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Abstract. Classifier fusion strategies have shown great potential to enhance the 
performance of pattern recognition systems. There is an agreement among re-
searchers in classifier combination that the major factor for producing better accu-
racy is the diversity in the classifier team. Re-sampling based approaches like 
bagging, boosting and random subspace generate multiple models by training a 
single learning algorithm on multiple random replicates or sub-samples, in either 
feature space or the sample domain. In the present study we proposed a hybrid 
random subspace fusion scheme that simultaneously utilizes both the feature 
space and the sample domain to improve the diversity of the classifier ensemble. 
Experimental results using two protein mass spectra datasets of ovarian cancer 
demonstrate the usefulness of this approach for six learning algorithms (LDA, 
1-NN, Decision Tree, Logistic Regression, Linear SVMs and MLP). The results 
also show that the proposed strategy outperforms three conventional re-sampling 
based ensemble algorithms on these datasets. 

1   Introduction 

Rapid advances in mass spectrometry have led to its use as a prime tool for diagnosis 
and biomarker discovery [1]. The high-dimensionality-small-sample (HDSS) problem 
of cancer proteomic datasets is the main issue that plagues and propels current re-
search on protein mass spectra classification [2]. 

The complexity and subtlety of mass spectra patterns between cancer and normal 
samples may increase the chances of misclassification when a single classifier is used 
because a single classifier tends to cover patterns originating from only part of the sam-
ple space. Therefore, it would be beneficial if multiple classifiers could be trained in 
such a way that each of the classifiers covers a different part of the sample space and 
their classification results were integrated to produce the final classification. Resam-
pling based algorithms such as bagging, boosting, or random forests improve the classi-
fication performance by associating multiple base classifiers to work as a “committee” 
or “ensemble” for decision-making. Any supervised learning algorithm can be used as a 
base classifier. Ensemble algorithms have been shown to not only increase classification 
accuracy, but also reduce the chances of overtraining since the committee avoids a bi-
ased decision by integrating the different predictions from the individual base classifiers 
[3]. In recent years a variety of approaches to classifier combination have been applied 
in the domain of protein mass spectra classification [3-8]. 
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2   Background 

Efforts to improve the performance of classifier combination strategies continue to be 
an active area of research, especially within the field of bioinformatics as the number 
of available datasets continues to rapidly increase. It has been empirically shown that 
the decision made by a set (pool/committee/ensemble/team) of classifiers is generally 
more accurate than any of the individual classifiers. Both theoretical and empirical 
research has demonstrated that a good team is one where the individual classifiers in 
the team are both accurate and make their errors on different parts of the input space. 
In the other words, one of major factors responsible for improving the performance of 
a classifier combination strategy is the diversity in the classifier team. There is a con-
sensus among researchers in classifier combination that this diversity issue supersedes 
the importance of the aggregation method [9]. However, the choice of an appropriate 
aggregation method can further improve the performance of an ensemble of diverse 
classifiers. 

From the architecture prospective, various schemes for combining multiple classi-
fiers can be grouped into three main categories: 1) parallel, 2) cascading (or serial 
combination), and 3) hierarchical (tree-like). In the parallel architecture, all the indi-
vidual classifiers are invoked independently, and their results are then combined by a 
suitable strategy. Most combination schemes in the literature belong to this category. 
In the gated parallel variant, the outputs of individual classifiers arc selected or 
weighted by a gating device before they are combined. In the cascading architecture, 
individual classifiers are invoked in a linear sequence. The number of possible classes 
for a given pattern is gradually reduced as more classifiers in the sequence have been 
invoked. For the sake of efficiency, inaccurate but cheap classifiers (low computa-
tional and measurement demands) are considered first, followed by more accurate and 
expensive classifiers. In the hierarchical architecture, individual classifiers are com-
bined into a structure, which is similar to that of a decision tree classifier. The tree 
nodes, however, may now be associated with complex classifiers demanding a large 
number of features. The advantage of this architecture is the high efficiency and 
flexibility in exploiting the discriminant power of different types of features. Using 
these three basic architectures, even more complicated classifier combination systems 
can be constructed [9]. 

Different combiners expect different types of output from individual classifiers. 
Lei Xu et al. [10] grouped these expectations into three levels: 1) measurement (or 
confidence), 2) rank, and 3) abstract. At the confidence level, a classifier outputs a 
numerical value for each class indicating the belief or probability that the given input 
pattern belongs to that class. At the rank level, a classifier assigns a rank to each class 
with the highest rank being the first choice. Rank value cannot be used in isolation 
because the highest rank does not necessarily mean a high confidence in the classifi-
cation. At the abstract level, a classifier only outputs a unique class label or several 
class labels (in which case, the classes are equally good). The confidence level con-
veys the richest information, while the abstract level contains the least amount of in-
formation about the decision being made. 

Roughly speaking, building an ensemble based classifier system includes selecting 
an ensemble of individual classification algorithms, and choosing a decision function 
for combining the classifier outputs. Therefore, the design of an ensemble classifier 
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system involves two main phases: the design of the classifier ensemble itself and the 
design of the combination function. Although this formulation of the design problem 
leads one to think that effective design should address both phases, until recently most 
design methods described in the literature have only focused on one phase [11].  

2.1   Classifier Ensemble Design 

So far, two main strategies are discussed in the literature on classifier combination: 
classifier selection and classifier fusion. The presumption in classifier selection is that 
each classifier has expertise in some local area of the feature space. When a feature 
vector x is submitted for classification, the classifier responsible for the vicinity of x is 
given the highest authority to label x. Classifier fusion, on the other hand, assumes 
that all classifiers are equally “experienced” in the whole feature space and the deci-
sions of all of them are taken into account for any x. 

Classifier fusion approaches are further divided into resampling-based methods 
and heterogenous methods. The resampling methods generate multiple models by 
training a single learning algorithm on multiple random replicates or sub-samples of a 
given dataset whereas the heterogeneous ensemble methods (also called multi-
strategy methods) train several different learning algorithms on the same dataset. The 
approach we describe in this paper is clearly a resampling-based method but differs 
from the standard resampling-based methods of bagging, boosting, and random forest. 
In general, resampling-based methods take two perspectives: training a learning algo-
rithm utilizing the same subset of features but different subsets of training data (i.e. 
Bagging [12] or Boosting [13, 14] or alternatively utilizing the same subset of training 
data but different subsets of the feature set (i.e. Random Forest or Random Subspace 
algorithms [15, 16]. Our hybrid approach combines these two perspectives by ran-
domly selecting different subsets of training data and randomly selecting different 
features from a feature set.  

2.2   Decision Function Design 

In this work we investigate four decision functions to allow evaluation of the impact 
of different functions on our hybrid approach. The decision functions we investigate 
are the Majority function, the Weighted Majority function, the Mean function and the 
Decision Template approach. The 2001 paper by Kuncheva et al. [17] provides an 
excellent reference on the use of Decision Templates for multiple classifier fusion, 
including a detailed description of the construction of a soft decision profile for use in 
ensemble systems. 

3   Methods 

We have applied our approach to two serum protein mass spectra datasets of ovarian 
cancer, publicly available from the clinical proteomics program of the national cancer 
institute website (http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp). The 
first dataset is “Ovarian 8-7-02” which was produced using the WCX2 protein chip. 
An upgraded PBSII SELDI-TOF mass spectrometer was employed to generate the 
spectra, which includes 91 controls and 162 ovarian cancer samples. The second 
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dataset is “Ovarian 4-3-02” prepared by the same chip, but the samples were proc-
essed by hand and the baseline was subtracted resulting in the negative intensities 
seen for some values. The spectra contain 100 control, 100 ovarian cancer and 16 
benign samples. Each spectrum of these two datasets includes peak amplitude meas-
urements at 15,154 points defined by corresponding m/z values in the range 0–20,000 
Da. Figure 1 illustrates the mean spectrums of each dataset.  
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Fig. 1. The mean spectra of the applied datasets: Ovarian 8-7-02 (upper panel) and Ovarian 
4-3-02 (lower panel) 

Generally, a mass spectrum consists of signals, baseline, and noise. The signals are 
produced by the peptides, proteins, and contaminants present in the sample; the base-
line is the slowly varying trend under the spectrum; and the noise consists of chemical 
background, electronic noise, signal intensity fluctuations, statistical noise, warping of 
the signal shapes (due to overcharging in ion traps), and statistical noise in the iso-
topic clusters (see below). Signals, baseline, and noise can never be totally separated; 
the baseline, for example, can depend on the presence of large and intense signals as 
well as on abundant low-intensity noise. Noise can be quite intense and is sometimes 
impossible to distinguish from real signals. [1]. The goal of preprocessing stage is to 
‘‘clean up’’ the data such that machine learning algorithms will be able to extract key 
information and correctly classify new samples based on a limited set of examples 
[2]. In analyzing mass spectra of blood samples, the preprocessing stage roughly in-
cludes three main tasks: baseline correction, smoothing and normalization.  

Mass spectra exhibit a monotonically decreasing baseline, which can be regarded 
as low frequency noise because the baseline lies over a fairly long mass-to-charge 
ratio range. In this study, we utilized local average within a moving window as a local 
estimator of the baseline and the overall baseline is estimated by sliding the window 
over the mass spectrum. The size of the applied window was 200 M/Z. In addition 
shape preserving piecewise cubic interpolation has been applied to regress the win-
dow estimated points to a soft curve. Mass spectra of blood samples also exhibit an 
additive high frequency noise component. The presence of this noise influences both 
data mining algorithms and human observers in finding meaningful patterns in mass 
spectra. The heuristic high frequency noise reduction approaches employed most 
commonly in studies to date are smoothing filters, the wavelet transform (WT), or the 
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deconvolution filter [2]. We employed a locally weighted linear regression method 
with a span of 10 M/Z to smooth the spectra. Figure 2 illustrates the smoothing effect 
on a section of a typical spectrum. 
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Fig. 2. The effect of the smoothing process on a part of a typical spectrum 

A point in a mass spectrum indicates the relative abundance of a protein, peptide or 
fragment; therefore, the magnitudes of mass spectra cannot be directly compared with 
each other. Normalization methods scale the intensities of mass spectra to make mass 
spectra comparable. We normalized the group of mass spectra using total ion current 
(TIC) method. Figure 3 demonstrates the effect of the preprocessing stages we have 
applied on a typical mass spectrum from the “Ovarian 8-7-02” dataset. 
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Fig. 3. The effect of preprocessing stages on a typical mass spectrum: The original spectrum 
(first panel), the spectrum after baseline correction (second panel), the spectrum after baseline 
correction and smoothing (third panel) and the spectrum after baseline correction, smoothing 
and normalization (last panel) 

3.1   Feature Extraction and Selection 

In the present study we use all m/z points as initial features and select the final fea-
tures set using a t-test with correlation elimination approach. The t-test algorithm with 
correlation elimination can be succinctly described by the following two steps:  
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1) Select the first feature based on t-test score as given in equation (1). 

t =
x1 − x2( )

σ p

1
n1

+ 1
n2

 
(1) 

where 

σ p
2 =

n1 −1( )σ1
2 + n2 −1( )σ 2

2

n1 + n2 − 2
 (2) 

is the pooled standard variance, and xi , for i = 1 or 2 is the mean of the putative vari-
able in class i, and ni, for i = 1 or 2 is the size of class i. 

 
2) For each of the rest of the potential features, calculate the correlation and local in-
formation, w1 and w2 respectively, between the applied variable and all previously 
selected features. 

w1 =1− R 

w2 =1− e
− d

10( )2

 

(3) 

where R is the Pearson correlation given in  Equation (4), 

R x,y( )=
Cov x, y( )

Var x( )⋅ Var y( )
 (4) 

and d is the distance between the candidate feature and all previously selected fea-
tures.  

From these two steps the score for each feature, designated as FS, is then calculated 
as the product of the t-test and the correlation scores as illustrated in Equation (5). 

FS = t × w1 × w2 (5) 

3.2   Base Learning Algorithms 

We test our approach using six well-known base classification algorithms. The fol-
lowing classification algorithms represent a variety of approaches and therefore allow 
us to assess the robustness of our approach across a variety of classification algo-
rithms. The following learning algorithms have each been applied to the two mass-
spectrum data-sets described above as stand alone classifiers using the top 50 features 
and as base classifiers in our hybrid random subspace fusion ensemble approach.  

 
• Decision Trees 
• Linear Discriminant Analysis (LDA) 
• 1-Nearest Neighbor (1-NN) 
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• Logistic Regression 
• Linear Support Vector Machines (with a linear kernel) 
• Multi Layer Perceptron (MLP) with two hidden layers and 10 neurons in each 

layer, all the nonlinear functions are tangent-sigmoid and weights were randomly 
initialized to values in [-1,  1]. The learning function is gradient descent with mo-
mentum and back-propagation training was pursued until a limit of 100 epochs or 
an error of 0 was attained). 

3.3   The Proposed Hybrid Random Subspace Classifier Fusion Ensemble 
Strategy 

The heart of our hybrid approach is to randomly choose a subset of training samples 
and a subset of top features for each of the classifiers that will participate in the en-
semble. This approach is hypothesized to maximize the diversity of the ensemble, 
which has been shown to be an essential feature of effective ensemble approaches. 
The following steps summarize the proposed strategy for the two-class cases (the 
strategy can be extended to more cases, but we leave to another paper): 

 
1. Randomly select m samples from the training set (we set m = 60% of training set 

size) 
2. Randomly select n features from nmax top-ranked features (we set n =10 and nmax = 

50)  
3. Train a classification algorithm with above selected samples and features 
4. Classify the testing samples with the constructed classifier and calculate the corre-

sponding support degree by assigning the Certainty Factor (CF) to the winner 
class and (1-Certinaty Factor) to the loser class. 

5. Iterate above steps for i=1 to Imax (we set and Imax =100), saving the CF for each 
iteration. 

6. Construct a soft decision profile (Imax×2) for each test sample using the saved sup-
port degrees 

7. Inferring the final class from the decision profile using an appropriate decision 
function. We report in this paper on our experience with Majority, Weighted Ma-
jority, Mean, and Decision Template combiners.  

4   Results 

We compare the performance of our ensemble to each of the base learning algorithms 
to establish the need for an ensemble in the first place. We then compare the perform-
ance of our hybrid random subspace fusion approach to three other well-known re-
sampling based ensemble approaches. For each of the six base classifiers, we selected 
the 50 top-ranked feature determined by the t-test with correlation elimination as de-
scribed above. We compared the performance of these base-classifiers to the perform-
ance of our proposed hybrid random subspace method on each of the six base learning 
algorithms for four different decision functions, Majority (MAJ), Weighted Majority 
(WMAJ), Mean and Decision Template. As described earlier, in each of 100 iterations 
we randomly select 10 features from the 50 top-ranked features and also randomly 
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selected 60% of the training set. We inferred a Certainty Factor for each classifier by 
testing it over the entire training set and then applied the classifier to the testing sam-
ples. After the 100 iterations, we built a soft decision profile for each test using the 
inferred certainty factor of each classifier. The final classification decision in then 
determined using one of the four decision templates. This process was repeated 10 
times for each choice of base-classifier and decision template in a full 10-fold-cross-
validation framework (i.e. 100 total runs for each configuration). 

For comparing the classification performance of these different configurations, we 
used the average of sensitivity and specificity as the performance measure. Although 
accuracy is the best known measure of classification performance (the number of cor-
rectly classified examples over the total number of examples in a given dataset), when 
class distribution is imbalanced, accuracy can be misleading because it is dominated by 
performance on the majority class. In two-class problems, accuracy can be replaced by 
sensitivity and/or specificity. Sensitivity or ‘true positive rate’ is the number of correctly 
predicted positive instances over all positive instances. It is the criterion of choice when 
false negatives incur high penalty, as in most medical diagnosis. Specificity or ‘true 
negative rate’ is the number of correctly predicted negative instances over all negative 
instances. It is used when false alarms are costly [1]. Presentation of the results using 
this combined measure of sensitivity and specificity allows us to present the results for a 
large number of different experiments in a relatively small amount of space. Given that 
overall performance of our approach using this measure is always above 98% we feel 
this condensed measure is appropriate for this short paper. 

Table 1. Performance results obtained on the Ovarian 8-7-02 dataset, for each of six learning 
algorithms operating either as individual classifiers (utilizing 10 or 50 top features) or as part of 
the proposed Hybrid Random Subspace strategy utilizing one of four decision functions 

Individual Classifier 
Performance 

Hybrid Random Subspace Fusion Ensemble 
Performance Learning 

Algorithm 
10 Top 

Features 
50 Top 

Features 
Majority Weighted 

Majority 
Mean Decision 

Template 

LDA 99.76 (0.2) 100 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 

1-NN 98.95 (.07) 99.23 (0.7) 100 100 100 100 

Decision 
Tree 

98.36 (0.9) 98.18 (0.5) 99.9 (0.1) 99.9 (0.1) 99.9 (0.1) 99.9 (0.1) 

Logistic 
Regression 

99.77 (0.3) 99.92 (0.2) 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 99.98 (0.1) 

Linear 
SVMs 

99.48 (0.4) 99.89 (0.2) 99.98 (0.1) 99.98 (0.1) 98.32 (0.6) 99.98 (0.1) 

MLP 98.46 (2.1) 99.31 (1.8) 100 100 100 100 

The results are presented as the Mean and Standard Dev. over all runs for each of the 
two datasets, Ovarian 8 and Ovarian 4 in Tables 1 and 2 respectively. The results clearly 
show that our propose hybrid random subspace strategy outperforms the performance of 
 



 A Hybrid Random Subspace Classifier Fusion Approach 9 

each of the six base classifiers tested. For all approaches the Ovarian 8-7-02 data is gen-
erally easier to classify, with all approaches achieving average performance above 93%. 
The second data set, Ovarian 4-3-02, is clearly a more difficult dataset for all of these 
approaches, yet our hybrid random subspace strategy still achieves higher average per-
formance regardless of the combination function utilized. We can note that overall 
higher performance is achieved when using the decision template combination function. 

Table 2. Performance results obtained on the Ovarian 4-03-02 dataset, for each of six learning 
algorithms operating either as individual classifiers (utilizing 10 or 50 top features) and 
operating under the proposed Hybrid Random Subspace strategy utilizing one of four decision 
functions 

Individual Classifier 
Performance 

Hybrid Random Subspace Fusion Ensemble 
Performance Learning 

Algorithm 10 Top 
Features 

50 Top 
Features 

Majority Weighted 
Majority 

Mean Decision 
Template 

LDA 95.86 (1.2) 96.04 (1.8) 98.98 (0.4) 98.99 (0.5) 98.99 (0.5) 98.97 (0.5) 

1-NN 90.25 (2.0 92.82 (1.3) 99.46 (0.4) 99.66 (0.3) 99.5 (0.4) 99.82 (0.2) 

Decision 
Tree 

90.76 (2.3) 90.69 (1.1) 99.64 (0.4) 99.73 (0.4) 99.73 (0.4) 99.83 (0.3) 

Logistic 
Regression 

96.64 (1.3) 96.53 (1.5) 98.88 (0.6) 98.86 (0.6) 98.92 (0.6) 98.69 (0.5) 

Linear 
SVMs 

95.89 (1.1) 95.3 (1.3) 98.39 (0.5) 98.37 (0.6) 98.32 (0.6) 97.53 (0.2) 

MLP 96.06 (1.3) 95.63 (0.8) 99.14 (0.3) 99.36 (0.4) 99.36 (0.4) 99.45 (0.5) 

Table 3. Performance reportred as the Mean and Standard Dev. of the hybrid random subspace 
fusion strategy and other resampling strategies, using four different decision functions 

Performance for Different Decision Functions  
Dataset Fusion Strategy Majority Weighted 

Majority 
Mean Decision 

Template 
Hybrid 99.97 ±0.1 99.97 ±0.1 99.97 ±0.1 99.97 ±0.1 

Bagging 99.15 ±0.5 98.33 ±0.1 99.15 ±0.5 99.12 ±0.5 

Boosting 99.27 ±0.7 98.06 ±0.8 99.10 ±0.6 98.89 ±0.9 

Ovarian 
8-7-02 

Random Forest 99.55 ±0.5 99.90 ±0.2 99.88 ±0.2 99.85 ±0.3 

Hybrid 99.64 ±0.1 99.73 ±0.4 99.73 ±0.4 99.83 ±0.3 

Bagging 95.28 ±1.2 95.27 ±1.3 95.20 ±1.2 95.21 ±1.2 

Boosting 96.87 ±1.7 96.76 ±1.9 96.32 ±1.8 96.93 ±1.8 

Ovarian 
4-3-02 

Random Forest 93.53 ±1.0 95.83 ±0.7 95.70 ±0.9 96.10 ±0.7 

Given that our approach is a resampling strategy, we have also compared the per-
formance with that of three other resampling strategies, including bagging, boosting 
and random forest. In Table 3 we provide the performance results for each of these 
other resampling strategies as obtained for the same four combination functions as 
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used above together with decision trees as the base classifier strategy. The results 
from the hybrid random subspace strategy as reported for decision trees above are 
also included to facilitate comparisons between these resampling strategies. We note 
that for other choices of base classifiers (e.g. LDA, Logistics Regression, etc) the per-
formance of the other resampling strategies is generally worse and is therefore not 
reported here. 

5   Conclusion 

In this paper, we have described a new hybrid approach for combining sample sub-
space and feature subspaces when constructing an ensemble of classifiers. We dem-
onstrate the usefulness of our approach on two public datasets of serum protein mass 
spectra from ovarian cancer research. Following appropriate preprocessing and di-
mensionality reduction stages, six well-known classification algorithms were utilized 
as the base classifiers. The results showed a clear enhancement in the performance of 
the base classifiers when applying the proposed method. Furthermore the performance 
enhancement was apparent regardless of the decision function used. Future work will 
investigate how robust this approach is by applying it to other datasets and testing the 
use of other base classifiers and combination functions. 
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