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Abstract. A new priority queue structure is introduced, for which the
amortized time to insert a new element is O(1) while that for the
minimum-extraction is O(log K). K is the average, taken over all the
deleted elements x, of the number of elements that are inserted during
the lifespan of x and are still in the heap when x is removed. Several
applications of our structure are mentioned.

1 Introduction

A data structure is called distribution-sensitive if the asymptotic time bound
taken by the structure to perform an operation varies according to the distribu-
tion of the input sequence. Though having upper bounds on the running time
of different operations over all possible sequences, some structures may perform
better for some sequences than others. This is analogous to a sorting algorithm
running in O(n log n) for any sequence of length n, while performing better and
running in O(n) if the input is already sorted or inversely sorted.

In order to characterize such structures, several properties are introduced
describing the behavior of these structures. These properties can be viewed as
characterizations of distribution-sensitive behavior that give insights into the
possibilities and limitations of these data structures. Relationships among such
properties are introduced in [15], thus establishing a hierarchy of properties.

Following finger trees [13], splay trees [20] is the classical example of a
distribution-sensitive structure. Most of the known distribution-sensitive prop-
erties were introduced either as theorems or conjectures characterizing the per-
formance of splay trees. Examples are: The static optimality theorem, the static
finger theorem, the working-set theorem (all in [20]), the sequential access the-
orem [11,21,22], the dequeue theorem [21], and the dynamic finger theorem [4].
Each of these theorems describes a natural class of sequences of operations, and
shows that the amortized cost of performing any of these sequences on an n-
node splay tree is o(log n) per operation. With a special interest with respect
to our structure, we present the working-set property for search trees: The time
spent to search item x in a search tree is O(log wx), where wx is the number of
distinct items that have been accessed since x’s last access. Informally, in a data
structure with the working-set property accesses to items recently accessed are
faster than accesses to items that have not been accessed in a while.
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Though originally formulated for the use of analyzing dictionaries, some of
these properties have been applied to other structures, such as priority queues
[14,15]. Applying these properties to priority queues is more robust since the
heap size and contents are allowed to dynamically change, as opposed to only
analyzing access operations for search trees. Iacono [14] proved that if the min-
imum item in a pairing heap [12] of maximum size n is to be removed, and k
heap operations have been performed since its insertion, the minimum-extraction
operation takes amortized time O(log min(n, k)). Because of the similarity be-
tween this property and the working-set property, we call this property the weak
working-set property for priority queues.

Iacono and Langerman [16] introduced the queueish property. The queueish
property implies the complementary idea, which states that an access to an item
is fast if it is one of the least recently accessed items. Formally, a data structure is
said to be queueish if the time to search item x is O(log (n − wx)). They showed
that there is no search tree that can have this property. A priority queue is said
to be queueish if the amortized cost of the insertion is O(1), and the amortized
cost of the minimum-extraction of x is O(log qx), where qx is the number of items
that have been in the queue longer than x (the number of items that are inserted
before x and are still in the heap at the time of x’s removal). They introduced
a priority queue, the queap, that has the queueish property.

We introduce a new distribution-sensitive priority queue structure based
on the well-known binomial queues. Let Kx denote the number of elements
that are inserted during the lifespan of x and are still in the heap when x is
removed. Let K be the average of these Kx’s over all the deleted elements.
Our modified binomial queues have the property that the amortized cost of
the insert operation is O(1), while the amortized cost of the delete-minimum
operation is O(log K). We call this property the strong working-set property,
which implies the weak working-set property. We may also call this property
the stack-like property, in analogy to the queueish property.

The paper is organized as follows. The next section reviews the operations
of binomial queues that we use as a basic structure for our new implementation.
Section 3 is an informal discussion to the problems and solutions that motivates
the way we implement our structure. We describe the operations of our structure
in Section 4. Some of the possible applications are given in Section 5. We conclude
with an improvement that achieves better constants with respect to the number
of comparisons.

2 Binomial Queues

A binomial tree [1,24] of rank (height) r is constructed recursively by making
the root of a binomial tree of rank r − 1 the leftmost child of the root of another
binomial tree of rank r − 1. A binomial tree of rank 0 is a single node. The
following properties follow from the definition:

– The rank of an n-node (assume n is a power of 2) binomial tree is log2 n.
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– The root of a binomial tree, with rank r, has r sub-trees each of which is a
binomial tree, having respective ranks 0, 1, . . . , r − 1 from right to left.

To represent a set of n elements, where n is not necessarily a power of 2, we
use a forest having a tree of height i whenever the binary representation of the
number n has a 1 in the i-th position. A binomial queue is such a forest with the
additional constraint that every node contains a data value smaller than those
stored in its children.

Each binomial tree within a binomial queue is implemented using the binary
representation. In such an implementation, every node has two pointers, One
pointing to its left sibling and the other to its leftmost child. The sibling pointer
of the leftmost child points to the rightmost child to form a circular list. Given
a pointer to a node, both its rightmost and leftmost children can be accessed in
constant time. The list of its children can be sequentially accessed from right to
left. To implement some operations efficiently each node may, in addition, contain
a pointer to its parent. The roots of the binomial trees within a binomial queue
are organized in a linked list, which is referred to as the root-list. The ranks of
the roots strictly increase as the root list is traversed right to left.

Two binomial trees of the same height can be merged in constant time, by
making the root of the tree that has the larger value the leftmost child of the
other root. The following operations are defined on binomial queues:

Insert. The new element is added to the forest as a tree of rank 0, and
successive merges are performed until there are no two trees of the same rank.
(This is equivalent to adding 1 to the number in the binary representation.)

Delete-minimum. The root with the smallest element is found and re-
moved, thus leaving all the sub-trees of that element as independent trees.
Trees of equal ranks are then merged until no two trees of the same rank remain.

For an n-node binomial queue, the worst-case cost for the insert and the
delete-minimum is O(log n). The amortized cost [23] for the insert is O(1).

3 Discussion

Denote our queue structure by Q. We call the sequence of values obtained by
a pre-order traversal of Q the corresponding sequence of Q and denote it by
Pre(Q). Our traversal gives precedence to the trees of Q in a right-to-left order.
Also, the precedence ordering of the sub-trees of a given node proceeds from
right to left. Hence, a newly inserted element is appended as the first element in
Pre(Q). At the moment when an element i is to be deleted from Q, let Di be
the number of elements preceding i in Pre(Q). Our goal is to maintain the order
in which the elements are input to the heap. What we are looking for is a set of
operations that maintain the following property at any point of time: If we sum
the Di’s over all the deleted elements and get the average, this number is upper
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bounded by K (i.e.
∑

i Di ≤ ∑
i Ki). We call an operation that preserves this

property an inversion-preserving operation. See [17] for the notion of inversions.
We build on the notion of binomial queues trying to obtain an implementa-

tion that is distribution-sensitive. When a new element is inserted, a single-node
tree is added as the rightmost tree in the queue. The first problem we face as
a result of this insertion is when two trees with the same rank are merged such
that the root of the tree to the right is larger than the root of the tree to the
left. As a result, the root of the tree to the right becomes the leftmost child of
the root of the tree to the left. This case immediately affects the order in which
the elements are input. To keep track of this order, we add an extra bit to each
node of the binomial queue, and call it the reverse bit. When a node is linked to
its left sibling, the reverse bit of this node is set to 1 indicating, what is called,
a rotation. See [8,9] for a similar notion.

The next problem is with respect to the delete-minimum operation. When
the root with the minimum value is deleted, its sub-trees are scattered according
to their ranks and merged with other sub-trees in the heap, again affecting the
order in which the elements are input. Our solution to this problem is to change
the way the delete-minimum is implemented. When the root of the minimum
value is deleted, one of the nodes of this tree is promoted to replace the deleted
root. The heap property is maintained by a special implementation of a heapify
operation. Two problems will pop-up as a result. The first problem is how to
implement the heapify operation within a logarithmic time in the size of the tree.
This leads to augmenting each node of the binomial queue with an extra pointer,
as will be explained in details in the next section. The second problem occurs
when several nodes are repeatedly deleted from a tree, causing such a tree to
lose the structural properties of binomial trees. To overcome this problem, some
restructuring is performed on such trees and a relaxation to the properties of
the standard binomial trees is required.

We are not on the safe side yet. Consider the case when the root of a tree T
of rank r1 is the minimum node that is required to be deleted from the heap,
such that the rank of the tree to the right of T is r2, where r1 � r2. The time
required by this delete-minimum operation can be implemented to be in Θ(r1),
which is not comparable to r2 that represents the logarithm of the number of
elements that precedes the deleted element in Pre(Q). Our solution towards the
claimed amortized cost is to perform several split operations on T . The split
operation is in a sense the opposite of the merge operation. A binomial tree is
split into two binomial trees, by cutting the leftmost sub-tree of the given tree
and adding it to the root-list either to the left or to the right of the rest of the
tree, depending on the value of the reverse bit. As a result, there will be, instead
of T , several trees whose ranks are in the range from r1 to r2. The idea is to
reduce such gaps among the ranks of adjacent nodes in the root-list in order to
reduce this extra cost for the subsequent delete-minimum operations.

Having two trees of the same rank is not permitted in the standard imple-
mentation of binomial queues. In our new structure, we allow the existence of
at most two trees of any rank. This is similar to using a redundant binary rep-
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resentation. The redundant number system has the base two but in addition to
using zeros and ones we are allowed to use twos as well. Any number can be
represented using this number system. See [3,7,19]. The usage of a redundant
number representation is crucial to achieve the required bounds. Consider the
usage of the normal binary number representation instead, with the following
nasty situation. Suppose that the size n of the entire structure is one less than
a power of two, and suppose that we have a long alternating sequence of insert
and delete-minimum, such that every time the inserted element is the smallest
element that will be immediately deleted afterwards. Each of the insert oper-
ations requires log n merges. The claimed bounds for our structure imply that
both operations must be implemented in constant time, which is not achievable
with the normal binary number representation. It is the savings of the carry
operations in the redundant binary representation that make our data structure
more efficient, achieving the claimed bounds.

4 The Data Structure

We introduce the new basic structure, which we call relaxed binomial trees, as
an alternative to binomial trees.

Relaxed binomial trees. The children of the root of a relaxed binomial tree
of rank r are relaxed binomial trees. There are one or two children having each
of the respective ranks 0, 1, . . . , r −1. The number of these children is, therefore,
between r and 2r inclusive. The ranks of these children form a non-decreasing
sequence, from right to left. A relaxed binomial tree with rank 0 is a single
node.

Lemma 1. The rank of an n-node relaxed binomial tree is at most log2 n.

Proof. The fact that a single node tree has rank 0 establishes the base case. Let
r be the rank of an n-node relaxed binomial tree. By induction, n ≥ 1 + 20 +
21 + . . . + 2r−1 = 2r. ��

We are now ready to describe our data structure. We use relaxed binomial
trees in place of the traditional binomial trees. Our binomial queue may have
up to two (0, 1, or 2) relaxed binomial trees with the same rank. The order of
the roots of the trees is important within the root-list. The ranks of these roots
form a non-decreasing sequence from right to left. The following procedures are
used to perform the priority queue operations:

Heapify. Given a relaxed binomial tree T of rank r, such that the heap property
is valid for all the nodes except for the root. The question is how to restore this
property. Applying the standard heapify operation will do, while maintaining
the inversion-preserving property. Recall that the heapify operation proceeds by
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finding the node, say x, with the smallest value among the children of the root
and swapping its value with that of the root. This step is repeated with the node
x as the current root, until either a leaf or a node that has a value smaller than
or equal to all the values of its children is reached. To show that the heapify
operation is inversion-preserving, consider any two elements xi, xj ∈ Pre(T ),
where i < j. If these two elements were swapped during the heapify operation,
then xi > xj . Since xi precedes xj in Pre(T ), we conclude that this swap
decreases the number of inversions.

It remains to investigate how the heapify operation is implemented. Finding
the minimum value within a linked list requires linear time. This may lead to an
O(r2) time for the heapify operation. We can do better, however, by maintaining
with every node an extra pointer that points to the node with the smallest value
among all its right siblings, including itself. We call this pointer, the pointer for
the prefix minimum (pm). The pm pointer of the leftmost child of a node will,
therefore, point to the node with the smallest value among all the children of
the parent node. To maintain the correct values in the pm pointers, whenever
the value of a node is updated all the pm pointers of its left siblings, including
itself, have to be updated. This is accomplished by proceeding from right to left;
the pm pointer of a given node x is updated to point to the smaller of the value
of x and the value of the node pointed to by the pm pointer of the right sibling
of x. A heapify at a node with rank r1 reduces to a heapify at its child with the
smallest value whose rank is r2 after O(r1 − r2) time and at most 3(r2 − r1)
comparisons. The time spent by the heapify on T is, therefore, O(r).

If we are concerned with constant factors, the number of comparisons can
still be reduced as follows. First, the path from the root to a leaf, where every
node has the smallest value among its siblings, is determined by utilizing the
pm pointers. No comparisons are required for this step. Next, the value at the
root is compared with the values of the nodes of this path bottom up, until the
correct position of the root is determined. The value at the root is then inserted
at this position, and all the values at the nodes above this position are shifted
up. The pm pointers of the nodes whose values moved up and those of all their
left siblings are updated. The savings are due to the fact that at each level of
the queue (except possibly for the level of the final destination of the old value
of the root) either a comparison with the old value of the root takes place or the
pm pointers are updated, but not both. Then, the number of comparisons is at
most 2r. See [10] for a similar description to this procedure.

Merge. Given two relaxed binomial trees of the same rank r whose roots are
adjacent in the root-list of the binomial queue, the two trees can be merged into
one tree of rank r + 1 by making the root with the larger value the leftmost
child of the root of the other tree. If the right sibling is linked to its left sibling
its reverse bit is set to 1, otherwise the reverse bit of the linked node (the left
sibling) is set to 0. The pm pointer of the linked node is updated. The roots
of the two trees are removed from the root-list, and the root of the new tree is
inserted in their position. The merge operation takes constant time.
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Insert. The new element is added to the forest as the rightmost tree whose
height (rank) is 0, and successive merges are performed until there are no
three trees of the same rank. The merging must be done while maintaining
the ordering of the elements. More specifically, if there are three trees with the
same rank, the two leftmost trees are merged and the root of the resulting tree
replaces the roots of these two trees in the root-list.

Split. A relaxed binomial tree T of rank r can be split into two trees as
follows. The first tree is the sub-tree of the leftmost child of the root of T ,
and the second tree is the rest of T . The rank of the first tree is r − 1, and
the rank of the second tree is either r or r − 1 (depending on the rank of
its current leftmost child). The reverse bit of the root of the first tree is
checked. If this bit was set to 1 (as a result of a previous merge operation),
we make the root of the first tree the right sibling of the root of the second
tree, otherwise we make the root of the first tree the left sibling of the root
of the second tree. The two roots are inserted in place of the root of T in the
root-list. The split operation takes constant time, and no comparisons are needed.

Promote. Given a relaxed binomial tree T with a deleted root of rank r, the pur-
pose of this procedure is to promote a node to replace the root, while maintaining
the structural properties of relaxed binomial trees together with the inversion-
preserving property. The procedure starts by promoting the single node repre-
senting the rightmost child, making it the new root of the binomial tree. As a
result, there may become no tree of rank 0. To maintain the properties of relaxed
binomial trees, assume that before performing the following iterative step there
is no child of T with rank i. We call the following iterative step gap(i). The
rightmost tree with rank i+1 is split, and three cases may take place depending
on the ranks of the resulting two trees:

1. The left tree has rank i+1 and the right tree has rank i: This case is terminal.
2. The left tree has rank i and the right tree has rank i + 1: The right tree

is split into two trees each with rank i (this is the only possibility for this
second split). Now, there are three trees each with rank i. The two leftmost
trees are merged into one tree with rank i + 1. This case is also terminal.

3. Both of the resulting two trees have rank i: If there was another tree of rank
i + 1, the iterative step terminates. If there was only one tree of rank i + 1,
there is none after the split. The iterative step is performed with no trees of
rank i + 1 (i.e. call gap(i+1)).

If the iterative step is repeated until there is no tree of rank r − 1, the iterative
step terminates and the promoted root is assigned a rank of r − 1. Otherwise,
the promoted root is assigned a rank of r.

To maintain the pm pointers of the children of the promoted root without
performing extra comparisons, the following trick is made. Before the promote,
if the value of the single node representing the rightmost child is smaller than
the value of its left sibling, the two nodes are swapped. As a result the pm
pointers of the other children will not need to be changed. The time spent by
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the promote is O(r), and the number of comparisons performed is O(1). After
the promote, a heapify must be called to maintain the heap property for the
promoted root.

Fill-gaps. Given a relaxed binomial tree T of rank r1 such that the rank of the
tree to its right in the queue is r2, where r1 > r2 + 1, several split operations
are performed on T . A tree of rank i can be split into two or three trees of rank
i − 1 by performing one or two split operations, respectively. While the ranks
of the trees resulting from the split are greater than r2, a split is repeatedly
performed on the right tree among these trees. As a result, there will be at most
one tree of rank r1 (if there was two before this procedure), one or two trees of
each of the ranks r1− 1, r1− 2, . . . , r2+2, and two or three trees of rank r2+1.
The possibility of having three trees of the same rank violates the rules. If this
happens, the leftmost two trees of rank r2+1 are merged to form a tree of rank
r2 + 2. This violation may propagate while performing such merge operations,
until there are no three trees of the same rank; a case that is insured to be
fulfilled if the result of the merge is a tree of rank r1. As a final result of this
procedure, there will be at most two trees of rank r1, one or two trees of each
of the ranks r1 − 1, r1 − 2, . . . , r2 + 1. The time spent by the fill-gaps procedure
is O(r1 − r2).

Maintain-minimum. After deleting the minimum node we need to keep track
of the new minimum. Checking the values of all the roots leads to a Θ(log n)
cost for the delete-minimum operation, where n is the size of the queue. The
solution is to reuse the idea of the prefix minimum pointers. A pointer is used
with every root, in the root-list, that points to the node with the smallest value
among the roots to its left, including itself. We call these pointers the suffix
minimum (sm) pointers of the roots. The sm pointer of the rightmost root
points to the root with the minimum value. After deleting the minimum node,
maintaining the affected pointers (the pointers to the right of the deleted root)
can be done from left to right. If the rank of the deleted root is r, the number
of the affected pointers is at most 2(r + 1) (there may be two trees of each
possible rank value). This process is crucial to achieve the claimed bounds for
the heap operations. A more efficient procedure to implement this step would
improve the constants of the heap operations, as explained in Section 6.

Delete-minimum. First, the root of the tree T with the minimum value is
removed. A promote is performed on T , followed by a heapify. As a result of the
promote, the rank of T may decrease by one, and there may be three trees with
the same rank. In this case, a merge operation is performed on T and the tree
to its right, restoring the property of having at most two trees with the same
rank. Next, a fill-gaps is performed on the tree T . The final step is to perform a
maintain-minimum to keep track of the new minimum.
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Theorem 1. Starting with an empty distribution-sensitive binomial queue, the
amortized cost of the insert operation is O(1), and that of the delete-minimum
is O(log K). The worst-case cost of these operations is O(log n).

Proof. The worst-case cost follows from the way the operations are implemented,
the fact that the rank of any tree is O(log n), and that the number of trees in
the heap is O(log n).

We use a potential function [23] to derive the amortized bounds. For each
possible rank value for the roots of the trees in the queue there is either 0, 1, or 2
trees. After the ith operation, let N i

0 be the number of rank values that is not
represented by any trees, N i

1 be the number of rank values that is represented
by one tree, and N i

2 be the number of rank values that is represented by two
trees. Let Φi be the potential function, such that Φi = c1N

i
0 + c2N

i
2, where c1

and c2 are constants to be determined. The value of Φ0 is 0.
First, assume that the operation i + 1 is an insert operation that involved t

merges. If as a result of this insertion two trees with the same rank are merged,
then there should have been two trees with this rank before the insertion and
only one remains after the insertion. This implies that N i+1

2 − N i
2 ≤ −t + 1 and

N i+1
0 − N i

0 ≤ 0. The amortized cost is bounded by O(t) − c2t + c2. By selecting
c2 greater than the constant involved in the O() notation in this relation, the
amortized cost of the insertion is c2.

Next, assume that the operation i + 1 is a delete-minimum performed on
the root of a tree T of rank r1. The actual cost is O(r1). Let r2 be the rank
of the tree to the right of T before the operation is performed. The number
of nodes of this tree is upper bounded by Dm, where m is the number of the
current delete-minimum operation (Dm is the number of elements preceding this
deleted element in Pre(Q) at this moment). As a result of the fill-gaps procedure:
N i+1

0 −N i
0 ≤ −(r1− r2− 2) and N i+1

2 −N i
2 ≤ r1− r2− 1. Hence, the amortized

cost is bounded by O(r1) − (c1 − c2)(r1 − r2 − 1) + c1. By selecting c1, such
that c1 − c2 is greater than the constant in the O() notation in this relation, the
amortized cost of the delete-minimum is O(r2) which is O(log Dm). It follows
that the cost of these m delete-minimum operations is O(

∑m
i=1 log Di). Jensen’s

inequality implies
∑m

i=1 log Di ≤ m log ( 1
m

∑m
i=1 Di). Since all our procedures

have the inversion-preserving property, then 1
m

∑m
i=1 Di ≤ K. It follows that

the amortized cost of the delete-minimum operation is O(log K). ��

5 Applications

We expect our data structure to be useful for several applications, from which
we mention some examples:

Adaptive sorting. Given a sequence of n elements, a distribution-sensitive
binomial queue is built in O(n) by repeatedly inserting these elements. By re-
peatedly deleting the minimum node from the queue we get a sorted sequence of
the input. The time spent to sort such a sequence is O(n log K). If the elements
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are inserted in reverse order, K will be the average number of inversions in the
input sequence, and our algorithm is optimal [13,17,18]. Our heap structure
is more flexible since it allows interleaved insertions and minimum-deletions.
Hence, it can be used in on-line adaptive sorting and order statistics.

Geometric applications. There are several geometric applications that
require the usage of a heap structure. For example, in the sweep-line paradigm
[5] the usage of a priority queue is essential. Our heap may be used if the
events to be handled follow some specific distributions; a case where deleting
the minimum of an n-node heap may require o(log n). The existence of some
problems, where the geometric nature implies that the expected time that the
inserted events spend in the heap before being deleted is small, needs to be
investigated.

Discrete event simulation. e.g. future event set algorithms. In such appli-
cations a list of future events is to be maintained, and at every step the next
occurring event in the list is processed inserting some new events. These events
may follow some probability distribution, and hence their processing may be
faster using our structure. For a survey on discrete event simulation, see [6].

6 Improving the Constants

The constant factor of the number of comparisons of the heapify in the O(log K)
is 2, and that of the maintain-minimum is 2, for a total of at most 4 log2 K +
O(1) comparisons per delete-minimum. Next, we sketch the way to implement
maintain-minimum in O(log log K), achieving an overall bound of 2 log2 K +
O(log log K) for the number of comparisons. The roots of the trees are kept
in a set of heaps, such that all the nodes whose ranks are in the range from
2i to 2i+1 − 1, for possible integers i, are kept in the same heap. These heaps
are arranged in an increasing order of their sizes, maintaining sm pointers from
right to left (The constant in the smaller terms may even be improved by having
a hierarchy of levels of heaps instead of using the sm pointers at this level.).
Deleting the minimum among these heaps takes O(log r) if the rank of the deleted
node is r, implying a bound of O(log log K). We need to maintain this set of heaps
whenever the roots of the main trees change. This requires inserting and deleting
such nodes in and from the heaps whenever necessary. Using our original analysis,
it follows that the number of the main operations bounds the number of such
heap operations. Our goal is to insert or delete an element in these heaps in O(1).
We can use any of the heap implementations that perform insert in O(1) and
delete-minimum in O(log n). We use a method of delayed deletions. Whenever
a node needs to be deleted from this second level of heaps it is marked. Before
inserting a new node, it is first checked if it already exists as a marked node, and
hence unmarking it. Whenever the number of the marked nodes reaches half the
total number of nodes in one of these heaps, this heap is rebuilt getting rid of
the marked nodes. Achieving an O(1) is possible for the deletion because of the
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nature of the application, which insures that a marked node will never become
the minimum of a heap before being reinserted.
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