
AutoMOTGen: Automatic Model Oriented Test
Generator for Embedded Control Systems�

Tool Paper

Ambar A. Gadkari, Anand Yeolekar, J. Suresh,
S. Ramesh, Swarup Mohalik, and K.C. Shashidhar

General Motors R&D - India Science Lab, Bangalore
{ambar.gadkari,anand.yeolekar,suresh.jeyaraman,
ramesh.s,swarup.mohalik,shashidhar.kc}@gm.com

1 Introduction

We present AutoMOTGen, a tool for automatic test case generation (ATG)
from MATLAB Simulink/Stateflow (SL/SF) models [6] for testing automotive
controllers. Our methodology is based on model checking [2]. The main highlights
of the tool are:

1. Enhanced coverage of the model elements as well as high-level requirements.
2. A modular design for plug-and-play of different model checkers, test data

generators and coverage analysis tools for enhancing the test suite quality.
3. Implements sampling time abstraction to generate tests with lesser number

of (discrete) steps in the intermediate model.
4. Implements coverage dependent instrumentation of the model for the struc-

tural coverage criteria.
5. Capability to handle SL/SF blocks commonly used in automotive controllers

(including blocks such as integrator, delay, multiplication/division, look-up
tables, triggered subsystems and hierarchical and parallel charts).

The current implementation of AutoMOTGen uses SAL [8] as an intermediate
representation and uses associated tools such as sal-atg, sal-bmc and sal-smc
for generation of test data and proving the unreachability of some of the coverage
goals. AutoMOTGen is implemented in Java and C++ (.NET framework) and
uses MATLAB scripting language for extracting the relevant information from
SL/SF models required for the purpose of test generation.

2 Motivation

Model checking, besides formal verification, has also been shown to provide an
efficient technique to automatically derive test sequences from transition sys-
tem models [1,4,5]. This approach for ATG relies on capabilities of the model
� The opinions expressed in this article are those of the authors, and do not necessarily

reflect the opinions or positions of their employers, or other organizations.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 204–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



AutoMOTGen for Embedded Control Systems 205

checkers to generate traces for counter-examples of properties that do not hold
in the model. Test suites are usually derived to satisfy certain coverage criteria
of a model. The coverage criteria are mostly based on structural coverage of the
transition system model such as state and transition coverage. The structural
elements (states and transitions) are typically associated with Boolean variables
called trap variables. Structural coverage of a model element is then reduced to
model checking the reachability of the state where the associated trap variable
is true. Model checking based ATG strives to find the most efficient test suite
using directed search techniques. The main advantage of this approach is that
one can achieve a systematic coverage of undischarged goals by using various
model checking engines employing techniques such as explicit model checking,
bounded model checking (based on SAT/SMT solvers), symbolic model check-
ing and others in combination with various model slicing and reduction tech-
niques for covering the deeper goals. Also, whenever certain goals cannot be
covered the model checking engines can be invoked to prove the unreachabil-
ity of those goals. Various other model abstraction techniques such as counter-
example guided abstraction refinement, predicate-based abstraction and others
can be explored to enhance the coverage, efficiency and scalability. Compared to
other techniques such as random generation or guided-simulation used by most
of the current commercial ATG tools [9,7] used in automotive controller devel-
opment, the model checking based approach for ATG holds a greater promise in
covering the deep-rooted coverage goals. This motivated the work on develop-
ment of AutoMOTGen two years back. It serves as an experimental testbed for
evaluating various technologies for test generation using industrial case studies.
Recently, The Mathworks has introduced a toolbox, Simulink Design Verifier [6]
which has ATG capability based on Prover’s SAT-solver technology. We believe
that our tool with its unique capability to provide an integrated environment for
generation of test cases with plug-n-play of diverse tools and combining various
techniques can help in addressing the needs of industrial scale designs. Results
from our case studies have been encouraging in this regard.

3 Overview of Test Generation Flow

We describe here the generic flow of AutoMOTGen as shown in Figure 1. There
are three inputs, namely, SL/SF models, high-level requirements and test spec-
ifications including different coverage goals. The output is a test suite of timed
input-output sequences that can be used for testing the implementation. The test
specification includes different coverage goals based on various structural criteria
defined over SL/SF models. The test specification and high-level requirements
are translated into formal properties using a subset of Linear Temporal Logic
(LTL) by the property generator module. The SL/SF model is translated into
a formal language which can be fed to the model checking engine. The model
checking engine then verifies the formal model. The generated counter-example
traces are converted into test cases consisting of timed input-output sequences.



206 A.A. Gadkari et al.

Fig. 1. AutoMOTGen architecture Fig. 2. AutoMOTGen back-end flow

4 AutoMOTGen Implementation

The current implementation of AutoMOTGen uses SAL as an intermediate lan-
guage. This enables use of associated tools such as sal-atg, sal-bmc, sal-smc, etc.
The back-end flow for model translation and test case generation is shown in
Figure 2. The translator extracts the relevant information from SL/SF models
through scripts built using MATLAB APIs. The SL/SF models are simulated
using the generated test data and the corresponding outputs are stored as ref-
erence for testing the implementation. During simulation the model coverage
information is obtained to assess the completeness of the generated test data.
The translation of SL/SF to SAL is non-trivial and involves various steps such
as time discretization, type abstractions and captures the simulation semantics
of SL/SF. The SAL model is structured such that it retains the hierarchy in-
formation and allows the mapping of structural coverage of SL/SF model to
the coverage goals. Additionally, monitors are inserted to cover the high-level
requirements specified in the form of temporal logic properties. The continuous
blocks in Simulink are approximated using linear interpolation. The step-size
used for sampling is taken as a user input during the translation step. The user
can modify the step-size depending on the coverage information. The trap vari-
ables are selectively introduced into the SAL model based upon the user selected
coverage options. The use of model-checker such as sal-bmc requires that all the
variables should be of type bounded integers. The model-checker sal-inf-bmc can
be used in cases where real datatypes are present in the model, however, it puts
restrictions on the arithmetic operations which result in nonlinear constraints. In
these cases the real variables are approximated by use of look-up-tables for arith-
metic operations. The tool provides a capability to easily modify the variable
types and their ranges before selecting the appropriate model-checking engine.
The uncovered goals are checked for proving unreachability and the results are



AutoMOTGen for Embedded Control Systems 207

reported in the test generation logs. The unreachability of conditions or states
in SAL model does not always imply unreachability in the SL/SF model. The
tool provides a simple and intuitive GUI.

5 Case Studies

Our methodology has been evaluated using automotive controller case studies
viz., Automatic Transmission Controller (ATC) and Adaptive Cruise Controller
(ACC). The test results were compared with those obtained from a commer-
cial tool that uses random test data generation techniques. The tests using our
method were found to be more efficient in terms of providing model coverage
with less number of input injections thus significantly reducing the test execu-
tion time, by almost factor of 10 in some cases. Results from these case studies
based on a very preliminary implementation with a semi-automated flow are
presented in [3]. In AutoMOTGen the entire end-to-end methodology has been
fully automated. We have been able to handle various medium-sized controller
models (corresponding RTW generated C code ranging between 2000-3000 lines)
from real automotive subsystems. Recently, a larger case study has been initi-
ated using controller modules from StabiliTrakTM project (Electronic Stability
Control system).

6 Conclusion

We have presented AutoMOTGen for automatic test case generation from SL/SF
models of automotive controllers. It uses model checking for efficient generation
of test data. It is designed to be modular to enable plug-and-play of different
model checkers, test data generators and coverage analysis tools for obtaining
efficient test suites. The tool has been evaluated using automotive controller ex-
amples and the comparative results with respect to other commercially available
tools have been encouraging. Various enhancements are being carried out in the
tool such as counter-example based abstraction refinement and other techniques
to address scalability issues arising in larger industrial designs. HybridSAL is
also being explored as one of the approaches for discretization.

References

1. Ammann, P., Black, P.E., Majurski, W.: Using model checking to generate tests
from specifications. In: ICFEM, p. 46 (1998)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2000)

3. Gadkari, A., Mohalik, S.K., Shashidhar, K.C., Yeolekar, A., Suresh, J., Ramesh, S.:
Automatic generation of test-cases using model checking for SL/SF models. In: 4th
International Workshop on Model Driven Engineering, Verification and Validation
(MoDeVVa 2007) (2007)



208 A.A. Gadkari et al.

4. Gargantini, A., Heitmeyer, C.L.: Using model checking to generate tests from re-
quirements specifications. In: ESEC / SIGSOFT FSE, pp. 146–162 (1999)

5. Hamon, G., deMoura, L., Rushby, J.: Generating efficient test sets with a model
checker. In: 2nd International Conference on Software Engineering and Formal
Methods, Beijing, China, September 2004, pp. 261–270. IEEE Computer Society,
Los Alamitos (2004)

6. The Mathworks, Inc., http://www.mathworks.com
7. Reactis, Reactive Systems, Inc., http://www.reactive-systems.com
8. SAL homepage, http://sal.csl.sri.com/
9. Safety Test Builder, TNI-Software, http://www.tni-software.com

http://www.mathworks.com
http://www.reactive-systems.com
http://sal.csl.sri.com/
http://www.tni-software.com

	AutoMOTGen: Automatic Model Oriented Test Generator for Embedded Control Systems
	Introduction
	Motivation
	Overview of Test Generation Flow
	AutoMOTGen Implementation
	Case Studies
	Conclusion


