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Abstract. In this paper, we address a new version of dynamic pattern
matching. The dynamic text and static pattern matching problem is the
problem of finding a static pattern in a text that is continuously being
updated. The goal is to report all new occurrences of the pattern in
the text after each text update. We present an algorithm for solving
the problem, where the text update operation is changing the symbol
value of a text location. Given a text of length n and a pattern of length
m, our algorithm preprocesses the text in time O(nloglogm), and the
pattern in time O(m+/logm). The extra space used is O(n + m+/logm).
Following each text update, the algorithm deletes all prior occurrences
of the pattern that no longer match, and reports all new occurrences of
the pattern in the text in O(loglogm) time.

1 Introduction

The static pattern matching problem has as its input a given text and pattern
and outputs all text locations where the pattern occurs. The first linear time
solution was given by Knuth, Morris and Pratt [I12] and many more algorithms
with different flavors have been developed for this problem since.

Considering the dynamic version of the problem, three possibilities need to
be addressed.

1. A static text and dynamic pattern.

2. A dynamic text and a static pattern.

3. Both text and pattern are dynamic.

The static text and dynamic pattern situation is a traditional search in a non-
changing database, such as looking up words in a dictionary, phrases is a book,
or base sequences in the DNA. This problem is called the indexing problem.
Efficient solutions to the problem, using suffix trees, were given in [IRIT4/16].
For a finite fixed alphabet, the algorithms preprocess the text T in time O(|T)).
Subsequent queries seeking pattern P in T can be solved in time O(|P| + tocc),
where tocc is the number of occurrences of P in T. Farach [5] presented an
improved algorithm, acheiving the same time bounds for large alphabets.

Generalizing the indexing problem led to the dynamic indezing problem where
both the text and pattern are dynamic. This problem is motivated by making
queries to a changing text. The problem was considered by [QJ7JI5/T]. The Sahi-
nalp and Vishkin algorithm [I5] achieves the same time bounds as the suffix
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tree algorithm for initial text preprocessing, O(|T|), and for a search query for
pattern P, O(|P| + tocc), for bounded fixed alphabets. Changes to the text are
either insertion or deletion of a substring S, and each change is performed in
time O(log® |T| +1S]). The data structures of Alstrup, Brodal and Rauhe [I] sup-
port insertion and deletion of characters in a text, and movement of substrings
within the text, in time O(log®|T|loglog |T|log" |T|) per operation. A pattern
search in the dynamic text is done in O(log|T'|loglog |T| + | P| + tocc).

Surprisingly, there is no direct algorithm for the case of a dynamic text and
static pattern, as could arise when one is seeking a known and unchanging pat-
tern in data that keeps updating. We were motivated for solving this missing
version of dynamic pattern matching by the two dimensional run-length com-
pressed matching problem [2]. The dynamic text pattern matching problem is a
special case of the 2d run-length compressed matching problem where all pattern
rows are trivial, i.e., consist of a single repeating symbol. This special case had
no efficient solution in [2].

The Dynamic Text and Static Pattern Matching Problem is defined
as follows:

Input: Text T" = ty,...,t,, and pattern P = pq, ..., pm, over alphabet X,
where X' = {1,...,m}.

Preprocessing: Preprocess the text efficiently, allowing the following subse-
quent operation:

Replacement Operation: (i,0), where 1 < i < n and o € X. The operation
sets t; = 0.

Output: Initially, report all occurrences of P in T'. Following each replace-
ment, report all new occurrences of P in T', and discard all old occurrences that
no longer match.

The solutions of [I5l1] can be adapted to solve our problem with the time
bounds stated above. However, one would like a more direct and efficient way
to answer queries for a static pattern and a text whose length does not change.
In this paper we provide a direct answer to the dynamic text and static pattern
matching problem, where the text update operation is changing the symbol value
of a text location. After each change, both the text update and the reporting of
new pattern occurrences are performed in only O(loglogm) time. The text pre-
processing is done in O(nloglogm) time, and the pattern preprocessing is done
in O(m+/logm) time. The extra space used is O(n + my/logm). We note that
the complexity for reporting the new pattern occurrences is not proportional to
the number of pattern occurrences found since all new occurrences are reported
in a succinct form.

We begin with a high-level description of the algorithm in Section 2 followed
by some preliminaries in Section [l In Sections @l and Bl we present the detailed
explanation of the algorithm. We leave the details of the data structures and
proofs for the journal version.
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2 Main Idea

2.1 Text Covers

The central theme of our algorithm is the representation of the text in terms of
the static pattern. The following definition captures the notion that we desire.

Definition 1 (cover). Let S and S’ = s} --- s}, be strings over alphabet X. A
cover of S by S’ is a partition of S, S = TiT2... Ty, satisfying -

(1) substring property: for each 1 < i < v, 7; is either a substring of S’, or a
character that does not appear in S’

(2) maximality property: for each 1 <i < v, the concatenation of ;7,41 is not a
substring of S’.

When the context is clear we call a cover of S by S’ simply a cover. We also
say that 75, is an element of the cover. A cover element 7, is represented by a
triple [, j, k] where 7, = s} - - - s}, and k, the index of the element, is the location
in S where the element appears, i.e. kK = Z;le || + 1.

A cover of T by P captures the expression of the text T in terms of the
pattern P. We note that a similar notion of a covering was used by Landau
and Vishkin [13]. Their cover had the substring property but did not use the
maximality notion. The maximality invariant states that each substring in the
partition must be maximal in the sense that the concatenation of a substring
and its neighbor is not a new substring of P. Note that there may be numerous
different covers for a given P and T.

2.2 Algorithm Outline

Initially, when the text and pattern are input, any linear time and space pattern
matching algorithm, e.g. Knuth-Morris-Pratt [12], will be sufficient for announc-
ing all matches. The challenge of the Dynamic Text and Static Pattern Matching
Problem is to find the new pattern occurrences efficiently after each replacement
operation. Hence, we focus on the on-line part of the algorithm which consists
of the following.

Online Algorithm
1. Delete old matches that are no longer pattern occurrences.

2. Update the data structures for the text.
3. Find new matches.

Deleting the old matches is straightforward as will be described later. The
challenge lies in finding the new matches. Clearly, we can perform any linear
time string matching algorithm. Moreover, using the ideas of Gu, Farach and
Beigel [9], it is possible find the new matches in O(logm + pocc) time, where
pocc are the number of pattern occurrences. The main contribution of this paper
is the reduction of the time to O(loglogm) time per change. We accomplish this
goal by using the cover of T' by P. After each replacement, the cover of T' must
first be updated to represent the new text. We split and then merge elements to
update the cover.



Dynamic Text and Static Pattern Matching 343

Once updated, the elements of the cover can be used to find all new pattern
occurrences efficiently.

Observation 1 Due to their mazimality, at most one complete element in the
cover of T by P can be included in a pattern occurrence.

It follows from Observation [[] that all new pattern occurrences must begin
in one of three elements of the cover, the element containing the replacement,
its neighbor immediately to the left, or the one to the left of that. To find all
new pattern starts in a given element of the cover, 7, it is necessary to check
each suffix of 7, that is also a prefix of P. We use the data structure of [9], the
border tree, to allow checking many locations at once. In addition, we reduce the
number of checks necessary to a constant.

3 Preliminaries
3.1 Definitions

In this section we review some known definitions on string periodicity, which
will be used throughout the paper. Given a string S = s15. .. s,, we denote the
substring of S, s;...s;, by S[i : j]. S[1: j] is a border of S if it is both a proper
prefix and proper suffix of S. Let x be the length of the longest border of S. S
is periodic, with period n — x, if > n/2. Otherwise, S is non-periodic.

A string S is cyclic in string 7 if it is of the form 7%, k > 1. A primitive
string is a string which is not cyclic in any string. Let S = 7/7*, where || is
the period of S and 7’ is a (possibly empty) suffix of w. S can be expressed as
7'm* for one unique primitive w. A chain of occurrences of S in a string S’ is a
substring of S’ of the form 7/7? where ¢ > k.

3.2 Succinct Output

In the online part of the algorithm, we can assume without loss of generality that
the text is of size 2m. This follows from the simple observation that the text
T can be partitioned into 2n/m overlapping substrings, each of length 2m, so
that every pattern match is contained in one of the substrings. Each replacement
operation affects at most m locations to its left. The cover can be divided to
allow constant time access to the cover of a given substring of length 2m.

The following lemma can be easily proven using the properties of string
periodicity. The full proof will appear in the journal version of the paper.

Lemma 1. Let P be a pattern of length m and T a text of length 2m. All
occurrences of P in T can be stored in constant space.
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4 The Algorithm

The algorithm has two stages, the static stage and the dynamic stage. The static
stage, described in Section E.1, consists of preprocessing data structures and
reporting all initial occurrences of P in T.

The dynamic stage consists of the processing necessary following each re-
placement operation. The main idea was described in Section 2l The technical
and implementation details are discussed in Sections [£.2] and [l

Y%vspace-.2 cm

4.1 The Static Stage

The first step of the static stage is to use any linear time and space pattern
matching algorithm, e.g. Knuth-Morris-Pratt [12], to announce all occurrences
of the pattern in the original text. Then, several data structures are constructed
for the pattern and the text to allow efficient processing in the dynamic stage.

Pattern Preprocessing. Several known data structures are constructed for
the static pattern P. Note that since the pattern does not change, these data
structures remain the same throughout the algorithm. The purpose of the data
structures is to allow the following four queries to be answered efficiently. The
first two queries are used in the text update step and the second two are used for
finding new matches. We defer the description of the data structures to the full
version of the paper. The query list is sufficient to enable further understanding
of the paper.

Query List for Pattern P

Longest Common Prefix Query (LCP): Given two substrings, S’ and
S of P.Is S’ = 5”7 If not, output the position of the first mismatch.

= Query Time [13]: O(1).

Substring Concatenation Query: Given two substrings, S’ and S”, of P.
Is the concatenation S’S” a substring of P? If yes, return a location j in P at
which §’S” occurs.

= Query Time [BGJT0I9]: O(loglogm).

Longest Border Query: Given a substring S’ of P, such that S’ = P[i : j],
what is the longest border of P[1 : j] that is a suffix of S’?

= Query Time [9]: O(loglogm).

Range Maximum Prefix Query: Given a range of suffixes of the pattern
P, S;...5;. Find the suffix which maximizes the LCP(S;, P) over all i < ¢ < j.

= Query Time [8]: O(1).

Text Preprocessing. In this section we describe how to find the cover of T
by P for the input text T'. Recall that we assume that the alphabet is linearly
bounded in m. Thus, it possible to create an array of the distinct characters in
P. The initial step in the cover construction is to create an element, 7;, for each
location 7 of the text. Specifically, for each location, 1 < i < n, of the text, we
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identify a location of P, say P[j], where t; appears. We set j = m + 1 if ¢; does
not appear in P, and create 7; = [4, j,4]. Then, moving from left to right, we
attempt to merge elements in the cover using the substring concatenation query.
The initial cover is stored in a van Emde Boas [17] data structure, sorted by the
indices of the elements in the text.

Time Complexity. The algorithm for constructing the cover runs in deter-
ministic O(nloglogm) time. The amount of extra space used is O(n). Creating
an array of the pattern elements takes O(m) time, and identifying the elements
of T takes O(n) time. O(n) substring concatenation queries are performed, each
one takes O(loglogm) time. The van Emde Boas data structure costs O(n) time
and space for its construction [17].

4.2 The Dynamic Stage

In the on-line part of the algorithm, one character at a time is replaced in the
text. Following each replacement, the algorithm must delete the old matches
that no longer match, update the text cover, and report all new matches of P
in T. In this section we describe the first two steps of the dynamic stage. In
Section Elwe describe the third step, finding the new matches.

Delete Old Matches. If the pattern occurrences are saved in accordance with
Lemma [I] then deleting the old matches is straightforward. If P is non-periodic,
we check whether the one or two pattern occurrences are within distance -m of
the change. If P is periodic, we truncate the chain(s) according to the position
of the change.

Update the Text Cover. Each replacement operation replaces exactly one
character in the text. Thus, it affects only a constant number of elements in the
cover.

Algorithm: Update the Cover

1. Locate the element in the current cover in which the replacement occurs.
2. Break the element into three parts.

3.Concatenate neighboring elements to restore the maximality property.

Step 1: Locate the desired element. Recall that the partition is stored in a
van Emde Boas tree [17] which allows predecessor queries. Let = be the location
in T at which the character replacement occurred. Then, the element in the
partition in which the replacement occurs will be the pred(z).

Step 2: Break Operation. Let [i, ], k] be an element in the partition which
covers the position x at which a replacement occurred. The break operation
divides the element [i, 7, k] into the following three parts. We assume that the
new character is at position ¢ of the pattern. To find the new text character
in the pattern we do as described in the algorithm for constructing the cover
(Section ET]).

(1) [¢,i+ = — k — 1, k], the part of the element [i, j, k] prior to position x.

(2) [g, ¢, z], position z, the position of the replacement.

(3) i + & — k+1,4,2 + 1], the part of the element after position x.
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Step 3: Restore maximality property. The maximality property is a local
property, it holds for each pair of adjacent elements in the cover. As stated in
the following lemma, each replacement affects the maximality property of only
a constant number of pairs of elements. Thus, to restore the maximality it is
necessary to attempt to concatenate a constant number of neighboring elements.
This is done using the substring concatenation query.

Lemma 2. Following a replacement and break operation to a cover of T, at
most four pairs of elements in the new partition violate the maximality property.

Time Complexity of Updating the Cover: The van Emde Boas tree imple-
ments the operations: insertion (of an element from the universe), deletion, and
predecessor, each in O(loglog |U]) time using O(|U]) space [L7]. In our case, since
the text is assumed to be of length 2m, we have |U| = m. Thus, the predecessor
of z in the cover (Step 1) can be found in O(loglogm) time. Step 2, the break
operation, is done in constant time. Step 3, restoring the maximality property,
performs a constant number of substring concatenation queries. These can be
done in O(loglogm) time. Overall, the time complexity for updating the cover
is O(loglogm).

5 Find New Matches

In this section we describe how to find all new pattern occurrences in the text,
after a replacement operation is performed. The new matches are extrapolated
from the elements in the updated cover.

Any new pattern occurrence must include the position of the replacement.
In addition, a pattern occurrence may span at most three elements in the cover
(due to the maximality property). Thus, all new pattern starts begin in three
elements of the cover, the element containing the replacement, its neighbor im-
mediately to the left, or the one to the left of that. Let the three elements under
consideration be labeled 7, 7, 7., in left to right order. The algorithm Find New
Maitches finds all pattern starts in a given element in the text cover, and it is
performed separately for each of the three elements, 7,,7,, and 7.. We describe
the algorithm for finding pattern starts in 7.

The naive approach would be to check each location of 7, for a pattern
start (e.g. by performing O(m) LCP queries). The time complexity of the naive
algorithm is O(m). In the following two subsections we describe two improved
algorithms for finding the pattern starts in 7,. The first algorithm has time
O(logm) and the basic approach comes from [9]. Our algorithm, described in
Section 2.2 improves upon this further. Our algorithm also uses the border tree
of [9], but we use additional properties of the border groups (defined below)
which allow a significant improvement in the time complexity. The total time
for announcing all new pattern occurrences is O(loglogm).

Definition 2 (border groups [4]). The borders of a given string S[1 : m]
can be partitioned into g = O(logm) groups Bi,Ba,...,By. The groups pre-
serve the left to right ordering of the borders. For each B;, either B; =
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{miaki . wnd win2} or By = {nixk mim; b where k; > 1 is maximal, 7} is

i 117""

a proper su]ﬁx of mi, and m; is primitive.

The border groups divide the borders of a string S into disjoint sets, in left
to right order. Each group consists of borders that are all (except possibly the
rightmost one) periodic with the same period. The groups are constructed as
follows. Suppose 7'm* is the longest border of S[1 : m]. {#'7* ... 7'73 7'72}
are all added to group Bj. 7'w is added to B; if and only if it is not peI‘IOdIC.
If /7 is not periodic, it is the last element in By, and its longest border begins
group Bs. Otherwise, n'm is periodic, and it is the first element of By. This
construction continues inductively, until 7’ is empty and 7 has no border.

5.1 Algorithm 1: Check Each Border Group

It is possible to use the algorithm of [9] to obtain a O(logm) time algorithm for
finding all new pattern occurrences. The idea is to check all suffixes of 7,, which
are prefixes of P. We group together all prefixes that belong to the same border
group, and check them in constant time. The O(logm) time bound follows from
the fact that there are at most O(logm) border groups to check. The border
groups for any pattern prefix can be retrieved from the border tree of P.

Check one border group for pattern starts. Given a border group, By =
{r'7F w'7k=1 ...}, of which some element is a suffix of 7., compare 7¢*1 with
the text followmg 7, (using one or two LCP queries), to see how far right the
period 7 recurs in the text. Depending on the length of the pattern prefix with
period 7, we locate all pattern starts in 7, that begin with a border from B,.

5.2 Algorithm 2: Check O(1) Border Groups

Rather that checking all O(logm) border groups, our algorithm accomplishes
the same goal by checking only a constant number of border groups. We use the
algorithm for checking one border group to check the leftmost border group in
Tz, and at most one or two additional border groups.

Algorithm: Find New Matches

Input: An element in the cover, 7, = [i, j, k].
Output: All starting locations of P in the text between ¢} and ¢4 ,_;.

1. Find the longest suffix of 7, which is a prefix of P. The longest border query
(Section [£1)) returns the desired location. Let ¢ be the length of the suffix
returned by the query.

! The definition of Cole and Hariharan [4] includes a third possibility, B; =
mirki . wimi, wl}, when 7 is the empty string. In the current paper we do not

1nclude empty borders.
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2. Using the Algorithm Check One Border Group (described in previous section),
check the group of P[1: ¢], where £ is the length found in Step 1.

3. Choose O(1) remaining border groups and check them using the Algorithm
Check One Border Group.

Steps 1 and 2 were explained previously. It remains to describe how to choose
the O(1) border groups that will be checked in Step 3.

For ease of exposition we assume that the entire pattern has matched the text
(say 7, = P), rather than some pattern prefix. This assumption does not limit
generality since the only operations that we perform use the border tree, and the
border tree stores information about each pattern prefix. Another assumption
is that the longest border of P is < m/2. This is true in our case, since if P
were periodic, then all borders with length > m/2 would be part of the leftmost
border group. We take care of the leftmost border group separately (Step 2),
thus all remaining borders will have length < m/2.

Thus, the problem that remains is the following. An occurrence of a non-
periodic P has been found in the text, and we must find any pattern occurrence
which begins in the occurrence of P. Note that there is at most one overlapping
pattern occurrence since P is non-periodic. In Section [5.2] we describe some
properties of the borders/border groups from Cole and Hariharan [4]. We use
these ideas in Section to eliminate all but O(1) border groups.

Properties of the Borders. A pattern instance is a possible alignment of
the pattern with the text, that is, a substring of the text of length m. The
pattern instances that interest us begin at the locations of the borders of P. Let
{1, x2,...} denote the borders of P, with 21 being the longest border of P. Let
X; be the pattern instance beginning with the border z;.

Note that |z1] < m/2 and P is non-periodic. Thus, although there may be
O(m) pattern instances, only one can be a pattern occurrence. The properties
described in this section can be used to isolate a certain substring of the text,
overlapping all pattern instances, which can match at most three of the overlap-
ping pattern instances. Moreover, it possible to use a single mismatch in the text
to discover which three pattern instances match this “special” text substring.

The following lemma from Cole and Hariharan [4] relates the overlapping
pattern instances of the borders of P.

Definition 3 ([4]). A clone set is a set Q = {S1,Sa,...} of strings, with S; =
n'mki, where © is a proper suffirz of primitive © and k; > 0.

Lemma 3. [{J] Let X,, Xp, X, a < b < ¢, be pattern instances of three bor-
ders of P, Tq,Tp, T, respectively. If the set {xq,xp,x.} is not a clone set,
then there exists an index d in Xy with the following properties. The charac-
ters in X1, Xs,..., X, aligned with X1[d] are all equal; however, the character
aligned with X1[d] in at least one of Xy and X. differs from Xi[d]. Moreover,
m—|zq| +1<d<m, ie Xi[d] lies in the suffix z, of X;.



Dynamic Text and Static Pattern Matching 349

Each border group is a clone set by definition, since every border within a
group has the same period. However, it is possible to construct a clone set from
elements in two different border groups. The last element in a border group can
have the form 7/72, in which case the borders 7’7 and 7’ will be in (one or two)
different border groups. It is not possible to construct a clone set from elements
included in more than three distinct border groups. Thus, we can restate the
previous lemma in terms of border groups, and a single given border, as follows.

Lemma 4. Let x, be a border of P with pattern instance X,, and let x, be
the rightmost border in its group (definition [3). At most two different pattern
instances to the right of X, can match x, at the place where they align with the
suffizx xo of Xi.

Let r = m—|z1]|+1. Note that P[r] is the location of the suffix z; in P. Since
all pattern instances are instances of the same P, an occurrence of a border z,
in some pattern instance below X, aligned with X,[r], corresponds exactly to
an occurrence of x, in P to the left of P[r]. The following claim will allow us to
easily locate the two pattern instances which are referred to in Lemma Hl

Claim. Let x4, be a border of P, and let x, be the rightmost border in its group
(definition 2)). Let » = m — |z1| + 1, where 7 is the longest border of P. There
are at most two occurrences of x, beginning in the interval P[r — |z,|,7].

The Final Step. Using ideas from the previous subsection, our algorithm lo-
cates a single mismatch in the text in constant time. This mismatch is used
to eliminate all but at most three pattern instances. Consider the overlapping
pattern instances at the mth position of X;. By Lemma [B] we have an identical
alignment of all borders of P at this location. Each x; is a suffix of all z; such
that ¢ > j, since all x; are prefixes and suffixes of P. Thus, suppose that the
algorithm does the following. Beginning with the mth location of X7, match the
text to the pattern borders from right to left. We start with the shortest border,
and continue sequentially until a mismatch is encountered. Let z, be the border
immediately below the border with the mismatch. The first mismatch tells two
things. First, all borders with length longer than |z,| mismatch the text. In
addition, at most two pattern instances with borders shorter than |z,| match z,
at the location aligned with the suffix z, of X7 (Lemma HI).

The algorithm for choosing the O(1) remaining borders is similar to the
above description, however, instead of sequentially comparing text characters,
we perform a single LC'P query to match the suffix z; with the text from right
to left.

Algorithm: Choose O(1) Borders (Step 3 of Algorithm Find New Matches)

A: Match P from right to left to the pattern instance of x; by performing a single
LCP query.

B: Find the longest border that begins following the position of the mismatch found
in Step A.
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C: Find the O(1) remaining borders referred to in Lemma [
D: Check the borders found in Steps B and C using the algorithm for checking one
border group.

An LCP query is performed to match the suffix x; of X, with the text
cover from right to left. (Step A). The position of the mismatch is found in
constant time, and then a longest border query is used to find z, (Step B). Once
X, is found, we know that all pattern instances to its left mismatch the text.
It remains to find the possibilities to the right of X, which are referred to in
Lemma [ Claim is used for this purpose.

Step C: Let » = m — |z1| + 1. The possible occurrences of z, in pattern
instances to the right of X, correspond to occurrences of =, in the interval
Plr — |xgl, 7]

By Claim [5.-2]there are at most two occurrences of x, in the specified interval.
Since z, is a pattern prefix, three range maximum prefix queries will give the
desired result. The first query returns the maximum in the range [r — |z,], 7].
This gives the longest pattern prefix in the specified range. If the length returned
by the query is > |z,|, then there is an occurrence of z, prior to position r.
Otherwise, there is no occurrence of x, aligned with X,[r], and the algorithm
is done. If necessary, two more maxima can be found by subdividing the range
into two parts, one to the left and one to the right of the maximum.

Step D: The final step is to check each border group, of which there are at
most three, using the Algorithm Check One Border Group.

Time Complexity of Algorithm Find New Matches: As shown previously,
each step of the algorithm takes either constant time or O(loglogm) time. Thus,
overall, the algorithm has time complexity O(loglogm).

We summarize the algorithm, including the time and space complexity of
each step.

Preprocessing: O(nloglogm + m+/logm) time and O(n + m+/logm) space.
On-line algorithm: O(loglogm) time per replacement.

Pattern Preprocessing: The following data structures are necessary to
answer the queries listed in Section El
(1) The suffix trees for P and the reverse of P: O(m) time/space [5]. The suffix
trees must be preprocessed for:

(a) lowest common ancestor queries: O(m) time/space [11],

(b) weighted ancestor queries: O(m) time/space, combined results of [6I10]
19], and

(¢) node intersection queries: O(m+/logm) time/space [3].

(2) The border tree for P is constructed in O(m) time/space [9], and

(3) a range-maximum prefix array for P is created in O(m) time/space [§].
Text Preprocessing: (Section E)

(1) Construct the cover of T' by P: O(nloglogm) time, O(n) space.

(2) Store the cover in a van Emde Boas data structure: O(n) time/space.

The Dynamic Algorithm: (Sections [Z2f])

(1) Delete old matches that are no longer pattern occurrences: O(log logm) time.
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(2) Update the data structures for the text: O(loglogm) time.
(3) Find new matches: O(loglogm) time.

6 Conclusion

In this paper we presented an algorithm for the Dynamic Text and Static Pat-
tern Matching Problem, allowing character replacements to be performed on the
text. Solving this problem for insertions and deletions in the text remains an
interesting open problem. In addition, we would like to extend our algorithm
to allow a general alphabet; currently the assumption is that the alphabet is
linearly bounded by m. Other directions would be to solve approzimate pattern
matching or multiple pattern matching over a dynamic text.

References

1. S. Alstrup, G. S. Brodal, T. Rauhe: Pattern matching in dynamic texts. Proc. of
the Symposium on Discrete Algorithms (2000) 819-828

2. A. Amir, G. Landau, and D. Sokol: Inplace run-length 2d compressed search.
Theoretical Computer Science 290, 3 (2003) 1361-1383

3. A. Buchsbaum, M. Goodrich and J. Westbrook: Range searching over tree cross
products. Proc. of European Symposium of Algorithms (2000) 120-131

4. R. Cole and R. Hariharan: Tighter upper bounds on the exact complexity of string
matching. SIAM J. on Computing 26,3(1997) 803-856

5. Martin Farach: Optimal suffix tree construction with large alphabets. Proc. of the
Symposium on Foundations of Computer Science (1997) 137-143

6. M. Farach and S. Muthukrishnan: Perfect hashing for strings: formalization and
algorithms. Proc. of Combinatorial Pattern Matching (1996) 130-140

7. P. Ferragina and R. Grossi: Fast incremental text editing. Proc. of the Symposium
on Discrete Algorithms (1995) 531-540

8. H.N. Gabow, J. Bentley, and R.E. Tarjan. Scaling and related techniques for
geometric problems. Proc. of the Symposium on Theory of Computing (1984) 135—
143

9. M. Gu, M. Farach, and R. Beigel: An efficient algorithm for dynamic text indexing.
Proc. of the Symposium on Discrete Algorithms (1994) 697-704

10. T. Hagerup, P.B. Miltersen and R. Pagh: Deterministic dictionaries. J. of Algo-
rithms 41 (2000) 69-85

11. D. Harel and R. E. Tarjan: Fast algorithms for finding nearest common ancestors.
SIAM J. on Computing 13,2, (1984) 338-355

12. D. Knuth, J. Morris and V. Pratt: Fast pattern matching in strings. SIAM J. on
Computing 6,2 (1977) 323-350

13. G.M. Landau and U. Vishkin: Fast string matching with k differences. Journal of
Computer and System Sciences 37,1 (1988) 63-78

14. E. M. McCreight: A space-economical suffix tree construction algorithm. J. of the
ACM 23 (1976) 262-272

15. S. C. Sahinalp and U. Vishkin: Efficient approximate and dynamic matching of
patterns using a labeling paradigm. Proc. of the Symposium on Foundations of
Computer Science (1996) 320-328

16. E. Ukkonen: On-line construction of suffix trees. Algorithmica 14 249-260



352 A. Amir et al.

17. P. van Emde Boas: An O(nloglogn) on-line algorithm for the insert-extract min
problem. Technical Report, Department of Computer Science, Cornell University,
Number TR 74-221 (1974)

18. P. Weiner: Linear pattern matching algorithm. Proc. of the Symposium on Switch-
ing and Automata Theory (1973) 1-11

19. D.E. Willard: Log-logarithmic worst case range queries are possible in space 0(n).
Information Processing Letters 17 (1983) 81-84



	Introduction
	Main Idea
	Text Covers
	Algorithm Outline

	Preliminaries
	Definitions
	Succinct Output

	The Algorithm
	The Static Stage
	The Dynamic Stage

	Find New Matches
	Algorithm 1: Check Each Border Group
	Algorithm 2: Check $O(1)$ Border Groups

	Conclusion

