
W. Zhou et al. (Eds.): ICWL 2003, LNCS 2783, pp. 509–519, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Design and Implementation of VPL: A Virtual
Programming Laboratory for Online Distance Learning

Alvin T.S. Chan1*, Jiannong Cao1, Chi-Kin Liu1, and Weidong Cao2

1Internet and E-Commerce Laboratory,
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, SAR of Hong Kong

2Department of Mathematics,
Jiangsu Institute of Education

Nanjing, Jiangsu, China
*Contact Author: cstschan@comp.polyu.edu.hk

Abstract. The virtual programming lab (VPL) project described in this paper
offers is designed to facilitate Internet access to application software. It
emulates a real computing laboratory environment that promotes group learning
and project management. The laboratory resources are situated at the university
and are centrally controlled. Users of the virtual programming laboratory
include students, tutors and administrators of the system. Users can be located
at different geographical locations and remotely access applications through the
Internet. The virtual programming lab design is based on a distance education
concept. This paper focuses on the design and development of the runtime
modules within the VPL framework. These runtime modules provide
underlying services that drive the launching of applications, file management
and communications services. In addition, this paper presents an evaluation of
the performance of the system.

1 Introduction

The growth of the Internet over the last few years has promoted many areas of web
development including education. E-learning has become one of the fastest moving
trends and is expected to play an ever more important role in the provision of distant
education.

Web education makes distance learning effective and flexible. Students can learn
according to their own schedules and, if necessary, follow a non-linear approach to
acquiring knowledge based on their own capabilities. Students can access course
materials anywhere at anytime. They can download lecture notes, communicate with
the instructor via email, and sit examinations on the web. Already, there are popular
e-learning software packages that support online lecturing and tutoring and
considerable effort has been put into providing web-based learning and teaching.

All of this notwithstanding, it is not a simple matter to find reports that address the
important issue of providing students with convenient online access to programming

510 A.T.S. Chan et al.

facilities. Indeed, students who currently wish to access a particular item of software
are invariably required to physically go to the computing lab to do it, and up until
now, solutions to this problem have either been ad hoc or have required special-
purpose web programming facilities [1][3].

The virtual programming laboratory system (VPL) enables users to launch
programs at remote servers located in the laboratory and provides ease and better use
of laboratory software resources. By providing wide area access through web
infrastructure, VPL allows more students to remotely use the software located within
the laboratory. An additional benefit of VPL is that it allows students to share
resources and remote files with others. By providing a channel for users to
communicate with their peers, VPL promotes collaborative learning.

2 Challenges in Laboratory-Oriented Learning

Advances in Internet technologies have led to new types of teaching and learning
projects. Mostly, these projects have been limited to the dissemination of teaching
materials, but some projects have tried to provide more attractive and Internet-
informed features that support interactive, customized, and collaborative teaching and
learning. Such Internet-informed projects have included providing a laboratory-
learning environment on the web. This is an important step, as practical work plays a
central role in learning science subjects. The aims of laboratory work are often
synonymous with the aims of science courses [1] and aided learning. A laboratory
with software access promotes learning because it allows students to apply concepts
in practice. Yet the use of software in physical laboratory settings presents a number
of challenges in terms of efficient and effective teaching.

Currently, little work is found on either ad hoc or special purpose web
programming facilities that support virtual programming environment [2]. When
students need to use lab-based software or have a discussion with project members,
they are required to be physical present in a computer lab, causing students to waste
time traveling and arranging meetings.

In short, laboratory resources are not leveraged effectively and uniformly. One
reason for this is that software and application usage in laboratories often depends on
course assignment workloads and project deadlines, so laboratories (and consequently
software) have a very uneven usage pattern over a term. Similarly, usage tends to be
very high during “normal” lab hours, while resources are under-utilized during off-
peak hours, especially weekends. A further reason for ineffective and uneven
leveraging of laboratory resources is geographical, in that the license usages are
always distributed unevenly.

Instructor/tutor led laboratory sessions usually have an excess of materials to
present. This may lead to students needing extended lab hours to complete their
assignments. In these circumstances, instructors/tutors too, may face difficulty to
managing their workloads, and find themselves unable to simultaneously run their
courses and appropriately respond to students. Obviously, this can damage both
teaching and learning and teacher and student morale.

A final problem is that software installation and configuration also consumes large
amounts of time in the physical laboratory that could otherwise be spent on more
productive learning activities.

Design and Implementation of VPL: A Virtual Programming Laboratory 511

The aim of the Virtual Programming Lab (VPL) [4] project is to solve each of
these problems by enabling any student with access to a computer with a web browser
and a connection to the Internet to gain access to laboratory resources, wherever,
whenever. There are three desirable characteristics of the virtual learning environment
[5] that are applicable to this project:

1. Supported and customized individual lab environment

2. Real-time and non-real time group usage of the virtual lab environment

3. Collaboration and learning between lab users

The VPL project supports these three characteristics. Users are assigned accounts
to store their individual environment information. System support is provided for
users and administrator to customize and manage their virtual lab environment.
Within the virtual environment, users can interact with each other via built-in
collaborative tools to promote interactive learning.

The VPL system also provides a statistical log of software usage patterns. An
integrated mechanism to monitor the software usage patterns and user behavior are
provided. The former is important for planning of resources, while the latter may be
used as a basis to monitor students learning experience and behavior.

File management is also addressed in this project. The files in the VPL system can
be stored in the local or remote machines. A simple job such as “opening a folder”
involves many processes such as distinguishing the location of the file, connecting to
the remote site, mapping to the remote user account and getting the file information.
The file management function handles these complex tasks for the user. The user does
not need to know the file location before copying the file. If a remote file is copied to
local folder or vice versa, the file transfer between local and remote is necessary and
should be performed transparently.

3 VPL Design

The purpose of the VPL system is to create a seamless laboratory environment that
supports online distant learning. Because of the lack of laboratory simulation projects
that allow remote program launching, the VPL system is designed to provide such
functionality and a standard platform for user interaction.

Fig 1 shows the network infrastructure between clients and lab machines. The VPL
system allows users to access the lab machine software through a thin client no matter
what type of hardware, be a pc, laptop or PDA.

The overall system architecture adopts the typical 3-tier approach where the
graphical user interface is located at the client tier, the virtual lab runtime API at the
middle tier, and the database at the 3rd tier. The client side includes some components
that provide access to the virtual lab runtime. The middle tier manages the virtual
programming lab and provides APIs to access the database and the lab machine. The
third tier stores information and resources in the system (see Fig 2).

512 A.T.S. Chan et al.

School
Local Area

Network
Internet

Lab Machine

Lab Machine

HomePC

Office PC

BroadBand

Lab MachineDistrict Lan

Office PC

Office PC
W

ireless Lan

Fig. 1. System context of VPL

Virtual Lab Runtime API

Graphical User Interface

Virtual
Desktop

Remote
Control

Application
Service

User
Communication

Database

Administration

File
Explorer

Lab Talk

Network
Connection

Lab Machine

Remote Software

displaying
adapter

Access Control

Fig. 2. Architecture of the virtual programming lab

This paper focuses on the virtual lab runtime part which is highlighted in dotted
lines as shown in Fig 2. The runtime will appear as a set of software packages that
bundled together to provide Java API access to service provided by the VPL system.

Design and Implementation of VPL: A Virtual Programming Laboratory 513

3.1 Design of VPL Runtime System

The design of the VPL runtime system can be broken down into five parts:
• File management subsystem—provides remote file management function

for applications. The purpose of the subsystem is to enable the seamless
transfer of files between local and remote systems operating in a graphical
user interface. The component is designed to be modular so as to support
open programming interfaces, where future applications can be built
easily based on the API provided by this system.

• Communication subsystem—provides the communication function
between users of the VPL system. In particular, it supports important
functions to enable users to interact and collaborate with one another
using tools such as messaging, chat and file attachments.

• Remote application launching—provides a remote software application
launching function. This component forms an important part of the VPL
system. It provides remote launching of software that is installed in the
laboratory and to make it available to users accessing it via de facto
standard web browsers. It is made up of a client applet and a
corresponding terminal server which implement X protocol for remote
terminal control.

• Usage monitor—designed for backend support and acting as a repository
for real time usage monitoring. The component provides logging of
activities that are performed by end users in terms of the pattern of
software usage. This information is important to provide support for
collaborative learning, where the usage monitor can inform end users who
are concurrently using the same software. In such cases, users can choose
to interact with one another. Knowledge of the usage patterns of users
would also be useful in planning future software purchases and
deployments.

• Administration subsystem—provides administrative functions that are
similar to a real-life laboratory, providing facilities for users to be added
or deleted, and application access rights to be granted.

The above sub-systems work in tandem to provide the collective functionality of
the VPL runtime system.

4 Implementation and Performance Evaluation

A prototype of the VPL system is being implemented on a web platform hosted by the
J2EE web application server. The implementation part follows the design as described
in section 3. In this section, we discuss issues and techniques of implementing the
VPL runtime system, including the file management sub-system, the communication
sub-system, the usage monitor and the remote application launcher.

This project is implemented mainly in a Microsoft window and Linux
environment. Java™ language is the main programming language used. The software

514 A.T.S. Chan et al.

platforms used include the Oracle 8.1.7 relational database server, Oracle9i
application server (J2EE compliance) and SonicMQ messaging server.

Also discussed are the collaboration with a backend database and case study on
how to make use of the VPL runtime system.

4.1 Deployment and System Architecture

The system architecture of the VPL system includes a client pc connecting through
the Internet to one web server and an application server.

The Client PC
The client pc contains two applets that are downloaded from the web server. Both of
the applets are digitally signed.

The VPL applet contains necessary classes for running the virtual desktop
graphical user interfaces and classes for connecting to backend services. It directly
connects to the lab machine remote file system. In the deployment diagram, a remote
file object is shown on the client PC. Physically, the remote file resides in the lab
machine. The VPL applet is responsible for getting data from the database by
connecting to the web/application server.

The displaying adapter applet is used to draw remote application graphical user
interfaces on the client side. Shown in Fig 3 is a screen shot of the virtual desktop and
the execution of a remote application GIMP.

The Web/Application Server
The web/application server is Oracle9i application server. It contains a web server to
store web pages for the VPL system and an application server that is capable for
running Java Servlet and Java Server Page (JSP). Java Servlet and Java Server Page
are server side programming based on the Java standard enabling dynamic website
building and connection to backend enterprise services. The message queue server is
SonicMQ, it is used to provide message-based communication between client and
server applications.

The Database Server
The database is based on the Oracle8i server. It is located within the school campus
Intranet. In this way, both the web/application server and the lab machines will have
direct access to the database by use the Java JDBC connection to the server.

The Lab Machines
Lab machines are computers providing remote software applications to remote users.
They are located within the school campus Intranet. There are two system servers
running in each of the lab machines: 1) a remote file server, a file server which
provides remote file management functionality and 2) a usage monitor, which is a
server program that keeps track of which program is being used and by which user.
The usage status is updated to the database server.

Design and Implementation of VPL: A Virtual Programming Laboratory 515

Fig. 3. Screen shot of VPL

The deployment diagram for the VPL system is shown in Fig 4. When the applet is
started on the client side, it connects to the database though the web server and
registers itself to the message queue server. There may be a number of lab machines
working together to provide software usage monitoring. The usage monitor at the lab
machine periodically connects to the database server to update the software usage
status.

4.2 Experiments

To verify and evaluate the VPL system, we have set up an experimental test bed to
measure the performance in terms of the delay in launching remote applications. The
experiment focuses on the lab machine connection speed as shown in Fig 5.
The following software is used to measure the network performance on the client side
and to measure the system resources usage on a Linux lab machine.

1. Network Smart Lite 1.0 (Build 385) is used to measure throughput,
latency and, data sent and received. This application can be used on the
connection with a LAN card.

516 A.T.S. Chan et al.

Fig. 4. Deployment diagram for the VPL system.

Lab machine Computer at
school network

Computer outside
school network.

Processors Pentium III
500 MHz

Pentium III
500 MHz

Pentium III
600 MHz

Memory 256 MB PC-100 256 MB PC-100 512 MB PC-100
Network

connection speed to
Lab machine

Not Applicable 100 Mb/s LAN 1.5 Mb/s broadband
or

56 kb/s dialup
connection

OS Mandrake Linux 8.0 Window 2000
professional edition

Window 2000
professional edition

Screen Resolution Not Applicable 1024 * 768 1024 * 768
Color depth 16k bit color 16k bit color 16k bit color

Fig. 5. Confguration of experiment machine.

2. Qcheck version 2.1 is used to measure latency when using a dialup
connection.

3. Xosview is used to monitor the system resource usage in a Linux system
such as CPU time, physical memory usage and swap memory usage.

The experiment was conducted at three different connection speeds. The throughput
and response time were measured using Qcheck version 2.1. The results are
summarized below.

Design and Implementation of VPL: A Virtual Programming Laboratory 517

Measure by Network Smart Lite and Qcheck

Throughput Latency

School LAN More than 10 Mbit/s Less than 10 ms
Broadband LAN Around 350 Kbit/s Around 20 ms
Dialup connection Around 30 Kbit/s Around 150 ms

Fig. 6. Lab. machine throughput and latency

This experiment tests the launching times of three different types of software
applications operating at different connection speeds. The purpose is to demonstrate
the performance of the remote application as it launches in different network
environments. The launching time is defined as that period between the moment of
double clicking on an application icon and the moment when the application is ready
to accept input. The launching time of each application, was measured five times. The
average launching times is displayed in the table below.

Launching time JDeveloper 9i Gedit Xterm

Local 24 sec 1 sec 0.7 sec
School LAN 28 sec 3 sec 2.5 sec
Broadband 54 sec 35 sec 33 sec
Dialup > 5 minutes 75 sec 52 sec

Fig. 7. Program launching times s in different environments

Three applications were launched, Jdeveloper 9i, Gedit and Xterm. Of the three,
Jdeveloper 9i is the most graphic- intensive application, followed by Gedit, then
Xterm. This explains the exceptionally long delay in launching the Jdeveloper
program as compared with others when operating over a dialup network (see Fig 13).
The launching time difference decreases, however, as the connection speed increases
and the bottleneck due to bandwidth availability becomes less of an issue.

5 Conclusion

This paper focuses on the development of runtime modules for VPL. With a well-
defined interface established between the subsystems, the runtime modules have been
developed to provide core mechanisms for driving the operations of the VPL system.
We have successfully developed core modules that support remote application
launching through the use of an X-protocol. To bind the remote application to a web
terminal, a telnet mechanism was developed and implemented to transparently and
remotely launch Unix-based applications over the web. To support seamless access of
the files repository on both local and remote machines, a file management module
was developed to allow the intuitive and efficient transfer of files between the

518 A.T.S. Chan et al.

Program launching times delays: various
software

Fig. 8. Program launching time delays: various software

directories. The need to provide project-based messaging to allow student
collaboration resulted in the development of the communication module. Based on the
Java Messaging System, it allows a seamless exchange of messages between students
and is configurable according to on topic/ project group.

While the core modules have been successfully developed, we believe there are
several enhancements that can be incorporated to increase the robustness and usability
of VPL. These include:

• Firewall compatibility: The VPL system should support users behind a
firewall. This can be accomplished using the HTTP tunneling technique.

• Intelligent load balancing: The system implemented in this project
involves only one lab machine. In order to support a larger number of
users, a load balancing scheme based on lab machine CPU/RAM
consumption levels and network utilization levels should be applied to the
VPL system.

• Automatic server discovery and monitoring: the system involves
several servers and is inherently complicated. Therefore, an automatic
server monitoring and discovery platform is needed. A technique such as
heartbeat listening could be applied to this system.

• Peer to Peer computing: The existing VPL system supports only
message transfer between users. More intuitive communication channels
such as web conferencing and white boards should be developed. More
work should also be done to facilitate project collaboration such as screen
and file sharing.

Design and Implementation of VPL: A Virtual Programming Laboratory 519

Acknowledgement. This project is supported by the HK Polytechnic University
Teaching and Learning Grant LTG00-01\DLTC\COMP05.

References

1. Hboffstein A., Lunetta V., “The role of the laboratory in science teaching: neglected aspects
of research.”, Review of education research, 52, p.201–218.

2. Glenn W. Rowe, Peter Gregor, “A computer based learning system for teaching
computing: implementation and evaluation”, Computers & Education 33 (1999) p. 65–76,
Pergamon

3. A. Di Stefano, F. Fazzino, L. Lo Bello, O. Mirabella, “Virtual lab: A Java Application for
distance learning”, 0-7803-4192-9/97/$10.00 © 1997 IEEE

4. Jiannong Cao, Alvin T.S. Chan, Weidong Cao, Cassidy Yeung, "Virtual Programming Lab
for On-line Distance Learning", Proc. 1st International Conference on Web-based Learning
(ICWL'02), Aug. 2002. Hong Kong. Lecture Notes in Computer Science (Springer-Verlag).

5. Sam K.P. Ma, Michael Rung-Tsong Lyu, “A web-based customized virtual learning
environment” APWEB’99 http://www.cse.cuhk.edu.hk/~lyu/student/

	Introduction
	Challenges in Laboratory-Oriented Learning
	VPL Design
	Implementation and Performance Evaluation
	Conclusion

