## The Lovász Number of Random Graphs

Amin Coja-Oghlan\*

Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6, 10099 Berlin, Germany coja@informatik.hu-berlin.de

**Abstract.** We study the Lovász number  $\vartheta$  along with two further SDP relaxations  $\vartheta_{1/2}$ ,  $\vartheta_2$  of the independence number and the corresponding relaxations  $\bar{\vartheta}$ ,  $\bar{\vartheta}_{1/2}$ ,  $\bar{\vartheta}_2$  of the chromatic number on random graphs  $G_{n,p}$ . We prove that  $\bar{\vartheta}$ ,  $\bar{\vartheta}_{1/2}$ ,  $\bar{\vartheta}_2(G_{n,p})$  in the case  $p < n^{-1/2-\varepsilon}$  are concentrated in intervals of constant length. Moreover, we estimate the probable value of  $\vartheta$ ,  $\bar{\vartheta}(G_{n,p})$  etc. for essentially the entire range of edge probabilities p. As applications, we give improved algorithms for approximating  $\alpha(G_{n,p})$  and for deciding k-colorability in polynomial expected time.

#### 1 Introduction and Results

Given a graph G = (V, E), let  $\alpha(G)$  be the independence number, let  $\omega(G)$  be the clique number, and let  $\chi(G)$  be the chromatic number of G. Further, let  $\bar{G}$  signify the complement of G. Since it is NP-hard to compute any of  $\alpha(G)$ ,  $\omega(G)$  or  $\chi(G)$ , it is remarkable that there exists an efficiently computable function  $\vartheta(G)$  that is "sandwiched" between  $\alpha(G)$  and  $\chi(\bar{G})$ , i.e.  $\alpha(G) \leq \vartheta(G) \leq \chi(\bar{G})$ . Passing to complements, and letting  $\bar{\vartheta}(G) = \vartheta(\bar{G})$ , we have  $\omega(G) \leq \bar{\vartheta}(G) \leq \chi(G)$ . The function  $\vartheta$  was introduced by Lovász, and is called the Lovász number of G (cf. [16,21]).

Though  $\vartheta(G)$  is sandwiched between  $\alpha(G)$  and  $\chi(G)$ , Feige [7] proved that the gap between  $\alpha(G)$  and  $\vartheta(G)$  or between  $\chi(\bar{G})$  and  $\vartheta(G)$  can be as large as  $n^{1-\varepsilon}$ ,  $\varepsilon>0$ . Indeed, unless NP=coRP, none of  $\alpha(G)$ ,  $\omega(G)$ ,  $\chi(G)$  can be approximated within a factor of  $n^{1-\varepsilon}$ ,  $\varepsilon>0$ , in polynomial time [17,9]. However, though there exist graphs G such that  $\vartheta(G)$  is not a good approximation of  $\alpha(G)$  (or  $\bar{\vartheta}(G)$  of  $\chi(G)$ ), it might be the case that the Lovász number performs well on "average" instances. In fact, several algorithms for random and semirandom graph problems are based on computing  $\vartheta$  [4,5,8]. Therefore, the aim of this paper is to study the Lovász number of random graphs more thoroughly.

The standard model of a random graph is the binomial model  $G_{n,p}$ , pioneered by Erdős and Renyi. We let 0 be a number that may depend on <math>n. Let  $V = \{1, \ldots, n\}$ . Then the random graph  $G_{n,p}$  is obtained by including each of the  $\binom{n}{2}$  possible edges  $\{v, w\}$ ,  $v, w \in V$ , with probability p independently. Though  $G_{n,p}$  may fail to model some types of input instances appropriately, both the combinatorial structure and the algorithmic theory of

<sup>\*</sup> supported by the Deutsche Forschungsgemeinschaft (grant DFG FOR 413/1-1).

S. Arora et al. (Eds.): APPROX 2003+RANDOM 2003, LNCS 2764, pp. 228–239, 2003.

<sup>©</sup> Springer-Verlag Berlin Heidelberg 2003

 $G_{n,p}$  are of fundamental interest [18,12]. We say that  $G_{n,p}$  has some property A with high probability (whp.), if  $\lim_{n\to\infty} P(G_{n,p}$  has property A) = 1.

We also address two further SDP relaxations  $\vartheta_{1/2}$ ,  $\vartheta_2$  of  $\alpha$  (cf. [27]) on random graphs. These relaxations satisfy  $\alpha(G) \leq \vartheta_{1/2}(G) \leq \vartheta(G) \leq \vartheta_2(G) \leq \chi(\bar{G})$ , for all G. Passing to complements, and setting  $\bar{\vartheta}_i(G) = \vartheta_i(\bar{G})$  (i = 1/2, 2), one gets  $\omega(G) \leq \bar{\vartheta}_{1/2}(G) \leq \bar{\vartheta}(G) \leq \bar{\vartheta}_2(G) \leq \chi(G)$ . The relaxation  $\bar{\vartheta}_{1/2}(G)$  coincides with the well-known vector chromatic number  $\chi(G)$  of Karger, Motwani, and Sudan [20].

The Concentration of  $\bar{\vartheta}$ ,  $\bar{\vartheta}_{1/2}$ ,  $\bar{\vartheta}_2$ . A remarkable fact concerning the chromatic number of sparse random graphs  $G_{n,p}$ ,  $p \leq n^{-\varepsilon-1/2}$ , is that  $\chi(G_{n,p})$  is concentrated in an interval of constant length. Indeed, Shamir and Spencer [26] proved that there is a function u = u(n,p) such that in the case  $p = n^{-\beta}$ ,  $1/2 < \beta < 1$ , we have  $P(u \leq \chi(G_{n,p}) \leq u + \lceil (2\beta+1)/(2\beta-1) \rceil) = 1 - o(1)$ . Furthermore, Luczak [25] showed that in the case  $5/6 < \beta < 1$ , the chromatic number is concentrated in width one. In fact, Alon and Krivelevich [2] could prove that two point concentration holds for the entire range  $p = n^{-\beta}$ ,  $1/2 < \beta < 1$ . The two following theorems state similar results as given by Shamir and Spencer and by Luczak for the relaxations  $\bar{\vartheta}_{1/2}(G_{n,p})$ ,  $\bar{\vartheta}(G_{n,p})$ , and  $\bar{\vartheta}_2(G_{n,p})$  of the chromatic number.

**Theorem 1.** Suppose that  $c_0/n \leq p \leq n^{-\beta}$  for some large constant  $c_0 > 0$  and some number  $1/2 < \beta < 1$ . Then  $\bar{\vartheta}_{1/2}(G_{n,p})$ ,  $\bar{\vartheta}(G_{n,p})$ ,  $\bar{\vartheta}_2(G_{n,p})$  are concentrated in width  $s = \frac{2}{2\beta - 1} + o(1)$ , i.e. there exist numbers u, u', u'' depending on n and p such that whp.  $u \leq \bar{\vartheta}_{1/2}(G_{n,p}) \leq u + s$ ,  $u' \leq \bar{\vartheta}(G_{n,p}) \leq u' + s$ , and  $u'' \leq \bar{\vartheta}_{1/2}(G_{n,p}) \leq u'' + s$ .

**Theorem 2.** Suppose that  $c_0/n for some large constant <math>c_0$  and some  $\delta > 0$ . Then  $\bar{\vartheta}_{1/2}(G_{n,p})$ ,  $\bar{\vartheta}(G_{n,p})$ , and  $\bar{\vartheta}_2(G_{n,p})$  are concentrated in width 1.

In contrast to the chromatic number,  $\bar{\vartheta}_{1/2}$ ,  $\bar{\vartheta}$ , and  $\bar{\vartheta}_2$  need not be integral. Therefore, the above results do *not* imply that  $\bar{\vartheta}_{1/2}(G_{n,p})$ ,  $\bar{\vartheta}(G_{n,p})$ ,  $\bar{\vartheta}_2(G_{n,p})$  are concentrated on a constant number of points.

The Probable Value of  $\vartheta(G_{n,p})$ ,  $\bar{\vartheta}(G_{n,p})$ , etc. Concerning the probable value of  $\vartheta(G_{n,p})$  and  $\bar{\vartheta}(G_{n,p})$ , Juhász [19] gave the following partial answer: If  $\ln(n)^6/n \ll p \leq 1/2$ , then with high probability we have  $\vartheta(G_{n,p}) = \Theta(\sqrt{n/p})$  and  $\bar{\vartheta}(G_{n,p}) = \Theta(\sqrt{np})$ . However, we shall indicate in Sec. 4 that Juhász's proof fails in the case of sparse random graphs (e.g. np = O(1)). Making use of concentration results on  $\vartheta$ ,  $\bar{\vartheta}$  etc., we can compute the probable value not only of  $\vartheta(G_{n,p})$  and  $\bar{\vartheta}(G_{n,p})$ , but also of  $\vartheta_i(G_{n,p})$  and  $\bar{\vartheta}_i(G_{n,p})$ , i = 1/2, 2, for essentially the entire range of edge probabilities p.

**Theorem 3.** Suppose that  $c_0/n \le p \le 1/2$  for some large constant  $c_0 > 0$ . Then there exist constants  $c_1, c_2, c_3, c_4 > 0$  such that

$$c_1\sqrt{n/p} \le \vartheta_{1/2}(G_{n,p}) \le \vartheta(G_{n,p}) \le \vartheta_2(G_{n,p}) \le c_2\sqrt{n/p}$$
and 
$$c_3\sqrt{np} \le \bar{\vartheta}_{1/2}(G_{n,p}) \le \bar{\vartheta}(G_{n,p}) \le \bar{\vartheta}_2(G_{n,p}) \le c_4\sqrt{np}$$
(1)

with high probability. More precisely,

$$P(c_3\sqrt{np} \le \bar{\vartheta}_{1/2}(G_{n,p}) \le \bar{\vartheta}(G_{n,p}) \le \bar{\vartheta}_2(G_{n,p}) \ge 1 - \exp(-n). \tag{2}$$

Assume that  $c_0/n \leq p = o(1)$ . Then  $\alpha(G_{n,p}) \sim 2\ln(np)/p$  and  $\chi(G_{n,p}) \sim np/(2\ln(np))$  whp. (cf. [18]). Hence, Thm. 3 shows that  $\vartheta_2(G_{n,p})$  ( $\bar{\vartheta}_{1/2}(G_{n,p})$ ) approximates  $\alpha(G_{n,p})$  ( $\chi(G_{n,p})$ ) within a factor of  $O(\sqrt{np})$ . In fact, if np = O(1), then we get a constant factor approximation. Our estimate on the vector chromatic number  $\bar{\vartheta}_{1/2}(G_{n,p})$  answers a question of Krivelevich [22].

Finally, consider the random regular graph  $G_{n,r}$ . The proof of the following theorem is somewhat technical, and is omitted.

**Theorem 4.** Let  $c_0$  be a sufficiently large constant, and let  $c_0 \leq r = o(n^{1/4})$ . There are constants  $c_1, c_2 > 0$  such that whp. the random regular graph  $G_{n,r}$  satisfies  $c_1 n / \sqrt{r} \leq \vartheta_{1/2}(G_{n,r}) \leq \vartheta(G_{n,r}) \leq \vartheta_2(G_{n,r}) \leq c_2 n / \sqrt{r}$ . Moreover, there is a constant  $c_3 > 0$  such that in the case  $c_0 \leq r = o(n^{1/2})$  we have  $P(c_3 \sqrt{r} \leq \bar{\vartheta}_{1/2}(G_{n,r}) \leq \bar{\vartheta}_{0}(G_{n,r}) \leq \bar{\vartheta}_{0}(G_{n,r}) \geq 1 - \exp(-n)$ .

**Algorithmic Applications.** There are two types of algorithms for NP-hard random graph problems. First, there are *heuristics* that *always* run in polynomial time, and *almost always* output a good solution. On the other hand, there are algorithms that guarantee some approximation ratio on *any* input instance, and which have a polynomial *expected* running time when applied to  $G_{n,p}$ . In this paper, we deal with algorithms with a polynomial expected running time.

First, we consider the maximum independent set problem in random graphs. Krivelevich and Vu [23] gave an algorithm that in the case  $p\gg n^{-1/2}$  approximates the independence number of  $G_{n,p}$  in polynomial expected time within a factor of  $O(\sqrt{np}/\ln(np))$ . Moreover, they ask whether a similar algorithm exists for smaller values of p. As a first answer, Coja-Oghlan and Taraz [4], gave an  $O(\sqrt{np}/\ln(np))$ -approximative algorithm for the case  $p\gg \ln(n)^6/n$ .

**Theorem 5.** Suppose that  $c_0/n \le p \le 1/2$ . There is an algorithm ApproxMIS that for any input graph G outputs an independent set of size at least  $\frac{\alpha(G) \ln(np)}{c_1 \sqrt{np}}$ , and which applied to  $G_{n,p}$  runs in polynomial expected time. Here  $c_0, c_1 > 0$  denote constants.

As a second application, we give an algorithm for deciding within polynomial expected time whether the input graph is k-colorable. Instead of  $G_{n,p}$ , we shall even consider the semirandom model  $G_{n,p}^+$  that allows for an adversary to add edges to the random graph. We say that the expected running time of an algorithm  $\mathcal{A}$  is polynomial over  $G_{n,p}^+$ , if there is some constant l such that the expected running time of  $\mathcal{A}$  is  $O(n^l)$  regardless of the behavior of the adversary.

**Theorem 6.** Suppose that  $k = o(\sqrt{n})$ , and that  $p \ge c_0 k^2/n$ , for some constant  $c_0 > 0$ . There exists an algorithm  $\mathsf{Decide}_k$  that for any input graph G decides whether G is k-colorable, and that applied to  $G_{n,p}^+$  has a polynomial expected running time.

The algorithm  $\operatorname{Decide}_k$  is essentially identical with Krivelevich's algorithm for deciding k-colorability in polynomial expected time [22]. However, the analysis given in [22] requires that  $np \geq \exp(\Omega(k))$ . The improvement results from the fact that the analysis given in this paper relies on the asymptotics for  $\bar{\vartheta}_{1/2}(G_{n,p})$  derived in Thm. 3 (instead of the concept of semi-colorings). Finally, we mention that our algorithm  $\operatorname{Decide}_k$  also applies to random regular graphs  $G_{n,r}$ .

**Theorem 7.** Suppose that  $c_0k^2 \le r = o(n^{1/2})$  for some constant  $c_0 > 0$ . Then, applied to  $G_{n,r}$ , the algorithm  $Decide_k$  has polynomial expected running time.

**Notation.** Throughout we let  $V = \{1, \ldots, n\}$ . If G = (V, E) is a graph, then A(G) is the adjacency matrix of G. By  $\mathbf{1}$  we denote the vector with all entries = 1, and J denotes a square matrix with all entries = 1. If M is a real symmetric  $n \times n$ -matrix, then  $\lambda_1(M) \ge \cdots \lambda_n(M)$  signify the eigenvalues of M.

## 2 Preliminaries

Let G = (V, E) be a graph, let  $(v_1, \ldots, v_n)$  be an n-tuple of unit vectors in  $\mathbf{R}^n$ , and let k > 1. Then  $(v_1, \ldots, v_n)$  is a vector k-coloring of G if  $\langle v_i, v_j \rangle \leq -1/(k-1)$  for all edges  $\{i, j\} \in E$ . Furthermore,  $(v_1, \ldots, v_n)$  is a strict vector k-coloring if  $\langle v_i, v_j \rangle = -1/(k-1)$  for all  $\{i, j\} \in E$ . Finally, we say that  $(v_1, \ldots, v_n)$  is a rigid vector k-coloring if  $\langle v_i, v_j \rangle = -1/(k-1)$  for all  $\{i, j\} \notin E$  and  $\langle v_i, v_j \rangle \geq -1/(k-1)$  for all  $\{i, j\} \notin E$ . Following [20,14,3], we define

$$\begin{split} \bar{\vartheta}_{1/2}(G) &= \inf\{k > 1 | \ G \ \text{admits a vector } k\text{-coloring}\}, \\ \bar{\vartheta}(G) &= \bar{\vartheta}_1(G) = \inf\{k > 1 | \ G \ \text{admits a strict vector } k\text{-coloring}\}, \\ \bar{\vartheta}_2(G) &= \inf\{k > 1 | \ G \ \text{admits a rigid vector } k\text{-coloring}\}. \end{split} \tag{3}$$

Observe that  $\bar{\vartheta}_{1/2}(G)$  is precisely the *vector chromatic number* introduced by Karger, Motwani, and Sudan [20];  $\bar{\vartheta}_2$  occurs in [14,27]. Further, we let  $\vartheta_{1/2}(G) = \bar{\vartheta}_{1/2}(\bar{G})$ ,  $\vartheta(G) = \vartheta_1(G) = \bar{\vartheta}(\bar{G})$ , and  $\vartheta_2(G) = \bar{\vartheta}_2(\bar{G})$ . It is shown in [20] that the above definition of  $\vartheta$  is equivalent with Lovász's original definition (cf. [16]).

**Proposition 8.** Let G = (V, E) be a graph of order n, and let  $S \subset V$ . Let G[S] denote the subgraph of G induced on S. Then  $\vartheta_i(G) \leq \vartheta_i(G[S]) + \vartheta_i(G[V \setminus S])$ .

It is obvious from the definitions that for any weak subgraph H of G we have  $\bar{\vartheta}_i(H) \leq \bar{\vartheta}_i(G), \ i \in \{1/2,1,2\}$ . In addition to  $\vartheta, \ \vartheta_{1/2}, \ \text{and} \ \vartheta_2, \ \text{we consider the semidefinite relaxation of MAX CUT invented by Goemans and Williamson [15]: <math>\mathrm{SMC}(G) = \max \sum_{i < j} \frac{a_{ij}}{2} \left(1 - \langle v_i, v_j \rangle \right) \ \mathrm{s.t.} \ \|v_i\| = 1, \ \text{where the max is taken over} \ v_1, \ldots, v_n \in \mathbf{R}^n.$ 

Finally, we need the following concentration result on  $\vartheta_{1/2}$ ,  $\vartheta$ ,  $\vartheta_2$ . For  $\vartheta$ , the proof can be found in [5]. Using suitable characterizations of  $\vartheta_{1/2}$ ,  $\vartheta_2$ , the argument given in [5] can be adapted to cover these cases as well.

**Theorem 9.** Suppose that  $p \leq 0.99$ , and that  $n \geq n_0$  for a certain constant  $n_0 > 0$ . Let m be a median of  $\vartheta(G_{n,p})$ .

```
i. Let \xi \ge \max\{10, m^{1/2}\}. Then P(\vartheta(G_{n,p}) \ge m + \xi) \le 30 \exp(-\xi^2/(5m + 10\xi)). ii. Let \xi > 10. Then P(\vartheta(G_{n,p}) \le m - \xi) \le 3 \exp(-\xi^2/10m).
```

The same holds with  $\vartheta$  replaced by  $\vartheta_{1/2}$  or by  $\vartheta_2$ .

#### 3 The Concentration Results

**Proof of Thm. 1.** Let p and  $\beta$  be as in Thm. 1. The proof is based on the following large deviation result, which is a consequence of Azuma's inequality.

**Lemma 10.** Suppose that  $X: G_{n,p} \to \mathbf{R}$  is a random variable that satisfies the following conditions for all graphs G = (V, E).

- For all  $v \in V$  the following holds. Let  $G^* = G + \{\{v, w\} | w \in V, w < v\}$ , and let  $G_* = G \{\{v, w\} | w \in V, w < v\}$ . Then  $|X(G^*) X(G_*)| \le 1$ .
- If H is a weak subgraph of G, then  $X(H) \leq X(G)$ .

Then 
$$P(|X - E(X)| > t\sqrt{n}) \le 2 \exp(-t^2/2)$$
.

Let  $\omega=\omega(n)$  be a sequence tending to infinity slowly, e.g.  $\omega(n)=\ln\ln(n)$ . Furthermore, let  $k=k(n,p)=\inf\{x>0|\ P(\bar{\vartheta}_2(G_{n,p})\leq x)\geq \omega^{-1}\}$ . For any graph G=(V,E) let  $Y(G)=\min\{\#U|\ U\subset V,\ \bar{\vartheta}_2(G-U)\leq k\}$ . Then  $\bar{\vartheta}_2(G)\leq k$  if and only if Y(G)=0. Hence,  $P(Y=0)\geq \omega^{-1}$ . Moreover, by Prop. 8, the random variable Y satisfies the assumptions of L. 10. Let  $\mu=\mathrm{E}(Y)$ . Then  $\mu\leq \sqrt{n}\omega$ . Thus, by L. 10,  $Y\leq 2\sqrt{n}\omega$  with high probability. The following lemma is implicit in [26] (cf. the proof of L. 8 in [26]).

**Lemma 11.** Let  $\delta > 0$ . Whp. the random graph  $G = G_{n,p}$  enjoys the following property. If  $U \subset V$ ,  $\#U \leq 2\sqrt{n}\omega$  then  $\chi(G[U]) \leq s$ , where  $s > \frac{2}{2\beta-1} + \delta$ .

To conclude the proof of Thm. 1, let  $G = G_{n,p}$ , and suppose that there is some  $U \subset V$ ,  $\#U \leq 2\sqrt{n}\omega$ , such that  $\bar{\vartheta}_2(G-U) \leq k \leq \bar{\vartheta}_2(G)$ . Since by L. 11  $\bar{\vartheta}_2(G[U]) \leq \chi(G[U]) \leq s$  whp., Prop. 8 entails that  $k \leq \bar{\vartheta}_2(G) \leq k + s$  whp.

**Proof of Thm. 2.** Let  $\omega$  be a sequence tending to infinity slowly. The random graph  $G = G_{n,p}$  admits no  $U \subset V$ ,  $\#U \leq \omega^3 \sqrt{n}$ , spanning more than  $3(\#U - \varepsilon)/2$  edges whp., where  $\varepsilon > 0$  is a small constant. Let k be as in the proof of Thm. 1. Then whp. there is a set  $U \subset V$ ,  $\#U \leq \omega \sqrt{n}$ , such that  $\bar{\vartheta}_2(G - U) \leq k$ . Following Łuczak [25], we let  $U = U_0$ , and construct a sequence  $U_0, \ldots, U_m$  as follows. If there is no edge  $\{v, w\} \in E$  with  $v, w \in N(U_i) \setminus U_i$ , then we let m = i and finish. Otherwise, we let  $U_{i+1} = U_i \cup \{v, w\}$  and continue. Then  $m \leq i$ 

 $m_0 = \omega^2 \sqrt{n}$ , because otherwise  $\#U_{m_0} = (2 + o(1))\omega^2 \sqrt{n}$  and  $\#E(G[U_{m_0}]) \ge 3(1 - o(1))\#U_{m_0}/2$ . Let  $R = U_m$ .

By L. 11,  $\bar{\vartheta}_2(G[R]) \leq \chi(G[R]) \leq 3$ . Furthermore,  $I = N(R) \setminus R$  is an independent set. Let  $G_1 = G[R \cup I]$ ,  $S = V \setminus (R \cup I)$ , and  $G_2 = G[S \cup I]$ . Then  $\bar{\vartheta}_2(G_2) \leq k$ , and  $\bar{\vartheta}_2(G_1) \leq 4$ . In order to prove that  $\bar{\vartheta}_2(G) \leq k+1$ , we shall first construct a rigid vector k+1-coloring of  $G_2$  that assigns the same vector to all vertices in I. Thus, let  $(x_v)_{v \in S \cup I}$  be a rigid vector k-coloring of  $G_2$ . Let x be a unit vector perpendicular to  $x_v$  for all  $v \in S$ . Moreover, let  $\alpha = (k^2 - 1)^{-1/2}$ , and set  $y_v = (\alpha^2 + 1)^{-1/2}(x_v - \alpha x)$  for  $v \in S$ , and  $y_v = x$  for  $v \in I$ . Then  $(y_v)_{v \in S \cup I}$  is a rigid vector (k+1)-coloring of  $G_2$ . In a similar manner, we can construct a rigid vector 4-coloring  $(y'_v)_{v \in R \cup I}$  of  $G_1$  that assigns the same vector x' to all vertices in I.

Applying a suitable orthogonal transformation if necessary, we may assume that x = x'. Let  $l = \max\{4, k+1\}$ . Since  $N(R) \subset R \cup I$ , we obtain a rigid vector l-coloring  $(z_v)_{v \in V}$  of G, where  $z_v = y_v$  if  $v \in S \cup I$ , and  $z_v = y_v'$  if  $v \in R$ . By the lower bound on  $\bar{\vartheta}_2(G_{n,p})$  in Thm. 3 (which does not rely on Thm. 2 of course), choosing  $c_0$  large enough we may assume that  $k \geq 4$ , whence  $k \leq \bar{\vartheta}_2(G) \leq k+1$ .

## 4 The Probable Value of $\vartheta(G_{n,p})$ , $\bar{\vartheta}(G_{n,p})$ , etc.

## 4.1 The Lower Bound on $\bar{\vartheta}_{1/2}(G_{n,p})$

To bound  $\bar{\vartheta}_{1/2}(G_{n,p})$  from below, we make use of an estimate on the probable value of the SDP relaxation SMC of MAX CUT (cf. Sec. 2). Suppose that  $c_0/n \le p \le 1 - c_0/n$  for some large constant  $c_0 > 0$ . Combining Thms. 4 and 5 of [6] instantly yields that there is a constant  $\lambda > 0$  such that

$$P\left(SMC(G_{n,p}) > \frac{1}{2} {n \choose 2} p + \lambda n^{3/2} p^{1/2} (1-p)^{1/2} \right) \le \exp(-2n).$$
 (4)

Let G = (V, E) be a graph with adjacency matrix  $A = (a_{ij})_{i,j=1,...,n}$ . Let  $v_1, \ldots, v_n$  be a vector k-coloring of G, where  $k = \bar{\vartheta}_{1/2}(G) \geq 2$ . Then  $||v_i|| = 1$  for all i, and  $\langle v_i, v_j \rangle \leq -1/(k-1)$  whenever  $\{i, j\} \in E$ . Therefore,

$$SMC(G) \ge \sum_{i \le j} \frac{a_{ij}}{2} (1 - \langle v_i, v_j \rangle) \ge \#E\left(\frac{1}{2} + \frac{1}{k-1}\right). \tag{5}$$

Let  $c_0/n \le p \le 1 - c_0/n$  for some large constant  $c_0 > 0$ . By Chernoff bounds (cf. [18, p. 26]),

$$P\left(\#E(G_{n,p}) < \binom{n}{2}p - 8n^{3/2}p^{1/2}(1-p)^{1/2}\right) \le \exp(-2n).$$
 (6)

Combining (4), (5), and (6), we conclude that

$$\bar{\vartheta}_{1/2}(G_{n,p}) \ge \bar{\vartheta}_{1/2}(G_{n,p}) - 1 \ge \frac{\binom{n}{2}p - 8n^{3/2}p^{1/2}(1-p)^{1/2}}{(\lambda+4)n^{3/2}p^{1/2}(1-p)^{1/2}} \ge \frac{1}{2(\lambda+4)}\sqrt{\frac{np}{1-p}}$$

holds with probability at least  $1 - \exp(-n)$ . As  $\bar{G}_{n,p} = G_{n,1-p}$ , this proves (2) and the lower bounds in Thm. 3.

#### 4.2 Spectral Considerations

Let us briefly recall Juhász's proof that  $\vartheta(G_{n,p}) \leq (2+o(1))\sqrt{n(1-p)/p}$  for constant values of p, say. Given a graph G=(V,E), we consider the matrix  $M=M(G)=(m_{ij})_{i,j=1,\ldots,n}$ , where

$$m_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \notin E \\ (p-1)/p & \text{otherwise,} \end{cases} \quad (i \neq j), \tag{7}$$

and  $m_{ii} = 1$  for all i. Then  $\lambda_1(M) \geq \vartheta(G)$ . Moreover, as p is constant, the result of Füredi and Komlos [13] on the eigenvalues of random matrices applies and yields that  $\vartheta(G_{n,p}) \leq \lambda_1(M) \leq (2+o(1))\sqrt{n(1-p)/p}$  whp. This argument carries over to the case  $\ln(n)^7/n \leq p \leq 1/2$  (cf. [4]):

**Lemma 12.** Let  $\ln(n)^7/n \le p \le 1/2$ . Then  $||M(G_{n,p})|| \le 3\sqrt{n/p}$  whp.

However, it is easily seen that in the sparse case, e.g. if np = O(1), we have  $\lambda_1(M) \gg n$  whp. The reason is that in the case  $np \geq \ln(n)^7$  the random graph  $G_{n,p}$  is "almost regular", which is not true if np = O(1). We will get around this problem by chopping off all vertices of degree considerably larger than np, as first proposed in [1]. Thus, let  $\varepsilon > 0$  be a small constant, and consider the graph G' = (V', E') obtained from  $G = G_{n,p}$  by deleting all vertices of degree greater than  $(1 + \varepsilon)np$ .

**Lemma 13.** Suppose that  $c_0/n \le p \le \ln(n)^7/n$  for some large constant  $c_0$ . Let  $G = G_{n,p}$ , and let M' = M(G'). Then  $P(\|M'\| \le c_1 \sqrt{n/p}) \ge 9/10$ , where  $c_1 > 0$  denotes some constant.

To prove L. 13, we make use of the following lemma, which is implicit in [10, Sections 2 and 3]; the proof is based on the method of Kahn and Szemeredi [11].

**Lemma 14.** Let  $G = G_{n,p}$  be a random graph, where  $c_0/n \leq p \leq \ln(n)^7/n$  for some large constant  $c_0 > 0$ . Let n' = #V(G'),  $e = n'^{-1/2}\mathbf{1} \in \mathbf{R}^{n'}$ , and A' = A(G'). For each  $\delta > 0$  there is a constant  $C(\delta) > 0$  such that in the case  $np \geq C(\delta)$  with probability  $\geq 1 - \delta$  we have

$$\max\{|\langle A'v, e \rangle|, |\langle A'v, w \rangle|\} \le c_1 \sqrt{np} \text{ for all } v, w \perp \mathbf{1}, \|v\| = \|w\| = 1.$$
 (8)

Here  $c_1 > 0$  denotes a certain constant.

In addition, the proof of Lemma 13 needs the following observation.

**Lemma 15.** Let  $c_1$  be a large constant. The probability that in  $G = G_{n,p}$  there exists a set  $U \subset V$ ,  $\#U \ge n/2$ , such that  $|\#E(G[U]) - \#U^2p/2| \ge c_1(\#U)^{3/2}p^{1/2}$  is less than  $\exp(-n)$ .

*Proof.* There are at most  $2^n$  sets U. By Chernoff bounds (cf. [18, p. 26]), for a fixed U the probability that  $|\#E(G[U]) - \#U^2p/2| \ge c_1(\#U)^{3/2}p^{1/2}$  is at most  $\exp(-2n)$ , provided that  $c_0$ ,  $c_1$  are large enough.

Proof of Lemma 13. Let  $G = G_{n,p}$ , let n' = #V(G'), and let A', e be as in L. 14. Without loss of generality, we may assume that  $V' = V(G') = \{1, \ldots, n'\}$ . Let  $c_1 > 0$  be a sufficiently large constant. Let J signify the  $n' \times n'$  matrix with all entries equal to 1. Letting  $\delta > 0$  be sufficiently small and  $c_0 \geq C(\delta)$ , we assume in the sequel that (8) holds, and that G has the property stated in L. 15. Let  $z \in \mathbf{R}^{n'}$ , ||z|| = 1. Then we have a decomposition  $z = \alpha e + \beta v$ , ||v|| = 1,  $v \perp 1$ ,  $\alpha^2 + \beta^2 = 1$ . Since  $||M'z|| \leq ||M'e|| + ||M'v||$ , if suffices bound  $\max_{v \perp e, ||v|| = 1} ||M'v||$  and ||M'e||.

Let  $\rho: \mathbf{R}^{n'} \to \mathbf{R}^{n'}$  be the projection on the space  $\mathbf{1}^{\perp}$ . Then  $A'v = \rho A'v + \langle A'v, e \rangle e$ , whence  $||A'v|| \leq ||\rho A'v|| + c_1 \sqrt{np}$ , for all unit vectors  $v \perp \mathbf{1}$ . In order to bound  $||\rho A'v||$ , we estimate  $||\rho A'\rho||$  via (8):

$$\|\rho A'\rho\|=\sup_{\|y\|=1}|\langle \rho A'\rho y,y\rangle|=\sup_{\|y\|=1}|\langle A'\rho y,\rho y\rangle|=\sup_{\|y\|=1,\ \mathbf{1}\perp y}|\langle A'y,y\rangle|\leq c_1\sqrt{np}.$$

Consequently,  $||M'v|| = ||(J - \frac{1}{p}A')v|| = \frac{1}{p}||A'v|| \le 2c_1\sqrt{n/p} \ (v \perp 1, \ ||v|| = 1).$ 

To bound ||M'e||, note that -pM' = A' - pJ. Let  $\bar{d} = 2\#E(G')/n'$ , and  $x = A'e - (\bar{d}/n')Je$ . Then  $x \perp 1$ , and by (8) we have  $||x||^2 = \langle A'e, x \rangle - \langle (\bar{d}/n')Je, x \rangle = \langle A'e, x \rangle \leq c_1 \sqrt{np} ||x||$ , whence  $||x|| \leq c_1 \sqrt{np}$ . By L. 15,  $|\bar{d} - n'p| \leq c_1 \sqrt{np}$ . As a consequence,  $||(\bar{d}/n')Je - pJe|| \leq c_1 \sqrt{np}$ . Therefore,  $||pM'e|| \leq ||x|| + ||(\bar{d}/n')Je - pJe|| \leq 2c_1 \sqrt{np}$ , i.e.  $||M'e|| \leq 2c_1 \sqrt{n/p}$ .

## 4.3 Bounding $\vartheta_2(G_{n,p})$ from Above

Let  $c_0/n \le p \le 1/2$  for some large constant  $c_0 > 0$ . The following lemma is a consequence of the characterization of  $\bar{\vartheta}_2$  as an eigenvalue minimization problem given in [27].

**Lemma 16.** Let G be any graph. Let M = M(G). Then  $\lambda_1(M) \geq \bar{\vartheta}_2(G)$ .

In the case  $\ln(n)^7/n \le p \le 1/2$ , combining L. 12 and L. 16 yields that  $\vartheta_2(G_{n,p}) \le c_2 \sqrt{n/p}$  whp. for some constant  $c_2 > 0$ , as desired. Thus, let us assume that  $c_0/n \le p \le \ln(n)^7/n$  in the sequel. Let  $\varepsilon > 0$  be a small constant.

**Lemma 17.** With probability at least 9/10 the random  $G_{n,p}$  has at most 1/p vertices of degree greater than  $(1+\varepsilon)np$ .

Proof. For each vertex v of  $G_{n,p}$ , the degree d(v) is binomially distributed with mean (n-1)p. By Chernoff bounds (cf. [18, p. 26]), the probability that  $d(v) > (1+\varepsilon)np$  is at most  $\exp(-\varepsilon^2 np/100)$ . Hence, the expected number of vertices v such that  $d(v) > (1+\varepsilon)np$  is at most  $n \exp(-\varepsilon^2 np/100) < 1/(10p)$ , provided  $np \ge c_0$  for some large constant  $c_0 > 0$ . Therefore, the assertion follows from Markov's inequality.

Let  $G = G_{n,p}$ , and let G' = (V', E') be the graph obtained from G by deleting all vertices of degree greater than  $(1 + \varepsilon)np$ . Let  $V'' = V \setminus V'$ , and G'' = G[V'']. Combining L. 17 and L. 13, we obtain that

$$P\left(\vartheta_2(G') \le c_2 \sqrt{n/p} \text{ and } \vartheta_2(G'') \le \#V(G'') \le 1/p \le \sqrt{n/p}\right) > 1/2,$$

where  $c_2$  denotes a suitable constant. Consequently, Prop. 8 yields that

$$P(\vartheta_2(G_{n,p}) \le (c_2 + 1)\sqrt{n/p}) > 1/2.$$

Let  $\mu = (c_2 + 1)\sqrt{n/p}$ ,  $t = \ln(n)\sqrt{n}$ , and note that  $t = o(\sqrt{n/p})$ . Then, by Thm. 9,  $P(\vartheta_2(G_{n,p}) > \mu + t) \leq 30 \exp(-\Omega(\ln(n)^2)) = o(1)$ . Since  $t < \sqrt{n/p}$ , we get that  $\vartheta_2(G_{n,p}) \leq (c_2 + 2)\sqrt{n/p}$  with high probability.

## 4.4 Bounding $\bar{\vartheta}_2(G_{n,p})$ from Above

Let us first assume that  $\ln(n)^7/n \leq p \leq 1/2$ . Let  $G = (V, E) = G_{n,p}$  be a random graph, and consider the matrix  $\bar{M} = \frac{1}{1-p}E_n - \frac{p}{1-p}M(G)$ , where  $E_n$  is the  $n \times n$ -unit matrix, and M(G) is the matrix defined in (7). Combining L. 12 and L. 16, we have  $\bar{\vartheta}_2(G) \leq \lambda_1(\bar{M}) \leq \|\frac{1}{1-p}E - \frac{p}{1-p}M'\| \leq \frac{p}{1-p}\|M\| + 2 \leq c_4\sqrt{np}$  whp., where  $c_4 > 0$  is a certain constant.

Now let  $c_0/n \le p \le \ln(n)^7/n$  for some large constant  $c_0 > 0$ . In this case, the proof of our upper bound on  $\bar{\vartheta}_2(G_{n,p})$  relies on the concentration result Thm. 2.

**Lemma 18.** Whp. the random graph  $G = G_{n,p}$  admits no set  $U \subset V$ ,  $\#U \leq 1/p$ , such that  $\chi(G[U]) > \sqrt{np}$ .

*Proof.* We shall prove that for all  $U \subset V$ ,  $\#U = \nu \leq 1/p$ , we have  $\#E(G[U]) < \nu \sqrt{np}/2$ . Then each subgraph G[U] has a vertex of degree  $<\sqrt{np}$ , a fact which immediately implies our assertion. Thus, let  $\nu \leq 1/p$ . The probability that there exists some  $U \subset V$ ,  $\#U = \nu$ ,  $\#E(G[U]) \geq \nu \sqrt{np}/2$ , is at most

$$\binom{n}{\nu} \binom{\binom{\nu}{2}}{\nu\sqrt{np}/2} p^{\nu\sqrt{np}/2} \le \left(\frac{\mathrm{e}n}{\nu} \left(\frac{\mathrm{e}\nu\sqrt{p}}{\sqrt{n}}\right)^{\sqrt{np}/2}\right)^{\nu}$$

Let  $b_{\nu}=(\mathrm{e}n/\nu)(\mathrm{e}\nu\sqrt{p}/\sqrt{n})^{\sqrt{np}/2}$ . Observe that the sequence  $(b_{\nu})_{\nu=1,\dots,n}$  is monotone increasing, and that  $b_{1/p}=\mathrm{e}np(\mathrm{e}/\sqrt{np})^{\sqrt{np}/2}\leq \exp(-2)$ . Therefore,  $\sum_{\nu=\ln(n)}^{1/p}b_{\nu}^{\nu}\leq b_{1/p}^{\ln(n)}/p\leq n^{-2}p^{-1}=o(1)$ . Moreover, if  $\nu\leq\ln(n)$ , then  $b_{\nu}\leq \mathrm{e}n\nu^{-1}(\mathrm{e}\nu\sqrt{p}/\sqrt{n})^{\sqrt{np}/2}\leq 1/n$ , whence  $\sum_{\nu=1}^{\ln n}b_{\nu}^{\nu}=o(1)$ . Thus,  $\sum_{\nu=1}^{1/p}b_{\nu}^{\nu}=o(1)$ , thereby proving the lemma.

Let  $G=(V,E)=G_{n,p}$  be a random graph, and let G'=(V',E') be the graph obtained from G by removing all vertices of degree greater than  $(1+\varepsilon)np$ , where  $\varepsilon>0$  is small but constant. Let  $V''=V\setminus V'$ , and let G''=G[V'']. By L. 17, with probability at least 9/10 we have  $\#V''\leq 1/p$ . Therefore, by L. 18,  $P(\bar{\vartheta}_2(G'')\leq \sqrt{np})\geq P(\chi(G'')\leq \sqrt{np})\geq 9/11$ . To bound  $\bar{\vartheta}_2(G')$ , we consider the matrix  $\bar{M}=\frac{1}{1-p}E_{n'}-\frac{p}{1-p}M(G')$ . By L.  $16, \bar{\vartheta}_2(G')\leq \lambda_1(\bar{M})$ . Moreover, by L. 13, with probability  $\geq 9/10$  we have  $\bar{\vartheta}_2(G')\leq \lambda_1(\bar{M})\leq \frac{p}{1-p}\|M'\|+2\leq c_4\sqrt{np}$ , for some constant  $c_4>0$ . Prop. 8 implies that  $\bar{\vartheta}_2(G)\leq \bar{\vartheta}_2(G')+\bar{\vartheta}_2(G'')$ , whence we conclude that  $P(\bar{\vartheta}_2(G_{n,p})\leq (c_4+1)\sqrt{np})>1/2$ . Since Thm. 2 shows that  $\bar{\vartheta}_2(G_{n,p})$  is concentrated in width one, we have

$$P\left(\bar{\vartheta}_{1/2}(G_{n,p}) \le \bar{\vartheta}(G_{n,p}) \le \bar{\vartheta}_{2}(G_{n,p}) \le (c_4 + 1)\sqrt{np} + 1\right) = 1 - o(1),$$

thereby completing the proof of Thm. 3.

Remark 19. One could prove slightly weaker results on the probable value of  $\vartheta(G_{n,p})$  and  $\bar{\vartheta}(G_{n,p})$  than provided by Thm. 3 without applying any concentration results, or bounds on the SDP relaxation SMC of MAX CUT. Indeed, using only L. 17, 18, 13 (thus implicitly [10]) and the estimates proposed in [19], one could show that for each  $\delta > 0$  there is  $C(\delta) > 0$  such that  $P(c_1 \sqrt{n/p} \le \vartheta(G_{n,p}) \le c_2 \sqrt{n/p}) \ge 1 - \delta$  and  $P(c_3 \sqrt{np} \le \bar{\vartheta}(G_{n,p}) \le c_4 \sqrt{np}) \ge 1 - \delta$ , provided  $np \ge C(\delta)$ . Such an approach is mentioned without proof independently in the latest version of [10].

# 5 Approximating the Independence Number and Deciding k-Colorability

Approximating the Independence Number. The algorithm ApproxMIS for approximating the independence number consists of two parts. First, we employ a certain greedy procedure that on input  $G = G_{n,p}$  finds a large independent set whp. Secondly, we compute  $\vartheta(G)$  to bound  $\alpha(G)$  from above. Following [23], to find a large independent set of  $G = G_{n,p}$ , we run the greedy algorithm for graph coloring and pick the largest color class it produces.

**Lemma 20.** The probability that the largest color class produced by the greedy coloring algorithm contains  $< \ln(np)/(2p)$  vertices is at most  $\exp(-n)$ .

*Proof.* The proof given in [23] for the case that  $p \geq n^{\varepsilon - 1/2}$  carries over.

The following algorithm is essentially identical with the one given in [4].

## Algorithm 21. ApproxMIS(G)

Input: A graph G = (V, E). Output: An independent set of G.

- 1. Run the greedy algorithm for graph coloring on input G. Let I be the largest resulting color class. If  $\#I < \ln(np)/(2p)$ , then go to 5.
- 2. Compute  $\vartheta(G)$ . If  $\vartheta(G) \leq C\sqrt{n/p}$ , then output I and terminate. Here C denotes some sufficiently large constant (cf. the analysis below).
- 3. Check whether there exists a subset S of V,  $\#S = 25 \ln(np)/p$ , such that  $\#V \setminus (S \cup N(S)) > 12(n/p)^{1/2}$ . If no such set exists, then output I and terminate.
- 4. Check whether in G there is an independent set of size  $12(n/p)^{1/2}$ . If this is not the case, then output I and terminate.
- 5. Enumerate all subsets of V and output a maximum independent set.

## **Lemma 22.** The expected running time of ApproxMIS $(G_{n,p})$ is polynomial.

*Proof.* The first two steps can be implemented in polynomial time. By Thm. 3, the median  $\mu$  of  $\vartheta(G_{n,p})$  is at most  $c\sqrt{n/p}$ , for some constant c. Therefore, Thm. 9 entails that the probability that ApproxMIS runs step 3 is less than  $\exp(-(n/p)^{1/2})$ , provided C is large enough. Furthermore, up to polynomial

factors, step 3 consumes time  $\leq \exp(25\ln(np)^2/p) < \exp(\sqrt{n/p})$ . Hence, the expected time spent executing step 3 is polynomial. Taking into account L. 20, the expected running time of the remaining steps can be estimated as in the proof of Thm. 4 in [4].

Finally, it is not hard to show that ApproxMIS guarantees the desired approximation ratio.

**Deciding k-Colorability.** Following [22], we decide k-colorability by computing the vector chromatic number of the input graph. Let k = k(n) be a sequence of positive integers such that  $k(n) = o(\sqrt{n})$ . Since the vector chromatic number is always a lower bound on the chromatic number, the answer of the following algorithm is correct for all input graphs G.

## **Algorithm 23.** Decide $_k(G)$

Input: A graph G = (V, E). Output: Either " $\chi(G) \leq k$ " or " $\chi(G) > k$ ".

- 1. If  $\bar{\vartheta}_{1/2}(G) > k$  then terminate with output " $\chi(G) > k$ ".
- 2. Otherwise, compute  $\chi(G)$  in time  $o(\exp(n))$  using Lawler's algorithm [24], and answer correctly.

**Lemma 24.** Suppose that  $p \geq Ck^2/n$  for some large constant C. Then the expected running time of  $\operatorname{Decide}_k(G_{n,p}^+)$  is polynomial.

*Proof.* In [20] it is shown that  $\bar{\vartheta}_{1/2}$  can be computed in polynomial time. Since the second step consumes time  $o(\exp(n))$ , (2) shows that the expected running time of  $\operatorname{Decide}_k$  on input  $G_{n,p}^+$  is polynomial.

The analysis of  $Decide_k$  on input  $G_{n,r}$ ,  $r \geq Ck^2$ , is based on Thm. 4 and yields the proof of Thm. 7.

**Acknowledgment.** I am grateful to M. Krivelevich and C. Helmberg for helpful discussions, and to U. Feige and E. Ofek for providing me with their technical report [10].

#### References

- Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. Comput. 26 (1997) 1733–1748
- 2. Alon, N., Krivelevich, M.: The concentration of the chromatic number of random graphs. Combinatorica  ${\bf 17}$  303–313
- 3. Charikar, M.: On semidefinite programming relaxations for graph coloring and vertex cover. Proc. 13th SODA (2002) 616–620
- 4. Coja-Oghlan, A., Taraz, A.: Exact and approximative algorithms for colouring G(n,p). preprint (available from http://www.informatik.hu-berlin.de/ $\sim$ coja/). A preliminary version has appeard in Proc. 20th STACS (2003) 487–498

- Coja-Oghlan, A.: Finding large independent sets in polynomial expected time. Proc. 20th STACS (2003) 511–522
- Coja-Oghlan, A., Moore, C., Sanwalani, V.: MAX k-CUT and approximating the chromatic number of random graphs. available from http://www.informatik.huberlin.de/~coja/. An extended abstract version has appeared in Proc. ICALP 2003.
- 7. Feige, U.: Randomized graph products, chromatic numbers, and the Lovász theta function. Combinatorica 17(1) 79–90
- Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and System Sci. 63 (2001) 639–671
- 9. Feige, U. and Kilian, J.: Zero knowledge and the chromatic number. Proc. 11th IEEE Conf. Comput. Complexity (1996) 278–287.
- Feige, U., Ofek, E.: Spectral techniques applied to sparse random graphs, report MCS03-01, Weizmann Institute (2003) (available from http://www.wisdom.weizmann.ac.il/math/research.shtml)
- Friedman, J., Kahn, J., Szemeredi, E.: On the second eigenvalue in random regular graphs. Proc. 21st STOC (1989) 587–598.
- Frieze, A., McDiarmid, C.: Algorithmic theory of random graphs. Random Structures & Algorithms 10 (1997) 5–42
- 13. Füredi, Z., Komloś, J.: The eigenvalues of random symmetric matrices, Combinatorica  ${\bf 1}$  (1981) 233–241
- 14. Goemans, M.X., Kleinberg, J.: The Lovasz theta function and a semidefinite programming relaxation of vertex cover. SIAM J. on Discrete Math. 11 (1998) 1–48
- Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfyability problems using semidefinite programming. J. ACM 42 (1995) 1115–1145.
- Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer (1988)
- 17. Håstad, J.: Clique is hard to approximate within  $n^{1-\varepsilon}$ . Proc. 37th FOCS (1996) 627–636
- 18. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley (2000)
- 19. Juhász, F.: The asymptotic behaviour of Lovász  $\vartheta$  function for random graphs. Combinatorica **2** (1982) 269–270
- Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45 (1998) 246–265
- 21. Knuth, D.: The sandwich theorem, Electron. J. Combin. 1 (1994)
- 22. Krivelevich, M.: Deciding k-colorability in expected polynomial time, Information Processing Letters 81 (2002), 1–6
- Krivelevich, M., Vu, V.H.: Approximating the independence number and the chromatic number in expected polynomial time. J. of Combinatorial Optimization 6 (2002) 143–155
- 24. Lawler, E.L.: A note on the complexity of the chromatic number problem, Information Processing Letters 5 (1976) 66–67
- 25. Luczak, T.: A note on the sharp concentration of the chromatic number of random graphs. Combinatorica 11 (1991) 45–54
- 26. Shamir, E., Spencer, J.: Sharp concentration of the chromatic number of random graphs  $G_{n,p}$ . Combinatorica **7** (1987) 121–129
- 27. Szegedy, M.: A note on the  $\theta$  number of Lovász and the generalized Delsarte bound. Proc. 35th FOCS (1994) 36–39