Extending the SDSI / SPKI Model through Federation
WebsEl

Altair Olivo Santin!-2, Joni da Silva Fraga!, and Carlos Maziero?

! Federal University of Santa Catarina — DAS/CTC/UFSC
C.P. 476, CEP 88040-900 — Florianépolis — Brazil
{santin, fraga}@das.ufsc.br
2 pontifical Catholic University of Parand — PPGIA/CCET/PUCPR

R. Imaculada Conceigdo 1155, CEP 80215-901 — Curitiba — Brazil
{santin,maziero}@ppgia.pucpr.br

Abstract. Classic security systems use a trust model centered in the
authentication procedure, which depends on a naming service. Even when using
a Public Key Infrastructure as X.509, such systems are not easily scalable and
can become single failure points or performance bottlenecks. Newer systems,
with trust paradigm focused on the client and based on authorization chains, as
SDSI/SPKI, are much more scalable. However, they offer some difficulty on
locating the chain linking the client to a given server. This paper defines
extensions to the SDSI/SPKI authorization and authentication model, which
allow the client to build new chains in order to link it to a server when the
corresponding path does not exist.

1 Introduction

In the classic view of authentication and authorization in distributed systems, the
naming service centralizes the authentication procedure, restricting its action to the
local naming domain. On the other hand, authorization mechanisms are generally
implemented in a distributed way. This model, usually adopted in corporate networks,
grows in complexity when applied to the whole Internet. In order to overcome the
scalability limitations, it is necessary to define inter-domains trust relationships,
allowing the coverage of a global naming space. Under such circumstances, the
management of these relationships may become a difficult task.

Public Key Infrastructures (PKI) offer means to carry out authentication on a global
context. The X.509 PKI, for example, adopts a global naming system (X.500), which
is based on a hierarchical trust model formed by Certification Authorities (CA). In this
model, the authentication chains start from a root CA and lead to a principal (a user,
for example). Although the X.509 PKI is widely used, its global model faces

* This project has been partially supported by the Brazilian Research Council — CNPq, under the
grant 552175/2001-3.

A. Lioy and D. Mazzocchi (Eds.): CMS 2003, LNCS 2828, pp. 132-145, 2003.
© IFIP International Federation for Information Processing 2003

Extending the SDSI / SPKI Model through Federation Webs 133

difficulties on adjusting to each country’s legislation, and can also be difficult to use
due to its complex and inflexible scheme. In other words, trust models based on a
centralized entity (names/authentication service), besides representing critical points
regarding faults and vulnerability, may impose restrictions to performance and
system’s scalability on large-scale environments [1].

Internet applications must be developed taking into account authentication and
authorization models in which the trust relationships can be established on a flexible,
scalable, and distributed way. The Pretty Good Privacy (PGP) mechanism, employed
to cipher and authenticate computer files and e-mail [2], adopts a structure for key and
certificate management based on a web of trust. When compared to the X.509
hierarchies, the PGP web of trust — built up on an arbitrary way — is quite flexible and
very well adapted to the World Wide Web features. However, choosing such pondered
based models leads to difficulties for making trust decisions, as multiple signatures
can be demanded in a single certificate for assuring credibility.

On egalitarian trust models — which have the main purpose of adapting
authentication and authorization models to the distributed worldwide network
environment — i.e. the Internet — the trust management concept has been proposed
mainly as a focused paradigm for authorization [3]. The trust management unifies the
concepts of security policies, identification, access controls, and authorization.

Two different approaches are found in the technical literature that can follow this
concept. In the first one, the trust management is set using a language for authorization
and credentials description, and an engine that defines the compliance checker
module. PolicyMaker and KeyNote [4] are systems that use this approach. The concept
of trust management can also be implemented using a standardized information
structure that allows the description of both credentials stating authorization and
security policies; the Simple Distributed Security Infrastructure / Simple Public Key
Infrastructure (SDSI/SPKI) is a good example of this approach.

The SDSI/SPKI infrastructure has been motivated by the complexity of the X.509
global naming scheme. SDSI [5] is a security infrastructure which main purpose is to
make the building of secure distributed systems easier. SPKI [6] is the final result of
concentrated efforts on a project of a simple and well-defined authorization model. As
they have complementary purposes, SPKI and SDSI proposals are combined together,
resulting in a unique base for authentication and authorization in distributed
applications.

The main difficulty in SDSI/SPKI is to find an authorization chain that certifies a
given principal (client) is granted permission to access an object or a service in the
distributed system. Several architectures and algorithms have been proposed to help a
client to search a certificate chain. However, none of these proposals offers
alternatives to the client when a search for a certificate chain is unsuccessful (i.e. no
certificate chain is found between the client and the server).

This work presents a new approach for using trust chains for authentication and
authorization in large scale distributed systems. The SDSI/SPKI trust model is
extended through the federations notion, in order to simplify certificate management,
as well as to establish new trust relationships in large scale systems. Federations
define domains in which there exist trust relationships among principals, providing

134 A.O. Santin, J. da Silva Fraga, and C. Maziero

mechanisms that allow principals to compose global trust relationships. Therefore, in
the absence of a given authorization chain, principals can locate certificates in the
federation web and then negotiate the concession of privileges in order to establish a
new authorization chain.

This paper is structured as follows: section 2 shortly summarizes SDSI/SPKI;
section 3 introduces the proposed extensions to the SDSI/SPKI model; section 4
explains how new authorization chains can be established; section 5 details the
prototype implementation; section 6 summarizes related works, and finally section 7
outlines some conclusions.

2 Overview of SDSI/SPKI

The SDSI/SPKI defines an egalitarian trust model: principals are public keys that can
sign and issue certificates — similarly to a Certification Authority (CA) on an X.509
PKI environment. In the current version of SDSI/SPKI, two different types of
certificates are defined: one for names and the other for authorization.

A name certificate links names to public keys, or even to other names. The names
described on a name certificate are meaningful only within the naming space of the
certificate issuer. The concatenation of the public key of the certificate issuer with a
local name represents a SDSI/SPKI unique global identifier. A certificate is always
signed with the private key of the issuer. The SDSI/SPKI names and naming chains
are used only to ease searching the real principal identifiers: the public keys. When
names need to be resolved, the naming chain must be examined in order to reach the
corresponding public key. The procedure of resolving the naming chain to reach the
real certificate name is called “naming chain reduction”.

The SDSI/SPKI authorization certificates link authorizations to a name, to a special
group of principals — called threshold subjects — or to a public key. Through these
certificates, the issuer can delegate access permissions to other principals (other public
keys) in the system.

The SDSI/SPKI authorization certificates can be used for two different purposes. If
the delegation bit is off (delegation not allowed), the received privileges cannot be
delegated (forwarded). In such case, the subject (principal) should keep the
authorization certificate considering it as “private”, i.e. only that principal can use it. If
the delegation bit is on (delegation allowed), the subject is holding a “public”
authorization certificate, enabling it to delegate (grant) access privileges, which
means, keeping them for private use, passing them on to a third party — either as a
whole or partially — or both [7].

For the access control procedures, the granted rights through consecutive
delegations (authorization chains) must be “reduced/summarized” to only one
certificate containing the intersection of all the privileges granted to that subject, in a
procedure called “authorization chain reduction”.

Fig. 1 shows the authorization flow on the SDSI/SPKI trust model. Through the
delegation of privileges from the application server, authorization chains are built,
ensuring trust paths between the server and the clients. In the Fig. 1, clients A and B,

Extending the SDSI / SPKI Model through Federation Webs 135

after receiving the certificates, will have authorization chains allowing them to access
the server. The authorization chains are usually built arbitrarily. The privilege owner
must keep the corresponding certificate and present it to the server when accessing the
protected resource. Based on this, one can state that the trust model adopted by
SDSI/SPKI is focused on the client.

Local certificate

Local certificate

repository repository
Client A DN Client B
subject 4\
(PKp_crient PKa_crient (PKS,SERW:‘R) PKn,cuﬁ.w
“delegation not allowed” - , “delegation allowed” ,
« coation”
izati authorization

, “authorization” , - - s ation” ,
“time restrictions”) Isuer W time restrictions”)

Application Server

w - — (“SELF” , PKp_crLient ,
[signed request + authprnzauon > ACL’s repository “delegation allowed”
certificate chain —

“time

) “authorization” ,
Caption: Server § restrictions”)
SELF: Reserved word, used only in ACLs issued by the authorization chain checker PK, : x public key identification

Fig. 1. SDSI/SPKI authorization flow (trust model focused on the client)

3 A Trust Model Proposal Based on SDSI/SPKI Extensions

This section presents the proposal of an extension to the SDSI/SPKI trust model,
which allows building new authorization chains. The proposed trust model is based on
the concept of a federation, which emphasizes the grouping of principals with
common interests. The purpose of a federation is to assist its members on reducing
principal names and on building new authorization chains, through the federation’s
Certificate Manager (CM).

By joining a federation, principals get access to the federation facilities and new
trust relationships among these principals can be established. In this sense, the
SDSI/SPKI trust model is extended by adding a Certificate Manager. The CM offers a
certificate search alternative, either for name reduction or for creating new
authorization chains.

Public certifica 4 signed request + authorization |

| Federation I =="{ autorization Local certificate| certificate chain
XM H searching repository u
Client A v

Application Server
Local certificate) <=Dﬂ= ACL’s
repository repository

Client B Server S

Fig. 2. SDSI/SPKI extended trust model

136 A.O. Santin, J. da Silva Fraga, and C. Maziero

Fig. 2 shows the CM integrated to the SDSI/SPKI classic model. It ensures that
client B stores its public certificates in the federation certificate repository. Through a
search on the CM repository, client A — which has no access to the server S — can
identify a principal (client B) in the federation holding such privilege. Client A can
then negotiate with client B in order to receive this privilege.

The presence of a client at distinct federations allows this client to easily access the
public authorization certificates held by members of those federations. However, the
number of federations a client must join in order to have an acceptable visibility in the
worldwide network can also be considered a scalability problem. The scalability
requirements are achieved in the proposed model by associating federations. The
certificate managers can be associated to each other, linking those that can better
represent the needs of their members. Such associations are done through trust
relationships constituting federation webs (Fig. 3). This approach frees clients and
servers from joining a considerable number of federations to achieve global scope.

Fig. 3 illustrates how the entities constituting a federation web are organized. Client
authorization certificates (private and public) are stored in a local repository under the
responsibility of an agent that represents this principal in its local domain. Clients
make name certificates issued by their corresponding principals and their public
authorization certificates available in the CMs of the federations they belong. The
certificates available through CMs are used in the search of potential issuers of
delegable permissions.

e —
ACL’s repository

e
Local certificate
repository

Application
Server

Y
. X's . | Public certificate X’s 3
= fm =22 H PRSP 4 S SN Y Server S
7 member b! l‘ member .
A | \

ClientA | .) N, I

| Federation: web-!

e —
ACL’s repository

3 {

B’s Agent |
k |

|

—_ - H Applicati
Local certificate \“ . | Public certificate Va
repository N\, | repository l e
Client B S AT === e Server T|

Fig. 3. Federation web overview

One can notice that there is no centralization or hierarchical arrangement in the
proposal. The federation webs are arbitrarily formed, and do not play any active role
in the authorization chains. In other words, they just carry out support roles in the
authorization procedures.

A federation is basically composed of three entities: clients, servers, and certificate
manager, which will be explained in the following topics.

Extending the SDSI / SPKI Model through Federation Webs 137

3.1 Certificate Manager

The main purpose of the certificate manager is to facilitate the interaction between
clients and servers. A certificate manager only serves the principals that belong to its
own federation. The public keys of its members constitute a SDSI group. As the CM
does not actively participate on any authorization chain, therefore it is not seen as a
principal — it is basically a repository of public certificates.

In order to any ordinary principal participate in a federation, an endorsement in the
form of a threshold certificate is demanded from it [8]. The threshold certificate
signature depends on “k—out of-n” federation members. Each federation defines the
number of members (k) that must sign the endorsement request. When joining a
federation, the principal’s name certificate is included in the federation repository. The
federation’s certificate manager will store name certificates in order to make ease
principal identification (section 3.3). To every new member joining the federation, a
name certificate stating SDSI group inclusion is issued, for membership proving
purposes.

The creation of associations among federations (federation webs) is also interpreted
as membership inclusion in the SDSI groups of each federation involved. In this case,
the new member (the other federation) is recognized as a group defined and
administered within another naming space, according to the definition of SDSI groups
[5].

Therefore, the certificate manager should manage the information related to the
members and associations of its own federation. This manager has the ability to
include or exclude members and associations to other federations, observing any
interest conflicts. Procedures for storing and retrieving name and authorization
certificates are made available to federation members through standard interfaces
offered by the federation’s CM.

3.2 Clients and Application Servers

The client represents the principal who creates name certificates, propagates the
authorization certificates by delegation, takes part in threshold certificates, requests
access, and composes new chains.

The storage and retrieval of certificates in the client naming space is responsibility
of the client’s agent (Fig. 3). This agent is a program that manages the certificates
available at the local repository. These tasks include checking and effecting signatures,
searching for certificate chains, negotiating permission grants, issuing new
authorization certificates, and maintaining local names consistency. The agent must be
instantiated during the client’s lifetime; it interacts with the client through a binding to
its operational interface.

The application server implements the service objects, which are protected by SPKI
ACLs kept by a guardian. In order to perform delegations and negotiations to
propagate permissions, the server can also make use of an agent. In the certificates
reduction procedure, the server can issue authorization certificates to clients that

138 A.O. Santin, J. da Silva Fraga, and C. Maziero

present new delegation chains and/or include the public keys of these clients in the
guardian’s ACLs.

3.3 Authentication, Authorization, and Auditing in the Model

In the SDSI/SPKI principals’ authentication, the identification is not performed using
names, but public keys, and the authentication is done through digital signatures. In
order to check the digital signature on the destination, the principal’s public key must
arrive there securely. As there is no public key distribution entity in the SDSI/SPKI
infrastructure, the public keys demanded by an authentication procedure are available
through authorization certificate chains.

Mutual authentication is achieved with SDSI/SPKI on an authorization chain basis.
The client making a request to a server must sign it and send it along with the
authorization chain that grants the required access privileges. The authorization chain
sequence associated to a request is checked by the resource guardian upon its arrival.
When this verification is successful, the guardian uses the last key in the authorization
chain (the client’s key) to check the digital signature on the request. Having this check
been successful, then client’s authenticity is verified.

Every authorization certificate carries the public key of the principal signing that
certificate in the issuer field. Therefore, to authenticate a server (always expressed as a
public key starting an authorization chain), the client should require the server’s name
certificate, retrieved from a federation web. After that, the client uses the certificate’s
public key for validating the server’s signature in the authorization chain. When all the
mentioned procedures are successfully done, the server identity can be assured.

All accesses by public keys to the server are locally logged, and these log records
can be used for auditing purposes. If needed, the search of the corresponding name
certificate can be performed on the federation web to identify the principal
corresponding to the public key that performed a given access.

The entire mentioned authentication and authorization scheme described in this
section is in compliance with the SDSI/SPKI specifications.

4 Creation of New Authorization Chains on the Proposed Model

There are several related experiences regarding procedures for searching SDSI/SPKI
certificates [9,10,11,12]. However, in all these approaches, if a certificate chain is not
found, the search is finished reporting an exception (fault), and the client is unable to
perform the desired access. This work, through the federation notion, proposes a
schema that enables a client to locate a certificate holding the needed authorization in
a federation web. Later on, the client can negotiate with the privilege holder such grant
to build an authorization chain that makes possible the desired access.

The scenario detailed bellow will consider the situation depicted in Figure 3. At
first, an authorization certificate is stored in the CM of federation X, after been
propagated from the server S to the client A (A is a member of the federation X). In

Extending the SDSI / SPKI Model through Federation Webs 139

Figure 4, the messages exchanges are depicted for the case in which the chain between
the client B and the server S does not exist.

The client B, member of federation Y, starts by requesting an access to server S
(message m1 in Fig. 4). Server S replies by sending a challenge message back to B. In
this message (m2), server S informs the ACL protecting the requested object and asks
from client B to prove its authorization for the requested access. In this case,
SDSI/SPKI ACL data is effective to accelerate the searching process.

ml: request (“ w/chain ” >

= _ § < m2: challenge (““ object. ACL ™
Federation| < 'm3: search (“ certificate_chain ™) | c S
Ycm md: return (“ search.null. certificate associated”) > || | g
1
Federation| < mS5: search (“ certificate chain ™) | E \é
XCM || 'm6: return (“ certificate chain ™) > N R
T
m7: negotiation (* start ” s
Client m8: negotiation (“‘ requirements) B
A < m9: negotiation (* attributes
ml0: granting (“‘ privilegies ™ = _ J
_ | | [ml1: response (* request, certificate chain > | |

Fig. 4. Messages exchanges in the authorization chain compounding

Having the ACL, B’s agent performs a local search for an authorization chain
allowing the requested access that links client B to server S. This search must retrieve
all the authorization chains that include the required permission, and have the
requested server as the issuer. Supposing that the local search turns to be unsuccessful,
B’s agent asks the CM of the federation it belongs (Y) to search for authorization
certificates holding the required rights for accessing server S (m3).

The attributes considered in the search are the required permissions and the public
key of server S. In the case considered in Fig. 4, the search does not result in any
authorization chain. In this situation, the CM of federation Y returns to client B, as a
result of the search, the certificates belonging to members of the associated federations
(Federation X, in Fig. 3), so that it can keep on searching (m4 message). Having the
associated certificates, the client extends its search on the other federation’s CMs
(belonging to the federations web). Message m5 corresponds to the queries on
federation X in the considered example. In the message m6, client B receives as return
from the X’s CM a chain — the authorization certificate with the access permission
between client A and server S. Then client B sends to the rights holder (A) the
delegation right request (message m7). The delegation of permissions can be carried
out in a simple way — because both the client and the rights holder are sharing the
same federation, for example. However, depending on the application semantics, more
complex negotiations may be demanded. The Fig. 4 represents this situation: the
requested rights holder notifies client B about a set of requirements for the permission
concession (message mS8). The client gathers the demanded requirements and sends
them to client A (message m9). Once the application requirements are satisfied, the
rights holder issues a certificate granting permissions to client B and sends it on

140 A.O. Santin, J. da Silva Fraga, and C. Maziero

message ml0. By this last message, the chain compounding process is concluded and
client B can answer the challenge proposed by server S in the response message m/1.

4.1 Example: Internet Commerce Application

In this section is depicted an example scenario to overview the usage of federation webs,
which synthesizes the proposed schema. This scenario is built upon a Web-based
e-commerce application, and involves access privileges location and negotiation. One
should notice that the proposed schema is quite general and can be applied to distinct
situations.

In order to simplify the presentation, let’s consider a credit card institution (CC) and a
banking institution (BK), having some business agreement allowing each other easy
financial transactions. Based on this agreement, the CC representative grants to the BK
representative the right to “allow purchase” — in this case, the bank representative can
allow purchases if payments are to be charged to credit cards issued by the credit card
institution. The BK representative, whenever receives an authorization certificate with
the delegation flag on, stores it on the CM of the federation FB.

— signed request + auhorization R
[Principal Jpr=s=n- " certificate chain BN
< W
FB’s member B’s Agent
______________ 2 - -
/ FCCs associated | 7 'E’_ |
| [T T ___| 1
| S le———Js}-1 1
D ~| |Local certificate | | _— 1 I 1
! ! repository > 1 | | 1
I —-[aF-—> ¥ 1 v 1
v ~. Client B Principal q
v . - N
]
a
BK’s Agent 1
1
FB’s member e e
s nssoch
FCC’s associated Local certificate g
Public certificate storag repository e
Representative BK E
u
PR S A H
R
! E
Principal

M

CC’s Agent

"| | Local certificate
repository

Representative CC

FCC’s member
FB’s associated

Internet Commerce
site server

ACL’s repository

Server S

FB’s associated

Fig. 5. Scenario for purchases in the Internet using of the federation web

Table 1 describes the messages (numbered in Fig. 5) exchanged between entities in
order to implement the purchase transactions in the e-commerce site.

Extending the SDSI / SPKI Model through Federation Webs 141

Table 1. Messages exchanged in Fig. 5 scenario

Step |Actions

1 |Client B navigates through the web pages offered by the e-commerce server S. After
selecting some items to purchase, client B proceeds to checkout.
2 |Server S sends back to the client a message containing the purchase bill and a
challenge: the “allow purchase” privilege holder is the CC representative.
Step |Actions

3 |Client B queries its local repository and finds no chains linking it to the CC
representative. Then, client B sends the chain query to the CM of federation FB.
4 |CM of federation FB makes a search in their repository and finds the required chain.
It sends back to client B the chain between the server S and the BK representative.
5 |Client B requests to BK representative the delegation of privilege “allow purchase”.
6 |BK representative notifies client B that delegating the requested privilege requires
paying the bill using one of the payment options offered by BK.
7 |B client pays the bill using one of the options offered by BK.
BK representative delegates the “allow purchase” privilege to client B.
9 |Client B sends the authorization chain to server S, along with the request (in a
response message) and the server concludes the purchase transaction.

[e<]

In order to monitor the “allow purchase” privilege delegations, the CC repre-
sentative receives a copy of all paid purchase bills from the e-commerce site.

In the scenario described here, no authorization chains existed linking the CC
representative to client B. However, the mechanisms proposed by the federation web
model allowed to dynamically and automatically creating the requested authorization
chain, in order to complete the purchase operation on the e-commerce site. Of course,
if the chain holding the requested authorization was not found in the CM of federation
FB, the search would continue on the associated federations until an appropriate chain
was found.

For the scenario described in Fig. 5, it should be noticed that the ACL of the server
does not have an entry for client B allowing it to access the services. Therefore, it is
no longer required to register the clients on the server ACL to allow their access to the
services. Consequently, all clients’ private information is stored only in those
institutions with which they have strict relationships. In the example above, the client
can pay for the purchase not only if it is a credit card customer — but also being only
an ordinary bank customer. By doing so, no credit card numbers or other client-related
information is transmitted through the network. Also, client information is stored only
by its banking institution.

5 Architecture Implementation Aspects

The SDSI/SPKI infrastructure and the policies applied in the model (previously
described in sections 3 and 4) are totally independent from the adopted technology. In
this sense, the tools used in the prototype (Fig. 6) have been highly influenced by the
model usage in the Internet — environment assumed as the context of this work.

142 A.O. Santin, J. da Silva Fraga, and C. Maziero

The motivation on adopting CORBA as middleware is to take advantage of the
services provided by that platform, mainly in aspects related to object lookup (name
resolution) and secure remote access invocation. SSL (Secure Socket Layer) was
adopted for remote communications. In order to establish a secure communication
channel between a client and a server (holding SSL integrity and confidentially
properties), mutual authentication for the principals (client and server) is required.
However, SPKI uses keys as principals, instead of names. To solve this, a function
was developed to translate SDSI/SPKI into SSL name certificates.

The SDSI/SPKI integration with the distributed object middleware (shown in Fig.
7) was done using CORBASec at application level (CORBASec Level 2) [13].

U

I _Authorization / Authentication Policies __________!
SDSI / SPKI Infrastructure
a ORB/CORBASec | HTIP,FIP,... | S
ient erver
JVM TLS/SSL JVM
TCP/IP

Fig. 6. Prototype model architecture

Security Level 2 is not helpful in structuring security functions at application level.
However, in order to make use of the CORBA security model, a minimum set of
objects at the ORB level has been kept. The following session objects were
maintained: PrincipalAuthenticator, SecurityManager and Credentials (Fig. 7).

<XML>

c
certificate
repository

Local
certificate
repository

=k % Federations
) .2 web
=
. . Principal
credentials credentials Authenticator

Security Security
Manager Manager

Principal
Authenticator
SDS!1/ SPKI
Resolver
ORB
Services

ORB Core |
I [

SDS!I/ SPKI
(Access Decision)

SSL

Fig. 7. CORBA-SPKI integration prototype overview

Fig. 7 shows other implementation details. The CM public certificate repository is
implemented using Apache Xindice (which stores XML native data) [14]. The CM is

Extending the SDSI / SPKI Model through Federation Webs 143

implemented as an extension module of the Apache server [15]. All messages
exchanged between members and CM is written in XML. The SDSI/SPKI certificates,
originally coded as S-expressions, are translated into XML in our prototype for
portability and standardization reasons [16]. The SDSI/SPKI resolver object shown in
Fig. 7 is a partial implementation of the client’s agent, covering chain searching and
digital signature management. Finally, the reference monitor (guardian) is
implemented by the SDSI/SPKI Access Decision object. The client and server
integration onto the prototype environment was greatly facilitated by using plug-ins
and applets in the application deployment.

6 Related Work

In [9], the DNS service was used for storing and retrieving SDSI/SPKI certificates. In
that proposal, DNS extensions added by RFC 2065 have been used to allow the
storage of certificate records by using entities that store identification and
authorization certificates in DNS databases. In addition, the search algorithms include
some filtering of the certificates being retrieved.

The work [10] views the network built by the propagation of SDSI/SPKI
authorization certificates as an oriented graph. It also assumes that, in typical
corporate environments, such graph is hourglass-shaped. This is due to the fact that
there is much more client and server keys than intermediary keys. Therefore, starting
from these premises, the author uses the DFS forward and DFS backward algorithms,
and their combination, to perform fast searches in a database having only one
intermediary. Experiments using the distributed search algorithms proposed in [10] are
reported in [11]. This work also analyses some improvements in the DFS forward
algorithm.

One can notice that the previously described works have been conceived for
preliminary versions of SDSI/SPKI, in which some aspects of the model still had not
been solved. Some premises assumed at that time are now considered obsolete, no
longer complying with the RFC 2693 specifications. However, these papers have
valuable contributions in terms of system architecture.

According to [17], SDSI/SPKI local names can be viewed as distributed groups of
principals for name resolution. Based on this assumption, the author proposes
algorithms based on logic programming, supposed to be more efficient in chain search
when compared to conventional implementations. As the main purpose of the paper
was to define search algorithms based on logic programming, a new architecture has
not been proposed. Nevertheless, the interpretation of local names as distributed
groups can be considered a significant contribution.

The chain search algorithms suggested by [12] and aspects considered there are
deeper refinements of RFC 2693 recommendations. It also presents an implementation
of the SPKI current version, quite rich in content, although no architectural
propositions for distributed systems have been developed.

144 A.O. Santin, J. da Silva Fraga, and C. Maziero
7 Conclusion

This paper proposed architectural extensions to the SDSI/SPKI authorization and
authentication model, allowing the client to build new chains to link it to a server,
when the corresponding path does not exist. The proposal is centered on the notion of
federations and on entities called Certificate Managers. The role of certificate
managers is to help in the construction of authorization chains, through a repository
searching facility, for locating privileges needed by access. As the certificate manager
does not participate in the authorization chains, the proposed model can be considered
fully decentralized. Thus, the manager does not centralize nor turns hierarchical the
relationship between clients and servers, neither it constitutes a critical point regarding
to faults, vulnerability or performance.

Adopting the federation web model frees the server from user account
management. It also frees the client from the traditional account creation procedures in
order to have access to a server — even in a global context.

The proposed model presents a support to certificate management that allows the
creation of new authorization chains. This facility is not observed in any other
proposal presented in the technical literature. The proposed scheme is quite flexible
and dynamic, even considering that in some cases the number of messages exchanged
to create a new chain can be expressive.

References

1. Horst, F. W., Lischka, M.: Modular Authorization. Proceedings of ACM SACMAT
(2001)

2. Garfinkel, S.: PGP:Pretty Good Privacy. O’Reilly & Associates, Inc (1995)

3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. Proceedings of the
17th IEEE Symposium on Security and Privacy (1996)

4. Blaze, M., Feigenbaum, J., Lacy, J.: The KeyNote Trust Management System, Version 2.
IETF-RFC2704 (1999)

5. Lampson, B., Rivest, R. L.: A Simple Distributed Security Infrastructure (1996). URL
http://theory.lcs.mit.edu/~cis/sdsi.html, Last access on Jun, 2003.

6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI Certificate
Theory. IETF-RFC2693 (1999)

7. Gasser, M., Mcdermott, E.: An Architecture for Practical Delegation in a Distributed
System. Proceedings of the IEEE Symposium on Security and Privacy (1990)

8. Aura, T.: On the Structure of Delegation Networks. Proceedings of IEEE CSFW (1998)

9. Nikander, P., Viljanen, L.: Storing and Retrieving Internet Certificates. Proceedings of 3"
Nordic Workshop on Secure IT Systems (1998)

10. Aura, T.: Fast Access Control Decisions from Delegation Certificate Databases.
Proceedings of 3" Australian Conference on Information Security and Privacy (1998)

11. Ajmani, S.: A trusted Execution Platform for Multiparty Computation. Master thesis, Dep.
of Electrical Engineering and Computer Science, MIT (2000)

12. Clarke, D. E.: SPKI/SDSI HTTP Server Certificate Chain Discovery in SPKI/SDSI.
Master dissertation, Dep. Electrical Engineering and Computer Science of MIT (2001)

13.

14.

15.

16.

17.

Extending the SDSI / SPKI Model through Federation Webs 145

OMG - Object Management Group: Security Service Specification, v1.8 (2002). URL
http://www.omg.org/cgi-bin/doc?7formal/02-03-11.pdf. Last access on Jun, 2003.

Staken, K.: Xindice Developers Guide 0.7.1 (2002). URL
http://xml.apache.org/xindice/guide-developer.html. Last access on Jun, 2003.

Thau, R.: Design Considerations for the Apache API (2002). URL
http://modules.apache.org/reference. Last access on Jun, 2003.

Terreros, X. S. L., Ribes, J-M. M.: SPKI- XML Certificate Structure (2002). URL
http://www.oasis-open.org/cover/xml-spki.html. Last access on Jun, 2003.

Li, N.: Local Names in SPKI/SDSI. Proceedings of the IEEE CSFW (2000).

	1 Introduction
	2 Overview of SDSI/SPKI
	3 A Trust Model Proposal Based on SDSI/SPKI Extensions
	3.1 Certificate Manager
	3.2 Clients and Application Servers
	3.3 Authentication, Authorization, and Auditing in the Model

	4 Creation of New Authorization Chains on the Proposed Model
	4.1 Example: Internet Commerce Application

	5 Architecture Implementation Aspects
	6 Related Work
	7 Conclusion

