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Abstract. We study the Lovász number ϑ along with two further SDP
relaxations ϑ1/2, ϑ2 of the independence number and the corresponding
relaxations ϑ̄, ϑ̄1/2, ϑ̄2 of the chromatic number on random graphs Gn,p.

We prove that ϑ̄, ϑ̄1/2, ϑ̄2(Gn,p) in the case p < n−1/2−ε are concentrated
in intervals of constant length. Moreover, we estimate the probable value
of ϑ, ϑ̄(Gn,p) etc. for essentially the entire range of edge probabilities p.
As applications, we give improved algorithms for approximating α(Gn,p)
and for deciding k-colorability in polynomial expected time.

1 Introduction and Results

Given a graph G = (V, E), let α(G) be the independence number, let ω(G) be the
clique number, and let χ(G) be the chromatic number of G. Further, let Ḡ signify
the complement of G. Since it is NP-hard to compute any of α(G), ω(G) or χ(G),
it is remarkable that there exists an efficiently computable function ϑ(G) that
is “sandwiched” between α(G) and χ(Ḡ), i.e. α(G) ≤ ϑ(G) ≤ χ(Ḡ). Passing to
complements, and letting ϑ̄(G) = ϑ(Ḡ), we have ω(G) ≤ ϑ̄(G) ≤ χ(G). The
function ϑ was introduced by Lovász, and is called the Lovász number of G
(cf. [16,21]).

Though ϑ(G) is sandwiched between α(G) and χ(Ḡ), Feige [7] proved that
the gap between α(G) and ϑ(G) or between χ(Ḡ) and ϑ(G) can be as large
as n1−ε, ε > 0. Indeed, unless NP=coRP, none of α(G), ω(G), χ(G) can be
approximated within a factor of n1−ε, ε > 0, in polynomial time [17,9]. However,
though there exist graphs G such that ϑ(G) is not a good approximation of α(G)
(or ϑ̄(G) of χ(G)), it might be the case that the Lovász number performs well
on “average” instances. In fact, several algorithms for random and semirandom
graph problems are based on computing ϑ [4,5,8]. Therefore, the aim of this
paper is to study the Lovász number of random graphs more thoroughly.

The standard model of a random graph is the binomial model Gn,p, pio-
neered by Erdős and Renyi. We let 0 < p = p(n) < 1 be a number that may
depend on n. Let V = {1, . . . , n}. Then the random graph Gn,p is obtained by
including each of the

(
n
2

)
possible edges {v, w}, v, w ∈ V , with probability p

independently. Though Gn,p may fail to model some types of input instances
appropriately, both the combinatorial structure and the algorithmic theory of
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Gn,p are of fundamental interest [18,12]. We say that Gn,p has some property A
with high probability (whp.), if limn→∞ P(Gn,p has property A) = 1.

We also address two further SDP relaxations ϑ1/2, ϑ2 of α (cf. [27]) on random
graphs. These relaxations satisfy α(G) ≤ ϑ1/2(G) ≤ ϑ(G) ≤ ϑ2(G) ≤ χ(Ḡ), for
all G. Passing to complements, and setting ϑ̄i(G) = ϑi(Ḡ) (i = 1/2, 2), one gets
ω(G) ≤ ϑ̄1/2(G) ≤ ϑ̄(G) ≤ ϑ̄2(G) ≤ χ(G). The relaxation ϑ̄1/2(G) coincides
with the well-known vector chromatic number χ(G) of Karger, Motwani, and
Sudan [20].

The Concentration of ϑ̄, ϑ̄1/2, ϑ̄2. A remarkable fact concerning the chro-
matic number of sparse random graphs Gn,p, p ≤ n−ε−1/2, is that χ(Gn,p) is
concentrated in an interval of constant length. Indeed, Shamir and Spencer [26]
proved that there is a function u = u(n, p) such that in the case p = n−β ,
1/2 < β < 1, we have P(u ≤ χ(Gn,p) ≤ u+ �(2β + 1)/(2β−1)�) = 1− o(1). Fur-
thermore, �Luczak [25] showed that in the case 5/6 < β < 1, the chromatic num-
ber is concentrated in width one. In fact, Alon and Krivelevich [2] could prove
that two point concentration holds for the entire range p = n−β , 1/2 < β < 1.
The two following theorems state similar results as given by Shamir and Spencer
and by �Luczak for the relaxations ϑ̄1/2(Gn,p), ϑ̄(Gn,p), and ϑ̄2(Gn,p) of the chro-
matic number.

Theorem 1. Suppose that c0/n ≤ p ≤ n−β for some large constant c0 > 0 and
some number 1/2 < β < 1. Then ϑ̄1/2(Gn,p), ϑ̄(Gn,p), ϑ̄2(Gn,p) are concentrated
in width s = 2

2β−1 + o(1), i.e. there exist numbers u, u′, u′′ depending on n

and p such that whp. u ≤ ϑ̄1/2(Gn,p) ≤ u + s, u′ ≤ ϑ̄(Gn,p) ≤ u′ + s, and
u′′ ≤ ϑ̄1/2(Gn,p) ≤ u′′ + s.

Theorem 2. Suppose that c0/n < p ≤ n−5/6−δ for some large constant c0 and
some δ > 0. Then ϑ̄1/2(Gn,p), ϑ̄(Gn,p), and ϑ̄2(Gn,p) are concentrated in width 1.

In contrast to the chromatic number, ϑ̄1/2, ϑ̄, and ϑ̄2 need not be integral.
Therefore, the above results do not imply that ϑ̄1/2(Gn,p), ϑ̄(Gn,p), ϑ̄2(Gn,p) are
concentrated on a constant number of points.

The Probable Value of ϑ(Gn,p), ϑ̄(Gn,p), etc. Concerning the proba-
ble value of ϑ(Gn,p) and ϑ̄(Gn,p), Juhász [19] gave the following partial an-
swer: If ln(n)6/n � p ≤ 1/2, then with high probability we have ϑ(Gn,p) =
Θ(

√
n/p) and ϑ̄(Gn,p) = Θ(

√
np). However, we shall indicate in Sec. 4 that

Juhász’s proof fails in the case of sparse random graphs (e.g. np = O(1)). Mak-
ing use of concentration results on ϑ, ϑ̄ etc., we can compute the probable value
not only of ϑ(Gn,p) and ϑ̄(Gn,p), but also of ϑi(Gn,p) and ϑ̄i(Gn,p), i = 1/2, 2,
for essentially the entire range of edge probabilities p.
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Theorem 3. Suppose that c0/n ≤ p ≤ 1/2 for some large constant c0 > 0.
Then there exist constants c1, c2, c3, c4 > 0 such that

c1

√
n/p ≤ ϑ1/2(Gn,p) ≤ ϑ(Gn,p) ≤ ϑ2(Gn,p) ≤ c2

√
n/p (1)

and c3
√

np ≤ ϑ̄1/2(Gn,p) ≤ ϑ̄(Gn,p) ≤ ϑ̄2(Gn,p) ≤ c4
√

np

with high probability. More precisely,

P(c3
√

np ≤ ϑ̄1/2(Gn,p) ≤ ϑ̄(Gn,p) ≤ ϑ̄2(Gn,p)) ≥ 1 − exp(−n). (2)

Assume that c0/n ≤ p = o(1). Then α(Gn,p) ∼ 2 ln(np)/p and χ(Gn,p) ∼
np/(2 ln(np)) whp. (cf. [18]). Hence, Thm. 3 shows that ϑ2(Gn,p) (ϑ̄1/2(Gn,p))
approximates α(Gn,p) (χ(Gn,p)) within a factor of O(

√
np). In fact, if np =

O(1), then we get a constant factor approximation. Our estimate on the vector
chromatic number ϑ̄1/2(Gn,p) answers a question of Krivelevich [22].

Finally, consider the random regular graph Gn,r. The proof of the following
theorem is somewhat technical, and is omitted.

Theorem 4. Let c0 be a sufficiently large constant, and let c0 ≤ r = o(n1/4).
There are constants c1, c2 > 0 such that whp. the random regular graph Gn,r

satisfies c1n/
√

r ≤ ϑ1/2(Gn,r) ≤ ϑ(Gn,r) ≤ ϑ2(Gn,r) ≤ c2n/
√

r. Moreover,
there is a constant c3 > 0 such that in the case c0 ≤ r = o(n1/2) we have
P(c3

√
r ≤ ϑ̄1/2(Gn,r) ≤ ϑ̄(Gn,r) ≤ ϑ̄2(Gn,r)) ≥ 1 − exp(−n).

Algorithmic Applications. There are two types of algorithms for NP-hard
random graph problems. First, there are heuristics that always run in polynomial
time, and almost always output a good solution. On the other hand, there are
algorithms that guarantee some approximation ratio on any input instance, and
which have a polynomial expected running time when applied to Gn,p. In this
paper, we deal with algorithms with a polynomial expected running time.

First, we consider the maximum independent set problem in random graphs.
Krivelevich and Vu [23] gave an algorithm that in the case p 	 n−1/2 approxi-
mates the independence number of Gn,p in polynomial expected time within a
factor of O(

√
np/ ln(np)). Moreover, they ask whether a similar algorithm exists

for smaller values of p. As a first answer, Coja-Oghlan and Taraz [4], gave an
O(

√
np/ ln(np))-approximative algorithm for the case p 	 ln(n)6/n.

Theorem 5. Suppose that c0/n ≤ p ≤ 1/2. There is an algorithm ApproxMIS

that for any input graph G outputs an independent set of size at least α(G) ln(np)
c1

√
np ,

and which applied to Gn,p runs in polynomial expected time. Here c0, c1 > 0
denote constants.

As a second application, we give an algorithm for deciding within polyno-
mial expected time whether the input graph is k-colorable. Instead of Gn,p, we
shall even consider the semirandom model G+

n,p that allows for an adversary to
add edges to the random graph. We say that the expected running time of an
algorithm A is polynomial over G+

n,p, if there is some constant l such that the
expected running time of A is O(nl) regardless of the behavior of the adversary.
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Theorem 6. Suppose that k = o(
√

n), and that p ≥ c0k
2/n, for some constant

c0 > 0. There exists an algorithm Decidek that for any input graph G decides
whether G is k-colorable, and that applied to G+

n,p has a polynomial expected
running time.

The algorithm Decidek is essentially identical with Krivelevich’s algorithm
for deciding k-colorability in polynomial expected time [22]. However, the analy-
sis given in [22] requires that np ≥ exp(Ω(k)). The improvement results from the
fact that the analysis given in this paper relies on the asymptotics for ϑ̄1/2(Gn,p)
derived in Thm. 3 (instead of the concept of semi-colorings). Finally, we mention
that our algorithm Decidek also applies to random regular graphs Gn,r.

Theorem 7. Suppose that c0k
2 ≤ r = o(n1/2) for some constant c0 > 0. Then,

applied to Gn,r, the algorithm Decidek has polynomial expected running time.

Notation. Throughout we let V = {1, . . . , n}. If G = (V, E) is a graph, then
A(G) is the adjacency matrix of G. By 1 we denote the vector with all entries
= 1, and J denotes a square matrix with all entries = 1. If M is a real symmetric
n × n-matrix, then λ1(M) ≥ · · ·λn(M) signify the eigenvalues of M .

2 Preliminaries

Let G = (V, E) be a graph, let (v1, . . . , vn) be an n-tuple of unit vectors in Rn,
and let k > 1. Then (v1, . . . , vn) is a vector k-coloring of G if 〈vi, vj〉 ≤ −1/(k−1)
for all edges {i, j} ∈ E. Furthermore, (v1, . . . , vn) is a strict vector k-coloring
if 〈vi, vj〉 = −1/(k − 1) for all {i, j} ∈ E. Finally, we say that (v1, . . . , vn) is a
rigid vector k-coloring if 〈vi, vj〉 = −1/(k − 1) for all {i, j} ∈ E and 〈vi, vj〉 ≥
−1/(k − 1) for all {i, j} �∈ E. Following [20,14,3], we define

ϑ̄1/2(G) = inf{k > 1| G admits a vector k-coloring},
ϑ̄(G) = ϑ̄1(G) = inf{k > 1| G admits a strict vector k-coloring}, (3)

ϑ̄2(G) = inf{k > 1| G admits a rigid vector k-coloring}.
Observe that ϑ̄1/2(G) is precisely the vector chromatic number introduced by
Karger, Motwani, and Sudan [20]; ϑ̄2 occurs in [14,27]. Further, we let ϑ1/2(G) =
ϑ̄1/2(Ḡ), ϑ(G) = ϑ1(G) = ϑ̄(Ḡ), and ϑ2(G) = ϑ̄2(Ḡ). It is shown in [20] that the
above definition of ϑ is equivalent with Lovász’s original definition (cf. [16]).

Proposition 8. Let G = (V, E) be a graph of order n, and let S ⊂ V . Let G[S]
denote the subgraph of G induced on S. Then ϑi(G) ≤ ϑi(G[S]) + ϑi(G[V \ S]).

It is obvious from the definitions that for any weak subgraph H of G we have
ϑ̄i(H) ≤ ϑ̄i(G), i ∈ {1/2, 1, 2}. In addition to ϑ, ϑ1/2, and ϑ2, we consider the
semidefinite relaxation of MAX CUT invented by Goemans and Williamson [15]:
SMC(G) = max

∑
i<j

aij

2 (1 − 〈vi, vj〉) s.t. ‖vi‖ = 1, where the max is taken over
v1, . . . , vn ∈ Rn.
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Finally, we need the following concentration result on ϑ1/2, ϑ, ϑ2. For ϑ, the
proof can be found in [5]. Using suitable characterizations of ϑ1/2, ϑ2, the argu-
ment given in [5] can be adapted to cover these cases as well.

Theorem 9. Suppose that p ≤ 0.99, and that n ≥ n0 for a certain constant
n0 > 0. Let m be a median of ϑ(Gn,p).

i. Let ξ ≥ max{10, m1/2}. Then P(ϑ(Gn,p) ≥ m+ξ) ≤ 30 exp(−ξ2/(5m+10ξ)).
ii. Let ξ > 10. Then P(ϑ(Gn,p) ≤ m − ξ) ≤ 3 exp(−ξ2/10m).

The same holds with ϑ replaced by ϑ1/2 or by ϑ2.

3 The Concentration Results

Proof of Thm. 1. Let p and β be as in Thm. 1. The proof is based on the
following large deviation result, which is a consequence of Azuma’s inequality.

Lemma 10. Suppose that X : Gn,p → R is a random variable that satisfies the
following conditions for all graphs G = (V, E).

– For all v ∈ V the following holds. Let G∗ = G + {{v, w}| w ∈ V, w < v},
and let G∗ = G − {{v, w}| w ∈ V, w < v}. Then |X(G∗) − X(G∗)| ≤ 1.

– If H is a weak subgraph of G, then X(H) ≤ X(G).

Then P(|X − E(X)| > t
√

n) ≤ 2 exp(−t2/2).

Let ω = ω(n) be a sequence tending to infinity slowly, e.g. ω(n) = ln ln(n).
Furthermore, let k = k(n, p) = inf{x > 0| P(ϑ̄2(Gn,p) ≤ x) ≥ ω−1}. For any
graph G = (V, E) let Y (G) = min{#U | U ⊂ V, ϑ̄2(G−U) ≤ k}. Then ϑ̄2(G) ≤ k
if and only if Y (G) = 0. Hence, P(Y = 0) ≥ ω−1. Moreover, by Prop. 8, the
random variable Y satisfies the assumptions of L. 10. Let µ = E(Y ). Then
µ ≤ √

nω. Thus, by L. 10, Y ≤ 2
√

nω with high probability. The following
lemma is implicit in [26] (cf. the proof of L. 8 in [26]).

Lemma 11. Let δ > 0. Whp. the random graph G = Gn,p enjoys the following
property. If U ⊂ V , #U ≤ 2

√
nω then χ(G[U ]) ≤ s, where s > 2

2β−1 + δ.

To conclude the proof of Thm. 1, let G = Gn,p, and suppose that there is
some U ⊂ V , #U ≤ 2

√
nω, such that ϑ̄2(G − U) ≤ k ≤ ϑ̄2(G). Since by L. 11

ϑ̄2(G[U ]) ≤ χ(G[U ]) ≤ s whp., Prop. 8 entails that k ≤ ϑ̄2(G) ≤ k + s whp.

Proof of Thm. 2. Let ω be a sequence tending to infinity slowly. The random
graph G = Gn,p admits no U ⊂ V , #U ≤ ω3

√
n, spanning more than 3(#U −

ε)/2 edges whp., where ε > 0 is a small constant. Let k be as in the proof of
Thm. 1. Then whp. there is a set U ⊂ V , #U ≤ ω

√
n, such that ϑ̄2(G−U) ≤ k.

Following �Luczak [25], we let U = U0, and construct a sequence U0, . . . , Um

as follows. If there is no edge {v, w} ∈ E with v, w ∈ N(Ui) \ Ui, then we let
m = i and finish. Otherwise, we let Ui+1 = Ui ∪ {v, w} and continue. Then m ≤
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m0 = ω2√n, because otherwise #Um0 = (2 + o(1))ω2√n and #E(G[Um0 ]) ≥
3(1 − o(1))#Um0/2. Let R = Um.

By L. 11, ϑ̄2(G[R]) ≤ χ(G[R]) ≤ 3. Furthermore, I = N(R) \ R is an inde-
pendent set. Let G1 = G[R ∪ I], S = V \ (R ∪ I), and G2 = G[S ∪ I]. Then
ϑ̄2(G2) ≤ k, and ϑ̄2(G1) ≤ 4. In order to prove that ϑ̄2(G) ≤ k + 1, we shall first
construct a rigid vector k + 1-coloring of G2 that assigns the same vector to all
vertices in I. Thus, let (xv)v∈S∪I be a rigid vector k-coloring of G2. Let x be a
unit vector perpendicular to xv for all v ∈ S. Moreover, let α = (k2−1)−1/2, and
set yv = (α2 + 1)−1/2(xv − αx) for v ∈ S, and yv = x for v ∈ I. Then (yv)v∈S∪I

is a rigid vector (k + 1)-coloring of G2. In a similar manner, we can construct
a rigid vector 4-coloring (y′

v)v∈R∪I of G1 that assigns the same vector x′ to all
vertices in I.

Applying a suitable orthogonal transformation if necessary, we may assume
that x = x′. Let l = max{4, k +1}. Since N(R) ⊂ R∪I, we obtain a rigid vector
l-coloring (zv)v∈V of G, where zv = yv if v ∈ S ∪ I, and zv = y′

v if v ∈ R. By the
lower bound on ϑ̄2(Gn,p) in Thm. 3 (which does not rely on Thm. 2 of course),
choosing c0 large enough we may assume that k ≥ 4, whence k ≤ ϑ̄2(G) ≤ k +1.

4 The Probable Value of ϑ(G���), ϑ̄(G���), etc.

4.1 The Lower Bound on ϑ̄1/2(Gn,p)

To bound ϑ̄1/2(Gn,p) from below, we make use of an estimate on the probable
value of the SDP relaxation SMC of MAX CUT (cf. Sec. 2). Suppose that c0/n ≤
p ≤ 1 − c0/n for some large constant c0 > 0. Combining Thms. 4 and 5 of [6]
instantly yields that there is a constant λ > 0 such that

P
(

SMC(Gn,p) >
1
2

(
n

2

)
p + λn3/2p1/2(1 − p)1/2

)
≤ exp(−2n). (4)

Let G = (V, E) be a graph with adjacency matrix A = (aij)i,j=1,...,n. Let
v1, . . . , vn be a vector k-coloring of G, where k = ϑ̄1/2(G) ≥ 2. Then ‖vi‖ = 1
for all i, and 〈vi, vj〉 ≤ −1/(k − 1) whenever {i, j} ∈ E. Therefore,

SMC(G) ≥
∑

i<j

aij

2
(1 − 〈vi, vj〉) ≥ #E

(
1
2

+
1

k − 1

)
. (5)

Let c0/n ≤ p ≤ 1 − c0/n for some large constant c0 > 0. By Chernoff bounds
(cf. [18, p. 26]),

P
(

#E(Gn,p) <

(
n

2

)
p − 8n3/2p1/2(1 − p)1/2

)
≤ exp(−2n). (6)

Combining (4), (5), and (6), we conclude that

ϑ̄1/2(Gn,p) ≥ ϑ̄1/2(Gn,p) − 1 ≥
(
n
2

)
p − 8n3/2p1/2(1 − p)1/2

(λ + 4)n3/2p1/2(1 − p)1/2
≥ 1

2(λ + 4)

√
np

1 − p

holds with probability at least 1 − exp(−n). As Ḡn,p = Gn,1−p, this proves (2)
and the lower bounds in Thm. 3.
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4.2 Spectral Considerations

Let us briefly recall Juhász’s proof that ϑ(Gn,p) ≤ (2 + o(1))
√

n(1 − p)/p for
constant values of p, say. Given a graph G = (V, E), we consider the matrix
M = M(G) = (mij)i,j=1,...,n, where

mij =
{

1 if {i, j} �∈ E
(p − 1)/p otherwise, (i �= j), (7)

and mii = 1 for all i. Then λ1(M) ≥ ϑ(G). Moreover, as p is constant, the
result of Füredi and Komlos [13] on the eigenvalues of random matrices applies
and yields that ϑ(Gn,p) ≤ λ1(M) ≤ (2 + o(1))

√
n(1 − p)/p whp. This argument

carries over to the case ln(n)7/n ≤ p ≤ 1/2 (cf. [4]):

Lemma 12. Let ln(n)7/n ≤ p ≤ 1/2. Then ‖M(Gn,p)‖ ≤ 3
√

n/p whp.

However, it is easily seen that in the sparse case, e.g. if np = O(1), we have
λ1(M) 	 n whp. The reason is that in the case np ≥ ln(n)7 the random graph
Gn,p is “almost regular”, which is not true if np = O(1). We will get around this
problem by chopping off all vertices of degree considerably larger than np, as
first proposed in [1]. Thus, let ε > 0 be a small constant, and consider the graph
G′ = (V ′, E′) obtained from G = Gn,p by deleting all vertices of degree greater
than (1 + ε)np.

Lemma 13. Suppose that c0/n ≤ p ≤ ln(n)7/n for some large constant c0. Let
G = Gn,p, and let M ′ = M(G′). Then P(‖M ′‖ ≤ c1

√
n/p) ≥ 9/10, where c1 > 0

denotes some constant.

To prove L. 13, we make use of the following lemma, which is implicit in [10,
Sections 2 and 3]; the proof is based on the method of Kahn and Szemeredi [11].

Lemma 14. Let G = Gn,p be a random graph, where c0/n ≤ p ≤ ln(n)7/n

for some large constant c0 > 0. Let n′ = #V (G′), e = n′−1/21 ∈ Rn′
, and

A′ = A(G′). For each δ > 0 there is a constant C(δ) > 0 such that in the case
np ≥ C(δ) with probability ≥ 1 − δ we have

max{|〈A′v, e〉|, |〈A′v, w〉|} ≤ c1
√

np for all v, w ⊥ 1, ‖v‖ = ‖w‖ = 1. (8)

Here c1 > 0 denotes a certain constant.

In addition, the proof of Lemma 13 needs the following observation.

Lemma 15. Let c1 be a large constant. The probability that in G = Gn,p there
exists a set U ⊂ V , #U ≥ n/2, such that |#E(G[U ])−#U2p/2| ≥ c1(#U)3/2p1/2

is less than exp(−n).

Proof. There are at most 2n sets U . By Chernoff bounds (cf. [18, p. 26]), for a
fixed U the probability that |#E(G[U ]) − #U2p/2| ≥ c1(#U)3/2p1/2 is at most
exp(−2n), provided that c0, c1 are large enough. ��
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Proof of Lemma 13. Let G = Gn,p, let n′ = #V (G′), and let A′, e be as in L.
14. Without loss of generality, we may assume that V ′ = V (G′) = {1, . . . , n′}.
Let c1 > 0 be a sufficiently large constant. Let J signify the n′ × n′ matrix
with all entries equal to 1. Letting δ > 0 be sufficiently small and c0 ≥ C(δ),
we assume in the sequel that (8) holds, and that G has the property stated in
L. 15. Let z ∈ Rn′

, ‖z‖ = 1. Then we have a decomposition z = αe + βv,
‖v‖ = 1, v ⊥ 1, α2 + β2 = 1. Since ‖M ′z‖ ≤ ‖M ′e‖ + ‖M ′v‖, if suffices bound
maxv⊥e,‖v‖=1 ‖M ′v‖ and ‖M ′e‖.

Let ρ : Rn′ → Rn′
be the projection on the space 1⊥. Then A′v = ρA′v +

〈A′v, e〉e, whence ‖A′v‖ ≤ ‖ρA′v‖ + c1
√

np, for all unit vectors v ⊥ 1. In order
to bound ‖ρA′v‖, we estimate ‖ρA′ρ‖ via (8):

‖ρA′ρ‖ = sup
‖y‖=1

|〈ρA′ρy, y〉| = sup
‖y‖=1

|〈A′ρy, ρy〉| = sup
‖y‖=1, 1⊥y

|〈A′y, y〉| ≤ c1
√

np.

Consequently, ‖M ′v‖ = ‖(J − 1
pA′)v‖ = 1

p‖A′v‖ ≤ 2c1

√
n/p (v ⊥ 1, ‖v‖ = 1).

To bound ‖M ′e‖, note that −pM ′ = A′ − pJ . Let d̄ = 2#E(G′)/n′, and x =
A′e−(d̄/n′)Je. Then x ⊥ 1, and by (8) we have ‖x‖2 = 〈A′e, x〉−〈(d̄/n′)Je, x〉 =
〈A′e, x〉 ≤ c1

√
np‖x‖, whence ‖x‖ ≤ c1

√
np. By L. 15, |d̄ − n′p| ≤ c1

√
np. As a

consequence, ‖(d̄/n′)Je−pJe‖ ≤ c1
√

np. Therefore, ‖pM ′e‖ ≤ ‖x‖+‖(d̄/n′)Je−
pJe‖ ≤ 2c1

√
np, i.e. ‖M ′e‖ ≤ 2c1

√
n/p. ��

4.3 Bounding ϑ2(Gn,p) from Above

Let c0/n ≤ p ≤ 1/2 for some large constant c0 > 0. The following lemma is a
consequence of the characterization of ϑ̄2 as an eigenvalue minimization problem
given in [27].

Lemma 16. Let G be any graph. Let M = M(G). Then λ1(M) ≥ ϑ̄2(G).

In the case ln(n)7/n ≤ p ≤ 1/2, combining L. 12 and L. 16 yields that
ϑ2(Gn,p) ≤ c2

√
n/p whp. for some constant c2 > 0, as desired. Thus, let us

assume that c0/n ≤ p ≤ ln(n)7/n in the sequel. Let ε > 0 be a small constant.

Lemma 17. With probability at least 9/10 the random Gn,p has at most 1/p
vertices of degree greater than (1 + ε)np.

Proof. For each vertex v of Gn,p, the degree d(v) is binomially distributed with
mean (n− 1)p. By Chernoff bounds (cf. [18, p. 26]), the probability that d(v) >
(1 + ε)np is at most exp(−ε2np/100). Hence, the expected number of vertices
v such that d(v) > (1 + ε)np is at most n exp(−ε2np/100) < 1/(10p), provided
np ≥ c0 for some large constant c0 > 0. Therefore, the assertion follows from
Markov’s inequality. ��

Let G = Gn,p, and let G′ = (V ′, E′) be the graph obtained from G by deleting
all vertices of degree greater than (1 + ε)np. Let V ′′ = V \ V ′, and G′′ = G[V ′′].
Combining L. 17 and L. 13, we obtain that

P
(
ϑ2(G′) ≤ c2

√
n/p and ϑ2(G′′) ≤ #V (G′′) ≤ 1/p ≤

√
n/p

)
> 1/2,
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where c2 denotes a suitable constant. Consequently, Prop. 8 yields that

P(ϑ2(Gn,p) ≤ (c2 + 1)
√

n/p) > 1/2.

Let µ = (c2 + 1)
√

n/p, t = ln(n)
√

n, and note that t = o(
√

n/p). Then, by
Thm. 9, P(ϑ2(Gn,p) > µ + t) ≤ 30 exp

(−Ω(ln(n)2)
)

= o(1). Since t <
√

n/p,
we get that ϑ2(Gn,p) ≤ (c2 + 2)

√
n/p with high probability.

4.4 Bounding ϑ̄2(Gn,p) from Above

Let us first assume that ln(n)7/n ≤ p ≤ 1/2. Let G = (V, E) = Gn,p be a
random graph, and consider the matrix M̄ = 1

1−pEn − p
1−pM(G), where En is

the n× n-unit matrix, and M(G) is the matrix defined in (7). Combining L. 12
and L. 16, we have ϑ̄2(G) ≤ λ1(M̄) ≤ ‖ 1

1−pE− p
1−pM ′‖ ≤ p

1−p‖M‖+2 ≤ c4
√

np
whp., where c4 > 0 is a certain constant.

Now let c0/n ≤ p ≤ ln(n)7/n for some large constant c0 > 0. In this case, the
proof of our upper bound on ϑ̄2(Gn,p) relies on the concentration result Thm. 2.

Lemma 18. Whp. the random graph G = Gn,p admits no set U ⊂ V , #U ≤
1/p, such that χ(G[U ]) >

√
np.

Proof. We shall prove that for all U ⊂ V , #U = ν ≤ 1/p, we have #E(G[U ]) <
ν
√

np/2. Then each subgraph G[U ] has a vertex of degree <
√

np, a fact which
immediately implies our assertion. Thus, let ν ≤ 1/p. The probability that there
exists some U ⊂ V , #U = ν, #E(G[U ]) ≥ ν

√
np/2, is at most

(
n

ν

)( (
ν
2

)

ν
√

np/2

)
pν

√
np/2 ≤

(
en
ν

(
eν
√

p√
n

)√
np/2

)ν

Let bν = (en/ν)(eν
√

p/
√

n)
√

np/2. Observe that the sequence (bν)ν=1,...,n is
monotone increasing, and that b1/p = enp(e/

√
np)

√
np/2 ≤ exp(−2). Therefore,

∑1/p
ν=ln(n) bν

ν ≤ b
ln(n)
1/p /p ≤ n−2p−1 = o(1). Moreover, if ν ≤ ln(n), then bν ≤

enν−1(eν
√

p/
√

n)
√

np/2 ≤ 1/n, whence
∑ln n

ν=1 bν
ν = o(1). Thus,

∑1/p
ν=1 bν

ν = o(1),
thereby proving the lemma. ��

Let G = (V, E) = Gn,p be a random graph, and let G′ = (V ′, E′) be the
graph obtained from G by removing all vertices of degree greater than (1+ε)np,
where ε > 0 is small but constant. Let V ′′ = V \ V ′, and let G′′ = G[V ′′]. By
L. 17, with probability at least 9/10 we have #V ′′ ≤ 1/p. Therefore, by L. 18,
P(ϑ̄2(G′′) ≤ √

np) ≥ P(χ(G′′) ≤ √
np) ≥ 9/11. To bound ϑ̄2(G′), we consider the

matrix M̄ = 1
1−pEn′− p

1−pM(G′). By L. 16, ϑ̄2(G′) ≤ λ1(M̄). Moreover, by L. 13,
with probability ≥ 9/10 we have ϑ̄2(G′) ≤ λ1(M̄) ≤ p

1−p‖M ′‖ + 2 ≤ c4
√

np, for
some constant c4 > 0. Prop. 8 implies that ϑ̄2(G) ≤ ϑ̄2(G′) + ϑ̄2(G′′), whence
we conclude that P(ϑ̄2(Gn,p) ≤ (c4 + 1)

√
np) > 1/2. Since Thm. 2 shows that

ϑ̄2(Gn,p) is concentrated in width one, we have

P
(
ϑ̄1/2(Gn,p) ≤ ϑ̄(Gn,p) ≤ ϑ̄2(Gn,p) ≤ (c4 + 1)

√
np + 1

)
= 1 − o(1),

thereby completing the proof of Thm. 3.
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Remark 19. One could prove slightly weaker results on the probable value of
ϑ(Gn,p) and ϑ̄(Gn,p) than provided by Thm. 3 without applying any concen-
tration results, or bounds on the SDP relaxation SMC of MAX CUT. Indeed,
using only L. 17, 18, 13 (thus implicitly [10]) and the estimates proposed in [19],
one could show that for each δ > 0 there is C(δ) > 0 such that P(c1

√
n/p ≤

ϑ(Gn,p) ≤ c2

√
n/p) ≥ 1−δ and P(c3

√
np ≤ ϑ̄(Gn,p) ≤ c4

√
np) ≥ 1−δ, provided

np ≥ C(δ). Such an approach is mentioned without proof independently in the
latest version of [10].

5 Approximating the Independence Number and
Deciding k-Colorability

Approximating the Independence Number. The algorithm ApproxMIS for
approximating the independence number consists of two parts. First, we employ
a certain greedy procedure that on input G = Gn,p finds a large independent set
whp. Secondly, we compute ϑ(G) to bound α(G) from above. Following [23], to
find a large independent set of G = Gn,p, we run the greedy algorithm for graph
coloring and pick the largest color class it produces.

Lemma 20. The probability that the largest color class produced by the greedy
coloring algorithm contains < ln(np)/(2p) vertices is at most exp(−n).

Proof. The proof given in [23] for the case that p ≥ nε−1/2 carries over. ��
The following algorithm is essentially identical with the one given in [4].

Algorithm 21. ApproxMIS(G)
Input: A graph G = (V, E). Output: An independent set of G.

1. Run the greedy algorithm for graph coloring on input G. Let I be the largest
resulting color class. If #I < ln(np)/(2p), then go to 5.

2. Compute ϑ(G). If ϑ(G) ≤ C
√

n/p, then output I and terminate. Here C
denotes some sufficiently large constant (cf. the analysis below).

3. Check whether there exists a subset S of V , #S = 25 ln(np)/p, such that
#V \ (S ∪ N(S)) > 12(n/p)1/2. If no such set exists, then output I and
terminate.

4. Check whether in G there is an independent set of size 12(n/p)1/2. If this is
not the case, then output I and terminate.

5. Enumerate all subsets of V and output a maximum independent set.

Lemma 22. The expected running time of ApproxMIS(Gn,p) is polynomial.

Proof. The first two steps can be implemented in polynomial time. By Thm. 3,
the median µ of ϑ(Gn,p) is at most c

√
n/p, for some constant c. Therefore,

Thm. 9 entails that the probability that ApproxMIS runs step 3 is less than
exp(−(n/p)1/2), provided C is large enough. Furthermore, up to polynomial
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factors, step 3 consumes time ≤ exp(25 ln(np)2/p) < exp(
√

n/p). Hence, the
expected time spent executing step 3 is polynomial. Taking into account L. 20,
the expected running time of the remaining steps can be estimated as in the
proof of Thm. 4 in [4]. ��

Finally, it is not hard to show that ApproxMIS guarantees the desired ap-
proximation ratio.

Deciding k-Colorability. Following [22], we decide k-colorability by comput-
ing the vector chromatic number of the input graph. Let k = k(n) be a sequence
of positive integers such that k(n) = o(

√
n). Since the vector chromatic number

is always a lower bound on the chromatic number, the answer of the following
algorithm is correct for all input graphs G.

Algorithm 23. Decidek(G)
Input: A graph G = (V, E). Output: Either “χ(G) ≤ k” or “χ(G) > k”.

1. If ϑ̄1/2(G) > k then terminate with output “χ(G) > k”.
2. Otherwise, compute χ(G) in time o(exp(n)) using Lawler’s algorithm [24],

and answer correctly.

Lemma 24. Suppose that p ≥ Ck2/n for some large constant C. Then the
expected running time of Decidek(G+

n,p) is polynomial.

Proof. In [20] it is shown that ϑ̄1/2 can be computed in polynomial time. Since
the second step consumes time o(exp(n)), (2) shows that the expected running
time of Decidek on input G+

n,p is polynomial. ��
The analysis of Decidek on input Gn,r, r ≥ Ck2, is based on Thm. 4 and

yields the proof of Thm. 7.
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