

To Volodya, who insisted.

3D ART ESSENTIALS

The Fundamentals of 3D
Modeling, Texturing,
and Animation
AMI CHOPINE
AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Focal Press is an imprint of Elsevier

Focal Press is an imprint of Elsevier

The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

First published 2011

Copyright � 2011. Published by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or any information storage and retrieval system, without permission in writing

from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies

and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,

can be found at our website: www.elsevier.com/permissions

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than

as may be noted herein).
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our

understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any

information, methods, compounds, or experiments described herein. In using such information or methods they

should be mindful of their own safety and the safety of others, including parties for whom they have a professional

responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability

for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from

any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing in Publication Data

Chopine, Ami.

3D art essentials: the fundamentals of 3D modeling,

texturing, and animation.

1. Computer animation.

I. Title II. Three D art essentials

006.6’93-dc22

Library of Congress Control Number: 2010942642

ISBN: 978-0-240-81471-1
For information on all Focal Press publications

visit our website at www.focalpress.com
Printed and bound in the United States

11 12 13 14 10 9 8 7 6 5 4 3 2 1

http://www.elsevier.com/permissions
http://www.focalpress.com

xii
Acknowledgments
First and foremost, I’d like to thank my family, who put up

with me while I wrote this book. Is that a cliché? Yes. Is it a real
part of being a writer, spouse, parent, and child? Yes. They’re
loving and, importantly, they’re a humorous bunch of people and
I’m grateful their lot was cast with mine. In particular, my
husband Vladimir helped me out with a few of the illustrations.
He is a much better visual artist than I am.

Paul Champion was my technical editor with this book. I’d
worked with him before and trusted him to help me get things
right where my street-learned skills, so to speak, gave me some
misunderstandings and gaps. He proved himself, and then some.

I’m grateful to Chris Simpson, who helped steer me into
getting this project started, and to Anais Wheeler, who cheerfully
saw it through to the prolonged end. And to all the other great
editors and crew who have worked hard to make it look good on
paper, whether of trees or electronic.

Thanks to the staff at my children’s school, American Prepa-
ratory Academy, who kindly allowed me to take up some of their
space while writing, thus saving me an extra commute. Lastly, I’d
like to acknowledge my poor dog Mitzi, who didn’t get to go on as
many runs as she is used to.

How To Use This Book
This book was written to give beginning 3D artists a map

through the art and how to get involved in the 3D industry. You
can use this book by reading all the way through it cover to cover
with or without doing the tutorials, by picking and choosing
chapters based on gaps you want to fill, or as a quick reference to
a concept you remembered last week but not this minute. You
don’t even need to own software yet for this book to be useful to
you. In fact, it may be a help as you decide which application will
best fit what kind of 3D art you want to do.

If you are at all familiar with tutorials for 3D or other types of
art or activities, you’ll know that they often give very detailed,
step-by-step instructions on which exact thing to click or select.
This is not possible with 3D Art Essentials because it’s software
agnostic. The best way to go through these tutorials is to have
your application’s documentation next to you to help you
complete each step. The tutorials are designed to give you some
practice with important concepts. If you can finish every tutorial
in this book, you’re well on your way to enjoying the art and
creating whatever is in your imagination.

As well as learning from this book, use it as a guide for studying
each topic more in depth. Go through each chapter and then
spend a couple of weeks on the topic which that chapter covers,
to learn and practice the concepts more in depth. You’ll probably
find some topics more interesting than others. That’s okay. The
field is too wide for there not to be specialists.

With just a few weeks of study, you can already be creating
interesting models. With a few years of experience, you can
animate characters or creatures that are nearly indistinguishable
from life.

No matter your age or background, and no matter your goals,
the art is in you.

Enjoy.
xiii

3D

Co
1

A HISTORY OF COMPUTER
GRAPHICS AND SPECIAL
EFFECTS
When we watch a movie like Avatar, we are seeing the results
of nearly 200 years of dreamers. It started in the nineteenth
century, with Charles Babbage. He grew up among wonderful
new inventions, including machines to transport people and
goods faster than ever before, and ones that achieved preci-
sion in manufacturing previously impossible. He imagined
a machine that could be made to do complicated mathematics
(Figure 1.1). His analytical engine was unfortunately never
funded and many of his modern ideas wouldn’t be matched for
almost 100 years.

The earliest computers were mechanical adding machines.
Later, electronic computers were used in World War II in the USA
to help crack communication codes, create artillery tables, and
help with the mathematics needed to develop the atomic bomb.
They weren’t practical for anyone other than government or large
research institutions. First of all, they were huge, taking up the
entire floor of an office building. They were expensive and broke
down a lot. This was because they used vacuum tubes instead of
our modern transistors. Shaped like a long light bulb, these were
large, fragile, and hot.

These computers had no screens or interactivity. Every
equation had to be programmed in which was achieved by
changing the circuitry of the computer at switchboards. Variables
were input using a punch card reader, and the answer was
received in the same way, with a punch card (Figure 1.2).

Before any graphics could be done on computers, there had to
be a display. The first was another military invention, the Whirl-
whind, which used an oscilloscope to show an airplane’s location
and a light pen to get more information about them.

In 1963 at MIT Ivan Sutherland created SKETCHPAD as part of
his doctoral thesis. He is known as the father of computer
graphics for good reasons. A person could draw shapes, both
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 1

Figure 1.1 A drawing of part of Babbage’s analytical machine.

2 Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS
two- and three-dimensional (2D and 3D), with SKETCHPAD,
using the light pen on the screen. This was the first time a user
could truly interact with the computer program other than by
running a bunch of punch card instructions through. The TX-2
system that Sutherland used to run his program was based on the

Figure 1.2 The ENIAC.

Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS 3
Whirlwind, but used transistors instead of vacuum tubes. This
shrunk computers to a decent-sized room andmade them far less
likely to break down. Sutherland had to rig the TX-2 especially for
his program, and then restore it to theway it waswhen he finished.
SKETCHPAD couldn’t run on any other machine (Figure 1.3).

This was one of the difficulties that had to be overcome before
computer graphics (a term coined by another pioneer, William
Figure 1.3 Ivan Sutherland running SKETCHPAD on a TX-2.

4 Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS
Fetter, when he used a computer to create ergonomic designs)
could become a common reality. Early computers had no oper-
ating system or programming language as we understand them
today, let alone “reusable programs” that one could purchase. If
you bought a computer in the early 1960s, you would have to
program it with switches before you could do anything on it. To
make them commercially viable, strong and successful efforts
developed computers to a point where they were useful upon
turning them on, and easily programmed using a programming
language that could be input with a keyboard. Still, they were so
expensive that many organizations rented computer time rather
than owned computers, and computer access was precious
indeed at the universities. It was not uncommon to be scheduled
in the middle of the night to work on the computer.

Still, this didn’t stop people from creating and playing
computer games, which was pretty much an act of clandestine
love during the 1960s. No one got paid. Copies were passed
around in a programmer’s underground of sorts, often in the
form of booklets printed with the code. If someone wanted to play
a game, they would have to type in all the code.

Which game was the first computer game is up for grabs, but
one of the earliest interactive ones was called Spacewar!
(Figure 1.4). Created by Steve “Slug” Russell, Martin “Shag”
Graetz, and Wayne Witaenem in 1962, it took about 200 man-
hours to code. People spread copies around so that nearly every
Figure 1.4 A screenshot of Spacewar!

Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS 5
owner of a DEC PDP-1 (a commercial version of MIT’s TX-2) had
one. People had to rig their own controls for the game to play it.
Of course, before long a copy fell into the hands of Digital
Equipment Corporation, who ended up using it to test PDP
computers in the factory and shipping a copy with each system
sold. Computer programmers who loved Spacewar! ported it to
other computer systems and several arcade versions were
released in the 1970s.

The graphics of both SKETCHPAD and Spacewar! were simple
white-line drawings on cathode ray tube (CRT) screens. 3D
objects, made up of polygons, could only be viewed as wire-
frames. You could see through them, to the back as easily as their
front. This, and many other difficulties still had to be resolved to
be able to make realistic pictures using computers. Several
institutions chipped away at the problems, but the University of
Utah had a sledgehammer of a program in 1973 with a $5 million
a year grant from the Advanced Research Projects Agency of the
US Department of Defense (ARPA).

ARPA’s interest in computer graphics lay in the ability to
create simulations. This would be an inexpensive and safe way to
train soldiers and airplane pilots. Simulation technologies are
now a major aspect of training pilots, allowing them to practice
dealing with potentially fatal situations. This has led directly to
a reduction in airplane crashes. Other graphics of the time were
devoted to computer-assisted design (CAD), scientific visualiza-
tions, and medical imaging.

Miniaturization and other advances at this level of financing
led to packing more and more computing power into single
supercomputers. These monoliths of circuitry were still so costly
to build and maintain that only well-funded institutions had
them. The University of Utah was able to afford these assets
because of the ARPA grant.

Sutherland, who had been working at ARPA, was recruited to
Utah’s program by its head, long-time friend Dale Evans. There,
researchers in the program created an algorithm that would hide
surfaces, improving on the wireframe and giving it a solid
appearance. At Utah and in other places, shaders had been
invented to shade the colors of surfaces based on how the light hit
them. These were big improvements, but objects still did not look
like they had natural lighting. Bui Tuong Phong noted that direct
lighting on objects created highlights, and developed the Phong
shader algorithm to simulate these. As he worked on this
problem, which was to be his doctoral thesis, he learned that he
had leukemia. Though a terminal diagnosis, he kept on and
received his PhD in 1975 before passing away. Phong shading

6 Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS
produced great results, but was quite slow to render. Another
Utah graduate student, Jim Blinn, used Phong’s work to figure out
a faster way. Both Phong and Blinn shaders are in common use
today in most 3D applications.

Other important advances to come out of the University of
Utah included texture mapping, shadows, antialiasing, facial
animation, and many more. The famous Utah teapot (Figure 1.5)
was first modeled by Martin Newell. Its primitive is still found
today in 3D applications, because the simple round shape with
the elements of the spout and handle make it ideal for testing
lighting and maps.

Among the other big Utah names was graduate student Ed
Catmull. Catmull had long wanted to go into animation, but
found out he couldn’t really draw well. But he did know mathe-
matics, so he studied physics and computer science at the
University of Utah and after a short stint in the military, returned
for graduate school. After he gained his PhD in 1974, he was
recruited to the Computer Graphics Laboratory (CGL) in New
York. The efforts of his team there led to further advancements in
animation and texturing, and attracted the attention of George
Lucas, the visionary behind Star Wars.

Lucas had become interested in using computer graphics, and
set about creating a computer graphics division within his special
effects production house, Industrial Light and Magic (ILM). He
recruited Catmull and others from CGL to form this department,
where they created the first fully computer-generated animation
that would appear in a feature film: the Genesis Effect simulation
sequence from Star Trek II: The Wrath of Kahn was released in
1982. Some of the advances seen in the animation were particle
effects and motion blur.
Figure 1.5 The Utah teapot with Phong shading.

Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS 7
That same year, Disney’s Tron came out. Disney had used the
services of three computer graphics companies to create Tron.
But the innovative animation and compositing of live footage
with it could not prop up the storyline. Tron tanked at the box
offices.

Seeing this, and noting how expensive computer graphics
were (the power alone for the supercomputers needed at the time
could be in the hundreds of dollars per day), Lucas decided to
drop the computer graphics division. Still passionate about being
able to create animations with computers, Catmull kept the
department together and began to look for someone who could
finance them. Steve Jobs, founder of Apple Computers, took on
sponsorship, and that led to the birth of Pixar Animation Studios.

Though animated computer graphics were thriving in areas
such as advertising and opening credits for television shows,
Tron’s failure frightened most producers away from using com-
puter graphics in movies. One exception was The Last Starfighter,
produced through the turmoil of those years and released in 1985.
Unlike any other movie that was set in space before then, no
physical models were used for the spaceships. They were 3D
rendered models. In this production, using computers saved time
and ended up saving money compared to the traditional tech-
niques. Critics gave The Last Starfighter above-average reviews,
and it succeeded at the box office, leading to a revival of interest
of filmmakers in using computer graphics for movies. One of the
first milestones from this era was The Abyss, which in 1989 had
the first convincing 3D graphics creature in the form of a pseu-
dopod with a face on it. Terminator II pushed it further with
a whole human model that moved naturally. By the time of
Jurassic Park (1993) andWalking with Dinosaurs (1999), the state
of the art had progressed to having fully realized computer-
generated dinosaurs interacting with their environment.

That same year, Babylon 5 brought 3D graphics technology to
television serials, coping with the lower budget and rapid pro-
duction cycles. This had become possible because of advances in
both computers and software, and some sleight of hand. In the
first couple of seasons, they were unable to render the spacecraft
the entire way around, because of the memory load. Babylon
5 computer graphics would be produced using networks of
personal computers (PCs) to render. With this jump in tech-
nology, computer graphics had become less expensive thanmany
traditional special effects. This continued to spread through all
aspects of the feature film industry. Computer-generated 3D
graphics were brought to cartoons as well. Reboot was the first of
these 3D cartoons to air, in 1994. Production on it started in 1988

8 Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS
and it was purposely set as a world within a computer mainframe
because at the time, they could only create blocky looking
models.

In 1995, Pixar came to maturity as a film production company
with the release of Toy Story. Equipment and experience allowed
them to make much smoother models, but they still animated
mostly inorganic surfaces with the toys. Creating realistic organic
surfaces still had many challenges to overcome including
complex surfaces, the changing shape of those surfaces when
a character or creature moves, hair, and the translucency of skin.
Jurassic Park had overcome some of these problems simply by
the sparseness of the actual computer graphics: only a total of six
minutes was computer generated and in none of that were the
dinosaurs ever seen really close up.

In 2001, Final Fantasy: The Spirits Within attempted to create
such a fully realized human CGI character that they would use her
as a star in later films. Though most of the capabilities were there,
both movement and problems with realistic skin contributed to
the uncanny valley, a place where characters are almost human
but not quite, making the audience uncomfortable. Much of this
continues to be a problem of animation: getting the character to
move right. One of the developments to help with this has been
motion capture technology.

Several movies use motion capture to bring realistic move-
ment into their characters. The best examples are usually not fully
human, such as Gollum in Lord of the Rings: The Two Towers
(2002) and Davy Jones in Pirates of the Caribbean: Dead Man’s
Chest (2006), but technology is improving. Of special concern has
been the subtle facial expressions that give us our humanity
because of our ability to decode emotion on the human face from
even tiny movements. A big improvement in this ability was seen
in The Curious Case of Benjamin Button (2008).

One of the biggest movies of 2009 was Avatar, in which the
main characters were entirely computer generated either some or
all of the time and which used sophisticated motion capture
techniques. Once again, these characters were not completely
human but were entirely convincing.

Not only did Avatar feature incredible characters; most of its
environment was computer generated as well, allowing incred-
ible effects such as glowing plants and floating mountains to
increase the power of the natural setting. Using computer
graphics to create set extensions or even entire sets is becoming
a more common practice. Another example is the completely
artificial environment of Tron: Legacy, in 2010. With hardware
and software advances, including digital cameras and editing

Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS 9
software, much of the technology has become more efficient and
less expensive to use than traditional methods of on-location
shooting. It is becoming more common to film in front of green
screens even for those films that are not special effects focused.

Much of the programming that created the first computer-
generated effects seen in movies was completed in-house. Even
with the off-the-shelf software for creating 3D animations that is
available today, studios, artists, and researchers often need to add
capabilities through other programs they develop. Many of the
advances in software are due to software companies working with
studios to give them what they need or acquiring plugins that
studios have created. These leading-edge technologies are finding
their way more and more quickly into the personal computers of
3D art enthusiasts and students, who can now create their own
computed-generated artwork from home.
From Institutions to Homes
Two developments had to occur before users could create 3D

computer graphics at home. One was the development of hard-
ware, and the second was the development of software.

The first computers to make it into the home were actually
console games. More sophisticated than their house-sized pre-
decessors, these were made small and portable by using hard-
wired programming in the form of cartridges. The first console,
the Magnavox Odyssey, had 28 games. As far as graphics are
concerned, it could only produce white lines and dots. Game
backgrounds took the form of plastic overlays that were placed on
the television screen. The first commercial release of Odyssey was
in 1972, about the same time as Evans, Sutherland, and their
graduate students at Utah were pioneering 3D graphics.

Through several industry stumbles, game consoles continued
to evolve and thrive in the home market. At the same time,
business computers were also improving, with a push to bring
these minicomputers into the home. These home/game com-
puters of the early 1980s were aimed at making both parents and
kids happy: you could play games or run educational software or
even program in the BASIC language on them. They connected to
televisions, but now the graphics were more exciting, with up to
256 colors from Atari 400 and 800 models (early 1980s), although
the images were still very pixelated because of the low resolutions
used.

Gaming capabilities would continue to push personal and
home computing technology forward, but art was also a part of

Figure 1.6 Screenshot from David

10 Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS
this development. Even the early computers such as the Atari
400/800, Apple II, and Commodore 64 had drawing programs, as
did the IBM PCs. For better graphics, not only was color neces-
sary, but so were higher resolutions and the ability to perform
complicated graphics calculations quickly.

In 1986, Eric Graham created a 3D animation on his Amiga
computer, writing a ray-tracing renderer in the process. The
Juggler featured a man made up of spheres, juggling three
reflective spheres. It was 24 frames long and looped so it could
play continuously. It even included a little sound when a sphere
was caught. Up until this time, people believed that a mainframe
computer was required to do any kind of ray tracing. He showed it
to Commodore, who believed he had written it on a mainframe
until he sent the source code so they could run it themselves on
an Amiga. They immediately purchased rights to use it in their
promotional material and ran an article about it in their maga-
zine. It generated so much interest that they asked Graham to
turn his home-made program into something more complete
that could be sold commercially. Thus was born Sculpt3D in
1987, the first 3D graphics software that could be run on a home
computer. It had many features common in today’s applications,
including primitive 3D shapes, more than one view of the object,
a camera (called the Observer), and lights (Figure 1.6). 3D models
were made of triangles, of which only a few hundred could be
handled by the computer. For long rendering tasks, a cardboard
stop sign was provided with the software that read, “Caution:
Raytrace in progress”.

Amiga computers cost around $3000, meaning that only those
with a special interest in computers were likely to invest. It was
Watts’ website, http://www.classicamiga.com (used with permission).

Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS 11
the 1990s before the average person could afford a machine
powerful enough to create their own 3D graphics at home. At that
point, most commercial programs they were likely to encounter
were still in the thousands of dollars, generally used by those who
did freelance work. However, computer programmers have
a tendency to code for the pure joy of it and share their work. All
of the algorithms needed to create 3D programs were public
knowledge, and several people programmed freeware to pass
around. POV-Ray is a prominent example of these early open-
source 3D applications, and is still in existence today.

This trend for free programs continued to go strong. Blender
started as an in-house application, was briefly released for free
online and sold for commercial use, and then became completely
free and open source in 2002 through the Blender Foundation. It
is currently the most powerful of all the free 3D toolsets available.

For a few years, only very expensive programs or free programs
were available, both of them with interfaces that tended to have
steep learning curves. But starting in the early 2000s, with
computers common in middle-class households, a new class of
3D software began to be released, with simple interfaces and
prices comparable to the purchase of a couple of games.
Communities grew up around this new gratifying pastime, sup-
porting other artists.

With this upswing of use, a new kind of commodity came into
being: 3D models and other assets, including entire scenes.
Modeling is a skill that not all artists enjoy. Many hobbyists just
wanted to arrange and pose models in scenes. They could go to
websites such as Turbosquid, Daz Productions, Renderosity, and
Cornuciopia3D, which provided a market for the communities
and activities such as contests. Because of their ability to make
money through the sale of content, much of the software that
used to cost a few hundred dollars is now free. Part of this content
has been tutorials, many of which are free themselves. Many
professional artists of today have been mentored in the online
communities through these tutorials and personal feedback by
professionals.

Modelers are also starting to have another outlet. The advent
of 3D printers has allowed the distribution of their creations in
physical form.

Because of the increase in computer and console games, and
the need for effects and visualization in advertisement as well as
television and film, demand for 3D artists and the tools they use
has risen. This has led to a lowering of prices for professional-
level software, so that now it is within the range of the serious
hobbyist. Hardware is also continuing to grow in power as well as

12 Chapter 1 A HISTORY OF COMPUTER GRAPHICS AND SPECIAL EFFECTS
shrink in size and price. For those with a computer and internet
access, it is an art form nowmore easily available than paints and
canvas or clay.

3D art on computers has come a long way from being available
only to those who could hard code machines. These days, chil-
dren as young as five are playing with it and older people who
could barely draw stick figures can bring to life the beauty that
has been in their imagination. Solo artists have already been able
to create short animations on their own. Perhaps in the near
future, individuals may be able to make entire movies all by
themselves.

3D

Co
2

GETTING STARTED
AND GETTING FINISHED
All of us have probably had the experience of being able to
form a lump of clay or mud or maybe some wet sand into some
kind of animal, vehicle, or object. The feel of the substance as we
squeezed it through our fingers and molded it into our sculpture
was sometimes even more fun than having the finished project.

Creating 3D graphics can bemuch the same. Now it will not be
your hands, but your brain doing the molding. Your medium is
lines and shapes and angles, color, and light. You are no longer
bound by the laws of gravity or physics. Any form you can
imagine, you can create.

You do have to gain some technical skills for it. But you’ve
done that before, when you learned how to read and use your
hands, computer, or cell phone. You’ll notice that a lot more is
said about your own habits than what hardware or software you
use. That’s because it is possible to create great-looking images
on older computers, using what some consider lesser software.
It’s been done for several decades. But it is not possible without
your effort.
Good Hardware
In order to do graphics, you will need a good computer.

Because things change so quickly, it’s not practical to give a list of
specifications for you to look for. But that isn’t hard to find. Check
out the specifications of current versions of themain 3D packages
(see Chapter 19). Pay attention to the ones you’re considering
using; then try to go a step or two better. It may be a bit more
expensive up front, but this will get you a computer that can last
you a while. If you’re going to college, you will probably want
a computer that can last you all three or four years. And that is a
long time in this business.

Putting together a computer can be the cheapest way to do
this, if you have the ability or very kind friends. But you can also
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 13

14 Chapter 2 GETTING STARTED AND GETTING FINISHED
have a custom computer assembled elsewhere and shipped to
you. Or of course you can get one preconfigured for graphics
work off the shelf. But it’s not just what’s under the hood or on
the screen that’s important to your work. Graphics work needs
a good mouse; a number pad is often useful and so is a tablet. If
you must get a laptop, you will need to have a docking station.
You will want to be getting your hands on a keyboard and
especially a mouse before you buy, if at all possible. Hand shapes
and input styles are different for every person. I love my ergo-
nomic keyboard and prefer a small, three-button mouse. My
husband hates ergonomic keyboards, and his mouse has lots of
buttons on it.

Do make sure you have a good chair that you will be
comfortable sitting in for hours. And make sure your screen is
at a good viewing level. Nothing stops creativity like an aching
back.

Useful peripherals include a scanner and a decent digital
camera for textures and inspiration photos. If you’re doing
animation, you may also want a video camera. Digital cameras
often have video capability as well, though you must make sure
you have both the battery power and the memory if you intend to
use it that way often. Some animators use a webcam to record
their facial animation.
Good Software
There are more 3D applications out there than you can shake

a stick at. To see a small gathering of the most prominent
packages, check out Chapter 19. Choosing which one may feel
overwhelming. Luckily, just like cars, you can test drive them
before you invest a lot of money. If you are feeling very frustrated
with a piece of software, try another one out. Just like the mouse
and keyboard, the way we wrap our brain around things is
intuitive and very individual. An interface that can be absolutely
perfect for your friend may drive you nuts. Some of the software
is very specialized, too. It is a good idea to go through this whole
book before you settle on the software you will be using. After
that, you will have a better feel for what it is that you really want
to do in 3D.
Your First Look
The first thing you will notice is the working space. It may be

a single large view with a gridded plane that you appear to be

Chapter 2 GETTING STARTED AND GETTING FINISHED 15
looking at from a corner perspective. This is the perspective
or camera view. You will be able to move the camera to any angle.

You may have four views instead. One of those will be
a perspective or camera view. The others will be orthogonal views
such as top, front, and side. There is no perspective in orthogonal
views. Each object you see in the viewmaintains its size relative to
the other objects and distance from camera. Getting rid of
perspective and working in the orthogonal views helps to main-
tain proportions while modeling. You’ll be able to move the
camera in and out, from side to side, and up and down, but not
change the direction it is pointed in.

Most mainstream 3D packages enable you to customize your
views, so that you can choose how many you want, their layout,
and what they are showing. Some views can show other kinds
of information like a list of objects in the scene or a texture
editor.

Another element of the workspace is coordinate axes: X, Y, and
Z. X typically goes in a horizontal direction, Y is vertical, and Z is
depth. This is how to measure the placement of each part of the
model, leading also to its size. Usually you will have a represen-
tation in the corner of each view, showing how those axes are
oriented. Or there may be a kind of navigation system in the
upper right corner, showing you where you are pointed.

Characteristics or attributes about what you’re working with
may be shown by default on the right side. The top and left will be
devoted to tools and commands. For those packages dealing with
animation, there is typically a timeline below the views.

Because there are so many things a mouse can do, you will
need to select a tool before being able to use the mouse to
accomplish the task. You may have to press a command, control,
function, or the alt key while using your mouse to move the
camera. In some applications you can right click on your mouse
to open up menus with options that depend on what you are
doing with the cursor at the time.

The views you will be looking at are simple depictions of your
scene that can be drawn or rendered by the computer quickly in
order to let you work interactively with the models. The actual
image is achieved by a more thorough render. You will want to
see better previews occasionally, and can do this by having the
computer render your scene. By default, your software will be
set to render at preview or draft quality. You will have to change
the settings to improve that. Chapter 16 has more details on
those settings. As you read through this book, you will find out
more about how every choice you make can affect your final
rendering.

16 Chapter 2 GETTING STARTED AND GETTING FINISHED
Good Habits
There are a few habits to start now that will make things easier

and better for you while working as well as give you better results
when you finish. Making a plan, keeping things organized, and
understanding what will affect your final render are all part of
good workflow. Some of these habits are critical for working with
teams of animators and artists. Others are important no matter
what.
Referencing

Stop and smell the roses. This isn’t just a way to chill out; it is

part of the artist’s process. Always take time to look around you
and really see things. Look up at the sky, look down at the ground.
Let your gaze trace the horizon and get lost in watching a tree
sway in the wind. After a short while creating, you won’t have to
force yourself to do this. For instance, as you are modeling an old
county courthouse, you’ll find your eye drawn to bits of archi-
tecture here and there.

Take the time to record your observations. Carry around
a small sketchbook. Don’t worry if you think you can’t draw. This
is for you, not for public display. Even a simple drawing and/or
a few words will bring back to mind the view that inspired it. You
can also keep a pocket digital camera (perhaps your cell phone)
with you for the same purpose.

As you begin a project, study what it is you will be modeling or
animating. Make reference photographs and sketches. Be espe-
cially observant of anatomy, and unless you can drawmuscle and
skeletal structure accurately, use photographs or anatomy books.
There are several books aimed at artists for this purpose. Keep all
your references labeled and organized in a folder or, better still,
tape them onto the wall next to you. Pull all of these into a one- or
two-page drawing that will be your concept art. If you have more
than one character or setting, you may have several pieces of
concept art.

If you are creating an animation, you need to create a
storyboard. A storyboard is important not just to help with the
flow of action, but also to evaluate what it is you need to do.
How many shots do you need to make? How many 3D scenes
(or settings) will you need? What does each scene need in terms
of models, texturing, lighting, and effects? Keep this storyboard
up to look at, and then make a list of everything. Associate
the right concept art and reference photos with each item on
the list.

Chapter 2 GETTING STARTED AND GETTING FINISHED 17
Naming Conventions

Before you have even cracked open the 3D tools, you’ve

already got a lot of assets. As you start creating, this will grow
exponentially. You keep track of these all using a naming
convention. Name everything clearly and keep those naming
conventions through the whole project. As objects are created
that are part of other objects, you will add their nomenclature to
the name. For instance, you may have a main object called Train.
A wheel on the train may be called TrainWheelFrontRight. This
makes it very clear what it is. You need to set that naming
convention early on. If you are working with a team, it may have
already been set for you.

Naming conventions and asset management can be compli-
cated for even small projects. An object may have to be modeled,
detailed, rigged, textured, and perhaps clothed. Each of these
tasks may be assigned to a different person. They will need to
know that what they are working with is the right thing. For large
projects with multiple team members, asset and workflow
management software is available.

Back down to the solo artist’s reality, naming is still very
important. The application will by default name the primitives
and bits of your object something like sphere01. If you have a lot
of these in your object list, you’ll have a hard time knowing which
one to select when you want to work with it. Also, you may forget
what you were doing before you had to leave the computer for
a couple of days. So make it a habit that you name everything you
create that shows up on the list.
Save Often

It is a fact of life that 3D applications crash once in a while. You

need to save your work often. Some applications have an auto-
save and it is a good idea to turn it on. Unless it is done in the
background, this could mean some waiting while the file is being
written. That does get frustrating, but not more frustrating than
losing the work you just did over the past hour. Set it to a
reasonable time interval. With or without that option, you will
want to save every time you do something spectacular, every time
you are going to start a lot of editing or do something that will
change things, every time you get up, every time the phone rings,
and every time you see a black cat walk by. If it occurs to you to
save in the middle of something, then do it. Intuition and all that.
And I’m not kidding. Your subconscious brain may pick up on
a pattern as to when your application crashes before you do. So

18 Chapter 2 GETTING STARTED AND GETTING FINISHED
trust yourself. If you are doing saves before edits, it is a good idea
to keep a copy of your scene from before you started changing
things.
Pace Yourself

As you first make up your plan, schedule how long you should

spend on each part of the project. This will help you as you work
with a deadline to not take up too much time fiddling with some
tiny detail, or messing around. When doing this, make sure you
plan on finishing before your deadline, so when the inevitable
problem does show up, you’re not up against a wall. While you
are a beginner, your goal is to learn your craft. It is said that it
takes 10,000 hours of working on a skill to become a master at it.
To break this down, that is a bit more than nineteen hours a week
for ten years. You can certainly get a job and do well before then,
but to really excel you need to put in the hours. This means that
you should plan a number of hours every day if you are going to
improve. If your goal is professional, industry-level work, these
hours are not negotiable.

Even if you are a hobbyist and your quest is geared more
toward enjoyment, you will enjoy your art more once you have
taken the time to grasp the basics in both theory and working with
the application. This doesn’t take 10,000 hours, but it does take
more than a weekend, or even a month of weekends.
Get Feedback

To help you improve, look for others to offer critique. Ask them

to tell you what is wrong with your image. After all, you can’t fix
a thing if you don’t know what to fix. You can find these critiques
from fellow artists, usually online at a computer graphics forum.
Sometimes it can be difficult to get constructive criticism, as the
purpose of people in communities is to encourage each other.
Make it clear that you’re asking for a critique, and not a “thumbs
up”. If you are worried about something, ask specifically, though
you may want to wait and find out first if anyone sees it as
a problem before you mention your concern or frustration.
Through schools, there are the teachers, but there can sometimes
be industry professionals who will to act as mentors and give
critiques to developing artists.

This feedback will not stop once you’ve gotten a job. In fact, it
will be much more to the point. Looking for criticism can assure
you’re meeting standards, and is also a good way of getting
unstuck from some problems. And some of it won’t be about what

Chapter 2 GETTING STARTED AND GETTING FINISHED 19
is wrong, but what needs to fit the client’s needs the most. In all
cases, when receiving instruction, advice, or a client request make
sure you write it down immediately to avoid forgetting it, espe-
cially on a job. Not only will this record it for future reference, but
the act of physically recording the words can make it stick in your
mind better.

3D

Co
3

POLYGONS: HOW 2D
BECOMES 3D
As a kid, one of my favorite movies was Tron. Once the hacker
was sucked into computer world, it had the most amazing
graphics ever. Gone were the blocky and flat pixel sprites of the
home video games I’d played. This movie had cool polygon
characters and objects that were fully three dimensional. I had
never seen anything like it. We were looking at the future.

The very first graphics program, SKETCHPAD, used polygonal
modeling. This is the oldest method of creating a computer-
generated 3D model. And it’s also the easiest for many people to
grasp when just beginning to create in computer-generated 3D
environments. Though there is a lot more refinement because of
advances in both processing power and the math used, the
computer graphics you see on any screen today are still polygons.
Even if other methods of modeling are used, models are usually
converted to polygons to make images out of them.
Understanding Polygons
When you first opened up your 3D application, it might be

that one of the first things you did was to create a polygon
primitive. These are instant 3D objects. If you have any art
background at all you know you can do a lot with them. There
are several types of primitives: cube, sphere, cylinder, etc.
Starting with one of those, say a cube, let’s break it down into
its parts. The cube is made up of six square sides. Each square is
made up of lines, and there are also four corners. Going from
understanding these grade-school basics to being familiar with
computer-generated models made from polygons is mostly just
a trip through a glossary.

The square sides of the cube are polygons. The inside area of
a polygon is generally called the face, though some applications
call it a polygon. The lines which bound that face are called edges.
When talking about the corners of the polygons, we’re more
concerned about the points which make up those corners than
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 21

Figure 3.2 A triangle, a quad, and

22 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
the angles. Those points are called vertices, or in the singular,
vertex. So: face, edge, vertex. These are the basic building blocks
of polygons.

To dig a little deeper, let’s break these 3D models down into
their dimensions. A vertex has no length, width, or height. Zero
dimensions. A line has one dimension: length. A polygon has two
dimensions: width and length. And a cube has all three: length,
width, and height (Figure 3.1).
Figure 3.1 A cube.
Polygons don’t have to be just squares. They can be made up
of any number of edges and vertices (and there is always the
same number of vertices as edges), three at least. You need
three to make a face, because that makes a triangle. Now
triangles, because they are so simple, are easy for the computer
to deal with. This makes them ideal for game engines, since
they need to render all those 3D models to the screen as you are
trying to get your knight to whack a goblin while healing
a friend at the same time (Figure 3.2).

Even a four-sided polygon is unlikely to be a square. Their
edges can be all different lengths. Four-sided polygons are called
quads, short for quadrangle. Quads are another important
an n-gon.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 23
polygon in modeling. They stack together in a neat, orderly
grid and require only one diagonal edge to break them up into
simple triangles. For these reasons, and a few others you’ll learn
about later, a lot of modelers prefer to use only quads when
modeling.

And then there are the ostracized n-gons. Any polygon with
more than four edges is an n-gon. They are more complicated for
the computer to work with and less easy to tile neatly.

One last thing to know about polygons is whether they are
planar or non-planar.

Imagine building some polygons out of Tinkertoys, with the
sticks making up the edges and the connectors being the vertices.
So you’ve got a triangle, a couple of quads and some n-gons lying
on the floor. With any of your creations that have four or more
sides, you can bend up a corner so that part of them is lying on the
floor and part of them isn’t. But if you lift any corner of a triangle
off the floor, the entire shape comes up.

Think of your floor as a plane (Figure 3.3). In mathematics,
planes have no curves. They can go on and on forever straight in
each direction. The triangle can only be on one plane. Existing on
only one plane is called being planar. Quads and n-gons can be,
and ideally are, only planar. But you can bend up a corner and
they can become non-planar. Now, not all applications can work
with non-planar polygons. If a polygon is non-planar, it can and
will sometimes automatically, be broken down into the simpler
and more digestible triangles.
Figure 3.3 Non-planar (left) and planar (right) polygons.
Polygon Meshes
Going back to the cube, notice that edges share vertices, and

faces share edges and vertices. They are all connected together.
Whenever you have a group of polygons like this that form
a model, it’s called a polygon mesh. The Master Control

24 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
Program from Tron was a polygon mesh, and so was Gollum
from Lord of the Rings. They can be as simple or complex as you
like, having only one polygon or billions. The only limit, really,
is your system’s ability to handle the number of polygons you
throw at it.

The cube is an example of a closed polygon mesh. This means
that all of the edges are being shared by other faces. There is no
hole to get inside the polygon mesh. Now think of a mesh of four
quads all stuck together in a plane. That would be an open
polygonmesh. Each of the edges that are at the outside of an open
mesh are generally called boundary or border edges. A good
example of an open polygon mesh would be the leaves of plants
you see in many games (Figure 3.4). Close inspection of most in
game plants will reveal that the leaves have no volume, but are
a handful of polygons in amesh that is shaped and curved like the
leaf.
Figure 3.4 The leaves on this plant, with their alpha planes visible, are good
examples of commonly seen open meshes.
Starting Your Model
Once upon a time, modeling with polygons was a time-

consuming and meticulous process. The position of each vertex

Figure 3.5 Box modeling in progress.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 25
had to be manually drawn in, or even programmed in. These
days, things are quite a bit simpler. You can start with polygons or
entire primitives, but even drawing in a vertex (if you want) is a lot
easier.

There are two popular styles of polygon modeling: box
modeling (Figure 3.5) and extrusion (sometimes called edge)
modeling.

Box modeling is so named because it starts with a box (a
cube primitive). Then the artist scales the object, moves
(translates) vertices and edges, and adds more faces by adding
edges, so that they create the 3D shape the artist wants. You can
think of box modeling as sculpting. One advantage is that it
tends to make neat grids and is ideal for subdivision modeling
(see Chapter 5).

Extrusion modeling can start with an edge or polygon. Then
the artist extrudes (see Extruding, page 29) new polygons from
that, building the 3D form around its boundary edges
(Figure 3.6). This is the type of modeling often preferred by
artists who draw a lot and are familiar with contour drawing. A
typical starting point is adding edges around a profile drawing
of the object being modeled. Once an entire contour is
completed, polygons are extruded so that the polygons bound
the edge of the silhouette. Some artists start with a polygon and
build the ring of polygons around the profile. Another ring of
polygons might be formed around the profile from a different

Figure 3.6 Extrusion modeling in progress. The first face which was created when the contour was drawn out with
vertices. It was then deleted after the polygons were extruded and another ring of polygons was started.

26 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
side of the object. Then more polygons are extruded from these
edges until they meet each other in a mesh that fully depicts the
object.

Notice in Figures 3.5 and 3.6 that there are pictures being
traced. Both types of modeling often use two or more ortho
gonal drawings or photographs imported into the application
and then fixed so that the artist can trace them. An orthogonal
drawing is a depiction of a character or object without
perspective. Think of blueprints. These drawings are usually set
up as planes in the front view, side view, and top view of your
application (Figure 3.7). When using orthogonal drawings, you
need to take care that they each have the same aspect ratio and
are set up so the edges of each drawing match each other where
they would meet.

Another method common to box and extrusion modeling is
mirroring. Instead of modeling each side of the object, only one
side is modeled. Then its mirror is duplicated and merged into
the mesh. Some applications allow you to see the mirror image
as you model. This saves a lot of time and ensures a symmet-
rical model.

3D modeling on the computer is very much an art form and
like any artist you will develop your own way of doing things. It’s
a good idea to do a couple of projects using both box and

Figure 3.7 Three orthogonal drawings are set up in the top, front, and side views, and as they would be for use in
modeling in an application.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 27
extrusion modeling and see what you’re most comfortable with.
Many modelers use both, choosing the method depending on the
circumstance. Within those two large classifications of modeling
there are lots of ways of adding bulk and detail to your model.
Building your personal set of 3D modeling skills takes lots of time
and practice.
Viewing the Object
Let’s take a step back and talk about what you’re actually

seeing on the screen. 3D applications differ in a lot of ways, but
are also very similar since they are using the same math and are
aimed at human operators.

Chances are, that primitive cube you’ve got floating in the
virtual 3D space (perhaps seen in four views) on your screen is
a wireframe view. A wireframe view shows you all the edges
that make it up. They are transparent, so you can see through
them. That’s good for being able to see the back part of the
model at the same time as the front. But it can be confusing,
especially when there is a mess of other objects in the scene.
So other applications start with an object that is shaded. This
means that the object is colored and there is simple lighting so

28 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
that you can easily pick out which side is which. It appears
solid so that you can’t see behind it. You can also have
a combination of shaded and wireframe. This lets you easily
see the edges and vertices while remaining dense, or just
a little transparent.

There are a few different other views of the object you
could choose. One is to have only the silhouette of the object;
this is good when you have several things in the scene and you
want to see how they occlude each other without any other
details getting in the way. Another possibility is to have your
object textured. A textured object has the desired image or
pattern applied to it so you get an approximation of what it
will look like when you render the geometry. This is better for
when you’re finishing a project and want to perfect some
details.
Editing the Mesh
To begin, you need to be able to select individual compo-

nents of your mesh, including edges, vertices, and faces. If you
started with a primitive, in some applications you will assign
the select task to your cursor, and then tell it what component
you want to select. At that point you could draw a rectangle
(though you may have to specify that type of selection) around
a group, or click on just one part at a time. You can also choose
the option to select things such as a ring of edges which form
a continuous line around your mesh. This is quicker than
choosing one edge at a time and useful for moving a whole
edge loop.

Once you have something in your virtual grasp, you can
move it around or scale it in several ways to form the desired
shape. For an example, try selecting a face (or polygon) and
pulling it out. You can see how it affects all the polygons around
it, changing the shape of your mesh. Now try this with an edge
and a vertex. In general, vertices that are not part of the
selection do not move. The rest of the model retains its integrity
while you create a sharp and steep change of the geometry
attached to the changed selection. However, some applications
allow you to control how strongly the vertices and polygons
surrounding the selected part are affected. When you have
polygons from far away feel the effect of changing a face’s
position; then the change will create a smoother, less steep
slope. The mesh behaves like soft clay, and so this is typically
called soft selection (Figure 3.8).

Figure 3.8 An example of regular selection (left) and soft selection of a vertex (right).

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 29
Extruding
Extruding is a little different than just pulling and reshaping.

It’s a way to add more polygons to a mesh. You can select either
an edge or a polygon face (Figure 3.9). When you pull it out, the
polygons that shared edges with it will remain the same, but
more polygons are automatically created which connect the
neighboring polygons to the polygon face you are pulling out.
Figure 3.9 Extruding faces and edges.

30 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
When you do this with a face, you are often creating a bump on
a mesh. You could do it again and again to the same face and
create a longer, multifaced tube. When you do this with an
edge, you are simply pulling out a new polygon. Once again,
you can do this more than once on that same edge to create
a path of polygons, a method that extrusion modelers use a lot.
Having extruded a portion, you can then manipulate it like any
other part of your mesh. This is an essential tool for adding
detail.
Controlling Edges and Edge Loops
You may find as you’re adding detail that you need more

polygons in general to work with. You can get these by adding
edges in strategic places. Be careful as you’re adding edges, as this
also adds vertices and can make a quad into an n-gon, even if it
appears rectangular. Some applications let you add or subtract
a ring of edges that loops around the mesh or a section of the
mesh, as in Figure 3.10. These are called edge loops. Adding an
edge loop quickly inserts vertices and edges all around the
model. Subtracting edges in a similar way is useful if you need
to simplify, have artifacts from modeling, or are preparing your
mesh to be added to another mesh. Edge loops are important to
Figure 3.10 An edge loop.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 31
the overall structure of your model, especially with regard to
animating it. You will learn more about edge loops in Chapter 5.
Subdividing and Simplifying
Both adding and subtracting edges can be done across the

entire mesh. Adding edges increases the number of vertices as
well as polygons. This is called subdividing, and is explained in
more detail in Chapter 5. The basic thing to remember is that the
more polygons you have, the smoother a curved surface will
appear. You can simply subdivide your mesh, or you can subdi-
vide and smooth (Figure 3.11). You can move subdivided edges
before you smooth. Smoothing averages out the vertices, so that it
has fewer sharp angles. Automatic subdividing in many applica-
tions means both the process of increasing the number of poly-
gons by adding edges in between each edge across the entire
mesh and then of smoothing.

Likewise, you can decrease the number of polygons in your
model by reducing or simplifying the model. To simplify just
a small area, you can select individual edges and delete anything
unnecessary.
Combining Meshes
It is often easier to sculpt different parts separately before

combining them into a single mesh. This is also a great way to
Figure 3.11 A cube. The cube subdivided, subdivided and smoothed, and chamfered. Notice that a similar number of
edges was added to the chamfered cube, but they were moved so that the basic cube shape remains, but the corners
are beveled.

Figure 3.12 Boolean operations, from left to right: union, subtraction, intersection.

32 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
build a library of assets for future projects. There are several ways
to combine polygon meshes, each with its own advantages.

One of the simplest to perform is a Boolean operation. Here,
you will place your completed meshes together in the 3D space
and select the Boolean operation you want. There are three
that are typically used: adding (or union), subtracting, and
intersection (Figure 3.12). When you add two meshes together,
they simply combine to make one mesh. In this kind of
combining, the surfaces that are buried into each other still
exist. This means that any overlapping polygons still exist,
which adds to the complexity of the mesh. When you subtract,
you will select the mesh you want to keep first, then the mesh,
then choose the Boolean: subtract operation. This will cause
the second mesh to “disappear”, removing with it the section
of the mesh that overlapped the first mesh. When using the
intersect or union operation, only the overlapping areas of both
meshes will still appear. Boolean operations are good tools to
create more complex models from primitives and can be used
on Nurbs, subdivision surfaces, or any kind of 3D model.
However, the computer does all of the calculations. This can
result in a somewhat messy mesh that requires cleaning up,
including deleting faces that may appear on the inside of your
model and deleting, adding, or adjusting edges, vertices, and
faces to get back to a neater grid-like geometry.

Another way to combine two meshes is to weld them
(Figure 3.13). Here, you will specify vertices on the border
edges from two different meshes. When you weld them
together, those vertices and the edges they make up will
combine into one. You could also bridge two border edges.
Here, a new edge will be drawn between the selected vertices,

Figure 3.13 Bridged and welded edges. Notice with the bridged object that new
polygons were created to connect the edges. You can add as many divisions as
you want to these new polygons.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 33
so that new bridging polygons are created between the border
edges of the two meshes. This bridge has the advantage that
you can further subdivide it if needed. Both of these operations
can be automated if you have selected two entire border edges,
and have them properly aligned and with the same number of
vertices.
Polygon Count
The polygon count is an important aspect of a mesh. The

larger the polygon count, (Figure 3.14) themore detail it will have.
But it will also take more processing power to manipulate the
mesh. This translates into time: the more polygons you have, the
longer it will take to render. With the right equipment, none of
this may be an issue. However, if you are modeling for games, you
Figure 3.14 Polygon meshes with different polygon counts. Notice that the amount of detail and the smoothness of
curves increase as the number of polygons increases.

34 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
may very well have limits. In fact, some games have the same
model with different levels of detail. Those models farther away
from the camera do not need as many polygons to look good. As
they move closer to the camera, the game changes them to the
more detailed models. This controls the overall polygon count of
the animated scene that the computer must render in real time.
Nomatter the goal or resources, it’s a good idea always to keep an
eye on how many polygons you are using.

As you’re modeling, start with a rough sculpture; then slowly
add detail only where needed. Quickly adding edges and polygons
when you are unsure whether you’ll need them increases the
polygon count and also makes your mesh editing trickier. A
well-done model has fewer polygons in places of low detail and
increases mesh density only where needed. It is usually easier to
add polygons than to remove them.

There is more than one way to calculate polygon counts.
Sometimes, those that you actually see drawn are those counted.
Other times, polygon count has more to do with the vertices. And
in other cases, the polygon count is the number of triangles
making up the model. Even if you’ve used quads or n-gons, extra
edges will be added into the calculation to split them into simpler
but more numerous triangles to come up with a polygon count.
Many applications make it easy to keep track of polygons,
sometimes showing a count on the interface or with a simple
click.

Normals
In computer graphics, polygons have a back face and a front

face. When a primitive is created, this is easy enough to define:
the side of the faces that you can see are the front faces. You
can also think of this as the direction that the polygon is
pointed in. This is called the normal. Another way to visualize it
is to imagine a line that points straight out, or perpendicular
to your polygon. It makes your mesh look like a pincushion
(Figure 3.15).

Normals are important to calculate how virtual light inter-
acts with the model, as well as several other rendering calcu-
lations. Keep track of the directions your polygon faces are
pointing in. Normals on a mesh should all be facing the same
way. You may find that with some automatic operations such
as filling in holes in a mesh, polygons can be created that face
in different directions to those near them. In those cases, you
will have to fix these before you can move forward with the
model.

Figure 3.15 A polygon mesh showing its normals.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 35
UV Coordinates
On any type of model you create, you will need to have a way

to measure locations on its surface. This is done using UV coor-
dinates. U is measured across one direction and V is perpendic-
ular to that. These locations will allow you to map a 2D image
onto your 3D object, giving it a texture.
Aesthetics and Compatibility
There are several things to consider about the look of your

model. As mentioned before, many artists prefer to use only
quads. Even if you’re modeling for a game, triangles can create
sharp angles when there is a lot of detail or curves. Quads tend
to reduce this effect. It is easy enough to split them into
triangles once you have finished modeling. Polygon modeling is
the first step to creating a subdivision surface model. Because
the polygons are subdivided automatically, having a mesh that
is already a neat grid of quads will make a smoother subdivided
model and make animation easier since deforming will be more
predictable.

You should also avoid having polygons that are very different
in size next to each other. When these are smoothed out using

36 Chapter 3 POLYGONS: HOW 2D BECOMES 3D
subdividing, or deformed when the model is posed, you may get
bumps or ripples. Having more or fewer than four edges origi-
nating from a single vertex (such instances are called poles) can
cause pinching in a subdivided model. Another common snag in
modeling is polygons that are unusually shaped, like T-shaped
polygons, or convex e a polygon where some of the lines are
drawn inward, toward the inside of the face. Some of these
strangely shaped polygons may not even be valid in the appli-
cation you are using.

When you are just getting started, it’s a good idea to follow
these conventions. However, with a little experimentation, you
may find that the properly used triangle, n-gon, or pole can give
you just the surface you need on your model.
Valid Geometry
As you can imagine, there could be several possibilities where

your application will not allow certain geometries. Different
programs differ in what they can and cannot work with so by
keeping in mind the typical rules, you can create a polygon mesh
that is easy to export for further development or to sell. Below is
a list of things to look out for.
• Every vertex must be a part of at least one polygon, as should

every edge. You will often get stray vertices when an edge has
been deleted. Watch out for these.

• Any vertex can only be used once in the same polygon.
• All edges in a polygon must be connected to each other.
• Only two polygons can share an edge.
• A polygon may not cross itself.
• Some programs do not support convex polygons.
• Do not have a vertex that is the only connection point for two

parts of a model (think of a vertex being shared by two cones
meeting at their points).

• Avoid edges on top of edges and faces on top of faces.
• Be careful of any holes you leave in a mesh: areas that may

appear to be a polygon, but which are simply border edges.
• Valid meshes have all the normals pointing in the same

direction.
Lots of these things may occur when you’re using automatic

operations. Be sure to inspect your mesh for them. Many
applications have special scripts to pick out bad polygons or
polygon meshes. Using these right after important steps in your
modeling can help insure that your mesh will be clean and
usable.

Tutorial 1
Simple Polygon Robot

Step 1
Download RobotFront.jpg and RobotSide.jpg from the book's website, www.3dartessentials.com. Start a project in

your application and place the pictures as image planes in your front and side orthogonal views. Make sure they are
centered and all parts are vertically aligned, except for the arms, which have been put at different angles in both
pictures. The grid can be very helpful for this. If you want to keep the image planes in your perspective view, you can
move it back along the orthogonal view's axis by enough units to put it behind the perspective view's grid.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 37

http://www.3dartessentials.com

Step 2
There are two ways to start this. With extrusion (edge) modeling, you will start on the side view. Draw a polygon

tracing the main body, using only four vertices. Don't worry that it doesn't match the beveled corners exactly. That
will come later. Put your vertices a bit outside the bevels, as smoothing will pull surfaces inward. Select the polygon's
face and extrude it in the front view. It will be starting from the center. Pull it to the farthest edge of the main body.

With box modeling, you will create a cube, with one face on the side view plane. Then, still in the side view, select the
vertices at the corners and move them in to match.

Do not include the big round top or its border in your cube. Name the shape Body.
Now, no matter how you started you will need to go to the front view and move those corners to match. Select the

two vertices on the top at the outside edge and move them into that corner of the main body. It helps to select by
bounding with a rectangle to get all of those vertices on the corner. Moving multiple vertices can help to keep things in
line. Usually there is also a way to single select more than one by using the keyboard as you select each one with
a mouse.

Delete the face that is on the side view planee the one that is down the center of the robot image in the front view. If
you extruded, it's the one you originally drew.

38 Chapter 3 POLYGONS: HOW 2D BECOMES 3D

Step 3
You will want to add more details to make the main body match the drawing more closely. To do this, you will add

edges to the box. You can often easily add more edges that go all the way around the model. Insert an edge loop toward
the bottom, and one near the middle of the eye. This will make three subdivisions along the width and across the height.
Now select vertices and move them into place. Try to select as large a group of vertices as possible to move at once;
then start moving smaller groups to tweak.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 39

Step 4
To create a sharper corner for more interest on the top of the head, you'll need another edge loop. Going from the side

view, add an edge loop at the place where the border for the brain case starts in the back. Extrude the face that's on the
top up just a bit to make the border on top, and then extrude the back face for the border and the new skinny face that was
made with the top extrusion, once again just a little. With this done, you'll probably have new faces on the open center by
all the newly extruded faces. Make sure you delete these.

40 Chapter 3 POLYGONS: HOW 2D BECOMES 3D

Step 5
Create a polygon primitive sphere in the side view. You will want the height axis to be along the axis that the arm

will go, so that the “longitude lines” go in that direction. Size it and place it to match the sphere on the right shoulder.
Name the sphere Shoulder. For the hip joint, copy the shoulder sphere and place it at the hip. Rotate it 90 degrees so
that its height axis points along the leg. Size it so that it is a bit smaller. Name it Hip.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 41

Step 6
Starting on the side view, create a cylinder primitive. Size it and place it so it matches the upper arm limb and is in the

middle of the shoulder sphere. Copy the cylinder, and place it on the forearm. Copy again, this time rotating and moving it
to the thigh. Resize it to match. Notice that the hip joint as a ball joint would be awkward because of the angle of the
thigh. Resize and move the hip joint. It may not match the picture exactly, but that's okay. It happens sometimes,
especially if your image plane is just a sketch. It's more important that the model be more structurally sound for later
rigging. Now copy the thigh cylinder, then move that copy down to become the lower leg. Make sure you name all of the
cylinders: UpperArm, LowerArm, UpperLeg, LowerLeg.

42 Chapter 3 POLYGONS: HOW 2D BECOMES 3D

Step 7
Now create a sphere for the elbow, make copies, and place them at the wrist, knee, and ankle. Remember to keep

their axes aligned along the arm and leg the same way the shoulder and hip spheres are. Name them accordingly. To
create the hand clamp start by making cube primitives, sizing them, and placing them as per the picture, keeping a gap
for the hinge joints. The thumb clamp should be a bit narrower than the palm clamp. To make hinges, create little
cylinders and place them at the base of the palm clamp and thumb clamp, then between the finger and hand clamp and
the thumb and second thumb clamp. Name each shape.

Chapter 3 POLYGONS: HOW 2D BECOMES 3D 43

Step 8
Now, just to work with and see in future tutorials, you are going to mirror the main body. Select Body. Because of the

way you created the shape with the image planes, along the center of the front plane, Body should already be in place.
This is also the reason for deleting the face and having the shape open. There will be some options for mirroring the
geometry. Make sure you choose the right axis or else it will mirror in a direction you don't want. Also, select the option to
have the vertices merge. Otherwise, it may merge borders while still keeping those edges and you will find extra vertices
and edges down the middle.

44 Chapter 3 POLYGONS: HOW 2D BECOMES 3D

3D

Co
4

NURBS: THE SPLINY TRUTH
In the earlier days of computer graphics, it simply wasn’t
possible for processors to handle huge numbers of polygons.
Practical models made with polygons had angles and looked
artificial. Modelers wanted a way to get nice-looking curves,
originally to make more organic-looking models. Pixar, in
particular, experimented successfully with the use of NURBS in
its production of the first fully computer-animated movie, Toy
Story.

NURBS (non-uniform rational Bezier splines) are specialized
curves. They can be cross-hatched together to make a grid of
curvy lines, which is called a NURBS surface. In today’s fast
computing world, they are not used at all for organic models, but
are a great way to model things such as cars and toaster ovens.
You’ve probably noticed their effect in the design of these real-life
things.

Just like polygons, there are as many ways of dealing with
curves and NURBS as there are applications out there. Not only
could names be different, but the apparent way of building or
showing the curves may be different. But if you understand a few
key points, you will find it pretty easy to deal with them in
whichever application you choose.
From Straight to Curvy
It’s easy enough for you to draw a curvy line, but how do you

get the computer to calculate one? You add new properties to it.
The more intricate the curve is, the more tools you need to
control it. We will start with simple and grow from there.

Straight lines have endpoints. These points have only their
position which defines the beginning and end of the line. For
a simple curve, you can turn these endpoints into control points
or control vertices. The control points of a cardinal curve have
another property: variable slope. Now you can turn them, much
like a steering wheel. The slope, or slant of the line changes. But it
doesn’t affect the whole line, as if it were a stick swinging around
on its end. Instead, it acts more like a stiff rope, with the effect of
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 45

Figure 4.1 On the bottom is a cardinal curve. Above it is a Bezier curve.

46 Chapter 4 NURBS: THE SPLINY TRUTH
the variable slope getting smaller the farther away from the
control point it gets. This kind of a curve is called a cardinal curve
(Figure 4.1).

For a more complex curve, you can add more points in the
middle to control it. This makes it a Bezier curve (Figure 4.1),
which can have any number of control points. This brings up an
important property that you will work with: the degree of a curve.
The degree is equal to the number of control points on a curve
minus one. Another way to think of it is the number of spans
between the control points. A curve with four control points is
a third degree curve and has three spans. The higher the degree of
the curve, the more complicated the mathematics. And while
computers aren’t going to mess up the math, they will take longer
to calculate it. One solution is to create several Bezier curves and
connect them together. But this has its own problems. Instead,
one can use another type of curve called a Bezier spline or
B-spline.

The term spline comes from the tools draftsmen used before
computers were available (Figure 4.2). Flexible pieces of wood,
plastic, or rubber tubing would be held in place by carefully
placed lead weights. The strip of material would curve around the
weights in the smoothest way possible. The draftsman traced
a line along the strip, gaining exactly the curve they needed for the
ship, automobile, or any other object they were designing. Once
this process was described in mathematics, it could easily be
simulated on computers.

Figure 4.2 A spline such as those used by draftsmen before computers.

Chapter 4 NURBS: THE SPLINY TRUTH 47
The most noticeable difference between a Bezier curve and
a B-spline for the artist is that the control points are not on the
curve itself, with the exception of the beginning and end points.
They are connected to each other by lines, creating a controlling
polyline often called a hull.

Here, the degree of the curve comes into play again. A spline
is made up of several equations that define a series of curves.
That is why it makes a better solution than connecting several
Bezier curves together. These curves all have the same degree,
and it is the degree of those curves that controls the shape of
the resulting spline (Figure 4.3). The degree no longer shows
the number of control points. Instead, it gives a clue to how
close the curves of the spline will be to the control points. In
general, the larger the degree, the closer the curve of the spline
will be to the polyline. Some applications refer to a curve or
spline’s order rather than its degree. The order of a curve is its
degree þ 1.

Another controlling aspect of splines is the knots. The knots
are the numbers that show the extent of influence a control point
has on a span of the spline. Knowing the degree or order of the
curve and understanding how knots work can help you to grasp
the behavior of the curve you’re creating. You will probably have
access to these numbers.

Figure 4.3 Third, fifth, and seventh degree B-splines.

48 Chapter 4 NURBS: THE SPLINY TRUTH
One more important controlling characteristic of B-splines is
the weights associated with each control point. Weights basically
indicate how much a control point affects each span of the curve.
A simple B-spline is one where all the weights are the same, so the
control points each affect the curve with the same intensity or
uniformity. Thus, it is uniform and non-rational. When the weight
values of control points are different, this is called a non-uniform
rational Bezier spline, or NURBS (Figure 4.4).
Figure 4.4 A NURBS curve.
Creating and Modifying Curves
To make a curve, you can add a curve that is already drawn

and then edit it, draw it freehand, or draw in the control points by
yourself. This last method is perhaps the best way to get a feel for
how curves work. The control points may appear to be part of the
curve itself, or may be the control vectors of the hull or polyline.

Chapter 4 NURBS: THE SPLINY TRUTH 49
You will see the curve grow and change shape naturally as you
add each control point. Often, the endpoint of the curve is
attached to the cursor while creating, allowing you to see what the
shape of the curve will be before you click to create a control
point.

To change the slope of a curve, you have control handles on
each of the control points. The handles are always tangential to
the curve. This means that at the control point, where the
handles connect to the curve, they have exactly the same slope,
or go in exactly the same direction as the curve. As mentioned
before, they act like steering handles. Turn a handle in one
direction and it pulls the slope of the curve in that direction.
The displayed length of the control handle may affect its
influence too. You can also move the control points of the curve
to change its shape.

In order to refine your curve, or give you the ability to add
more detail to it, you will have to insert a point. Usually this is
accomplished by selecting an insert task, and then clicking on the
curve or polyline where you want it. Sometimes, this will be called
insert knot. Inserting a knot is not exactly inserting a control point
or vector; however, the number of knots is equal to the degree of
the curve plus the number of control points. Therefore, unless
you change the degree of the curve, inserting a knot effectively
inserts a control point. Even if you directly add a control point,
a knot will automatically be added.
NURBS Surfaces
NURBS surfaces act very much like NURBS curves. To create

a surface, you can start with just one curve, sweeping it. As it is
swept across, several curves will be created as part of a grid of
curves. Rather than all going in a straight direction, it is possible
to sweep the curve across another curve or to have multiple
curves criss-crossing each other. You will control your surface
using a hull. Instead of a single controlling polyline, the hull is
a gridded surface. This is the network of control vectors con-
nected to each other by the polylines of the curves that make up
the surface. All control points on a surface are intersections of two
curves (Figure 4.5).

As with polygon meshes, you can measure a NURBS surface
using UV coordinates. In fact, it is a little easier, as the grid makes
such mapping automatic. The curves are only added in the U and
V directions, more or less perpendicular to each other. So you will
get quadsmaking up your surface. Even if it appears that there are

Figure 4.5 A NURBS surface (in gray) with its control hull (in black), control
vectors, and the U and V directions.

50 Chapter 4 NURBS: THE SPLINY TRUTH
triangles, as is often the case with something like a NURBS
sphere, closer inspection of the curves and control points
(opening them up at the top of the sphere) will reveal a four-sided
face (Figure 4.6).

Adding detail to a NURBS surface can become very involved.
You cannot simply insert a single point on the surface or hull. You
must add at least one curve. And if the position where you want to
add a point has no curve at all going through it, you will need to
add two curves. Using a single surface to model something like
a face, which has wide areas with little detail and other areas with
lots of detail, can become complicated.

One solution to this is to create a model out of more than one
NURBS surface. When doing this, each surface is called a patch or
a NURBS patch. Creating with patches works very well, but it
requires some planning. At the edge where you join the patches,
the seam, you must have the same number of points to join
patches together (Figure 4.7).
Figure 4.6 In this sphere, the endpoints of the curves have been pulled out to
reveal that the segments do not end in triangles, but are still four sided at the poles.

Figure 4.7 Connecting NURBS patches together.

Chapter 4 NURBS: THE SPLINY TRUTH 51
Creating and Modifying NURBS Surfaces

Many of the techniques used in polygon mesh creation can

also be applied to NURBS. For instance, extruding works very
similarly. You select a shape or a curve and pull it out. The object
is duplicated, and as you pull the two copies apart, they remain
connected around their entire border by what appear to be
straight lines. They are straight, but because the lines have all the
properties of curves it is possible to move control points to add
curvature to them. This will create a fully enclosed surface or
mesh.

Extruding does not have to happen along a line. It can be
swept along a curve, or in the case of revolve, it is drawn around
a central axis creating a circular model with the contours of the
original shape. Revolve is a tool that can also be used for polygon
shapes.

Lofting is another creation tool. Here, two different shapes are
connected along their border by lines at each control point. As
with joining edges of NURBS surfaces or polygon mesh, you need
to ensure that there is the same number of control points. You
must also make sure that the positioning is correct, so that you do
not get unwanted twisting.
Advantages and Disadvantages of NURBS
NURBS curves have several advantages when it comes to

modeling. Once you get the hang of manipulating them, they are
easy to shape. Because of the standard math used to describe
NURBS, it is possible to use them across multiple applications.
And being a true curve, rather than a collection of straight edges,
NURBS can offer smoother surfaces with a smaller footprint in
your memory storage and faster processing. At one point, NURBS

52 Chapter 4 NURBS: THE SPLINY TRUTH
modeling was a welcome leap forward in 3D computer modeling
technology and was very popular in the 1980s and 1990s.

However, they have the disadvantage of being difficult with
things like sharp corners. Whole surfaces do not deform well,
making it hard to animate organic creatures. Patched surfaces
split or kink when deforming. In addition, NURBS surfaces are
usually converted to polygon meshes for rendering, since render
engines calculate light against faces, not curves. As a result, the
direct and/or exclusive use of NURBS for modeling is now falling
out of favor. Still, a well-rounded animator should at least grasp
the basics. Knowing the behavior of NURBS curves and surfaces
will give you a running head start to understanding the next big
thing: subdivision surfaces.

Tutorial 2
NURBS on Robot

Step 1
Open up the project with the robot you started in Chapter 3: Tutorial 1. To make its feet, draw a curve tracing the top

of the robot's foot in the side view. Make sure you specify the axis that would be at the bottom of the 2D foot shape. You
may have to move your curve object's local axis there. Then apply a revolve operation, setting it to only 180 degrees, to
make the curve of the foot. You will notice that the robot has a very pointy toe. Select all the control vertices of the tip
and scale and move them to make it a more rounded shape. Try scaling with all axes and then with each one to see the
behavior. You may want to even out the back of the foot as well. The bottom of the foot will be open. Close the open
surface, so that the foot is fully formed, rather than being like an upside-down bowl. The original curve you used to
revolve and create the foot may not be part of the object. Make sure you delete it.

Step 2
For the shoulder and hip guards, start at the hip in the side view. There are two circles there, an inner and outer. Create

those two circles. In the front view, they will probably be on the Y axis. Move them out to work with them and then move the
smaller one further to the right. Still on the front view, rotate the smaller circle about 15 degrees so that it tips away from the
other circle. Move it so its lower edge is a bit below the larger circle's edge. Select both circles and loft them, including three
spans in the new curves which will be drawn. Place the hip guard over the hip joint and use the control vertices to stylize it.
Copy and move it to the shoulder, then stylize that one. Delete the circles that you originally lofted with.

Chapter 4 NURBS: THE SPLINY TRUTH 53

Step 3
Create a NURBS sphere and place it where the eye is. You will need to flatten it along the Z axis, on the side view.

This is just to give you an idea of what a NURBS sphere looks like. Make another sphere for the brain case. Place it and
resize it approximately. Then use the control vertices to make curves matching the image plane drawing of the brain case.

Step 4
For the purposes of creating the entire robot, all surfaces will need to be polygonal. Select each NURBS surface, the

foot, the hip guard, shoulder guard, and the eye. Choose the convert NURBS to polygons tool. Make sure that it will be
converted into quads rather than triangles at this point. There will be quite a few settings that you can play around with.
Try them out to see what happens, using the undo button if they don't work well for you, until you get the best result.
Because of the curves, not all the polygons will be the same size on the feet and joint guards. The more polygons you use,
the closer to the curves your mesh will be.

54 Chapter 4 NURBS: THE SPLINY TRUTH

3D

Co
5

SUBDIVISION SURFACES:
THE MARRIAGE OF POLYGONS
AND NURBS
As the drawbacks of NURBS became apparent when they were
put to the test in feature film production (Pixar only used NURBS
for their first feature-length film, Toy Story), experts turned back
to modeling with polygons. By the mid 1990s, computers were
magnitudes faster. Rather than using mainframes, racks of
computers were connected together in huge networks. Tech-
nology had caught up with the need. But how could the artist
manage so many polygons?

The solution turned out to be subdivision surfaces. This trick
was developed in the late 1970s by two teams. Ed Catmull,
founder of Pixar, was amember of one of those teams. After trying
out subdivision surfaces in the Pixar short Geri’s Game, they were
used to make A Bug’s Life. Subdivision surfaces are the most
common type of modeling done today.

Subdivision surfaces are made up of polygons. But controlling
them is very similar to controlling NURBS. You start by modeling
a polygon mesh, then subdividing it one or more times so that
the number of polygons is multiplied and the model becomes
more rounded and smoother. The original polygon mesh
becomes a control cage, acting much like the hull of a NURBS
surface.
Subdividing
Let’s say you’ve made a square-shaped pizza, and you want

to cut it up into four equal parts. You can see immediately how
to do it. Cut down the middle in one direction, and cut down
the middle in the other direction. You’ve just subdivided your
pizza into four squares. In modeling terms where there was one
face, there are now four faces. Cut down the middle of each
square again e you’ll be making four cuts e and you’ll have
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 55

56 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS
sixteen squares or slices of pizza, just the right amount to get
a party going.

Think of the pizza as a flat quad polygon. Cutting down the
middle of the pizza added two vertices in the middle of edges that
were opposite each other and cut an edge between them. Another
way you could do this is to cut a piece from themiddle of the edge
to the middle of the quad. That turns out to be the best way, since
you can also use this method to subdivide a triangle or an n-gon
(Figure 5.1).
Figure 5.1 The parts of a polygon used when subdividing.
Once the faces have been subdivided, they need to be
smoothed. So, back to those original four corners, which are
called the original points. An average is taken using the center of
the quad and the new edges’ vertices. This new point becomes the
new corner vertex. The edges are now drawn from those new
middle edge vertices to the new vertex.

What about when we kick it up a dimension, and work with
a cube instead of a square? The six faces of the cube become
twenty-four. The same smoothing operation takes place, but
now the original points are using all the edge points and the
average of the face points of faces connected to them to get their
new position. In the case of the cube, the average of the three
face points connected to an original point turns out to be the
middle of the cube. But this kind of average works well for more
complex models too. This first subdivision step makes a rough
sphere. If we do a second subdivision step, it looks even more
like a sphere, and so on. Some applications will have a smoo-
thing operation. This works similarly, but is not pure sub-
dividing. For instance, a smoothed cube will have its corners
rounded out, but will retain the cube shape. A subdivided cube
will become like a sphere.

What I’ve just described is CatmulleClark subdividing
(Figure 5.2). This is the most efficient method that gives a good

Figure 5.2 A cube with two steps of CatmulleClark subdivision.

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 57
enough result to be usable. It is pretty much the only one that is
used in any application you’re likely to work with.
Other Subdivision Methods

Two other types of subdivision methods are also worth

mentioning (Figure 5.3). DooeSabine creates a new face at each
original point and the edges connecting to those points. You can
think of it as “cutting” each corner out to replace it with a face. It
has the characteristic that every new vertex will always have four
edges connected to it. After several iterations of this type of
subdivision, a cube tends to remain a cube. However, all corners
become beveled and applying a UVmapped texture can be tricky,
as the original edges are now faces. The other is loop subdivision,
which splits each triangle face into four triangles by connecting
middle edge points, then averages out the vertices to smooth it.
This method is very useful when only triangles can be used in
modeling.
Figure 5.3 DooeSabine and triangle subdivision.

Figure 5.4 Both of these meshes ha
the placement of each vertex affec

58 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS
Topology
Once you have subdivided a mesh several times, it begins to

look more like a curved surface. But before you do that, and
during the entire creation process, you want to make sure that
your control cage e that first, undivided polygon mesh e is clean
and simple, as well organized as possible. The layout of polygons
across your mesh is its topology.

Imagine a sheet of rubber. You can stretch it, twist it, and
deform it in countless ways without ripping or cutting into it.
Topology studies how the sheet is changed when you deform it
without ripping or cutting it. Likewise with polygon meshes
(Figure 5.4).

When you subdivide a mesh with good topology, you will be
able to predict the smoothed outcome better. It will be easier to
rig and pose with more accurate deformations. It is also impor-
tant for applying texture to your model. Understanding topology
is essential to creating good models.
ve the same number of polygons. Notice how deformed the mesh can get, and how
ts the edges and polygons.
Using Quads
In Chapter 3 it was mentioned that it is a good idea to use

only quads on your polygon mesh. Where there are triangles
or n-gons, bumps and other artifacts may appear on a mesh
(Figure 5.5). Theses bumps do not appear on flat meshes, but
become more prominent as a mesh becomes rounder either
during smoothing or when deforming a mesh as it is posed.
While it might even be that the bump is desirable and adds
a detail you want, care must still be taken. For instance,
the behavior of a bump occurring because of an n-gon may

Figure 5.5 In this image, the triangle on the corner results in a bump when the shape is subdivided and smoothed.
If you add some edges to bevel the corner, the bump is reduced and the corner is made sharper.

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 59
not flow with the rest of the model as it deforms. It also
reduces cross-platform compatibility, since 3D applications
deal with n-gons differently. This is one of those cases where
you should stick with the rule until you are familiar enough
through repetition to know exactly what happens when you
break the rule. Experience will teach you how quads and
n-gons behave and you can learn to use them to your
advantage.

It’s not really that quads are tamed and triangles or n-gons are
wild. What is mostly going on is the difference between the size of
polygons neighboring each other, or rather the changes in the
space between vertices. This may cause a ripple in the mesh as it
is rounded. This also applies to areas of high density near areas of
low density.

The steeper the curves, the more prominent the distortions
can become. One way to overcome this is to use extra edge lines
running parallel to sharp corners or curves in your mesh.
These edge lines should be perpendicular to the edge lines that
are being bent. This shortens quads and brings them each to
a more similar length, minimizing bumps that may occur
along the beveled edge because of differences in quad density or
size. As a general tip and not just a problem solver, the closer you
put these extra edge lines together, the sharper you can make
a turn.
Poles
Poles are vertices that have more or fewer than four polygon

faces attached to them. Like triangles and n-gons, poles may

60 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS
cause the mesh to deform in a way that you don’t want when you
pose the model. Though you can minimize their occurrence,
poles are unavoidable when you are modeling anything with
detail, most like human faces. There are two common types of
poles that appear as you shape your model: the E(5) pole and the
N(3) pole (Figure 5.6).

An E(5) pole happens when you extrude a surface, at the
vertices that you extrude from. Take a simple quad mesh and
extrude one of the quads. At a vertex at the base of the extrusion,
where once there was a single polygon face and two edges, there
are now two faces and three edges. This makes five edges coming
off the vertex: an E(5) pole. N(3) poles also appear during extru-
sions. At the top of the extrusion, a vertex of the original quad that
once had four faces connecting to it now only has three faces and
three edges.

Sometimes, poles are not very useful. Modelers often hide
them in places where they cannot be seen and not much move-
ment will take place, such as in an ear. But poles can also be used
as important tools to manage the deformation of the mesh by
controlling the flow of edge loops.
Figure 5.6 An E(5) pole and an N(3) pole.

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 61
Edge Loops
An edge loop is a continuous line of polygon edges that comes

back around the mesh to connect with itself and form a complete
loop (Figure 5.7). This makes a loop of edges. These edgesmust all
have vertices with only four edges going off them. Otherwise, the
path stops.

The placement of edge loops is very important to how models
deform. This iswhere understanding anatomy becomes important.
Especially in faces (Figure 5.8), edge loops flowwith the placement
and direction of muscles so that when the model is deformed for
animation, the deformation looks natural. For instance, when
someone smiles, the corners of themouthpull up, the cheekbulges,
and the eyes crinkle. Good topology with edge loops will make this
happen automatically. It is good practice to use a reference
photograph (or a drawing if the artist is really good and gets accu-
rate anatomy down), and draw out where the edge loops should go
before you startmodeling. Faces are unique not just on the surface,
but also in their musculature. When someone smiles, it may be
wideor the cornersmaypull upparticularly highwithnarrowcheek
bulges. Because of this, there is no one edge loop standard that can
be used for every face model.
Figure 5.7 An illustration of an edge loop.

Figure 5.8 A photograph of a face with edge loops drawn on, and an illustration of the same face modeled with
subdivision surfaces.

62 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS
Enlightening Disagreement
Some experienced subdivision modelers do not strive to use

edge loops and only quads in their models. Instead, they simply
go with the flow of adding edges and polygons. They have seen
how all the quirks behave so many times that they can often
predict what will happen to the mesh in any situation. One thing
you see is that even if there are not continuous edge loops, the
flow of the edges still matches the lines of structure and the
muscles of living creatures.

Other modelers sculpt a mesh freely with no quads at first,
since it allows for a faster and more creative building process,
then refine the details later to quads and edge loops. A few
applications are even geared for this kind of creation.

Modeling with Subdivision Surfaces
Subdivision modeling starts out just like polygonal modeling.

You can use box modeling or extrusion modeling, or a combina-
tion of both. As always, start with the largest aspects first, and
then progress to the smallest features. Adding polygons to your

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 63
model in the early stages so there is a lot of polygons before there
is a lot of detail will make modeling like trying to work with
chewing gum rather than clay. Working with extra polygons will
slow down your software, and it will also make every other task
more complex and time consuming. The goal is initially to model
each of the features with the lowest number of polygons possible,
for the simplest control cage you can have.

As mentioned before, the control cage acts much like the hull
of a NURBS surface. Some applications have one simple subdi-
vision surface smoothing operation, and all editing occurs on the
original polygon mesh. Other applications give you the power to
have several subdivision steps and preview each of them, allow-
ing you to move back and forth between the control cage and the
higher polygon count steps to view and edit. As you view higher
subdivided steps, you may find that the smoothed details do not
look exactly as you would like. But do not edit the subdivided
mesh yet. Always try to fix the problem first with the control cage,
and then move on to each higher subdivision step to tweak your
model to perfection. Lots of editing at the highest subdivision
step might look perfect when smoothed, but can result in a
control cage with vertices and faces crossing over each other. This
not only makes the control cage unintuitive to work with and
unattractive, but also causes problems with UV mapping and
rigging. Both of those use the control points of the control cage.

Try to subdivide the least number of times, using the lowest
possible subdivided step to get your result. This is important to
optimize rendering speeds. There comes a point where more
polygons do not add to the smoothness of the model. It is better
to have too few polygons than too many (Figure 5.9).
Figure 5.9 The same model with 88 polygons, 1344 polygons, and 5376 polygons
(from left to right).

64 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS
Subdivision surfacemodeling is very useful for gamemodeling,
when you may need the same model to have different polygon
counts to optimize in game rendering speeds. Models farther
away should have lower polygon counts than models close up.
Organic Modeling
Creating characters that come alive on screen is the primary

reason that modeling with subdivision surfaces was developed.
You’ve already gained an idea of it in the discussion on edge
loops. Good organic modeling starts with good references,
including not only concept art and orthogonal drawings, but also
a basic understanding of underlying anatomy. Even if the model
is not of a natural creature, one can still extrapolate anatomy from
existing animals. With several copies of your sketches, try drawing
lines where the muscles are, and use these to guide your place-
ment of polygons or edge loops. Many modelers have been
known to have multiple poses of subjects so they can study the
changes as their subjects move. This is especially helpful with
facial expressions, but is excellent practice for any movement
your model is likely to make.

Tutorial 3
Subdivided Robot

Step 1
Start with the robot as finished in Chapter 4: Tutorial 2. Though we've been looking at the whole body of the robot, it

will be more useful to have to only work on one side and have the symmetry automatically added. Cut off the mirrored
geometry, so that now you only have the side of the main body that you first created. Cleaning up is an important part of
modeling. Make sure you have no extra hidden vertices and borders. Merging the vertices can be a good way of taking
care of doubled up borders. It is possible to work with a mirrored instance, in which the other side does exactly what
you're doing on the original side. For the purposes of clear illustration, this tutorial will only show one side. In addition,
all of the other parts have been hidden.

Turn the main body mesh of the robot into a mesh cage (a subdivision proxy) for a subdivision surface. Choose two
subdivision steps or levels. Once you've made the subdivisions, take a bit of time to look at the subdivided surface of the
robot and how the edges of the mesh cage have influenced the smoothed out surface.

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 65

Step 2
Add two more edge loops: one between the bottom and the next edge loop up, and the other in between, about in the

middle of the eye. Adjust vertices to match the edge of the robot in the image plane. You may be able to toggle proxy
display so you don't see the subdivision surfaces. If you can, this will make things easier.

Step 3
To create a border that outlines the eye, you will need to move some vertices. The vertical edge, which is the second

one in, crosses through the outside of the eye. Grab the two vertices in that edge that are just inside the eye. If you're
looking in the front view and draw around them to select them, you will also grab the vertices in the back of the robot,
which you don't want. In this case it is easier to select them one by one, adding to the selection group. Move those two
vertices toward the outside to match the shape of the eye. On the same edge, the next vertex up makes a corner outside
the eye. Move that inward and a little down to match the image. On the bottom of the eye is a horizontal edges that
crosses through. Move each one of the three inside vertices on the edge to match up with the eye.

66 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS

Step 4
Select each face in the eye. As you're selecting make sure you don't select any extra faces. Extrude, pulling the face

forward in the side view to make an edge. Extrude again, scaling smaller to match the inner eye border. Fix any vertices.
Select the main faces in the eye again, and extrude inward, even a little farther than the original surface. Extrude one
more time, scaling larger to create a hidden lip.

Step 5
To create an eye hole, delete the faces that are selected. During the extrusions, you will have made several faces

that border the inside middle, where there should be no faces at all for later mirroring. Carefully delete each of these
faces. Then check for extra vertices and clean those up.

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 67

Step 6
Move the vertices to match the mouth shape, as you did with the eye. Keep mouth borders straight. You should have

only two faces on the mouth. Extrude three times: forward, inward to the border, and backward. The faces you have
selected will remain as part of the model, but you will have to delete some edge faces and vertices that border the middle,
as you did with the eye.

Step 7
If you have the view of the subdivided mesh turned off, turn it on now. As you look at the subdivided mesh, you'll

notice that the mouth is pretty rounded at the corners. To correct this, insert an edge loop just inside of the outer vertical
border of the mouth. If you leave the edge loop as it is, you will have creases in your robot's face, because of the skinny
polygons next to the wider ones. Except at the mouth, where you want the crease, move the vertices of the new edge both
to make a smoother circle in the eye and to make the narrow strip of polygons wider, more like their neighbors. See the
illustration for Step 8 for an idea of how to do this.

68 Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS

Step 8
Mirror the geometry and make sure the model is clean, with no extra edges or vertices lying around.

Chapter 5 SUBDIVISION SURFACES: THE MARRIAGE OF POLYGONS AND NURBS 69

3D

Co
6

DEFORMING: IT’S A GOOD
THING
When Gollum had his split personality conversation on the big
screen, I forgot that he was an animation. I empathized with
Gollum not just because of the context of his character, but
because I could see the emotion on his face. It was so good, in
fact, that hard-of-hearing people could lip read. Such facial
expressions had never before been possible. Weta Digital, the
team responsible for the Lord of the Rings digital effects, achieved
these realistic expressions using tools to deform the mesh.

Deformation is an important tool for modeling. It’s a great way
to mold your object in a way that would be difficult polygon by
polygon, such as bending a pipe, twisting a rope, or changing the
proportions of a nose. In animation, not only can you make facial
expressions such as opening a mouth wide for the dentist’s drill,
but it’s also useful for simpler things like a wilting flower or
a bouncing ball which flattens when it hits the ground.

You’ve probably already deformed an object. Moving a vertex,
an edge, or a face is the most basic kind of deforming. All the tools
to deform are essentially just ways to move large numbers of
vertices in specific ways to change the shape of a model. Like
other things, these could be called different things in other
applications. This is because all modeling has evolved within
each application, with each team implementing its use differently
and coming up with their own name. Rather than being called
a deformer, a deforming tool might be called a modifier. The
principles remain the same, however.
Sculpting and Special Selections
A sculptor with a lump of clay will push and pull on it to mold

it into the desired shape. This is a very intuitive way of deforming
a mesh, and many applications have tools to do this. Soft selec-
tion is something you’ve already met, when surrounding vertices
are influenced by the movement of one or more vertices. Another
common tool you will find, and one that is the basis of some
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 71

Figure 6.1 The percentage indicate

72 Chapter 6 DEFORMING: IT’S A GOOD THING
modeling programs, is the use of brushes. There are several
different tasks they can do, such as smooth, inflate, and pinch,
and they come in different shapes and sizes.

You can also save a selection of vertices in a specialized group,
sometimes called a cluster. Cluster deformers have their own
controls. When you grab the control or handle and scale, move, or
rotate it, all the vertices of the cluster will be affected.
Morph Targets
Using these sculpting techniques, you can create several key

forms of your model, and then use tools that allow you to morph
your mesh between several forms you’ve created. This is an
efficient way of animating things such as different facial expres-
sions. You duplicate the mesh and then reshape the copy as
desired. The reshaped copy then becomes a morph target (also
called a blend shape and other things). A slider control will be
created to move between the base shape and the morph target so
that you can control how much the original shape deforms into
the target (Figure 6.1). Deformers work really well for this
reshaping because they don’t change the number of vertices.
When blending shapes between meshes, it’s important that each
one has the same number of vertices. During the animation
sequence, the application will move the vertices from the original
mesh to their new place in the target mesh. You can have as many
targets as you want, allowing you to morph between lots of
different forms of the same mesh.
s how much the morph target is influencing the base shape.

Chapter 6 DEFORMING: IT’S A GOOD THING 73
When the vertices move to change shape, they will move in
a straight line. For some things, this may not work well e for
instance, a blinking eye. If the eyelid goes straight down as it shuts,
it will go through (intersect) the eyeball: not exactly a natural
occurrence. If you were to use this morphing method, you would
need more than one target to make the eyelid blink. Morphing
tends to work well for simple movements. More complex move-
ments may require other methods for the best results.

Lattices and Curves
Lattices and curves are similar to the control hull or mesh of

NURBS and subdivision surfaces, except that they offer more
abilities in deforming a mesh. A vertex on a lattice or a deforming
curve affects a number of vertices on the model. Think of having
lots of hands at one time being able to push or pull on yourmodel.

Curve deformers (Figure 6.2) are simple ways to bend the
model or a part of it into the curve you want. Create a curve and
assign it to the desired portion of the mesh. Moving this curve will
then move the mesh. This is an easy way to create a control for
things like raising an eyebrow or wagging a dog’s tail.

A lattice works just like a curve except that it is a whole surface.
You may have a set of prebuilt lattices or you can build one to fit
your needs. Like the curve, the shape of the lattice affects the shape
of themodel. Latticesusuallyhave abase shape that they caneasily
revert to. A great advantage of this is being able to evenly deform
your mesh across certain areas, and repeat this same deformation
Figure 6.2 This model has a curve deformer next to it. As the curve is bent, the
model bends with it.

Figure 6.3 Here is a cylinder that

74 Chapter 6 DEFORMING: IT’S A GOOD THING
with subtle differences without having to fiddle around on the
mesh itself. You can even add a lattice to another lattice. This is
good for flexing a muscle or changing proportions, but a little too
general for things such as facial expressions.

One nice use of lattices is to move models through them to
animate themodels (Figure 6.3). A good example of this is passing
a snake through a tube lattice that has the wavy shape of the
snake’s path. This illustrates another advantage: your model will
have a default shape that it retains once the lattice is removed if
you desire. This makes lattices and curves very useful for the kind
of deformations you need in animation.
is being moved through a lattice. Notice how the lattice makes it bend and bulge.
Controlling the Influence
What if you did not want to evenly deform your model? When

you are pulling up the cheeks of a face model to create a smile,
you don’t want all of that area to deform by the same amount.
That would just pull out a big gob of cheek. Instead, there is a lot
of pull right around the mouth and some slight bulging at the
cheek. Some applications give you the ability to weight the
influence on control points. You can also control how many
vertices each lattice point controls. With this weighted method,
you may even be able to use a single point as a handle. This is
another good solution for eyelid animation. By placing a pivot at
the corners of the eye, and then weighting the influence along the
curvature of the lid, more in the middle and less at the edges, you
can pull the eyelid down in such a way that it does not intersect
the eyeball (Figure 6.4).

Figure 6.4 Before the vertices of the eyelid were given weighted influence, the lid tended to intersect the eye. In the
middle image with the gradient, the white represents those vertices most influenced by the handle.

Chapter 6 DEFORMING: IT’S A GOOD THING 75
Specialized Deformers
Say you want to model a screw. How are you going to get the

threads on it? Well, certainly you could carefully sculpt them in
there. But what if you could just twist the surface? Many appli-
cations have deformers with which you can do just that. There are
various specialized deformers that let you shape your mesh in
very specific ways to get common shapes and effects. The ways
that these deformer controls act and the kinds of attributes you
can give them differ across applications but they all have one
thing in common: they change the positions of vertices. Some of
the actions you can perform with these kinds of deformers are
bend, flare, twist, flex (a bulge on the inside of a bend, simulating
how muscles work), bulge (a uniform growing around the whole
circumference), warp, narrow, etc. (Figure 6.5).
Figure 6.5 Several specialized deformations as applied to the model at the far left.
Soft Bodies
How would you control the movement of the cloth sail on

a pirate ship? What about animating hair as your character does
a backflip and it brushes against the floor and her clothes? Cloth
and hair are good examples of flexible objects that react to forces
such as wind, gravity, and the movement of the person wearing

76 Chapter 6 DEFORMING: IT’S A GOOD THING
them. There is more than one way to achieve these complex
animated deformations, but a popular one is the use of soft
bodies (Figure 6.6). When you make your model a soft body,
you copy the vertices in the mesh and replace the copied vertices
with particles. Particles are virtual points that react to simulated
forces or even collisions with other objects. This makes them
great for hair, which might collide with clothing or the model
itself during movement. The particles in soft bodies are con-
nected together in a mesh just like the model. They can control
the surface of your model in the same way that a lattice does,
except their movement is dynamic. That means that their
animation is controlled by the application applying the
simulated forces to them that you have specified. This doesn’t
just free you from trying to accomplish that task. Because the
simulations are based on physics, the animation is generally more
realistic than a manual animation, provided you set things up
properly.

You could theoretically just copy and convert your model to
a soft body, but then it would be very difficult to control with
little advantage in movement. The rule of thumb when creating
soft body deformers is to keep them as simple as possible.
Low-polygon meshes are often used for soft body deformers
Figure 6.6 The flag in this image is a soft body cloth. Gravity affects the flag in both
pictures, and a wind force has been applied to the one on the right.

Figure 6.7 The mesh on the left is the soft body deformer. On the right is the model.

Chapter 6 DEFORMING: IT’S A GOOD THING 77
(Figure 6.7). The more particles you have, the more calculations
the computer must make, which equals higher render times for
animated sequences or worse: altogether stalling your computer
to a complete stop. You can cache the animation of the model
provided by the soft bodies, so that these calculations do not have
to be done again.

What if you have something that is flexible upon impact, but
would retain its shape? Let’s use a cardboard box as an example. If
hit with a wooden sword, the box must crinkle and indent, and
will mostly stay that way, though there will be a bit of springing
back to the original shape. You can control if and when your soft
body is active or inactive.
Constraints
Though these particles are connected to each other in a mesh

that should more or less retain its shape, it is not uncommon for
there to be too much movement. For instance, if you were
simulating the movement of a Slinky toy, you might find that it
pinches, bulges and, at the ends, flares out. You can assign certain
kinds of constraints to it so that it retains its cylindrical shape
while snaking downstairs. This is a fairly rigid type of restraint,
keeping all of the vertices across a certain axis in exactly the same
place relative to each other. Another kind, often called springs,
allows for more flexibility but still keeps the movement of the
particles in check. A good example of this is a candle flame. You

78 Chapter 6 DEFORMING: IT’S A GOOD THING
need the tip to move all around in space, but it is not good if
the vertices on the tip move away from each other, so you use
a spring constraint to hold these together. There are quite a few
parameters you can control in each kind of constraint, allowing
you to create models that react in different ways to their
environment.
Skeletons and Muscles
Many animals have skeletons, whether endoskeletons like

ours or exoskeletons like a grasshopper’s. You can give your
model a skeleton as well. The skeletons of 3D models are always
endoskeletons, but they work differently than our organic ones.
Like ours, they are stiff, jointed objects. But unlike real skeletons,
skeleton rigs (see more in Chapter 7) in models are the movers
(Figure 6.8). Each point on the mesh surface is attached to the
skeleton rig. When the rig moves, the points move. You can set
how strongly each point is affected by each joint. The muscles are
just simulations. They are special deformer lattices, being moved
by the skeleton, and in turn deforming the model. This is to make
organic movement more realistic.
Figure 6.8 A skeleton of joints and bones applied to a 3D model. When the joints
are rotated, they cause the model to bend at that place.

Chapter 6 DEFORMING: IT’S A GOOD THING 79
Rigid Bodies
There are also surfaces that you will not want to be deformed

during dynamic animations. In those cases, you will want tomake
the surface a rigid body. Rigid bodies are great for things such as
robots, cars, and wooden swords. Imagine, for instance, a fort of
those cardboard boxes being attacked with the swords. The
swords would be made rigid, while the boxes are the soft bodies
which deform when the swords hit them. When a model
composed of rigid bodies is moved, the parts will move relative to
the other parts, but the shape will remain the same. This makes
them an excellent solution to having something hard that is
combined with something soft, such as a chest plate on a Roman
soldier. The chest plate must move with the chest but you should
not be seeing muscular movement on the plate. However, in
a very detailed animation you might want to see how the leather
and/or skin rubs under the hard plate armor.
Order
Every time you add a deformer, modifier, or some other kind

of attribute to your object it will be listed with your object. It may
be called an object history, a list of input operations, a stack, etc.
You may see it as a graph. You will be able to access this and in
many cases change the order of the deformations or other actions
applied to your object. The order in which any of your modifi-
cations are applied is important. Each one will act differently
depending on the order in which you apply them (Figure 6.9). If
they are in the wrong order, this may give unpredictable results
for your animation.
Figure 6.9 The same two deformations were put onto this cylinder: first X and Y and then Y and X.

Tutorial 4
Smiling Robot

Step 1
To begin, select the robot body and duplicate it. Move it to the side. On the copy, select all the vertices that make up

the mouth. Once you have these selected, make them into a cluster with a control. If that is not possible, you will want to
save them as a selection set.

80 Chapter 6 DEFORMING: IT’S A GOOD THING

Step 2
You can make clusters so they influence some vertices in the group more than others. In other words, the

vertices have weights on them which determine how much the cluster will influence them. With the mesh
selected and the cluster specified (if necessary), use a weight painting tool to reduce the influence that the cluster
has on the vertices in the middle of the mouth. There should be no influence right in the middle, and increasing
influence until it is total at the two edges of the mouth. In the illustration showing this, black is no influence and
white is full influence. If it is not possible in the application to create a cluster and paint the weights on it, use soft
selection, which approximates this.

Chapter 6 DEFORMING: IT’S A GOOD THING 81

Step 3
Use the cluster handle to move the vertices up. Now you've got a robot smile. Select your smiling robot mesh and the

first base mesh; then use the tool to create a morph target. In the options of the tool before you complete the creation,
name the morph target Smile. Open up the window that contains the slider for the morph target, then move the slider so
the base has the same expression as the smiling robot. As you move the slider, you'll see how the morph works.

82 Chapter 6 DEFORMING: IT’S A GOOD THING

Step 4
Make a copy of both the smiling robot and its accompanying cluster. Pull the cluster downward so that the robot has

a frown. Select this second copy and the base robot mesh, and create a morph target with the name Frown. Now in your
morph target control view, you'll have two sliders: Smile and Frown. You can have them both influencing the base target
at the same time, and the expression will be neither a smile nor a frown, nor the original shape. You can use these
controls to make a variety of mouth expressions.

Chapter 6 DEFORMING: IT’S A GOOD THING 83

3D

Co
7

RIGGING
One of the things that makes Iron Man cool is that as his
superhero self, he looks like a robot, but we know that underneath
that technology is a human who is responsible for every move-
ment it makes. Though there was a real suit, in the movie most of
Iron Man’s action was computer generated. So it wasn’t a human
moving it. It was a rig.

There are several kinds of rigs. The most common one is made
up of a skeleton of joints, like what was used for Iron Man, or any
other object that has poseable limbs. But what about things like
facial animation? You can have a rig made up of lattice deformers,
or of blend shapes. A rig for an organic computer-generated
character will need the muscle deformers as well. To complete
your rig, you will need controls to move the skeletons, deformers,
and blend shapes. These controls should be designed properly,
both for ease of use and to help the action be realistic.

Since a rig is part of what allows you to bring your model to
life, it is a good idea to build a rig before your model is fully
detailed. This allows testing.
Parent and Child
A fundamental part of rigging is working with hierarchies, or

what parts of your model are controlling other parts. In a hier-
archy the controlling object is called a parent, and the object
being controlled is called a child. In a display of the hierarchy,
a parent is above a child. Also a child of an object can be the
parent of a different object.

For a real-world example of a hierarchy, let’s start with your
arm. Hold it straight out and try moving it at your shoulder.
Your elbow, wrist, and hand follow it. But if you move it just at
your elbow, the shoulder does not have to move but the fore-
arm and everything below it does. Your upper arm is the parent
of the forearm, which is the parent of the hand, which is the
parent of the fingers, etc. (Figure 7.1). In terms of hierarchy, the
forearm is lower in a hierarchy than the upper arm, or down-
stream from the upper arm.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 85

Figure 7.1 Here, the shoulder is the parent of the elbow, while the elbow (child of
the shoulder) is the parent of the wrist. The parentechild hierarchy would cascade
down through each knuckle.

86 Chapter 7 RIGGING
But objects don’t have to be connected. Animating a simula-
tion of a star system is much easier when hierarchies are used.
Using a sphere as the central star, or sun of the system, you would
set it as the parent for other spheres, the planets. As this star
moves, orbiting around the center of the galaxy, all the planets go
with it. They have their own movement, but it is always an orbit
around that star. They are the child objects of the star. Orbiting
around some of the planets would be moons. A planet with
a moon would be the parent of that moon. You could even have
space stations orbiting a moon, in which case they would be the
child of themoon. Objects in hierarchies do not have to bemeshes
or surfaces, but can be other things such as lights. When the sun
goes down in the sky, it can cause a light source to turn on.

This hierarchy will be represented in your object list so that
you can easily see the relationships of different objects to each
other (Figure 7.2). The parent at the top of the hierarchy is called
Figure 7.2 The star in this system is the parent of the planet, which is the parent of
the moon.

Chapter 7 RIGGING 87
the root or base of the hierarchy. As you can see, even without
rigging this can be very useful. For instance, you can parent the
body of a cart to its axel and in turn parent that axel to the wheel.
But when you have a complicated rig such as a skeleton, hierar-
chies are indispensable to managing all the joints.

Bones and Joints
In 3D animation, joints are so basic that working with them is

pretty much the same in every application. Select the joint tool
(whatever it is called) and click in the scene. A joint will be created
where you click. Joints, or more accurately joint deformers, are
places where your model can be bent or rotated. If you click again
while your joint tool is still on, a bone and another joint will be
created. This joint will be the child of the first joint. This auto-
matic parenting is one of the beauties of using rigs. The bone is
a visual connector between joints and also indicates which joint is
the parent and which is the child. The base of the pyramid shaped
bone is at the parent joint, and it points to the child (Figure 7.3).
Figure 7.3 Three joints connected together. Notice that the bone is in the shape of
a long pyramid. Its base is at the parent joint and it points to the child joint, giving
an indication of hierarchy.
Skeletons
You can create more than one child joint coming off another

joint. It is this branching off that allows you to create the complex
hierarchy of joints that you typically need for complicatedmodels
such as robots, people, and creatures. It can also quickly get
confusing unless you organize things properly.

First of all, you’ll want to name your joints. It’s best to name
them logically, according to their place in the anatomy; for
instance, leftAnkle or rightPinky1. Be aware of what is parented to
what. When a skeleton rig is fully closed up in the object list, only
the root joint is visible, usually something in the neck or hip area,
depending on construction. When you expand that joint object,
you will see all of its child joints.

88 Chapter 7 RIGGING
There is no reason for you to have to add in every single joint.
You can duplicate chains of joints where they are the same on the
body: fingers, two arms, two legs. You can mirror, rotate, and
transform them as you copy them too. You will want to make sure
you have a good placement of joints, and, once there, bind the
pose so you can always get your model back to a good position
(Figure 7.4).
Figure 7.4 In this skeleton, the bones are merely connectors between the joints,
which are the movers.
Creating a Skeleton Rig
Getting good placements of joints on your rig requires

a working knowledge of the anatomy of your creature, whether
real or fantastic. If you are building a human character, you can

Chapter 7 RIGGING 89
refer to yourself or a friend to study how humans move. For
instance, if you rotate your wrist, you can see that your elbow
joint does not rotate. Another joint between the elbow and the
wrist is required to accomplish this movement.

Once you have everything set up the way you want, you want
to create the bind pose. This pose is a starting position that you
can easily go back to, with each joint rotation and trans-
formation set to zero. You must take into consideration what
bind pose you want to use even before you start rigging. For
humanoid characters, a very typical bind pose is called the T
pose. This is a person standing up with arms outstretched,
looking like a small T (Figure 7.5). The reasoning behind this is
that it is easier to not have any parts of the model overlapping. It
is also easier to skin (see Skinning, page 94). If the arms are
straight down and you are trying to bind the skin to the joints,
then you may accidently bind the hip or leg to the arm joints.
Another important reason is that all of the joints and deformers
that move your model are only approximations. The farther
away from the first pose they get, the more deformation there is,
and the more unwanted pinching, wrinkling, and bulging you’ll
get. A T pose, for arms, is halfway between any positions the arm
might make. However, arms straight up is a much less common
Figure 7.5 T pose and Y pose.

90 Chapter 7 RIGGING
position than arms down. Also, for the arms to be straight out,
the shoulders must be modeled as all bunched up. Therefore
many modelers are adopting a position called the Y pose, where
the arms are out at only 45 degree angles (Figure 7.5). This puts
the shoulders in a more natural starting position, while main-
taining the distance between arms and legs needed for skinning
and staying within a mid-range pose to reduce distortion when
you pose. Going even farther along these lines, some modelers
let other joints like the elbows and knees be bent just a little bit
in a more relaxed and ordinary pose. As you can see, we aren’t
just talking about rigging here. Modeling your character with
good form is essential to good animation.

When creating the joints of a limb, you will want them to be
properly aligned. This is especially true with the rotating joints
such as the one between the elbow and wrist. If this is not straight,
the arm will appear to be broken. Most applications allow you to
snap to the grid, making it easier to achieve a straight line when
creating joints. Once you’ve done this, you can move first the
parent joint of your line to its place, then adjust the other joints so
that each one is where it belongs (Figure 7.6).

Another important alignment consideration is the orientation
of the joints’ rotation axes. You will want to make sure that the X
axis of your joints is in the direction of the length of the bones, with
it pointing in the direction of the child. You will also want your Z
and Y axes pointing in the same directions, ideally with Z pointing
toward the back and Y pointing down. This will make natural
movements easier to handle in your control setup. If you do not
have your joints properly oriented, you may run into difficulties
such as a gimbal lock. A gimbal lock is what happens when two
Figure 7.6 The joints with all the axes aligned together.

Chapter 7 RIGGING 91
axes overlap. This makes their rotations the same and makes it
impossible to rotate the joint in the three different directions.

Once you have placed and aligned the axes, you can set the
values of the rotations at X, Y, and Z to zero. This might be called
freeze rotation. The neutral pose values will be at 0, a logical
starting place for your controls.

As you build your skeleton, using things like mirror and
duplication, limbs can get messed up, even if they were aligned
previously. When your entire skeleton is in place, take the time
to go through and check each joint so that it is well oriented. It’s
possible that it won’t be a problem later on, but if it does rear its
ugly head it will be a difficult one to fix in the middle of some
other task you’re trying to do.
Joint Limiting
Turn your head to look back as far as you can. You probably

can’t get your chin much further than your shoulder. This is
a limit of your anatomy. Every model, organic or not, will have
such limits. To put them in your model, you will need to add
limits to the joint rotations.

Finger knuckle joints, for instance, can only bend along the
Y axis (up and down) and they cannot bend back much. The
knuckles allow for some back-and-forthmovement, however, and
can be bent a bit farther back. Adding limits like these is impor-
tant to enable you to move your skeleton, and therefore your
model, through inverse kinematics.
Kinematics
Kinematics is the study of how things move when forces act on

them. In the animation of a rig, it involves figuring out the angles
of each joint as it is moved. There are two approaches to this:
forward kinematics (FK) and inverse kinematics (IK). In order to
achieve good, natural movement, you will use both of them.
Forward Kinematics

With FK on a bipedal character, we are working directly with

the angles of the joints in order to achieve a specific position. We
commonly see this when programming a robotic arm. Being
amachine, it cannot have a goal. Each joint is moved individually,
starting with the base joints: the ones at the top of the hierarchy,
and then moving each child joint down the hierarchy to the
position you’re aiming for. It is comparable to animating

92 Chapter 7 RIGGING
a stop-motion armature. So, if you were to animate amotion such
as grabbing a glass of water, you would start at the shoulder joint,
rotating it to move the arm. Then you would rotate the elbow, the
wrist (if necessary) and then each knuckle joint of each finger to
grasp the glass. This works just fine, but it takes a little time, and it
can be harder to do with large limb movements that are repeti-
tive, such as walking. FK walking would start by moving the hip
forward, then rotating the thigh joint (the joint that connects the
thigh bone to the hip and rotates at the hip) forward, rotating the
knee properly, then rotating the ankle to touch the ground, and
then again as the weight moves onto the leg (Figure 7.7). Recall
Figure 7.7 The root hip joint was rotated before starting to rotate the knee to get
the joint chain in this position.

Chapter 7 RIGGING 93
that when the parent joints are rotated or moved, all the child
joints move as well. This leads to several particular difficulties
with FK for walking such as keeping feet from sliding on the
ground, sinking into it, or floating.

Still, there are some advantages to using FK. In fact, you must
have an FK rig before you create an IK system, but that isn’t too
hard. It comes about automatically with the setting up of the
skeleton rig. Since the controls to rotate and move joints are
pretty basic, FK has the advantage of being easier to export than
IK, which suffers from being developed in different ways in each
application. FK is also very important for tweaking and adding
character and emotion to movements.
Inverse Kinematics

With IK, the question being solved is: “If the hand is here, what

angleswill the jointsneed tohave?”Ourbrainsdo thisconstantly.As
I type these words, I know where each letter is and, without
conscious thought, my brain is calculating how my hands must
move to get my fingers to the keys. In other words, I have a target.
My consciousmind does notmove each finger to figure out how to
get it to each letter.

IK lets you move the last joint in the hierarchy and have all the
others follow it. For instance, the foot must step on the floor at
a point and remain there while the hipmoves along, and the other
foot moves toward Y. Not only is IK faster than FK, but it can help
with the slipping and sinking feet problems. Once you have good
limits and constraints integrated into the rig, you can grab
a handle of your rig and move it around easily. The other joints
will smoothly rotate to make this happen. So, if you want to move
the leg, you can simply grab the foot handle and move it around.
The hip/thigh joint, knee joint, and ankle joint will all rotate
accordingly (Figure 7.8).

Applications can make this happen in a several ways. You may
set up a second hierarchy of joints that control the main hier-
archy. Your application will have a variety of IK tools to solve how
your joints should rotate to get them to the place you want. The
number of solvers you will need to use will depend on how many
joints you have. As you set up your IK rig, you will create control
objects using shapes that are constrained to the joints. Moving
these shapes will move the joints of your rig. These controls and
other customized settings can make a complicated movement
such as closing a fist simpler to achieve.

To achieve the best of all movements, it is common to have an
FK/IK switch. For instance, what if you want the pinky to be

Figure 7.8 To move the leg here, the ankle joint was connected to the hip joint in
an IK solver, so that the IK handle only has to be selected and moved.

94 Chapter 7 RIGGING
extended when you have your character pick up a cup? The
grasping motion will use IK and the pinky movement will be done
with FK. It’s important to use FK to add personality to your char-
acter’s movements. Otherwise, they may end up looking robotic.
We do not expect perfectly flowing movement from humans or
animals, and having it can make your creation slip into the
uncanny valley.
Skinning
Even if you have been creating and aligning your rig within

your model, it will not move the surface of your model until you
connect it to that model. This is called binding or skinning. The
simplest way to have a rig move a surface is to parent the surface

Chapter 7 RIGGING 95
to the rig. This only works well if your model is broken up into
different objects for each part that must move, but it is a good
solution for things such as insects or robots.
Rigid Binding
Another good solution for such objects is rigid binding

(Figure 7.9). It works in a similar way to parenting, but can be
used on models composed of a single surface. How this works
is that one vertex is assigned to only one joint, and every
assigned vertex is influenced at 100% by that joint. You can see
the problem with a direct rigid bind: you’ll get strangely
stretched and pinched parts of your surface where the bend is.
Using a specialized lattice like a flexor (which rounds out the
surface at a bending location) can improve appearances while
flexing. This works well for lower end character animations
such as for gaming. Another solution is to rigid bind lattices to
the joints, instead of the surface itself. The lattice is then
bound to the surface, so as it is moved with the joint, the
model moves as well.

One thing to point out is that rigid binding is different than
rigid bodies. Rigid binding is a type of influence of the joint
deformer on the surface, and a rigid body is a surface that cannot
be deformed.
Figure 7.9 A joint that uses rigid binding directly to the surface, with and without the special flexor lattice.
Smooth Binding
When dealing with an organic model, smooth binding offers

an even better solution (Figure 7.10). Rather than have the
influences of a single joint on the vertices be the same, you can
weight the influence, so that a single joint influences some
vertices more than others. Assigning weighted influence can be

Figure 7.10 The same cylinder as in Figure 7.9 with smooth binding.

96 Chapter 7 RIGGING
achieved in a few ways but it is often done with a brush to paint
a blackewhite gradient indicating the strength of influence. A
vertex can be influenced bymore than one joint. This can get a bit
tricky, especially when you use an automatic operation to assign
a smooth bind. Joints can be assigned by their closeness in space
or in hierarchy. If things are not acting as you expect, you should
check out if one or more vertices are bound to an odd joint, like
something on the hand being bound to the hip. Just like
modeling, setting up good weights for a smooth bind takes
practice and time.
Muscles
Even better for realism is simulating the muscles under the

skin. Not only do you get the bulging when a joint is bent, but
good simulations will have the surface or skin slide over the
virtual muscle, further enhancing the animation. There are
several different systems to simulatemuscles, available within the
application you’re using or sometimes as separate applications or
modules.

As you have learned, typical joint deformers are the active
movers of the skeleton, not the movable part of a rigid skeleton
that requires muscles to move it. When these virtual joints are
used, muscle deformers take on the task of making the surface
appear as if it were muscles moving the skeleton. These muscles
are usually some kind of NURBS curve or surface. They’re
attached at the right places between joints and change shape as
the joints are moved, then translate that shape change to the
surface of the model (Figure 7.11).

Another way this is accomplished is to make the bones
themselves dynamic so that they change shape, and in turn affect
the shape of the model.

It is also possible to simulate a real musculoskeletal system
with specialized joint deformers, bones that govern structure, and

Figure 7.11 An arm with the muscle flexors visible.

Chapter 7 RIGGING 97
muscles (still NURBS surfaces) that connect to these joints and
bones. This lets you build a working anatomy, bringing your
model one step closer to realism.
Other Uses for Joints
All the attention has been on models of things that have skel-

etons. But joint rigs can be useful for other things where you need
control over movement that is not necessarily jointed, such as
ropes or horses’ tails. Here, you can use a skeleton chain which
controls a lattice that controls the surface. Using joints and lattices
in this way can also work better for highly jointed objects such as
chains or snakes than assigning a joint to each link or vertebra.
Making Your Own Controls
Sometimes, on the model itself it might be difficult to select

and operate some kind of control, object, group, etc. You can
create a simple shape that is easy to grab and parent the difficult-
to-manipulate objects to it. Then, when youmove, scale, or rotate
the shape it will do the same with your objects.

Tutorial 5
Robot Gets Jointed

Step 1
The first thing to do is to create a parentechild hierarchy for your robot. This will be needed for the skeleton rig

later on. Start at the left shoulder sphere (this refers to the robot's left, not your left) and parent the left upper arm
cylinder to it. Usually you select the child first, then the parent, and then use the parent command. Now when you rotate,
move, or resize the sphere, the cylinder should change with it. But if you move the cylinder, the sphere will not follow.
Parent the elbow sphere to the upper arm, the lower arm to the elbow, the wrist to the lower arm, and so forth.
Do the same with the right arm and each leg. Now parent each shoulder and each hip to the main body. You'll also want to
parent the shoulder and hip guards to the main body, as well as the eye and brain case. Theoretically, you could pose your
robot using this, but it would be more time consuming than with a proper rig.

98 Chapter 7 RIGGING

Step 2
Using a joint creating tool, in the side view start at the hip and create a joint. The first joint won't have a bone,

but if you click again with the joint tool still in action, another joint will be created with a bone between it. Create
another joint on the knee, ankle, and toe. Though that end toe joint will not rotate anything, it is an easy handle to grab
and move the toe, and is useful for connecting other joints in an IK rig. In the front view, make sure that the leg
joint system is placed in the left leg. With leg joints still selected, use the mirror joint tool to create a copy. It will be
mirrored against one of the axis planes, probably YZ. You can choose which one. If your robot is properly centered, then
the new leg joint system will appear where the right leg is.

Step 3
Start at the left shoulder and create the joints for the elbow and wrist. Without creating a new bone between

them, start another joint hierarchy at the base hinge of the clamp and continue to the tip. Make another set of joints
for the thumb. Select the base thumb joint and the base clamp joint at the same time; then select the wrist joint and
use the parent tool. Bones from the clamp base and thumb base will be drawn, connecting them both to the wrist
joint.

Chapter 7 RIGGING 99

Step 4
In the front view, create a root joint between the two legs; then continue creating joints, moving straight up with one

between the eye and mouth, one in the middle of the eye, and one at the top of the main body. Parent the hip roots
to the main root. Then parent the shoulder joints to the third joint up of the spine system. With all of the joints created,
you will want to bend each joint just slightly in the direction you want it to go. Make sure to do this for the elbow, knee,
and clamp and thumb joints. This is for the IK solver. At this point, you may want to make sure all of the rotations on
your joints are properly aligned. Set this skeleton pose as preferred.

100 Chapter 7 RIGGING

Step 5
Select the left ankle joint and the hip joint, and create an IK solver with them. If you did not bend the joints, then you

would be able to grab the IK handle and move the end all around, but the joints might not bend. Try moving the IK
handle to see how it works. Now create an IK solver for the right hip and ankle, and the shoulder and wrists of both
arms. Create IK solvers for the clamps and thumbs as well.

Chapter 7 RIGGING 101

Step 6
Once you have created your skeleton, select the whole skeleton by selecting the root and then select the main body of

the robot. Since there is a hierarchy, all of the objects that make up the robot will be selected. With the skeleton and robot
selected, choose the smooth bind tool. The robot's mesh will become a skin. The vertices of the robot's mesh will be
influenced by the joints (not the bones), and this influence overlaps between joints. The influence is not always intuitive.
For instance, moving the arm will also deform the main body. To control which joint controls which vertices, you will need
to paint weights on this. Select the robot's mesh and use the painting tool for joint influences. White is fully influenced
and black is no influence. Choose a joint and then paint where that joint influences. The vertices will need to be influenced
by at least one joint. For the main body, shoulder guards, eye, and brain case use the spine joints, with a bit of overlapping
for smoother deformations if you bend the spine joints. Select the left shoulder, choose the left shoulder joint, and make
the sphere fully influenced. Make sure that the elbow joint, the shoulder guard, and the body are not influenced at all by
the shoulder joint. Do the same with each joint. Now you can pose your robot.

102 Chapter 7 RIGGING

3D

Co
8

ANIMATION: IT’S ALIVE!
Artists have been trying to make pictures look like they are
moving ever since early humans drew on the walls of their
caves. The very idea of moving art was, and still is, magical.
And though many digital artists enjoy creating still images
using 3D applications, this barely taps into the power of the
technology. It takes thousands of still images to produce
animation. Whether for cartoons or to fit undetected into live-
action movies, the purpose of 3D digital art technology is to
animate objects that don’t exist in the real world. 3D artists
today use several ways to create animated pictures such as
keyframing, motion capture, and simulations (where the
computer calculates the movement of objects, usually based on
physics).
The Twelve Basic Principles of Animation
The purpose of animation is to serve the story e to capture

images of life, and in the process communicate to others, even
if it just means giving them a thrill ride. To this end, you need to
make your animation believable. This doesn’t just mean
realism. There are cues that pull people into the action.
Animators at Walt Disney Studio wanted to create a kind of
animation that felt real and let the audience respond to the
character and story. As they observed and practiced what was at
the time a new art, they developed a set of guidelines for
animating. Two of these pioneers, Frank Thomas and Ollie
Johnston, set them out in 1981 in their book The Illusion of Life:
Disney Animation. These guidelines have become standard for
the animation industry.

Most of them are not hard and fast rules. Lots of great
animation has been done without specifically referencing them.
But they do remove the abstract idea of “good animation” and
replace it with solid terms to understand and explain why
something works for the audience or does not.

Though they were developed before computer animation, they
still apply with some modification.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 103

Figure 8.1 Squash and stretch.

104 Chapter 8 ANIMATION: IT’S ALIVE!
Squash and stretch

Of all the principles, this is the most important one. The

simplest example is the bouncing ball. As it hits the ground, it
squashes. Its volume, however, must stay the same. So it also
stretches. Squashing and stretching are ways to give weight to
your objects (Figure 8.1). This isn’t just limited to things like
bouncing balls or tummies, and collision with a floor or another
object is not required. These kinds of movements happen in facial
expressions and with just about any kind of motion. When the
upper cheeks bulge up, you should see stretching around the
mouth. What you always need to remember is this: bodies
(organic or not) have weight and respond to gravity, and they
must retain their volume.
Anticipation

Iron Man crouches and places his hand on the ground. You

know what’s going to happen next: he’ll spring up into action.
This is an example of anticipation. It helps your audience to clue
in that something is going to happen next. Any kind of thing that
invites the audience to watch what happens next is anticipation.
If there is no anticipation, this can be a way of surprising the
audience. If nothing happens after you’ve set up anticipation, this
can be anticlimax. Understanding how this works can help you to
move the story forward, set up comedic effects, or startle your
audience (Figure 8.2).

Figure 8.2 Anticipation.

Chapter 8 ANIMATION: IT’S ALIVE! 105
Staging

This is the art of communicating an idea clearly through ima-

gery, whether it be a personality, a clue, a mood, foreshadowing,
etc. (Figure8.3).Youwilldo thiswithhowyoupresent thecharacter,
objects, and surroundings. You must make sure not to have
anythingunnecessary in your scenes, or the scenewould lose focus.
What if the idea is chaos and confusion, a character lost in a city?
Well, then, a cluttered scene might be appropriate, but you would
want toavoid sunny skies or friendly facesuntil theherowhocomes
in to help your character appears. This is not real life we’re trying to
portray; it’s life through a filter. It is emotion, conflict, resolution.
With computer animation, you have complete control over the
scene, and over every aspect of your character’s appearance,
gestures, and expressions. Take advantage of this. Staging can also
be set in postproduction, with lighting and color adjustments.

Figure 8.3 Staging.

106 Chapter 8 ANIMATION: IT’S ALIVE!
Straight-Ahead Action and Pose to Pose

These are styles of drawing your animation. Straight ahead

means you draw or change poses through the scene, from
beginning to end. This is good for dynamic action and sponta-
neity. However, often when characters are hand drawn, things
such as proportions and volume are lost. With pure straight ahead
posing of a model, you may find yourself in a dead end, unable to
get your character to the next part of the storyboard. With pose to
pose, the animator would carefully plan the animation, draw in
key poses, and then fill in all the movement between those. In
computer animation pose to pose is very natural. The computer
fills in the movement between key poses for which you set the
keyframes (see Keyframing, later in this chapter). But you can
consider things such as motion capture and dynamic simulations
as straight-ahead action.
Follow Through and Overlapping Action

If a person in a cape is running, and then stops, that cape will

catch up and then continue to move before it also comes to
a standstill. This is called follow through, when things such as hair,
clothing, limbs, and loose flesh continuemoving after the core part
of the character stops. A corollary to this is “drag”, when a character
starts tomove, and other thingsmust catch upwith it. Another part
of follow through is the expressive reaction of the character to their
action. Overlapping action is when things are moving at different
rates, such as a head turning while an arm is moving.

Chapter 8 ANIMATION: IT’S ALIVE! 107
Slow In and Slow Out

Action never begins or stops instantly. As it begins, it starts

slowly and then speeds up. As it ends, it slows down. This is
exaggerated a little in animation, in order to pull the audience’s
awareness through all the action. This used to be accomplished
by manipulating the images through frames, maybe doubling up
a pose into two frames. In computer animation, this can be
achieved by using curves in the animation graph to control speed
(see Animating With Graphs, later in this chapter). If using
motion capture, youmay need to coach the performers to do slow
in and slow out. For more surprising action or comedy gags, you
can omit slow ins and slow outs.
Arcs

The actions of people and creatures, and often even objects,

tend to move in an arc (Figure 8.4). Wiggle your hand and move
your fingers. You’ll be able to trace their paths as curves. Imagine
the hooves of a galloping horse or the swaying of a tree in the
Figure 8.4 Arcs.

108 Chapter 8 ANIMATION: IT’S ALIVE!
wind. Linear movements are seen asmechanical, working well for
robots or characters that you want to make disturbing.
Secondary Action

As well as the main action on the screen, there will be

secondary action. For instance, hair, clothes, and background
leaves blowing in the wind are secondary actions to the main
action of a character’s attempt to change a tire on her car. Notice
how this can be part of setting the stage. This can also show
personality, in the way a person moves their arms while walking,
or their expressions. Secondary action should always serve the
main action. If it distracts from the main action, you will need to
eliminate or rethink it.
Timing

This has to do with both the timing of story action and the

timing of physical action. Physical action is a bit easier to grasp
technically. This is just making sure the right actions occur at the
right pace, in a manner consistent with the laws of physics. For
instance, you would want to keep in mind that a cruise ship is
going to take a lot longer to get underway than a small yacht.
Story timing occurs at every scale of your animation: each shot,
scene, and act. It is part of both acting and storytelling, and is
something that takes experience to get right.
Exaggeration

Exaggeration is taking reality and making it a bit more

extreme. In animated cartoons, exaggeration is important to keep
the visual interest up (Figure 8.5). Realistic action and visuals
tend to fall flat when illustrated. How much and in what way you
exaggerate depend on the feeling you’re trying to project. It can
be used for comedy, superheroes, to portray a mood, etc.
Anything can be exaggerated: body and head shape, expressions,
action, aspects of the setting, the storyline, and many of the
principles here. Keep staging in mind though: what you exag-
gerate is what will draw attention.
Solid Drawing

Technical knowledge is just as important to cartoon animation

as it is to scenes meant for live-action films. For instance, the
artist creating an exaggeration of muscles for a superhero needs

Figure 8.5 Exaggeration.

Chapter 8 ANIMATION: IT’S ALIVE! 109
to know exactly where eachmuscle is to be placed before they can
be bulged out. Solid drawing is part of the good workflow dis-
cussed in Chapter 2. Reference real life. Even if you are just
interested in doing 3D art on the computer, take a few drawing
classes, where you will learn things such as proportion, compo-
sition, and perspective.
Appeal

This is the other most important principle of animation. The

character must appeal to the audience. Even characters not
meant to be sympathetic can appeal. Villains often look cool,
and we enjoy rooting against them. Character appeal has to do
with the features you give them, the clothing they wear, their
facial expressions, and the way they act toward others. There
are good studies on how appearance affects our reaction to

110 Chapter 8 ANIMATION: IT’S ALIVE!
people and things. Symmetry is considered beautiful by people.
Also, features that tend to parallel those of the young, such as
a large head in proportion to the body and large eyes, tend to
gain more sympathy (Figure 8.6). For less sympathy, you can go
in the opposite direction, with small beady eyes and a narrow
head.
Figure 8.6 Character appeal.

Chapter 8 ANIMATION: IT’S ALIVE! 111
These principles encompass three main things you must do to
keep your audience interested. It must be believable. It must be
clear. The audience must care about the characters. These days,
animation may not be in the form of a narrative story; it could be
part of an advertisement or a music video. But your work must
still make the audience want to watch more.

Keyframing
The still images that make up a motion picture when

sequenced together are called frames. These days, typical frame
rates vary from 24 to 30 frames per second (fps) depending on the
format. For video, these are often doubled and smoothed together
to have 50ie60i fps (the i standing for interpolated). In film, a
camera takes a sequence of photographs. In traditional anima-
tion, someone draws movements of the characters onto trans-
parent cels for each frame. The backgrounds are static images
that are set behind the cels. In computer-generated animation,
the computer renders each frame based on what you create for
models, lighting, background, and so on, and how you direct their
movement.

You direct the movement of your scene through time using
keyframing. This is the most fundamental tool in digital anima-
tion. With keyframing, you define key starting, middle, and
ending positions and attributes of objects. Just about anything
can be keyframed, including position, rotation, size, deformation
color, and texture.

As an example, let’s use a character named Susan throwing
a ball underhand. Our starting keyframe would be when she is
holding the ball with her hand cocked behind her back, ready to
toss up. You would put her and the ball in this pose and assign the
keyframe. Once you start keyframing, assigning keyframes is
often done automatically as you move a slider along a timeline.
The ending keyframe of this sequence is when her arm is
stretched forward at the end of the throw, with the ball leaving her
hand. You alter the pose and assign that next keyframe. If such an
action were to be filmed, this quarter of a second action would
take more than two frames. The frames that come between these
keyframes are called inbetweens. The computer figures out or
interpolates what Susan’s movement should be between those
keyframes. You can see how inverse kinematics can be a lot of
help here. So far, the ending keyframe is when the ball leaves
Susan’s hand. But this would not necessarily be the end of the
animation. The camera could follow the arc of the ball. In this
case, a new keyframe or several new keyframes can be added: one

Figure 8.7 Keyframing.

Figure 8.8 Animation timelines from

112 Chapter 8 ANIMATION: IT’S ALIVE!
for the top of the ball’s arc, another for when it hits the ground,
and more if it continues to bounce and roll (Figure 8.7).
Animating with Graphs
Keyframes are placed on a timeline. The timeline may not

exactly be a graph, since it’s just a line, but it is one of the most
important displays for your animation and it’s the foundation
of the animation graphs (Figure 8.8). Time is sometimes
several different applications.

Chapter 8 ANIMATION: IT’S ALIVE! 113
considered the fourth dimension. Well, then the timeline would
be the axis of the fourth dimension. An object’s change in loca-
tion, speed, size, or anything else is plotted against time here.

All of your animation graphs will follow this one line. It shows
how long your animation is and contains a pointer or highlighted
portion which is the current time indicator. You can move this
forward and back. A common technique for adding a keyframe is
to move the current time indicator forward in the timeline,
change the pose or position of your object, and then key the
change. You can see the motion playback by either moving the
pointer again or pressing a play button. This simple, real-time
view of the animation (with textures and lighting turned off)
allows you to fix any obvious problems you might see.

When you place a keyframe, this will become a point on an
animation graph. For the x axis of this graph (not to be confused
with your 3D axes), you have the timeline. For the y axis, the
numeric value of your object’s attributes and position is shown. A
keyframe is not necessarily set for each frame. So the computer
interpolates between the frames, and the animation graph is
where you can see the values of this interpolation, drawn as lines
or curves (Figure 8.9).
Figure 8.9 The animation graph of the translation curves of a bouncing ball. Since it did not move back and forth, only
up and down and side to side, only the X and Y translation values changed and so only those were keyframed.
There are three main types of interpolation (Figures 8.9 and
8.10). Themost basic is sometimes called steppedmode or key. In
stepped interpolation, values do not change until the next key-
frame, resulting in an instant change from one keyframe to the
next. This looks like stair steps, hence the name “stepped”. In
linear interpolation, each keyframe point is connected by a line.
The movement is much smoother, but still jerky. With curved
interpolation, the points are connected by curves. Changes in
speed or direction, or any other trait, are eased into and eased out
of. A ball curves up, over, then down. A car takes several seconds
to reach its cruising speed. A chameleon gradually changes color.

Figure 8.10 This animation graph shows the linear and stepped interpolation curves of a bouncing ball. Figure 8.9
shows curved interpolation.

114 Chapter 8 ANIMATION: IT’S ALIVE!
With a finished animation, your graph should be using curves to
smooth everything out.

Like the curves we’ve already learned about, you can control
them using tangent lines at keyframe points and any others you
may want to add on. This allows you to fine-tune the animation
between keyframes. Manipulating the curves on graphs is great
when you want to be more exact as far as what the numbers say. It
alsohelpswith repeating actions suchas shaking and revolving. But
it does not let you see right off hand the changes to the animation,
and it is limited to adjustment ofwhat is between the keyframes. To
really see how you are changing your animation, you need to work
directly in the 3D views to change the poses. A good animator will
use both methods, going back and forth to perfect the motion.
Motion Capture
Motion capture is a way of letting the performer drive the

animation of a character (Figure 8.11). A performer generally
wears a skintight suit that has markers on it. The computer can
easily pick up the markers as the actor is being filmed. If expres-
sions are wanted, the actor may also have green dots all over her
face. On the soundstage, several cameras film the actor from
different angles as she goes through the performance, maybe

Figure 8.11 An animation curve showing motion-captured walking. Every single frame has been keyed.

Chapter 8 ANIMATION: IT’S ALIVE! 115
scrabbling across a tumble of rocks, or at least rock-shaped foam.
Often, the director can see a low-polygon image of a figure
copying her actions exactly in real time. All throughout, the
motion of the markers is being recorded as motion data.

In the animator’s studio, they’ll take this motion data and use
it to animate a computer-generated character. Care must be
taken that the rig matches the data well enough to match the
performance to the model. Though this is a much faster way than
manually keyframing the whole thing, the character’s animation
is not complete. Limitations of the technology include the
problem of limbs interacting with the virtual environment, body,
and facial structures which are very different from the actor’s, and
plain errors in capture. All of this means that the animator needs
to clean up the motion-capture data. They may also do things to
exaggerate or enhance the poses. This makes the performance on
screen a true collaboration between actors and animators.

Technology ismoving forwardquicklywithmotioncapture.We
are beginning to see the use of it more and more in movies not
meant to be special effects extravaganzas, as computer graphics
have become realistic enough to age actors or make them much
younger. Recent technological developments are moving toward
being able to achieve motion capture without the need for
markers. There is even a low-level system for home console games
on the market. The implications of these technologies for film

Figure 8.12 The six universal expre

116 Chapter 8 ANIMATION: IT’S ALIVE!
making are exciting both for large products and for bringing the
ability toproducehigh-qualitywork in thehobbyist’s homestudio.

Facial Animation
The Facial Action Coding System, or FACS, was developed in

1978 by Paul Eckman, a psychologist studying emotion and facial
expressions. It describes 64 distinct facial action units (AUs).
These are not a list of expressions like “raised eyebrows”; rather,
they describe what the muscles can do, such as brow lowerer and
cheek raiser. The extremes of these movements can be created as
morph targets, and then added into an expression using a slider.
This kind of technique was used for Gollum, using Andy Serkis as
the model for the AUs and then using his performances on
camera for reference.

It is important to understand universal emotional expressions.
These are involuntary when emotion is felt and so are recognized
by people across the globe. There are six universal expressions:
happiness, surprise, disgust, fear, sadness, and anger (Figure 8.12).
Some also classify contempt as universal.
ssions: happiness, surprise, disgust, fear, sadness, and anger.

Chapter 8 ANIMATION: IT’S ALIVE! 117
Universal Expressions

Study expressions and get them right. One of the stumbling

blocks of both 2D and 3D animation is that of the uncanny valley.
This is a problem where, because an expression is close to but not
quite realistic, the audience may be unable to relate to the
emotions of the character and may actually feel revulsion toward
it. The uncanny valley can be used to give the audience a sense of
discomfort, as it was in Harry Potter: The Deathly Hallows Part 1.

It is one thing to carefully craft a facial expression for a single
shot; it is quite a bit more to animate expression. It starts out
with creating a well-done rig. This involves not only deformation,
but also a skeleton rig with the jaw. As discussed before,
natural-looking deformations require a good underlying topology.
A facial rig may also be a full musculoskeletal simulation.

You will need to use the facial rig to create several expres-
sions, called morph targets. You can use sliders to move back
and forth between two morphs, and/or key in each of these
targets or combination of targets to create a series of expres-
sions leading to facial animation. Motion capture can also be
used, but in order to tweak things you may still want a good set
of morph targets.

As well as having emotions, youwill want your character to talk.
A well-rigged character will include a joint that controls the jaw, as
well as deformers. The sounds of speech can be broken up into
phonemes. The shapes that the jaw, tongue, andmouthmustmake
for those phonemes are sometimes called visemes (Figure 8.13).
The problem with only the use of visemes is that during speech,
these shapes tend to blend together. Using sliders betweenmorph
targets, and keying the blended viseme in, you can achieve more
realistic speech movements. It’s very important to make sure that
the character’s mouth animation syncs with the recorded speech.
As well as listening to a speech track, you’ll have each sound
plotted out according to what frame that sound will fall on. There
are automated ways to synch speech animation to sound. Motion
capture can work fairly well with speech and there are also auto-
mated systems using algorithms to match sound to the shape of
the mouth. Though it may not lead to revulsion, getting speech
movements wrong will take the audience right out of the story.
Automation
Lots of the motion in your animation can be automated. You

have already seen this a bit, using graphs to add vibrating or spin
motions and with hierarchical animation. Another way to have

Figure 8.13 An example set of visemes.

118 Chapter 8 ANIMATION: IT’S ALIVE!
the attributes of an object animated is to connect them to the
attributes of other objects. You can link any kinds of character-
istics of objects to each other. The position of a switch can
determine whether a light in the scene is on. As a cart moves
forward, its wheels can be made to turn at a rate that matches the
distance traveled to the circumference of the wheel, thus
controlling the rotation of the wheel. Other ways to add anima-
tion without needing to keyframe it in manually are through
dynamics (see Chapter 9) and through scripting (see Chapter 18).

Fence-Post Errors
One last thing to look out for in animation is how time is

handled. When filming at 24 frames per second, a frame is an
image captured over 1/24th of a second. Computer-generated
frames, however, are an image that is rendered, so that they only
represent a point in time with 1/24th of a second between each
frame. This can create something called fence-post errors. Things
like motion blur that would occur over a period of time on an

Chapter 8 ANIMATION: IT’S ALIVE! 119
exposed image may be rendered incorrectly because after the last
frame, time is no longer moving forward and so the computer
does not add the motion blur; or it adds only half of it, depending
on how the application handles fence posts. It is usually up to the
animator to correct such problems. Frames should be thought of
as periods of time, not points in time, even if your application
handles them differently.

Animation Workflow
Sitting at the computer and animating is one of the later steps

in bringing your character to life, but it is a big process that takes
its own workflow. Of course, everyone works a little differently,
but there are some important steps that need to be part of that.
The first few steps of a good workflow happen away from the
computer.

At this point, you should already have a script, and you may
have a storyboard. If there is voice acting, you should have
a recording of that as well. With these in hand, it’s time to
brainstorm. During the brainstorming, gather references in video
and pictures. Listen to the dialog track. Then, act out the motion
yourself, sometimes while listening. A good animator is also an
actor, who is just using the computer for their performance. So act
out the shot and get a feel in your body for how it should go. Then
draw it. You should draw quick thumbnail sketches of the ideas for
poses that you get from acting out. The emphasis is on quick
because they are disposable. This is still brainstorming, which is
the time for quantity, not quality. They should be simple stick
figures or the lines the body makes in its pose. Draw a pose: if it
doesn’t work, throw it out. Quality will come from doing a lot of
work here, and then only picking out the best.

What you’re getting here are the key poses, not every single
pose. Sometimes these sketches can make up a kind of thumbnail
storyboard (Figure 8.14).

Next, you need to consider the timing of the poses. Timing
and pose are both very important. You can arrange your poses
on something like an exposure (X) sheet, also called a dope
sheet. An X sheet is where you write instructions for each frame.
They are especially useful if you have dialog. You will have
a rough idea of the timing going on in this, and you will be able
to apply it to the sequence of frames. For instance, you can
write down what sounds of each word are happening on what
frame. Then you can easily match the pose to the sound. Even if
you choose not to use an X sheet (bad idea with dialog), you will
want to make sure you know what frame each key pose belongs

Figure 8.14 Storyboard of sketches.

120 Chapter 8 ANIMATION: IT’S ALIVE!
in. It’s also a good idea to have a draft X sheet with lots of
scratching out and then from that create a more refined one.
You might also do the sorting of which poses are good, as you
are working out your timing here.

Once you’ve got this done, it’s time to get back to your
computer, take your rigged model, and keyframe all the poses.
You’ll want to work with heavy things first: legs if walking, or
torso. Work your way from main body parts and big motions to
tiny motions and facial expressions. Many leave facial expres-
sions and speech for after refinement of body motions. You may
have noticed that this is pose to pose, where all of your key
poses are now present in the shot. Once you’ve got these all
keyed in, you’ll want to take a quick preview render while using
stepped mode. Linear interpolation is often the default mode, so
you need to switch to step before rendering. At this point, all of
your keyframes should be in the same place for everything on
the model you’re animating. They will be very organized and
easy to change.

Then you (and your director) will be able to see all of the key
poses with their timing. You will see any problems, receive
feedback, and then it will be time to go in and refine this. Make
sure you take notes here. You may want to get feedback at each
point in your workflow.

Chapter 8 ANIMATION: IT’S ALIVE! 121
With timing down well, you can now fill in between the key
poses. Keep in mind that your character now moves into key
poses all at the same time. This ends up looking robotic. There are
two schools of thought for fixing things. One is that you go in here
and create more poses. This more traditional method gives you
more visual control, and in the end may save time with trying to
fidget with each bit. Keying inmore poses between the others also
keeps your keyframes organized. Plus, while you are filling in
these new poses, you are now free to use straight-ahead action.
The timing is already down and you are unlikely to hit a dead end.
This frees you up to make the animation overall more dynamic.
Youmay also want tomodify your key poses just a little. The other
method is to modify poses using the animation graph, moving
this or that part so that you offset parts of the model so they do
not all fall into the pose at the same time.

You will want to take another look at it with these refinements,
in stepped mode or linear mode. However, don’t try to render
each section as you progress. You do not want to take up too
much time waiting for render, watching, then fixing. Refine the
whole shot, then do another test render. You may go through two
or more cycles of this. Most of the time spent on working may be
on that last fifteen percent of the job: refinement. However, if
others cannot see what is wrong with it, then that might be a clue
that it’s time to call that thing done. Another consideration is
some production houses have a high quantity output. They might
not be looking for your most excellent work, but the best work you
can produce within a certain time frame or budget. In this case,
you need to learn when a project is good enough for them, even if
it isn’t good enough for you.

Things to do when you are animating and refining: watch for
weight (squash and stretch), arcs, follow through and overlapping
action, etc., as well as your timing. If you left your facial expres-
sions for later, this is probably the time you want to work on them.

When you are happy with things in linear mode, you’ll want to
switch to curved interpolation. This will facilitate slow in and slow
out, but the computer’s literally thoughtless calculations to create
the animation curves may mess things up a little. You may do
a quick play through to see what it looks like at that point. Once
you have seen the full animation with curves in it, you can go in
and refine it some more.

You may be doing most of the animation with a low-polygon
version of the model for a couple of reasons: if you’re the
animator then you probably are not the modeler. The modeler
and texturer are still working on the model while you are
animating. The second is that it can save time rendering. So you

122 Chapter 8 ANIMATION: IT’S ALIVE!
might get your whole animation keyframed and refined, and then
replace the rough model with the finished one. Once again, you
will need to see if any refinements are necessary after this step.

Animating these days is very technology driven, and a lot of
exciting things are happening because of the advancements in
computing technology and 3D algorithms. We can do more than
we’ve ever been able to do before. However, don’t lose sight of
the art. Even if the computer can do a task for you, you might
want to do it yourself. After all, the computer has no heart or
even a brain.

Tutorial 6
Juggling Robot

Step 1
This is going to be a looping animation that is similar to The Juggler, created by Eric Graham. Start by posing your

robot so that its hands are in front of it and the clamps and thumbs are in a position as if they were holding something
large. Then create three spheres. Place one in each hand and another up above them, at the top of a triangle.

Chapter 8 ANIMATION: IT’S ALIVE! 123

Step 2
Your timeline should be below the views. Set the timeline so there are 24 frames and you will be looking at all of

them. Select the ball in the left hand. Your timeline indicator should be at frame 1. Add a key to the frame. This will put
a key only on that ball. Move the time indicator to frame 24. Move the left hand ball up to exactly where the top of the
triangle ball is. Add a key to the frame. Move the timeline indicator back to frame 1; select the top ball. Add a key to the
frame. Move the frame to 24, move the top ball exactly to where the right hand ball is, and add a key. Now with the
timeline back at 1, add a key to the right hand ball. Move the indicator again to 24, and move the right hand ball to exactly
where the left hand ball is at frame 1. Now if you hit playback, you will see a looping animation of the balls moving.
However, there are two problems.

First, the movement of the balls is not natural: they should be arcing up, but instead are moving in a straight line. To
correct this, for each ball you need to add more keyframes. Draw the arcs using curves. Add three more keyframes to each
ball, at quarter increments of time. Use the curves to guide your adjustments. Remember that a ball thrown up doesn’t
move at the same speed through its whole arc. A ball going up should travel a bit farther between frames 1 and 6 than
between 7 and 12. The ball moving from side to side should be in the middle at frame 13. The ball going down should gain
speed.

Second, the hands are not moving.

124 Chapter 8 ANIMATION: IT’S ALIVE!

Step 3
With the balls moving pretty well, now keyframe the hands so it looks like they're catching and throwing the balls.

For the right hand, it should be tossing a ball to the side, toward the left hand. You will want the right wrist to rotate, so
the clamp is pushing to ball to the left. Then it must move back to catch the next ball. The left hand should be tossing
a ball up in an arc toward the right, and then moving back to catch. You'll want to make sure the hands are in sync with
the balls as they throw and catch them.

Chapter 8 ANIMATION: IT’S ALIVE! 125

Step 4
It can be both fun and a bit nerve-wracking to juggle. To have the robot look nervous as he tries to catch the balls and

smile as he succeeds, use the morph target controls to change its expression. The shape information will be within the
morph target, rather than the robot's base body, so you will probably have to add a key using the morph target controls,
rather than with the shape of the main body.

126 Chapter 8 ANIMATION: IT’S ALIVE!

Fig
3D

Co
9

DYNAMICS: LET’S GET
PHYSICAL
Picture a soldier aiming a rocket launcher. He fires. The
missile arches toward a helicopter and hits it (Figure 9.1). It
explodes into a fireball and pieces fly out in all directions, hitting
other objects. One particular piece tumbles through the air
toward the soldier, who runs to avoid it.

What about a ballroom with skirts swaying as dancers spin
through complicated forms? Animating a dancing form could be
simple enough, but animating the clothes on even one individual
becomes very difficult. A whole ballroom full of them would be
impossible to digitally animate one by one.

Animating such scenes, with explosions or moving cloth,
can be achieved by using dynamics. With dynamics, the vast
amount of work is done by the computer which is programmed
to simulate the laws of Newtonian physics. These types of
algorithms which are used for automated animation tech-
niques are called motion dynamics solvers. Other kinds of
behavior such as the random and non-random movement of
crowds can also be automated.
ure 9.1 A missile being launched at a helicopter.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 127

Figure 9.2 Influence of gravity, fric

128 Chapter 9 DYNAMICS: LET’S GET PHYSICAL
Physics
Let’s begin with the missile launcher example. To simulate this

scene, several characteristics need to be added in. Across the entire
virtual space will be gravity, friction, and wind, which has strength
and direction (Figure 9.2). All of these attributes can be changed to
suit the scene. Air that is made very thick will have more friction
and can be used to simulate being underwater. Friction can also be
a characteristic of a surface when objects are pushed along it.
tion, and wind.
For the missile, we need to know its mass, flexibility, and elas-
ticity (Figure 9.3). These are constant to the object. But it may also
have unique forces applied to it, such as the force which pushes
Figure 9.3 Influence of force, mass, friction, and rigidity.
Objects can be rigid or flexible. Flexible objects are often dealt
with using lattice deformers, which can respond to the forces and
deform the object as necessary. When no forces are influencing
the lattice, it will return to its resting shape. When dealing with
flexible objects, we also need to consider how elastic they are. An
elastic object will bounce back to its original shape. A lump of clay
is very flexible, but is not elastic at all, whereas a rubber ball is
very elastic (Figure 9.4).

Forces in a scene can have different shapes as well as
strengths. To launch the missile, a linear pushing force must be

Figure 9.4 After these flexible balls are dropped, the one elastic one on the left bounces but the non-elastic one
collapses.

Chapter 9 DYNAMICS: LET’S GET PHYSICAL 129
applied to it. Forces can be conical, with a force pushing out in
the shape of a cone. Conically shaped forces are stronger in the
middle than the edges. The airflow from fans is a good example of
this. Another common shape for a force is spherical, with a force
pushing out from a single point. This is great for creating
explosions.

Exploding or shattering objects in a virtual space can be ach-
ieved in more than one way. The most intuitive way is to use
a true simulation. Algorithms will break apart the model, which is
especially challenging if it is an object that in real life is con-
structed with parts of differing flexibility and density. Then the
computer must figure out the forces on each piece, and assign
them their speed, direction, and tumble. While this may be more
realistic, it can be a bit harder to make happen, and it actually
might not look as cool. For feature film production, it is generally
easier to replace the model with a copy that is already broken and
then apply a spherical force to it at the time of the explosion. Add
some details such as tumbling, a carefully crafted fireball, and
something coming straight at the camera or something else
important, and no one will know the difference.
Collision Detection
You probably don’t want your objects sinking into each other

when they are moving. The solution to this common problem is
collision detection. Collision detection can be thought of as being
in two parts: figuring out when an overlap occurs and then
responding to it. The most difficult is determining when a colli-
sion takes place (Figure 9.5). Typically, your software checks to
see whether any polygons or edges overlap as the objects move.
In games, collision detection is part of the game engine.

Figure 9.6 This shows how two ob

Figure 9.5 Collision detection.

130 Chapter 9 DYNAMICS: LET’S GET PHYSICAL
Once a collision is detected, simplified Newtonian laws can
come into effect. The objects may bounce off of each other,
changing the direction and speed of each object, such as in
billiards. A ball will deform the net when it impacts, and then
gravity will cause it to fall to the ground; meanwhile, the net
regains its shape after a rebound (Figure 9.6). A thrown dart
would penetrate a dartboard before stopping, leaving a small
hole. Good detection also takes into consideration the center of
the object, either its geometric center or its center of mass, so that
an object may be made to spin if it is hit on the side. Some
applications let you move this center.

Not only is an application’s collision detection faster and
easier for you to do e enabling a few checkboxes is all it takes e it
is also more accurate. This is especially true when working with
highly flexible objects such as cloth. Another option to prevent
overlapping is to add forces that push away from the surface of
a model.
jects can be made to affect each other while also affected by gravity.

Chapter 9 DYNAMICS: LET’S GET PHYSICAL 131
Particles
You’ve met particles before, as part of soft bodies. But they

don’t have to be part of an object. They can be as numerous and
scattered as you need them. These points can have physics, either
natural or unnatural, applied to them. They can be given mass to
react to things such as gravity, wind, and forces. Particles can be
used to simulate things such as rain and snow, fireworks and
explosions, fluids, cloth, and more (Figure 9.7).

They most commonly originate from an emitter. An emitter
can be a point, a curve, a plane, or any kind of 3D object. Particles
are randomly generated from surfaces or points, and then move
according to a random speed and direction (within certain limits
you define) that could changed if they are made to react to
gravity. Emitted particles can have a limited lifespan so that they
disappear after a while. This is very useful for things like fire,
where particles, with glowing fire effects applied, would be made
to flow up from an emitter and eventually disappear, as flames
do. Smoke disappears much later than fire does, and so you
would give smoke particles a longer lifespan.

As soft bodies, particles are often used to simulate cloth. With
their ability to respond to physics, they deform the mesh
according to the simulated forces being applied, making the cloth
Figure 9.7 Particles used for fire effects. The spheres are the particles, which shrink over their lifespan until they
disappear. A special material is then applied to make them look like fire.

132 Chapter 9 DYNAMICS: LET’S GET PHYSICAL
move in a realistic way. You can change how cloth or any soft
body behaves by working with the mass of the particles and the
values of the spring constraints. Heavier particles with fairly rigid
spring constrains would give you a thick canvas type of material.
Lighter particles in soft bodies could be silk, and if you give the
spring constraints a lot of flexibility you could create an elastic
material. When creating cloth though, remember that you are still
making models out of polygons. While the edges and faces can
stretch, they can’t bend. Make sure you have enough polygons in
them so you don’t have jagged edges where the cloth bends.

Hair
With thousands of individual strands on your mesh’s head and

more if we’re talking about fur, hair is another complex problem.
The solution is to simplify. Instead of computing the movements
of each and every hair, we can use guide hairs which control the
hair strands around them. But that is only part of the problem.
Hair shimmers in the light. Thismakes rendering those thousands
of strands very time consuming. Another simplification is to make
hair a volumetric object: an object that has its whole volume
rendered. This works well because hair is mostly perceived as
a single object. Even with the complicated hair material and all
the other algorithms it takes to make it look good, this ends up
being easier on the CPU. This technique was used by Pixar in The
Incredibles. In games, with their real-time rendering, hair is often
made into surfaces with very little movement. No matter how it’s
modeled, hair typically is dealt with dynamically (Figure 9.8).
Figure 9.8 Hair.

Chapter 9 DYNAMICS: LET’S GET PHYSICAL 133
Fluid Dynamics
Whether it’s a puddle of spilt milk spreading on the table or the

majesty of the Niagara Falls, fluids are intriguing. They can be
simulated in a number of ways, including working with full
volumes or as particle systems. Fluid dynamics are often used for
smoke, clouds, and explosions (Figure 9.9). Many applications
don’t have good capabilities with fluid simulation, and so you will
need to use tailor-made software or plugins.
Figure 9.9 This wisp of smoke was created using fluid dynamics with a particle
system.
Crowds and Populations
Crowds can be any large number of objects in a scene such

as a handful of nails dropped onto the table, a flock of seagulls,
a forest, or a battle. Their movement can be simple or complex.
Before you control a crowd, you need to have one. The simplest
way to populate a crowd starts with a single object that is
copied and then randomized by scale, position, orientation,
etc. You have a lot of control over how and where your pop-
ulation can be placed. For instance, you could create a city
scene with cars on the road and people on the sidewalks and
walking through a pavilion. The cars would be constrained to
the roads, and also have their rotation constrained. The people

134 Chapter 9 DYNAMICS: LET’S GET PHYSICAL
could be facing in any direction, but only on the sidewalk,
pavilion, or crosswalk. If you want more variety, you can start
with several objects that are randomized into the scene. Some
applications even have the ability to scatter things such as
plants, where each object is a unique instance with different
structures.

In our city example, the cars would stop and go according to
traffic laws and proximity to each other. People could be given
similar rules. Both cars and people can be “born” during the
scene and have goals they move toward. The behavior of flocks of
birds can be controlled using the same methods as particles.
Simpler population animation could be plants that remain in the
same place, but sway as they are affected by a wind force.

You may find these abilities in your main 3D application or in
a different tool, or you can program the generation and behavior
of crowds using scripting language such as Python or your
application’s proprietary language. See Chapter 18 for more.
Quality
As your objects move through a scene, the computer needs to

figure out what their path is according to all the forces and
characteristics you have applied to them. For some things, such
as particle effects and fluid simulations, if these calculations are
done only once for each frame, youmay get motion that looks too
fast or appears to skip. The more times your objects’ movements
are recalculated, the better they will appear, up to a limit. It is this
very same limit of our own brain’s perception abilities that makes
us need only 24e30 frames per second. Just like with the number
of polygons on a polygon mesh, after a while the human eye
cannot detect improvement. You can control howmany times the
calculations are made between frames. Trial and error with
a limited animation sequence can help you achieve the best
possible appearance with the time and computer power you have
available.

Tutorial 7
Draping Cloth

Step 1
For this tutorial, we will need three objects. Create a plane for the floor and a cube for the “table”. Create

another plane that will become the cloth. Make sure that it has at least 50 subdivisions on each side, making for
a total of 250 polygons. Polygon faces cannot bend, so if your cloth has a low polygon count it won't smoothly drape over
something. The higher the polygon count of your cloth is, the longer it will take the computer to play back or render each
frame. This isn't just about polygon counts. You may recall that with cloth, each vertex is a particle and is being
affected by forces and collisions. This takes time to calculate. The more vertices, the more time. Place the cube on the
floor plane, and the plane you intend to be the cloth above the cube. Turn the cube on the up axis so that it’s diagonal
from the cloth plane; in other words, the corners of the cube are pointing toward the middle of the edges of the cloth.

Chapter 9 DYNAMICS: LET’S GET PHYSICAL 135

Step 2
Select the cloth plane and turn it into a soft body. Your application may have a specialized soft body specifically

for cloth. If so, use that. In some cases, there may already be physics solvers like gravity associated with the cloth
upon creation. In other cases, you will have to add gravity and/or a solver for collisions. When you add things such as
collision detectors and forces, you may see markers in the scene representing them. Change the cube and the floor to
passive rigid bodies with colliders. This means that while other objects may hit them and bounce, they will not be affected
by those objects. Collision detection on all of these objects should be set to face rather than vertex or edge. Otherwise,
meshes could intersect through the faces over the course of the dynamic animation.

136 Chapter 9 DYNAMICS: LET’S GET PHYSICAL

Step 3
Now that all of the objects have been configured, set your timeline to about 100 frames, and make sure you have it

so you can see all of those frames. Hit the play button, and watch the cloth drop and interact with the cube. You will
notice that the playback of the dynamic cloth takes longer than your keyframed animation; how much longer depends
on your computer's processor. Also watch how the cloth folds. (The cloth shown here has a special non-default
shiny material on it so you can see the folds easily.) Even with a higher polygon count, you may still notice the jagged
edges of the cloth. The cube is hitting the cloth diagonally, so that the faces are hitting the corner of the cube at
different angles causing the bumps. You get this effect if there are any folds that are not parallel to the polygons. Set
your animation back to the beginning and try moving the cube so that it is aligned with the cloth; then hit play again and
watch how the cloth falls a bit differently. To make it look "perfect" in a virtual dynamic world, you would need
a prohibitively large amount of polygons.

Another thing that could be happening is that the collision detectors of both the cloth and the cube have
a thickness. The cloth is not actually "touching" the cube. You need the thickness, but you can often reduce it in
the options.

Chapter 9 DYNAMICS: LET’S GET PHYSICAL 137

Fig
3D

Co
10

HOW THE PIXEL GETS ITS COLOR
When a 3D model could only be drawn using lines, it was
always depicted in wireframe. With a model of anything more
complicated than a simple shape such as a cube, it gets hard to
see what it is. Figuring out how to show only the visible side, so
the model appeared solid, was one of the first orders of business
for the pioneers of the field. The solutions they came up with, as
they pushed the technology to get more realistic results, are still
with us. Understanding how they solved the problems of making
images out of virtual 3D shapes is important for you to know, to
set up the materials lighting, and other effects you’ll want.

At the base of the problem is the question of how to translate
the shape of the model to an image on the screen. How should
each pixel on the screen be colored? The earliest rendering to
accomplish solid color. Here, a line is traced from the “camera”
through the pixel into the scene (Figure 10.1). If that line hits
ure 10.1 Scanline rendering.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 139

Figure 10.2 A cube rendered as a

140 Chapter 10 HOW THE PIXEL GETS ITS COLOR
a surface, the pixel gets the color assigned to the object. If it does
not hit anything, the pixel will have the color of the background.
Notice that this solves another problem. Only the first surfacemet
(and the computer knows the 3D coordinates of all the surfaces)
is considered in the calculation. The image this gives is just a
silhouette.

Another algorithm, called Z-depth, figures out which surface
should be hidden by determining whether a surface is behind
another one. If there is no surface in front of it, then the edge is
drawn. Otherwise, it is not drawn. You can combine this with
scanline to have a silhouette with the wireframe of only the visible
surfaces drawn on it (Figure 10.2). Z-depth is still used to deter-
mine how far away an object is, so that distance effects can be
applied to it.
wireframe, with simple scanline, and with Z depth and scanline together.
Shaders
Images drawn with this first scanline renderer now had

a solid color, but the objects looked two-dimensional. To give
them the appearance of three dimensions, the color of the
object need to become shaded in the same way it does in real
life. A ball that is all the same color of red will seem to have
darker shades of red where its side faces away from the light,
and paler shades than the original color where its side is
pointed right at the light source. The algorithms to add the
shading to objects in computer graphics are called shaders.
Lambert

The first solution to adding shading to an object was to change

the color of each face according to what angle it’s facing, and it’s

Chapter 10 HOW THE PIXEL GETS ITS COLOR 141
distance from a virtual light. When light hits directly, the color is
made brighter. When a polygon is angled somewhat away from
the light, the color gets darker, and darker yet for faces in shadow
(Figure 10.3). This is called Lambert shading, or flat shading. It’s
the simplest of all the shaders and the foundation for all others
because it calculates the angle of the light.
Figure 10.3 Lambert shading.
Gouraud

For a smoother look you could use Gouraud shading. This

shader uses the normal of each vertex. These are gained by
averaging the normal of all the faces which that vertex is a part of.
Then it calculates the angle of light against the vertex normal to
get a color at each vertex. At this point, it creates a gradient of
colors between the vertices and the edges. It is this kind
of shading that is most common when you are looking at
a real-time, gray-shaded display of your model. It works well for
having a feel of the shape of your model, and is decent enough for
matte plastic types of materials. However, Gouraud shading
doesn’t present specular highlights well (Figure 10.4).
Phong

Depending on an object’s reflectivity, light from a direct light

source is reflected straight back at the viewing point. This
causes a specular highlight (Figure 10.5). It’s the bright spot you
see on a shiny (smoother) surface. Since a highlight is made of
light that has been reflected, the color of the light does not

Figure 10.4 Gouraud shading.

Figure 10.5 Phong and Blinn shadi

142 Chapter 10 HOW THE PIXEL GETS ITS COLOR
change. When the light is white, the highlight is white. Phong
shading handles specular highlights by using a reflection model
which accounts for this. It creates spots of brightening colors
where the angle of light would reflect directly at the pixel. Then,
it incorporates the reflection model into a slightly different type
ng.

Chapter 10 HOW THE PIXEL GETS ITS COLOR 143
of smoothing. First, like Gouraud it starts with the vertex
normal, but then it interpolates the normals between each
vertex (rather than the colors between each vertex). Then it
calculates the color of each pixel. Since it is using the angle of
light for each pixel, it takes a lot more calculations and so takes
longer to render. However, it works better for shiny materials
like the plastic of a beach ball.
Blinn

This is a very similar shader to Phong and is sometimes called

BlinnePhong. It is more efficient if the light you are using is
“infinite” e coming from no particular source but a general
direction (simulated sunlight is treated as infinite). However,
Blinn shading is slower to render than Phong in some circum-
stances, such as if there are point lights in the scene. Another
difference this produces is how the specular highlights look.
Phong highlights are a little more concentrated and circular even
on flat surfaces, while Blinn highlights are softer and stretch out
when viewing the surface from a shallow angle, making it better
for objects such as cars where you see large flat surfaces.
Rough Surfaces

Most surfaces in real life are not completely smooth, causing

light to get scattered a bit more. This spreads reflections out and
can soften highlighting effects. Neither Phong nor Blinn shading
really accounts for this, but there are several shaders that do.
OreneNayar shading is useful for surfaces that are rough, such as
plaster, skin, and sand. CookeTorrence also does this, but works
better for metallic and plastic materials. Sometimes, materials are
rough in parallel lines, such as with CDs, hair, and brushed
metals. These create highlights spread across the surface that run
perpendicular to the lines (Figure 10.6). You can get this effect
with anisotropic (directionally dependent) shaders, such asWard.
Ray Tracing
The next step to realism is to use ray tracing. This method

follows a ray from a light source to the pixel, determining if it is
blocked, reflected, refracted, etc. But most of the rays that
a light casts never make it to the viewer’s eye. It would take a lot
of time to calculate all those rays that add nothing to the image.
The solution is to capture only those rays that will light up
a pixel; rays are traced backwards, from the camera to pixel

Figure 10.6 Anisotropic highlights on a CD.

144 Chapter 10 HOW THE PIXEL GETS ITS COLOR
then to the light source. This is a simple thing to do, since all
the angles work pretty much the same backwards as forwards.
As our ray moves backwards along this course, it finds the
closest object and then calculates the light sources around it
that might affect the point on that object where the ray inter-
sected. Then, depending on the material attributes (controlled
using textures and shaders), it can cast three different kinds of
rays out: reflection rays, refraction rays, and shadow rays
(Figure 10.7) (see Chapter 13).

Ray tracing gives you pretty realistic images. You pay for this
realism with a longer time to render. Not only are several rays
being cast from the pixels; they’re bouncing around all over the
place. Some rendering engines will let you use both scanline and
ray tracing rendering at the same time, which increases the
rendering efficiency a lot. You mark what kind of rendering you
need for which object. Perhaps you only need the ray tracer for
the glass of water, but the rest of the scene is fine with the
scanline. You’ll save lots of time being able to use both.

There are some limitations to pure ray tracing though. For one
thing, it doesn’t handle indirect light very well.

Figure 10.7 Ray tracing.

Chapter 10 HOW THE PIXEL GETS ITS COLOR 145
Radiosity and Indirect Light

Even if something is completely in the shadow of a light

source, it is still lit up. This happens because of indirect lighting,
light that comes from sources other than light-emitting objects.
This could be light from reflection, refraction, and diffuse
reflection. A great example of this is the sky, which produces
a huge amount of indirect, ambient lighting. This light comes
from sunlight which has been scattered about by air particles.
Indoors, surfaces such as walls also scatter every bit of light that
comes to them. Ray tracing does a pretty decent job with reflec-
tion and refraction, but not diffuse reflection. For that, we need to
use a method called radiosity. It works like this. Imagine that

Figure 10.8 On the right, the teapo
darker shadows.

146 Chapter 10 HOW THE PIXEL GETS ITS COLOR
every surface in the scene is divided into patches. Each patch sees
how much light it is getting from every object in the scene. When
it sees light, it scatters it. At first, the only light that a patch can see
comes from the light sources. But as it and every other patch sees
the scattered light from other patches, the patch picks up onmore
light and scatters that. Doing this for several cycles results in
a scene that has global illumination (Figure 10.8). One of the
resulting effects from this process is color bleeding. Color from an
object gets scattered onto a nearby surface because of diffuse
reflection. You can see a soft red puff of color on a wall near a red
umbrella. Global illumination is a good step forward in realistic
images, especially for indoor lighting. Since they are so compat-
ible, radiosity is usually made a part of a ray tracing renderer.
t has had radiosity used on it. Notice that now there are brighter highlights and
Ambient Occlusion

However, global illumination takes a lot of computer power

and time. Another method to get good depth in objects is to use
ambient occlusion. Here, rays are cast out from the surface of an
object. If these rays hit any other surface before they go off into
infinity, then the surface they were emitted from will remain
darker. If they do not hit any other geometry, then the surface
they come from will be lit. This provides good ambient lighting
shadows that are efficient and makes the object look more three-
dimensional than objects that are just lit with ambient lighting
without radiosity (Figure 10.9). An object using ambient occlu-
sion is affected by all the objects in the scene, but only affects the
object for which it is turned on. In some applications, you can

Figure 10.9 The same model with ambient occlusion (on the right) and without (on the left).

Chapter 10 HOW THE PIXEL GETS ITS COLOR 147
choose ambient occlusion by object. In other applications, it is
a universal setting and will affect all objects.
Photon Mapping
Themost recent method that has been developed for rendering

is photon mapping. It deals not only with indirect light, but also
with all the effects that ray tracing can offer with reflection and
refraction. What is more, photonmapping improves on these with
the addition of such effects as caustics and subsurface scattering.
There are two parts to photonmapping. First, photon particles are
emitted from a light source. They bounce around the scene for
a while, losing intensity with each contact with a surface, how
much depending on what material is assigned to the surface. If
they don’t touch a surface, they leave the scene. When they hit
a surface, they leave information about what color that surface
should be. The more virtual photons hit the surface, the lighter it
will become and the fewer that hit it, the more in shadow it is.
Once this is done, a photon map is created. Second, the scene is
rendered much like a ray tracer, with rays referring to the photon
map to determine what color the pixel should be. This yields
realistic results and is more efficient than radiosity. If your
renderer supports photonmapping, you can usually enable it with
a checkbox in the render settings.

Tutorial 8
Easier Than a Coloring Book

Step 1
Start with the robot which you have been working on in the tutorials, specifically with the saved file from Tutorial 6,

that has the animation with the spheres being juggled. Select the right-handed ball. Add a new material to it. Your
application may need you to create the material before and add it to the selection, or you might pull up a material edi-
tor with the command to add a new material. Either way, make this first material a Blinn shader, and choose an ambient
color, which may also be linked to the diffuse color. For the left-hand ball, add a Phong shader, and for the top triangle ball,
add an anisotropic shader. Keep them the same color.

148 Chapter 10 HOW THE PIXEL GETS ITS COLOR

Step 2
Select the left shoulder, which should add the whole arm into the selection. Add an anisotropic shader and give it

a metallic type of color like gold or silver. It should complement the color of the robot's body, which you should also add
a material for. Give the brain box a material with a slightly glowing effect. Make the eye's shader white and very
translucent. At this point, if you do a quick render you may be worried about the look of the low polygon count in the
spheres. This will be addressed in a later tutorial.

Chapter 10 HOW THE PIXEL GETS ITS COLOR 149

3D

Co
11

MORE THAN JUST COLOR
A computer-generated 3D model is not really finished and
ready to render until it has got some color and information about
the bumpiness or smoothness of its surface. As we embark on this
stage, you need to be aware that each application has its own way
of dealing with color and light and sometimes uses the same
name for things that are completely different in other applica-
tions. But that is just a matter of words andmechanics. The basics
of input to output or what you must add to the object to get the
image you want remain the same.

You have already learned about shaders. Using a shader is the
most basic way that your model will get some color and lighting.

A texture is the color assigned to an object. That color can be
just a solid color, in the form of a bitmap image applied to the
surface, or it can be procedural, or created with a variety of nodes
that use a combination of these. A procedural texture is created
using mathematical algorithms which generate patterns that may
appear ordered or chaotic. Textures can also incorporate surface
information, such as what you might get with a bumpy cobble-
stone road or an engraved invitation.

A material can typically be described as the combination of
texture and shaders that produce the appearance of a substance
(or material) that an object is made of.
Working With Shaders
Shader attributes can all be changed within the shader

controls, giving you a lot of power to create different materials
without needing textures at all. The process starts with picking
a shader appropriate to the material you’re trying to emulate, and
then setting the specific characteristics that make it look like the
material required. For instance, if you wanted to make something
that looked like paper, which has a matte and ever so slightly
rough surface, you might choose OreneNayar and make the
ambient and diffuse colors white.

All of the shaders approximate how things look, but don’t do
true simulations of light and surface interactions. As a result,
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 151

Figure 11.1 Planar, cylindrical, an

152 Chapter 11 MORE THAN JUST COLOR
some problems can creep up as you are adjusting settings, such
as having more light reflected from an object than was directed at
it. Also, these shaders don’t work well (by themselves) for mate-
rials that are transparent, such as glass, or have volume, such as
a glass full of water, or clouds. There are often other attributes
that you can add to give the right effect.
Texture Mapping
A common analogy for how to apply 2D textures to 3D objects

is that of wrapping a present, shaped as a cube. This works well to
imagine the final effect, but doesn’t describe all the things that
must be considered when mapping a texture to an object. Most
objects aren’t simple boxes. The edges of the texture will need to
match up and not overlap or leave gaps.

One method of transferring an image to an object’s surface is
called planar projection (Figure 11.1, left). As the name implies,
the image is projected onto the surface, similarly to how a movie
projector works. This image can be moved, rotated, and sheared
(keeping one edge fixed while moving the opposite edge in
a parallel direction). Planar projection works best when the
surface is flatter, such as a billboard. On non-planar surfaces, the
image can get warped or appear chopped up when it is projected.

There are other types of projectionmapping as well. With cube
or box projection, the texture is split apart into six different
squares which will then be folded up into a cube and projected
onto the surface. With cylindrical projection, the image is rolled
up into a tube before being projected (Figure 11.1, center). There
d spherical projections.

Chapter 11 MORE THAN JUST COLOR 153
are several ways to create spherical projections, but the basic idea
is that the image or pattern is shaped into a sphere before being
mapped onto the surface (Figure 11.1, right). A few other odd
shapes can sometimes be found to project, such as cones or tori
(plural of torus, a donut shape). Your choice will be based on what
shape is closest to the geometry you’re projecting the texture
onto.

Simple projection mapping is efficient for texturing basic
shapes like a die or a ball. But it’s not quite up to the task of
getting an image on a detailed model without any stretching or
bunching artifacts. Not only that, it can be difficult for an artist to
place the texture (usually using settings like offset, projection, or
image center) so that the image details match the geometric
details.
UV Mapping
The solution for mapping a detailed model is to use a system

of coordinates. Instead of the XYZ coordinates in space, these are
of a grid on the model’s surface and are the UV (and sometimes
W) coordinates. Just like X, Y, and Z, these letters were picked as
the standard letters to use when discussing surface coordinates.
U usually corresponds to horizontal or latitude and V to vertical
or longitude.

NURBS surfaces, with their neat grid of curves, automatically
have UV coordinates (Figure 11.2). Polygon meshes, including
subdivision surfaces, must have UV coordinates assigned. The
purpose of these coordinates is to assign points on the surface to
points on an image. Projection mapping does this in a primitive
way, often with just the image center, and you don’t have much
control over it. In UV mapping, coordinates are assigned to every
vertex. You can then match the coordinates to points on a texture
map. These are called texture coordinates.

For UV mapping, the ideal surface between all the vertices on
the 3D model’s surface is flat. This is true of polygon meshes, but
not of NURBS. This is why even though it is easier to have UV
coordinates on a NURBS surface, UV mapping doesn’t work as
well for NURBS as for polygon meshes.

In practice, to match the texture coordinates of the bitmap
image to the UV coordinates of the 3D model, we need to flatten
the model’s surface. The idea of it is easy enough, since polygons
are already flat. You could just take every face and lay them out on
a single 2D plane. But that’s kind of messy and indecipherable.
Instead, the technique is to carefully unfold or unwrap a mesh

Figure 11.2 A surface showing UV coordinates with an image showing the texture coordinates.

154 Chapter 11 MORE THAN JUST COLOR
copy at seams, keeping as many polygons connected at their
edges as possible, and lay it flat.

To unwrap a simple cube primitive one starts out by selecting
which edges become seams (Figure 11.3). Seams are edges which
are split apart to become the boundaries on your UV map, and
then “stitched” back together to single edges when you apply the
map to the model. Once the seams are defined you are ready to
create the UV map.
Figure 11.3 The common way to unwrap a cube.

Figure 11.4 A sphere and two common ways spheres are UV mapped.

Chapter 11 MORE THAN JUST COLOR 155
Each polygon in the map refers to a polygon on the model,
letting us map a 2D image onto a 3D model.

Now let’s try a more complicated object like a polygon sphere
(Figure 11.4). To unwrap a sphere in the same way, with all of the
polygons in the map keeping the same proportions as those on
the model, takes a lot of seams, which are hard to create by hand.
It is really difficult for an artist to draw or place an image on the
splattered UVs, because it is hard to visualize and there are a lot of
seams to match when it is applied to the model.

Some stretching or pinching is acceptable while unwrapping.
The idea for a good UVmap is to make it easy to match the image
to the map with the smallest number of seams possible. The
shape should be modified to map the geometry with the least
amount of distortion possible. Often while doing this, a checkered
texture is used to visually track any distortion. A seam is created,
either by selecting edges or by selecting all the faces of a section of
the model. The same concept as projection mapping is used to
flatten non-planar surfaces. The mapping type (planar, spherical,
cylindrical, etc.) is chosen, and a map is created. For instance, if
you were working with an arm, cylindrical mapping might be
suitable (Figure 11.5).

For other areas such as a head, unwrapping requires meticu-
lous attention to detail (Figure 11.6). It is often done in parts:
scalp, sides of head with ears, back of head, face, neck, throat, so
that the right mapping type can be used. Then the parts are
stitched back together to get a whole map. This reduces the
number of seams before mapping the texture on and makes it
easier to visually match to the 3D model. Other times, seams are
specially chosen before being unwrapped.

Figure 11.5 Cylindrical mapping of an arm.

Figure 11.6 A UV map of a head.

156 Chapter 11 MORE THAN JUST COLOR
A Few Tips
UV mapping is an important part of 3D creation. Getting it

right can be the difference between something great and some-
thing so-so. Keep in mind the following.
• Good UV mapping starts with good modeling, and especially

good topology. When the topology is poor, you will be more
likely to have a stretched or pinched texture and seam splits
or overlaps with the UV map.

Chapter 11 MORE THAN JUST COLOR 157
• Do not start on a UV map until after you have finished
modeling. Editing the mesh after the UVs have been mapped
makes the UVs no longer fit the model, causing artifacts.

• Pay attention to seams when painting or placing the image in
the UV map. Each seam that needs to be stitched back together
into an edge needs to have its pattern match. Think of papering
a wall, where you match the edges of each strip. It can be useful
if you are using a good 2D editor to have each of your faces in
layers. There, match two faces that need to be stitched back
together, and paint them while they are aligned together. Once
the painting is done, place them back where they belong. If you
have a model with visible seams, this is a good way to clean
them up.

• Pay attention to the relative area of your UV map. As you are
stitching patches together, stretching or pinching some faces
in the process, you may accidentally create a map that is too
small or too large. This causes gaps and overlapping.

• To reduce the difficulties associated with seams use as few
as possible. This also helps you to visualize the rewrapping
of the map.

• If you have an object with more than a handful of faces, but
no strong detail landmarks, you can make things easier
by creating a simple UV texture map where each face is
numbered. Apply the numbered texture to the model to see
how they all relate to each other; then use that texture in what-
ever UV texture or image editor you have. Set it above the layer
you’re working on and make it nearly transparent; then on the
working layer know on which face you’re drawing.
A few applications are available that specialize in tasks related

to mapping. They still need a lot of oversight and you have to
correctly import and export. Even if you use them, it’s good to
stay within your application and attempt a few on your own so
that you are familiar with the process and know how to evaluate
and fix problems.

Painting in 3D
Some applications and plugins allow you to paint directly onto

a 3D object without having to unwrap it. This can be intuitive and
much easier than cutting apart an image or painting one onto a
set of UVs. In the background the application has automatically set
up UV coordinates and is creating an image texture with texture
coordinates that are mapped on to your object. When you export
your model to something else, the UV texture map is usually a
patchwork of color, but the computer knows how to implement it.

158 Chapter 11 MORE THAN JUST COLOR
Other Maps
Now that you are familiar with texture maps and mapping

techniques, let’s move on to other types of maps. After all, there is
more to the appearance of an object than just its color. Bumpi-
ness, transparency, and reflections are a few factors. Using
additional maps you can add more detail to your model without
adding to the polygon count. Consider a brick. Real bricks have
a rough surface and are flecked with little stones. Some are shiny
while some are dull. Or how about a rusty bolt, an orange, or
a corrugated box. These are objects that need more than color or
an image to appear convincingly realistic.

Images can be used to govern characteristics other than the
color of the surface. When they do this, they use ramp gradients
where the color controls a value. Black to white gradients are best
to use when you have two extremes between which there can be
a lot of variety: down and up, opaque and transparent, shiny and
dull, etc. Black represents either 0 or a minimum value and white
is 1 or a maximum value (Figure 11.7). For instance, a grayscale
Figure 11.7 This image could create the appearance of a lumpy hole or if inverted,
a mound of dirt when used as a bump map.

Chapter 11 MORE THAN JUST COLOR 159
image of a footprint, with the background white and the deepest
part of the footprint black, can be used to drive the height of
a surface. The maximum value would be the height at the surface
itself, and the minimum value would be set as a bit below the
surface. A footprint would then appear on the surface as an
indent. If the minimum value were set even lower from the
surface, the indent would be deeper.

Sometimes, we might need more information. A color ramp
has within it more information, in the form of RGB channels. A
color image will have three color channels: Red, Green, and Blue.
Each channel works similarly to the grayscale ramp, with the
darkest shade being the minimum value and the lightest being
the maximum. This gives you three sets of data, perfect for storing
things like X, Y, and Z coordinates, which is exactly what you need
if you want to change the geometry on the surface of a model.

Changing Geometry
If you were to model a brick down to the tiniest detail it would

take a huge number of polygons to portray the rough surface.
However, there are other solutions. Most surfaces in the real
world carry some amount of bumpiness. Different kinds of maps
can be used to solve this and createmore realistic lookingmodels.
Bump Maps

Bump maps are grayscale maps that add simulated height or

depth to a model’s surface. Black represents the lowest elevation
and white is the highest. It works like this: say the renderer is
using Phong shading to figure out how dark or bright a pixel is
based on the angle of the surface (the normal) reflecting light,
then it adds the information from the bump map, which
changes the normal. If you have a single face with its single
normal, but a variation of height provided by the bump map,
that face can have several normals, each one now different. This
creates the appearance of depth. However, it doesn’t actually
change the geometry so the silhouette and shadow of the object
will remain smooth as it is unaffected. Also, this only happens in
the direction of the camera. Bump maps are sufficient for
shallow types of roughness such as from a brick, an orange, or a
golf ball.
Normal Maps

What if, rather than just adding height or depth, you could

simulate geometry on all three axes? Then the simulation could

Figure 11.8 From left to right is the original geometry, a sphere with a normal map based on the geometry, and then one
with a displacement map.

160 Chapter 11 MORE THAN JUST COLOR
occur not just toward the camera, but in all directions. Normal
maps do just that (Figure 11.8). Normal maps use RGB color
images, giving the three channels needed for X, Y, and Z coordi-
nates. The information in a normal map directly affects the angle
of a normal. This gives more accurate bumpiness, especially for
more orderly details like rivets or the pitted dots on dice.

To create a normal map, an artist often creates a high-polygon
model with all the detail they want. They then create a UV map of
themodel, andmap the normal using the RGB channels, applying
this texture to the UV map. Since the UV map is of a subdivided
version of its low-polygon self, it will still fit. As it contains all the
normal information it allows the renderer to add shadow or
highlights as needed to give depth to the material. Unfortunately,
normal maps retain the problem of having a smooth silhouette
and shadow. Normal maps are commonplace in video games.
Displacement Maps

To really get rid of this problem, you need a displacement map

which will affect the silhouette and shadow. Displacement maps
are grayscale and truly change the height of the surface along
the normal, changing its geometry. This means that even the
silhouette of the model gains detail. In most applications, this
step happens during the render. But displacement maps or
similar can also be used to model, which is helpful for adding
random roughness to surfaces such as water.
Alpha or Transparency Maps

Alpha maps or masks are grayscale bitmaps used to change

the transparency of a texture. With an alpha map, you can make

Figure 11.9 A color map and an alpha map of a leaf. The black parts of the alpha map will cause those parts on the
color map to be completely transparent.

Chapter 11 MORE THAN JUST COLOR 161
any part of your model completely invisible or partially trans-
parent. Areas of the image that are black are totally transparent.
Another texture map is used to add color. When used on simple
planes, it is a great way to create leaves for plant models. Take
a look at Figure 3.4 in Chapter 3. To illustrate the planes used for
leaves, the part of the alpha map that would have been black,
making it transparent, was changed to gray so that it could be
seen. For the leaf, a picture of a leaf was used with the alpha map.
Planes that use alpha maps are often called alpha planes. Not
only are they good for adding in objects that are mostly flat; they
are also useful for adding background details that don’t need to
be fully 3D. Even entire plants can be added into a scene as alpha
planes, a method you might recognize in game environments.

A helpful use of alpha maps is to add another layer of texture
onto a material and make part of that texture transparent
(Figure 11.9). This technique is a way to add details such as a label
on a bottle, rust, and peeling or splattered paint. Alpha maps are
also used a lot in 2D image editing and compositing.
Seamless Repeating Patterns
When you have repeating patterns, you will want to ensure

that where their edges meet, you cannot see any seams (Figure
11.10). There are well-documented ways of doing this in 2D
image editors; it is often an automated process. There are also
textures you can easily source from the internet that are created
to be seamless. Textures can be seamless on all sides, or only on
the two opposite sides (nice for things like scrollwork). To
maintain the illusion, be careful not to have features that are

Figure 11.10 Obvious seams (left) and seamless repeating tiles (right).

Figure 11.11 Notice how easy it is to see the repetition of the pattern. This is
a drawback of using seamless tiled images.

162 Chapter 11 MORE THAN JUST COLOR
obviously repeating. Tiling textures are good for where
a repeating pattern is expected, such as a chain-link fence. If you
are using it for things like wood grain or water, the repetition can
be seen easily (Figure 11.11). An alternative to tiled textures is to
use a procedural texture (see Chapter 17).
Multiple Maps
You can map just about any visual aspect of a surface using

maps. A useful aspect of this is that you can easily match maps
together. For instance, think of a speaker that has a shiny case but
the speaker units themselves are covered in fabric. You can use
a map to control shininess that matches the texture map and the
bump map. You can also layer materials, using several maps for

Figure 11.12 Using multiple maps.

Chapter 11 MORE THAN JUST COLOR 163
each layer. Let’s say you want to render the back of a car covered
with bumper stickers (Figure 11.12). Although you could have
a texture map and an alpha map for each bumper sticker, it is
easier to create one map for the bumper, the body of the car, and
the window. It’s an old car with a bad paint job. This requires
a texturemap layer of discolored yellow paint, a dull steel layer for
the bumper object, and the slightly blue glass of the tempered
window that has lines going through it. You can also add age with
a few dents and including rust all over the car. That would involve
making a displacement map for the dent, and a bump map,
texture map, and alpha map for the rust.
Resolution
You need to take into consideration the size of the image

you’re using as a texture map. This size should relate to the size of
your object to result in the right texture resolution. The appro-
priate resolution depends on how noticeable the object is in your
scene. You don’t want to use a very high-resolution texture for an
object that will be in the distant background, and you don’t want
a low-resolution texture for a highly detailed object that is
prominent in the foreground (Figure 11.13). Another thing to
keep in mind when using multiple maps to create a material is
that you want to ensure that the resolution of each map matches
the others. There isn’t really a standard regarding the size of
the map, except that you should stay with sizes that are 2 to the
power of n or 256� 256, 512� 512, etc. This is because of the
way memory works and will optimize the texture’s rendering

Figure 11.13 The resolution of this bitmap is too close up, but looks just fine in the
background.

164 Chapter 11 MORE THAN JUST COLOR
performance; this is common in video games to keep file sizes
smaller and rendering times efficient. You will be aware of
problems of low resolution. For instance, if you’re seeing pixels in
your rust, then you need to increase the resolution. This is why
seamless tiled textures can be useful. Smaller images tiled
together can give lots of resolution.

Tutorial 9
Mapping the Robot

Step 1
Start with the robot as finished in the last tutorial about shaders. For clear illustration, all of the other parts of the

robot have been hidden. With your ambient color, you should have a way to add a texture or pattern. Change the color so
that it is a checkerboard pattern. The way your application applies the checkerboard may be different in scale. You will
be using the checkerboard simply for diagnostics. If you render it, you will see that it doesn't look horrible, but there is
some stretching and warping of the pattern going on, especially around the eye border. To correct this, you will add a UV
map with an automatic operation. A more complicated model will need some more preparatory work such as creating
seams before unwrapping.

Chapter 11 MORE THAN JUST COLOR 165

Step 2
You should still have the main body of the robot selected. Open the tool to create a UV map. Choose the type of

projection that would work best for the robot's body shape. You can experiment with projections and use the undo
command to go back. It turns out that a cylindrical projection unwraps the mesh in a way that produces an easy-to-
visualize UV map, though it will be difficult to make the top and bottom of the robot look good. Since a solid color will be
used, it will be okay in this case.

Step 3
You will have a square which represents the UV coordinates that have been applied to the robot, usually in

a 0e1 range. This UV texture space is the square where your image should be. Your whole UV map should be
contained within that square as well, but chances are it isn't. You will need to move and scale the map to fit the square.

166 Chapter 11 MORE THAN JUST COLOR

Step 4
You can view the image map in the UV texture space while you're editing the UV map. This makes it easier to align

the UVs with the image. This is useful especially if it is a preexisting image. View the image and render the robot
again. You will see some improvement, but the eye border is still a bit messed up. Looking carefully at the UV map, you
can see why. The eye border has been laid out so many of its faces overlap.

Chapter 11 MORE THAN JUST COLOR 167

Step 5
Use unfolding and relaxing tools, or move the vertices yourself to pull them out so they do not overlap in the image.

They will still be very dense, but no longer overlapping. As you're selecting UV vertices, you may be able to see
them highlighted on the mesh as well if you have both your mesh and UV editor in the views. Editing a UV map can feel
a lot like modeling. Once you have a UV map that looks good, you can export it to work with in a 2D editor. Create a simple
image map for the eye border and the mouth, carefully following the appropriate UVs so the color is in the right
place. Here, the UV map filled up the whole square, except where the hole is. UV maps do not have to do this. Often a UV
map looks like puzzle scattered across the image. What is most important is that each face is mapped.

168 Chapter 11 MORE THAN JUST COLOR

Fig
re
ca
3D

Co
12

LIGHT EFFECTS
Light interacts with objects in lots of ways. We take for granted
how light gets bent as it travels through transparent objects, how
it reflects off surfaces, how it gets scattered. To create photo-
realistic images, we need to simulate how light interacts with
objects (Figure 12.1). Shaders are okay for opaque surfaces, but
how do they deal with transparent objects or reflections? Even if
you have options in the window where you build your shader,
such as transparency, they are often dealt with separately. Getting
light effects has a lot to do with rendering. If you understand the
ure 12.1 In this glass chess piece, several light effects are going on including
flection both inside and out, shadows both in and out, refraction, and some
ustics.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 169

170 Chapter 12 LIGHT EFFECTS
concepts of light effects, you’ll know a few landmarks that will
help you navigate through your render options. But they are also
very much a part of material creation, often coming before setting
up lights or cameras.
Reflection
The simplest thing that could happen is that the light is

reflected from the light source. As you have learned already, this
can be a scattered reflection, which is how the object gets its
color, or specular. These are handled by the shader and the
indirect light from them is handled by other algorithms. But if
a surface is very shiny, it becomes like a mirror and directly
reflects all the light it receives so that you have an image of its
surroundings. A mirror surface does not have to be perfect. It can
be very reflective, resulting in a clear image, or slightly reflective,
giving a blurred reflection. There can be color to it, and it can
have specks and scratches. You may still be controlling this
reflectivity in the shader options, but in order to get objects that
truly reflect images, you will need to have ray tracing enabled.

One of the rays that is sent out from an object once the first ray
bounces off it in ray tracing is a reflection subray (Figure 12.2). As
Figure 12.2 Reflection subrays.

Chapter 12 LIGHT EFFECTS 171
this ray bounces from the first reflective object to other objects
before it hits the light source, the color of those objects (gained
from the reflection or refraction ray continuing on to the source
of light) is added on to the color of the first. The totality of all the
reflected rays from a mirror-like object is the reflected image of
the objects surrounding it.
Reflection Maps

While the above method achieves a realistic result, it takes

a lot of computing and you have to model a lot more in the
scene. Another option (and the only way with a scanline
renderer) is to fake it. A reflection map is an image of what you
want reflected (Figure 12.3). It’s a great way to get a sky or
ceiling, or a window that is behind camera. You don’t neces-
sarily need a lot of detail in a reflection map: just a general
shape of the light. Think of an apple with a window and tree
reflected on its surface. The tree is just a blob, and the entire
reflection is stretched over the apple’s organic surface. You
will want the reflection map to wrap around the object. To
Figure 12.3 Reflection map.

Figure 12.4 Notice how all the refl

172 Chapter 12 LIGHT EFFECTS
create a reflection map, you can take or render a picture with
a reflective sphere, or you can warp a flat image using
a projection similar to your object’s geometry. This lowers
render times, and is especially useful when you have numerous
reflective objects in a scene, such as a motorbike with lots of
chrome details. You also have more control with maps. For
instance, if you model an entire scene around the motorbike
you may get a more satisfying image by using careful place-
ments of the reflection map than if you had ray traced the
reflections. Since materials can be animated, you can get also
this reflection to move just as it would as the camera pans by
the object.
Anisotropy

When there is anisotropy on a surface, reflections may get

stretched and blurred. Anisotropy is when you have bumps and
gouges that happen across a shiny surface in a parallel way
(Figure 12.4). Each bump on shiny or reflective surfaces can have
its own reflection. The result is that you see a streak of lots of tiny
individual reflections, running perpendicular to the bands of
roughness. This can affect both reflected images and highlights.

It can also apply when you have masses of tiny smooth
surfaces that are long, such as hairs. Getting the anisotropy on
hair just right is one of the challenges of 3D art. Other things you
may get anisotropy on are water surfaces (Figure 12.5), CDs, and
brushed stainless steel.
ections of the bumps mesh in together to produce anisotropy.

Figure 12.5 Anisotropic reflections of the moon on water. Notice how stretched
out the light is on the waves.

Chapter 12 LIGHT EFFECTS 173
Refraction
Not all objects block light. When light passes through a trans-

parent material, it bends. This is refraction and it’s caused by
differences between the densities of the two substances it is
passing through. Usually this is air and something else. A glass of
water comprises air, glass, and then water (Figure 12.6). Themore
difference there is between densities, themore the light will bend.
You should find a refraction index option in your transparency
settings that will let you control refraction. The refraction index is
a measure of the ratio between the density of air and the density
of some other transparent material. Air has a refraction index of 1.
Water has a refraction index of 1.3. When you’re trying to get
something realistic that has transparent materials, it’s important
to get their refraction indices right.

Light can also be refracted because of the curve of a surface.
This is how lenses work. Curved reflective surfaces will also
refract light, which is how reflector telescopes work.

With ray tracing, if the object has transparency information in
its material, the ray will send off a refraction subray, which is bent
as it continues on the first ray’s path but through the material.
There is more to transparency than just being able to see through
an object. A transparent material can have color and it can be

Figure 12.6 Refraction through a glass of water.

174 Chapter 12 LIGHT EFFECTS
only partially transparent. All of these will affect the color and
light information being transmitted with the ray.

Keep in mind though, that the transparency that is ray traced
and causes refraction is different than the alpha transparency
seen on maps. Alpha transparency is a way to make part of
a mapped material unseen by the renderer and it does not affect
light.
Caustics
When you have light either reflecting or refracting from

a curved surface, it can become concentrated in arcs. If the surface

Figure 12.7 Caustics.

Chapter 12 LIGHT EFFECTS 175
is curved enough, this might become a glow inside the shadow of
the object. In real life, as when using a magnifying glass to channel
sunlight and set a dried leaf on fire, this concentrated light gets hot.
Rainbows are also the result of caustics, as the colors of light are
bent into arcs by trillions of water droplets. One commonly seen
caustic effect is the light patterns on a surface under shallow water
(Figure 12.7). Caustics are easy to reproduce in real life e set a full
glass of water in front of a brightly lit window. But they are harder
in computer graphics. For calculating caustics, photon mapping
works the best, but you can also use an algorithm to approximate
caustics with ray tracing. Youwill have to turn on caustics, which is
typically found in the render settings. Realistic caustics require
more than just a few rays to be traced and are not practical inmost
off-the-shelf applications.

However, you can fake caustics in some situations such as
when trying to achieve an underwater light effect. You do this by
using a gobo (GO Before Optics) map, also called a light gel,
which is applied to a light source. This map has the pattern of
water caustics on it, and can be animated.
Translucency
For years, computer graphics artists struggled with getting

natural skin that didn’t look plastic. The problem was that skin
is translucent. Translucency occurs when some light passes
through a slightly transparent surface, gets scattered, and comes
back out. This is called subsurface scattering and is different from
diffuse lighting, where light is absorbed and scattered on the

Figure 12.8 The same model witho

176 Chapter 12 LIGHT EFFECTS
surface, giving it a color. With translucency, the surface gains
a subtle glow that may be different than the color of the surface
(Figure 12.8). For instance, there are lots of capillaries under the
skin, which is why it has a pink tint. Other translucent materials
include milk, wax, and jade.
ut and with translucency.
Shadows
If you have light, you will have shadows. Simple enough,

but how do we get shadows in our scene? Ray tracing can do
this (Figure 12.9). Shadows need to be enabled, but this is
usually a default. Ray tracing shadows come from yet another
type of subray that is emitted when a ray hits an object. The
job of this shadow ray is to figure out whether the surface it
is hitting is blocked from a light source by another object. If
it is blocked, then it is in shadow and kept dark. As this
happens with all the points on the object that are in shadow,
the shadow gets drawn. This creates sharp boundaries between
areas that are lit and those in shadow, which does not look
natural. You can use radiosity for a more accurate approxi-
mation, or you can increase the number of rays that are traced.
That takes more time to calculate and is not practical for
animations.

Figure 12.9 Ray-traced shadows.

Chapter 12 LIGHT EFFECTS 177
You can fake whole shadows, by rendering a silhouette of
objects from the perspective of the light it will cast a shadow
from. This silhouette is a type of depth map. It is then saved
as a texture file and applied to the surface that will be in
shadow. This is called shadow mapping (Figure 12.10). One
strong advantage is that if the objects and lights are not
moved, the renderer can reuse the same map for the next
Figure 12.10 How a shadow map works.

178 Chapter 12 LIGHT EFFECTS
render. Shadow maps need to be stretched on the surface in
relation to the light and the objects casting the shadow, as
they are in real life. This can cause difficulties with aliasing,
giving the shadow a pixelated appearance which is more
noticeable in large-scale scenes. You could use a higher
resolution shadow map, but one solution that leads to faster
render times is to blur the edges out. This increases render
times compared to not blurring, but can be faster than ray
tracing. The softer the edges of the shadow, the more time is
saved compared to ray tracing shadows. Even though ray
tracing is a more physically accurate way of making a shadow,
using the older technology of shadow maps can speed render
times up enough as to be the only practical way to produce
shadows in an animation.

Another workaround for high render times is to use lower
resolution objects to map shadows with. This is especially useful
for those deep shadows that occur under objects from ambient
lighting, and gives even greater improvements when working on
scenes that include crowds.

Tutorial 10
Light and Shadow

Step 1
This tutorial will simply let you see some of the differences with light effects. In 3D graphics, these are very

connected to rendering. You will have to get into the render settings. For this first step, create a simple scene with
a floor plane to see shadows on and a couple of objects to cast shadows. Now create a light. When you do this,
the automatic lighting is turned off, and instead your light is used. In this way, you will be able to have more control over
where your shadows are. In the rendering options, find the options that deal with shadow maps. You will probably
find that shadow mapping is on by default. It is an efficient way to optimize rendering times. Try rendering it with
shadow maps, and then without e making sure that ray tracing is enabled. At high-quality settings of either, the
differences are subtle, which is why it is still so common to use shadow mapping.

Chapter 12 LIGHT EFFECTS 179

Step 2
Here, you will see the difference between opacity and true transparency. Use the floor plane and set up a torus with a

cone and a tall cube in front of it. Create two spheres and put them in front. On one sphere, create a simple shaded
material, Lambert will do fine, and make its opacity very low. On the other sphere, create a glass material. Here,
you'll work with transparency and refraction settings, among others. How you create the glass differs with each
application. Once you have everything set up, try rendering to see the effect. A true-to-life glass material will refract the
image so that it is all the way upside down, as well as warp it. It will also have reflections of its own and specular
highlights. With the opaque material, you can simply see what is behind it with no shape distortion. To take it up a level,
try adding the ability for caustics to the material and enable caustics in your settings.

180 Chapter 12 LIGHT EFFECTS

3D

Co
13

LIGHTING THE WAY
Lighting a scene isn’t just about being able to see things. It
serves to create mood. Imagine a setting with a crooked house,
gnarled trees, and a strange little bunny holding a sharp object. If
the scene is dark with clouds and a full moon casting long
shadows, it looks creepy. Put the exact same scene in daylight,
and you can see the green grass, puffy clouds, and that the pointy
object is a carrot. Though it is still quirky, it’s no longer threat-
ening. Both lighting setups are natural. There are lots of tools to
recreate natural lighting, but we will also need the lighting tools
that can be found in a studio (Figure 13.1).

When using artificial lighting, a standard approach is the
three-point lighting rig (Figure 13.2). This is made up of a key
light, a fill light, and a backlight. The key light is the main player
here, lighting up the object from the front. Using just one light
can result in harsh shadows, so to get rid of these we add a fill
light. This softens shadows and fills them with enough light to see
otherwise obscured details. A backlight is set behind the object
and gives it a strong outline. There are other ways to light up
a scene, but knowing this fundamental lighting system can get
you well on your way.
Light Properties
Once you add a light into your scene, you’ll be able to control

its color, intensity, and decay.
It’s very rare that a light source gives pure white light. Sunlight

at full noon, for instance, is just a little bit yellow since its blue
has been leached from it and scattered across the sky. There is
more than one way to have colored light. One accurate method is
to use color temperature, which is a way to measure the hue of
a specific kind of light in kelvin. But how can color be a temper-
ature? British physicist William Kelvin heated a block of carbon,
which is black, and measured what color it became at what
temperature. At first it was red, but as it became hotter it became
more blueewhite. More commonly you’ll select a color from
a color map. You can still use charts to match the color to a type
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 181

Figure 13.1 The three images in this figure are all of the exact same scene, but rendered with different lighting.

182 Chapter 13 LIGHTING THE WAY
of light source by finding out its temperature, then using the
matching color from the color map.

Intensity is how bright the light is, and can be measured in
real-life units, such as lumen, candela, and lux, or it is
measured through units set in the application. The brightness
of the light decreases with distance. This is called decay. In the
real world, light dims because it becomes spread out the
farther away you are from the source. There are three kinds of

Figure 13.2 This figure was lit using a three-point lighting rig. The back light was
exaggerated for effect.

Chapter 13 LIGHTING THE WAY 183
decay: linear, quadratic, and cubic (Figure 13.3). With linear
decay, the light gets dimmer in direct proportion to how far
away it is from the source. So if you’ve set your light intensity
at 4, then at a distance of four (meters) its intensity is down to
Figure 13.3 From left to right are examples of linear, quadratic, and cubic decay.

184 Chapter 13 LIGHTING THE WAY
zero. Also called inverse decay, this is slower than decay actu-
ally occurs in real life. Quadratic or inverse cubed decay is
the same as with real-world light, and decays in proportion to
the square of the distance. This makes it much brighter closer
to the source, but quicker to dim. Cubic decay is in proportion
to the cube of the distance, or 1/distance3. This means the light
gets dimmer faster than in reality. For realism, you should stick
with quadratic.

There are a couple of settings that don’t follow the way things
happen naturally. Light may not automatically cast a shadow in
some applications. In that case, you will have to turn the shadows
on. The light settings are one place where you can choose what
kind of shadowing will occur, such as ray tracing or shadowmaps.
Another atypical thing you can do is is to make light shine on only
one object, and not affect any of the others. Both of these abilities,
to choose whether or not to have shadows or light on a particular
object, can be very useful tricks.
Types of Light

Point Light
The point light is one of the most simple in your 3D light kit.
It is just a point that emits light in all directions (Figure 13.4).
It’s also called an omni, but in that case you may have more
control over the shape, such as emitting from a curve. No matter
the shape, it still emits in all directions.
Figure 13.4 Point light.

Chapter 13 LIGHTING THE WAY 185
Spotlight

Spotlights emit light in the shape of a cone from a point. This

causes the light to mostly hit the object at a similar angle, making
it very bright where the light hits (Figure 13.5). That is why you get
a spot on the surface the light is pointed at. You can increase the
size of that spot by increasing the angle of the spotlight. There is
also the question of how rapidly the light dims at the edges of that
spot. Is the boundary of the spot hard or soft? This is called the
falloff. Because a spotlight light is mostly from the same direction,
it causes very distinct shadows.
Figure 13.5 Spotlight.
Area Light

An area light is one where light is emitted from a surface,

usually a rectangular plane (Figure 13.6). Here, light is being
emitted across a whole surface rather than a point and all the rays
are moving in one direction parallel to each other. This creates
high-quality soft lighting without harsh shadows. As a result, this
type of lighting costs more at render time than the others. You can
also turn an object into an area light, so that light is emitted from
the model’s surface.

Figure 13.6 Area light.

186 Chapter 13 LIGHTING THE WAY
Directional Light

Though the sun is a light source, it is so far away and bright

that it would be impractical to truly simulate. Directional lights
are the answer (Figure 13.7). Light rays all move parallel to each
Figure 13.7 Directional light.

Chapter 13 LIGHTING THE WAY 187
other in a single direction. They are like area lights in this way,
except that if there were a plane emitting light, it would be an
infinite plane. The theoretical light source is infinitely far away.
The light does not decay. This means that it doesn’t matter where
in the scene you place them; it only matters where you point the
light. Sometimes such as light will be called a sun light.
Volumetric Light

The stage is dark, except for the spotlight with dust swirling

inside revealing a magician and his wand, which cast dark streaks
of shadow in the cone of light. This is an example of volumetric
lighting. You can see the light before it hits the surface. Figures
13.4 and 13.5 used volumetric lights to illustrate their shape. This
is caused by light being scattered across dust particles in the air,
and you can often also see the swirl of dust and specks of fiber. In
the big world of the sky, clouds and atmosphere can combine to
give a similar effect called godrays. In some packages this is
handled as a specific type of light, while in others it is an effect
that you can turn on for lights (Figure 13.8).
Figure 13.8 In the figure on the left, an extra effect of smoke was turned on. On the right is the same light with all
volumetric effects turned off.
Objects as Light Sources
As well as turning objects into area lights, you can set the

material on an object so that it luminesces or glows. This effect
will not put a lot of light into the scene, but may cast a bit of light
on the objects right around it (Figure 13.9).

Figure 13.9 Using objects as light sources.

188 Chapter 13 LIGHTING THE WAY
Renderer Lights

Many rendering applications have their own lights which can

give better results andmay offer more control. These lights can be
accessed either by changing the regular lights to the renderer’s
lights or by choosing the renderer’s light when you are creating
a light.
Image-Based Lighting

Let’s say we need to have a computer-generated 3D object

appear in some live action footage. How do we get the lighting
on it to match the footage? The answer is to bring the lighting
with us (Figure 13.10). We do this by taking a high dynamic
range image (HDRI) at the location where the footage was shot,
preferably at the same time if it is outdoors. An HDRI contains
not only color information, but also information about the
luminosity or intensity of light. To use the image to project light

Figure 13.10 This specially rendered image will project light. The light’s intensity depends on how dark or light the
image is.

Chapter 13 LIGHTING THE WAY 189
into your whole scene, it will need to be spherical. There are
cameras that can take panoramic and spherical images. If one of
those is not available, you can use an HDRI capable camera with
a reflective sphere. Once acquired, an HDRI can be projected as
a sky dome in a scene and set as image-based lighting. Light is
emitted from the image which matches the intensity of light
shown in the image. For example, if the sun is visible, the place
in the picture where the sun is will shine with bright light which
is the same color as in the image. If the sky is cloudy, the object
will be lit with the same ambient light. This is especially useful if
there is complicated lighting on location, such as an interior
setting with a wall of windows, lots of ducts on the ceiling, and
lights. Not all image-based lighting has to be spherical and light
up the whole scene. For instance, it could be used to create the
view from windows which not only have detail but light up
a room as well.
Gobos

One effect you can achieve is to make cool light shapes and

multiple colors by using “GO Between Optics” or gobos
(Figure 13.11). Their name indicates how they work. In real life,
a plate (to make shapes) or gel (for color) is put between the light

Figure 13.11 A gobo.

190 Chapter 13 LIGHTING THE WAY
and the surface, usually right near the light source. They are often
used in dance clubs or at concerts. Achieving the effect is easy in
your 3D application. In your light settings, you can enable their
use and set up an image map that you’ve created for the effect
that you want.

Tutorial 11
Enlightened Monk

Step 1
Start with a simple humanoid or animal object, though it should have enough detail in the face to see how the light

and shadows change. For the key light, create a spotlight. Place it a bit to the side and aim it at the character. One nice
thing about some virtual spotlights is that you can look through them and aim them like a camera, though the image may
be upside down. Try rendering the image with one light. You will have harsh shadows on one side. This is also
a common difficulty with natural lighting of the sun.

Chapter 13 LIGHTING THE WAY 191

Step 2
To counter the harsh shadows, create a second light, preferably an area light e an object such as a plane that is

a light source or whatever equivalent in your application. This will be the fill light. Place it off to the side as well
and aim it at the figure. The size and shape of the lights in the illustrations are exaggerated to see them easily. You really
can use any kind of light as long as it is soft and coming from a wide angle. A fill light can solve the problems in
natural lighting as well. It’s common to create a fully simulated outdoor scene and then add a fill light for each object of
focus to reduce the shadows.

Step 3
Create one more spotlight and set it behind the character. You can place backlights up above and pointing down.

This will create the three shadows as seen in Figure 12.2. Or you can place the backlight near the ground and
pointing up, as in this illustration. Backlights might not be useful for a bald guy such as this, but if the object has realistic
hair or fur then it will add a nice framing effect that can increase visual interest.

192 Chapter 13 LIGHTING THE WAY

3D

Co
14

WORKING THE CAMERA
Cameras have been around a lot longer than computer
graphics have. Even non-professionals know how to use them,
and cinematographers can do wonders with them. This makes it
natural to imitate. Since many principles are the same, it’s easy to
port real-life photography know-how into 3D digital technology,
and several cinematographers have done just that. Just like in the
real world, much of the success of your scene depends on how
you capture it in the camera.
The Virtual Camera
Very often, the perspective view of your application is the

camera view. If not, they can be linked. By moving around in your
perspective view, you are moving around the view of your
camera. You can have more than one camera, each with different
settings, and switch your perspective view between cameras. This
perspective view is the point of view (sometimes abbreviated to
POV) of your camera.

The area captured by the camera as part of an image is called
the field of view. As you can see from Figure 14.1, the field of view
is related to how wide the angle of view is. In fact, the terms are
more or less interchangeable. What happens in a real camera is
that the angle of view is affected by the distance between the lens
and the camera’s aperture. That distance is called the focal
length. Angle of view and focal length are related to each other.
More on that a little later.

Clipping planes are perpendicular to the camera’s view and
define the area between them that will be rendered. There are two
of them. The near clipping plain is close to the camera and the far
clipping plane is, of course, far from the camera. These are tools
to simulate not being able to see things in the distance or very
close up, as with your eyelashes. They are needed because there is
no “out of focus” for the virtual camera.

This is an advantage that not having to follow the rules of
physics gives these cameras. They don’t need lenses. Near or far,
everything in the scene can be rendered perfectly clear. But it also
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 193

Figure 14.1 The field of view and clipping planes.

194 Chapter 14 WORKING THE CAMERA
leads to a problem. Not only do physical cameras use lenses, but
so do our eyes. We are used to seeing the world through lenses. It
doesn’t look natural if the mountains in the background, the trees
in front of them, the meadow, and the little ant in our camera’s
view are all in focus.

Of course, it’s easy enough to fix by reproducing the effects of
lenses.
Faking Camera Effects
So now back to focal length and angle of view. You will have

these settings, but this behavior is an imitation of what really
happens. As you increase the focal length, your angle of view
narrows (Figure 14.2). This doesn’t mean your image gets smaller.
It means that you’re looking at a similar area, far away. There are
two ways to zoom in on an object to make it fill more of the
screen. One is to have the camera and object closer together, and
the other is to increase the focal length. But using focal length
gives a different effect than moving the camera. The perspective
changes as you move the camera, but it does not as you increase
the focal length because the camera is still in the same position.

Some warping of the image can also visibly occur at the
extreme angles. With a wide-angle lens (having a short focal

Figure 14.2 Focal length and angle of focus.

Chapter 14 WORKING THE CAMERA 195
length), the image bows outwards, causing what is called barrel
distortion (because a barrel bulges). A poor-quality telephoto
lens, having a narrow angle, will cause the horizontal and vertical
lines to bend inward. This is called pincushion distortion. These
distortions (Figure 14.3) are another thing that can be faked and
some applications have settings to control them.
Focus and Depth of Field

In the real world, only one thing at a time can be in perfect

focus. This effect not only is natural to our eye, but also enhances
the ability to bring attention to a subject. Say you have two people
toward the middle of a view, one in the foreground and one in the
back. The one in the back is the important subject. The way to
show this is to keep focus only on that person in the back.
However, the neighbors of the object in question can also be

Figure 14.3 Focal length distortions.

Figure 14.4 Focus and depth of fie

196 Chapter 14 WORKING THE CAMERA
somewhat in focus. Thinking of the little ant again, the eyes on its
head are perfectly in focus, while the rest of its body and those
plants immediately surrounding it are also pretty well in focus.
The area that is in focus is the depth of field and extends from
nearer to farther from the camera, much like the clipping planes.
This is another effect that can be used to good purpose. It adds
a sense of distance, and as mentioned before, you can use it to
bring attention to something (Figure 14.4).
ld.

Chapter 14 WORKING THE CAMERA 197
Lens Flare and Glare

Most light travels right through the lens, but some of it gets

reflected and scattered inside the lens before transmitting
through. This can be both concentrated and diffuse. Diffuse
scattering causes lens glare, and can make the picture look hazy
and dreamlike. Concentrated light comes from a strong light
source near the edge of the lens and causes lens flares
(Figure 14.5). These manifest as stars, rings, and globes of light
along an axis. This effect is famously overused in the Star Trek
reboot movie of 2009. The reason given for using lens flares in the
movie was to create a sense that there was always something
huge and fantastic just out of view.
Motion Blur

Wemove out of the realm of lens artifacts and into problems of

shutter speed. Shutters control the exposure of light to film or the
light-sensitive electronic sensor of digital cameras. The longer the
shutter is open, themoremovement is captured in a single image.
This appears as blurry streaks in the direction of the movement
and is called motion blur (Figure 14.6). It can be a frustrating
occurrence when taking pictures. On a more useful note, since
even our natural sight is not suited well to fast objects, it’s a great
subconscious indicator of motion and speed. Many times it is
Figure 14.5 Lens flare.

Figure 14.6 Motion blur.

198 Chapter 14 WORKING THE CAMERA
used for artistic effect. Shutters are left open long enough to show
ribbons of color trailing behind moving objects.
Matching Virtual Cameras to Real Ones
If using real footage from a camera and want to add effects

generated from a 3D application, you will want to match the
settings of the virtual camera as much as possible to the real one.
Some applications have presets for several models of real
cameras. Besides matching the camera, you can match settings
that can be changed on the camera, such as focal lengths. You
should keep in mind the scale, focus, and depth of field, as well as
the same relative position and direction.

Cameras and Image Planes
One way that you can incorporate footage into your 3D

animation is by having it set as an image plane that is attached to
the camera. This image plane is set so that it is always behind the
objects in your scenes. It can fill up the camera’s view and can be
set to always face the camera. You could render it this way, but
a good use is to match the atmosphere and lighting to the footage.

Image planes can also be used to incorporate 3D objects into
your scene. For instance, you could have a picture of a person
standing that you want in the scene. You could go to all the
trouble of modeling and texturing the person. Or you could use
a 2D editor to cut out the surroundings and replace the back-
ground with an alpha map. When you put this in your scene, now
you’ll just have the person. Then you set it so that the image plane

Chapter 14 WORKING THE CAMERA 199
only faces the camera, to ensure that its 2D aspect is never seen.
Image planes used like this are called sprites.
Animating the Camera
Just like other objects in your scene, you can animate the

camera. This lets you use it just like it would be used in a studio:
zooming in, tracking, panning, etc. Of course, there is the added
bonus of not needing extra equipment or people to fly the camera
around. You can set a specific path for your camera, much as if it
were on a track in the studio or being moved by a crane, or flown
about. Since you can give any motion you want to the camera,
you can even add some shaking to the camera, as if it were hand
held.

If you want, you can link the camera to an object, so that it will
always follow that object. Because the computer knows where
both the camera and the object are at all times, it follows the
object perfectly. This tends to look robotic. To fix that, you may
have controls that will let you add imperfection to how the
camera tracks the object.
Through the Camera’s View
Good 3D art doesn’t stop at model creation, animation, or

even staging. To get the most out of your scene, you need to
capture it in a series of images. Each image should have good
composition. Every frame should contribute to the story arc. It is
with the camera that you control what the audience pays atten-
tion to, and how you use the camera affects the atmosphere of the
scene.

To achieve all of these you need to place your camera to get
good camera shots as well as getting the settings on your camera
right. There are several basic camera shots you should be
aware of. Two main characteristics affect a camera shot: the
distance being portrayed and the angle of the camera.

When you can seemost of the setting that a character is in, and
probably all of the character’s body, this is a wide shot, also
known as a long shot. Extreme wide shots can show entire vistas.
Medium shots move in closer to the character, so that you usually
only see the upper half of their body. Close-ups move in even
farther, so all you see is the character’s head. An extreme close-up
may fill the entire image with the face or even just part of the face.
Between the farthest limits of seeing a microscopic part of the
scene to an epic landscape, the variety is endless (Figure 14.7).

Figure 14.7 Distance camera shots.

200 Chapter 14 WORKING THE CAMERA
Generally, you’ll want to keep your camera about even with
the character or object, but there are other angles you could use
(Figure 14.8). When the camera is looking at the character from
below, this is called a low-angle shot, whereas if it is looking
from the ground this is a worm’s-eye view. Low angles usually
makes the character look large and imposing. If the camera is
above the character looking down, this is a high-angle shot, and
if very high above it is a bird’s-eye view. The higher the angle of
the camera, the more insignificant and powerless the character
may appear.

Other things to consider is what things are in the shot, and
where the camera is in relation to these (Figure 14.9). For
instance, if you have two characters talking to each other, you
may have them both in the shot with one character facing the
camera, and seeing only the back of the head and the shoulder
of the other character. This is called an over the shoulder shot.
Over the shoulder shots can also be looking at what the
character is doing or looking at, with the back of the character
still in view. A two shot has two characters in it, both more or
less facing the camera. There are also three shots and group
shots.

Figure 14.8 Camera angles.

Figure 14.9 Over the shoulder, two and three shots.

Chapter 14 WORKING THE CAMERA 201
Camera Movements
You also need to get a handle on how you can move the

camera, or at least what the terminology is in cinematography
(Figures 14.10 and 14.11). Rotating the camera from left to right is
called panning the camera. This can be a way of changing what
the camera is looking at. Crabbing is when you move the camera
left to right while keeping it pointed straight ahead. This lets you
scroll a scene from side to side. Tracking in and out, also known
as dollying in and out, is when you physically move the camera
forward. Zooming in and out is when you use the focal length to

Figure 14.10 Camera movements.

202 Chapter 14 WORKING THE CAMERA

Figure 14.11 You can cant the camera to give an odd angle.

Chapter 14 WORKING THE CAMERA 203
move the view closer to the object. When you ped (coming from
the word pedestal) the camera up or down, once again it stays
pointed straight ahead while it is moved up or down, so you scroll
up the scene. Tilting the camera up or down works much like
when you tilt your head up or down to look at something e it’s
being rotated down or up.

One cool effect you can get with a camera is called the dolly
zoom, or Vertigo effect. It was first seen in Alfred Hitchcock’s film
Vertigo. While tracking in a camera, you zoom out at the same
time, keeping the object in focus the same size in the view
(Figure 14.12). You can also do it in reverse: track out and zoom
in. This causes the perspective to change while it appears that the
camera is standing still. This disconcerting effect can be a great
Figure 14.12 Dolly zoom.

204 Chapter 14 WORKING THE CAMERA
way to show a sense of fear or a warping of reality, or a sudden
realization (usually about looming peril that comes into focus
with the dolly zoom).

Using cameras in the virtual studio takes just as much art as
using them in real life does. If you really want to excel in this
area of 3D art, read some books on photography and/or cine-
matography. Then, get a real camera and go out there and
shoot. One of the advantages of real cameras is that the scene is
always set up, everywhere. Even with a cheap digital camera,
you will learn a lot and be able to port that knowledge to the
virtual world. Plus, looking at the world through the camera’s
eye can inspire.

Tutorial 12
Animating the Camera

Step 1
This tutorial will demonstrate several common camera movements. Set up a couple of figures facing each other and

light them up properly. Move the camera behind one of them at a respectable distance and with the face of the other
visible. This is an over the shoulder shot. Render a preview.

Step 2
Move the camera forward and create a preview render.

Chapter 14 WORKING THE CAMERA 205

Step 3
Move the camera back to the original respectable distance, but now zoom in; in other words, narrow the focal length

until the face of the character looking into the camera is about the same size as when you moved the camera forward.
Notice the difference between the perspective of the tracked-in shot and the zoomed-in shot.

Step 4
To create a simple animation, return the camera to the default focal length. Add a keyframe to the camera at frame 1.

Create a curved path for your camera to follow and keyframe it as appropriate. Make the camera keep its focus on the
space between the two characters. At the beginning of the shot it will be an over the shoulder shot. As the camera moves,
it should pan so that at the end of the animation it will have the side of both characters in view.

206 Chapter 14 WORKING THE CAMERA

3D

Co
15

ENVIRONMENTS
Sometimes the hero of a scene is the setting. Think of the
movie Avatar, with those incredible floating mountains on
Pandora. With the rocks draped with jungle and nurturing mists,
we came to care for the planet and we saw that not only was there
power there, but also a natural bounty for those who respected it.
This pulled audiences into the movie while at the same time
giving important information that moved the story forward. This
was where the last stand was going to happen between the evil
corporate sappers and Pandora.

Even if your setting is not quite so powerful, it is important to
the whole atmosphere of your scene and animation. Nothing
ruins a great character design more than having it romp around
in a poor setting. A setting grounds the character and gives it
the foundation of a story. It provides atmosphere through its
appearance and also through its lighting.
Terrain
Most of the 3Dmodeling packages out there are ill equipped to

create terrains with much complexity. However, there are several
standalone applications and plugin tools that can generate
terrains, and other natural and urban scenery elements, very well.

Terrains are usually polygon or NURBS planes modified to
have elevations like land. There are a couple of ways to apply
elevation. One is to use a specialized displacement map called
a heightfield map (Figure 15.1). This is a grayscale map where
black is the lowest elevation and white the highest. Heightfield
maps can be created randomly, from geographical data, or by
sculpting them yourself. Terrains generated from heightfield
maps can also be sculpted, letting you include features such as
overhangs and caves, so that the deformation of the plane is along
all axes. Other ways to work with a heightfield terrainmap include
modifying the randomizing equation or using a filter which
changes the values (see Chapter 17).

Another method is to use fractal equations. These modify the
terrain plane directly, without the use of a map. A fractal is
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 207

Figure 15.1 A heightfield terrain generated from a 2D image. Without proper formatting, artifacts may occur.
3D application generated heightfields tend to look better.

208 Chapter 15 ENVIRONMENTS
a shape created by starting with a geometric shape and adding
a smaller version of that shape onto the edges. This can be done
over and over again, with smaller and smaller shapes. This type of
geometry is common throughout nature. There are some strong
advantages to using fractal equations: they can be made to
simulate common land formations (Figure 15.2) better than
a randomizer of heightfield terrains, there is a larger variety of
equations that can be used, they can be recalculated as the
camera moves to get smaller detail close to the camera and larger
detail farther away, and you can make fractal terrains that go on
to infinity.
Water
These same types of equations work just as well for lakes and

seas as they do for land (Figure 15.3). Because of the nature of
the equations, they are easily animated, so that you can have
open water waves. Lakes and oceans have other features as well:
foam, and waves breaking on the land. Foam is usually just
a feature of the material settings. But waves breaking on land
cannot be handled by the same fractal equations as the less
dynamic waves in open water. This is sometimes handled by

Figure 15.2 A terrain generated using fractals.

Chapter 15 ENVIRONMENTS 209
wave objects. It is also a task that can be accomplished in
postproduction.

This is why you rarely see rough rivers or waves in 3D
animation. Their dynamics are difficult to achieve since they
require using fluid dynamics that are very chaotic, meaning
they take a lot of calculating. Another common feature well
loved by artists is waterfalls. Since they are usually seen from
a distance the solution is often to use animated alpha planes.
You’ll recall that alpha planes can be transparent, allowing the
features behind the waterfall to peek through the water as it
falls.

Underwater scenes are simulated using lighting and slow
wind type movements of such things as water plants or hair.
Creating this effect can also include volumetric lights in a god-
ray type of effect and, if the water is shallow enough and the
bottom can be seen, caustics which follow the rays of light
piercing through.

Figure 15.3 As you can see, the water looks fine in the open sea, but without
advanced techniques, it lacks realism where it meets land.

210 Chapter 15 ENVIRONMENTS
Plants
Unless you are creating a moonscape or a wasteland, part

of your landscape is going to be plants. How you handle these
plants depends on where they are in the background and
what your requirements are for the production. For game play, the
requirements for low polygon count will rule. For animations
meant to be part of live-action footage, realism is paramount.

The most primitive way to show greenery in the scene is to
texture your land with materials that have green color variations.
Even for higher level requirements, this works well for distant
backgrounds. Another option that works for distance is bitmap
images of ground-hugging plants.

But for anything that has some height, something more is
needed. Plants can be modeled just like any other object
(Figure 15.4). Trunks and stems are created in three dimensions,
but leaves are usually just alpha planes, since in real life they
have little thickness. These alpha planes do not have to remain
flat; they can be curved a little bit. Bump maps and normal
maps can also be applied to these alpha planes. This combi-
nation gives the leaves body and depth. Leaves are attached
onto the 3D trunk with hook points. These are in the places
where the leaves need to be on the trunk, and on the leaf map,

Figure 15.4 A collection of several plant models.

Chapter 15 ENVIRONMENTS 211
where it needs to attach to the trunk. Since there can be
hundreds of thousands of leaves on a tree, often instead of
single leaves, the alpha plane depicts branches of leaves to be
hooked on at the point where all the branches converge into
a single branch. Sometimes plants like grasses are made up of
specially arranged planes with images of grasses on them. Even
some ground plants with stems can be shown in this way and
often are in games or backgrounds.

While it is perfectly possible to hand model a trunk, it takes
time. This makes it difficult to put more than a handful of unique
plants in a scene. One solution is to scale and rotate single
models. Though it is possible to quickly fill up a forest like this,
the repetition is almost always visible to the audience’s eye.
Another solution is to use a program that specializes in generating
plants. Several algorithms are available, including fractal equa-
tions and applications that use them to create plants.

Figure 15.5 Sky map and simulated

212 Chapter 15 ENVIRONMENTS
Sky
Sky is the natural background to everything outdoors, and

it varies a lot. From a placid blue sky to roiling clouds, it’s
a feature worth spending time on. The earliest skies were simple
2D color maps. Often, they are applied to a sky dome. These still
work well for animations that are more cartoonish, and are fast to
render.

However, this simple map doesn’t solve the problem that the
sky is also a light source. The solution to this is to use an HDRI
map, which was described in Chapter 13. This image-based
lighting not only provides a beautiful, photorealistic sky (after all,
it is a photograph of the sky), but also lights the scene. The
problem is that it’s not as practical to animate and is difficult to
modify. This is a good solution for combining live footage with 3D
objects but not so much for pure animation.

For animation, it is best to simulate the ambient light that
comes from the sky. This can be done separately from the sky,
using an ambient light as well as a sky map (Figure 15.5), or it can
become part of the sky simulation. Light from the sun is scattered
across the sky. Because of the size of air molecules, the light that
gets reflected off these is primarily blue. Other particles in the air
also change the light color, including water (fog) and particles of
pollution. All of these effects, sky color, fog, and pollution, can be
simulated using algorithms that will change the sky color, the
light color, and how quickly things tend to fade with distance. For
instance, in the clear blue sky of a desert, there is little water or
pollution. This allows for objects to be seen in the distance. In
atmosphere.

Figure 15.6 Fog.

Chapter 15 ENVIRONMENTS 213
a very thick fog, we might not be able to see just a few feet in front
of us (Figure 15.6).
Sun
Another part of the sky is the sun. As a lighting source, the sun

is handled as a directional light. But this doesn’t give us a visible
sun. The solution is to create a sun object, usually just a very bright
disk. However, you must also take care with its color. The closer it
gets to the horizon, themore light gets scattered because of the air,
water, and pollution. This makes its color decay, so that it
becomes more orange and red while near the horizon.
Clouds
The way clouds are handled depends in part on what kind

of a sky is being used: a mapped sky or a sky being controlled
by algorithms. To add clouds to a sky map, one can use
a similar alpha map layer with images of clouds on it. These
2D images can be generated using equations and can be
animated. But they are just two dimensional and do not affect
the light.

A better method is to have 3D clouds. They can be modeled in
the typical way, using volumetric materials. Modeling a custom
cloud is often done for a hero cloud featured in the scene.
However, it is more practical to let the application generate
volumetric clouds using 3D algorithms. These can sometimes
become very specialized in how they interact with light, letting you

214 Chapter 15 ENVIRONMENTS
achieve images of clouds impossible to distinguish from real
ones (Figure 15.7). Another way to create clouds is to use particles.
This allows clouds to be simulated using fluid dynamics, creating
very realistic cloud shapes. Both types of clouds can easily be
animated.
Figure 15.7 Clouds created in a 3D application.

Chapter 15 ENVIRONMENTS 215
Indoors
Though modeling indoor scenery is easy enough, it is the

lighting that gets complicated. Indirect lighting is a very strong
influence on the overall lighting. Light from windows and arti-
ficial sources bounce from walls, tables, chairs, and anything
else in the room. If you are creating architectural rendering
where the indoor setting is paramount, you will want to use
global illumination for the best results. But if your indoor
setting is part of an animation, you may want to consider
something less render intensive. You could use something like
ambient occlusion, where the soft shadows of ambient lighting
are achieved by casting rays out from the surface of an object
and only lighting the surface if they hit the background or sky
(Figure 15.8).
Figure 15.8 Ambient occlusion and global illumination of an indoor environment.

Tutorial 13
Raising the Ground

Step 1
In a new scene, create either a polygon plane with at least 50 divisions on each side or a NURBS plane. Make sure it

has 50 spans in each direction. The higher the resolution of your surface, the more detail you can add.

216 Chapter 15 ENVIRONMENTS

Step 2
You will want to connect the height deformation of the plane to a grayscale image, with black being the lowest

elevations and white being the highest. You can even get grayscale images that represent real geographies at
several map services. Government mapping sites are a good free resource. You may need to fix them for use as
a heightfield map. There are several ways to connect the image to the mesh's shape. These could involve a displacement
tool, a specific heightfield capability (though this can act differently in different applications), connecting it through
a noise attribute of the mesh, or an attribute tab in the mesh sculpting tool. Once you have the image connected in, you
may need to lower its height or alter how much influence it has on the mesh.
Your heightfield map should be of a sufficient resolution to match the size of the mesh you need to make. However, one
of the advantages of a NURBS plane is that its curves can smooth out low-resolution artifacts unless they have enough
spans to follow the pixelization.

Chapter 15 ENVIRONMENTS 217

Step 3
You can also use an image map to add some color. For instance, there could be a little snow on the peaks.

218 Chapter 15 ENVIRONMENTS

3D

Co
16

RENDERING
Even though it is something to consider with every creative
decision you make, pressing the render button may be the last
thing you do with your 3D application. (Some 3D applications
offer a few postproduction options.) This is how your 3D scene
becomes a pixelated 2D image. Of course, your scene is being
rendered constantly throughout your 3D work: it’s how you see
the objects you’re handling. This real-time rendering also occurs
in games and uses industry programming interfaces such as
DirectX and OpenGLwhich use the faster scanline algorithms and
are supported by video graphics cards.

But to get your renders to look their best, you need to bring the
more advanced technologies into play. Rendering is a whole field
by itself, with studios employing experts in just that. Even though
a native renderer comes with your 3D program, chances are you
will end up using software that is a devoted renderer e those are
often bundled with 3D software as well. There are a lot of
rendering programs available and there is no single answer as to
which one is best (see Chapter 19 for comparisons). This chapter
gives you just a few basic settings. Your renderer will have many
more options. During the exploration of shaders and lighting
effects, a few landmarks were provided that should help you to
navigate those options.
Image Size and Aspect
This is a setting you may have considered while working with

your camera, but it is usually controlled in the render settings.
You will need to know how big your final output is going to be.
This depends a lot on what you want to do with it. To view on the
web, keep in mind that the standard quality (as far as resolution
goes) for the web is 72 dpi, or dots per inch e which is pixels per
inch. For television, the maximum you will need is 1920� 1080.
That is the resolution for full high-definition quality images on
television. Film, of course, is much higher. For printing, you will
need something quite large if you want it to look good. Printing
quality resolutions are usually 300 dpi. This means that if you
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 219

Figure 16.1 Common aspect ratios.

220 Chapter 16 RENDERING
want something in A4 format, which is 210� 297mm or
8.27� 11.69 inches, at 300 dpi you get 2480� 3508 pixels. The
only limits to the size of your image are how much computing
power and time to render you have.

Something else you want to consider is the aspect ratio
(Figure 16.1). This is the ratio of your image’s width to its height.
A4 is a standard print ratio, used for magazines and books. Other
common aspect ratios are the standard PC monitor (4:3) and
television (and monitor) widescreen (16:9). While you should
keep these in mind for projects, don’t be afraid to experiment
with other aspect ratios for artistic effect.
Quality and Optimization
Before you render, you’ll want to manage settings for quality.

One of the easiest things to do right off is to use the presets that
are often available in render settings. Many of these presets
contain optimizations for special cases, such as motion blur or
caustics. Just clicking on the presets and exploring what has been
changed can help you to get started.

However, settings that affect the quality of the image do not
just reside in render settings. You will find things throughout the

Chapter 16 RENDERING 221
production. With modeling, you need to consider the right
polygon count against render time. In shaders and materials you
need to choose which shader is optimized for the desired effect,
the resolution of your textures, and how light is transmitted and
emitted from objects. In lights, you need to choose the type of
lighting as well as settings for shadows. With every setting related
to quality, you should keep in mind that after a while, higher
settings give no noticeable improvement. Always choose the
lowest settings possible to get an acceptable result. The audience
is not going to be looking at the image zoomed in to 200% of
its size.
Antialiasing
One of the problems that can crop up when rendering is seeing

artifacts such as sharp, stepped edges, noise, or flickering in
animations. This is aliasing, and you can get it even if the image
has high resolution (Figure 16.2). Remember that rendering
Figure 16.2 Antialiasing techniques before and after.

222 Chapter 16 RENDERING
algorithms gather data from the scene to give a pixel its color. To
get the most accurate color for the pixel, the renderer needs
enough samples per pixel. Increasing the samples per pixel will
do this for the entire image, so you should use the lowest settings
possible to get the result you want. There is also the possibility of
adaptive sampling: the renderer sees if there is high contrast or
detail and increases the sampling only in that area, while keeping
lower sampling in other parts of the image. This will tend to
improve things where they are needed most.

Another cause of aliasing can be having texture maps that are
of too low a resolution for the object they’re applied to. In that
case, you will need to edit the texture image in a 2D application
and increase its resolution.
File Type and Naming
You can save your image or animation as one of many file

types. If you are just saving a still image, you will probably want
a JPG for viewing onscreen, such as on the web, and a TIFF for
using in print. But, if you intend to do some postproduction work
in something like Photoshop, and especially if you’re rendering
more than one channel, either you need a file type that supports
layers such as TIFF or PSD or you will need to render several
passes.

For an animation with more than one channel, you need
something like RPF, RLS, or EXR (for HDR). If you do not need
to use multiple channels you can use JPGs for animations as well.

When making an animation, it is generally better to save it as
a series of images, for any postproduction work required. You will
need to follow some kind of naming convention, such as
name_#.extension, and also specify a output path to save to. It is
possible to save it as a composite animation file such as MOV
(QuickTime) or AVI, but this has a serious disadvantage. If
rendering stops for some reason, like a computer crash, then you
will have lost all the rendering that was accomplished for the
animation file. If you were rendering to a series of images, you will
have only lost a single image and can start the render running
again from the point at which it failed.
Bucket Rendering
Now comes the question as to what is rendered when. An

image is usually rendered in tiles, piece by piece (Figure 16.3).
The advantage of this is to separate the parts of the image that are

Figure 16.3 Bucket rendering.

Chapter 16 RENDERING 223
difficult to render from easier areas. In many applications, you
can control the size of your bucket. For complex scenes, smaller
bucket sizes will help to break down the tasks and increase the
speed of the render. But for simple scenes, smaller bucket sizes
can actually slow down the render. This is because every time
a bucket tile is finished, the image is updated. This adds to the
load on the processor, which slows things down. With modern
computers, however, this is less of an issue and in some cases
user control has been removed.
Batch Rendering
Let’s say you would like to have several non-sequential frames

rendered without needing to start the render again each time
a new frame is started. This is where batch rendering comes into
play. A batch file is a set of commands given to the computer to
do, one after another. With batch rendering, the rendering often
occurs on a different thread. This means that it is running as if it
were a different program. Using batch files, you can queue
several rendering tasks at the same time, so that once one is
finished, the next starts rendering. Since you only need the render
software open to do this, and that software can read a project file,

224 Chapter 16 RENDERING
you can even have it render images from several different
projects. It is often handled using command prompts or script-
ing, though sometimes there will be a user interface to create
a batch file and start it. Recent versions of some applications
allow you to keep working while the batch is rendering. Batch
rendering is not very practical unless you have quite a few images
to do or you wish to leave the computer while two or three
pictures are rendering.
Network Rendering
If you need more than that, such as with an animation or

a large and complicated image to render, you can recruit the
help of other computers. With network rendering, each
computer involved needs to have a client e a smaller version of
the renderer that will communicate with the server. In a home
studio, your network will be the computer you have been
working on, and any spare computers or the computers of your
friends or family. The server application will dole out the tasks to
each computer, which will render that portion and send it back
to the server, which will then piece it all back together. These
could be either tile buckets, in the case of distributed bucket
rendering, or whole frames. You really do not want to get
a network involved for smaller rendering tasks, since it will just
slow things down because of the communication and task
organization that must occur. In a medium studio, you may be
fighting for access to the render farm (what a network of
computers devoted only to rendering is often called); in a larger
studio, you would probably just hand over your work to a render
technician.
Frame Buffers
All that graphical data bouncing around has to be stored

somewhere before it is rendered as an image or to a file. The
frame buffer can refer to two things: the actual hardware that is
capable of storing that data or the actual store of graphical
information. In some cases, this can be viewed.

Spherical and Panoramic Renders
To render a sky map or a reflection map, you will need to have

a spherical or panoramic render (Figure 16.4). A few applications
do thisdirectly.Withothers, youwill need a special lens shader. For

Figure 16.4 Spherical rendering.

Chapter 16 RENDERING 225
a full spherical image of the scene, one method is to have a reflec-
tive sphere, render that, and then unfold it in a 2D editor to get
your map.
Stylized Renders
Your goal may not be to get an image as realistic as possible,

but to create an artistic or useful effect (Figure 16.5). As an
example, the lined illustrations of 3D objects in this book were
created using contouring. This required that contours be turned
on in the render settings and adjusted in the shader. You can
Figure 16.5 Stylized rendering.

Figure 16.6 Layers.

226 Chapter 16 RENDERING
make your renders look more illustrated or painterly, and
change their color saturation, exposure, or any number of
things. Playing around with lighting, shaders, camera settings,
and render settings can enhance the mood of your images and
bring another level to what is possible with the computer-aided
imagination.
Layers
An image can be rendered with several layers (also called

passes, or elements). These layers can contain different
information such as lighting maps, shadows, and Z-depth
(distance from camera). They can be used for postproduction
and compositing (Figure 16.6). This gives you a lot of power to
edit your image without having to rerender it. For instance, if
you were to render the lighting map for each light and set it to
white, you could then change both the brightness and the
color of the light in postproduction. Another powerful tool to
use in conjunction with this is the ability to hide objects from
render. This lets you use very high-quality settings for only
some parts of the image, forgoing them where they are not
needed. Using this and Z-depth maps, you can recomposite
the image back together. You can use it to fake the depth of
field by blurring some parts of the image and not others;
render bubbles drifting in a scene; or render an object with
motion blur moving behind glass e the transparency makes
motion blur effects take a long time, but if you render the glass
on a different layer that problem is solved. Many special
effects such as particles are also more efficient to render
separately. Computer-generated effects are incorporated into
live footage using layers.

Chapter 16 RENDERING 227
Postproduction
The work after your render is an important part of getting your

image or animation just right. In postproduction, it’s a lot easier
to do some things such as adjust the lighting and color balance.
Various effects can be added as well. For instance, if you didn’t
render a lens glare effect, but decide you want it, it is fairly simple
to do with a 2D editor.

Postproduction is when you do the compositing work. When
you render objects that are meant to be combined with other
objects or with live footage, part of the information included
will be an alpha mask, giving the 2D application the informa-
tion it needs to add only that object into the scene and not the
background surrounding the object. In this way, not only can
you tweak color and lighting, you can also nudge the
arrangement a bit. This is one reason why shadows need to be
rendered in a separate layer. Also, as you are arranging things
in the image, you need to make sure the lighting intensity and
direction match. So if you rendered these objects in the same
scene, you cannot move them too far from where they were
originally.

An efficient way to animate is to copy old school methods. If
a background will be static, then instead of rendering everything
in that background for all your frames, you can make just one
render of the background. Then you can render all the moving
objects and creatures, and then composite the single background
image into every frame. With 2D video editors, this is a simple
thing to do.

Tutorial 14
A Batch of Robots

Step 1
Open up the scene with the robot animation in it. In your render options, set your quality so that the minimum sampling

is at least 0 and the maximum is at least 2. This is the number of sample rays put out for each pixel. When it is less
than zero, this means that there is only one sample ray for more than one pixel. Set your aspect ratio to be a square, and
make it at least 1000� 1000. Set the name convention and file type so that it is something like theJuggler0001.jpg. The
numbers at the end of the filename will increase with every frame. Set it to render frames 1e24. Render it as a sequence
of images. You may have played with the lighting, but if not and if you want a white background you will probably find it
within the environment settings on either the camera or the render options. Start a batch render.

228 Chapter 16 RENDERING

3D

Co
17

PROCEDURES AND GRAPHS
In order to get some things done, we have to go through
specific, step-by-step procedures. Let’s say we want to bake
a cake. For an easy start, we pick amix. To this mix (which already
has some important ingredients added) we add eggs, oil, and
water. We mix it. We put it in a pan, and bake it at a certain
temperature. If we change any of these things, what we get will
not be a cake. It could be good: it could be cupcakes or cake mix
cookies. There are many great things that can be made with
a cake mix as the beginning. Or it could be a disaster. Either way,
we went through a procedure to get frommix to finished product.

Procedural methods are a way of modeling, animating,
texturing, and just about anything else that involves giving step-
by-step instructions. What if you want to model the cake in 3D?
You could start with a primitive cylinder, give it an interesting,
somewhat lopsided shape, and then add a texture to it. Once
again, exactly what you do and in what order will affect your cake
model for good or bad. As you’ve done this, your application has
set a node for every object you created and everything you did to
change that object. One of the great things about storing and
viewing objects and actions in nodes is that you can go to
a specific node and change it later on. These nodes become part
of a node tree which you are able to access in a graph.
The Graph
It is often easier to understand a set of instructions if we can

visualize how each step relates to the others. When you access the
graph, whatever it is called in your application, you will see nodes
as labeled boxes connected to each other by lines or arrows.
The lines that link them pass information from node to node. The
nodes and the links together make up a function (Figure 17.1). If
you watched Wall-e, you may recall that Eve asked Wall-e, “What
is your function?” In reply, Wall-e demonstrated his function of
compacting trash into a neat cube which he then stacked. A
function is the task for which something exists. In mathematics,
a function is the task that changes one value to a new value.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 229

Figure 17.1 A function is made up of nodes and links.

Figure 17.2 Baking a cake shown w

230 Chapter 17 PROCEDURES AND GRAPHS
As used in 3D graphics, changing the value will alter the model
and the scene it’s in. A function is made up of an input (the first
value), a node (the modifier), and the output (the new value).

Each of the lines connecting the nodes are the inputs and
outputs. One or more links go in: these are the input. And one or
more links go out: these are the output. If the lines are not por-
trayed as arrows, inputs usually run from left to right, or from up
to down. When we set up a chain of functions, we can start out
with simple inputs and gain a useful output. This whole chain is
the workflow or the procedure by which the result is gained.
Figure 17.2 is the cake example set up as a graph.

Try opening up the graph for anything that you’ve created
(Figure 17.3). There you can see the different values that are in
each node. Sometimes there will be nodes you are not sure of that
are part of how your 3D package handles things. You will see
ith inputs, outputs, and nodes. The nodes are where the action takes place.

Figure 17.3 Graph showing the inputs and outputs of the root joint of the robot created in the tutorials. The skinClusters
are the groups of vertices which that joint influences. You also see which joints it influences. Since this graph has the
root joint, only those objects directly input and output to it are shown. The skinClusters and nodes down line from them
show how the joint influences a shape object.

Chapter 17 PROCEDURES AND GRAPHS 231
every object, any scaling, transformation, deformation that you
applied to it, any edge loops added, or any other modifier of that
object. You will also see all images, texturemaps, and shaders that
you have used in the materials. This gives you an easy way to go
back and alter characteristics that you may have given to your
object early in the history of its creation. It is also a great way to
access the hierarchy of the model, including its rig. The graph can
become huge and difficult to navigate, but it is still easier than
trying to go back into the also huge list of things.
Types of Values
What kind of information can be passed through nodes? Just

about anything you can think of can be reduced down to
numbers: speed, time, direction, position, color, height, etc. Even
though it is numbers that are passing through these nodes, they
often represent things that can be visualized. For instance, color
is assigned a certain number value. When a node has that value
and is set as a color node, you will see a color. That is why there
are often images in the text boxes representing the nodes. It’s

232 Chapter 17 PROCEDURES AND GRAPHS
kind of a cool thing, really, to be able to see how each function
alters the object or animation.

Many times, the values have to be handled in a special way.
There needs to be a tag, so to speak, indicatingwhat kind of a thing
a number is representing so the node knows how to handle it. In
the previous example of color, a number will pass through a node
which assigns a color to it. An important thing to understand about
this is that not every node can handle every kind of value. An
example of this is data representing position. This comes in the
form of X, Y, and Z coordinates. A node meant to handle a single
number like a color can’t work with the coordinates. If you need
some value that comes from two incompatible types of data, there
are math nodes that can adapt them.
Value Ranges
When you have a minimum and a maximum value, this can

often be converted to a simple 0e1 range of values. This is ofte-
n easier to handle mathematically than something like
31.875e347.314m, even for a computer. All of the modifications
through the functions can be handled; then the range can be
given the values in both number and type that it represents. As
mentioned in Chapter 11, the 0e1 range can be visualized in
grayscale as black to white.
Hierarchy
Any object that is parented to another object will become

connected to the parent object. The parent object will output
something such as location or rotation, and this will become an
input to the child object. There may be a special hierarchal graph
making this easy to visualize (Figure 17.4).
Types of Nodes and Functions

Inputs
Thefirst node (or set of nodes) in a graph is the input valuenode.
This can be themain object itself (its geometric values) or a type of
attribute such as location or time. For instance, if you created
a sphere, then this sphere is shown in the graph with the size and
placement you have given it. Sometimes inputs for a certain object
refer to outputs from somewhere else in the scene. As an example,
a light could turn on once the light from the sun gets below a cer-
tain value. This is called an external dependency or input.

Figure 17.4 Graph showing the hierarchy of a joint system from the shoulder down to all of the fingers.

Chapter 17 PROCEDURES AND GRAPHS 233
Joints and Rigging

When you create a skeleton and add things such as inverse

kinetics these will appear in your graph as nodes. As joints are
created, their hierarchy is automatic and will appear in your
graph. The same thing happens with any other kind of deformers
you put in. Any controls you create for them will also be added
into the graph.
Math or Utility Nodes

There are lots of things you can do with nodes that are purely

mathematical. You can combine two nodes together. You can
add, subtract, divide, or multiply certain numbers to your values.
For instance, if you want to give your object a redder tint pro-
cedurally, you can add a number to the color values to get it closer
to red. You can inverse numbers, quickly turning a mountain into
a pit. Another very useful math node is a filter that works with the
0e1 range. This filter will let you control the 0e1 range that comes
out of a different node (Figure 17.5). Let’s say you used a fractal
terrain node, but you want everything above and below certain
heights to be flat. We’ll say that within the 0e1 range, everything
between .25 and .75 should be flat right between those values.
Then when any value between .25 and .75 came in, they would be

Figure 17.5 Here, this filter (using a �1 to 1 range) changes the graph so that everything above .6 is turned to a value
of 1, also increasing the values below .6 slightly.

234 Chapter 17 PROCEDURES AND GRAPHS
changed to .5, giving us a flat plateau with peaks poking up from
it. This means that filters can be used to increase the presence of
a color, an elevation, a speed: just about anything.
Material and Texture Nodes

These are nodes that contain information about shaders,

materials, textures, and the like which help to control how these
are fixed on the surface of your object.

Chapter 17 PROCEDURES AND GRAPHS 235
Noise

Noise is a very useful type of function that adds randomness.

There are several types of equations that can generate it, such as
Perlin noise algorithms (Figure 17.6), but the easiest way to
understand it is to visualize it. Noise is like the static on an analog
television screen. We could use noise for both a color and a bump
map for sand. Since this is done mathematically and not with
images, there is no limit to the area we can cover with a sand
texture created procedurally in this way, which means that we do
not have to be concerned with seams.

Noise does not have to be fine in detail like sand. We can
increase its scale: just a bit bigger and we’ve got the gravel of an
asphalt road. The scale can get as big as we want, and we can
increase the prominence of some values. For instance, let’s say
we want a few specks appearing in what is otherwise mostly one
color, like granite. There can either be a setting in a noise node or
a node after the noise node where you can control how much
one value is shown more than another, or rather the distribution
of features. For our granite example, we would want larger
features to be more prominent while keeping the smaller features
rather fine. Noise nodes can show grayscale, but when a color
node is added to after the noise node, it can also be a jumble
of colors.
Figure 17.6 Perlin noise used to control the displacement of a sphere’s surface.

Figure 17.7 A Julia set fractal.

236 Chapter 17 PROCEDURES AND GRAPHS
Fractals

You have met fractals, before when you learned about terrains

generated using them. A fractal is a piece or fraction of geometry
that is the same as the whole where it came from. Fractals repeat
geometry, following a pattern. Usually every repetition, also
called iteration, is smaller than the previous one. You may be
familiar with some of the common fractals such as Julia sets
(Figure 17.7); other methods such as Voronoi diagrams may also
be used to produce fractals (Figure 17.8). They can be very regular
in their pattern, but can also include a lot of variability. They are
often used in place of noise. For instance, Perlin fractals look a lot
like Perlin noise. Both the regularity and the randomness can be
well controlled. This makes them very useful for plants and the
previously mentioned terrains. A large tree starts with a trunk,
then has branches very similar to the trunk forking off in a fairly
predictable way. Smaller branches fork off those, and smaller and
smaller. Each branching follows a pattern but there are factors
that make for some randomness. The more branches there are,
the more random it appears. The fewer branches there are, the
more obvious their regularity is. Several very regular patterns
such as cross-hatching or checkerboard may or may not be
generated using fractal equations as well.

Figure 17.8 A fractal based on Voronoi diagrams then applied to displace the surface of a sphere.

Chapter 17 PROCEDURES AND GRAPHS 237
Color Maps

A color map is a collection of colors given number values

which can be used in a function graph. A stone, for instance,
could have a range of colors from tan to dark rusty orange. These
colors can be arranged together in a gradient which has the
value range of 0e1. The lightest tan could be at the far left,
having a value of 0, and the darkest at the right with the value
of 1. In this way, you can use only a limited range of colors for an
object, within which any color would be called by a number
value. It also lets you convert a grayscale map to colors
(Figure 17.9).
Figure 17.9 Color map.
Images

Another type of node is an image (Figure 17.10). These are the

bitmaps that you use when creating your textures. Having them

Figure 17.10 The settings in a node which apply an image onto a sphere.

238 Chapter 17 PROCEDURES AND GRAPHS
in the graph lets you edit them within the context of the scene
you’re creating. For instance, a stamp on a box could be an image
map. The rest of the box would be a cardboard-looking texture.
Both of these could be connected to the same water-damage
effect. Anything you can do with the other color nodes, you can
do with an image.
Combining Nodes
So one by one, it’s easy enough to understand what a node

is. How do they work together? Let’s say we want to create the
same texture as we see on a school bulletin board. It is made out
of a rough burlap material which is sometimes painted. We can
take a regular cross-hatch or weave pattern as one node. In the
next node, we can add randomizing math node, so the inter-
weaving lines are not completely straight or even. Then we add
node with a bit of noise, for the little knots and other irregu-
larities which come up in the fibers of burlap. If we want to
paint it, that could be one or two more nodes adding on
a smooth color over the very rough fabric. Or let’s say we have
created an animation with a person walking, smiling, and
waving to others. Each joint’s position and rotation and each
morph target will become separate nodes, with all of them
combined together (Figure 17.11). This is automatic, but makes
it very easy for you to access the animation properties of one
joint in order to manipulate it, change its values, or combine it
with a different set of nodes; for example, catching a ball. At
first, the two sets of nodes will not be connected, but once the
ball is caught, the ball’s animation will be connected to the
hand’s.

Figure 17.11 The movements in just the Z direction of the root joint while walking.

Chapter 17 PROCEDURES AND GRAPHS 239
Container Nodes

Sometimes, it may be easier to work with your graph if you

have grouped several nodes together into one node. It makes the
graph cleaner to work with, and it is easy enough to open up the
container and work with the nodes inside.
Outputs
An output is the final result of a workflow. It gives the final

value of something, and can be connected as an input to
something else. You might not see it specifically in your graph.

Though it may seem a bit daunting at first to work artistically
using nodes and functions, it can be a very useful tool with very
satisfying results once you get the hang of it.
Procedural Methods
When any geometry, texture, or motion is created using

mathematics this is a procedural method. There are some good
advantages to using procedural methods, one of the most
significant of which is memory. A great example is a procedural
terrain. Rather than being stored as a model using a gluttonous
number of polygons, a procedural terrain is stored as a relatively
simple mathematical algorithm which informs the application of
its geometry only when it is rendered. Not only is the memory
footprint smaller, but it leads to fewer calls to the memory,
which improves render time. But render time, of course, is not
the only thing that is improved. Since a procedural method
requires only choosing a few options and how they work with

Figure 17.12 From left to right is a
before the checkerboard node, and

240 Chapter 17 PROCEDURES AND GRAPHS
each other, it is much faster for you to create a terrain proce-
durally than to sculpt one yourself. And because nature can be
described mathematically so well, it is often more accurate than
what the artist can do.
Order

As you learned in the deformation chapter, the order you put

things in is important. For instance, let’s say you perform
a bending deformation and then you twist the object. It will look
a lot different than if you twist the object before you bend it. A
motion path with a noise pattern will act differently than if that
turbulence was applied before the path. If things are not looking
quite right, try moving the order in which your nodes are placed.
An example is shown in Figure 17.12.
checkerboard pattern node, a turbulence node, the turbulence node combined
the turbulence node combined after the checkerboard.

Tutorial 15
Smoothing the Joints

Step 1
Though it is not ideal to fix this after everything else is done, it is not unusual to see something later on in

the process that you want to fix. It can be difficult or impossible when there is a parentechild hierarchy to select
only the object that is a root, rather than that object and all of the children objects. When trying to do some operations
on the hierarchy, it may not work as you would like. However, you can use a graph simply to select individual objects of
a model, without selecting any of the children. Start with a shoulder sphere and select it so that only it is selected and
not the rest of the arm. Then use a smooth mesh operation with two subdivisions. The sphere should then look fine
when rendered. Using the graph, navigate to each sphere that is a joint and smooth their meshes.

Chapter 17 PROCEDURES AND GRAPHS 241

3D

Co
18

SCRIPTING
You can be a great modeler or animator without learning how
to script at all, but it is a skill that’s very useful. Imagine a scene
where we are supposed to see lights come on randomly in a city-
scape as the sun goes down. This is not very difficult to do, but it is
time consuming and tedious, and your client needs it the next day.
This is where a little scripting knowledge can really assist as
a time-saving tool for automating repetitive tasks. Another use for
it is in controlling animations such as walking cycles.

A scripting language is similar to a programming language. It
doesn’t need to be compiled (converted to 0s and 1s) into
a program, but is read by an interpreter that is usually part of your
3D package. It comprises a set of instructions, a script, that tells
the software what to do. Scripts can do a number of things that
are difficult or not practical to achieve manually. As well as
automating multiple tasks, they are especially useful for an effi-
cient workflow. Because scripting is so flexible it’s not possible
to list all of its uses. Often your 3D package uses its scripting
language internally, so that if you click on a button you set off
a command from the scripting language. In these cases, you can
even use a script to customize the software itself to fit your needs.
You could change the user interface and menus, or you could
write something to use the latest developments in computer
graphics science.

All the main 3D applications have their own proprietary
language, but themost commonone is Python. Python is an open-
source language developed independently of 3D graphics, though
it is used a lot for that purpose. That’s because it is well estab-
lished, well documented, powerful, andmost importantly, simple.
Even the 3D packages that have their own language usually have
a way to integrate Python into it. There are some great resources
out there for Python scripting, including http://www.python.org.

One of the easiest ways to get the hang of scripting is to see it
in action. Many applications give you access to a command line,
or a place where you can write in a command from the scripting
language and see it as it is executed in a script editor. To take
it to next level, find a script e there are plenty of websites with
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 243

http://www.python.org

244 Chapter 18 SCRIPTING
them e run it to see what it does, then open the script in a text
editor and check out the code.

When you open up a script in a text editor, you will see two
things going on in it: comments and the script. Especially in
small scripts, the comments may be larger than the script itself.
Comments are there for your sake. They tell you the name of
the script, give instructions, and sometimes explain what the
script is doing in a certain section. You will recognize
comments by the hash symbol (#) that comes before every line
to tell the 3D application not to read it. In Python you can also
put multiple lines of text between triple quotes ("""). Easier to
read, this is often used at the beginning, when there is a lot of
information.

When you are writing scripts, comments are important. You
should add your name to the script, the date on which you wrote
it, the version of software that it was written for, the version of the
script, and what the script does. Always keep inmind that the user
may not know what some little bit does, so you should document
every part. At work, it could be a project manager who knows little
about coding who is reading your script. If you are putting it out
into the great wide world for others to use you will have an
audience of every skill level. Even if you are just writing it for
yourself, a few years down the line youmay want to use it again or
you may decide to let a friend use it. Documenting with
comments is a good habit to get into.

The script part will contain things such as commands, argu-
ments, functions, and variables. A command will do something
and the argument is the value that is being worked on by the
command. A function is like a miniprogram that, when “called”,
will do a combination of things to perform a task. A variable is
a value (input or pulled from somewhere else) that is stored
somewhere and is later modified. Both functions and variables
need to be defined. Definitions must come at the first part of
a script, or at least before they are called.

#****************************
#CREATE A SPHERE EXAMPLE
#This script will create a sphere
#which will be positioned based
#on user input.
#****************************
#Defining the function
def CreateSphere (xPos,yPos,zPos):

#Creating new sphere
mySphere¼AddSphere()

Chapter 18 SCRIPTING 245
#Move sphere to position set by user and passed in to the
function
mySphere.Move(xPos,yPos,zPos)
#Resize sphere by coded values
mySphere.ResizeAxis(3,3,3)

return
#Get position values from user
xPos¼Prompt("What is X?")
yPos¼Prompt("What is Y?")
zPos¼Prompt("What is Z?")

#calling the function
CreateSphere (xPos,yPos,zPos)
#Refreshing the 3D views
Refresh()

The previous code is an example of a Python script. In the very
first part of the script is a paragraph of comments giving a title
and telling us what it will do. There are also comments
throughout the script. The first thing that this script does is to
define a function, which is a set of several commands. The first
command is to make a sphere: AddSphere. You will notice
that it doesn’t just say AddSphere, but mySphere¼AddSphere.
mySphere becomes a new instance of the object that is being
handled within the code. The sphere is created with several
default properties. Using mySphere you can change those
properties.

Then the code sets up the three coordinate variables that will
be used for position. Prompt will cause a window to appear that
has the text that is in the quotes and a place to input text. This
user input will become the values of the variables. In this case, the
input should be a number which specifies the X, Y, or Z
coordinates.

The script contains variables between parentheses, including
the text which says “What is X?”, and xPos. These variables are the
arguments. The arguments are the values that the function or
command will work with.

This function will not actually run until it is called. Once
defined, when it is put in the script again, it will execute its
commands. Scripts can be as simple or complex as you need
them to be. One of the reasons functions are useful is so that you
do not have to repeat large blocks of code e for instance, if you
wanted to create twenty spheres. However, the function used in
this example is an inefficient way to create lots of spheres.

The last command is a refresh command. Many applications
will run a script without renewing the image in the 3D views. If

246 Chapter 18 SCRIPTING
they did renew throughout the script, lots of flickering and
jumping around might occur. So the entire script is run, and if
you want the view refreshed at the end of it, you can add that
command. If you were creating a function that affected the result
of the render, you wouldn’t need to use a refresh command.

Things are always evolving with software. Old scripts might
not work on newer versions of your 3D software. You will have
documentation showing you commands, prebuilt functions, and
other fun things that are recognized by the software.

This particular chapter has no tutorial because you may not
even be using the same scripting language. However, a good
practice problem for you would be to check out your documen-
tation and write a simple script such as creating a cube and
resizing it, or creating several cubes with random scale, translate,
and rotation values.

3D

Co
19

WHAT TOOLS TO USE
If you’ve taken even a small look at the number of applica-
tions available to you, your head is probably spinning: there are
a lot of them. One of the most common questions asked by
beginners when they get onto a computer graphics forum is
“Which app?” This is often in the form of “Should I choose
Really-Good-App 1 or Really-Good-App 2?” Don’t do this. While
most people will react with patience and give some good advice,
others are tired of the question, and most members are frus-
trated because someone will always start a flame war over why
one is better than the other.

With that dire warning, what is the good advice often given? It
is that there is no one piece of software that rises above them all.
You cannot make amistake by choosing one over the other. There
are, however, mistakes that can be made. One is that, having
chosen, we become so loyal to a piece of software that we are the
ones responsible for the flame wars. The other, in the same vein,
is that we stick by the application no matter what, even if there is
a task that some other app can do better, or after development
has been stopped for so long that the app has become a redun-
dant dinosaur. A 3D artist and especially a studio must remain
flexible. It’s the final result that is most important, not the tool
used. Pick the right tool for the right job.

A big film production could use Maya, Lightwave, Softimage,
ZBrush, Vue, and a few others. Maya, Lightwave, and Softimage
are all big packages that domany of the same things, but each one
of them excels at certain tasks. Smaller studios or solo artists can
still usually do everything with any of the full solution packages
and a decent renderer. They just have to work at it.

So, there is the big answer. But what about you, right now,
right here?

Well, you might already know that you do not have much of
a choice. If you are at school, the school has often chosen which
applications it will be teaching 3D with. So go with it. But during
break times, try to get experience with other software. Don’t think
that because a professor or course leader chose an app that
means it is the best app, as discussed.
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 247

248 Chapter 19 WHAT TOOLS TO USE
One consideration is money. You may not have a choice
because your only choice is free. Don’t worry. The free solutions
out there are for the most part every bit as powerful as the ones
with jaw-dropping prices. The society of 3D artists includes good-
hearted and talented folk who want to bring 3D to the masses.
User interfaces can have a steep learning curve. But this difficulty
is softened by the equally great community support you will
receive. There are also applications that are aimed at hobby level.
These cost a little, but as they are ideally suited for non-experts
they are usually much faster to learn.

Something that can help you afford some of the more
expensive packages, especially if you are a beginner intending to
become professional, is the educational discount prices offered.
Even if you are going the self study route, take a class at the local
community college and get a student card (unless you’re in high
school e you already have one!). Even with tuition rates, the price
for one class will probably still give you enough savings to be
worth it, as well as give you some projects with deadlines that
may stretch your abilities. Always a good thing.

You also need to keep in mind your hardware and your
operating system. Most of this stuff is not going to work on an
out-of date laptop, or even older desktop for that matter. Are you
using a PC with Windows or Linux, or do you have a Mac? If
possible, you should have a 64 bit processor and the operating
system to support it. You need a good graphics card that
supports Open GL. Mac versions of software, unless they were
created only for a Mac, tend to be a bit less stable than Windows.
If you are intending to purchase a computer for this, and you
need to choose between spending the money on computer or
software, lean toward getting the best computer you can. If you
cheap out on a computer in order to purchase a high-end
package, then your software will not run as well on it and will
have a tendency to crash. As a result you will have a frustrating
experience.

The most important question for you is: what do YOU want to
do? Do you want to create models? Is your primary purpose
creating art, and you don’t care much about modeling? Do you
want to make still images or animations? If you are looking to be
professional, do you want to go into game development, visual
effects, or animation? Maybe you want to create architectural
visualization. What is a comfortable type of workflow for you?

With all of this in mind, you still do not have to worry about
choosing wrong. Happily, all of these programs offer a limited
free trial or, even better, a personal learning edition (PLE). PLEs
are extended trials that usually limit the file-saving abilities

Chapter 19 WHAT TOOLS TO USE 249
and/or add watermarks to renders. Download a few and take
them for a test drive. Get a feel for the software.

Below is a list of many applications available, with short
descriptions. Hopefully, this will help you get a handle on what is
available and help you to narrow down your options.
Full Packages
3DS Max and 3DS Max Design

Developed by: Autodesk
Platform: Windows
Price: $3495; Student Price: Free
Trial: 30 days
Main Uses: Animation, Modeling, Video Game Creation,
Visual 3D Effects

Blender
Developed by: Blender Foundation
Platform: Windows, Macintosh, Linux, and more
Price: Free
Main Uses: Animation, Lighting, Modeling, Video Game Crea-
tion, Visual 3D Effects

Carrara
Developed by: Daz 3D
Platform: Windows, Macintosh
Price: $89.95e$549
Trial: 30 days
Main Uses: Animation, Modeling

Cheetah 3D
Platform: Macintosh
Price: $99
Trial: Unlimited time, cannot save files
Main Uses: Animation, Modeling

Cinema 4D
Developed by: Maxon
Platform: Windows, Macintosh, Linux
Price: $995e$3695; Student Price: $195e$495 through resellers
Trial: Unlimited time, limited rendering and saving
capabilities
Main Uses: Modeling, Texturing, Animation

Houdini
Developed by: Side Effects Software
Platform: Windows, Macintosh, Linux
Price: $1995e$6995; Student Price: $99 (limited rendering
capabilities), $350 (full)

250 Chapter 19 WHAT TOOLS TO USE
Trial: Unlimited time, watermark and smaller renders, etc.
Main Uses: Animation, Lighting, Modeling, Visual 3D Effects

Lightwave
Developed by: NewTek
Platform: Windows, Macintosh
Price: $895e$995; Student Price: $195 through resellers
Trial: 30 days fully functional
Main Uses: Modeling, Texturing, Animating

Maya
Developed by: Autodesk
Platform: Windows, Macintosh
Price: $3499; Student Price: Free
Trial: 30 days
Main Uses: Animation, Lighting, Modeling, Video Game Crea-
tion, Visual 3D Effects

Softimage
Developed by: Autodesk
Platform: Windows, Linux
Price: $2995; Student Price: Free
Trial: 30 days
Main Uses: Modeling, Animation, Video Game Creation
Smaller Packages
These always offer modeling, but sometimes have one or two

other things that they do really well too.
Hexagon

Developed by: Daz 3D
Platform: Windows, Macintosh
Price: Freee$149
Trial: Yes
Main Uses: Modeling, Texturing

Modo
Developed by: Luxology
Platform: Windows, Macintosh
Price: $995e$1195; Student Price: $149
Trial: 15 days limited free, 30 days unlimited $25
Main Uses: Modeling, Animation

Silo
Platform: Windows, Macintosh
Price: $99/$159
Trial: Fully functional 30 days, limited thereafter; Student
Price: $69/$109
Main Uses: Modeling

Chapter 19 WHAT TOOLS TO USE 251
Sculpters
These are often used to add details after the main shaping of

a model is complete. However, it is still quite possible to model
the entire object in these applications, and many prefer the
sculpting technique.
Mudbox

Developed by: Autodesk
Platform: Windows, Macintosh
Price: $745; Student Price: Free
Trial: 30 days
Main Uses: Sculpting, Posing, Texturing

Zbrush
Developed by: Pixelogic
Platform: Windows, Macintosh
Price: $595; Student Price: $450
Trial: None at time of printing
Main Uses: Lighting, Sculpting
Character Animation
There is usually not much going on in the way of modeling in

these applications (though morphing preexisting models is
common), but they are very nice for making images of characters
that you’ve created.
Daz Studio

Developed by: Daz 3D
Platform: Windows, Macintosh
Price: Free/$149.49
Trial: 30 days, some features disabled after this
Main Uses: Animation and Rendering of Characters

Poser
Platform: Windows, Macintosh
Price: $249.99, $499.99; Student Price: $199.95 through
resellers
Trial: 30 days
Main Uses: Animation and Rendering of Characters
Scenery
Bryce

Developed by: Daz 3D
Platform: Windows, Macintosh
Price: $99.95

252 Chapter 19 WHAT TOOLS TO USE
Trial: Personal Learning Edition, unlimited, no watermarks,
non-commercial use only
Main Uses: Terrain Modeling, Plants, Sky and Atmosphere,
Animation

Vue
Developed by: e-on Software
Platform: Windows, Macintosh
Price: Freee$1495. There are several versions with different
capabilities
Trial: PLE unlimited time, watermarked
Main Uses: Terrain Modeling, Plants, Sky and Atmosphere,
Animation

Terragen
Developed by: Planetside
Platform: Windows, Macintosh
Price: $99e$399
Trial: Unlimited, non-commercial use, limited renders
Main Uses: Terrain Modeling, Sky and Atmosphere, Animation

XFrog
Developed by: Greenworks
Platform: Windows
Price: $299e$499
Trial: 30 days
Main Uses: Plant modeling
Renderers
mental ray

Price: Bundled free with software or $745 standalone
Supports: 3ds Max, AutoCAD, Inventor, Maya, Revit, Softimage

YafaRay
Price: Free
Supports: Blender; Via third party: Sketchup, Maya, Softimage

RenderMan
Price: $995e$3500; Student Price: $250e$875
Trial: Contact sales
Supports: Maya; Via third party: Blender, Cinema 4D,
Softimage

V-Ray
Price: $999; Student Price: $149
Trial: 30 days fully functional
Supports: 3ds Max, Maya; Via third party: Blender, Cinema 4D,
Rhino, SketchUp

3D

Co
20

MAKING A CAREER OUT OF 3D
Whatever dream job you’re reaching for, your career doesn’t
start when you graduate from college. It starts the minute you
decide. How well and in what direction it moves forward depends
on what you do from that moment. This chapter will describe
a bit of what it is like to be employed as a 3D artist and will give
you an idea of how to get from beginner to professional. Even if
you don’t want to be professional, the community is always
wonderful and you will find some tidbits about that too.
The State of the Industry
It’s an exciting time to be an artist. The field of special effects is

bigger than ever and includes the creation of fully realized virtual
characters in otherwise live-action films. Matte painting is an
important part of the ever popular epic movies, but also finds its
way into films with smaller scope. Video and computer games
are now an important part of our media culture, their appearance
relying entirely on 3D and 2D computer graphics. Then there are
advertising, simulations, medical and architectural visualization,
and the list goes on. All of these require concept art as well.

This is a very international industry, having grown up with the
internet and the instant communication that offers. You could
easily be working for someone on the other side of the world, and
with a team scattered all over. Or youmay even be able to travel to
another country towork. As projects start and finish, a skilled artist
could have the opportunity to work in lots of different countries.

At the same time, the coolness factor of working with games
and films has saturated the job market. It’s a very competitive
field, and unfortunately this does not necessarily translate into
big bucks. In the gaming field, to make above US $100,000 you
would have to have more than six years of experience and be the
art director, which means more politics and less art. The starting
salary averages around $45,000 and you can expect growth up to
around $80,000 if you are a lead or technical artist. Independent
contractors and developers tend to make less, do not have the
benefits such as health and retirement, and don’t reach the pay
Art Essentials

pyright � 2011 Elsevier Inc. All rights reserved. 253

254 Chapter 20 MAKING A CAREER OUT OF 3D
rate of supervisors in the field, though they often have other
sources of income (Source: Game Developer Career Guide, 2010).
To get those jobs, let alone those numbers, you have to be
committed and skilled at what you do.

The workplace environment is not always ideal either. Many
studios and companies are motivated by profit. Computer
graphics artists are often thought of as expendable, which is not
entirely untrue. For every person employed, there are others
wanting their job. Expect long hours, and then spend more hours
keeping your skills fresh and up to date. In the film industry,
unlike writers, actors, and technicians, there is no guild to protect
computer graphics artists. This has sometimes resulted in artists
being taken advantage of.

However, if you love your art, it may not matter. Just creating
art can be such a source of satisfaction that you will find happi-
ness in life nomatter what other difficulties are going on. And you
will find constant appreciation for the magnificence that is this
world that we live in. With that in mind, sometimes the artist may
prefer a simpler nine-to-five type of job which leaves them the
energy to create freelance work at home.
What Specialization?
As you begin your career you’ll start out as a generalist, trying

a bit of everything. If you become a freelancer or work in a small
studio, you may still work with all aspects from concept to post-
production. But if youwork in a larger studio, chances are you’ll be
doing only one thing. Among some of the specializations within
the field are concept artist, modeler, rigging, texture artist,
animator, renderer, and postproduction. Those are sometimes
brokendowneven further. Try taking a look at the credits of a game
or a fully animated film. As you explore the art, you’ll get an idea
as to what part of creation you like the most. You may be more
technically minded and enjoy scripting and using procedural
graphs. Perhaps your inner engineer will draw you toward rigging.
You may enjoy the process of texturing or modeling more. Or you
may be more inclined towards matte painting types of activities.
You will want to figure this out early, in order to get your skills at
a maximum before you go looking for a job.
College
Like many artistic pursuits, it is possible to get a job in

computer graphics without a degree. What is most important is

Chapter 20 MAKING A CAREER OUT OF 3D 255
what you can produce, not the letters behind your name.
However, education outside your own self-direction can serve
you very well. A teacher or mentor can pick up on and correct
your mistakes, fill in the gaps in your understanding, and
help you to find focus and direction.

With this in mind, you need to find the program that can
actually do that for you. Just being an accredited college or tech-
nical school doesnot guarantee sucha thing. The sad thing is, price
does not necessarily equate to quality when it comes to education,
especially in the 3D field. New for-profit colleges are cashing in on
the coolness factor, but not necessarily providing the essential job
skills, while more established schools may be simply adding 3D
modules to their multimedia programs. You will need to do some
research to find an institution that is good for you.

You need to find out how many graduates from the program
are actually getting jobs. A good school will post this. Otherwise,
you need to ask that question. If they do not know, then that is
cause to beware, as it is an easy enough statistic to track. The
school should also let you see the portfolios and demo reels of
previous graduates. Compare these to the ones typical of the
industry. Take a look at the ratio of graduates to portfolios. There
are always a few talented people who push themselves farther
than what the course has given them. If you are only seeing
a couple of good portfolios, then that is another cause for
concern.

Howmany instructors are connected to the industry, and how
long ago were they working in it? Are there visiting mentors and
teachers who are currently working in the industry? Is there the
possibility of placement in an intern program? Look at the
curriculum. In particular, the earlier classes should be focused
more on drawing and 3D basics than on how to use a particular
piece of software.

One more indicator for you to pay attention to is the age of
the hardware. Old hardware is not as capable of running the
up-to-date software, at least in a timely manner. It is also an
indication that the program is not getting the resources it needs
to be top notch.

This is perhaps the most important money and time you will
ever spend, and it could be a lot. Do make sure, not just by asking
the recruiter, that your credits will be transferable. Grab the
course book of the school in question, call a local accredited
university, and then ask if they will take credits from certain
classes. They may not take all of them, but if they do not take at
least the basics which they have a program for, then beware. Also
ask if they will take an associates degree from the school.

256 Chapter 20 MAKING A CAREER OUT OF 3D
Once you’ve found a college and begun, you need to stay on
your feet. Are you learning? Are you being challenged? You cannot
necessarily depend on the school to challenge you. Take what you
learn in class as a direction and expand on it. Get training
materials online. Make good use of your college library, which
will have books and magazines and may have subscriptions to
online training. During school, you should live, eat, and breathe
3D art. Remember that 10,000 hours to mastery? If all you do is
complete your class assignments, it’s going to take longer than
ten years to reach that number.

If you find that the education you’re receiving isn’t worth the
money you’re spending, do not be afraid to stop going to that
school. Still, if you do need that degree and you have few options,
just keep forging onward and make sure you supplement yourself
even more. Write down questions you have during lectures, then
go find out what the answers are. Just keep this in mind, no
matter what: you are responsible for your education, not your
teachers.

Self-Study
Even if your intent is to use only self-study, consider taking

an art class at the local community college. This can get you
discounts for software, help you meet like-minded people in
real life, and give a little structure to your education. As
impressed before, self-study is an important part of your
growth even if you pursue a college education. Then once you
have finished college and have a job, even if you are years into
a job, you need to keep on pushing yourself to learn more. You
will have to change software at some point. As technology
evolves, the things expected of you will change. To stay viable
in the job market, you have to keep up.

Your first resource for learning software is to read the manual.
It will take you step by step through the interface and everything
the software can do. The software developers also often provide
start-up tutorials with their software. These tutorials have been
designed to take you through each important operation that the
software can perform.

There are several great online training resources. In fact, as
one of the partners of Geekatplay Studio, developing training
materials is what I do. The two big hitters that consistently deliver
quality training videos are GnomonWorkshop and Digital Tutors,
but there are lots of tutorials scattered all around, both in text and
as video. Some of these are quite fantastic, others not so great.
Many of those found in community forums are free. Reasons for

Chapter 20 MAKING A CAREER OUT OF 3D 257
using tutorials that do not come from the software developer are
repetition and gathering some pearls of wisdom. Having another
person explain the basics in a slightly different way will help you
to learn them that much better. Having someone very experi-
enced show you a tip to do something specific can help you to
expand your knowledge.

Also, there are always good books being published, and
reviews to help you know which ones to get.

Go through each main focus (modeling, texturing, rigging,
etc.) and learn it well before you try to move on to the next one.
Pulling up a tutorial with a cool project is not a good way to
master the basics. The hazards of learning by random tutorial are
having gaps in your skillset and getting discouraged by attempt-
ing something beyond your experience. The results will probably
be a file full of unfinished projects. Spend about three or four
weeks in each field, starting with the manual and help files.
Animating is a later field, so the first things you want to attempt
are still images of models you’ve created and added materials to.

Whether you go down the pure self-study route or are aug-
menting your college training, one of the most important things
you can do is practice. Take it seriously. Schedule a certain
number of hours each day to follow training videos or work on
self-inspired projects. This number can be smaller if you’re going
to school, but should be more substantial if you’re not. Practice
will be frustrating at first. As you watch those videos, where the
teacher does everything so quickly it looks easy, don’t worry. They
can only make it look quick and easy because they’ve put in
thousands of hours of practice beforehand. You will be slow at
first. You won’t be able to model heads at first. But if you keep at
it, then you’ll find it easy to navigate the user interface and
manipulate your objects. At that point, you will be able to refine
your skills until application-based tasks are easy and all you’re
worrying about is the work of art.

You will need to be finishing projects. To help you move
forward with this, give yourself deadlines. This will have to be
self-imposed if you’re not in school or employed in the field.
Once you have set a deadline for a project, tell others about it,
especially those who would encourage you. Having supporters
and being accountable are proven ways to help you to accomplish
your goals.

Most importantly, don’t worry about how non-professional
your artwork looks at first. This is the reason for your practice.
Just do things, and enjoy learning. As you finish project after
project, you will have satisfaction in seeing your progression from
the first thing you did to the latest.

258 Chapter 20 MAKING A CAREER OUT OF 3D
Communities
The first time I met with a group of people who were writers,

I felt like I had found my homeland. We each understood the
frustrations and joys of doing what we did. We often had
a similar way of viewing the world. We had a common vocab-
ulary. As I’ve continued meeting with other writers and with my
3D art friends, this mutual understanding and culture of crea-
tivity has helped me to grow as an artist and sometimes, as
a human.

By going to college, you will gain a group of friends bound to
you not only by a love of computer graphics, but also by the
experience of the school together. These folks, as well as themany
acquaintances you’ve made, can help you in your career, and you
in turn can help them.

Many jobs never get advertised. It’s common practice for team
leaders to ask their team if they know anyone who can fill
a needed position. Networking is one of the best ways to find out
about a job, and probably in the process be recommended for it.
It could even be your friend who hires you, so it’s a good idea to
keep in touch with them.

As you go from job to job, former colleagues also make great
contacts. The corollary to this is, never burn your bridges, even if
it would be cathartic. And don’t air your frustations on a social
network. Go play your favorite first person shooter instead and
don’t forget the carton of chocolate ice cream and bag of potato
chips. There will be someone in that office whose opinion of you
may affect your future.

Other good places for face-to-face meeting are conferences
and festivals. Try to attend these and take advantage of the
education you can receive from the panels. Make small talk with
people and be sure to bring your business cards and exchange
them. There are sometimes job fairs at conferences as well.

A good way to keep in touch with all of these people is through
the use of online social networks and forums. Groups from your
school may have something like a Facebook group, which is
a great thing. But online, the real benefit can be had by forums. In
forums, you can show your works in progress and receive
critiques of them. Many responses are just encouragement like
“Beautiful!” “Great Job!” But you need to seek helpful construc-
tive criticism. You won’t be the only one showing off; others will
be as well, and the galleries in forums and other types of art
communities are a good way to compare yourself to others to see
how you stack up with the industry. If you’re stuck, you can ask

Chapter 20 MAKING A CAREER OUT OF 3D 259
a question and get an answer. But before you ask, try using the
forum search on your question, to lessen the chance of repeating
something. People enjoy helping others and studentementor
relationships often develop. You will find benefit from this as you
participate in communities, and by helping others you often gain
by learning something new as well.

Portfolios and Demo Reels
The first impression you will probably make on a prospective

employer is what they see on your demo reel, or for visualization
artists, a portfolio. This is what you will need to get an interview.
You should start one as soon as you start producing any kind of
artwork. To get a good idea of what kind of a demo reel or port-
folio you need to create for your field of specialization, take a look
at the websites of various studios and see what they are asking for.
Take a look at the demo reels of professionals that you know are
working in the field.

There is a lot more to making a good demo reel than can be
mentioned here, but some of the basics are these. They should
remain as short as possible, no longer than two minutes. Your
audience is recruiters, and they may have to see hundreds of
these over the course of finding a good candidate. With that in
mind, your demo reel should impress within the first thirty
seconds, or else risk being yanked before finishing. Put only your
best stuff in a demo reel. These are not static productions. They
should evolve and grow as you do. As you improve, take out all
old stuff and replace it with newer, better things. The recruiters
won’t know if your older work is the norm and the better work
a fluke.

Even though it’s a good idea to always keep a current demo
reel, do not invite industry professionals to view your first or
early demo reels unless you’ve already established a mentoring
relationship with them. They don’t have time to critique and
early work probably will not impress them. This is also true of
tutorial creators. Viewing their tutorial does not make them
your personal teacher. Keep your reel with the idea that as you
establish relationships both with people on your level and with
those potential mentors, you will have a ready way to show
them what you’ve been doing lately. And speaking of not
impressing people, make sure you keep all copies of your demo
reel online up to date. You don’t want prospective employers to
make any judgment on your qualifications based on your early
work.

260 Chapter 20 MAKING A CAREER OUT OF 3D
Ways to Attract Attention
Before you have a job, there are a few things you can do to get

your name out there as well as to gain experience to put on your
résumé. One of them is to involve yourself in independent
projects such as films. Some of these are fan-made films based on
popular books or movies. Others are films by young filmmakers
trying to get their own work recognized by entering them into
festivals. Working with these people will also establish good
future contacts.

You can take a cue from those filmmakers and create your own
animations to enter into festivals and competitions such as CG
Society’s challenges. There are several that industry professionals
pay attention to. Even if you don’t win, placing high will do well
for your reputation. And no matter what, aiming projects at
contests and festivals will have the benefit of stretching yourself
and meeting hard deadlines. These are often a group effort, and
can help you to learn how to work as a team with a goal.

One other really good thing to do that combines community
and portfolios, and is a way to attract attention, is to keep
a personal blog. Post your works in progress on the blog. Your
blog is also where you can keep your up-to-date reel. This is
a good way to keep track of your progress and to show to others
that you are actively involved. Always consider a blog, as well as
any Facebook or forum activity to be public. What you wouldn’t
do in public, don’t do online.

EXTRA RESOURCES
This is hardly an exhaustive list, but here are a few resources
that can help you out as you learn 3D art.
Links
Of course, the first link is this book’s website: http://www.

3dartessentials.com
Communities often have training and have access to experi-

enced artists who can answer questions:
CG Society: http://www.cgsociety.org
3D Total: http://www.3dtotal.com
Renderosity: http://www.renderosity.com
Several sites are devoted to training, though they often have

good communities as well:
Gnomon Workshop: http://www.thegnomonworkshop.com
Digital Tutors: http://www.digitaltutors.com
Geekatplay Studio: http://www.geekatplay.com
Sites Sponsored by Software Developers

These websites have better access to the developer’s docu-

mentation, including their tutorials designed to take you through
their software step by step. Plus the community is often very
helpful:

Autodesk: http://area.autodesk.com
Blender: http://www.blender.org
Cinema 4D: http://www.cineversity.com/index.asp
Daz 3D: http://www.daz3d.com
Houdini: http://www.sidefx.com
Lightwave: http://www.newtek.com/lightwave
Vue: http://www.cornucopia3d.com

Magazines
3D Creative: http://www.3dcreativemag.com
3D Artist: http://www.3dartistonline.com/
3D World: http://www.3dworldmag.com
Computer Arts: http://www.computerarts.co.uk/
Computer Graphics World: http://www.cgw.com
261

http://www.3dartessentials.com
http://www.3dartessentials.com
http://www.cgsociety.org
http://www.3dtotal.com
http://www.renderosity.com
http://www.thegnomonworkshop.com
http://www.digitaltutors.com
http://www.geekatplay.com
http://area.autodesk.com
http://www.blender.org
http://www.cineversity.com/index.asp
http://www.daz3d.com
http://www.sidefx.com
http://www.newtek.com/lightwave
http://www.cornucopia3d.com
http://www.3dcreativemag.com
http://www.3dartistonline.com/
http://www.3dworldmag.com
http://www.computerarts.co.uk/
http://www.cgw.com

262 EXTRA RESOURCES
Books
Your application’s manual

In addition, good guidebooks are often recommended by the
application’s developer.

The Illusion of Life: Disney Animation, by Ollie Johnston and
Frank Thomas, Hyperion Books, (2nd Edition) 1995
Timing for Animation, by Tom Sito, Focal Press, (2nd edition)
2009
Painting with Light, by John Alton, University of California
Press, (4th Edition) 1995
Digital Lighting and Rendering, by Jeremy Birn, New Riders
Press, (2nd Edition) 2006
Film Directing Shot by Shot: Vizualizing from Concept to
Screen, by Steven D Katz, Michael Wiese, 1991
How to Make Animated Films, by Tony White, Focal Press,
2009
Stop Staring: Facial Modeling and Animation Done Right, by
Jason Osipa, Sybex, (3rd Edition) 2010
Body Language: Advanced 3D Character Rigging, by Eric Allen
and Kelly L. Murdock, Sybex, 2008

INDEX
2D shapes, 2e12, 152e3, 161e2,
167e8, 198e9, 212e14, 219,
221, 227, 253

3D artists
careers, 253e60
demands, 11e12

3D graphics, clay/mud analogy, 13
3D packages, 13, 14e15, 17e18,

21e44, 63, 93e4, 134, 207e8,
211, 213e14, 243e6, 247e52

see also tools
crashes, 17e18, 248
list, 247e52
requirements, 13, 14
scripting, 243e6
tests, 14

3D printers, history of computers,
11e12

3D shapes, history of computers,
2e12

3DS Max, 249, 252
3DS Max Design, 249
64 bit processors, 248

A4 format, 220
The Abyss (1989 movie), 7
action units (AUs)

see also facial animation
definition, 116e18

actors, 115e16, 119e22
adding edge loops, concepts, 30e1,

41e44, 66e70
AddSphere, 244e5
Advanced Research Projects

Agency (ARPA), history of
computers, 5

aesthetic considerations, 37e8
airplane simulation technologies,

history of computers, 5
aliasing, 6, 177e8, 221e2
alpha planes, 161, 198e9, 209e10,

227
alpha (transparency) maps, 160e1,

175, 198e9, 209, 227
alt key, 15
ambient lighting, 146e7, 151e2,

165, 178, 212e14
ambient occlusion, 147, 215
Amiga computers, 10e11
analytical machine of Charles
Babbage, 1e2

anatomical referencing, 16, 62, 64,
97

anger facial expression, 116e18
angles, 13, 200e11
animations, 6e12, 16, 37e8, 71,

103e25, 199, 204e6, 224e5,
227, 239, 243, 247e52, 253e60

see also dynamics; keyframing;
motion capture.;
simulation.

automated motion, 118e19,
127e37

brainstorming, 119e20
cameras, 199, 204e6
careers, 253e60
concepts, 16, 22e3, 103e25, 199,

227, 239, 247e52
definition, 103e4
facial animation, 116e18, 120e22,

125
good habits, 16, 103e11, 119e22
graphs, 107, 112e15
history of computers, 6e12
juggling robot tutorial, 122e5,

149e50
purposes, 103e4
realism, 103, 109
talking, 117e18, 119e22
tools, 247e52
traditional methods, 111
twelve basic principles, 103e11
workflow considerations, 119e22,

248e9
animators, modelers, 122, 243
anisotropic shader, 144e50, 171e3
antialiasing, 6, 221e2
anticipation animation principle,

definition, 104
appeal animation principle,

definition, 110e11
appearance, appeal animation

principle, 110e11
Apple Computers, 7
Apple II computer, 10
apps, 247e52

see also software; tools
architectural visualization, 248e9
arcs animation principle, 107e8,
121e2, 123

area lights, 184e8, 192
arguments, scripting, 244e6
arms, 85e102, 155e7, 232e3
ARPA see Advanced Research

Projects Agency
artefacts, 157, 221
aspect ratios

definition, 26, 220
orthogonal views, 26
rendering, 220, 228

Atari 400/800 models, 9
atomic bombs, 1
attracting attention, careers in 3D

art, 258, 259e60
attributes, 15, 217, 232e3, 239
AUs see action units
Autodesk, 249e51, 261
automated motion, 118e19,

127e37, 239
see also dynamics

automatic operations, valid
geometries, 38, 165e8, 239

autosave options, good habits, 17
Avatar (2009 movie), 8e9, 207
AVI files, 222

B-splines see Bezier splines
Babbage, Charles, 1e2
Babylon 5 (1999 television serial), 7
back face, definition, 34
backgrounds, 111e12, 163e4,

207e17, 227, 228
animations, 111e12
resolutions, 163e4

backlights, three-point lighting
rigs, 181e4, 192

ball throwing example,
keyframing, 111e12, 123e5

ballroom dancers, dynamics, 127
balls, 111e12, 123e5, 127e31,

149e50, 153, 159e61, 239
barrel distortion, definition, 195e6
BASIC, 9
batch rendering, 223e4, 228
beach balls, 142
bend deformers, 75, 80
bevels, 40e44, 58, 59e60
263

264 INDEX
Bezier curves, 45e54
Bezier splines, 45e54, 153e7

see also NURBS
characteristics, 46e8
definition, 46e8

bind pose, definition, 89e91
binding see skinning
bird’s-eye view camera shots,

definition, 200e211
bitmaps, 237e8
blend shapes see morph targets
Blender, 11, 249, 252, 261
blinking eyes, 73, 75
Blinn (BlinnePhong) shading, 6,

143, 149
see also Phong.

Blinn, Jim, 6
blogs, careers in 3D art, 260
blueprints, 26e7

see also orthogonal views
bones, 86e91, 97

see also joint.
book resources, 103, 257, 261
Boolean method to combine

meshes, definition, 32e3
boundary/border edges, 24,

32e3, 41, 65e70, 154e7,
166e8

see also open polygon meshes
box modeling, 25e7, 63e4
brainstorming, definition, 119e20
bricks, 158
bridging method to combine

meshes, definition, 32e3
brushes, 72, 96, 102

see also painting
Bryce, 251e2
bucket rendering, definition,

223e4
A Bug’s life (movie), 55
building your own hardware,

13e14
bulge deformers, 75, 195
bump maps, 158e9, 210e11,

235e6
bumper stickers, 162e3
bumps, 38, 59e60, 151e68, 171e3,

210e11, 235e6
burlap material, 238e9
business computers, history of

computers, 9e10

CAD see computer-assisted design
cake-baking procedures, 229e31
camera view, 14e16, 33e4, 193e206

see also perspective view
cameras, 8e9, 14, 33e4, 159e61,
191e2, 193e206, 228

see also digital.; virtual.
angles, 200e201
animations, 199, 204e6
concepts, 193e206, 228
definitions, 193e7
depth of field, 195e7
distortions, 195e6
dolly zoom effects, 203e4
faked camera effects, 194e9
focus, 193e9
good habits, 199e201
history of computers, 10e11,

193e4
image planes, 198e9
lenses, 193e206
matched virtual/real cameras,

198e9, 204
movements, 201e206
shots, 199e201, 204e6
tutorials, 204e6
zooming-in methods, 194e9,

202e4, 205e6, 221
candela light-intensity units, 182
candle flames, 78
cardinal curves, 45e7
careers in 3D art, 253e60

see also training.
attracting attention, 258,

259e60
blogs, 260
colleges, 254e6, 257, 258
communities, 258e9
continuous learning, 256e9
coolness factor, 253e5
demo reels, 259, 260
forums, 256e7, 258e9, 260
independent projects, 260
networking benefits, 258e9
opportunities, 253e4
portfolios, 259, 260
résumés, 259e60
salaries, 253e4
self-study options, 254, 256e7
specializations, 254, 259
state of the industry, 253e4

Carrara, 249
cars, 134, 162e3
Catmull, Ed, 6e7, 55
CatmulleClark subdividing

see also subdivision surfaces
definition, 56e7

caustics, 148, 175, 180, 209e10,
220e21

definition, 175
photon mapping, 148
caves, 207e8
cell phones, 16

see also digital cameras
CG Society, 260e1
CGI see computer-generated.
CGL see Computer Graphics

Laboratory
chain-link fences, 162
chairs, requirements, 14
chamfered cubes, definition, 31
character animations, tools, 251
characteristics

Bezier splines, 46e8
definition, 15

checkerboard patterns, 165e8,
237e40

Cheetah 3D, 249
chest plates, 78e9
child, parent/child hierarchies,

85e9, 92, 94e102, 232e3, 241
Cinema 4D, 249, 252, 261
clay/mud analogy, 3D graphics, 13
cleaning-up good habits, 65
client-server architectures, 224
clipping planes, 193e4, 196e9
close-up camera shots, definition,

199e200
closed polygon meshes

see also cubes
definition, 24

cloth, 17, 129e30, 131e2, 135e7
clothing, 17, 131e2
clouds, 132, 212e14
Clu 2.0, 116
cluster deformers, 72, 81e3
colleges

careers in 3D art, 254e6, 257, 258
costs, 255
selection criteria, 255

collision detection, 129e31, 134,
135e7

color maps, 181e84, 237e8
colored light, 181e4
colors, 5e6, 9e10, 13, 27e8,

139e50, 151e68, 181e92,
210e11, 217, 221e8, 231e4,
237e8

see also light effects; shaders
bleeding, 146e7
concepts, 139e50, 151e68, 181e4,

217, 221, 231e4, 237e8
history of computers, 5e6, 9e10
nodes, 231e2, 238
ramp gradients, 158, 237e8
rough surfaces, 143e4

INDEX 265
tutorial, 148e50, 165e8
combined meshes, definition,

31e4
commands, 15e16, 243e6
comments, scripting, 244e6
Commodore 64 computer, 10
communities, careers in 3D art,

258e9
community forums, 256e7, 258e9,

260
compatibility considerations, 37e8
composition classes, 109
computer games, 4e5, 9e11, 33e4,

64, 210, 248e9, 253e60
careers, 253e60
detail levels, 33e4
history of computers, 4e12, 21
polygon counts, 33, 64, 210

computer graphics
careers, 254e60
definition, 3e4
historical background, 1e12, 21,

45, 139
Computer Graphics Laboratory

(CGL), history of computers,
6e7

computer-assisted design (CAD),
history of computers, 5

computer-generated 3D graphics,
7e8, 111e12, 115e16, 151,
227

computers, 1e12, 13e14, 17e18,
21, 45, 55, 122, 132, 139,
193e4, 219, 240, 243e6,
247e9, 255e6

see also hardware; software
advancements, 7e8, 55, 122,

223e8, 255e6
crashes, 17e18, 222, 248
historical background, 1e12, 21,

45, 139, 193e4
networks of PCs, 7e8, 55, 224
requirements, 13e14, 219, 240,

247e9, 255e6
concept art

careers, 254
good habits, 16, 64

conferences, 258e9, 260
conical forces, dynamics, 127e9,

135e7
console games, history of

computers, 9e11
constraints, 77e8, 132
container nodes, definition,

239
contests, 11
continuous learning, 256e9
contours

see also extrusion modeling
concepts, 25e7

control cages
definition, 55e6, 63
subdivision surfaces, 55e70

control handles, 49, 82e3
control points of a curve, 45e54,

74e5
see also NURBS
creation/modification of curves,

48e9
definition, 45e7

control vertices, 45e54
convex polygons, problems, 36
CookeTorrence shading,

definition, 143e4
coolness factor, careers in 3D art,

253e5
coordinate axes, 15e16, 35, 52e4,

90e91, 99, 153, 159e60, 226,
232, 245

see also X.; Y.; Z.
definition, 15

copies, 4e5, 43e4, 64, 80e83, 89,
91

corners of polygons
see also vertices
concepts, 21e3

Cornuciopia3D, 11
costs

Amiga computers, 10e11
college courses, 255
hardware, 7, 10e11, 13e14
software, 11e12, 248, 249e52
supercomputers, 7
tools, 248, 249e52

CPU demands, 132, 136, 147,
163e4, 223, 240

crab camera movements,
definition, 201e204

crashes, computers, 17e18, 222,
248

credits of films/games, career
choices, 254

creepy lighting effects, 181
cross-hatching patterns, 237e9
cross-platform compatibility, 59
crowd scenes, 127, 132e4, 178
CRTscreens,historyofcomputers, 5
cubes, 21e5, 27e8, 31, 56e7,

135e7, 139, 154e7, 180,
183e4, 246

cubic decay light properties,
definition, 183e4
The Curious Case of Benjamin
Button (2008 movie), 8

cursor, 15e16, 28, 49
curve deformers, definition, 73e4
curved interpolation, 113e14, 122
curves

see also interpolation; NURBS.
concepts, 45e54, 73e4, 107,

113e14, 131e2
creation/modification steps,

48e51, 79
refinement steps, 49, 120e21
slope changes, 49, 59e60

custom computers, 14
cylinders, 21e3, 43e4, 98e102,

152e3, 165e8, 229e31
cylindrical projection mapping,

152e3, 155e7, 165e8

darts, dynamics, 130
‘Davy Jones’ from Pirates of the

Caribbean: Dead Man’s Chest
(2006 movie), 8

Daz Productions, 11, 249e51, 261
deadlines, 18, 257
DEC PDP-1 computer, 5

see also TX-2 system
decay light properties, 181e84
deforming, 35, 52, 58, 62, 71e83,

85, 95, 116e18, 128e9, 131e2,
216e17, 231

see also constraints; lattice.;
morph.; rigid bodies;
sculpting; soft body.

concepts, 71e83, 95, 116e18,
128e9, 132

definition, 71
edge loops, 62
NURBS, 52
order of the deformations, 79e80,

240
smiling robot tutorial, 80e83
subdivided meshes, 35

degree of a curve, definition, 46e8
degrees, 46e8, 255e6
demo reels, careers in 3D art, 259,

260
depth, 15, 53e4, 90e91, 99, 153,

159e60
depth of field, 195e206
detail levels, polygon counts, 33e4,

64
dialogues, dope sheets, 120e21
digital cameras, 8e9, 14, 16,

193e206
see also cameras

266 INDEX
Digital Equipment Corporation see
DEC

Digital Tutors, 256e7, 261
directional lights, 186e7, 227
directors, 121
DirectX, 219
disgust facial expression, 116e18
displacement maps, 160, 207e8,

217
display facilities with computers,

history of computers, 1
distance effects, 139, 196e9
distortions, cameras, 195e6
docking stations, laptops, 14
documentation benefits, scripting,

244, 246
dolly zoom effects, 203e4
dollying camera movements

see also tracking.
definition, 201e204

DooeSabine subdivision,
definition, 57e8

dope sheets
see also exposure.
poses, 120e21

draft render quality, definition,
15e16

draping cloth, 129e30, 131e2,
135e7

duplications, 26e7, 43e4, 64, 65,
70, 80e83, 89, 91

dynamics, 119, 127e37, 208e9
see also collision detection
concepts, 127e37
crowd movements, 127, 132e4,

178
draping cloth tutorial, 135e7
fluid dynamics, 132e4, 209, 214
hair, 132e3
particles, 131e32
physics, 127e9, 135e7
quality considerations, 134

E(5) poles
see also poles
definition, 60e61

Eckman, Paul, 116
edge loops, 30e1, 41e4, 61e2, 64,

66e70
definition, 30e1, 61e2
deforming, 62
the face, 62

edges, 21e33, 41e4, 56e7, 59e63,
64, 66e70, 71, 154e7

see also extrusion.; lines;
wireframes
controlling, 30e1
definition, 21e2
good geometries, 36
seams, 154e7, 161e2, 165e8

edits, 15, 17, 28e34, 63e4, 73e4,
122, 144, 221, 249e52, 254

polygon meshes, 28e34, 73e4
subdivision surfaces, 63e4

emitters, particles, 131e2
emotions, 116e18, 125, 203e4
employment in 3D art see careers.
Eniac computer, 1, 3
enlightened monk tutorial,

190e92
enlightened style disagreement,

modeling preferences, 62e3
environments, 207e17, 228

concepts, 207e17, 228
indoors, 215e16
plants, 24, 161, 209e12
sky, 181, 187e9, 212e14
sunlight, 181, 191e92, 213
terrain, 207e8, 216e17, 233e4,

236, 240
tools, 251e52
tutorials, 216e17
water, 172e5, 208e10

ergonomic designs
history of computers, 4
requirements, 14

ergonomic keyboards, 14
Evans, Dale, 5e6, 9
exaggeration animation principle,

definition, 108e9
explosions, dynamics, 127e9, 132
exposure (X) sheets

see also dope.
poses, 120e21

EXR files, 222
extra resources, 261e62
extreme close-up camera shots,

definition, 199e200
extreme wide camera shots,

definition, 199e200
extruding, 29e30, 51, 60e71, 63e4,

67e70
extrusion modeling, 25e7, 29e30,

40e44, 63e4, 67e70
see also contours
definition, 25
subdivision surfaces, 63e4,

67e70
eyebrows, 73, 116e18
eyes

appeal animation principle, 111
blinking eyes, 73, 75
the face, 8, 62e4, 65e70, 71, 72,
80e83, 85, 110e111, 116e18,
120e22, 125, 199e200

edge loops, 62
expressions, 8, 62, 64, 71, 80e83,

110e11, 116e18, 120e22, 125

Facebook, 258, 260
faces, 21e2, 28e33, 34e5, 41e44,

50e51, 55e7, 60e1, 71e72,
132, 135e7, 157

see also poles
definition, 21e2, 34
good geometries, 38
normals, 34e5

facial animation, definition,
116e18, 120e22, 125

FACS see Fatial Action Coding
System

faked camera effects, 194e9
Fatial Action Coding System

(FACS), 116e18
fear facial expression, 116e18
feedback benefits, good habits,

18e19, 121, 258e9
fence-post errors, definition, 119
festivals, 258e9, 260
Fetter, William, 3e4
field of view, 193e206
file types, rendering, 221e22, 228
fill lights, three-point lighting rigs,

181e4, 192
film

definition, 111
resolutions, 219e20

filters, 207, 233e4
Final Fantasy: The Spirits Within

(2001 movie), 8
fire/flames, 131e2, 175
FK/IK switch

see also kinematics
definition, 94

flags, 76e7
flare deformers, 75
flat shading see Lambert shading
flex deformers, 75
flexible objects

see also deforming
dynamics, 128e9

flocks of birds, 133e4
fluid dynamics, definition, 132e4,

209, 214
focal length, 193e206
focus and depth of field, 193e9
follow-through animation

principle, 106, 121e2

INDEX 267
footprints, 158
forces, dynamics, 127e9, 135e7
foreground images, resolutions,

163e4
forums, 256e7, 258e9, 260
forward kinematics (FK),

definition, 92e4
fractal equations, 208e9, 233e4,

236e7
frame buffers, definition, 224
frames, 111e14, 119, 123e5, 192,

224
see also keyframing
definition, 111, 119

free trials, software, 248e52
freelancers, 254
freeware, history of computers, 11
front face, definition, 34
frowns, 83
functions, 229e41, 244e6

see also nodes
definition, 229e31
scripting, 244e6
types, 232e8

Geekatplay Studio, 256e7, 261
‘Genesis Effect’ sequence from Star

Trek II: The Wrath of Kahn
(1982 movie), 6

geometries, 38, 70, 153, 158e61,
165e8, 170e72, 232e3, 240

Geri’s Game (Pixar short), 55
getting started and finished,

13e38, 39e44
gimbal lock, definition, 90e1
Gnomon Workshop, 256e7, 261
gobos (GO Between Optics),

definition, 175, 189e90
godrays, 187, 209e10
‘Gollum’ from Lord of the Rings:

The Two Towers (2002 movie),
8, 24, 71, 116

good habits, 16e19, 38, 63e4,
88e9, 119e22, 156e7, 221e2,
228, 243e6, 253e60

animations, 16, 103e11, 119e22
cameras, 199e201
careers in 3D art, 253e60
feedback benefits, 18e19, 121,

258e9
naming conventions, 17, 88e9,

221e2, 228
note-taking needs, 19
planning/scheduling

requirements, 16, 18
referencing practices, 16, 19, 64
saves, 17e18
scripting, 244e6
storyboards, 16, 119e20
UV mapping, 156e7
valid geometries, 38

good hardware/software
requirements, 13e14

Gourard shading, definition, 141e2
Graetz, Martin “Shag”, 4e5
Graham, Eric, 10, 123
granite, 235e6
graphics cards, 219, 248
graphs, 107, 112e15, 229e41, 254

see also nodes
animations, 107, 112e15
concepts, 229e41, 254
definition, 229e31
smoothing the joints tutorial,

241
tutorials, 241

group camera shots, definition,
200e01

habits, good habits, 16e19, 38
hair, 76e7, 132e3, 144, 192, 209

dynamics, 132e3
soft bodies, 76e7

happiness facial expression,
116e18

hardware, 7, 10e11, 13e14, 122,
219, 223e8, 247e9, 255

see also computers
advancements, 7e8, 55, 122,

223e8, 255e6
building your own, 13e14
client-server architectures, 224
costs, 7, 10e11, 13e14
custom computers, 14
good hardware, 13e14
laptops, 14
networks of PCs, 7e8, 55, 224
obsolescence considerations,

13e14
requirements, 13e14, 219, 223e8,

247e9, 255e6
specifications, 13e14, 248e9, 255

HDRI see high dynamic range
image

HDTV, 219e20
heads

appeal animation principle, 111
unwrapped heads, 155e6

heightfield maps, 207e8, 216e17
help files, 257
Hexagon, 250
hidden objects, rendering, 226e7
high dynamic range image (HDRI),
188e9, 212e13

high-angle camera shots,
definition, 200e201

historical background to computer
graphics and special effects,
1e12, 21, 45, 139, 193e4

Hitchcock, Alfred, 203e4
hole-filling operations, 34
home 3D computer graphics,

history of computers, 9e12
hook points, 210e11
horses’ tails, 97
Houdini, 249e50, 261
hulls, 48e54, 55, 63, 73e4

see also curves; NURBS surfaces

IBM PCs, 10
Illusion of Life: Disney Animation

(Thomas and Johnston), 103,
262

ILM see Industrial Light and Magic
image planes, cameras, 198e9
image-based lighting, 188e9,

212e13
images, 15e16, 139, 163e8, 181e4,

188e9, 198e9, 212e13,
219e29, 237e8, 257

nodes, 237e8
size and aspect ratios, 219e20,

228
The Incredibles (movie), 132
independent projects, careers in

3D art, 260
indirect light, ray tracing, 146e7
indoors, definition, 215e16
Industrial Light and Magic (ILM),

6e7
see also Lucas, George

inputs
definition, 229e33
functions, 229e41

insert knot, 49
insert task, 49
intensity properties, light effects,

181e4, 226, 227
internet tutorials/training, 11e12
interpolation

see also curved.; linear.;
stepped.

keyframing, 113e14, 121e2
intersection Boolean method to

combine meshes, definition,
32e3

inverse decay light properties,
definition, 184

268 INDEX
inverse kinematics (IK), 92e4,
100e102, 112

Iron Man (movie), 85, 104

jaws, 116e18
Jobs, Steve, 7

see also Pixar Animation Studios
Johnston, Ollie, 103, 262
joints, 86e102, 232e3, 239, 241

see also bones; rigging;
skeleton.

axes, 90e92
jointed robot tutorials, 98e102,

241
limits, 91e2
muscles, 96e7

JPG files, 221e22, 228
The Juggler (1986 animation), 10,

123
juggling robots, animated juggling

robot tutorial, 122e5, 149e50
Julia set fractals, 234
Jurassic Park (1993 movie), 7, 8

Kelvin, William, 181
key lights, three-point lighting rigs,

181e4, 191e2
keyboards

history of computers, 4e5
requirements, 14

keyframing, 103, 106, 111e14, 115,
119e25, 136e7, 206

see also animations
ball throwing example, 111e12,

123e5
concepts, 111e14, 119e25, 136e7
definition, 111e12
interpolation, 113e14, 121e2
inverse kinematics, 112

kinematics, 92e102, 112
see also forward.; inverse.;

movements
definition, 92e4
FK/IK switch, 94

knots, 47e9
see also splines

lakes, 208e10
Lambert shading, definition, 141
laptops, docking stations, 14
The Last Starfighter (1985 movie), 7
lattice deformers, 73e4, 85, 97,

128e9
layers, rendering, 225e7
learning curves, 18, 248e9, 254e6

see also training.
leaves of plants, 24, 210e11
legs, 89e102, 120e22
lens flare/glare, 197, 227
lenses, cameras, 193e206
light effects, 5e6, 10e11, 13, 27e8,

34, 139e50, 151e68, 169e80,
204e6, 212e14, 219e28,
249e52

see also caustics; colors;
reflections; refraction;
shaders; shadows;
translucency

ambient occlusion, 147, 215
concepts, 27e8, 141e44, 146e8,

169e80, 219, 249e52
decay properties, 181e84
definition, 27e8
enlightened monk tutorial,

190e92
gobos (GO Between Optics), 175,

189e90
history of computers, 5e6, 10e11
intensity properties, 181e4, 226,

227
mood-setting issues, 181e4
normals, 34, 141e4
objects as sources, 188e90, 192,

213e14
photon mapping, 147e8
properties, 181e84
radiosity, 146e7, 177e8
ray tracing, 10, 144e8, 170e71,

174e5, 176e8, 179e80, 184
rendering, 169e70, 177e80,

219e28
rough surfaces, 143e4
three-point lighting rigs, 181e4,

191e2
tools, 249e52
tutorials, 148e50, 178e80,

190e92, 204e6
types, 184e7

light gel see gobos.
Lightwave, 247, 250, 261
linear decay light properties,

definition, 183e4
linear interpolation, 114, 121e2
lines, 3, 4, 5, 9, 13, 21e3, 45e7, 73,

139
see also edges
concepts, 21e3, 45e7

links, extra resources, 261
Linux, 248e52
lofting, NURBS surfaces, 51, 53e4
“longitude lines”, 42
loop subdivision, definition, 58
Lord of the Rings: The Two Towers
(2002 movie), 8, 24, 71, 116

low-angle camera shots, definition,
200e201

Lucas, George, 6
see also Industrial Light

and Magic
lumen light-intensity units, 182
lux light-intensity units, 182

Macintosh, 248e52
magazine resources, 261e2
Magnavox Odyssey console, 9
mainframe computers, Reboot

(1994 movie), 7e8
manuals, software, 256e7
mapping, 6, 152e3, 157e68
maps

see also alpha.; bump.;
displacement.; multiple.;
normal.; reflection.;
texture.

concepts, 6, 152e3, 157e68,
207e8

mapping the robot tutorial,
164e8

markers on suits, motion capture
technology, 115e16

‘Master Control Program’ from
Tron (1982 movie), 23e4

material nodes, definition, 235
math nodes, 233e4, 238e9
matte painting, careers, 253, 254
Maya, 247, 250, 252
medical imaging, history of

computers, 5
medium camera shots, definition,

199e200
memory footprint, 51e52, 240
mental ray, 252
mentors, 258e9
military applications, history of

computers, 1e3, 5
miniaturization developments,

history of computers, 3e4, 5
mirroring, 26e7, 44, 65, 70, 89, 91,

170e71
missiles, dynamics, 127e9
MIT, 1e3, 5
modelers

animators, 122, 243
careers, 253e60

models
see also box.; extrusion.;

organic.
aesthetic considerations, 37e8

INDEX 269
compatibility considerations,
37e8

enlightened style disagreements,
62e3

good habits, 16, 38, 63e4, 156e7
history of computers, 11e12
starting the model, 24e7, 39e44,

63e4
subdivision surfacesmodeling, 62,

63e4
tools, 247e52

Modo, 250
monks, enlightened monk tutorial,

190e92
mood-setting issues

dolly zoom effects, 203e4
light effects, 181e4

morph targets, 72e3, 82e3, 85,
116e18, 125, 239

see also sculpting
motion blur, 6, 197e8, 220e21,

226e7
definition, 197e8
history of computers, 6

motion capture technology, 8e9,
103, 107, 115e16, 117e18

see also animations
definition, 115e16
history of computers, 8e9
limitations, 115e16

mountains, 207e8, 216e17
the mouse, 14e16
mouth expressions, 60, 74e5,

80e83, 110e11, 116e18
MOV files, 222
movements, 8, 64, 71e83, 92e102,

118e19, 120e22, 123e5,
201e6, 227, 239e40

see also kinematics
cameras, 201e6
organic modeling, 64, 78, 91e92,

95e6
problems, 8, 92e4

Mudbox, 251
multiple maps, definition, 162e3
muscle deformer, 78, 85
muscles, 62e3, 64, 78, 85, 96e7,

117e18
bones, 97
rigging, 96e87
simulation technologies, 96e7

n-gons, 22e3, 30, 34, 38, 56, 59
N(3) poles

see also poles
definition, 60e61
naming conventions
good habits, 17, 88e9, 221e2, 228
rendering,, 221e2, 228

narrow deformers, 75
network rendering, definition, 224
networking benefits, careers in 3D

art, 258e9
networks of PCs, 7e8, 55, 224
Newell, Martin, 6
Newtonian physics, 127e9, 135e7
nodes, 229e41

see also functions
combinations, 238e9
definition, 229e31
smoothing the joints tutorial, 241
types, 232e8
value types/ranges, 231e32

noise nodes, 235e6, 238e9
non-planar polygons, definition,

22e3
non-uniform rational Bezier

splines, 45e54, 153e7
see also NURBS

normal maps, 159e60, 210e11
normals

definition, 34e5
light effects, 34, 141e4

note-taking needs, good habits, 19
number pad requirements, 14
NURBS, 45e54, 55, 73e4, 96e7,

153e7, 207e8, 216e17
Boolean method to combine

meshes, 32
concepts, 45e54, 96e7, 153e7,

207e8, 216e17
convert NURBS to polygons tool,

52, 54
creation/modification steps,

48e51
critique, 51e2, 55
definition, 45, 48
deforming problems, 52
memory footprint, 51e2
muscles, 96e7
robot tutorial, 52e4
terrain, 207e8

NURBS patches, definition, 50e51
NURBS surfaces, 45, 49e54, 63,

96e7, 153e7, 207e8, 216e17
creation/modification steps,

49e51
definition, 45, 49e51
extruding, 51
lofting, 51, 53e4
rendering, 52
UV coordinates, 49e50, 153e7
objects
as light sources, 188e90, 192,

213e14
lists, 86e8, 94e5
nodes, 229e41

observations, good habits, 16
obsolescence considerations,

hardware, 13e14
off-the shelf software, history of

computers, 9
online social networks, 258e9
online training resources,

256e7
open polygon meshes, definition,

24
open source software, 11, 243e6
OpenGL, 219, 248
operating systems

history of computers, 4
requirements, 248

opportunities, careers in 3D art,
253e4

optimization considerations,
rendering, 220e21

order of a curve, definition,
47e8

order of the deformations, 79e80,
240

OreneNayar shading, 143e4,
151e52

organic modeling
concepts, 64, 78, 91e2, 95e6,

170e72
history of computers, 8

organization requirements, good
habits, 16

original points, definition, 56
orthogonal views, 15e16, 26e7,

39e44, 64, 219e20
outputs

definition, 229e33, 239
functions, 229e41

over-the-shoulder camera shots,
200e201, 204e6

overhangs, 207e8
overlapping-action animation

principle, 106, 121e22,
129e30

painting, 72, 96, 102, 157
see also brushes
3D objects, 157

pan camera movements,
definition, 201e4, 206

‘Pandora’ from Avatar (2009
movie), 207

270 INDEX
parent/child hierarchies, rigging,
85e9, 92, 94e102, 232e3,
241

particle effects, history of
computers, 6

particles, 6, 76e8, 131e2, 212e14,
227

see also soft body deformers
constraints, 77e8, 132
definition, 76e7, 131e2
dynamics, 131e2
emitters, 131e2
spring constraints, 77e8, 132

patches see NURBS patches
PCs see personal computers
ped camera movements,

definition, 201e204
peripherals, requirements, 14
Perlin fractals, 236
Perlin noise algorithms, definition,

235e6
personal computers (PCs), history

of computers, 7e8, 9e10
personal learning editions (PLEs),

definition, 248e9
perspective

classes, 109
concepts, 14e16, 26e7, 39e44,

109, 193e4, 205e6
perspective view, 14e16, 39e44,

193e4, 205e6
see also camera view
definition, 14e15

phonemes, 117e18
Phong shading, 5e6, 142e3,

149e50, 159
see also Blinn.; Utah teapot
definition, 142

Phong, Tuong, 5e6
photon mapping, definition,

147e8
Photoshop, 221e2
physical actions, timing animation

principle, 107
physics, 127e32, 135e7, 193e4
pincushion effects, 34, 195e6

see also normals
Pirates of the Caribbean: Dead

Man’s Chest (2006 movie), 8
Pixar Animation Studios, 1, 7, 8, 45,

55, 132
pixels, 139e50, 217, 221, 228
pizza analogy, subdivision

surfaces, 55e6
planar polygons, definition, 24e5
planar projection mapping, 152e7
planes, 23e4, 26e7, 52e4, 131e2,
135e7, 161, 192, 208e10,
216e17

alpha planes, 161, 198e9, 209e10
definition, 23

planning/scheduling
requirements, good habits,
16, 18

plants, 24, 161, 209e12, 252
definition, 210e12
tools, 252

PLEs see personal learning editions
plugins, 9, 207
point light, definition, 184e5
poles, 38, 50e51, 60e61

see also faces; vertices
pollution, 212e14
polygon counts, 33e4, 64, 122,

135e7, 149e50, 210, 221
definition, 33e4
rendering implications, 33e4, 122,

210e11, 221
polygon meshes, 23e4, 28e34, 45,

49e54, 55e70, 134, 153e7,
207e8, 216e17, 241

see also closed.; open.
combined meshes, 31e4
definition, 23e4
edits, 28e34, 63e4
good geometries, 38
subdivision surfaces, 55e65,

153e7
topology, 58, 62, 156e7

polygons, 5, 21e44, 49e50, 55e70,
132, 134, 136, 153e7, 207e8,
217e18

see also edges; face; vertices
concepts, 21e44, 45, 63, 153e7,

207e8
convert NURBS to polygons tool,

52, 54
definition, 21e3
history of computers, 5, 21
limitations, 45, 63
terrain, 207e8

portfolios, careers in 3D art, 259,
260

pose-to-pose animation principle,
definition, 105e6

poses, 89e91, 98e102, 105e6, 114,
119e22, 123e5, 251

definition, 89e91
key poses, 120e22
timing animation principle,

120e21
postproduction, 219, 225, 227, 254
careers, 254
definition, 227

POV (point of view), 193e206
see also perspective view

POV-Ray, history of computers, 11
practice benefits, training, 243e4,

246, 257
preview render quality, 15e16,

204e6
primitives, 10e11, 17, 21e2,

28e33, 229e31
history of computers, 10e11
naming conventions, 17
types, 21e2

print resolutions, 220
procedural methods

careers, 254
definition, 162, 240

procedures, 229e41
see also nodes
definition, 229e30
smoothing the joints tutorial, 241
tutorials, 241

production houses, 121e22
programming, 1, 4e5, 11, 243e6,

247e9, 254e60
see also scripting; software
freeware, 11
history of computers, 1, 4e5, 11
open source software, 11, 243e6
tutorials/training, 11, 247e9,

254e60
projection mapping, 152e3,

155e7, 165e8
see also texture.

properties, light effects, 181e84
proportion classes, 109
PSD files, 221e22
punch card machines, history of

computers, 1
Python, 134, 243e6

see also scripting

quadratic decay light properties,
definition, 183e4

quads, 22e3, 30, 34, 35, 49e50, 54,
56, 59e60, 62e3

definition, 22e3, 59
uses, 59e6, 62e3

quality considerations
dynamics, 134
rendering, 220e21, 226, 228

QuickTime, 222

radiosity, 146e7, 177e8
raised eyebrows, 73, 116e18

INDEX 271
ramp gradients, colors, 158, 237e8
randomized equations, 207e8,

235e9, 246
ray tracing, 10, 144e8, 170e71,

174e5, 176e8, 179e80, 184
definition, 144e8
history of computers, 10
indirect light, 146e7
radiosity, 146e7, 177e8
shadows, 176e80, 184
types, 145e6

realism, animations, 103, 109
Reboot (1994 movie), 7e8
rectangles, 28e9, 40e44
referencing practices, good habits,

16, 19, 64
refinement steps, 49, 120e22
reflection maps, definition,

170e72
reflection rays, definition, 145,

170e71
reflections, 145, 169e80
refraction, 145, 172e5, 180

indices, 173e5
rays, 145, 172e5, 180

regular selection of a vertex,
definition, 28e9

relaxing tools, 167e8
renderer lights, definition, 188
rendering, 6e8, 15e16, 22e3,

33e4, 52, 121e2, 139e40,
145e50, 163e4, 169e70,
177e80, 193e4, 219e28, 241,
247e8, 251, 252, 254e60

see also ray tracing
antialiasing, 6, 221e22
aspect ratios, 220, 228
batch rendering, 223e4, 228
bucket rendering, 223e4
careers, 254
definition, 15e16, 139e40, 219
file types, 221e2, 228
frame buffers, 224
hidden objects, 226e7
history of computers, 6e8
image size, 219e20, 228
layers, 225e7
light effects, 169e70, 177e80,

219e28
naming conventions, 221e2,

228
network rendering, 224
NURBS surfaces, 52
polygon counts, 33e4, 122,

149e50, 210e11, 221
postproduction, 219, 225, 227
quality/optimization
considerations, 220e21, 226,
228

resolutions, 219e20, 228
scanline rendering, 139e40, 145,

219
settings, 15, 152, 179e80,

219e28
shadows, 227
software considerations, 219
spherical rendering, 225
stylized rendering, 225e6
testing, 121e22
tools, 247e8, 251, 252
tutorials, 228

RenderMan, 252
Renderosity, 11, 261
rented computers, history of

computers, 4e5
repeating patterns, 161e2
resolutions, 10, 163e4, 177e8,

216e17, 219e20, 228
definition, 163e4
history of computers, 10
rendering, 219e20, 228

résumés, 259e60
‘reusable programs’, history of

computers, 4
revolve, 51, 52, 89e91, 114,

118e19
RGB channels, 158e60
rigging, 17, 63e4, 85e102, 115e18,

120e22, 231, 232e3, 254
see also joints; skeleton.
careers, 254
concepts, 78, 85e102, 115e16,

233, 254
definition, 78, 85, 233
jointed robot tutorials, 98e102,

241
kinematics, 92e4, 100e102
muscles, 96e7
own controls, 97
parent/child hierarchies, 85e9,

92, 94e102, 232e3
types, 78, 85, 233

right clicks, 15
rigid binding, definition, 95
rigid bodies, 78e9, 95, 136
ripples, 36, 59e60
rivers, 208e210
RLS files, 222
robotic arms, 92
robots, 39e44, 52e4, 65e70,

80e83, 92e102, 122e5,
149e50, 164e8, 228, 241
animated juggling robot tutorial,
122e5, 149e50

batch-rendering robots tutorial,
228

colors tutorial, 149e5
deforming smiling robot tutorial,

80e83
jointed robot tutorials, 99e102,

241
mapping the robot tutorial, 164e8
NURBS tutorial, 52e4
simply polygon robot tutorial,

39e44
smoothing the joints tutorial, 241
subdivided robot tutorial, 65e70

ropes, 97
rotations, 51, 52, 89e102, 118e19,

124e5, 14, 152e3, 201e4,
211e12, 246

rough surfaces, shaders, 143e4
RPF files, 222
Russell, Steve “Slug”, 4e5
rust, 163e4

sadness facial expression, 116e18
salaries, careers in 3D art, 253e4
sand, 235e6
saves, good habits, 17e18
scanline rendering, 139e140, 145,

219
scanners, requirements, 14
scenery tools, 251e2

see also environments
scenes, good habits, 16
school bulletin boards, 238e9
scientific visualizations, history of

computers, 5
screens, 5, 14, 219e20, 235
scripting, 36, 119, 134, 243e6, 254

bad polygons, 36
careers, 254
comments, 244e6
creation, 244e6
definition, 243e6
documentation benefits, 244, 246
good habits, 244e6
practice benefits, 243e4, 246
syntax, 244e6
uses, 243e4

Sculpt3D graphics software, 10
sculpting, 71e72, 207e8, 240, 251

see also morph targets
definition, 71e72
tools, 251

seamless repeating patterns,
definition, 161e4

272 INDEX
seams, concepts, 154e7, 161e2,
165e8

seas, 208e210
secondary-action animation

principle, definition, 107
seeing and looking, good habits, 16
selections, vertices, 28e9, 40e44,

71e2, 80e83
self-study options, careers in 3D

art, 254, 256e7
sets in movies, history of

computers, 8e9
settings, rendering, 15, 152,

179e80, 219e28
shaders, 5e6, 27e8, 139e44,

148e50, 151e68, 169e70,
219e28, 235

see also Blinn.; Cook.;
Gourard.; Lambert.;
Oren.; Phong.; Ward.

controls, 151e53
definition, 27e8, 139e44
history of computers, 5e6
limitations, 169e70
rough surfaces, 143e4
tutorials, 148e50, 165
types, 141e4, 151e3
working with shaders, 151e3

shadow maps, 177e80, 184
shadow rays, 145
shadows, 6, 145, 176e80, 184,

191e2, 227
definition, 176e8
history of computers, 6
radiosity, 177e8
ray tracing, 176e80, 184
rendering, 227
tutorials, 178e80, 191e2

shaking repeating actions, 114
shapes, 13
shattering objects, dynamics,

127e9
shots, camera shots, 199e201,

204e6
shoulders, 89e102, 149e50,

200e201, 204e6, 232e3, 241
shutter speeds, definition, 197
silhouettes of objects, 28, 139, 160,

177e8
Silo, 250
simplified meshes, definition, 31
simply polygon robot, tutorial,

39e44
simulation technologies, 5, 78, 86,

96e7, 103, 129, 192, 212e14
see also animations
history of computers, 5
muscles, 96e7

skeleton chains, definition, 97
skeleton rigs

see also joint.; rigging
concepts, 78, 85, 88e102, 116e18
creation, 89e91, 99
definition, 78, 85, 89e90

skeletons, 78e9, 85, 88e102,
116e18

concepts, 78, 85, 88e102
definition, 78

SKETCHPAD
see also Sutherland, Ivan
history of computers, 1e3, 5, 21

skills, 11e12, 13e14, 18, 26e7,
247e52, 254e60

see also training.
continuous learning, 256e9
learning curves, 18, 248e9, 254e6

skinClusters, 231
skinning, 89, 94e5, 102
sky, 181, 187e9, 212e14, 252
sliders, 80e83, 111e14, 116e18

see also keyframing
Slinky toys, 78
slope changes, curves, 49, 59e60
slow-in-and-slow-out animation

principle, 107, 122
smiles, 62, 74e5, 80e83, 239
smoke, 132e3, 187
smooth binding, 95e6, 102
snakes, 74
soft body deformers, 76e7, 131e2,

135e7
soft selection of a vertex, 28e9, 71,

81e3
Softimage, 247, 250, 252
software

see also computers;
programming; scripting

costs, 11e12, 248, 249e52
crashes, 17e18, 222, 248
free trials, 248e52
good software, 13e14
manuals, 256e7
open source software, 11, 243e6
rendering, 219
requirements, 14, 219, 240, 247e9,

255e6
tools, 11e12, 15e16, 17, 71, 86e7,

93e4, 166e8, 243e6, 247e52
training needs, 11, 18, 26e7,

247e9, 254e60
solid-drawing animation principle,

definition, 109
Spacewar! game, history of
computers, 4e5

special effects, historical
background, 1e12

specializations, careers in 3D art,
254, 259

specialized deformers, definition,
75

specifications, hardware, 13e14,
248e7

spheres, 21e3, 42e4, 50e51, 53e4,
56e7, 98e102, 123e5, 129,
149e50, 152e3, 155e7,
170e72, 225, 232e3, 241,
244e5

spherical projection mapping,
152e3, 155e7

spherical rendering, definition, 225
splines, 45e54, 153e7

see also knots; NURBS
definition, 46e8

spotlights, 184e5, 191e2
spring constraints, definition,

77e8, 132
sprites, definition, 199
squash-and-stretch animation

principle, 104, 121e2, 128e9
staging animation principle,

104e6, 109, 199
star systems, parent/child

hierarchies, 86e9, 92, 94e5
Star Trek (2009 reboot movie), 197
Star Trek II: The Wrath of Kahn

(1982 movie), 6
Star Wars (movie), 6
starting the model, 24e7, 39e44,

63e5
state of the industry, careers in 3D

art, 253e4
stepped interpolation, 113e14,

121
stones, 237
stories, 16, 103e4, 107e111,

119e20
storyboards, 16, 119e20
straight lines, concepts, 45e8, 73
straight-ahead-action animation

principle, definition, 105e6
stretch, 104, 121e2, 128e9, 156e7,

165e8, 177e8
stylized rendering, definition,

225e6
subdivided meshes, 31, 35e6,

55e70, 241
subdivision surfaces, 52, 55e70,

153e7

INDEX 273
see also CatmulleClark.;
DooeSabine.; loop.;
polygons

definition, 55e8
edits, 63e4
enlightened style disagreements,

62e3
low numbers, 63e4
methods, 55e8
modeling, 62, 63e4
pizza analogy, 55e6
popularity, 55
robot tutorial, 65e70
triangles, 59e60

subsurface scattering, 148, 176
see also translucency

subtracting Boolean method to
combine meshes, definition,
32e3

subtracting edge loops, concepts,
30e1

sunlight, 181, 191e2, 213, 243
supercomputers, 5, 7
surprise facial expression, 116e18
Sutherland, Ivan, 1e3, 5, 9

see also SKETCHPAD
symmetrical features, appeal

animation principle, 111
symmetry, 65, 111
sympathetic characters, appeal

animation principle, 110e11
syntax, scripting, 244e6

T pose, definition, 89e91
T-shaped polygons, problems,

38
tablet requirements, 14
talking, 117e18, 119e22
telephoto lenses, 195
television screens, 219e20, 235
Terminator II (movie), 7
Terragen, 252
terrain, 207e8, 216e17, 233e4,

236, 240, 252
definition, 207e8
procedural terrains, 240

testing
3D packages, 14
rendering, 120e22
rigging, 85

texture editors, 15, 17, 28, 122, 144,
221, 249e52, 254

texture mapping, 6, 152e3, 157,
162e3, 237e8

definition, 152e3
history of computers, 6
types, 152e3
texture nodes, definition, 235
textured objects, 28, 151e68,

210e11, 221e22, 235, 237e40
see also colors
definition, 28, 151

Thomas, Frank, 103, 262
threads, batch rendering, 224
three-point lighting rigs, 181e4,

191e2
three-shot camera shots,

definition, 200e1
thumbnail sketches,

brainstorming, 119e20
TIFF files, 221e2
tiling textures, 161e2, 164, 223e4
tilt camera movements, definition,

201e204
timelines, concepts, 15e16, 123e5,

136e7
timing animation principle, 107,

111e12, 120e22, 123e5
Tinkertoys, 22e3
tools, 11e12, 15e16, 17, 71, 86e7,

93e4, 166e8, 243e6, 247e52
character animations, 251
concepts, 247e52
costs, 248, 249e52
environments, 251e2
free trials, 248e52
full packages, 247, 249e50
list, 249e52
manuals, 256e7
mouse, 15e16
rendering, 247e8, 251, 252
scripting, 243e6
sculpting, 251
smaller packages, 250
training needs, 11, 18, 26e7,

247e9, 254e60
types, 247e52

topology, 58, 62, 156e7
see also polygon.

torus, 180
Toy Story (1995 movie), 1, 8, 45, 55
traced pictures, 26e7
tracking camera movements, 199,

201e204, 205e6
see also dollying.
definition, 201e204
dolly zoom effects, 203e4

training, practice benefits, 243e4,
246, 257

training needs, 11, 18, 26e7,
247e9, 254e60, 261

see also colleges; skills
books, 257
community forums, 256e7,

258e9, 260
continuous learning, 256e9
deadlines, 257
learning curves, 18, 248e9, 254e6
online training resources, 256e7
self-study options, 254, 256e7
videos, 256e7

transistors, history of computers,
3e4, 5

translucency, 176, 180
see also subsurface scattering

transparency issues, 27e8, 152,
160e61, 169e80, 198e9,
226e7

trees, 24, 210e12, 236e7
triangles, 10e11, 22e3, 34, 35e6,

50, 54, 56e60
bumps, 59e60
definition, 22e3
history of computers, 10e11
loop subdivision, 58
subdivision surfaces, 59e60

Tron (1982 movie), 7, 21, 23e4
Tron: Legacy (2010 movie), 8e9,

116e17
Turbosquid, 11
turbulence nodes, 240
tutorials

see also training.
animated juggling robot, 122e5,

149e50
batch-rendering robots, 228
camera animations, 204e6
colors, 148e50, 165e8
deforming smiling robot, 80e83
draping cloth dynamics, 135e7
enlightened monk, 190e92
environments, 216e17
graphs, 241
jointed robots, 98e102, 241
light effects, 148e50, 178e80,

190e92, 204e6
mapping the robot, 164e8
NURBS on robot, 52e4
procedures, 241
programming, 11, 247e9, 254e60
rendering, 228
rigging, 98e102
shadows, 178e80, 191e2
simply polygon robot, 39e44
subdivided robot, 65e70

twist deformers, 75, 80
two-shot camera shots, 200e201,

204e6

274 INDEX
TX-2 system
see also DEC PDP-1 computer
history of computers, 2e3, 5

uncanny valley, 116e18
underwater scenes, 209e10
unfolding tools, 167e8
union (adding) Boolean method to

combine meshes, definition,
32e3

universal expressions, 116e18,
147

University of Utah, history of
computers, 5e6, 9

unwrapped cubes, 154e7
unwrapped heads, 155e6
unwrapped spheres, 155e7
Utah teapot, 6

see also Phong shading
utility nodes, definition, 233e4
UV coordinates, 35, 49e50, 58,

63e4, 153e7, 166e8
UV mapping, 153e7, 160, 165e8

definition, 153e5
good habits, 156e7

V-Ray, 252
vacuum tubes, history of

computers, 1
valid geometries, 38, 165e8
variables, scripting, 244e6
vertices, 21e7, 28e33, 38, 40e44,

56e8, 60e62, 67e70, 71e2,
80e83, 95e102, 135e7,
141e2, 167e8

see also corners of polygons;
poles

definition, 21e3
good geometries, 38
selections, 28e9, 40e44, 71e2,

80e83
Vertigo (movie), 203e4
very wide camera shots, definition,

199e200
video 3D effects, tools, 249e52
video cameras, requirements, 14
video games, 160, 247e52, 253e60
video graphics cards, 219, 248
videos, training videos, 256e7
viewing the object, 27e8
views, 14e16, 26e8, 39e44, 114,

193e4
definition, 14e15, 27e8
types, 27e8, 193e4

vinyl records, 144
virtual cameras, 193e206

see also cameras
clipping planes, 193e4, 196e9
definitions, 193e4
field of view, 193e4
matched virtual/real cameras,

198e9, 204
virtual spotlights, 191e2
visemes

see also talking
definition, 117e18

volumetric lights, 186e7, 209e10,
214

Voronoi diagrams, definition,
236e7

Vue, 247, 252

wagging tails, 73
Walking with Dinosaurs (1999

movie), 7
Wall-e (movie), 229
Walt Disney Studio, 103, 262
Ward shading, definition, 144
warp deformers, 75, 170e72, 180
warped camera images, 194e5
water, 172e5, 208e10
water plants, 209e10
waterfalls, 209e10
Watt, David, 10
waves, 208e10
web resolutions, 219e20
weighted control point influences,

74e5, 81e83, 95e6, 102
welding method to combine
meshes, definition, 32e3

Weta Digital, 71
the Whirlwind machine, 1e3
white-line drawings, history of

computers, 3, 4, 5, 9
wide camera shots, definition,

199e200
wide-angle lenses, 194e5
widescreen, 220
Windows, 248e52
wireframes

definition, 27e8
history of computers, 5e6,

139
Witaenem, Wayne, 4e5
workflow considerations,

animations, 119e22,
248e9

working space, 14e15, 39e44
World War II, history of

computers, 1
worm’s-eye view camera shots,

definition, 200e1

X (horizontal) coordinate axis, 15,
90e1, 153, 160, 232, 245

XFrog, 252

Y pose, definition, 89e91
Y (vertical) coordinate axis, 15,

53e4, 90e1, 99, 153, 160, 232,
245

YafaRay, 252

Z (depth) coordinate axis, 15, 53e4,
90e1, 99, 153, 159e60, 226,
232, 245

Z-depth algorithm, 139e40, 226
ZBrush, 247, 251
zooming-in camera movements,

194e9, 202e4, 205e6, 221
definition, 202e4
dolly zoom effects, 203e4

	Dedication

	3D Art Essentials
	Copyright
	Acknowledgments
	How To Use This Book
	Chapter 1 - A History of Computer Graphics and Special Effects
	From Institutions to Homes

	Chapter 2 - Getting Started and Getting Finished
	Good Hardware
	Good Software
	Your First Look
	Good Habits
	Referencing
	Naming Conventions
	Save Often
	Pace Yourself
	Get Feedback

	Chapter 3 - Polygons: How 2D Becomes 3D
	Understanding Polygons
	Polygon Meshes
	Starting Your Model
	Viewing the Object
	Editing the Mesh
	Extruding
	Controlling Edges and Edge Loops
	Subdividing and Simplifying
	Combining Meshes
	Polygon Count
	Normals
	UV Coordinates
	Aesthetics and Compatibility
	Valid Geometry

	Chapter 4 - Nurbs: The Spliny Truth
	From Straight to Curvy
	Creating and Modifying Curves
	NURBS Surfaces
	Creating and Modifying NURBS Surfaces

	Advantages and Disadvantages of NURBS

	Chapter 5 - Subdivision Surfaces: The Marriage of Polygons and Nurbs
	Subdividing
	Other Subdivision Methods

	Topology
	Using Quads
	Poles
	Edge Loops
	Enlightening Disagreement
	Modeling with Subdivision Surfaces
	Organic Modeling

	Chapter 6 - Deforming: It's A Good Thing

	Sculpting and Special Selections
	Morph Targets
	Lattices and Curves
	Controlling the Influence
	Specialized Deformers
	Soft Bodies
	Constraints
	Skeletons and Muscles
	Rigid Bodies
	Order

	Chapter 7 - Rigging
	Parent and Child
	Bones and Joints
	Skeletons
	Creating a Skeleton Rig
	Joint Limiting
	Kinematics
	Forward Kinematics
	Inverse Kinematics

	Skinning
	Rigid Binding
	Smooth Binding
	Muscles
	Other Uses for Joints
	Making Your Own Controls

	Chapter 8 - Animation: It's Alive!

	The Twelve Basic Principles of Animation
	Squash and stretch
	Anticipation
	Staging
	Straight-Ahead Action and Pose to Pose
	Follow Through and Overlapping Action
	Slow In and Slow Out
	Arcs
	Secondary Action
	Timing
	Exaggeration
	Solid Drawing
	Appeal

	Keyframing
	Animating with Graphs
	Motion Capture
	Facial Animation
	Universal Expressions

	Automation
	Fence-Post Errors
	Animation Workflow

	Chapter 9 - Dynamics: Let's Get Physical

	Physics
	Collision Detection
	Particles
	Hair
	Fluid Dynamics
	Crowds and Populations
	Quality

	Chapter 10 - How the Pixel Gets Its Color
	Shaders
	Lambert
	Gouraud
	Phong
	Blinn
	Rough Surfaces

	Ray Tracing
	Radiosity and Indirect Light
	Ambient Occlusion

	Photon Mapping

	Chapter 11 - More Than Just Color
	Working With Shaders
	Texture Mapping
	UV Mapping
	A Few Tips
	Painting in 3D
	Other Maps
	Changing Geometry
	Bump Maps
	Normal Maps
	Displacement Maps
	Alpha or Transparency Maps

	Seamless Repeating Patterns
	Multiple Maps
	Resolution

	Chapter 12 - Light Effects
	Reflection
	Reflection Maps
	Anisotropy

	Refraction
	Caustics
	Translucency
	Shadows

	Chapter 13 - Lighting The Way
	Light Properties
	Types of Light
	Point Light
	Spotlight
	Area Light
	Directional Light
	Volumetric Light

	Objects as Light Sources
	Renderer Lights
	Image-Based Lighting
	Gobos

	Chapter 14 - Working the Camera
	The Virtual Camera
	Faking Camera Effects
	Focus and Depth of Field
	Lens Flare and Glare
	Motion Blur

	Matching Virtual Cameras to Real Ones
	Cameras and Image Planes
	Animating the Camera
	Through the Cameratnqh_x2019s View
	Camera Movements

	Chapter 15 - Environments
	Terrain
	Water
	Plants
	Sky
	Sun
	Clouds
	Indoors

	Chapter 16 - Rendering
	Image Size and Aspect
	Quality and Optimization
	Antialiasing
	File Type and Naming
	Bucket Rendering
	Batch Rendering
	Network Rendering
	Frame Buffers
	Spherical and Panoramic Renders
	Stylized Renders
	Layers
	Postproduction

	Chapter 17 - Procedures and Graphs
	The Graph
	Types of Values
	Value Ranges
	Hierarchy
	Types of Nodes and Functions
	Inputs
	Joints and Rigging
	Math or Utility Nodes
	Material and Texture Nodes
	Noise
	Fractals
	Color Maps
	Images

	Combining Nodes
	Container Nodes

	Outputs
	Procedural Methods
	Order

	Chapter 18 - Scripting
	Chapter 19 - What Tools to Use
	Full Packages
	Smaller Packages
	Sculpters
	Character Animation
	Scenery
	Renderers

	Chapter 20 - Making a Career out of 3d
	The State of the Industry
	What Specialization?
	College
	Self-Study
	Communities
	Portfolios and Demo Reels
	Ways to Attract Attention

	Extra Resources

	Links
	Sites Sponsored by Software Developers

	Magazines
	Books

	Index

