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Abstract. We establish a lower bound of B(n) = n�log n�−2�log n� +11

on the number of comparisons performed by any algorithm that uses pri-
ority queues to sort n elements. Three sorting algorithms using priority
queues are introduced. The first algorithm performs the same compar-
isons as the classical Mergesort algorithm, but in a different order. The
second algorithm performs at most 2n log n+O(n) comparisons, with the
advantage of being adaptive; meaning that it runs faster when the input
sequence has some presortedness. In particular, we show that this algo-
rithm sorts an already sorted sequence in linear time; a fact that is not
obvious since there is no special checks to guarantee this behavior. The
third algorithm is almost implicit; it can be implemented using the input
array and less than n extra bits. The number of comparisons performed
by this algorithm is at most B(n) + 2.5n. The three algorithms have
the advantage of producing every element of the sorted output, after the
first, in O(log n), and can be implemented to be practically efficient.

1 Introduction

A well known sorting paradigm is sorting using priority queues, with plenty of
references in the literature [11]. A priority queue is a heap-ordered general tree.
The values in the heap are stored one value per tree node. The value stored in
the parent of a node is smaller than or equal to the value stored in the node
itself. We thus find the minimum heap value stored in the tree root. There is
no restriction on the number of children a node may have, and the children of a
node are maintained in a list of siblings. These selection sort algorithms produce
the sorted sequence by repeatedly deleting the root of the queue and outputting
its value then reconstructing the priority queue to maintain the heap property, in
an operation that we call deletemin. The classical example of tree selection is by
using a tournament tree. A tournament tree can be constructed by starting with
all the elements at the bottom level. Every adjacent pair of elements is compared
and the smaller element is promoted to the next level. When a winner moves up
from one level to another it is replaced by the one that should eventually move
up into its former place (namely the smaller of the two keys below). Once the
smallest element reaches the root and is deleted, we can proceed to sort by a
1 All logarithms in this paper are to the base 2.
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top down method. The smallest descendent of the root is moved up, the smallest
descendent of this latter element is moved up, and the process is repeated until
reaching two empty nodes. This system of promotions is repeated with every
deletemin operation. The number of comparisons performed by the tournament
tree selection sort is at most B(n) = n�log n� − 2�log n� + 1 [11].

We show that B(n) is a lower bound on any selection sort algorithm that uses
priority queues. It is well known that �log n!� < n log n − 1.44n key comparisons
is a lower bound for any comparison-based sequential sorting algorithm.

Our first algorithm performs the same comparisons performed by the Merge-
sort algorithm, but in a different order. See [7] for an analogous correspon-
dence between other transformations on priority queues. In an abstract form,
the Mergesort algorithm works as follows; the input sequence is split in two
equal halves. Each half is recursively sorted, and these two sequences are then
merged using the linear merge algorithm. Let L(n) be the upper bound on the
number of comparisons performed by the Mergesort algorithm. It is known that
B(n) ≤ L(n) and B(n) = L(n) = n log n−n+1 when n is a power of 2 [11]. Our
algorithm has an advantage over the Mergesort in that it requires n − 1 com-
parisons to produce the smallest element, and at most �log n� comparisons to
produce each of the other elements. Hence, it is more suitable for order statistics.

Our second algorithm requires at most 2n log n + O(n) comparisons. This
algorithm is better than the first one when the input has fewer inversions. For
an input sequence X of length n, the number of inversions Inv(X) is defined

Inv(X) = |{(i, j) | 1 ≤ i < j ≤ n and xi > xj}|.

In this sense, our second algorithm is an adaptive sorting algorithm. There are
many defined measures of presortedness, and plenty of known adaptive sorting
algorithms, see [4,5,12,13,15]. In particular, a common property of all adaptive
sorting algorithms is that such algorithms run in linear time when the input
sequence is sorted. We show that our second algorithm has this property. Exper-
imental results illustrate that our second algorithm performs fewer comparisons
as the number of inversions in the input decreases. Inspired by the experimental
results, we conjecture that this algorithm is optimal with respect to the number
of inversions. In other words, we conjecture that it runs in O(n log Inv(X)

n + n).
Another challenge is to implement the selection sort algorithms within the

input array without using extra storage. In this line of thinking the follow-
ing algorithms were introduced. The worst case number of key comparisons in
Heapsort independently introduced by Floyd [6] and Williams [22] is bounded
by 2n log n+O(n). Bottom-up-Heapsort (Wegener [21]) is a variant of Heapsort
with at most 1.5n log n + O(n) comparisons in the worst case. MDR-Heapsort
proposed by McDiarmid and Reed [14] and analyzed by Wegener [20] performs
less than n log n + 1.1n comparisons in the worst case and extends the Bottom-
up-Heapsort by using, with every element, one bit to encode on which branch
the smaller element of its children can be found and another one to mark if this
information is unknown. Weak-Heapsort introduced by Dutton [2] and analyzed
by Edelkamp and Wegener [3] is more elegant and faster. Instead of two bits
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per element, Weak-Heapsort uses only one and requires at most n log n + 0.1n
comparisons. Our third algorithm uses less than n extra bits in addition to the
input array and requires at most B(n) + 2.5n < n log n + 1.6n comparisons.

All three algorithms rely on the notion of binomial queues. A binomial queue
is a heap ordered tree that has the following structure. A binomial queue of rank
r is constructed recursively by making the root of a binomial queue of rank r−1
the leftmost child of another binomial queue of rank r − 1. A binomial queue
of rank 0 consists of a single node. The rank of any node in a binomial queue
equals the number of the children of this node. There are n

2i+1 nodes of rank i
in an n-node binomial queue, for all i from 0 to log n − 1.

A basic operation for our algorithms is the pairing operation in which two
queues are combined by making the root with the larger key value the leftmost
child of the other root. Given a sequence of priority queues, a halving pass is
implemented by combining these queues in pairs; every two adjacent queues
are paired together starting from left to right (if the number of queues is odd,
the rightmost queue is not paired). A right-to-left incremental pairing pass is
implemented by combining the queues, in order from right to left, to form a
single queue; each queue is paired with the single queue resulting from combining
the queues to its right. A multi-pass pairing phase is implemented by repeatedly
performing halving passes until a single queue is left. Given a sequence of n
elements each stored in a single node, applying a multi-pass pairing phase, which
requires n − 1 comparisons, the heap becomes a binomial queue. If n is not a
power of 2 there will be some missing nodes from the above definition of a
binomial queue. We call the queue at this moment the initial binomial queue.
(Notice the similarity between building the initial binomial queue and building
the Weak-Heap of Dutton [2].)

2 Algorithm 1

Given a sequence of n elements each stored in a single node, this selection sort
algorithm starts by performing a multi-pass pairing phase, deleting the smallest
element and printing its value. Then, a right-to-left incremental pairing pass is
repeated n−1 times, where each pass is followed by deleting the current smallest
element from the queue and printing its value.

Lemma 1 Using Algorithm 1, every element after the smallest requires at most
�log n� comparisons to be produced.

Proof. Omitted. ��
Lemma 2 Algorithm 1 performs the same comparisons performed by the Merge-
sort algorithm.

Proof. Consider the multi-pass pairing phase. It is straight forward to observe
that all the comparisons performed during this phase are also performed by
the Mergesort algorithm. We define the following sorting algorithm, which we
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call algorithm *, as follows. When algorithm * is applied on a priority queue it
outputs the element in the root, applies the same algorithm recursively on each
of the resulting sub-queues from right to left, and finally merges the resulting
sequences in an incremental fashion from right to left using the classical linear
merge algorithm. In fact, algorithm * is another way to describe the Mergesort
algorithm. What is left is to show that algorithm *, when applied on the initial
binomial queue, performs the same set of comparisons performed by the right-
to-left incremental pairing passes of Algorithm 1.

For any priority queue α, let r(α) represents the element at the root of α,
S(α) represents the sorted sequence of the elements of α, and let α∗ represents
the set of comparisons performed by algorithm * when applied on α. Given two
queues α and β, let α.β denote the queue resulting from pairing the two queues,
and r(α) # r(β) represents the comparison between r(α) and r(β). We show that

(r(α) # r(β)) ∪ (α.β)∗ = α∗ ∪ β∗ ∪ merge(S(α), S(β)) (1)

Where merge(a,b) stands for the set of comparisons performed by the classical
linear merge algorithm when applied on the sorted sequences a and b. Assume
without loss of generality that r(α) < r(β), in which case β will be linked to the
root of α as its leftmost child. The way algorithm * works implies

(α.β)∗ = α∗ ∪ β∗ ∪ merge(S(α) − r(α), S(β)).

The way the linear merge works implies

merge(S(α), S(β)) = (r(α) # r(β)) ∪ merge(S(α) − r(α), S(β)).

Equation (1) follows from the above facts.
Next, we show by backward induction on the comparisons performed by the

right-to-left incremental pairing passes of Algorithm 1 that the same compar-
isons are performed if we apply algorithm *. The base case, which is in fact the
last comparison, happens between two single nodes representing the largest two
elements in the queues; in which case the two algorithms are trivially equivalent.
Consider the priority queue at any moment of the algorithm, and let α and β
be the rightmost two sub-queues. Applying Algorithm 1 on this queue results
in the comparison r(α) # r(β). Assuming the two algorithms perform the same
comparisons from the point after this comparison and using (1), they are also
equivalent before the comparison, and the induction hypothesis is true. ��

3 Algorithm 2

The pairing heap [8] is a self adjusting heap structure that uses pairing in
its implementation. In the standard two-pass variant of the pairing heaps, the
deletemin operation proceeds by applying a halving pass on the sequence of
queues, followed by a right-to-left incremental pairing pass. It has been proven [8]
that the amortized cost of the number of comparisons involved in the deletemin
operation for the two-pass variant of the pairing heaps is at most 2 log n+O(1).
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Given a sequence of n elements each stored in a single node, Algorithm 2
starts by performing a multi-pass pairing phase to delete the smallest element
and print its value. Then, a two-pass pairing phase, similar to the pairing heap
deletemin operation is repeated n−1 times, where each two-pass phase is followed
by deleting the current smallest element from the queue and printing its value.

Lemma 3 Algorithm 2 runs in O(n log n) and requires at most 2n log n + O(n)
comparisons.

Proof. We mention below the basic idea of the proof while the details are omitted.
We use the fact that the amortized cost of a deletemin operation is 2 log n+O(1)
comparisons. An extra O(n) credits are required to pay for the potential after
the multi-pass pairing phase, while the actual cost of this phase is O(n). ��
Lemma 4 Given an input sequence of n elements that are sorted in ascending
order from right to left, represented as n single nodes. Applying Algorithm 2 on
this sequence requires less than 6n comparisons.

Proof. Throughout the algorithm, when the value of a node is compared with
its right sibling, the one to the left will have the larger value. Hence, the left
node will be linked to the right node as its leftmost child.

The left spine of a node is defined to be the path from that node to the
leftmost leaf of the sub-tree defined by this node. In other words, every node
on the path is the leftmost child of its predecessor. The right spine is defined
analogously. The halving passes are numbered, starting from t0, the last halving
pass of the first deletemin operation. We assume that the halving pass t takes
place at time t. Consider any node x in the heap. Let gx(t) be the number of
nodes on the left spine of x, after the halving pass t. Let hx(t) be the number
of nodes on the left spine of the right sibling of x, after the same halving pass.
If x does not have a right sibling, then hx(t) is equal to 0. Define vx(t) to be
equal to gx(t) − hx(t). We only consider the halving passes due to the fact that
the values of g(t) and h(t) for all the nodes do not change during the right-
to-left incremental pairing passes (except for the left sibling of the root of the
rightmost queue, whose h(t) decreases by one). We show by induction on time
that for any node x, vx(t) is a positive non-decreasing function with time, and
that this function increases if x is involved in a comparison during a halving
pass. For the initial binomial queue, a property of binomial queues implies that
the value of vx(t0) is positive. This establishes the base case. Consider any node
w and its right sibling z, such that w is linked to z as its leftmost child during
the halving pass t + 1, for any t ≥ t0. The following relations follow:

hw(t) = gz(t) (2)
gw(t + 1) = gw(t) (3)
hw(t + 1) ≤ hw(t) − 1 (4)
gz(t + 1) = gw(t) + 1 (5)
hz(t + 1) ≤ hz(t) + 1 (6)
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Relation (6) is a result of the fact that the number of nodes of the left spine
of the right sibling of z may increase by at most one in a halving pass. Using
(3) and (4), then vw(t+1) > vw(t), and the hypothesis is true for the node w at
time t + 1. Using the induction hypothesis for node w at time t, then vw(t) > 0.
This relation together with (2) and (5) implies gz(t + 1) > gz(t) + 1. Using the
latter relation and (6), then vz(t+1) > vz(t), and the hypothesis is true for node
z at time t + 1. The hypothesis is then true for all the nodes.

Of the links of the halving passes, we distinguish between two types of links.
If vz(t) = 1, we call the link an A-link. If vz(t) ≥ 2, we call the link a B-link.
The above analysis indicates that any node may gain at most one child by an
A-link. Hence, the number of comparisons accompanying A-links is at most n.

We use the accounting method [19] for bounding the number of comparisons
accompanying B-links. After the first deletemin operation, we maintain the in-
variant that the number of credits on a node x after any halving pass t is h2

x(t)
2 .

In the initial binomial queue, hx(t0) equals the rank of x (the number of children
of x), rx. Let C be the number of credits needed to keep the invariant hold for
the initial binomial queue, then

C =
∑

x

r2
x

2
,

=
log n−1∑

i=1

i2/2
2i+1 n

< 1.5n.

Next, we show that these credits are enough to pay for all the B-links, while
maintaining the invariant. Let d be the difference between the sum of the number
of credits on w and z before pass t + 1 and those needed after pass t + 1. Then

d =
h2

z(t)
2

+
h2

w(t)
2

− h2
z(t + 1)

2
− h2

w(t + 1)
2

.

Using (4) and (6), then
d ≥ hw(t) − hz(t) − 1.

Using (2) together with the fact that for all the B-links vz(t) ≥ 2, then

d ≥ 1.

This extra credit is used to pay for the comparison between w and z.
The above analysis implies that the total number of comparisons performed

in the having passes is 2.5n. This follows by adding the n comparisons bounding
the A-links, and the 1.5n comparisons bounding the B-links. The number of
comparisons performed in the right-to-left incremental pairing passes is bounded
by the number of comparisons performed by the halving passes, for a total of at
most 5n for both passes. The theorem follows by adding the n − 1 comparisons
done in the multi-pass pairing phase. ��
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4 Implementation Issues and Experimental Findings

The data structure we use to make these implementations efficient is the child,
sibling representation, also known as the binary tree representation [11]. Each
node has a left pointer pointing to its leftmost child and a right pointer pointing
to its right sibling. The effect of the representation is to convert a heap-ordered
tree into a half-ordered binary tree with empty right sub-tree, where by half-
ordered we mean that the key of any node is at least as small as the key of any
node in its left sub-tree.

It remains to investigate how our algorithms perform in practice. Since Al-
gorithm 1 is another way to implement Mergesort, we need to relate it to the
different ways known for implementing Mergesort. One of the well known meth-
ods to implement Mergesort is to use linked lists [11]. To save time in this
implementation, the pointer manipulations are postponed as much as possible.
Specifically, when the head of a list is found smaller than the head of the other,
we keep traversing the first list until an element that is bigger than the head
of the second list is encountered. The sub-list of the first list representing the
elements smaller than the head of the second list are moved to the sorted out-
put as a whole block. This saves several pointer manipulations, and improves the
running time of the algorithm. On average, roughly speaking, more than half the
work is saved about half the time. See [11] for more details. Several other tricks
are used to improve the implementation of the linked list version of Mergesort
[17]. Katajainen and Pasanen [9], and Reinhardt [16] show that Mergesort can
be designed to achieve a bound of at most n log n− 1.3n+O(log n) comparisons
in the worst case. They [9,10] also gave a practical in-place Mergesort algorithm.

Consider the right-to-left incremental pairing passes. To save in the running
time, we use a similar technique to the method that is mentioned above. After
each iteration of the main loop, we keep the invariant that value(l) > value(m),
where l is the root of the rightmost queue, and m is the left sibling of l. The
invariant is easily fulfilled before the loop, as follows. Let l be the root of the
rightmost queue. We traverse the left siblings of l incrementally from right to
left, as long as the values of the nodes are greater than the value of l. This list of
siblings is linked to l, as l′s leftmost children, forming one sub-list in the same
order. Within the main loop, a check is performed between the value of the left
sibling of m and value(m). If value(m) is greater, l is linked to m as its leftmost
child, and the iteration ends. Otherwise, we keep traversing the left sibling of
the last traversed node, until a node whose value is smaller than value(m) is
encountered. The node l together with the whole list of left siblings of m (whose
values are greater than value(m)) are linked as one sub-list forming the leftmost
children of m, in the same order. This implementation saves several pointer
manipulations, and improves the running time of the algorithm. On average,
roughly speaking, more than half the work is saved about half the time. Another
way of improving the running time of the algorithms is to use loop unfolding, a
technique used in optimizing compilers. Here, we can save some commands and
skip artificial variable renaming. By efficiently implementing Algorithm 1, we
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were able to beat the running time of the best implementations for Mergesort
we know about. The results of these experiments are omitted from this version.

Other experiments were performed on Algorithm 2, supporting the hypoth-
esis that it is an efficient adaptive sorting algorithm. In our experiments we
compare the results of sorting an input sequence that has some presortedness,
when applied to Algorithm 2, Splaysort and Binomialsort. Slaysort is an adap-
tive sorting algorithm that relies on repeated insertions in a splay tree [18].
As a consequence of the dynamic finger theorem for splay trees (see Cole [1])
Splaysort is an optimal adaptive sorting algorithm. Moffat et al. [15] performed
experiments showing that Splaysort is efficient in practice. Binomialsort [4] is
another optimal adaptive sorting algorithm that is practically efficient and easy
to implement. Both algorithms run in O(n log Inv(X)

n + n).
The input sequence is randomly generated such that the expected and worst

case number of inversions is controlled. We start with a sorted sequence and
perform two phases of permutations. For a given value of a parameter k, we
want to permute the sorted sequence to have at most kn inversions. In the first
phase, the sorted sequence is broken into consecutive blocks of n

k elements each.
From each block we select one element at random, for a total of k elements. These
k elements are then randomly permuted. The number of inversions produced by
this process is at most nk

2 . In the second phase, the sequence is broken into
consecutive blocks of k elements each. The elements of each block are randomly
permuted, for a total of at most another nk

2 inversions. A value of k = 0 means
that the input sequence is sorted in ascending order. A small value of k, with
respect to n, means that the input sequence is almost sorted. A value of k,
which is as big as n, means that the input sequence is randomly sorted. The
experiment is repeated 100 times for a different value of k and the average
number of comparisons performed by each of the three algorithms is reported
verses log k. The experiments are performed on two values of n; for Table 1
n = 1024, and for Table 2 n = 32768.

The experiments are repeated with the input sequence reversed before being
fed to the program. In other words, a value of k = 0 would now mean that
the input sequence is inversely sorted. A small value of k means that the input
sequence is almost inversely sorted. See Table 3.

The results of our experiments imply that Algorithm 2 always performs a
fewer number of comparisons than Splaysort. It is also doing better than Bi-
nomialsort, except when the number of inversions is small. This suggests that
the constant hidden in the linear term of the number of comparisons used by

Table 1. Comparisons per item to sort random sequences of n=1024. Inv(X) < kn

log k 0 1 2 3 4 5 6 7 8 9 10
Algorithm 2 3.2 3.2 3.5 3.9 4.7 5.6 6.5 8.0 8.7 10.8 11.1
Splaysort 2.0 3.1 3.9 5.0 5.7 6.8 8.4 10.4 11.8 13.7 15.5
Binomialsort 1.9 2.3 2.3 3.4 4.2 5.7 6.6 8.6 10.4 11.9 12.8
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Table 2. Comparisons per item to sort random sequences of n=32768. Inv(X) < kn

log k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Algorithm 2 3.3 3.3 3.5 3.9 4.5 5.1 6.0 6.9 7.8 8.8 9.9 11.1 12.5 14.0 15.1 17.3
Splaysort 2.0 3.2 4.4 4.9 5.8 6.5 7.6 8.8 10.2 11.7 13.3 15.1 16.9 18.9 20.8 25.2
Binomialsort 2.0 2.4 2.6 3.2 4.2 5.8 7.2 8.7 10.4 12.1 14.7 19.0 21.0 22.3 23.1 23.8

Table 3. Comparisons per item to sort random sequences of n=65536. Inv(Rev(X)) ≤
kn, where Rev(X) is the reversed sequence of X.

log k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Algori. 2 1.5 1.6 2.4 3.4 4.3 5.2 6.1 7.0 7.9 8.9 10.1 11.0 12.5 13.6 14.8 17.5
Splay 2.0 3.1 3.87 5.1 5.8 6.6 7.6 8.8 10.1 11.5 13.2 14.9 16.7 18.7 21.3 23.2
Binomial 27.7 27.7 27.7 27.6 27.6 27.5 27.5 27.4 27.4 27.4 27.3 27.1 26.9 26.6 26.3 25.6

Binomialsort is smaller. When the input is almost inversely sorted, in contrast
with Binomialsort, both Splaysort and Algorithm 2 are still adaptive.

5 Algorithm 3

The algorithm starts with building a binomial queue in the input array, by
mapping every element of the binomial queue to a corresponding location in
the array. The algorithm proceeds (similar to Heapsort) by repeatedly swapping
the element that is the current minimum (first element of the array) with the
last element of the unsorted part of the array. Each time, a heapify operation is
performed on the binomial queue to maintain the heap property.

Heapifying Binomial Queues

Given an n-node binomial queue such that the value at its root is not the smallest
value, we want to restore the heap property. The heapify operation proceeds by
finding the node x with the smallest value among the children of the root and
swapping its value with that of the root. This step is repeated with the node x
as the current root, until either a leaf or a node that has a value smaller than
or equal to all the values of its children is reached. For efficient implementation,
an extra pointer is kept with every node x. This pointer points to the node with
the smallest value among all the right siblings of x, including itself. We call this
pointer, the pointer for the prefix minimum (pm). The pm pointer of the leftmost
child of a node will, therefore, point to the node with the smallest value among
all the children of the parent node. First, the path from the root to a leaf, where
every node has the smallest value among its siblings, is determined by utilizing
the pm pointers. No comparisons are required for this step. Next, the value at the
root is compared with the values of the nodes of this path bottom up, until the
correct position of the root is determined. The value at the root is then inserted
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at this position, and all the values at the nodes above this position are shifted
up. The pm pointers of the nodes whose values moved up and those of all their
left siblings are updated. To maintain the correct values in the pm pointers, the
pm pointer of a given node x is updated to point to the smaller of the value of x
and the value of the node pointed to by the pm pointer of the right sibling of x.
At each level of the queue (except possibly for the level of the final destination
of the old value of the root), either a comparison with the old value of the root
takes place or the pm pointers are updated, but not both. See [4] for the details.

Lemma 5 The time used by the heapify operation is O(log n). It requires at
most �log n� + 1 comparisons, and an O(log n) additional storage.

Building a Binomial Queue in an Array

Given an n-element array, we build a binomial queue of rank i if the ith bit in
the binary representation of n is 1. The smaller rank queues are mapped first
in the array. The nodes of a binomial queue are mapped in a preorder fashion
(the root is mapped to the first position of the array). The order in which the
sub-queues are mapped is from right to left (right sub-queues first).

Being aware of the rank of a node of a binomial queue that is in location p
in the array, the location of its right or left siblings as well as its leftmost child
can be determined, as follows. If the rank of this node is r, the locations of its
right sibling, left sibling and leftmost child will be p − 2r−1, p + 2r and p + 2r−1

respectively. During the onset of the algorithm, the sorted part is stored in the
last locations of the array. Some nodes on the left spine of the largest queue
will be losing their leftmost children. Hence the formula for the leftmost child
for these nodes will be p + 2j , where j is the largest integer less than or equal
to r − 1 such that p + 2j is smaller than the boundary for the unsorted part of
the array. The pm pointers are stored in the form of a number of bits per node
that represents the difference in rank between the source node and the node it is
pointing to. If the rank of the source node is r, its location in the array is p, and
the value stored for the pm pointer is d, then the location of the node, that this
pm pointer is pointing to, is p−2r +2r−d. The total number of bits representing
these pointers is less than n. An initial binomial queue can be built in an array
in a recursive manner. Given two binomial queues of rank log n−1 stored in the
first and last n

2 locations of an array, the two queues are merged by comparing
their roots and performing an O(n) moves, if necessary, to maintain the above
mapping criteria. The bits representing the pm pointer of the node that loses
the comparison is calculated.

Lemma 6 Algorithm 3 runs in O(n log n) and requires at most n log n + 1.6n
comparisons. In addition to the input array, less than n extra bits are used.

Proof. The phase of building the initial binomial queue in the array requires n−1
comparisons to build the queue, and n

2 comparisons to set the pm pointers (there
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are n
2 nodes that do not have right siblings). The number of moves done in this

initial phase is O(n log n). A heapify operation is then applied n−1 times on the
remaining unsorted elements. Using Lemma 5, the total number of comparisons
needed in these operations is bounded by

∑
1≤k≤n(�log k� + 1) = B(n) + n <

n log n + .1n (See [20] for the derivation of the bound on B(n).). The bound on
the number of comparisons follows by adding the above bound with the 1.5n
comparisons of the initial phase. To represent the pm pointers, we need at most
�log i� bits for each of at most n

2i of the nodes, for all i from 2 to log n. Hence,
the total number of bits is bounded by

∑
2≤i≤log n

�log i�
2i n < n. ��

6 A Lower Bound on Sorting Using Priority Queues

There are two main paradigms for sorting using priority queues. The first
paradigm, which we used in the first two algorithms, maintains the elements
to be sorted in a set of priority queues. It permits comparisons only between
the elements of the roots of these priority queues. After such a comparison, the
root that has the larger element is linked to the other root (becomes one of its
children). Comparisons are performed until all the elements are combined into
one queue. The root of this queue is removed and the smallest element is output,
again leaving a set of priority queues. The process of combining the queues is
repeated to produce the second smallest element, and so on. To establish a lower
bound on such paradigm, we adopt the adversary that whenever the roots of two
queues are compared, the queue with the smaller number of nodes becomes a
child of the root of the other queue. The number of comparisons that a specific
node wins is exactly the number of children of this node at the moment when
this node is deleted as the smallest element. If the size of the combined queue at
this time is i, the number of children of the root is at least �log i�. Therefore, the
total number of comparisons required by any sorting algorithm that uses this
paradigm is at least

∑
1≤k≤n�log k� = n�log n� − 2�log n� + 1.

The second paradigm, which we used in the third algorithm, uses a system
of promotions. In such a paradigm, an initial priority queue structure is built
using the first paradigm, the element in the root is deleted, and promotions
start taking place. The promotions involve comparisons between elements in the
sibling nodes, and the smallest among them is promoted to replace the vacant
parent. We show next that this paradigm inherits the same rules as the first
paradigm, and hence the same lower bound applies. More specifically, a feature
of the first paradigm is that for two elements x and y to be compared, both
x and y should have either never lost a comparison or otherwise the last time
each of them has lost a comparison should have been to the same element. In a
system of promotions, assume for the purpose of contradiction that x and y are
to be compared together, and that the last time x lost the comparison to a and
y lost the comparison to b. Now, for x and y to be compared, a and b should
have been compared first. Assume without loss of generality that a wins with
respect to b. It follows that x is to be compared with b. Since x is not to lose
another comparison after it has lost to a, it follows that x wins with respect to
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b (i.e. x < b). Since y lost the comparison to b (i.e. b < y), it follows that x < y.
This precludes the possibility of x and y being compared. A contradiction!

Indeed, the two paradigms are equivalent and the stated lower bound applies
for any algorithm that uses a mixture of these two paradigms.
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