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Abstract. Given an edge-weighted transportation network G and a
list of transportation requests L, the stacker crane problem is to find
a minimum-cost tour for a server along the edges of G that serves all
requests. The server has capacity one, and starts and stops at the same
vertex. In this paper, we consider the case that the transportation net-
work G is a tree, and that the requests are chosen randomly according to
a certain class of probability distributions. We show that a polynomial
time algorithm by Frederickson and Guan [I1], which guarantees a 4/3-
approximation in the worst case, on almost all inputs finds a minimum-
cost tour, along with a certificate of the optimality of its output.

1 Introduction

The Stacker Crane Problem (SCP) is among the classical tour problems that
have been studied since the early days of computing [T2JT7[3]. An illustrating
application is scheduling a delivery truck [I7]: Given transportation jobs that
consist of a pickup and a delivery location, the truck must traverse a certain
distance to complete the jobs. This distance depends on the order the truck
chooses to serve the jobs, and the goal is to find an order minimizing the distance.
In the following precise definition of the SCP, the order of the jobs is not explicit.
However, it can be extracted from any Euler tour of (V, LU A):

Definition 1 (Stacker Crane Problem SCP). An instance of the Stacker
Crane Problem SCP consists of an undirected graph G = (V, E) with edge-lengths
l:E — IRSr and a list L of pairs of vertices, called requests. A solution is a multi-
set A of pairs (u,v) where {u,v} € E such that the directed multi-graph (V, LUA)
1s Eulerian after removal of isolated vertices. The cost of A is the total length
of an Euler tour in (V, LU A), where the length of an arc (u,v) equals the length
of a shortest path between u and v in G with respect to £. We denote the cost of
an optimum solution by SCP(G, L).
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As it is a generalization of the TSP, it is clear that a polynomial time al-
gorithm for the SCP is not likely to exist. There is an important special case
of the SCP, where the underlying graph G is a tree. This case arises e.g. in
applications to warehouses that are operated by automated item transportation
devices (stacker cranes) [9J7]. The worst case tractability of the SCP on trees
has been investigated thoroughly in [I1]. In that paper it is shown that the SCP
on trees is hard, and that there is a 5/4-approximation algorithm for it.

However, approximation is only one way to cope with NP-hardness. Another
approach is to look for heuristics that solve the problem exactly on “all but a
few” instances. In fact, one of the reasons to study approximation algorithms is
that an algorithm that has a good performance guarantee in the worst case is
expected to perform even better on a large number of instances [21], p. IX].

Average case analysis. The approach to solve hard computational problems
on all but a few instances is also known as average case or probabilistic analysis.
This approach has been applied successfully, for instance, to the minimum bisec-
tion problem [@], to the k-center-problem [19], and to the knapsack problem [5].
Frequently the investigation is motivated by the observation that a certain prob-
lem, despite being hard in the worst case, has an algorithm that solves virtually
every instance arising from applications.

A more advanced issue is certifiability. Though an algorithm may compute
a good or even optimal solution on almost all inputs, this does not necessarily
mean that the algorithm also finds an efficiently checkable certificate that the
solution is indeed reasonable. For instance, it is well-known that a linear-time
greedy heuristic approximates the chromatic number of almost all graphs within
a factor of 2 (cf. [T6]). More precisely, by constructing a coloring of the input
graph, the greedy heuristic computes an upper bound that is at most twice
the chromatic number almost surely. However, as the greedy procedure does
not provide a lower bound on the chromatic number, it fails to certify that the
output is a good approximate solution. In contrast, the algorithms given in [6]
1915 for minimum bisection, knapsack, and k-center provide certificates.

A crucial question in the context of average case analysis concerns the random
model being used. To be reasonable and to explain real-world observations, the
frequently changing input parameters can be modeled randomly, whereas static
parameters, i.e. input parameters that vary not at all or only slightly, should
be modeled in a worst case fashion, viz. deterministically. For instance, in the
above application of the SCP to delivery trucks, the underlying graph models
road distances which can be assumed to remain fixed values (for a longer time).
Thus, it is not appropriate to model the network itself with a random experiment.
On the other hand, the structure of the requests is different. In particular, if the
truck has to be rescheduled often (say on a daily basis for the newly arrived
demand), then it is reasonable to model the list of requests randomly.

Results. The aim of this paper is to investigate the average case of the SCP
in the case where the underlying graph G is a tree. We consider the algorithm
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“Use-minspan-tree” by Frederickson and Guan [11], Section 4.2]. We show that
this algorithm is optimal on “all but a few” instances, thereby complementing
the result of [1I] that the algorithm is 4/3-approximative in the worst case.
More precisely, our random model of the input assumes that the underlying tree
is given deterministically (i.e. worst case-like), and that the list of requests is
chosen at random.

Definition 2. Let T = (V, E) be a tree with arbitrary edge lengths £ : E — IR{ .
Moreover, let (p,)vev be an arbitrary probability distribution on the vertices of
T, ie. p, € [0,1] for allv € V and ), .\, py = 1. Then a random list L of
requests of length n is obtained by choosing each of the n requests at random as
follows.

— The probability of the request (u,v) € V2 is py - Dy
— The requests are chosen independently of each other.

Note that this model entails a wide variety of distributions, including the
important special case of the uniform distribution (set p, = #V ~* for all v). We
say that an event A holds with high probability or whp. if the probability that A
occurs tends to 1 as the number n of requests tends to infinity. Thus, the notion
“with high probability” formalizes the naive phrase “on all but a few instances”.
Note that the relation to the size of the underlying network is not relevant. The
aim of this paper is to prove the following theorem.

Theorem 3. The algorithm “Use-minspan-tree” by Frederickson and Guan (Al-
gorithm[ below) solves instances that are chosen according to the random model
given in Definition [@ optimally with high probability. This is certifiable, i.e. whp.
a random instance has a certain property which (i) can be checked efficiently and
(i1) implies the optimality of the algorithm’s solution.

A detailed description of the algorithm is the content of Section[2 The proof
of Theorem [3] starts with some preliminaries in Section[2, and its sketch will be
completed in Section [ In Section [B] we give an alternative description of the
random model of Definition 2] which is essential for the proof of Theorem [3]

Related work. Approximation algorithms for the SCP on general graphs can
achieve an approximation ratio of 129/128 at the best, if P # NP [20]. The best
approximation ratio known for the case of general underlying graphs is 9/5 and
is achieved by an algorithm of Frederickson, Hecht, and Kim [I2]. The complete
algorithm by Frederickson and Guan [I1] achieves an approximation ratio of
5/4 on trees. On general trees the problem is NP-hard [ITJ9], but on paths, the
problem is in P [2].

Several extensions of the SCP are known as dial-a-ride problems or DARP.
Of these, the SCP is the special case of a single server with capacity one. Charikar
and Rhaghavachari [8] consider the case of the capacitated DARP, i.e., where the
server can serve a limited number of jobs simultaneously. This problem is already
NP-hard on paths if no preemption is allowed, but solvable in polynomial time
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in the preemptive case [14]. The paper [15] considers the DARP when additional
precedence constraints between the requests are specified. Online variants of the
DARP where requests become known to an online algorithm over time have been
studied in [10J1}4]. The online scenario, as well as release time constraints are
beyond the scope of this paper.

The average case of the SCP on trees has been examined for the special case
of caterpillars as underlying graphs in [9]. (This special case is important for the
application to the scheduling of elevators with starting and stopping times.) The
elevator scheduling problem with capacities but without starting and stopping
times has been solved by Karp (see the discussion by Knuth [I8, Section 5.4.8]).

2 The Algorithm

In the following we give a rough sketch of the algorithm “Use-minspan-tree”
of Frederickson and Guan that is quoted in Theorem Bl It has two main parts
that we call balancing and MST. Balancing adds new requests to the given list
of requests in such a way that the optimum cost does not increase. Therefore,
an optimum solution with respect to the extended list of requests is also an
optimum solution to the original instance.

Algorithm 4 (Balancing).

Input: A tree T = (V, E) and a list of requests L C (V x V)*.

Output: A multiset of additional requests B C (V x V)*.

Each edge e = {u,v} € E corresponds to a cut (C,V \ C), where C' > u. Let e
be the number of requests starting in C' and ending in V' \ C, i.e. in C x V' \ C.
Let e_ be the number of requests in V' \ C x C. Assume that e, > e_. For e, B
contains ey — e_ requests (u,v). B can be computed in linear time [I1].

Proposition 5 ([11]). Let T be a tree, L be a given list of requests, and B be
the output of the balancing procedure. Then SCP(T,L) = SCP(T,L U B) and
every component of (V, L U B) is Eulerian. O

We call the isolated vertices of (V,L U B) the trivial components and all
other components the nontrivial components. Note that the remaining task is to
find a minimum cost (multi-)set A of pairs so that (V, L U B U A) has only one
nontrivial, Eulerian component. It is easy to see that such a multiset consists of
anti-parallel pairs along a subset of those edges of the tree that are not internal
to one of the components of (V, L U B).

Definition 6 (star metric). Let C be the set of components of (V,L U B)
(including isolated vertices). For Cy1,Cy € C let their distance, d(Cq,Cs), be
the length of a shortest path connecting a vertex of Cy to a vertex of Cy. Then
(C,d) is a metric and we denote the set of nontrivial components by C'. Using
somewhat unconventional notation, we call (C,d) a star metric, if there is a
nontrivial component C* € C', such that d(Cy, Cs) = d(Cq,C*) 4+ d(C*,Cs) for
all C1,Cy € C'.
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The optimum solution A has anti-parallel arcs along a minimum cost tree
in (C,d) that spans all nontrivial components. The problem to find such a tree
is known as the Steiner tree problem, and the second part of the algorithm is
essentially the well-known minimum spanning tree heuristic for that problem.

Algorithm 7 (MST).

Input: The metric (C,d) with a subset C’ C C of nontrivial components
Output: A set A of anti-parallel arcs along the edges of a tree in (C,d) that
spans C’ and results from the minimum spanning tree heuristic for the Steiner
tree problem.

Proposition 8. The set A output by Algorithm[7 is at most twice as long as a
minimum cost set. It is of minimum cost, if the metric (C,d) is a star metric. O

This proposition is a consequence of elementary results on approximation algo-
rithms for the Steiner tree problem in graphs, see e.g. [I3]. Then the algorithm
of Frederickson and Guan that is quoted in Theorem Bl reads as follows:

Algorithm 9 (Use-minspan-tree [I1], Section 4.2]).

Input: A tree T, a list L

Output: The length of an Euler tour in (V, L U B U A), where

B is the output of Algorithm [4 on input 7" and L, and

A is the output of Algorithm [ on the input induced by (V, L U B).

As a direct consequence of Proposition B this algorithm has a performance
ratio of 2 and is optimal (or exact) if the metric (C,d) is a star metric. This
favorable situation can be detected easily in polynomial time. To complete the
proof of Theorem [3, we show that it occurs with high probability. Our key to
proving Theorem [B]is the following result:

Theorem 10. Whyp. (C,d) is a star metric.

The following two sections are devoted to the proof of Theorem [I0. First we
show that it suffices to consider the case that T is a full binary tree.

3 From General Trees to Binary Trees

In this section we show that we can simplify the situation of a general tree to
binary trees. Specifically, given a list of requests L, we shall modify the tree T
via some elementary operations so that we obtain a full binary tree with exactly
one request starting or ending at each leaf, and without requests incident with
internal vertices. Recall that a binary tree is full, if each non-leaf node has exactly
two children. Indeed, we just apply the following four operations repeatedly until
T is of the desired form.

a. Remove leaves that are not involved in requests.
b. Introduce a new vertex for each end of a request and append it as a leaf to
the original endpoint of the request. The new edge gets ¢ = 0.
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c. Contract vertices of degree 2. If v is a vertex of degree 2 and e, f are the
incident edges, then let £(e) < £(e)+£(f), £(f) + 0, and identify v with the
other endpoint of f.

d. Split vertices of degree d > 3 into d — 2 vertices of degree 3 each. If v is a
vertex of degree d > 3 and e, f are two of the incident edges, then let v' be
a new vertex, connect it to v with an edge of £ = 0 and replace v in e and f
with v’. Proceed until v has degree 3.

Having adapted the tree T via a—d, we place a root r in the middle of an edge
both of whose endpoints are connected to at least a third of the leaves without
using that edge. We call the outcome (77, L) of the above procedure the modified
instance. We emphasize that passing to the modified instance is part of the proof
of Theorem [I0} the algorithm sticks to the original instance.

Lemma 11. If after applying the balancing operation the non-trivial components
of the modified instance (Ty,, L) form a star metric, then so do the non-trivial
components of the original instance (T, L).

Let L be a list of requests of length n. For each vertex v of T' we let d, (L)
denote the number of occurrences of v in L. Moreover, let d(L) = (dy(L))vev-
Clearly, the outcome (T, L) of the modification procedure a—d depends only on
the sequence d(L). Conversely, for each sequence d = (d,)yev such that ) d, =
2n and d,, > 0 for all v, we can construct a rooted binary tree T, via a—d, which
has precisely 2n leaves [y, ...,ls,. Further, fixing d, a random list L of requests
conditioned on d(L) = d induces a random set of arcs R(L) C {l1,...,lan}>
in which each leaf occurs precisely once. One could call R(L) a perfect directed
matching of the leaves Iy, ..., la,.

However, fixing d (and thus Ty), we can generate a random perfect directed
matching R without referring to transportation requests in the original tree
T at all: First, we choose a sequence * = (x1,...,®2,) € {1,—1}*" such
that 21221 x; = 0 uniformly at random among all (2:) possible sequences.
The sequence x specifies which leaves [; will be heads (z; = 1) and which
leaves [; will be tails (z; = —1) of arcs in R. Then, we choose a permutation
o:{l,...,n} = {1,...,n} uniformly at random and independently of x. As
there are precisely n leaves [; with z; = 1 and precisely n leaves I; with z; = —1,
the permutation o induces a bijection o, : {l;| z; = -1} — {;] z; = 1}
in the obvious manner. Finally, the perfect directed matching R(x, o) is just
{(l;,1;)] ox(l;) = 1;}. (Note the similarity between R(x,o) and the configura-
tion model of random graphs with a prescribed degree sequence [16].) A tedious
counting argument proves the following lemma.

Lemma 12. Fix d. The probability distribution on perfect directed matchings
induced by R(x, o) and by R(L) conditioned on d(L) = d coincide.

By Lemma [11] and Lemma [[2] in order to prove Theorem [I0 it suffices to
show the following.

Theorem 13. Let T be any full binary tree with leaves li,...,ls,. Let R =
R(x,0). Let B be the output of the balancing operation on input (T, R). Then
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whyp. the non-trivial components of the graph D(x,o) = (V, RU B) form a star
metric.

4 Proof of Theorem

After introducing some notation and stating some simple lemmas in Section [41]
we proceed in two steps to prove Theorem[T3l. First, in Section L2 we analyze the
number and the size of the components of the graph D(x, o). It turns out that
though there may be a few “small” components, there is exactly one “large”
component whp. Then, in Section EE3, we show that in the tree T any path
connecting two “small” components will pass through the “large” component
whp., thereby establishing that the components form a star metric.

4.1 Preliminaries

We let log = log,. Throughout, we let T'= (V, E) be a full binary tree with root
r and leaves [y, ...,ls,. We have a canonical partial order < on V, by letting
v <X w iff w lies on the path from v to r. For each v € V'\ {r}, we let p(v) denote
the parent of v. We say that a set S C V majorizes S’ C V (8" < S) if for each
w € S’ there is v € S such that w < v. For each v € V| let b(v) denote the
number of leaves majorized by v.

As in Section [ we let z denote a sequence (xi,...,x2,) € {1,—1}?"
such that > ,x; = 0 chosen uniformly at random. For each v € V, let
Sy = Sy(x) = > 5 <, @i We say that v is balanced if S, = 0. Set Ep =
Eg(z) = {{v,p(v)}| v € V \ {r} is not balanced}, and B = B(z) = (V, Ep).
Moreover, let o denote a permutation {1,...,n} — {1,...,n} chosen uni-
formly at random and independently of @, and let o, be as in Section [3 Let
Ex = {{l;,lj}| o2(li) = ;}, and A = A(x,0) = (V,E4 U Ep). Note that Ep
consists of precisely those edges of T' that will occur in the output of the bal-
ancing operation on input R(x, o). Therefore, the non-trivial components of the
simple graph A are in one-to-one correspondence with the non-trivial compo-
nents of the directed multigraph D(x, o) (cf. Theorem [I3)). First, we compute
the probability that S, = 0.

Lemma 14. For all v # r we have P (S, = 0) = O(b(v)~/?).
Let C = C(x) denote the set of all non-trivial components of B.

Lemma 15. Fach C € C contains at least two leaves and has a unique maximal
vertex (w.r.t. the partial order <), which is balanced.

We say that a set Cy C C is separated in A if there is no edge in E4 that joins
a vertex in Cy with a vertex outside Cy. Let b(Cp) denote the number of leaves
lj € Cy with T; = 1.

Lemma 16. The probability that Cy is separated is (b(gn))_l.
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It will be useful to partition the set V into sets
Li={veV|2 <bw) <2t}  (j=0,...,log(2n)).

Then the sets L; are pairwise disjoint, and their union is V. Lg is the set of all
leaves of T" and it may be helpful to think of the sets L; as “levels” in the tree
T. As a convenience we set

Lgk =LiU---ULj and LZ’C =L,U---U Llog(Zn) (1 <k< log(2n)).

Lemma 17. Let 1 < j <log(2n). The set L; contains at most n2' =7 mazimal
(minimal) vertices (w.r.t. the partial order <).

4.2 The Effect of the Balancing Operation

Let us call a non-trivial component of A small if it contains at most n leaves of
T. Otherwise, we call the non-trivial component large.

Proposition 18. Whp. the graph A enjoys the following properties.

1. There is a unique large component, which contains (2 — o(1))n leaves.
2. There are O(log(n)) small components.
3. All small components are cycles of length O(log(n)).

The proof of Proposition [I§ proceeds in two steps. First, we estimate the
number of non-trivial components of the graph B = B(x) = (V, Ep), i.e. we
only consider edges included via the balancing operation. Then, we study how
the requests E4 connect the non-trivial components of B into larger blocks.

The number of non-trivial components of B. Since each non-trivial com-
ponent of B contains a unique maximal vertex, we can define X; = X,(x) to
be the number of non-trivial components of B whose maximal vertex belongs to
Lj. Then } ;- X; is the total number of non-trivial components of B.

How large can the probable value of 3 51X be? If T is a complete binary
tree, we see that the expectation of X; can be as large as n/2. Furthermore, in
this case, X is concentrated about its mean, whence »;5; X; > (1 —o(1))n/2
whp. On the other extreme, in the case where T is a caterpillar, the analogy
with a constrained random walk shows that .-, X; = O(n'/?) whp.

As a consequence, we cannot expect that the number of non-trivial compo-
nents is sublinear in n. Nonetheless, it can be shown, that the number is not
more than a constant fraction of n:

Lemma 19. The number of non-trivial components of B is at most 98n,/99 whp.

Sketch of proof. First, using a first moment argument, one can show that only
very few components reach the high levels of T'. More precisely, > jo<i X i(x) =
o(n) whp., where jo = log(2n)/3. Then a careful analysis shows, that the ex-
pectation of the number Zi“zl X of the other non-trivial components of B, is
bounded by 49n/50. Finally, a martingale argument proves that this number is
concentrated about its mean. a
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Glueing the non-trivial components of B together. In order to prove
Proposition [I8, we show that the edges F 4 induced by the random permutation
o link most of the non-trivial components of B. We rely on the fact that = and
o are chosen independently.

Lemma 20. The number of non-trivial components of A is O(logn) whp.

Proof. By LemmalI9, we may assume that the number of non-trivial components
of B = B(z) is < 98n/99. Observe that the number of non-trivial components of
A is at most twice the number of subsets Cy C C that are separated in A and that
satisfy b(Cp) < n/2. (Actually, the number of separated sets Cy is exponential in
the number of non-trivial components of A, but we don’t need that.) Therefore,
invoking Lemma[T6, we see that the expected number of non-trivial components
of A is at most

Y % (1) = 2y (") (i) =ow

k=1 CoCC, #Co=Fk, b(Co)<n/2

Thus, by Markov’s inequality, the number of non-trivial components of A is
O(logn) with high probability. O

Proof of Proposition [I8 (sketch). The above lemma already gives the second
assertion in Proposition[I8. The proof of the third claim uses a similar estimate.
Finally, as there are at most O(logn) small components all of which are cycles
whp., at most O(logn)? leaves lie in small components. Hence, there must be a
large component that contains the remaining (2 — o(1))n leaves. O

4.3 Completing the Proof of Theorem

To prove that the non-trivial components of A form a star metric whp., we show
that any path that joins two vertices in different small components of A passes
through the large component.

Lemma 21. There is no vertex v € L<giog(an)/10 that majorizes vertices of two
different small components of A whp.

Lemma 22. Let j = 9log(2n)/10. The graph A enjoys the following property
whp. If u,w € L>; are such that uw X w, and if u majorizes vertices that belong to
a small component C, and w majorizes vertices that belong to a small component
Co # C1 of A, then there is a vertex s, u < s = w, such that |Ss| > 2.

Proof of Theorem [[3. We may assume that A enjoys the properties stated in
Proposition [[8] Lemma 21 and Lemma 221 Let Cy # Cs be small components
of A, and let C be the unique large component. We are to show that any path
P that connects v € C7 with w € Cy passes through C. If v € L<giog(2n)/10,
then by Lemma 1] the path P will pass through L>g1og(2n)/10- Thus, let s be
the first vertex in L>gi0g(2n)/10 On P, let ¢ be the last one, and let u be the
maximal vertex on P. Then v < s, w < ¢, and ¢, s =< u. Therefore, by Lemma
there exists a vertex ¢ on P such that |S;| > 2. Since by Proposition [I§ all
small components are cycles, we conclude that ¢t € C. a
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