed in Section 9-5-5, a brute force algorithm that 

examines all possible tours needs to examine n! tours, where n is the number 

of vertices. By considering the fact that the first node in the tour can be fixed 

arbitrarily, we can reduce itto slightly better (n-l)!tours. Computing the cost 
of each tour takes O(n) time, resulting in an O(n!) overall algorithm. This algo­

rithm is computationally infeasible for even small values n, such as 25 or 30. A 

much more efficient algorithm using Dynamic Programming is possible, which 

we present next. 

10.2.1 Traveling Salesperson Problem-A Dynamic 
Programming Algorithm 

Given 5 k V, let C(S,j) denote the shortest path that starts at 1, visits all nodes 

in 5, and ends at). (1 and) must be in 5.) 



108 I ANALYSIS AND DESIGN OF ALGORITHMS 

Since the set 5 must contain at least two elements, we can define the base 

case as /5/ = 2, and in that case, we can easily compute C(S, k) as d(1,k), for k 

in {2 ... n}. 
In the recursive case, we consider that /5/ > 2. 
In this case, C(S, k) can be computed in terms of C(S;k) where 5' = 5 - {k}. 

Specifica Ily, the shortest path from 1 to k can be constructed by extending one 

of the shortest paths from 1 to another node in the set S. Therefore, we can 

write the recursive equation as: 

C(S, k) = min (C(S',JJ + d(j, k) / for all} E 5 ' where 5' = 5 - {k}} 

Each value C(S,k) can be computed in O(n) time. Since there are a total 

of n 2n combinations for all possibilities of (S,k), we can compute all possible 
values in O(n2 2n) time. Finally, computing the shortest tour is simply a matter 

of finding the minimum of all C(l1,v) + d(v,l) over all possible vertices v, where 

Vis the set of vertices of the graph. 

10.3 STRATEGY 3: USING AN APPROXIMATION 
ALGORITHM 

This strategy is perhaps the most important strategy for solving NP-complete 
problems1. Since it is unknown if a polynomial time algorithm for such a prob­

lem exists, we can trade optimality for efficiency and settle for polynomial 

time sub-optimal solutions. Ideally, the approximation is optimal up to a small 

constant factor (for example, within 5% ofthe optimal solution). 

Definition: Given a computation problem, an r-approximation algorithm is 
an algorithm that returns a feasible solution with value at most rtimes "worse" 

than optimal. The interpretation of "worse" depends upon the nature of the 

problem. For example, for a maximization problem, worse means smaller. 

Therefore, a 2-approximation algorithm returns a feasible solution that is at 

least one half the size of the optimal solution. Similarly, for a minimization 

problem, worse signifies larger. Therefore, a 2-approximation algorithm for a 

minimization problem may return a feasible solution that is at most twice the 

size of the optimal solution. 

We can reasonably raise the following important question: An approxima­

tion algorithm makes sense in the case of hard problems where we do not 

know how to compute the optimal solution; in that case, how can we compare 

our solution to the optimal solution that we cannot compute? 

1 Approximation Algorithms are a complete field of study of their own, with many available 
textbooks, and a graduate class focused on Approximation Algorithms can often be found as well. 



SLAYING THE NP-HARDNESS DRAGON I 109 

The answer lies in the theoretical bounds that we studied in the chapter 

on Branch & Bound. Considering a minimization problem, a theoretical lower 

bound can be found by making a relaxation to the problem and then observing 

that the optimal solution cannot be any lower than the solution to the relaxed 

version of the problem. For example, in Section 8-4, we observed that for a 

job-assignment problem, the cost of an optimal assignment can be no lower 

than the sum of the minimum costs for each job. Therefore, if we can find a 

feasible solution that costs 1.5 times the sum of minimum costs for each job, 
we can conclude that this feasible solution is no more than 1.5 times the opti­

mal cost. While the job-assignment problem is not an NP-complete problem, 

this general idea of using a theoretical bound is often used while using the 

approximation algorithm strategy. 

10.3.1 Traveling Salesperson Problem-An Approximation Algorithm 

Once again, we return to the traveling salesperson problem, in which we are 

given a weighted undirected graph G = (V,£) and we need to find a shortest 

tour that starts at a vertex, visits each vertex exactly once, and returns to the 

start vertex. Distance between adjacent vertices (u,v) is given in form of the 

function d(u,v), which we also refer to as the weight of the edge. 

We observe the following lower bound. Consider the shortest salesperson 

tour. Given that tour, we can remove an edge to obtain a spanning tree. The 

weight of that spanning tree must be at 

least the weight of a minimum spanning 

tree (by the very definition of a minimum 

spanning tree). Therefore, the weight of 

the shortest salesperson tour must be at 

least the weight of the minimum span­

ning tree. 

Further, we observe that if we are 

given a minimum spanning tree, we can 

create a salesperson tour in the following 

manner. We run the depth-first traversal 

on the minimum spanning tree, which 
assigns each vertex a DFS traversal num­

ber. We use that sequence as the basis 

for creating the traveling salesperson 

tour. For example, if given the Minimum 

Spanning Tree shown in Figure 6, we can 
construct a TSP tour as (1, 2, 3, 4, 5, 1). 

This uses the edge (3,4), which was not 

there in the MST, but if the triangle 

Figure 6: Construction of a TSP 
tour given a Spanning Tree: we 
can con s truct a tour by follow-
ing the vertice s in s equence of 
their DFS number s . If triangle 
inequality hold s , then the weight 
of the TSP tour i s at mos t twice 
the weight of the spanning tree. 



110 I ANALYSIS AND DESIGN OF ALGORITHMS 

inequality holds, then d(3,4) ~ d(2,3) + d(2,4). Similarly, d(4,S) ~ d(2,4) + 
d(2,S), and d(1,S) ~ d(1,2) + d(2,S). If we take the sum of weights of all the 

edges of the tour, we observe that the total weight of the tour is no more than 
the twice the weight ofthe Minimum Spanning Tree. 

Finally, we observe from Section 5-4, that Kruskal's algorithm runs in Oem 
log n) time. By combining the two observations about the TSP and the cost 
of the lower bound, we have a polynomial time algorithm that guarantees 

a 2-approximation algorithm for the TSP problem, assuming the triangle 
inequality holds'. 

10.4 SUMMARY 

While proving a problem to be NP-complete may be interesting, it is rarely 

the end of the problem itself. The problem still needs to be solved and the 
NP-completeness of the problem may allow us to justify an exponential time 
algorithm, an approximation algorithm, or merely the purchase of more com­

puting power to solve the problem. 
There are many strategies to consider when solving hard problems, such as 

those that are provably NP-hard. Some of the main strategies that we consid­

ered were: 
Strategy ~: Look for simplifications and the context of the problem, and 

solve the problem within that limited context 

Strategy 2: Look for improvements in running time that make the exponen­
tial "bearable" 

Strategy 3: Understand performance bounds that are acceptable practi­

cally, and use approximation algorithms 
Strategy 4: Use parallel processing, cloud computing, and more processing 

power 
As part of strategy 3, we also touched upon the exciting field of approxima­

tion algorithms, and reviewed the theoretical bounds that we had touched 

upon earlier in Chapter 8 on Branch and Bound Algorithm design technique. 
When we encounter "real world" problems, we often observe that they are 

harder and easier than mathematical computation problem: they are harder 

because modeling the problem is part of solving the problem; they are easier 
because we can use the quirks in the data to fine tune our solutions. 

Lower Bounds and NP-completeness analysis help in guiding our efforts. While 

algorithmic techniques are the solution pillars and the building blocks of our ideas, 
multiple techniques often need to be used together to create lasting solutions. 

2 Triangle inequality need not always hold. For example, if the weight of the edge represents 
the cost of airfare between two cities, no such constraint may exist on the weights, as airfares 
notoriously defy common logic. 



THEORY OF LOWER 
BOUNDS 

CHAPTER 11 

Chapter Author: David Balash 

A lower bound is a theoretical limit on the number of operations 
required to solve a particular problem. For example, we may claim 

that to evaluate a certain function, we must perform at least nZ addition 

operations. Thus, a lower bound quantifies the intrinsic complexity of a 
given problem, independent of the algorithm used to solve it. In more 
general terms, a lower bound may specify a limit on any computation re­

source (time, space, operations, circuits, etc.) to solve a certain problem.' 
The lower bounds are interesting because they provide both a 

performance goal for the efficiency of an algorithm and protection 

from seeking unachievable results. A lower bound is said to be tight 
if there is a known algorithm with the same efficiency. If a gap ex­
ists between a lower bound and the efficiency of the fastest known 

algorithm, then either a faster algorithm can be designed or a better 
lower bound can be proved. 

In order to define a lower bound, we need to select a computation 

model, including a set of allowable operations and their respective costs. 

1 This aspect of the theory of lower bounds may be philosophically repugnant to 
some. Bya lower bound, we are essentially saying that it is not possible to do bet­
ter than a given result. Albert Einstein is once reported to have said, "If you believe 
something is impossible, don't stop a guy from trying it." And yet, Einstein also gave 
us a theoretical limit on the velocity of an object. Here, we are trying to prove our 
own theoretical limits, although not nearly as exciting! 

111 



112 I ANALYSIS AND DESIGN OF ALGORITHMS 

In the commonly used algebraic computation model, we assume that we can 

perform any common mathematical operation (addition, subtraction, multipli­

cation, and division) involving real numbers in a unit-constanttime, and we can 

perform any comparison operation in a unit-constant time. 

We can categorize mechanisms to prove lower bounds along the following 

lines: 

~. Trivial lower bounds can be obtained by counting the size of inputthat 

must be examined and the size of output that must be computed. For 

example, one can argue that it is not possible to find the largest of 

given n numbers in better than n time, since at the very least we must 

read all the n inputs. 

2. Lower bounds can be obtained using a decision tree argument. In a 

decision tree, each internal node represents some partial conclusion 

and a question (decision) about the input, and each leaf a possible 

outcome. Algorithm execution is represented by a path from the root 

to a leaf. The length ofthe longest such path corresponds to the worst­

case number of decisions an algorithm must compute. The number 

of possible outcomes (decisions) at each node of the tree determines 

the branching factor of the tree, usually a constant, say b. The height 

h of a decision tree with N leaves must be at least [10g
b 

N]. The key 

point is that a decision tree with a given number of leaves must be tall 

enough to have that many leaves. The lower bound on the running 

time of an algorithm represented by a decision tree is the lower bound 

on the heights of all decision trees in which each possible outcome ap­
pears as a reachable leaf. A decision tree is an information-theoretic 

argument, because it seeks to establish a lower bound based on the 

amount of information it has to produce to solve a problem correctly. 

3. Lower bounds can also be established with an adversary argument. 

An adversary argument makes use of a malicious, but honest, 

all-knowing adversary who is allowed to choose an input for the 

algorithm. The adversary will actively work against the algorithm to 

maximize the amount of work required, with the condition that the 

adversary cannot contradict itself. For example, the adversary can­

not say Q > b, b> c and then also say c> Q. 

11.1 LOWER BOUND ON SORTING 

Let us use a decision tree to establish a lower bound for the problem of 

comparison-based sorting of an arbitrary array containing n distinct elements. 

In the comparison-based model of computation, the only allowable operation 



THEORY OF LOWER BOUNDS I 113 

is comparing pairs of elements. The decision tree forthis problem will contain a 

leaf for each permutation of the original input. These permutations correspond 

to correctly completed sort orders for particular input sequences. The number 

of possible outcomes for this problem is the number of permutations of the 

input. We recall from our study of combinatorics that the number of permu­
tations of n distinct objects is n! (that is, n(n-1)(n-2) ... 32 1). The internal 

nodes of the decision tree are comparisons between two elements of the 

input. This gives us a branching factor of b=2i therefore, the decision tree for 

a comparison-based sort is a binary tree. It is an intrinsic property of a binary 

tree that a tree of height h has no more than 2h leaves, and, since each of the 

n! permutations of the input is a leaf, we have n! ~ number of leaves ~ 2h and, 

after taking logarithms (base 2), this gives 

h ~ [lg(n!)] 
= n(n log n) 

Note the approximation, for n > 1 

n! ~ n( n-l)( n-2) ... !2 ~ (!2yl 
2 2 

log n! ~ (n/2) log (n/2). 

r input sequence {ao, a i, a2} = {12, 5, 8} 

comparison between 
~ aoandal 

no more than 2h leaves 

at least n! leaves 
3! = 6 

23 = 8 

~he;ghth = J 

Figure 7: A decision tree for the three-element input sequence {12 . 5 . 8} 



114 I ANALYSIS AND DESIGN OF ALGORITHMS 

As a result, for any comparison-based sorting algorithm A, there exists an 
input I of size n such that A makes at least Den log n) comparisons to sort 1. 
Therefore, the comparison-based sorting algorithms that we know of-merge 

sort, heap sort, quick sort (average case)-are all asymptotically optimal. The 
lower bound for the comparison-based sorting problem is tight, because there 
are known algorithms with the same efficiency. 

The lower bound tells us that a worst-case input exists that requires 
Den log n) comparisons. However, a comparison-based sorting algorithm can 
still run in linear time in special scenarios. For example, we can use counting 

sort or radix sort if each number is within a small range (for example, 1 ... 1000). 

11.2 LOWER BOUND ON SEARCHING 

The problem of comparison-based searching for an element in an unordered 
array of size n has a lower bound of n, since every array element must be read 
in the worst case. The worst-case input is an array that does not contain the 

search element. This is an example of the trivial lower bound. 
The problem of comparison-based searching for an element in an ordered 

array of size n has a lower bound of D(log n). The decision tree for the problem 

must have at least n+ 1 leaf nodes, because there are n possible occurrences of 
the search element and the possibility that the array does not contain the ele­
ment. So, the height of the decision tree is at least [lg(n+ 1)]. The lower bound 

for this problem is tight, because the binary search algorithm has the same 
efficiency. 

The problem of comparison-based construction of a binary search tree 
from an arbitrary array of n elements has a lower bound of Den log n), the 
same lower bound as comparison-based sorting of an arbitrary array. 

11.3 FINDING MINIMUM, MAXIMUM, AND MEDIAN 

The lower bound for finding the maximum (or the minimum) of n elements, 

based on comparing pairs of elements, is n-1 comparisons. To observe this, 
we can think of a tennis tournament. How many games must be played before 
a champion is declared? Each tennis player in the tournament except the 

champion must lose at least one game. If fewer than n-1 games are played, 
there will be two or more players who have never lost a game, and therefore 
we cannot declare a champion yet. We note that this argument is independent 

of the sequence of games (comparisons). This is important, as the lower bound 
must be independent of the knowledge of any algorithm for the problem. 



THEORY OF LOWER BOUNDS I 115 

Median: We determined in Section 4.6 that O(n) time is sufficient to find the 

median of a list of n integers. Using a trivial lower bound, we observe that we 

need n(n) time just to read the input. 

11.4 AN ADVERSARY ARGUMENT FOR FINDING 
BOTH MINIMUM AND MAXIMUM NUMBERS 
IN AN ARRAY 

If we are given an array of n distinct unsorted numbers, how can we find both 

the minimum and the maximum using as few comparisons as possible? The 

first attempt at an algorithm could be to find the minimum, and then to find 

the maximum from the remaining, in a total of (n - 1) + (n - 2) comparisons. 

A better algorithm would first compare pairs of numbers, in n/2 comparisons, 

and collect n/2 "winners" and n/2 "losers." Then, it would find the maximum 

from the winners in (n/2) - 1 comparisons, and the minimum from the losers 

in (n/2) -1. That is, a total of (3n/2) - 2 comparisons. 

That much is straightforward. A much more interesting question is whether 

or not the algorithm presented above is optimal. In other words, can we say 

that any algorithm that is based on comparisons will need at least (3n/2) - 2 

comparisons, regardless of the sequence in which it does the comparisons? 

We prove that for any given algorithm (let us call it algorithm A), there is a 

sequence of numbers for which A takes at least (3n/2) - 2 comparisons to find 

both the maximum and minimum numbers. Such a proof can be constructed 

with an adversary argument. 

The adversary thinks in terms of numbers in four buckets: 

Bucket Q: Contains numbers that have not yet been compared to anything. 

Bucket W: Contains numbers that have only won games that they have 

played. So, they are candidates for being the maximum. 

Bucket L: Contains numbers that have only lost games that they have 

played. So, they are candidates for being the minimum. 

Bucket X: Contains numbers that have both won and lost games they have 

played. So, they are not candidates for being the minimum orthe maximum. 

The buckets start in the following state when the algorithm A starts: 

Bucket 0: n numbers. Buckets W, L, X: 0 numbers each. 

Finally, when algorithm A finishes, this must be the state of the buckets: 

Bucket 0: 0 numbers. Bucket W, L: 1 number each. Bucket X: n-2 numbers. 

The adversary follows these rules for creating outcomes of comparisons: 



116 I ANALYSIS AND DESIGN OF ALGORITHMS 

Numbers that have Numbers that have 

Numbers that have not only won games only lost games Numbers that have both 
yet been compared j j lost and won games 

1 1 

Q w L X 

Figure 8: Adversary's strategy for maximizing the number of comparisons 
for finding both maximum and minimum numbers. Adversary thinks of numbers in 
terms of buckets Q. W. L. and X. 

(1: When comparing two numbers in bucket 0, one number will go into bucket 
W, and one number will go into bucket L. (Net change: -2, +1, +1, 0) 

(2: When comparing a number from bucket W to a number from bucket 0, the 

number from W will win and will remain in W. The number from bucket 0 will 
go into L. (Net change: -1, 0, +1, 0) 

(3: When comparing a number from bucket L to a number from bucket 0, the 
number from the L will lose and will remain in L. The number from bucketO will 
go intoW. (Net change: -1, +1, 0, 0) 

(4: When comparing a number from bucket W to a number from bucket X, the 
number from W will win and will remain in W. The number from bucket X will 
remain in X. (Net change: 0, 0, 0, 0) 

(5: When comparing a number from bucket L to a number from bucket X, the 
number from L will lose and will remain in L. The number from bucket X will 
remain in X. (Net change: 0, 0, 0, 0) 

(6: When comparing a number from bucket W to a number from bucket L, the 

number from L will lose and will remain in L. Number from the W bucket will 
remain in W. (Net change: 0, 0, 0, 0) 

(7: When comparing two numbers from bucket W, one will remain in W, and 
one will go into X. (Net change: 0, -1, 0, +1) 

(8:When comparing two numbers from bucket L, one will remain in L, and one 
will go into X. (Net change: 0, 0, -1, +1) 

These rules ensure the following points: 

• A maximum of two numbers can be removed from bucket 0 during each 
comparison, and during this comparison, no number goes into bucket X. 
This happens in comparison (1. 



THEORY OF LOWER BOUNDS I 117 

• During each comparison, a maximum of one number can enter bucket X. 
This happens in comparisons C7 and C8, and in those comparisons, there 
is no change in the size of bucket o. 

So, we observe that we need n-2 comparisons (of type C7/C8) simply to 
fill up bucket X (we need n-2 numbers there by the end). Further, since those 

comparisons do not involve bucket 0, we need at least an additional (n/2) 
comparisons just to empty out bucket 0 (it starts with n numbers and needs 
to have 0 numbers). So, in total, we need to make at least (3n/2)-2 com­

parisons just to make sure bucket 0 and bucket X have the desired state before 
algorithm can draw its conclusion. 

11.5 MATRI X MULTIPLICATION 

A trivial lower bound for the problem of multiplying two n row by n column 
matrices is n(n2) because 2n2 elements in the input matrices must be read and 

n2 elements of the product must be computed. Determining whether or not 
the n(n2) lower bound is tight continues to be an active area of research. 

The simplest algorithm for matrix multiplication takes B(n3
) time, but many 

improvements to matrix multiplication algorithms have been made, starting 

with Volker Strassen, who, in a ~969 paper, famously demonstrated that the 
simple B(n3

) algorithm was suboptimal. Strassen's algorithm, also discussed 
in Section 4.8, reduces the number of multiplications required and runs in 
O(n Z807 ) time. In ~987, Don Coppersmith and Shmuel Winograd improved 
upon Strassen's algorithm and developed a O(nZ3755 ) time algorithm. Recent 

smaller improvements have reduced the running time to O(nZ.3727). The debate 

continues on whether a faster algorithm matching the n(n2) lower bound can 

be designed, or if a performance barrier exists and a better lower bound must 
be proved [~5]. 

11.6 LOWER BOUNDS ON GRAPH PROBLEMS 

A trivial lower bound for many graph problems is {2(JVI + IE/J, or simply the 

time to read the input when the graph is stored in an adjacency list. For many 
graph problems, this is the best-known lower bound. 



118 I ANALYSIS AND DESIGN OF ALGORITHMS 

11.7 LOWER BOUNDS ON PUZZLES 

Information-theoretic arguments with the aid of a decision tree can be used 

to solve puzzles involving lower bounds. The classic twelve-coin puzzle is an 
excellent example because the solution depends upon the amount of informa­

tion we must produce in order to solve the problem correctly. 
Given twelve coins, of which one is either heavier or lighter, and a two-pan 

equal-arm balance, how many weighings are necessary to find the unique coin 
and to determine whether the unique coin is heavier or lighter? 

To find a lower bound on the number of weighings, first consider the num­

ber of possible outcomes. Since any of the 12 coins can be heavier, and any of 
the 12 coins can be lighter, there are 24 possible outcomes. We must use the 
balance to provide enough information to specify any of the 24 possible out­

comes. A weighing provides three possible answers-left-pan heavy, neutral 
balance, or right-pan heavy-resulting in a branching factor of b=3. Thus the 
height of the decision tree must be at least [logzC24)] = 3. Therefore, at least 
three weighings are necessary.' 

11.8 SUMMARY 

To establish lower bounds we analyze the problem itself and not individual 

algorithms. Lower bounds expose the intrinsic difficulty of a problem and ap­
ply to all algorithms that use the same model of computation when solving 
the problem correctly. We use lower bounds to determine if the performance 

of a known algorithm is optimal, or if there is room for improvement. Trivial 
lower bounds, based on the size of the input that must be read, can be found 
for many problems; however, trivial lower bounds may not always be tight. 

Information-theoretic arguments can be made with the help of a decision tree. 
A decision tree uses the branching factor and the size of the solution space to 
establish a lower bound. Adversary arguments rely on a malicious adversary 

who forces an algorithm into the most time-consuming path. 
There are limitations on the power of algorithms, and the study of lower 

bounds may have many of us asking: Can this be as good as it gets? Using 

sophisticated arguments and based on our understanding of the underlying 
computation models, we can sometimes establish strong lower bounds on the 
performance of any algorithm to solve a specific problem. 

2 Consider the same question involving 13 coins, one of which is heavier or lighter. The lower 
bound using decision tree approach still evaluates to [logi24)l, that is, 3, but 3 weighings are 
not sufficient. 



SECTION IV 
ONCLUS/ONS AND 
XILIARY MATERIALS 

I n this section, we present some concluding remarks, some 
suggestions for extension topics, and some references for 

further reading. 



WRAPPING UP 

CH APTER 12 

O ne of the key conclusions the reader should draw from this book 

is that algorithms matter. They are all around us, being used in 

fields as banal as trash-pickup scheduling, as fantastic as exploring the 

landscape of a distant planet, or as useful as finding patterns of genomic 

text that may make a person more or less susceptible to a dangerous 

kind of cancer. 

By using the power of asymptotic notation, we can compare dif­

ferent algorithms in terms that ignore minor differences and focus on 

the growth of those functions as the input size grows. 

While the study of all algorithms is outside the scope of this 

(or any other) book, the algorithms can be categorized according 

to relatively finite algorithm design techniques, such as divide & 

conquer, greedy, dynamic programming, searching & backtracking, 

and branch & bound. By thinking along the lines of algorithm design 

techniques, we can approach a problem from multiple perspectives 

in order to find an efficient algorithm. However, we remind ourselves 

that these algorithm design techniques are merely tools to organize 

our thinking. A comprehensive working solution is likely to involve 

components of all of these design techniques. 

While the intention of algorithm design techniques is to always 

improve the performance of the solution for a particular problem, we 

are sometimes limited by the inherent complexity of the problem. 

121 



122 I ANALYSIS AND DESIGN OF ALGORITHMS 

Indeed there are lower bounds to problems that we cannot expect to beat 
without changing the underlying computation model. 

We can organize various problems in classes, depending upon their inherent 

computation complexity. For example, using the resources of time and space, 
we can define classes of problems such that they require at most a polynomial 
time, or polynomial space with respect to the input size. 

The ultimate litmus test ofthis book is in the form offollowing questions 
that each reader can answer on their own in the context of each computa­

tion or algorithmic problem they face: How would you have approached the 

problems before you had the benefit ofthis book? How do you approach those 
problems now? 

12.1 SPECIALIZE, BUT NOT OVER SPECIALIZE 

While we live in an era of super specialization, it is important that we don't 
over specialize and box ourselves into too specific a field. Algorithms present 
a specialized field themselves, and many people focus on specific classes of 

problems, such as online algorithms, scheduling algorithms, and approxima­
tion algorithms. The reader is ultimately the best judge for how much special­
ization is appropriate. 

The following quote may be relevant. 

'A human being should be able to change a diaper, plan an invasion, butcher 
a hog, conn a ship, design a building, write a sonnet, balance accounts, build 
a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act 
alone, solve equations, analyze a new problem, pitch manure, program a 
computer, cook a tasty meal, fight efficiently, die gallantly. Specialization is 
for insects." 

-Robert Heinlein 

1 2.2 SUGGESTED PROJECTS 

Since this book came about by teaching the graduate class on algorithms for 
several years, here is a selected list of projects that were used by students in 

those years. 

~. Implementation of All Pairs-Shortest Path algorithm: Use file-based 

input and output and use a library that models the graph objects, 
instead of generating user interface design. This allows an enhanced 



WRAPPING UP I 123 

focus on algorithmic aspects of the problem, as opposed to the visual 

aspects of the problem. Ensure the implementation uses only n2 

amount of space; that is, it uses 1 matrix instead of 2 or n matrices. 

Ensure the implementation is able to create actual paths, not merely 

distances, without increasing the time complexity of the algorithm. 
2. Proof of Cook's theorem: Proof of Cook's theorem involves many 

aspects of reduction and transforming a problem instance for any 

non-deterministic Turing Machine into a boolean clause. 

3. Union Find Analysis: Analysis of the Union Find algorithm, including 

path compression, contains amortized cost-analysis techniques, such 

as credit-debit, which are otherwise not covered in this book. 

4. Implementation of Strassen's Matrix Multiplication Algorithm, or 

another matrix multiplication algorithm that is 0(n3) algorithm. 

5. Implementation of Closest Pair of Points Divide and Conquer algo­

rithm: While theoretically this algorithm has an O(n log n) implemen­

tation, it involves a few challenges in details that can change the time 

complexity to O(n2) unless implemented correctly. 

6. Comparison of different Convex Hull algorithms: Graham scan with 

Akl-Toussaint Heuristic and Chan's algorithm are both interesting 

algorithms. 



HOW DO WE LEARN? 

APPENDI X A 

Hermann Ebbinghaus, a German psychologist, described in ~885 the expo­

nential nature of forgetting. In his study (of which he himself was also a par­

ticipant), subjects memorize a list of meaningless, three-letter words. Ebbinghaus 

tracked how quickly his subjects forgot the words, and this is now known as the 

Ebbinghaus or Forgetting Curve, which can be concisely approximated as R=e-t
/
s, 

where R is the amount of information retained,S is the relative strength of memory, 

and t is the elapsed time. 

Overcoming the Ebbinghaus Curve: Amount of information retained 

changes upon each successive time the information is reviewed. We can over­

come the forgetting curve simply by reviewing in a systematic fashion: 

• ~o min-After class by completing, organizing, and comprehending by 

rewriting ortyping notes (e.g., Cornell right column) 

• 24 hours-Next day, by rereading notes, condensing them to main ideas, 

and creating questions (e.g., Cornell left column) 

• ~ week-Before class the following week or earlier, by reviewing and self­

evaluating your recall 

• ~ month-When you review material about a month after reading it, you 

often draw new insights from it, and at that point, may be able to retain 

that information for the rest of your life 

125 



126 I ANALYSIS AND DESIGN OF ALGORITHMS 

Does a study of three-letter words apply to Logic and Computer Science? 

One can argue that in computer science, the problem is with applying, not 

memorizing, and it is an issue of logic and reasoning, and not remembering 

or forgetting! In order to evaluate that line of reason, let us take a moment to 

learn about and from sea slugs. 
A sea slug has been described in the excellent book Genome [16] in not­

too-generous terms, using the following phrases: "A more contemptibly basic 
animal is hard to imagine." "It displays an enviable lack of neurosis." "It just 

exists." "Its life is a cinch." 

And yet, we observe that when it comes to learning, learn it can. When ajet 

of water is blown upon its gill, the sea slug withdraws the gill. However, if jet of 

water is repeatedly blown on the gi II, the withdrawa I gradua Ily ceases. (It stops 
responding to the false alarm. It "habituates.'] 

If given an electric shock once, before water is blown on the gill, the sea slug 
learns to withdraw its gill even further than usual ("sensitization"). 

When it receives only a very gentle puff of water paired with an electric 

shock, it withdraws its gill. Thereafter, a gentle puff alone, without any shock, 

results in a rapid gill withdrawal. (In other words, the slug is capable of "as­

sociative learning.") 

It learns using all three mechanisms by which dogs or people learn. This is 

not the same as calculus or relativity, but it is learning just the same. While 

we may think that our learning needs and models are significantly different, 

underlying learning mechanisms are still the same. 

The following quote, attributed to William Glasser, articulates what portion 

of material we absorb, depending on what activity we perform with it: "We 

learn 10% of what we read, 20% of what we hear, 30% of what we see, 50% of 

what we both see and hear, 70% of what is discussed with others, 80% of what 

we experience personally, and 95% of what we teach someone else." 

The take-away point is that computer science is learning, like other forms of 

learning. We can always learn better by improving how we learn. As you read 

the material, make up some questions. Try to answerthem. Notice how subtle 

changes affect which algorithm design technique works and which ones don't 

work. 



MORE GRAPH 
THEORY AREAS 

APPENDI X B 

Graph theory is an area that is very rich in challenging problems. Besides some 

NP-complete problems presented in Section 9.5, consider the following 

problems. 

Graph (Vertex) Coloring and Chromatic Number 

Given a graph and an integer k, can the vertices of given graph be colored using 

k colors so that no two adjacent vertices receive the same color? (We define 

a coloring in which no two adjacent vertices receive the same color as a valid 

coloring of the graph. Further, we define the minimum integer k for which a 

valid vertex coloring exists as the chromatic number of the graph.) 

Some insights into the coloring problem can be obtained based on the 

degree of vertices. Let t::. be the maximum degree in the graph, and let d be the 

minimum degree in the graph. 

Following claims may sound intuitive, but are all false. 

False Claim 1. 

False Claim 2. 

False Claim 3. 

If t::.::; 3, then the graph is 3-colorable. 

If () > 3, then the graph is not 3-colorable. 

If the graph does not have a clique of 4-vertices, then the 

graph is 3-colorable. 

For specific values of k, we can consider specific decision problems. For 

example, for k = 2, the decision problem becomes: 

127 



128 I ANALYSIS AND DESIGN OF ALGORITHMS 

Is a given graph 2-colorable? 
This problem can be solved in polynomial time. However, for all values of 

k> 2, the problem is NP-complete. Specifically, the following problems are 
NP-complete: 

Is a given graph 3-colorable? 
Is a given graph 4-colorable? 
We can observe that the decision problem for k=2 can be easily solved by 
assigning a random vertex colon, and all adjacent vertices color 2. We continue 

this process and either we are able to assign color 1 or color 2 to all vertices, or 
we reach a contradiction in which case the graph is not 2-colorable. 

Graph (Edge) Coloring 
The graph edge coloring problem is defined analogous to the graph vertex col­
oring problem: Given a graph and an integer k, can the edges of given graph be 

colored using k colors so that no two adjacent edges receive the same color? 
Clearly, to have a valid edge coloring of a graph, we need at least b. colors, as 

all the edges around a maximum degree vertex need to be assigned different 

colors. However, it is much less obvious that b. + 1 colors are always sufficient 
for a valid edge coloring. Perhaps the most surprising result is that the decision 
problem as to whether b. colors are sufficient or not is NP-complete. 

SteinerTree 
Given a graph G and set T of points (vertices), interconnect them by a network 

of shortest length, where the length is the sum of the lengths of a II edges. The 
Steiner tree problem has applications in circuit layout or network design. Most 
versions ofthe Steiner tree problem are NP-complete. 



MINIMUM 
SPANNING TREE 

APPENDIX C 

L et us revisit the Minimum Spanning Tree (MST) problem discussed in Section 

5-5- This problem has wide applications in many areas-any time we want to 

visit all vertices in a graph at minimum cost, the minimum spanning tree problem 

may be relevant. For example, wire routing on printed circuit boards, sewer pipe 

layout, and road planning are all applications of the Minimum Spanning Tree 

problem. Further, as discussed in Section ~0.3.~, MST also provides a heuristic for 

traveling salesperson problems. 

One of the first algorithms for finding an MST was Boruvka's Algorithm, 

developed by Czech scientist Otakar Boruvka in ~926 for an efficient electrical 

coverage of Moravia. 

Kruskal's algorithm for finding an MSTwas presented in Section 5-5-

Another famous algorithm for finding an MST is Prim's Algorithm. Prim's 

algorithm starts with a single vertex, chosen randomly from the graph. In each 

step, it grows the tree by one edge (and one vertex). Specifically it adds the 

minimum-weight edge such that one end point is in the tree and the other 

end point is not in the tree. (When adding that edge, the other end point is 

assumed to be added implicitly as well.) A pseudo-code version of Prim's 

algorithm is shown next. It uses a priority queue Q, which is initialized in the 

beginning ofthe algorithm. The performance of Prim's algorithm depends on 

how we implement the priority queue Q. 

129 



130 I ANALYSIS AND DESIGN OF ALGORITHMS 

for each u in Q do 
key [u] <- 00 

n[u] <- Nil 
Q <- V[G] 

Find a random vertex v in V[G] 

key [v] = 0 

while Q is not empty do 
u <- EXTRACT_MIN (Q) 

II line 1 

II line 4 
II line 5 
II line 6 

II line 8 
for each v in Adj [u] do 

if v is in Q and w(u, 
n[v] <- U 

v) < key [v] then 

key [v] <- w(u, v) 
I I 1 i ne 11 
II line 12 

We observe that there are two heap operations - EXTRACT_MIN (invoked 
in line 8) and DECREASE_KEY (implicitly invoked in lines 6 and u). The while­
loop is executed n, that is, IVI times, and the for-loop in lines 9-u is executed 
m, that is, lEI times all together. 

If we implement the priority queue using a binary heap, then each 
EXTRACT_MIN operation takes O(log n) time, and the total time for all calls 
to EXTRACT_MIN operation is O(n log n). Further, the DECREASE_KEY op­
eration takes O(log n) time. Thus, the total time for Prim's algorithm using a 
binary heap is O(n log n + m log n)i that is, Oem log n). 

We can improve the time complexity by implementing the priority queue 
using a Fibonacci heap data structure. A Fibonacci heap is a collection of trees 
satisfying the minimum-heap propertYi that is, the key of a child is always 
greater than or equal to the key of the parent. With a Fibonacci heap of n 

elements, the DECREASE_KEY operation takes 0(1) amortized time and an 
EXTRACT_MIN operation takes O(log n) amortized time. Therefore, the total 
time for Prim's algorithm using a Fibonacci heap to implement the priority 
queue Q is Oem + n log n). 



TIME COMPLEX lTV OF 
UNION FIND DATA 

STRUCTURE 

APPENDI X D 

T he Union Find data structure for managing disjoint set operations is described 

in Section 5-5-2. The three main operations supported by the Union Find data 

structure are: 

• makeSet (x): Makes a new set containing a single element x 

• union (x , y): Merges the two sets containing elementsx andy 

• find (x): Finds the set containing the element x 

In a Union Find data structure, sets of vertices are stored in trees, where the 

root node of the tree is the representative node and the la bel of the set. When 

performing a find operation, we navigate from a node to its parent until we 

reach the root node of that set. 

There are two important aspects of Union Find that significantly improve 

the time complexity. 

Union by Rank: Each set maintains a rank index, which is initialized to 0 
for singleton sets. While doing the union operation, the root node that has the 

smaller rank becomes a child node of the root node with the larger rank. In 

case there is a tie, the tie is broken arbitrarily and the rank index of the node 

that is selected to be the parent is incremented. Clearly, the union operation 

takes 0(1) time. 

Path Compression: When performing a find operation, we recursively 

navigate from a child to its parent until we reach the root node. Once we have 

131 



132 I ANALYSIS AND DESIGN OF ALGORITHMS 

identified the root node, we make another pass through the path and "flat­
ten" the tree by making all the intermediate nodes point directly to the root 
node. The idea behind path compression is that while this makes another pass 

at navigating the path, it makes the subsequent find operations significantly 
faster by shortening the path to the root. There are other variations of the path 
compression, some of which do not involve a second traversal of the path. For 

example, we can make each node point to its "grandparent," thus making the 
path half as long. 

Next, we introduce a very fast-growing mathematical function, the inverse 

of which appears in the time complexity of the Union Find data structure. 
Ackermann's function: Ackermann's function (A(i,})) is defined as follows. 

A(1,}) = 2i,} ;:: 1 
A(i,l) = A(i-1, 2), i;:: 2 
A(i,}) = A(i-1, A(i, }-1 )), i,} ;:: 2 

Ackermann's function grows very rapidly as i and} are increased. For 
example, A (2,4) = 2 65,536 andA(4,1) = A(2,16), which is much larger than A (2,4). 

The inverse of Ackermann's function is called the alpha function, which is 
defined as follows. 

a/pha(p,q) = min{z;::l / A(z, p/q) > /09
2
q}, p;:: q;:: 1 

The inverse function grows very slowly. 

a/pha(p,q) < 5 until q = 2A(4,1) 

Thus, for all practical purposes, a/pha(p,q) < 5. 

Theorem 12.2 [Tarjan and Van Leeuwen] 

Let T(f,u) be the maximum time required to process any intermixed sequence 
of Jfinds and u unions. Assume that u ;:: n/2. 

a (n + J a/pha(f+n, n)) :£ T(f,u) :£ ben + J a/pha(f+n, n)) 

where a and b are constants. 

These bounds apply when we start with singleton sets and use either the 
weight or the height rule for unions and anyone of the path compression 
methods for a find. 



FACILITY 
LOCATION PROBLEM 

APPENDI X E 

T he facility location problem is a central problem in operations research related 

to optimal placement of facilities. Here, "optimal" may refer to minimizing 

transportation or communication costs, response times, etc. We dedicate this 

special section only to introduce the facility location problem for the following 

reasons: 

(i) It is a hard problem computationally, and a central problem in com­

puter science and operations research. 

(ii) It is a very practical problem and manifests in many different 

application areas. 

(iii) The formulation of the problem itself is tricky, as the objectives may 

be very ambiguous. In fact, in many practical scenarios, it may be 

significantly harder to agree on the objectives than to actually solve 

the problem. 

Some of the areas in which the facility location problem has significant 

applications are: 

(i) Operations: Stores and Warehouses. Where do we build our ware­

houses so that they are close to our stores? How many should we 

build to attain efficiency? In this application, accuracy far outweighs 

speed of making the decision. 

133 



134 I ANALYSIS AND DESIGN OF ALGORITHMS 

(ii) Content Delivery Network: High-traffic sites such as CNN, Yahoo, 

Rediff, etc. serve contents using a Content Delivery Network (such 

as Akamai or Amazon 53). Where should the next delivery node/ 

document cache be located in order to serve the customers? In this 

application, speed outweighs accuracy, as the dynamics of demand 

change quickly. 

(iii) Urban services: Urban emergency services such as ambulances, fire 

trucks and police cars need to be located strategically. Where should 

ambulances be located so as to service each request as quickly as 

possible? 
(iv) Communication: Where should the next communication tower be 

located? This application can have many variations - towers may be 

positioned anywhere (continuous); towers may be positioned in five 

available slots (discrete); or, towers may be located on the roadside 
(network). 

A Mathematical Model 

Input: We're given a weighted, connected graph. Each vertex represents a cli­

ent having some demand and each edge represents a connection. Distance or 

transportation cost or communication cost can be modeled as weights on the 

edges and demand can be modeled as weights on the vertices. 

Output: We need to identify k vertices within our graph, at which we will 

place facilities to serve all the other clients. At which vertices do we place our k 
facilities in orderto minimize maximum distance for any client? 

Constraints: There can be additional constraints such as "avoid placing 

hazardous materials near housing." 

The metric k-center problem: Given n cities with specified distances, one 

wantsto build kwarehouses in different cities and minimize the distance of each 

city from its closest warehouse. The problem as defined in the "metric space" 

implies that distances obey triangle inequality. (This problem is NP-hard.) 



STRING MATCHING 

APPENDI X F 

T he problem of string matching orstring searching isto find if a pattern P[l .. m] 
occurs within text T[l .. n}. Typically, the length of the pattern (m) is much 

smaller than the length ofthe text (n). 

A na'(ve string matching algorithm involves matching each position in the 

pattern to each position in the text. We match the pattern with the text as far 
as it matches. If it doesn't match, we shift the pattern by one character. The 
time complexity of this solution is O(mn), where m is the size of the pattern 

and n is the size of the text. Consider a case in which n = 3 x 109 and m = 40,000: 
how long does that solution take?' 

One of the basic ideas in more sophisticated string matching algorithms is 

that we can try to understand how the pattern matches shifts against itself. 
If we know how the pattern matches against itself, we can slide the pattern 
ahead by more than just one character as in the naive algorithm. KMP (Knuth 
Morris Pratt) String Searching Algorithm is a famous linear-time string match­

ing algorithm that achieves an O(m+n) running time. It uses an auxiliary func­
tion pi[l .. m] precomputed from P in Oem) time. 

Another idea is that while matching the pattern against the text, if we 
encounter a character in text that does not appear in the pattern, then we can 
shift the entire pattern to the right of that character. For example, given pat­

tern P: pappar and text T: pappaxpapparrassanuaragh, we observe that the 
letter x does not appear in P and we can shift the entire pattern P to the right 
ofthatx. 

~ Hint: The values of nand m may be related to the size of the human genome and a typical 
gene, respectively. 

135 



136 I ANALYSIS AND DESIGN OF ALGORITHMS 

Some string searching algorithms start matching from the right instead of 
the left. If we combine that idea with the previous observation, if we find a 
mismatch, we can jump m characters at a time. Consequently, in some circum­

stances, we may even be able to achieve an O(nlm) running time if there are 
sufficient mismatches. 



INDEX 

2-3 tree, 35 
Ackermann's function, ~55 

adversary argument, ~35 
all pairs shortest paths, 79 

Asymptotic notation, 2~ 
B&B, ~02 

biconnectivitY,96 

binary search, 45 
binary search tree, 34 
binary tree, 33 
branch and bound, ~02 

breadth first search, 99 

B-tree,34 
ceiling, 26 
chromatic number, ~50 

closest pair of points, 52 

complex numbers, 55 
Computation Models 

RAM, ~8 

Cook-Levin theorem, U4 

Divide and conquer, 39 
dynamic programming, 72, u8 

Ebbinghaus curve, ~48 
facility location problem, ~56 
floor, 26 

Fibonacci, 72 

forgetting curve, ~48 

genome, ~58 

graph, 3~, 65 
graph coloring, ~50 

heap, 35, 36, 62,~36,~52,~53 
independent set, U9 

KMP, ~58 
knapsack, 62 

Kruskal, 59, 66, 68, ~3~ 
Kruskal's algorithm, ~52 
L'Hopital's rule, 22 

longest common 

subsequence, 88 
longest increasing 

subsequence, 85 

lower bound, ~34 

map, 30 
Master theorem, 42 

matrix chain multiplication, 75 
matrix multiplication, 54 

median, 49 
minimum spanning tree, 66 

minimum spanning tree, 65, 96 
maximum value contiguous 

subsequence, 82 
memoization, 89 

137 



138 I ANALYSIS AND DESIGN OF ALGORITHMS 

mnemonic, 75, n6 
non-deterministic, no 
NP-complete, n4, n6, UO, ~23, ~24, 

u9, ~32, ~50 
optimal substructure, 59, 74 
order statistics, 50 
Prim's algorithm, 66, ~52, ~53 
queue, 29,30,36,99,~52,~53 
Quicksort, 47 
recurrence relation, 40 
search, 45 
selection, 50 

sorting, 46, ~36 
stack, 28, 29, 93 
Steiner tree, ~5~ 
Strassen, 54 
substitution method, 4~ 
topological sort, ~o~ 
traveling salesperson problem, U2 
trichotomy, 25 
Turing machine, ~09 
union find, 67 
Union Find, ~54 
Vertex (over, n9 



WORKS CITED 

[~] M. Ben-Or, "Lower Bounds for Algebraic Computation Trees," in 

ACM Symposium on Theory a/Computing, New York, ~983. 

[2] R. Sedgewick and P. Flajolet, An Introduction to the Analysis of 

Algorithms, 2nd ed., Upper Saddle River, NJ: Addison Wesley, 

20~3· 

[3] K. Berman and J. Paul, Fundamentals of Sequential and Parallel 

Algorithms, Boston, MA: PWS Publishing Company, ~997. 

[4] S. Dasgupta, C. Papadimitriou and U. Vazirani, Algorithms, New 

York, NY: McGraw-Hili, 2008. 

[5] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to 

Algorithms, 3rd ed., Cambridge, MA: MIT Press, 2009. 

[6] E. Horowitz, S. Sahni and S. Rajasekaran, Computer Algorithms, 

New York, NY: Computer Science Press, ~998. 

[7] D. Knuth, The Art of Computer Programming, 2nd ed., vol. 3: 

Sorting and Searching, Addison-Wesley, ~998. 

[8] A. Levitin, The Design & Analysis of Algorithms, Boston, MA: 

Addison-Wesley, 2007. 

[9] J. Pierce, An Introduction to Information Theory, 2nd ed., New 

York, NY: Dover, ~980. 

[~o] R. Sedgewick and K. Wayne, Algorithms, 4th ed., Upper Saddle 

River, NJ: Addison-Wesley, 20U. 

[u] A. Land and A. Doig, "An Automated Method of Solving 

Discrete Programming Problems," Econometrica, vol. 28, no. 3, 

pp. 497-520, ~960. 

139 



140 I ANALYSIS AND DESIGN OF ALGORITHMS 

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to 

the Theory of NP-Completeness, 1st ed., W.H. Freeman & Co, 1979. 

[13] J. E. Hopcroft, R. Motwani and J. D. Ullman, Automata Theory, Languages, 

and Computation, 3rd ed., Addison Wesley, 2006. 

[14] T. Lanzone, "Travelling Salesman, Movie," Fretboard Pictures, [Online]. 

Available: http://www.travellingsalesmanmovie.com/. 

[15] V. Williams, "An overview ofthe recent progress on matrix multiplication," 

ACM SIGACT News, vol. 43, no. 4, pp. 57-59, December 2012. 
[16] M. Ridley, Genome: The Autobiography of a Species in 23 Chapters, Harper 

Perennial, 2006. 


	Table of Contents
	Table of Figures
	Acknowledgements
	Preface
	Section I: The Basics
	Chapter 1: Introduction and Bare Essentials
	Chapter 2: Asymptotic Analysis and Notation
	Chapter 3: Data Structures

	Section II: Algorithm Design Techniques
	Chapter 4: Divide and Conquer
	Chapter 5: Greedy Method
	Chapter 6: Dynamic Programming
	Chapter 7: Graph Traversal Techniques
	Chapter 8: Branch and Bound

	Section III: Intrinsic Hardness of Problems
	Chapter 9: NP Completeness
	Chapter 10: Slaying the NP-Hardness Dragon
	Chapter 11: Theory of Lower Bounds

	Section IV: Conclusions and Auxiliary Materials
	Chapter 12: Wrapping Up
	Appendix A: How Do We Learn?
	Appendix B: More Graphs Theory Areas
	Appendix C: Minimum Spanning Tree
	Appendix D: Time Complexity of Union Find Data Structure
	Appendix E: Facility Location Problem
	Appendix F: String Matching
	Index
	Works Cited


