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Abstract. Scaled Matching refers to the problem of finding all loca-
tions in the text where the pattern, proportionally enlarged according to
an arbitrary real-sized scale, appears. Scaled matching is an important
problem that was originally inspired by Computer Vision.

Finding a combinatorial definition that captures the concept of real scal-
ing in discrete images has been a challenge in the pattern matching field.
No definition existed that captured the concept of real scaling in dis-
crete images, without assuming an underlying continuous signal, as done
in the image processing field. We present a combinatorial definition for
real scaled matching that scales images in a pleasing natural manner. W
e also present efficient algorithms for real scaled matching. The running
time of our algorithm is as follows. If T is a two-dimensional n X n text
array and P is a m X m pattern array, we find in 7" all occurrences of P
scaled to any real value in time O(nm?® + n*mlogm).

1 Introduction

The original classical string matching problem [7IT1] was motivated by text
searching. Indeed practically every text editor uses some variant of the Boyer-
Moore algorithm [7].

Wide advances in technology, e.g. computer vision, multimedia libraries, and
web searches in heterogeneous data, point to a glaring lack of a theory of mul-
tidimensional matching [15].

The last decade has seen some progress in this direction. Issues arising from the
digitization process were examined by Landau and Vishkin [I4]. Once the image
is digitized, one wants to search it for various data. A whole body of literature
examines the problem of seeking an object in an image.

In reality one seldom expects to find an exact match of the object being sought,
henceforth referred to as the pattern. Rather, it is interesting to find all text
locations that “approximately” match the pattern. The types of differences that
make up these “approximations” are:
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1. Local Errors - introduced by differences in the digitization process, noise,
and occlusion (the pattern partly obscured by another object).

2. Scale - size difference between the image in the pattern and the text.

3. Rotation - The pattern image appearing in the text in a different angle.

Some early attempts to handle local errors were made in [12]. These results were
improved in [5]. The algorithms in [5] heavily depend on the fact that the pattern
is a rectangle. In reality this is hardly ever the case. In [4], Amir and Farach
show how to deal with local errors in non-rectangular patterns.

The rotation problem has proven quite difficult. There is currently no known
asymptotically efficient algorithm for finding all rotated occurrences of a pattern
in an image. Fredriksson and Ukkonen [8], give a reasonable definition of rotation
in discrete images and introduce a filter for seeking a rotated pattern.

More progress has been made with scaling. In [6] it was shown that all occur-
rences of a given rectangular pattern in a text can be found in all discrete scales
in linear time. By discrete scales we mean natural numbers, i.e. the pattern
scaled to sizes 1,2, 3,.... The algorithm was linear for fixed bounded alphabets,
but was not linear for unbounded alphabets. This result was improved in [2].
The above papers dealt with discrete scales only. There is some justification for
dealing with discrete scales in a combinatorial sense, since it is not clear what is
a fraction of a pixel. However, in reality an object may appear in non-discrete
scales. It is necessary to, both, define the combinatorial meaning of such scaling,
and present efficient algorithms for the problem’s solution. A first step in this
direction appeared in [1], however that paper was limited to string matching
with non-discrete scales. There was still no satisfactory rigorous definition of
scaling in an “exact matching” sense of combinatorial pattern matching.

In this paper we present a definition for scaled pattern matching with arbitrary
real scales. The definition is pleasing in a “real-world” sense. We have scaled
“lenna” to non-discrete scales by our definition and the results look natural (see
Figure[T). This definition was inspired by the idea of digitizing analog signals by
sampling, however, it does not assume an underlying continuous function thus
stays on the combinatorial pattern matching field. We believe this is the natural
way to define combinatorially the meaning of scaling in the signal processing
sense.

We believe this definition, that had been sought by researchers in pattern match-
ing since at least 1990, captures scaling as it occurs in images, yet has the neces-
sary combinatorial features that allows developing deterministic algorithms and
analysing their worst-case complexity. Indeed we present an efficient algorithm
for real scaled two dimensional pattern matching.

The running times of our algorithm is as follows. If T" is a two-dimensional n x n
text array and P is a m x m pattern array, we find in 7' all occurrences of P
scaled to any real value in time O(nm? + n?mlogm).

The main achievements of this paper are pinning down a rigorous combinatorial
definition for exact real scaling in images and producing efficient algorithms for
scaled matching. The new techniques developed in this paper are analysis of
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Fig.1. An original image, scaled by 1.3 and scaled by 2, using our combinatorial
definition of scaling.

the properties of scaled arrays and two-dimensional dictionary matching with a
compressed dictionary.

2 Scaled Matching Definition

Definition 1. Let T be a two-dimensional n X n array over some finite alphabet
X

1. The unit pixels array for T (T'*) consists of n? unit squares, called pizels
in the real plane R?. The corners of the pizel T, j] are (i — 1,5 — 1), (i,j —
1),(t —1,7), and (i,7). Hence the pizels of T form a regular n X n array
that covers the area between (0,0), (n,0),(0,n), and (n,n). Point (0,0) is
the origin of the unit pizel array. The center of each pizel is the geometric
center point of its square location. Each pizel Ti,j] is identified with the
value from X that the original array T had in that position. We say that the
pizel has a color from X. See figure [Q for an example of the grid and pizel
centers of a 7 X 7 array.

2. Let 1 € R, v > 1. The r-ary pixels array for T (T"X) consists of n® r-
squares, each of dimension r X r whose origin is (0,0) and covers the area
between (0,0), (nr,0), (0,nr), and (nr,nr). The corners of the pizel TVi, j]
are ((i—1)r,(j — Dr), (ir, (j — D)r), ((i = L)r, jr), and (ir, jr). The center of
each pizel is the geometric center point of its square location.

Notation: Let r € R. ||r| denotes the rounding of r, ie. |r| =
{ lr| ifr—|r] <.5

[r] otherwise.
There may be cases where we need to round 0.5 down. For this we denote:
Ir]] = { |r| ifr—|r] <.5

[r] otherwise.
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Fig. 2. The grid and pixel centers of a unit pixel array for a 7 x 7 array.

Definition 2. Let T' be an n x n text array and P be an m X m pattern array
over alphabet X. Letr e R, 1 <r < %

We say that there is an occurrence of P scaled to r at text location [i,j] if the
following condition holds:

Let T™X be the unit pizels array of T and P be the r-ary pizel arrays of P.
Translate P™X onto T™X in a manner that the origin of P™X coincides with
location (i — 1,5 — 1) of T'X. Every center of a pizel in T*X which is within
the area covered by (i — 1,5 —1),(i — 1,5 —14+mr),(i — 1+ mr,j — 1) and
(i —1+mr,j — 1+ mr) has the same color as the r-square of P™~ in which it
falls.

The colors of the centers of the pizels in T'X which are within the area covered
by (i—1,7—-1),(i—=1,j—14+mr),(i—14+mr,j—1) and (i—1+mr,j—1+mr)
define a ||mr|| x ||mr|| array over X. This array is denoted by P" and called P
scaled to r.

It is possible to find all scaled occurrences of an m X m pattern in an n X n text
in time O(n?m?). Such an algorithm, while not trivial, is nonetheless achievable
with known techniques. We present below an O(nm? + n?mlogm) algorithm.
The efficiency of the algorithm results from the properties of scaling. The scaling
definition needs to accommodate a conflict between two notions, the continuous
(represented by the real-number scale), and the discrete (represented by the
array representation of the images). Understanding, and properly using, the
shift from the continuous to the discrete and back are key to the efficiency of
our algorithms. To this effect we need the following functions.

Definition 3. Let k be a discrete length of a pattern prefiz in any dimension,
i.e. the number of consecutive rows starting from the pattern’s beginning, or the
length of a row prefix. Let r € R be a scale, and let N be the natural numbers.
We define the function D : N x R — N as follows: D(k,r) = |kr]||.

We would like to define an “inverse” function D™ : N x N — R with the prop-
erty D71(k, D(k,r)) = r. However, that is not possible since D is not injective.
Claim 2] which follows from the definition, below tells us that for a fixed &k there
is a structure to the real numbers r that are mapped to the same element D(k, r),
namely, they form an interval [r1,r2).
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Claim. Let 1,79 € R, k € N such that D(k,r1) = D(k,r2) and let r € R, r; <
r < rg. Then D(k,r) = D(k,r1).

Definition 4. Let k., € N. Define
1 ifk=1¢;
L=Y(k, 0) = { (¢—0.5) /
k

otherwise.
and R~ (k, 0) = L405),

It is easy to see that L=!(k,¢) = min{r € R|D(k,r) = £} and that R~ (k, /) =
min{r € R|D(k,r) =+ 1}.

The L=! and R~! functions are designed to give a range of scales whereby a
pattern sub-range of length k may scale to a sub-range of scale £. The following
claim follows from the definition.

Claim. Let P be an m x m pattern and T an n X n text. Let kK < m and ¢ < n,
and let [L™!(k,€), R~1(k,£)) be the range of scales defined by L=! and R~!.
Then the difference in number of rows (or number of columns) between P and
P2, for any two rq,r2 € [L™Y(k,£), R (k,£)) can not exceed m + 2.

3 The Number of Different Scaled Patterns

We utilize various properties of the scaled patterns to aid our search. One of the
difficulties presented are that it is possible to have several values 1,75, ...,7p € R
for which P™, P™2, ..., P™ are different matrices yet all have the same dimen-
sions. See Figure [3l The following claim limits the overall number of different
possible matrices that represent scaled occurrences of a given pattern matrix P.

Claim. Let P be an m xm pattern over finite alphabet X'. Then there are O(nm)
different matrices representing the occurrences of P scaled toallr e R, 1 <r <
P

Proof. There are n — m different possible sizes of matrices representing a scaled
P whose maximum size is n X n. By lemma [ below, each one of the n —m
different matrix sizes has at most m possibilities of matrices representing scaled
versions of P, for a total of O(nm). O

Lemma 1. Let m x m pattern P be scaled to size £ x £, £ > m. Then there are
k different intervals, [a1,a2), a2, a3), ..., [ak, ak+1), E<m,1<a; <ay<---<
ap+1 for which the following hold:

1. P* =P™ ifry,rs € [as,a541), 1 <i < k.

2. P™ £ P™ if ry and ro are in different intervals.

3. P" is an € x £ matriz iff r € [a1, ap+1).

Proof. Omitted for space reasons.
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Fig.3. The 5 x 5 pattern scaled to 1.1,1.125,1.17 and 1.25 produces a 6 X 6 pattern.
In each of these cases some row and some column needs to be repeated. The dashed
grid line indicates the repeating row or column (both rows or columns on the two sides
of the dashed grid line are equal).

4 The Scaled Matching Algorithm’s Idea

The naive, straightforward idea is to construct a dictionary of the O(nm) dif-
ferent possible scaled occurrences of P and use a two-dimensional dictionary
matching algorithm (e.g. [3I10/9]) that can scan the text in linear time and find
all dictionary occurrences. The trouble with this idea is that the different matri-
ces in the dictionary range in sizes from m? to n? which will make the dictionary
size O(n®*m), which we are not willing to pay.

Our idea, then, is to keep the dictionary in a compressed form. The compression
we use is run-length of the rows.

Definition 5. Let S = 0102 - - - 0, be a string over some alphabet X. The run-

length representation of string S is the string S' = oy oy -+ )" such that:
(1) of # ojpqy for 1 <i <k;and (2)S can be described as concatenation of the
symbol o repeated r1 times, the symbol oy repeated ro times, ..., and the symbol

f .
o}, repeated Ty, times.

We denote by S’ = oioh - - - o}, the symbol part of S’, and by c(S), the
vector of natural numbers ri,7a,...,7%, the run-length part of S’. We say that
the number of runs of S is k and denote it by |c(S)|. For j, 1 < j <k denote

prefixsum(S, j) = >1_, ri.
Since every scaled occurrence has at most m different rows, each repeating a
certain number of times, and each row is of run-length at most m, then we

can encode the information of every pattern scaled occurrence in space O(m?).
Now our dictionary is of size O(nm?). The construction details are left for the
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journal version. The challenge is to perform dictionary matching using a com-
pressed dictionary. We show in Section Bl that such a search can be done in time
O(n*mlogm).

The idea behind the text searching is as follows: For every text location [i, j],
we assume that there is a pattern scaled occurrence beginning at that location.
Subsequently, we handle every one of the pattern m rows separately (in time
O(log m) for each row). For every row, we establish the number of times this row
repeats in the text. This allows us to narrow down the range of possible scales
for this occurrences and compare the row to an appropriately scaled pattern row
from the dictionary. The high-level description of the text searching algorithm
appears below. We denote the ¢th row of P by P,.

Scaled Text Scanning (high level)

For every text location [4, j] do:
Set k < i.
For pattern row ¢ =1 to m do:

1. Establish the number of times the subrow of T starting at location [k, j]
and whose run-length equals the run-length of P, repeats in the text.

2. If this number of repetitions is incompatible with the numbers for rows
1,...,£ — 1 then halt — no scaled occurrence possible at [i, j].

3. Binary search all the dictionary rows P in the appropriate scale compared
to the run-length ¢(Py) subrow starting at T'[k, j]. If no match then halt —
no scaled occurrence at [i, j].
update the possible range of scales and k.

EndFor
EndFor

end Scaled Text Scanning

5 Scaled Search Algorithm Implementation

We describe the details of efficiently computing the high-level steps of Section

5.1 Computing Text Subrow Repetition

Consider a given text location [¢, j]. We are interested in ascertaining whether
there exists a r € & for which P" occurs starting at location [z, j]. If such an r
exists, the first pattern row starts at location [¢, j] and repeats ||r|| times. Since we
do not know the scale r, we work backwards. If we know the number of repetitions
of the first subrow, we will be able to derive ||7||. In [6] a method was presented
that preprocesses an n X n text matrix in time O(n?) and subsequently allows
answering every subrow repetition query in constant time. A subrow repetition
query is defined as follows: Given an n x n matrix T,

Input: Location [i, j] and natural numbers k, £.
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Output: Decide whether the substring T'[i, ], T[¢,j + 1], ..., T[i, j + € — 1] repeats
k consecutive times starting at column j in rows ¢,i + 1,...,9 4+ k — 1 of T.
Formally, decide whether for every natural number y € {0,...,¢ — 1} it is true
that T[i4+z,j+y]=T[i,j+vy], v=1,..,k—1.

The Scale Range Computation — Overview. Every text subrow gives us
horizontal scaling information, by analysing how many times each symbol repeats
in the subrow, and wvertical scaling information, by computing how many times
the subrow repeats until it changes. Note that both the horizontal and vertical
scaling information are exact up until the last run-length symbol and the last
unique row. Both may repeat in the text for longer than the scale. However,
assuming that there is either a row or a column of run-length at least 3, the
“inner part” of the run-length places some limitations on the scale range.

The strategy of our algorithm is as follows. For text location [i, j], we compute
the range induced by the horizontal scale of the first row, and update the range
by the vertical scale of the first row, then move on to the next distinct row,
and continue until all pattern rows are accounted for. This means we handle
O(m) distinct rows per text location [¢, j]. The horizontal scale calculations are
a constant number of numeric operations per row. The vertical scale computation
utilizes the subrow repetition queries. However, not knowing a-priori how many
times a row repeats, we do a binary search on the values induced by the horizontal
scale range. Claim B] guarantees that the range of these values can not exceed
m 4+ 2.

The Scale Range Computation — Details Terminology: We denoted the
rows of pattern P by Py, Ps, ..., P,,. We can conceptualize the pattern as a string
with every row a symbol. Consider the run-length representation of this string,
(P'Z (1)) (pr[2]) eI ... (P'¥[E])(P)F] We call this presentation the row
run-length presentation of the pattern. We will calculate the subrow length for
the rows grouped according to the row run-length representation.
Notation: Denote by T; ; the subrow T'[i, j], T[i,j + 1], ..., T[i,n].
The details of the scale range computation follow:
For every location [ig, jo] in the text calculate the scale range in the following manner:
Initialization:

Set the text row variable tr to ig

Initialize the pattern row pr to 1.

Initialize the pattern run-length row 77 to 1.

Initialize the scale range to [1, ).

Assume that the scale range [a, b) has been computed so far, and the algorithm
is now at text row tr, pattern row pr, and pattern run-length row rr.

Update Scale Range:

Distinguish between three cases:

1. The run-length of pattern row P, is 1.

2. The run-length of pattern row P, is 2.

3. The run-length of pattern row P,, is 3 or more.
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Each of the three cases is handled somewhat differently: At any stage of the
algorithm if an intersection is empty, the algorithm is halted for location [ig, jo]
— no scaled occurrence. We omit the details of the simple cases 1 and 2 for space
reasons and present the interesting case, case 3.

Case 3:
Let the new values of [a,b) be the intersections of the current [a,b)
and [L7!(s,s'),R7!(s,s')) where s = prefixsum(Pp,|c(Pp)| — 1), =

prefixsum(Ty, jo , [¢(Ppr)| — 1)

Using a “binary search on [a,b)" (see Section [B1]) determine the number k& of row
repetitions.

tr < tr+k; pr < pr+ c(P)[rr]; rr < rr 4+ 1.

Check if text subrow is equal to pattern row (see Section B.2).

end Case 3

We do not want to explicitly check that all symbols in the text match the pattern,
since that could take time O(m). So we just make sure the text row repeats a
sufficient amount of times. In Section [B.21we show how to compare the text and
pattern rows quickly.

Implementation Details: The prefixsum computations and several computa-
tions of the L= and R~! functions are performed on a run-length compression
of the text and pattern, whereas the subrow repetition queries are performed
on the uncompressed text and pattern. An initial preprocessing stage will create
compressed text and pattern, with double pointers of locations in the compressed
and uncompressed text and pattern. All such preprocessing can be done in linear
time and space using standard techniques.

Time: The running time for every text location is O(mt), where ¢ is the time
it takes to do the binary search. We will see in the next section that the binary
search is done in time O(logm). Thus the total search time is O(n?mlogm).
Binary Search on [a,b). [a,b) is an interval of real numbers, thus it is im-
possible to do “binary search” on it. When we say “binary search” on [a, b) we
mean the discrete number of rows that P, repeats scaled to r for r € [a, ). This
number is at most | ™ |, and we will show that we can actually limit it to O(m).
In any event, we have a finite set of natural numbers to search.

The values we need to search are when a block of k equal subrows of length ¢
occur starting in text location [tr, jo]. It is easy to see that D is non-decreasing
in both variables. Therefore, consider a (k, £) block to be valid if the k subrows
of length ¢ are all equal. The monotonicity of k in ¢ guarantees that if a (k,¢)
block is not valid, no greater block with a greater ¢ (or k) is valid. If a (&, ¢)
block is valid, all smaller blocks are valid. Thus, it is possible to do a binary
search on k or £ to find the largest k that gives a valid block.

The only information still needed is how to compute the k and ¢ from interval
[a,b). Note that the D function computes from a number of repetitions in P
and a given real scale r, the number of times those repetitions will scale to 7.
It seems like the function we need, and it actually does the job for computing
the £. However, we have a problem with the k. The definition of D assumes that
the repetitions start at the beginning of the pattern on the pixel array, and the
rounding is done at the end. Now, however, we find ourselves in the middle of
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the pattern. This means that the pattern rows we are interested in may start in
the middle of a pixel in the text pixel array. The D function would assume they
start at the beginning of a pixel in the text pixel array and provide an answer
that may be incorrect by 1. An example can be seen in Figure

Fig.4. Assume the pattern’s first row is the three symbols abc. Consider Pls.
D(1, 1%) = 1. Yet, the second symbol extends over two pixel centers.

Definition 6. Let k be a discrete length of a sub-pattern in any dimension,
starting from location i in the pattern. Let v € R be a scale, and let N be the
natural numbers. We define the function D' : N x N x ® — N as follows:
D'(i,k,r)=D(i+k—1,r)—D(i—1,r). Since D’ is a straightforward general-
ization of D (D(k,r) = D'(1,k,7)), and to avoid unnecessary notation, we will
refer to both functions as D.

Tt is easy to see that D(i, k,r) is indeed the number of discrete rows or columns
that k£ in position i scales to by r.

Binary Search on [q,b).

Perform a binary search on the values ¢ € {D(m,a), ..., ||mb]|}.

For each value ¢ compute the two values ki, ko for which to perform subrow
repetition queries starting at location [tr, jo], with k1 or ko repetitions of length ¢
as follows:

Let z = L~ Y(m,¥), y= R 1(m,0).

k1 = D(pr,c(P)[rr],x) and ke = D(pr, c(P)[rr],y).

If both subrow repetition queries are positive, this is a valid case. The £ value should
be increased.

If both subrow repetition queries are negative, this is an invalid case. The ¢ value
should be decreased.

If the k;, subrow repetition query is positive and ks is negative the search is done
with k = k;.

Correctness: It follows from claims (B.1] and B.T] that the binary search indeed
finds the correct number of repetitions. Their proofs are technical and are omit-
ted for lack of space.

Claim. The binary search algorithm considers all possibilities of k£ and /.

Claim. Let r € R and assume there is an occurrence of P starting at location
[i, 7] of T. Then the ¢(P)[rr] rows of the pattern starting at pattern row pr are
scaled to the value k discovered by our algorithm.
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Time: A subrow repetition query takes constant time. The number of queries we
perform is logarithmic in the range of the binary search. By Claim [2], if we know
for any number of rows and columns in the pattern, to exactly how many rows
or columns they scale, the range is then O(m). Note that in all cases except
for Case 1, Claim ] holds. Even in Case 1, the claim does not hold only for
cases where the first pattern rows are all of run-length 1. This is a very trivial
pattern and all its scaled occurrences can be easily detected by other easy means.
Every other case has at least a row or a column with run-length greater than 1.
Without loss of generality we may assume that there is a row ry of run-length
greater than 1 (otherwise we rotate the text and pattern by 90°). We consider
the pattern P’ consisting of rows Py, Pryt1, ..., Pm. We compute the ranges of
all possible scales of P’ for every text location, as described above, and then
eliminate all locations where rows P, ..., P, _1 do not scale appropriately. By
this scheme there is never a binary search on range greater than m + 2. Thus
the total time for the binary search is O(logm).

5.2 Efficient Subrow Comparison

At this stage we know, for every text location, the number of repetitions of every
row. But we do not know if the repeating text subrow is, indeed, the appropriate
scaled pattern row, for any pattern row whose run-length exceeds two. Checking
every row element by element would add a factor of m to our complexity, which
we want to avoid. It would be helpful if we could compare entire subrows in
constant time. We are interested in a query of the form below.

Given a string S of length n over ordered alphabet X, a substring comparison
query is defined as follows.

Input: Locations 7,5, 1<14,j,<n and length /.

Output: Decide whether the substring S[i], S[i+1], ..., S[i + ¢ — 1] is lexicograph-
ically larger, smaller or equal to substring S[j], S[j +1],...,S[j + ¢ — 1].

In [I3] a method was presented that preprocesses a string of length n in time
O(nlogo), where 0 = min{m, |X¥|}, and subsequently allows answering longest
common prefix queries in constant time. A Longest Common Prefix query is
defined as follows:

Input: Locations 4,7, 1<1,7,<n.

Output: The length of the longest common prefix of the substrings S[i], S[i +
1],...,S[n] and S[j],S[j + 1], ..., S[n], i.e. the number m for which S[i + ¢] =
Slj+4, £=0,...,m—1and S[i +m] # S[j +m] or one of i + m,j + m is
greater than n.

Using the Landau and Vishkin method, we can also answer the substring com-
parison query in constant time, following a O(nlog o)-time preprocessing, in the
following way.

Given locations 4,7, 1 <4,7j,<n and length ¢, find the length k of the longest
common prefix of S[i], S[i + 1], ..., S[n] and S[j], S[j + 1], ..., S[n]. If & > ¢ then
the two substrings S[i], S[i + 1], ..., S[i + £ — 1] and S[j], S[j + 1], ..., S[j + £ — 1]
are equal. Otherwise, compare S[i + k] and S[j + k]. If S[i + k] > S[j + k]
then the substring S[é], S[¢ + 1], ..., S[i + £ — 1] is lexicographically larger than



364 A. Amir et al.

S[41,S[i+1], ..., S[j+£—1], and if S[i+k] < S[j+k] then the substring S[i], S[i+
1], ..., S[i + € — 1] is lexicographically smaller than S[j], S[j + 1],...,S[j + ¢ — 1].
Our algorithm will do a binary search on a precomputed run-length compress
dictionary of all scaled possibilities on the row. While the symbol part of the
run-length can indeed be checked in such a dictionary, the numerical part is more
problematic. The difficulty is that our text subrow is not wholly given in run-
length compressed form. The first and last symbols of the run-length compressed
row may occur in the text more times than in the scaled pattern. The details of
verifying that the numerical part of the run-length of the pattern row matches
the run-length of the text subrow are left for the journal version.
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