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Preface

Financial mathematics provides a striking example of successful collaboration
between academia and industry. Advanced mathematical techniques, developed
in both universities and banks, have transformed the derivatives business into a
multi-trillion-dollar market. This has led to demand for highly trained students and
with that demand comes a need for textbooks.

This volume provides a first course in financial mathematics. The influence of
Financial Calculus by Martin Baxter and Andrew Rennie will be obvious. I am
extremely grateful to Martin and Andrew for their guidance and for allowing me
to use some of the material from their book.

The structure of the text largely follows Financial Calculus, but the mathematics,
especially the discussion of stochastic calculus, has been expanded to a level
appropriate to a university mathematics course and the text is supplemented by
a large number of exercises. In order to keep the course to a reasonable length,
some sacrifices have been made. Most notable is that there was not space to discuss
interest rate models, although many of the most popular ones do appear as examples
in the exercises. As partial compensation, the necessary mathematical background
for a rigorous study of interest rate models is included in Chapter 7, where we
briefly discuss some of the topics that one might hope to include in a second
course in financial mathematics. The exercises should be regarded as an integral
part of the course. Solutions to these are available to bona fide teachers from
solutions@cambridge.org.

The emphasis is on stochastic techniques, but not to the exclusion of all other
approaches. In common with practically every other book in the area, we use bino-
mial trees to introduce the ideas of arbitrage pricing. Following Financial Calculus,
we also present discrete versions of key definitions and results on martingales and
stochastic calculus in this simple framework, where the important ideas are not
obscured by analytic technicalities. This paves the way for the more technical results
of later chapters. The connection with the partial differential equation approach to
arbitrage pricing is made through both delta-hedging arguments and the Feynman–
Kac Stochastic Representation Theorem. Whatever approach one adopts, the key
point that we wish to emphasise is that since the theory rests on the assumption of
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viii preface

absence of arbitrage, hedging is vital. Our pricing formulae only make sense if there
is a ‘replicating portfolio’.

An early version of this course was originally delivered to final year undergrad-
uate and first year graduate mathematics students in Oxford in 1997/8. Although
we assumed some familiarity with probability theory, this was not regarded as
a prerequisite and students on those courses had little difficulty picking up the
necessary concepts as we met them. Some suggestions for suitable background
reading are made in the bibliography. Since a first course can do little more than
scratch the surface of the subject, we also make suggestions for supplementary and
more advanced reading from the bewildering array of available books.

This project was supported by an EPSRC Advanced Fellowship. It is a pleasure
and a privilege to work in Magdalen College and my thanks go to the President,
Fellows, staff and students for making it such an exceptional environment. Many
people have made helpful suggestions or read early drafts of this volume. I should
especially like to thank Ben Hambly, Alex Jackson and Saurav Sen. Thanks also to
David Tranah at CUP who played a vital rôle in shaping the project. His input has
been invaluable. Most of all, I should like to thank Lionel Mason for his constant
support and encouragement.

Alison Etheridge, June 2001



1 Single period models

Summary

In this chapter we introduce some basic definitions from finance and investigate the
problem of pricing financial instruments in the context of a very crude model. We
suppose the market to be observed at just two times: zero, when we enter into a
financial contract; and T , the time at which the contract expires. We further suppose
that the market can only be in one of a finite number of states at time T . Although
simplistic, this model reveals the importance of the central paradigm of modern
finance: the idea of a perfect hedge. It is also adequate for a preliminary discussion
of the notion of ‘complete market’ and its importance if we are to find a ‘fair’ price
for our financial contract.

The proofs in §1.5 can safely be omitted, although we shall from time to time
refer back to the statements of the results.

1.1 Some definitions from finance

Financial market instruments can be divided into two types. There are the underlying
stocks – shares, bonds, commodities, foreign currencies; and their derivatives, claims
that promise some payment or delivery in the future contingent on an underlying
stock’s behaviour. Derivatives can reduce risk – by enabling a player to fix a price
for a future transaction now – or they can magnify it. A costless contract agreeing to
pay off the difference between a stock and some agreed future price lets both sides
ride the risk inherent in owning a stock, without needing the capital to buy it outright.

The connection between the two types of instrument is sufficiently complex and
uncertain that both trade fiercely in the same market. The apparently random nature
of the underlying stocks filters through to the derivatives – they appear random
too.

Derivatives Our central purpose is to determine how much one should be willing to pay for
a derivative security. But first we need to learn a little more of the language of
finance.

1



2 single period models

Definition 1.1.1 A forward contract is an agreement to buy (or sell) an asset on a
specified future date, T , for a specified price, K . The buyer is said to hold the long
position, the seller the short position.

Forwards are not generally traded on exchanges. It costs nothing to enter into a
forward contract. The ‘pricing problem’ for a forward is to determine what value
of K should be written into the contract. A futures contract is the same as a forward
except that futures are normally traded on exchanges and the exchange specifies
certain standard features of the contract and a particular form of settlement.

Forwards provide the simplest examples of derivative securities and the math-
ematics of the corresponding pricing problem will also be simple. A much richer
theory surrounds the pricing of options. An option gives the holder the right, but not
the obligation, to do something. Options come in many different guises. Black and
Scholes gained fame for pricing a European call option.

Definition 1.1.2 A European call option gives the holder the right, but not the
obligation, to buy an asset at a specified time, T , for a specified price, K .

A European put option gives the holder the right to sell an asset for a specified
price, K , at time T .

In general call refers to buying and put to selling. The term European is reserved for
options whose value to the holder at the time, T , when the contract expires depends
on the state of the market only at time T . There are other options, for example
American options or Asian options, whose payoff is contingent on the behaviour of
the underlying over the whole time interval [0, T ], but the technology of this chapter
will only allow meaningful discussion of European options.

Definition 1.1.3 The time, T , at which the derivative contract expires is called the
exercise date or the maturity. The price K is called the strike price.

The pricing
problem

So what is the pricing problem for a European call option? Suppose that a company
has to deal habitually in an intrinsically risky asset such as oil. They may for example
know that in three months time they will need a thousand barrels of crude oil. Oil
prices can fluctuate wildly, but by purchasing European call options, with strike K
say, the company knows the maximum amount of money that it will need (in three
months time) in order to buy a thousand barrels. One can think of the option as
insurance against increasing oil prices. The pricing problem is now to determine,
for given T and K , how much the company should be willing to pay for such
insurance.

For this example there is an extra complication: it costs money to store oil. To
simplify our task we are first going to price derivatives based on assets that can
be held without additional cost, typically company shares. Equally we suppose that
there is no additional benefit to holding the shares, that is no dividends are paid.
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Figure 1.1 Payoff at maturity of (a) a forward purchase, (b) a European call and (c) a European put with
strike K as a function of ST .

Assumption Unless otherwise stated, the underlying asset can be held without
additional cost or benefit.

This assumption will be relaxed in Chapter 5.
Suppose then that our company enters into a contract that gives them the right, but

not the obligation, to buy one unit of stock for price K in three months time. How
much should they pay for this contract?

Payoffs As a first step, we need to know what the contract will be worth at the expiry date.
If at the time when the option expires (three months hence) the actual price of the
underlying stock is ST and ST > K then the option will be exercised. The option is
then said to be in the money: an asset worth ST can be purchased for just K . The value
to the company of the option is then (ST −K ). If, on the other hand, ST < K , then it
will be cheaper to buy the underlying stock on the open market and so the option will
not be exercised. (It is this freedom not to exercise that distinguishes options from
futures.) The option is then worthless and is said to be out of the money. (If ST = K
the option is said to be at the money.) The payoff of the option at time T is thus

(ST − K )+ � max {(ST − K ), 0} .
Figure 1.1 shows the payoff at maturity of three derivative securities: a forward

purchase, a European call and a European put, each as a function of stock price at
maturity. Before embarking on the valuation at time zero of derivative contracts, we
allow ourselves a short aside.

Packages We have presented the European call option as a means of reducing risk. Of course
it can also be used by a speculator as a bet on an increase in the stock price. In
fact by holding packages, that is combinations of the ‘vanilla’ options that we have
described so far, we can take rather complicated bets. We present just one example;
more can be found in Exercise 1.
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Example 1.1.4 (A straddle) Suppose that a speculator is expecting a large move
in a stock price, but does not know in which direction that move will be. Then a
possible combination is a straddle. This involves holding a European call and a
European put with the same strike price and maturity.

Explanation: The payoff of this straddle is (ST − K )+ (from the call) plus (K −
ST )+ (from the put), that is, |ST − K |. Although the payoff of this combination is
always positive, if, at the expiry time, the stock price is too close to the strike price
then the payoff will not be sufficient to offset the cost of purchasing the options and
the investor makes a loss. On the other hand, large movements in price can lead to
substantial profits. ✷

1.2 Pricing a forward

In order to solve our pricing problems, we are going to have to make some
assumptions about the way in which markets operate. To formulate these we begin
by discussing forward contracts in more detail.

Recall that a forward contract is an agreement to buy (or sell) an asset on a
specified future date for a specified price. Suppose then that I agree to buy an asset
for price K at time T . The payoff at time T is just ST − K , where ST is the actual
asset price at time T . The payoff could be positive or it could be negative and, since
the cost of entering into a forward contract is zero, this is also my total gain (or loss)
from the contract. Our problem is to determine the fair value of K .

Expectation
pricing

At the time when the contract is written, we don’t know ST , we can only guess at
it, or, more formally, assign a probability distribution to it. A widely used model
(which underlies the Black–Scholes analysis of Chapter 5) is that stock prices are
lognormally distributed. That is, there are constants ν and σ such that the logarithm
of ST /S0 (the stock price at time T divided by that at time zero, usually called the
return) is normally distributed with mean ν and variance σ 2. In symbols:

P

[
ST

S0
∈ [a, b]

]
= P

[
log

(
ST

S0

)
∈ [log a, log b]

]

=
∫ log b

log a

1√
2πσ

exp

(
− (x − ν)2

2σ 2

)
dx .

Notice that stock prices, and therefore a and b, should be positive, so that the integral
on the right hand side is well defined.

Our first guess might be that E[ST ] should represent a fair price to write into our
contract. However, it would be a rare coincidence for this to be the market price. In
fact we’ll show that the cost of borrowing is the key to our pricing problem.

The risk-free
rate

We need a model for the time value of money: a dollar now is worth more than a
dollar promised at some later time. We assume a market for these future promises
(the bond market) in which prices are derivable from some interest rate. Specifically:
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Time value of money We assume that for any time T less than some horizon τ
the value now of a dollar promised at T is e−rT for some constant r > 0. The
rate r is then the continuously compounded interest rate for this period.

Such a market, derived from say US Government bonds, carries no risk of default –
the promise of a future dollar will always be honoured. To emphasise this we will
often refer to r as the risk-free interest rate. In this model, by buying or selling cash
bonds, investors can borrow money for the same risk-free rate of interest as they can
lend money.

Interest rate markets are not this simple in practice, but that is an issue that we
shall defer.

Arbitrage
pricing

We now show that it is the risk-free interest rate, or equivalently the price of a cash
bond, and not our lognormal model that forces the choice of the strike price, K , upon
us in our forward contract.

Interest rates will be different for different currencies and so, for definiteness,
suppose that we are operating in the dollar market, where the (risk-free) interest rate
is r .

• Suppose first that K > S0erT . The seller, obliged to deliver a unit of stock for $K at
time T , adopts the following strategy: she borrows $S0 at time zero (i.e. sells bonds
to the value $S0) and buys one unit of stock. At time T , she must repay $S0erT , but
she has the stock to sell for $K , leaving her a certain profit of $(K − S0erT ).

• If K < S0erT , then the buyer reverses the strategy. She sells a unit of stock at time
zero for $S0 and buys cash bonds. At time T , the bonds deliver $S0erT of which she
uses $K to buy back a unit of stock leaving her with a certain profit of $(S0erT −K ).

Unless K = S0erT , one party is guaranteed to make a profit.

Definition 1.2.1 An opportunity to lock into a risk-free profit is called an arbitrage
opportunity.

The starting point in establishing a model in modern finance theory is to specify
that there is no arbitrage. (In fact there are people who make their living entirely
from exploiting arbitrage opportunities, but such opportunities do not exist for a
significant length of time before market prices move to eliminate them.) We have
proved the following lemma.

Lemma 1.2.2 In the absence of arbitrage, the strike price in a forward contract
with expiry date T on a stock whose value at time zero is S0 is K = S0erT , where r
is the risk-free rate of interest.

The price S0erT is sometimes called the arbitrage price. It is also known as the
forward price of the stock.
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Remark: In our proof of Lemma 1.2.2, the buyer sold stock that she may not own.
This is known as short selling. This can, and does, happen: investors can ‘borrow’
stock as well as money. ✷

Of course forwards are a very special sort of derivative. The argument above won’t
tell us how to value an option, but the strategy of seeking a price that does not provide
either party with a risk-free profit will be fundamental in what follows.

Let us recap what we have done. In order to price the forward, we constructed a
portfolio, comprising one unit of underlying stock and−S0 cash bonds, whose value
at the maturity time T is exactly that of the forward contract itself. Such a portfolio is
said to be a perfect hedge or replicating portfolio. This idea is the central paradigm
of modern mathematical finance and will recur again and again in what follows.
Ironically we shall use expectation repeatedly, but as a tool in the construction of a
perfect hedge.

1.3 The one-step binary model

We are now going to turn to establishing the fair price for European call options,
but in order to do so we first move to a simpler model for the movement of market
prices. Once again we suppose that the market is observed at just two times, that at
which the contract is struck and the expiry date of the contract. Now, however, we
shall suppose that there are just two possible values for the stock price at time T . We
begin with a simple example.

Pricing a
European
call

Example 1.3.1 Suppose that the current price in Japanese Yen of a certain stock is
�2500. A European call option, maturing in six months time, has strike price �3000.
An investor believes that with probability one half the stock price in six months time
will be �4000 and with probability one half it will be �2000. He therefore calculates
the expected value of the option (when it expires) to be �500. The riskless borrowing
rate in Japan is currently zero and so he agrees to pay �500 for the option. Is this a
fair price?

Solution: In the light of the previous section, the reader will probably have guessed
that the answer to this question is no. Once again, we show that one party to this
contract can make a risk-free profit. In this case it is the seller of the contract. Here
is just one of the many possible strategies that she could adopt.

Strategy: At time zero, sell the option, borrow �2000 and buy a unit of stock.

• Suppose first that at expiry the price of the stock is �4000; then the contract will be
exercised and so she must sell her stock for �3000. She then holds �(−2000+3000).
That is �1000.

• If, on the other hand, at expiry the price of the stock is �2000, then the option will
not be exercised and so she sells her stock on the open market for just �2000. Her
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x + 2000x = 0

x + 4000x  = 1000

x

x 2

1

2

1 2

1 2

(x , x )1

Figure 1.2 The seller of the contract in Example 1.3.1 is guaranteed a risk-free profit if she can buy any
portfolio in the shaded region.

net cash holding is then �(−2000+ 2000). That is, she exactly breaks even.

Either way, our seller has a positive chance of making a profit with no risk of making
a loss. The price of the option is too high.

So what is the right price for the option?
Let’s think of things from the point of view of the seller. Writing ST for the price

of the stock when the contract expires, she knows that at time T she needs �(ST −
3000)+ in order to meet the claim against her. The idea is to calculate how much
money she needs at time zero, to be held in a combination of stocks and cash, to
guarantee this.

Suppose then that she uses the money that she receives for the option to buy a
portfolio comprising x1 Yen and x2 stocks. If the price of the stock is �4000 at
expiry, then the time T value of the portfolio is x1erT + 4000x2. The seller of the
option requires this to be at least �1000. That is, since interest rates are zero,

x1 + 4000x2 ≥ 1000.

If the price is �2000 she just requires the value of the portfolio to be non-negative,

x1 + 2000x2 ≥ 0.

A profit is guaranteed (without risk) for the seller if (x1, x2) lies in the interior of
the shaded region in Figure 1.2. On the boundary of the region, there is a positive
probability of profit and no probability of loss at all points other than the intersection
of the two lines. The portfolio represented by the point (x1, x2) will provide exactly
the wealth required to meet the claim against her at time T .

Solving the simultaneous equations gives that the seller can exactly meet the claim
if x1 = −1000 and x2 = 1/2. The cost of building this portfolio at time zero is
�(−1000 + 2500/2), that is �250. For any price higher than �250, the seller can
make a risk-free profit.
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If the option price is less than �250, then the buyer can make a risk-free profit by
‘borrowing’ the portfolio (x1, x2) and buying the option. In the absence of arbitrage
then, the fair price for the option is �250. ✷

Notice that just as for our forward contract, we did not use the probabilities that we
assigned to the possible market movements to arrive at the fair price. We just needed
the fact that we could replicate the claim by this simple portfolio. The seller can
hedge the contingent claim �(ST − 3000)+ using the portfolio consisting of �x1

and x2 units of stock.

Pricing
formula for
European
options

One can use exactly the same argument to prove the following result.

Lemma 1.3.2 Suppose that the risk-free dollar interest rate (to a time horizon
τ > T ) is r . Denote the time zero (dollar) value of a certain asset by S0. Suppose
that the motion of stock prices is such that the value of the asset at time T will be
either S0u or S0d. Assume further that

d < erT < u.

At time zero, the market price of a European option with payoff C(ST ) at the maturity
T is (

1− de−rT

u − d

)
C (S0u)+

(
ue−rT − 1

u − d

)
C (S0d) .

Moreover, the seller of the option can construct a portfolio whose value at time T is
exactly (ST − K )+ by using the money received for the option to buy

φ � C (S0u)− C (S0d)

S0u − S0d
(1.1)

units of stock at time zero and holding the remainder in bonds.

The proof is Exercise 4(a).

1.4 A ternary model

There were several things about the binary model that were very special. In particular
we assumed that we knew that the asset price would be one of just two specified
values at time T . What if we allow three values?

We can try to repeat the analysis of §1.3. Again the seller would like to replicate
the claim at time T by a portfolio consisting of �x1 and x2 stocks. This time there
will be three scenarios to consider, corresponding to the three possible values of ST .
If interest rates are zero, this gives rise to the three inequalities

x1 + Si
T x2 ≥ (Si

T − 3000)+, i = 1, 2, 3,

where Si
T are the possible values of ST . The picture is now something like that in

Figure 1.3.
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x + S x = (S – 3000)
T

i i i

21 T +

x 2

x 1

Figure 1.3 If the stock price takes three possible values at time T , then at any point where the seller of
the option has no risk of making a loss, she has a strictly positive chance of making a profit.

In order to be guaranteed to meet the claim at time T , the seller requires (x1, x2)

to lie in the shaded region, but at any point in that region, she has a strictly positive
probability of making a profit and zero probability of making a loss. Any portfolio
from outside the shaded region carries a risk of a loss. There is no portfolio that
exactly replicates the claim and there is no unique ‘fair’ price for the option.

Our market is not complete. That is, there are contingent claims that cannot be
perfectly hedged.

Bigger
models

Of course we are tying our hands in our efforts to hedge a claim. First, we are
only allowing ourselves portfolios consisting of the underlying stock and cash
bonds. Real markets are bigger than this. If we allow ourselves to trade in a third
‘independent’ asset, then our analysis leads to three non-parallel planes in R3.
These will intersect in a single point representing a portfolio that exactly replicates
the claim. This then raises a question: when is there arbitrage in larger market
models? We shall answer this question for a single period model in the next
section. The second constraint that we have placed upon ourselves is that we are
not allowed to adjust our portfolio between the time of the selling of the contract
and its maturity. In fact, as we see in Chapter 2, if we consider the market to
be observable at intermediate times between zero and T , and allow our seller to
rebalance her portfolio at such times (without changing its value), then we can allow
any number of possible values for the stock price at time T and yet still replicate
each claim at time T by a portfolio consisting of just the underlying and cash
bonds.

1.5 A characterisation of no arbitrage

In our binary setting it was easy to find the right price for an option simply by solving
a pair of simultaneous equations. However, the binary model is very special and,
after our experience with the ternary model, alarm bells may be ringing. The binary
model describes the evolution of just one stock (and one bond). One solution to our
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difficulties with the ternary model was to allow trade in another ‘independent’ asset.
In this section we extend this idea to larger market models and characterise those
models for which there are a sufficient number of independent assets that any option
has a fair price. Other than Definition 1.5.1 and the statement of Theorem 1.5.2, this
section can safely be omitted.

A market
with N

assets

Our market will now consist of a finite (but possibly large) number of tradable
assets. Again we restrict ourselves to single period models, in which the market
is observable only at time zero and a fixed future time T . However, the extension
to multiple time periods exactly mirrors that for binary models that we describe in
§2.1.

Suppose then that there are N tradable assets in the market. Their prices at time
zero are given by the column vector

S0 =
(

S1
0 , S2

0 , . . . , SN
0

)t
�




S1
0

S2
0
...

SN
0


 .

Notation For vectors and matrices we shall use the superscript ‘t’ to denote
transpose.

Uncertainty about the market is represented by a finite number of possible states in
which the market might be at time T that we label 1, 2, . . . , n. The security values
at time T are given by an N × n matrix D = (Di j ), where the coefficient Di j is
the value of the i th security at time T if the market is in state j . Our binary model
corresponds to N = 2 (the stock and a riskless cash bond) and n = 2 (the two states
being determined by the two possible values of ST ).

In this notation, a portfolio can be thought of as a vector θ = (θ1, θ2, . . . , θn)
t ∈

RN , whose market value at time zero is the scalar product S0 · θ = S1
0θ1 + S2

0θ2 +
· · · + SN

0 θN . The value of the portfolio at time T is a vector in Rn whose i th entry is
the value of the portfolio if the market is in state i . We can write the value at time T
as




D11θ1 + D21θ2 + · · · + DN1θN

D12θ1 + D22θ2 + · · · + DN2θN

...

D1nθ1 + D2nθ2 + · · · + DNnθN


 = Dtθ.
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Notation For a vector x ∈ Rn we write x ≥ 0, or x ∈ Rn+, if x =
(x1, . . . , xn) and xi ≥ 0 for all i = 1, . . . , n. We write x > 0 to mean
x ≥ 0, x �= 0. Notice that x > 0 does not require x to be strictly positive in
all its coordinates. We write x � 0, or x ∈ Rn++, for vectors in Rn that are
strictly positive in all coordinates.

In this notation, an arbitrage is a portfolio θ ∈ RN with either

S0 · θ ≤ 0, Dtθ > 0 or S0 · θ < 0, Dtθ ≥ 0.

Arbitrage
pricing

The key to arbitrage pricing in this model is the notion of a state price vector.

Definition 1.5.1 A state price vector is a vector ψ ∈ Rn++ such that S0 = Dψ .

To see why this terminology is natural, we first expand this to obtain




S1
0

S2
0
...

SN
0


 = ψ1




D11

D21
...

DN1


+ ψ2




D12

D22
...

DN2


+ · · · + ψn




D1n

D2n
...

DNn


 . (1.2)

The vector, D(i), multiplying ψi is the security price vector if the market is in state
i . We can think of ψi as the marginal cost at time zero of obtaining an additional
unit of wealth at the end of the time period if the system is in state i . In other
words, if at the end of the time period, the market is in state i , then the value of
our portfolio increases by one for each additional ψi of investment at time zero. To
see this, suppose that we can find vectors

{
θ(i) ∈ RN

}
1≤i≤n such that

θ(i) · D( j) =
{

1 if i = j,
0 otherwise.

That is, the value of the portfolio θ(i) at time T is the indicator function that the
market is in state i . Then, using equation (1.2), the cost of purchasing θ(i) at time
zero is precisely S0 · θ(i) =

(∑n
j=1 ψ j D( j)

) · θ(i) = ψi . Such portfolios {θ(i)}1≤i≤n

are called Arrow–Debreu securities.
We shall find a convenient way to think about the state price vector in §1.6, but

first, here is the key result.

Theorem 1.5.2 For the market model described above there is no arbitrage if
and only if there is a state price vector.
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R

R

1

n

K

M

Figure 1.4 There is no arbitrage if and only if the regions K and M of Theorem 1.5.2 intersect only at the
origin.

This result, due to Harrison & Kreps (1979), is the simplest form of what is often
known as the Fundamental Theorem of Asset Pricing. The proof is an application of
a Hahn–Banach Separation Theorem, sometimes called the Separating Hyperplane
Theorem. We shall also need the Riesz Representation Theorem. Recall that M ⊆ Rd

is a cone if x ∈ M implies λx ∈ M for all strictly positive scalars λ and that a linear
functional on Rd is a linear mapping F : Rd → R.

Theorem 1.5.3 (Separating Hyperplane Theorem) Suppose M and K are closed
convex cones in Rd that intersect precisely at the origin. If K is not a linear subspace,
then there is a non-zero linear functional F such that F(x) < F(y) for each x ∈ M
and each non-zero y ∈ K .

This version of the Separating Hyperplane Theorem can be found in Duffie (1992).

Theorem 1.5.4 (Riesz Representation Theorem) Any bounded linear functional on
Rd can be written as F(x) = v0 · x. That is F(x) is the scalar product of some fixed
vector v0 ∈ Rd with x.

Proof of Theorem 1.5.2: We take d = 1+ n in Theorem 1.5.3 and set

M =
{(−S0 · θ, Dtθ

)
: θ ∈ RN

}
⊆ R× Rn = R1+n,

K = R+ × Rn
+.

Note that K is a cone and not a linear space, M is a linear space. Evidently, there
is no arbitrage if and only if K and M intersect precisely at the origin as shown in
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Figure 1.4. We must prove that K ∩ M = {0} if and only if there is a state price
vector.

(i) Suppose first that K ∩ M = {0}. From Theorem 1.5.3, there is a linear
functional F : Rd → R such that F(z) < F(x) for all z ∈ M and non-zero x ∈ K .

The first step is to show that F must vanish on M . We exploit the fact that M
is a linear space. First observe that F(0) = 0 (by linearity of F) and 0 ∈ M , so
F(x) ≥ 0 for x ∈ K and F(x) > 0 for x ∈ K\{0}. Fix x0 ∈ K with x0 �= 0. Now
take an arbitrary z ∈ M . Then F(z) < F(x0), but also, since M is a linear space,
λF(z) = F(λz) < F(x0) for all λ ∈ R. This can only hold if F(z) = 0. z ∈ M was
arbitrary and so F vanishes on M as required.

We now use this actually to construct explicitly the state price vector from F .
First we use the Riesz Representation Theorem to write F as F(x) = v0 · x for some
v0 ∈ Rd . It is convenient to write v0 = (α, φ) where α ∈ R and φ ∈ Rn . Then

F(v, c) = αv + φ · c for any (v, c) ∈ R× Rn = Rd .

Since F(x) > 0 for all non-zero x ∈ K , we must have α > 0 and φ � 0 (consider a
vector along each of the coordinate axes). Finally, since F vanishes on M ,

−αS0 · θ + φ · Dtθ = 0 for all θ ∈ RN .

Observing that φ · Dtθ = (Dφ) · θ , this becomes

−αS0 · θ + (Dφ) · θ = 0 for all θ ∈ RN ,

which implies that −αS0 + Dφ = 0. In other words, S0 = D(φ/α). The vector
ψ = φ/α is a state price vector.

(ii) Suppose now that there is a state price vector,ψ . We must prove that K∩M =
{0}. By definition, S0 = Dψ and so for any portfolio θ ,

S0 · θ = (Dψ) · θ = ψ · (Dtθ). (1.3)

Suppose that for some portfolio θ , (−S0 · θ, Dtθ) ∈ K . Then Dtθ ∈ Rn+ and
−S0 · θ ≥ 0. But since ψ � 0, if Dtθ ∈ Rn+, then ψ · (Dtθ) ≥ 0 which, by
equation (1.3), tells us that S0 · θ ≥ 0. Thus it must be that S0 · θ = 0 and Dtθ = 0.
That is, K ∩ M = {0}, as required. ✷

1.6 The risk-neutral probability measure

The state price vector then is the key to arbitrage pricing for our multiasset market
models. Although we have an economic interpretation for it, in order to pave the
way for the full machinery of probability and martingales we must think about it in
a different way.

Recall that all the entries of ψ are strictly positive.
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State prices
and
probability

Writing ψ0 =
∑n

i=1 ψi , we can think of

ψ �
(
ψ1

ψ0
,
ψ2

ψ0
, . . . ,

ψn

ψ0

)t

(1.4)

as a vector of probabilities for being in different states. It is important to emphasise
that they may have nothing to do with our view of how the markets will move. First
of all,

What is ψ0?
Suppose that as in our binary model (where we had a risk-free cash bond) the

market allows positive riskless borrowing. In this general setting we just suppose
that we can replicate such a bond by a portfolio θ for which

Dtθ =




1
1
...

1


 ,

i.e. the value of the portfolio at time T is one, no matter what state the market is
in. Using the fact that ψ is a state price vector, we calculate that the cost of such a
portfolio at time zero is

S0 · θ = (Dψ) · θ = ψ · (Dtθ) =
n∑

i=1

ψi = ψ0.

That is ψ0 represents the discount on riskless borrowing. In our notation of §1.2,
ψ0 = e−rT .

Expectation
recovered

Now under the probability distribution given by the vector (1.4), the expected value
of the i th security at time T is

E
[
Si

T

] = n∑
j=1

Di j
ψ j

ψ0
= 1

ψ0

n∑
j=1

Di jψ j = 1

ψ0
Si

0,

where in the last equality we have used S0 = Dψ . That is

Si
0 = ψ0E

[
Si

T

]
, i = 1, . . . , n. (1.5)

Any security’s price is its discounted expected payoff under the probability distribu-
tion (1.4). The same must be true of any portfolio. This observation gives us a new
way to think about the pricing of contingent claims.

Definition 1.6.1 We shall say that a claim, C, at time T is attainable if it can be
hedged. That is, if there is a portfolio whose value at time T is exactly C.

Notation When we wish to emphasise the underlying probability measure,
Q, we write EQ for the expectation operator.
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Theorem 1.6.2 If there is no arbitrage, the unique time zero price of an attainable
claim C at time T is ψ0EQ[C] where the expectation is with respect to any
probability measure Q for which Si

0 = ψ0EQ[Si
T ] for all i and ψ0 is the discount on

riskless borrowing.

Remark: Notice that it is crucial that the claim is attainable (see Exercise 11). ✷

Proof of Theorem 1.6.2: By Theorem 1.5.2 there is a state price vector and this leads
to the probability measure (1.4) satisfying Si

0 = ψ0E
[
Si

T

]
for all i . Since the claim

can be hedged, there is a portfolio θ such that θ · ST = C . In the absence of arbitrage,
the time zero price of the claim is the cost of this portfolio at time zero,

θ · S0 = θ · (ψ0E[ST ]) = ψ0

N∑
i=1

θi E[Si
T ] = ψ0E[θ · ST ].

The same value is obtained if the expectation is calculated for any vector of
probabilities, Q, such that Si

0 = ψ0EQ
[
Si

T

]
since, in the absence of arbitrage, there

is only one riskless borrowing rate and this completes the proof. ✷

Risk-neutral
pricing

In this language, our arbitrage pricing result says that if we can find a probability
vector for which the time zero value of each underlying security is its discounted
expected value at time T then we can find the time zero value of any attainable
contingent claim by calculating its discounted expectation. Notice that we use the
same probability vector, whatever the claim.

Definition 1.6.3 If our market can be in one of n possible states at time T , then
any vector, p = (p1, p2, . . . , pn) � 0, of probabilities for which each security’s
price is its discounted expected payoff is called a risk-neutral probability measure or
equivalent martingale measure.

The term equivalent reflects the condition that p � 0; cf. Definition 2.3.12. Our
simple form of the Fundamental Theorem of Asset Pricing (Theorem 1.5.2) says
that in a market with positive riskless borrowing there is no arbitrage if and only if
there is an equivalent martingale measure. We shall refer to the process of pricing by
taking expectations with respect to a risk-neutral probability measure as risk-neutral
pricing.

Example 1.3.1 revisited Let us return to our very first example of pricing a European
call option and confirm that the above formula really does give us the arbitrage price.

Here we have just two securities, a cash bond and the underlying stock. The
discount on borrowing is ψ0 = e−rT , but we are assuming that the Yen interest
rate is zero, so ψ0 = 1. The matrix of security values at time T is given by

D =
(

1 1
4000 2000

)
.
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Writing p for the risk-neutral probability that the security price vector is (1, 4000)t ,
if the stock price is to be equal to its discounted expected payoff, p must solve

4000p + 2000(1− p) = 2500,

which gives p = 0.25. The contingent claim is �1000 if the stock price at expiry
is �4000 and zero otherwise. The expected value of the claim under the risk-neutral
probability, and therefore (since interest rates are zero) the price of the option, is then
�0.25× 1000 = �250, as before.

An advantage of this approach is that, armed with the probability p, it is now
a trivial matter to price all European options on this stock with the same expiry
date (six months time) by taking expectations with respect to the same probability
measure. For example, for a European put option with strike price �3500, the price
is

�E
[
(K − ST )+

] = �0.75× 1500 = �1125.

Our original argument would lead to a new set of simultaneous equations for each
new claim. ✷

Complete
markets

We now have a prescription for the arbitrage price of a claim if one exists, that is if
the claim is attainable. But we must be a little cautious. Arbitrage prices only exist
for attainable claims – even though the prescription may continue to make sense.

Definition 1.6.4 A market is said to be complete if every contingent claim is
attainable, i.e. if every possible derivative claim can be hedged.

Proposition 1.6.5 A market consisting of N tradable assets, evolving according
to a single period model in which at the end of the time period the market is one of
n possible states, is complete if and only if N ≥ n and the rank of the matrix, D, of
security prices is n.

Proof: Any claim in our market can be expressed as a vector v ∈ Rn . A hedge for
that claim will be a portfolio θ = θ(v) ∈ RN for which Dtθ = v. Finding such a θ
amounts to solving n equations in N unknowns. Thus a hedging portfolio exists for
every choice of v if and only if N ≥ n and the rank of D is n, as required. ✷

Notice in particular that our single period binary model is complete.
Suppose that our market is complete and arbitrage-free and let Q and Q′ be any

two equivalent martingale measures. By completeness every claim is attainable, so
for every random variable X , using that there is only one risk-free rate,

EQ [X ] = EQ′ [X ] .

In other words Q = Q′. So in a complete arbitrage-free market the equivalent
martingale measure is unique.
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The main
results so far

Let us summarise the results for our single period markets. They will be reflected
again and again in what follows.

Results for single period models
• The market is arbitrage-free if and only if there exists a martingale measure,

Q.
• The market is complete if and only if Q is unique.
• The arbitrage price of an attainable claim C is e−rT EQ [C] .

Martingale measures are a powerful tool. However, in an incomplete market, if a
claim C is not attainable different martingale measures can give different prices. The
arbitrage-free notion of fair price only makes sense if we can hedge.

Trading in
two different
markets

We must sound just one more note of caution. It is important in calculating the
risk-neutral probabilities that all the assets being modelled are tradable in the same
market. We illustrate with an example.

Example 1.6.6 Suppose that in the US dollar markets the current Sterling
exchange rate is 1.5 (so that £100 costs $150). Consider a European call option that
offers the holder the right to buy £100 for $150 at time T . The riskless borrowing
rate in the UK is u and that in the US is r . Assuming a single period binary model in
which the exchange rate at the expiry time is either 1.65 or 1.45, find the fair price
of this option.

Solution: Now we have a problem. The exchange rate is not tradable. Nor, in dollar
markets, is a Sterling cash bond – it is a tradable instrument, but in Sterling markets.
However, the product of the two is a dollar tradable and we shall denote the value of
this product by St at time t .

Now, since the riskless interest rate in the UK is u, the time zero price of a Sterling
cash bond, promising to pay £1 at time T , is e−uT and, of course, at time T the bond
price is one. Thus we have S0 = e−uT 150 and ST = 165 or ST = 145.

Let p be the risk-neutral probability that ST = 165. Then, since the discounted
price (in the dollar market) of our ‘asset’ at time T must have expectation S0, we
obtain

150e−uT = e−rT (165p + 145(1− p)) ,

which yields

p = 150e(r−u)T − 145

20
.

The price of the option is the discounted expected payoff with respect to this
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probability which gives

V0 = e−rT 15p = 3

4

(
150e−uT − 145e−rT ).

✷

Exercises

1 What view about the market is reflected in each of the following strategies?

(a) Bullish vertical spread: Buy one European call and sell a second one with the
same expiry date, but a larger strike price.

(b) Bearish vertical spread: Buy one European call and sell a second one with the
same expiry date but a smaller strike price.

(c) Strip: Buy one European call and two European puts with the same exercise date
and strike price.

(d) Strap: Buy two European calls and one European put with the same exercise date
and strike price.

(e) Strangle: Buy a European call and a European put with the same expiry date but
different strike prices (consider all possible cases).

2 A butterfly spread represents the complementary bet to the straddle. It has the
following payoff at expiry:

Payoff

STE E1 2

Find a portfolio consisting of European calls and puts, all with the same expiry date,
that has this payoff.

3 Suppose that the price of a certain asset has the lognormal distribution. That is
log (ST /S0) is normally distributed with mean ν and variance σ 2. Calculate E[ST ].

4 (a) Prove Lemma 1.3.2.
(b) What happens if we drop the assumption that d < erT < u?

5 Suppose that at current exchange rates, £100 is worth e160. A speculator believes
that by the end of the year there is a probability of 1/2 that the pound will have fallen
to e1.40, and a 1/2 chance that it will have gained to be worth e2.00. He therefore
buys a European put option that will give him the right (but not the obligation) to



19 exercises

sell £100 for e1.80 at the end of the year. He pays e20 for this option. Assume that
the risk-free interest rate is zero across the Euro-zone. Using a single period binary
model, either construct a strategy whereby one party is certain to make a profit or
prove that this is the fair price.

6 How should we modify the analysis of Example 1.3.1 if we are pricing an option
based on a commodity such as oil?

7 Show that if there is no arbitrage in the market, then any portfolio constructed at time
zero that exactly replicates a claim C at time T has the same value at time zero.

8 Put–call parity: Denote by Ct and Pt respectively the prices at time t of a European
call and a European put option, each with maturity T and strike K . Assume that the
risk-free rate of interest is constant, r , and that there is no arbitrage in the market.
Show that for each t ≤ T ,

Ct − Pt = St − K e−r(T−t).

9 Use risk-neutral pricing to value the option in Exercise 5. Check your answer by
constructing a portfolio that exactly replicates the claim at the expiry of the contract.

10 What is the payoff of a forward at expiry? Use risk-neutral pricing to solve the pricing
problem for a forward contract.

11 Consider the ternary model for the underlying of §1.4. How many equivalent
martingale measures are there? If there are two different martingale measures, do
they give the same price for a claim? Are there arbitrage opportunities?

12 Suppose that the value of a certain stock at time T is a random variable with
distribution P. Note we are not assuming a binary model. An option written on
this stock has payoff C at time T . Consider a portfolio consisting of φ units of the
underlying and ψ units of bond, held until time T , and write V0 for its value at time
zero. Assuming that interest rates are zero, show that the extra cash required by the
holder of this portfolio to meet the claim C at time T is

� � C − V0 − φ (ST − S0) .

Find expressions for the values of V0 and φ (in terms of E [ST ], E [C], var [ST ] and
cov (ST ,C)) that minimise

E
[
�2],

and check that for these values E [�] = 0.
Prove that for a binary model, any claim C depends linearly on ST − S0. Deduce that
in this case we can find V0 and φ such that � = 0.
When the model is not complete, the parameters that minimise E

[
�2

]
correspond

to finding the best linear approximation to C (based on ST − S0). The corresponding
value of the expectation is a measure of the intrinsic risk in the option.
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13 Exchange rate forward: Suppose that the riskless borrowing rate in the UK is u
and that in the USA is r . A dollar investor wishes to set the exchange rate, CT , in
a forward contract in which the two parties agree to exchange CT dollars for one
pound at time T . If a pound is currently C0 dollars, what is the fair value of CT ?

14 The option writer in Example 1.6.6 sells a digital option to a speculator. This amounts
to a bet that the asset price will go up. The payoff is a fixed amount of cash if the
exchange rate goes to $165 per £100, and nothing if it goes down. If the speculator
pays $10 for this bet, what cash payout should the option writer be willing to write
into the option? You may assume that interest rates are zero.

15 Suppose now that the seller of the option in Example 1.6.6 operates in the Sterling
markets. Reexpress the market in terms of Sterling tradables and find the corre-
sponding risk-neutral probabilities. Are they the same as the risk-neutral probabilities
calculated by the dollar trader? What is the dollar cost at time zero of the option as
valued by the Sterling trader?
This is an example of change of numeraire. The dollar trader uses the dollar bond as
the reference risk-free asset whereas the Sterling trader uses a Sterling bond.



2 Binomial trees and discrete parameter
martingales

Summary

In this chapter we build some more sophisticated market models that track the
evolution of stock prices over a succession of time periods. Over each individual
time period, the market follows our simple binary model of Chapter 1. The possible
trajectories of the stock prices are then encoded in a tree. A simple corollary of our
work of Chapter 1 will allow us to price claims by taking expectation with respect
to certain probabilities on the tree under which the stock price process is a discrete
parameter martingale.

Definitions and basic properties of discrete parameter martingales are presented
and illustrated in §2.3, and we see for the first time how martingale methods can
be employed as an elegant computational tool. Then, §2.4 presents some important
martingale theorems. In §2.5 we pave the way for the Black–Scholes analysis of
Chapter 5 by showing how to construct, in the martingale framework, the portfolio
that replicates a claim. In §2.6 we preview the Black–Scholes formula with a
heuristic passage to the limit.

2.1 The multiperiod binary model

Our single period binary model is, of course, inadequate as a model of the evolution
of an asset price. In particular, we have allowed ourselves to observe the market at
just two times, zero and T . Moreover, at time T , we have supposed the stock price to
take one of just two possible values. In this section we construct more sophisticated
market models by stringing together copies of our single period model into a tree.

Once again our financial market will consist of just two instruments, the stock
and a cash bond. As before we assume that unlimited amounts of both can be bought
and sold without transaction costs. There is no risk of default on a promise and the
market is prepared to buy and sell a security for the same price (that is, there is no
bid–offer spread).

21
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Figure 2.1 The tree of stock prices.

We suppose the market to be observable at times 0 = t0 < t1 < · · · < tN = T .

The stock Over each time period [ti , ti+1] the stock follows the binary model. This is illustrated
in Figure 2.1. After i time periods, the stock can have any of 2i possible values.
However, given its value at time ti there are only two admissible possibilities for the
stock price at time ti+1. It is not necessary, but it is conventional, to suppose that all
time periods have the same length and so we shall write ti = iδt where δt = T/N .

The cash
bond

In our simple model, the cash bond behaved entirely predictably. There was a known
interest rate, r , and the cash bond increased in value over a time period of length
T by a factor erT . Now, we do not have to impose such a stringent condition. The
interest rate can itself be random, varying over different time periods. Our work
will generalise immediately provided that we insist that the interest rate over the
time interval [ti , ti+1) is known at the start of that interval, although it may depend
on which of the 2i nodes our market is in. In this way, we admit the possibility
of randomness in our cash bond. Notice however that it is a very different sort of
randomness from that of the stock. The value of the bond at time ti+1 is already
known to us at time ti . This is certainly not true for the stock. In spite of our new-
found freedom, for simplicity, we shall continue to suppose that the interest rate is
the constant, r .
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Replicating
portfolios

At first sight it is not clear that we can make progress with our new model. For a
tree consisting of k time steps there are 2k possible values for the stock price. If we
now look back at Proposition 1.6.5, this suggests that we need at least 2k stocks to
be traded in our market if we want it to be complete. For k = 20, this requires over
a million ‘independent’ assets, far more than we see in any real market. But things
are not so bad. More claims become attainable if we allow ourselves to rebalance
our replicating portfolio after each time period. The only restriction that we impose
is that this rebalancing cannot involve any extra input of cash: the purchase of more
stock must be funded by the sale of some of our bonds and vice versa. This will be
formalised later as the self-financing property.

Backwards
induction on
the tree

The key to understanding pricing and hedging in this bigger model is backwards
induction on the tree of stock prices.

Example 2.1.1 (Pricing a European call) Suppose again that we are pricing a
European option with maturity time T . As above, we set δt = T/N so that T
corresponds to N time periods and we write Si for the stock price at time iδt . The
payoff of the option at time T is denoted by CN .

Method: The key idea is as follows. Suppose that we know the price, SN−1, of
the stock at time (N − 1)δt . Then our previous analysis would tell us the value,
CN−1, of the option at time (N − 1)δt . Specifically, CN−1 = ψ

(N )
0 EN−1[CN ]

where the expectation is with respect to a probability measure for which SN−1 =
ψ
(N )
0 EN−1[SN ] and ψ(N )

0 = e−rδt . (In a world of varying interest rates r must be
replaced by the rate at the node of the tree corresponding to the known value of
SN−1.) Moreover, using Lemma 1.3.2, we know how to construct a portfolio at time
(N − 1)δt that will have value exactly CN at time Nδt . In this way, for each of the
2N−1 nodes of the tree at time (N − 1)δt , we calculate the amount of money, CN−1,
that we require to construct a portfolio that exactly replicates the claim CN at time T .

We now think of CN−1 as a claim at time (N − 1)δt and we repeat the
process. If we know SN−2, we can construct a portfolio at time (N − 2)δt whose
value at time (N − 1)δt will be exactly CN−1, and this portfolio will cost us
ψ
(N−1)
0 EN−2[CN−1], where the expectation is with respect to a measure such that

SN−2 = ψ
(N−1)
0 EN−2[SN−1]. Here again ψ(N−1)

0 = e−rδt . Continuing in this way,
we successively calculate the cost of a portfolio that, after appropriate readjustment
at each tick of the clock, but without any extra input of wealth and without paying
dividends, will allow us to meet exactly the claim against us at time Nδt = T . We’ll
illustrate the method in Example 2.1.2. ✷

Binomial
trees

It is useful to consider a special form of the binary tree in which over each time step
[ti , ti+1] the stock price either increases from its current value, Si , to Si u or decreases
to Si d for some constants 0 < d < u < ∞. In such a tree the same stock price can
be attained in many different ways. For example the value S0ud at time t2 can be
attained as the result of an upward stock movement followed by a downward stock
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Figure 2.2 A recombinant or binomial tree of stock prices.

movement or vice versa. The tree of stock prices then takes the form of Figure 2.2.
Such a tree is said to be recombinant (different branches can recombine). These
special recombinant trees are also known as binomial trees since (provided u, d , and
r remain constant over time) the risk-neutral probability measure will be the same
on each upward branch and so the stock price at time tn = nδt is determined by a
binomial distribution. Such trees are computationally much easier to work with than
general binary trees and, as we shall see, are quite adequate for our purposes. The
binomial model was introduced by Cox, Ross & Rubinstein (1979) and has played a
key rôle in the derivatives industry.

We now illustrate the method of backwards induction on a recombinant tree.

Example 2.1.2 Suppose that stock prices are given by the tree in Figure 2.3 and
that δt = 1. If interest rates are zero, what is cost of an option to buy the stock at
price 100 at time 3?

Solution: It is easy to fill in the value of the claim at time 3. Reading from top to
bottom, the claim has values 60, 20, 0 and 0.

Next we need to find the risk-neutral probabilities for each triad of nodes of the
form

S

S (u)i+1

i

S (d)i+1

Evidently in this example the risk-neutral probability of stepping up is 1/2 at every
node. We can now calculate the value of the option at the penultimate time, 2, to be,
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Figure 2.3 The tree of stock prices for the underlying stock in Example 2.1.2. The number in brackets is
the value of the claim at each node.

again reading downward, 40, 10, 0. Repeating this for time 1 gives values 25 (if the
price steps up from time 0) and 5 (if the price has stepped down). Finally, then, the
value of the option at time 0 is 15.

Having filled in the option prices on the tree, we can now construct a portfolio
that exactly replicates the claim at time 3 using the prescription of Lemma 1.3.2. We
write (φi , ψi ) for the amount of stock and bond held in the portfolio over the time
interval [(i − 1)δt, iδt).

• At time 0, we are given 15 for the option. We calculate φ1 as (25− 5)/(120− 80) =
0.5. So we buy 0.5 units of stock, which costs 50, and we borrow 35 in cash bonds.

• Suppose that S1 = 120. The new φ is (40 − 10)/(140 − 100) = 0.75, so we buy
another 0.25 units of stock, taking our total bond borrowing to 65.

• Suppose that S2 = 140. Now φ = (60− 20)/(160− 120) = 1, so we buy still more
stock, to take our holding up to 1 unit and our total borrowing to 100 bonds.

• Finally, suppose that S3 = 120. The option will be in the money, so we must hand
over our unit of stock for 100, which is exactly enough to cancel our bond debt.

The table below summarises our stock and bond holding if the stock price follows
another path through the tree.

Stock Option Stock Bond
Time i Last jump price Si value Vi holding φi holding ψi

0 — 100 15 — —
1 down 80 5 0.50 −35
2 up 100 10 0.25 −15
3 down 80 0 0.50 −40
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Notice that all of the processes {Si }0≤i≤N , {Vi }0≤i≤N , {φi }1≤i≤N , {ψi }1≤i≤N depend
on the sequence of up and down jumps. In particular, {φi }1≤i≤N and {ψi }1≤i≤N are
random too. We do not know the dynamics of the portfolio at time 0. However, we do
know that our portfolio is self-financing. The portfolio that we hold over [i+1, i+2)
can be bought with the proceeds of liquidating (at time i + 1) the portfolio that we
held over the time interval [i, i + 1) – there is no need for any extra input of cash.
Moreover, we know how to adjust our portfolio at each time step on the basis of
knowledge of the current stock price. There is no risk. ✷

In the single period binary model, we saw that any claim at time T was attainable
and its price at time zero could be expressed as an expectation. The same is true in
the multiperiod setting (see Exercise 1). The proof that any claim is attainable is just
backwards induction on the tree. To recover the pricing formula as an expectation,
we define a probability distribution on paths through the tree.

Path
probabilities

Notice that our backwards induction argument has specified exactly one probability
on each branch of the tree. For each path through the tree that the stock price could
follow we define the path probability to be the product of the probabilities on the
branches that comprise it.

In Exercise 2 you are asked to show that the price of a claim at time T that
we obtained by backwards induction is precisely the discounted expected value of
the claim with respect to these path probabilities (in which the discounted claim at
each node is weighted according to the sum of the probabilities of all paths that
end at that node). Let’s just check this prescription for our preceding example.
In the recombining tree of Example 2.1.2, there are a total of eight paths, one
ending at the top node, one at the bottom and three at each of the other nodes.
Each path has equal probability, 1/8, and the expectation of the claim is therefore
1/8 × 60 + 3/8 × 20 = 15, which is the price that we calculated by backwards
induction.

2.2 American options

Our somewhat more sophisticated market model is sufficient for us to take a first look
at options whose payoff depends on the path followed by the stock price over the
time interval [0, T ]. In this section we concentrate on the most important examples
of such options: American options.

Definition 2.2.1 (American calls and puts) An American call option with strike
price K and expiry time T gives the holder the right, but not the obligation, to buy
an asset for price K at any time up to T .

An American put option with strike price K and expiry time T gives the holder
the right, but not the obligation, to sell an asset for price K at any time up to T .

Evidently the value of an American option should be more than (or at least no less
than) that of its European counterpart. The question is, how much more?
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Calls on non-
dividend-
paying
stock

First let us prove the following oft-quoted result.

Lemma 2.2.2 It is never optimal to exercise an American call option on non-
dividend-paying stock before expiry.

Proof: Consider the following two portfolios.

• Portfolio A: One American call option plus an amount of cash equal to K e−r(T−t) at
time t .

• Portfolio B: One share.

Writing St for the share price at time t , if the call option is exercised at time t < T ,
then the value of portfolio A at time t is St − K + K e−r(T−t) < St . (Evidently the
option will only be exercised if St > K .) The value of portfolio B is St . On the other
hand at time T , if the option is exercised then the value of portfolio A is max{ST , K }
which is at least that of portfolio B.

We have shown that exercising prior to maturity gives a portfolio whose value is
less than that of portfolio B whereas exercising at maturity gives a portfolio whose
value is greater than or equal to that of B. It cannot be optimal to exercise early. ✷

This result only holds for non-dividend-paying stock. An alternative proof of
Lemma 2.2.2 is Exercise 5. In Exercise 7 the result is extended to show that if the
underlying stock pays discrete dividends, then it can only be optimal to exercise at
the final time T or at one of the dividend times (see also Exercise 8). More generally,
the decision whether to exercise early depends on the ‘cost’ in terms of lost dividend
income.

Put on non-
dividend-
paying
stock

The case of American put options is harder (even without dividends). We illustrate
with an example.

Example 2.2.3 Suppose once again that our asset price evolves according to the
recombinant tree of Figure 2.3. To illustrate the method, again we suppose that the
risk-free interest rate is zero (but see the second paragraph of Remark 2.2.4). What
is the value of a three month American put option with strike price 100?

Solution: As in the case of a European option, we work our way backwards through
the tree.

• The value of the claim at time 3, reading from top to bottom, is 0, 0, 20, 60.
• At time 2, we must consider two possibilities: the value if we exercise the claim,

and the value if we do not. For the top node it is easy. The value is zero either way.
For the second node, the stock price is equal to the strike price, so the value is zero
if we exercise the option. On the other hand, if we don’t, then from our analysis of
the single step binary model, the value of the claim is the expected value under the
risk-neutral probabilities of the claim at time 3. We already calculated the risk-neutral
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Figure 2.4 The evolution of the price of the American put option of Example 2.2.3.

probabilities to be 1/2 on each branch of the tree, so this expected value is 10. For
the bottom node, the value is 40 whether or not we exercise the claim.

• Now consider the two nodes at time 1. For the top one, if we exercise the option it
is worthless whereas if we hold it then, again by our analysis of the single period
model, its value is 5. For the bottom node, if we exercise the option then it is worth
20, whereas if we wait it is worth 25.

• Finally, at time 0, if we exercise, the value is zero, whereas if we wait the value is
15.

The option prices are shown in Figure 2.4.
✷

Remark 2.2.4

1 Notice that in the above example it was not optimal to exercise the option at time
1, even when it was ‘in the money’. If S1 = 80, we make 20 from exercising
immediately, but there is 25 to be made from waiting.

2 In this example there was never a strictly positive advantage to early exercise of the
option. It was always at least as good to wait. In fact if interest rates are zero this is
always the case, as is shown in Exercise 6. For non-zero interest rates, early exercise
can be optimal, see Exercise 9. ✷

2.3 Discrete parameter martingales and Markov processes

Our multiperiod stock market model still looks rather special. To prepare the ground
for the continuous time world of later chapters we now place it in the more general
framework of discrete parameter martingales and Markov processes.

First we recall the concepts of random variables and stochastic processes.
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Random
variables

Formally, when we talk about a random variable we must first specify a probability
triple (�,F,P), where � is a set, the sample space, F is a collection of subsets of
�, events, and P specifies the probability of each event A ∈ F . The collection F is a
σ -field, that is, � ∈ F and F is closed under the operations of countable union and
taking complements. The probability P must satisfy the usual axioms of probability:

• 0 ≤ P[A] ≤ 1, for all A ∈ F ,

• P[�] = 1,

• P[A ∪ B] = P[A]+ P[B] for any disjoint A, B ∈ F ,

• if An ∈ F for all n ∈ N and A1 ⊆ A2 ⊆ · · · then P[An] ↑ P
[⋃

n An
]

as n ↑ ∞.

Definition 2.3.1 A real-valued random variable, X, is a real-valued function on
� that is F-measurable. In the case of a discrete random variable (that is a random
variable that can only take on countably many distinct values) this simply means

{ω ∈ � : X (ω) = x} ∈ F,

so that P assigns a probability to the event {X = x}. For a general real-valued
random variable we require that

{ω ∈ � : X (ω) ≤ x} ∈ F,

so that we can define the distribution function, F(x) = P[X ≤ x].

This looks like an excessively complicated way of talking about a relatively straight-
forward concept. It is technically required because it may not be possible to define
P in a non-trivial way on all subsets of �, but most of the time we don’t go far
wrong if we ignore such technical details. However, when we start to study stochastic
processes, random variables that evolve with time, it becomes much more natural to
work in a slightly more formal framework.

Stochastic
processes

To specify a (discrete time) stochastic process, we typically require not just a single
σ -field, F , but an increasing sequence of them, Fn ⊆ Fn+1 ⊆ · · · ⊆ F . The
collection {Fn}n≥0 is then called a filtration and the quadruple

(
�,F, {Fn}n≥0,P

)
is called a filtered probability space.

Definition 2.3.2 A real-valued stochastic process is just a sequence of real-
valued functions, {Xn}n≥0, on �. We say that it is adapted to the filtration {Fn}n≥0 if
Xn is Fn-measurable for each n.

One can then think of the σ -field Fn as encoding all the information about the
evolution of the stochastic process up until time n. That is, if we know whether each
event in Fn happens or not then we can infer the path followed by the stochastic
process up until time n. We shall call the filtration that encodes precisely this
information the natural filtration associated to the stochastic process {Xn}n≥0.



30 trees and martingales

000
p

p
p

p
p

1

0

1

01

10

11

0

1

X0

X

X1

2

00

2
01

p

10

2

11

2
p
p

p
p

p

p
00

X

X

X

X
001

3

010

3

X

X

X

X

X

X

X

X

011

101

110

111

010

011

100

101

110

001
p

000

p
111

3

3

3

3

3

100

3

Figure 2.5 Tree representing the stochastic process of Example 2.3.3 and its distribution.

There is an important consequence of the very formal way that this is set up.
Notice that we have defined the process {Xn}n≥0 as a sequence of measurable
functions on � without reference to P. This is exactly analogous to the situation
in our tree models. We specified the possible values that the stock price could take
at time n, corresponding to prescribing the functions {Xn}n≥0, and superposed the
probabilities afterwards. Even if we had a preconception of what the probabilities
of up and down jumps might be, we then changed probability (to the risk-neutral
probabilities) in order actually to price claims. This process of changing probability
will be fundamental to our approach to option pricing, even in our most complex
market models.

Conditional
expectation

When we constructed the probabilities on paths through our binary (or binomial)
trees, we first specified the probability on each branch of the tree. This was done in
such a way that the expected value of e−rδt Sk+1 given that the value of the stock at
time kδt is known to be Sk is just Sk . This condition specifies the probabilities on the
two branches emanating from the node corresponding to Sk at time kδt . We should
like to extend this idea, but first we need to remind ourselves about conditional
expectation. This is best explained through an example.

Example 2.3.3 Consider the stochastic process represented by the tree in Fig-
ure 2.5. Its distribution is given by the probabilities on the branches of the tree,
where, as in §2.1, we assume that the probability of a particular path through the
tree is the product of the probabilities of the branches that comprise that path.

Calculation: Our tree explicitly specifies {Xn}n≥0 and, for a given �, implicitly
specifies P. In later examples we shall be less pedantic, but here we write down
� explicitly. There are many possible choices, but an obvious one is the set of
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all possible sequences of ‘up’ and ‘down’ jumps. If ω = (u, u, d), say, then
X1(ω) = X0

1, X2(ω) = X00
2 and X3(ω) = X001

3 .
First let us calculate the conditional expectation

E [ X3|F1] .

Using our interpretation of Fn as ‘information up to time n’, our problem is to
determine the conditional expectation of X3 given all the information up to time
one. Notice that what we are calculating is an F1-measurable random variable. It
depends only on what happened up until time one. There are just two possibilities:
the first jump is up, or the first jump is down.

• If the first jump is up, the possible values of X3 are X000
3 , X001

3 , X010
3 and X011

3 .
The probability of each value is determined by the path probabilities but restricted to
paths emanating from the upper node at time one. The conditional expectation then
takes the value

E [ X3|F1] (u) = p00 p000 X000
3 + p00 p001 X001

3 + p01 p010 X010
3 + p01 p011 X011

3 .

This happens with probability p0.
• If the first jump is down, which happens with probability p1, the conditional

expectation takes the value

E [ X3|F1] (d) = p10 p100 X100
3 + p10 p101 X101

3 + p11 p110 X110
3 + p11 p111 X111

3 .

Similarly, we can calculate E [ X3|F2]. This random variable will be F2-measurable
– its value depends on the first two jumps of the process. Its distribution is given in
the table below.

Value Probability

E[X |F2](uu) = p000 X000
3 + p001 X001

3 p0 p00

E[X |F2](ud) = p010 X010
3 + p011 X011

3 p0 p01

E[X |F2](du) = p100 X100
3 + p101 X101

3 p1 p10

E[X |F2](dd) = p110 X110
3 + p111 X111

3 p1 p11

Of course, since E [ X3|F2] is an F2-measurable random variable and F1 ⊆ F2, we
can calculate the conditional expectation

E [E [ X3|F2]|F1] .

E [E [ X3|F2]|F1] (u) = p00E [ X3|F2] (uu)+ p01E [ X3|F2] (ud),

E [E [ X3|F2]|F1] (d) = p10E [ X3|F2] (du)+ p11E [ X3|F2] (dd).
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Substituting the value of E [ X3|F2] from the table above it is easily checked that
this reduces to

E [E [ X3|F2]|F1] = E [ X3|F1] . (2.1)

✷

Here is the formal definition.

Definition 2.3.4 (Conditional expectation) Suppose that X is an F-measurable
random variable with E [|X |] < ∞. Suppose that G ⊆ F is a σ -field; then the
conditional expectation of X given G, written E [ X |G], is the G-measurable random
variable with the property that for any A ∈ G

E [[ X |G] ; A] �
∫

A
E [ X |G] dP =

∫
A

XdP � E [X; A] .

The conditional expectation exists, but is only unique up to the addition of a random
variable that is zero with probability one. This technical point will be important in
Exercise 17 of Chapter 3.

Equation (2.1) is a special case of the following key property of conditional
expectations.

The tower property of conditional expectations: Suppose that Fi ⊆ F j ; then

E[E[X |F j ]|Fi ] = E[X |Fi ].

In words this says that conditioning first on the information up to time j and then on
the information up to an earlier time i is the same as conditioning originally up to
time i . ✷

In calculations with conditional expectations, it is often useful to remember the
following fact.

Takingoutwhat isknowninconditionalexpectations: Suppose that E [X ] and E [XY ] <
∞; then

if Y is Fn-measurable, E [ XY |Fn] = Y E [ X |Fn] .

This just says that if Y is known by time n, then if we condition on the information
up to time n we can treat Y as constant. ✷

The
martingale
property

The probability measure on the tree that we used in §2.1 to price claims was chosen
so that if we define {S̃k}k≥0 to be the discounted stock price, that is S̃k = e−krδt Sk ,
then the expected value of S̃k+1 given that we know S̃k is just S̃k . We use the notation

E
[
S̃k+1|S̃k

] = S̃k .

Because in our model the stock price has ‘no memory’, so that the movement of the
stock over the next tick of the clock is not influenced by the way in which it reached
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its current value, conditioning on knowing S̃k is actually the same as conditioning on
knowing all of Fk , so that

E
[
S̃k+1|Fk

] = S̃k . (2.2)

The property (2.2) is sufficiently important that it has a name.

Definition 2.3.5 Suppose that
(
�, {Fn}n≥0,F,P

)
is a filtered probability space.

The sequence of random variables {Xn}n≥0 is a martingale with respect to P and
{Fn}n≥0 if

E [|Xn|] <∞, ∀n, (2.3)

and

E
[

Xn+1|Fn
] = Xn, ∀n. (2.4)

If we replace equation (2.4) by

E
[

Xn+1|Fn
] ≤ Xn, ∀n,

then {Xn}n≥0 is a
(
P, {Fn}n≥0

)
-supermartingale. If instead we replace it by

E
[

Xn+1|Fn
] ≥ Xn, ∀n,

then {Xn}n≥0 is a
(
P, {Fn}n≥0

)
-submartingale.

These definitions are not exhaustive. There are plenty of processes that fall into none
of these categories. A martingale is often thought of as tracking the net gain after
successive plays of a fair game. In this setting a supermartingale models net gain
from playing an unfavourable game (one we are more likely to lose than to win) and
a submartingale is the net gain from playing a favourable game.

It is extremely important to note that the notion of a martingale is really that
of a

(
P, {Fn}n≥0

)
-martingale. Recall that our definition of stochastic process has

divorced the rôles of the sequence {Fn}n≥0, the F-measurable functions {Xn}n≥0 on
� and the probability measure P defined on elements of F . In the setting of §2.1, our
view of the market may be that the discounted stock price is not a martingale (indeed
it probably isn’t or no one would ever speculate on stocks – they could get the same
money, risk-free, by buying cash bonds). We change the probability measure to one
which makes the discounted stock price a martingale for the purposes of pricing and,
as we shall see, hedging. We shall refer to the probability measure that represents
our view of the market as the market measure. The new probability measure, which
we use for pricing and hedging, is known as the equivalent martingale measure.

Remark: (Martingales indexed by a subset of N) Although we have defined martin-
gales indexed by n ∈ N, we shall often talk about martingales indexed by {0 ≤ n ≤
N }. They are defined by restricting conditions (2.3) and (2.4) to {0 ≤ n ≤ N }. We
shall state our key results for martingales indexed by {n ≥ 0}; they can be modified
in the obvious way to apply to martingales indexed by {0 ≤ n ≤ N }. ✷



34 trees and martingales

It is often useful to observe that, by the tower property, if {Xn}n≥0 is a
(
P, {Fn}n≥0

)
-

martingale then for i < j ,
E
[

X j
∣∣Fi

] = Xi .

The Markov
property

Calculations can also be simplified if our martingales have an additional property:
the Markov property.

Definition 2.3.6 (Markov process) The stochastic process {Xn}n≥0 (with its nat-
ural filtration, {Fn}n≥0) is a discrete time Markov process if

P
[

Xn+1 ∈ B|Fn
] = P

[
Xn+1 ∈ B| Xn

]
,

for all B ∈ F .

In words this says that the probability that Xn+1 ∈ B given that we know the whole
history of the process up to time n is the same as the probability that Xn+1 ∈ B
given only the value of Xn . A Markov process has no memory. Many of our examples
of martingales (and all our examples of market models) will also have the Markov
property. However, not all martingales are Markov processes and not all Markov
processes are martingales (see Exercise 11).

Notation: When we wish to emphasise that a filtration is ‘generated by’ the
stochastic process {Xn}n≥0 we use the notation {F X

n }n≥0.
Unless otherwise stated, {Fn}n≥0 will always be understood to mean the
natural filtration associated with the stochastic process under consideration.

It would be excessively pedantic always to insist upon an explicit specification of �
and so, generally, we won’t. We shall also use ‘{Xn}n≥0 is a P-martingale’ to mean
{Xn}n≥0 is a

(
P, {F X

n }n≥0
)
-martingale’.

Examples Example 2.3.7 (Random walk) A one-dimensional simple random walk, {Sn}n≥0,
is a Markov process such that Sn+1 = Sn + ξn+1 where (for each n) ξn ∈ {−1,+1}
and, under P, {ξn}n≥0 are independent identically distributed random variables.
Thus

P
[

Sn+1 = k + 1| Sn = k
] = p, P

[
Sn+1 = k − 1| Sn = k

] = 1− p,

where p ∈ [0, 1].
If p = 0.5, then {Sn}n≥0 is a P-martingale. If p < 0.5 (resp. p > 0.5), then

{Sn}n≥0 is a P-supermartingale (resp. P-submartingale).

Justification: To check this, notice that since the random walk can be a distance at
most n from its starting point at time n, the expectation E [|Sn|] < ∞ is evidently
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finite. Moreover,

E
[

Sn+1|Fn
] = E

[
Sn + ξn+1|Fn

]
= Sn + E

[
ξn+1|Fn

]
= Sn + E

[
ξn+1

]
,

where we have used independence of the {ξn}n≥0 in the last line. It suffices then to
observe that

E
[
ξn+1

]
< 0, p < 0.5,
= 0, p = 0.5,
> 0, p > 0.5.

✷

Example 2.3.8 (Conditional expectation of a claim) Suppose that � and a filtra-
tion {Fn}n≥0 are given. (The example that we have in mind is that Fn encodes
the history of a financial market up until time nδt .) Let CN be any bounded
FN -measurable random variable. (This we are thinking of as a claim against us at
time Nδt .) Then for any probability measure P, the conditional expectation process,
{Xn}0≤n≤N , given by

Xn = E [CN |Fn] ,

is a
(
P, {Fn}0≤n≤N

)
-martingale.

Example 2.3.9 (The discounted price of a claim) In solving our pricing problem
for a European option with value CN at the expiry time Nδt in the multiperiod binary
model of stock prices of §2.1, we found a probability measure, which we denote by Q,
under which the discounted stock price is a martingale. For any claim, CN , at time
Nδt , provided EQ [|CN |] < ∞, the fair price at time nδt of an option with payoff
CN at time Nδt was found to be

Vn = e−r(N−n)δtEQ [CN |Fn] .

Define the discounted claim process by Ṽn = e−rnδt Vn. Then {Ṽn}0≤n≤N is a Q-
martingale. This would remain true even if we dropped the assumption of constant
interest rates, provided that we knew the risk-free rate over the time interval [iδt, (i+
1)δt) at the beginning of the period.

New
martingales
from old

Our last example shows that the discounted price process of a European option is
a martingale. In other words, the discounted value of our replicating portfolio is a
martingale. As before, we write (φn, ψn) for the amount of stock and bond held in
the replicating portfolio over the nth time interval, that is [(n− 1)δt, nδt). The value
of the portfolio at time nδt is then

Vn = φn+1Sn + ψn+1 Bn,

where Bn is the value of the cash bond at time nδt . The portfolio is self-financing,
that is the cost of constructing the new portfolio at time (n + 1)δt is exactly offset



36 trees and martingales

by the proceeds of selling the portfolio that we have held over [nδt, (n + 1)δt). In
symbols,

φn+1Sn+1 + ψn+1 Bn+1 = φn+2Sn+1 + ψn+2 Bn+1.

The discounted price is
Ṽn = φn+1 S̃n + ψn+1,

and since, using the self-financing property,

φn+1 S̃n+1 + ψn+1 = φn+2 S̃n+1 + ψn+2,

we have

Ṽn+1 − Ṽn = φn+2 S̃n+1 + ψn+2 − φn+1 S̃n − ψn+1

= φn+1

(
S̃n+1 − S̃n

)
.

That is

Ṽn = V0 +
n−1∑
j=0

φ j+1

(
S̃ j+1 − S̃ j

)
. (2.5)

From our earlier remarks, {Ṽn}0≤n≤N is a Q-martingale, so what we have checked
is that under the probability measure Q for which {S̃n}0≤n≤N is a martingale, the
expression on the right hand side of equation (2.5) is also a martingale. This is part
of a general phenomenon. To state a precise result we need a definition. Recall that
we knew φi at time (i − 1)δt .

Definition 2.3.10 Given a filtration {Fn}n≥0, the process {An}n≥1 is {Fn}n≥0-
previsible or {Fn}n≥0-predictable if An is Fn−1-measurable for all n ≥ 1.

Note that this is the sort of randomness that we have permitted for our cash bond.

Discrete
stochastic
integrals

Proposition 2.3.11 Suppose that {Xn}n≥0 is adapted to the filtration {Fn}n≥0 and
that {φn}n≥1 is {Fn}n≥0-previsible. Define

Zn = Z0 +
n−1∑
j=0

φ j+1
(
X j+1 − X j

)
, (2.6)

where Z0 is a constant.
If {Xn}n≥0 is a

(
P, {Fn}n≥0

)
-martingale, then so is {Zn}n≥0.

Remark: If {θn}n≥0 is adapted to {Fn}n≥0, then the process {φn}n≥1 defined by φn =
θn−1 is previsible. Thus for an {Fn}n≥0-adapted process {θn}n≥0, if {Xn}n≥0 is a(
P, {Ft }t≥0

)
-martingale then so is

Zn = Z0 +
n−1∑
j=0

θ j
(
X j+1 − X j

)
.

✷
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Proof of Proposition 2.3.11: This is an exercise in the use of conditional expectations.

E
[

Zn+1|Fn
]− Zn = E

[
Zn+1 − Zn|Fn

]
= E

[
φn+1 (Xn+1 − Xn)|Fn

]
= φn+1E

[
(Xn+1 − Xn)|Fn

]
= φn+1

(
E
[

Xn+1|Fn
]− Xn

)
= 0.

✷

We can think of the sum in equation (2.6) as a discrete stochastic integral. When we
turn to stochastic integration in Chapter 4, we shall essentially be passing to limits in
sums of this form.

The
Fundamental
Theorem of
Asset Pricing

It is not just our binomial models that can be incorporated into the martingale
framework. The same argument that allows us to pass from the single period to the
multiperiod binary model allows us to pass from the single period models of §1.5
and §1.6 to a multiperiod model. We now recast Theorems 1.5.2 and 1.6.2 in this
language. Suppose that our market consists of K stocks and that the possible values
that the stock prices S1, . . . , SK can take on at times δt, 2δt, 3δt, . . . , Nδt = T are
known. We denote by � the set of all possible ‘paths’ that the stock price vector can
follow in RK+ .

Theorem 1.5.2 tells us that the absence of arbitrage is equivalent to the existence
of a probability measure, Q, on � that assigns strictly positive mass to every ω ∈ �
and such that

Sr−1 = ψ
(r)
0 EQ[Sr |Sr−1],

where Sr is the vector of stock prices at time r and ψ(r)
0 is the discount on riskless

borrowing over [(r − 1)δt, rδt].
If, as above, we consider the discounted stock prices, {S̃ j }0≤ j≤N , given by S̃ j =∏ j

i=1 ψ
(i)
0 S j , then

EQ[S̃r |S̃1, . . . , S̃r−1] = EQ
[

S̃r

∣∣∣Fr−1

]
= S̃r−1.

In other words, the discounted stock price vector is a Q-martingale.

Definition 2.3.12 Two probability measures P and Q on a space � are said to be
equivalent if for all events A ⊆ �

Q(A) = 0 if and only if P(A) = 0.

Suppose then that we have a market model in which the stock price vector can follow
one of a finite number of paths� through RK+ . We may even have our own belief as to
how the price will evolve, encoded in a probability measure, P, on �. Theorem 1.5.2
and Theorem 1.6.2 combine to say:
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Theorem 2.3.13 For the multiperiod market model described above, there is no
arbitrage if and only if there is an equivalent martingale measure Q. That is, there
is a measure, Q, equivalent to P, such that the discounted stock price process is a
Q-martingale.

In that case, the time zero market price of an attainable claim CN (to be delivered
at time Nδt) is unique and is given by

EQ[ψ0CN ],

where ψo =
∏N

1 ψ
(i)
0 is the discount factor over N periods.

Although there are extra technical conditions, this fundamental theorem has essen-
tially the same statement for markets that evolve continuously with time.

2.4 Some important martingale theorems

Phrasing everything in the martingale framework places many powerful theorems
at our disposal. In this section, we present some of the most important results in
the theory of discrete parameter martingales. However, our coverage is necessarily
cursory. An excellent and highly readable account is Williams (1991).

Stopping
times

One of the most important calculational tools in martingale theory is the Optional
Stopping Theorem. Before we can state it, we need to introduce the notion of a
stopping time.

Definition 2.4.1 Given a sample space � equipped with a filtration {Fn}n≥0, a
stopping time or optional time is a random variable T : �→ Z+ with the property
that

{T ≤ n} ∈ Fn, for all n ≥ 0.

This just says that we can decide whether or not T ≤ n on the basis of the information
available at time n – we don’t need to look into the future.

Example 2.4.2 Consider the simple random walk of Example 2.3.7. Define T to
be the first time that the random walk takes the value 1, that is

T = inf {i ≥ 0 : Si = 1} ;

then T is a stopping time.
On the other hand,

U = sup {i ≥ 0 : Si = 1}
is not a stopping time.

Optional
stopping

An equivalent definition of stopping time is that the random variable θn � 1{T≥n+1},
for n ≥ 0, is adapted (see Definition 2.3.2). Consequently, from the remark following
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Proposition 2.3.11, if {Xn}n≥0 is a martingale, then so is the process

Zn �
n−1∑
j=0

θ j
(
X j+1 − X j

)
. (2.7)

Notice that we can rearrange this expression,

Zn =
n−1∑
j=0

θ j
(
X j+1 − X j

)

=
n−1∑
j=0

1{T≥ j+1}
(
X j+1 − X j

)
= XT∧n − X0,

where T ∧ n denotes the minimum of T and n.

Theorem 2.4.3 (Optional Stopping Theorem) Let
(
�,F, {Fn}n≥0,P

)
be a filtered

probability space. Suppose that the process {Xn}n≥0 is a
(
P, {Fn}n≥0

)
-martingale,

and that T is a bounded stopping time. Then

E [ XT |F0] = X0,

and hence
E [XT ] = X0.

Proof: The proof is a simple application of the calculation that we did above. If we
know that T ≤ N , then in the notation of (2.7), Z N = XT − X0 and since {Zn}n≥0

is a martingale, E [ Z N |F0] = Z0 = 0, i.e.

E [ XT |F0] = X0.

Taking expectations once again yields

E [XT ] = X0.

✷

It is essential in this result that the stopping time be bounded. In practice this will
be the case in all of our financial applications, but Exercise 15 shows what can
go wrong. More general versions of the theorem are available; see for example,
Williams (1991). Here we satisfy ourselves with an application (see also Exer-
cise 14).

Proposition 2.4.4 Let {Sn}n≥0 be the (asymmetric) simple random walk of
Example 2.3.7 with p > 1/2. For x ∈ Z we write

Tx = inf {n : Sn = x} ,
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and define

φ(x) =
(

1− p

p

)x

.

Then for a < 0 < b,

P [Ta < Tb] = 1− φ(b)

φ(a)− φ(b)
.

Proof: We first show that {φ(Sn)}n≥0 is a P-martingale. Since the walk can only take
one step at a time, −n ≤ Sn ≤ n. Using also that 0 < (1 − p)/p < 1 for p > 1/2,
we evidently have that

E [|φ(Sn)|] <∞, ∀n.

To check that we really have a martingale is reduced to another exercise in
conditional expectations. We must calculate

E
[
φ(Sn+1)|Fn

]
.

Recall that Sn+1 =
∑n+1

j=1 ξ j = Sn + ξn+1, where, under P, the random variables ξ j

are independent and identically distributed with

P[ξ j = 1] = p and P[ξ j = −1] = 1− p.

This gives

E
[
φ(Sn+1)|Fn

] = E

[
φ(Sn)

(
1− p

p

)ξn+1
∣∣∣∣∣Fn

]

= φ(Sn)E

[(
1− p

p

)ξn+1
]

= φ(Sn)

(
p

(
1− p

p

)1

+ (1− p)

(
1− p

p

)−1
)

= φ(Sn).

We should now like to apply the Optional Stopping Theorem to the stopping time
T = Ta ∧ Tb, the first time that the walk hits either a or b. The difficulty is that T is
not bounded. Instead then, we apply the theorem to the stopping time T ∧ N for an
arbitrary (deterministic) N . This gives

1 = E [φ(S0)] = E [φ(ST∧N )]

= φ(a)P [ST = a, T ≤ N ]+ φ(b)P [ST = b, T ≤ N ]+ E [φ(SN ), T > N ] .

(2.8)

Now

0 ≤ E [φ(SN ), T > N ] = E [φ(SN )| T > N ] P [T > N ]

≤
[(

1− p

p

)b

+
(

p

1− p

)a
]

P [T > N ] ,



41 2.4 some important martingale theorems

and since P [T > N ] → 0 as N →∞, we can let N →∞ in (2.8) to deduce that

φ(a)P [ST = a]+ φ(b)P [ST = b] = 1. (2.9)

Finally, since P [ST = a] = 1 − P [ST = b], and P [Ta < Tb] = P [ST = a],
equation (2.9) becomes

φ(a)P [Ta < Tb]+ φ(b) (1− P [Ta < Tb]) = 1.

Rearranging,

P [Ta < Tb] = 1− φ(b)

φ(a)− φ(b)
,

as required. ✷

A
convergence
theorem

Often one can deduce a great deal about martingales from apparently scant informa-
tion. An example is the result of Exercise 12 which says that a previsible martingale
is constant. Another example is provided by the following result.

Theorem 2.4.5 (Positive Supermartingale Convergence Theorem) If {Xn}n≥0 is a
(P, {Fn}n≥0)-supermartingale and Xn ≥ 0 for all n, then there exists an F∞-
measurable random variable, X∞, with E [X∞] < ∞ such that with P-probability
one

Xn → X∞ as n →∞.

A proof of this result is beyond our scope here, but can be found, for example, in
Williams (1991).

Compensation Before returning to some finance, we record just one more result. Recall that
submartingales tend to rise on the average and supermartingales fall on the average.
The following result, sometimes called compensation, says that we can subtract a
non-decreasing process from a submartingale to obtain a martingale and we can add
a non-decreasing process to a supermartingale to obtain a martingale. In both cases,
the interesting thing is that the non-decreasing processes are previsible.

Proposition 2.4.6

1 Suppose that {Xn}n≥0 is a (P, {Fn}n≥0)-submartingale. Then there is a previs-
ible, non-decreasing process {An}n≥0 such that {Xn − An}n≥0 is a (P, {Fn}n≥0)-
martingale. If we insist that A0 = 0, then {An}n≥0 is unique.

2 Suppose that {Xn}n≥0 is a (P, {Fn}n≥0)-supermartingale. Then there is a previs-
ible, non-decreasing process {An}n≥1 such that {Xn + An}n≥0 is a (P, {Fn}n≥0)-
martingale. If we insist that A0 = 0, then {An}n≥0 is unique.

Proof: The proofs of the two parts are essentially identical, so we restrict our
attention to 1.
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Define A0 = 0 and then for n ≥ 1 set

An − An−1 = E
[

Xn − Xn−1|Fn−1
]
.

By definition {An}n≥0 will be previsible and non-decreasing (since {Xn}n≥0 is a
submartingale). We must check that {Xn − An}n≥0 is a martingale. First we check
that E [|Xn − An|] <∞ for all n.

E [|Xn − An|] ≤ E [|Xn|]+ E [An]

= E [|Xn|]+ E

[
A0 +

n∑
j=1

(
A j − A j−1

)]

= E [|Xn|]+
n∑

j=1

E
[
E
[

X j − X j−1
∣∣F j−1

]]
(by definition of A j )

≤ E [|Xn|]+
n∑

j=1

E
[
E
[ ∣∣X j

∣∣+ ∣∣X j−1
∣∣∣∣F j−1

]]

= E [|Xn|]+
n∑

j=1

E
[∣∣X j

∣∣+ ∣∣X j−1
∣∣] (tower property),

and evidently this final expression is finite since by assumption E
[∣∣X j

∣∣] < ∞ for
all j .

Now we check the martingale property,

E
[

Xn+1 − An+1|Fn
]

= E
[

Xn+1 − E
[

Xn+1 − Xn|Fn
]− An

∣∣Fn
]

(by definition of An+1)

= E
[

Xn+1 − Xn+1 + Xn − An|Fn
]

= Xn − An .

It remains to check that if A0 = 0 then the process {An}n≥0 is unique. Suppose that
there were another predictable process {Bn}n≥0 with the same property. Then {Xn −
An}n≥0 and {Xn − Bn}n≥0 are both martingales and, therefore, so is the difference
between them, {An − Bn}n≥0. On the other hand {An − Bn}n≥0 is predictable and
predictable martingales are constant (see Exercise 12). Since A0 = 0 = B0, the
proof is complete. ✷

American
options and
supermartin-
gales

Let’s see what these concepts correspond to in a financial example.

Example 2.4.7 (American options revisited) Assume the binomial model and no-
tation of §2.2 and let Q be the probability measure on the tree under which the
discounted stock price {S̃n}0≤n≤N is a martingale. We denote by {Ṽn}0≤n≤N the
discounted value of an American call or put option with strike K and maturity
T = Nδt and define

B̃n =
{

e−nδt (Sn − K )+ in the case of the call,
e−nδt (K − Sn)+ in the case of the put.
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(The filtration is always that generated by {Sn}0≤n≤N .) Then {Ṽn}0≤n≤N is the
smallest Q-supermartingale that dominates {B̃n}0≤n≤N .

In Exercise 16 it is shown that this characterisation provides yet another simple proof
of Lemma 2.2.2.

Explanation for example: We know from §2.2 that

Ṽn−1 = max
{

B̃n−1,E
Q
[

Ṽn

∣∣∣Fn−1

]}
, 0 ≤ n ≤ N ,

and ṼN = B̃N . Evidently {Ṽn}0≤n≤N is a supermartingale that dominates
{B̃n}0≤n≤N . To check that it is the smallest supermartingale with this property,
suppose that {Ũn}0≤n≤N is any other supermartingale that dominates {B̃n}n≥0. Then
ŨN ≥ ṼN , and if Ũn ≥ Ṽn , then

Ũn−1 ≥ EQ
[

Ũn

∣∣∣Fn−1

]
≥ EQ

[
Ṽn

∣∣∣Fn−1

]
,

and so
Ũn−1 ≥ max

{
B̃n−1,E

Q
[

Ṽn

∣∣∣Fn−1

]}
= Ṽn−1.

The result follows by backwards induction. The process {Ṽn}0≤n≤N is called the
Snell envelope of {B̃n}0≤n≤N . ✷

Remark: Proposition 2.4.6 tells us that we can write

Ṽn = M̃n − Ãn

where {M̃n}n≥0 is a martingale and { Ãn}n≥0 is a non-decreasing process, with A0 =
0. Since the market is complete, we can hedge MN exactly by holding a portfolio
that consists over the nth time step of φn units of stock and ψn units of cash bond.
The seller of the American option would more than meet her liability by holding
such a portfolio. The holder of the option will exercise at the first time j when Ã j+1

is non-zero (recall that the process { Ãn}n≥0 is previsible), since at that time it is
better to sell the option and invest the money according to the hedging portfolio
{(φn, ψn)} j≤n≤N . ✷

2.5 The Binomial Representation Theorem

Pricing a derivative in the martingale framework corresponds to taking an expec-
tation. But arbitrage prices are only meaningful if we can construct a hedging
portfolio. If we know the hedging portfolio then we saw in the discussion preceding
Definition 2.3.10 that we can express the discounted value of the portfolio, and
therefore of the derivative, as a ‘discrete stochastic integral’ of the stock holding
in the portfolio with respect to the discounted stock price. In order to pass from
the discounted price of the derivative to a hedging portfolio we need the following
converse to Proposition 2.3.11. We work in the context of our binomial model of
stock prices.
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Theorem 2.5.1 (Binomial Representation Theorem) Suppose that the measure Q

is such that the discounted binomial price process {S̃n}n≥0 is a Q-martingale.
If {Ṽn}n≥0 is any other (Q, {Fn}n≥0)-martingale, then there exists an {Fn}n≥0-
predictable process {φn}n≥1 such that

Ṽn = Ṽ0 +
n−1∑
j=0

φ j+1

(
S̃ j+1 − S̃ j

)
. (2.10)

Proof: We consider a single time step for our binomial tree. It is convenient to write

�Ṽi+1 = Ṽi+1 − Ṽi and �S̃i+1 = S̃i+1 − S̃i .

Given their values at time iδt , each of Ṽi+1 and S̃i+1 can take on one of two possible
values that we denote by {Ṽi+1(u), Ṽi+1(d)} and {S̃i+1(u), S̃i+1(d)} respectively.

We should like to write �Ṽi+1 = φi+1�S̃i+1 + ki+1, where φi+1 and ki+1 are
both known at time iδt . In other words we seek φi+1 and ki+1 such that

Ṽi+1(u)− Ṽi = φi+1

(
S̃i+1(u)− S̃i

)
+ ki+1,

and

Ṽi+1(d)− Ṽi = φi+1

(
S̃i+1(d)− S̃i

)
+ ki+1.

Solving this gives

φi+1 = Ṽi+1(u)− Ṽi+1(d)

S̃i+1(u)− S̃i+1(d)

and ki+1 = Ṽi+1(u) − Ṽi − φi+1

(
S̃i+1(u)− S̃i

)
, both of which are known at time

iδt .
Now {Ṽi }i≥0 and {S̃i }i≥0 are both martingales so that

E

[
�Ṽi+1

∣∣∣Fi

]
= 0 = E

[
�S̃i+1

∣∣∣Fi

]
from which it follows that ki+1 = 0.

In other words,

�Ṽi+1 = φi+1�S̃i+1,

where φi+1 is known at time iδt . Induction ties together all these increments into the
result that we want. ✷From

martingale
representa-
tion to
replicating
portfolio

From our previous work, we know that if {Ṽi }i≥0 is the discounted price of a claim,
then such a predictable process {φi }i≥1 arises as the stock holding when we construct
our replicating portfolio. We should like to go the other way. Given {φi }i≥1, can we
construct a self-financing replicating portfolio? Not surprisingly, the answer is yes.
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Construction strategy: At time i , buy a portfolio that consists of φi+1 units of stock
and Ṽi − φi+1 S̃i units of cash bond.

We must check that this strategy really works. It is convenient to write Bi for the
value of the bond at time iδt .

Suppose that at time iδt we have bought φi+1 units of stock and
(

Ṽi − φi+1
Si
Bi

)
units of cash bond. This will cost us

φi+1Si +
(

Ṽi − φi+1
Si

Bi

)
Bi = Ṽi Bi = Vi .

The value of this portfolio at time (i + 1)δt is then

φi+1Si+1 +
(

Ṽi − φi+1
Si

Bi

)
Bi+1 = Bi+1

(
φi+1

(
Si+1

Bi+1
− Si

Bi

)
+ Ṽi

)
= Ṽi+1 Bi+1 (by the binomial representation)

= Vi+1,

which is exactly enough to construct our new portfolio at time (i + 1)δt . Moreover,
at time Nδt we have precisely the right amount of money to meet the claim against
us.

Threesteps to replication: There are three steps to pricing and hedging a claim
CT against us at time T .
• Find a probability measure Q under which the discounted stock price (with

its natural filtration) is a martingale.
• Form the discounted value process,

Ṽi = e−riδt Vi = EQ
[

e−rT CT

∣∣∣Fi

]
.

• Find a predictable process {φi }1≤i≤N such that

�Ṽi = φi�S̃i .

2.6 Overture to continuous models

Before rigorously deriving the acclaimed Black–Scholes pricing formula for the
value of a European option, we are going to develop a substantial body of material.
As an appetiser though, we can use our discrete techniques to see what form our
results must take in the continuous world.

It is easy to believe that we should be able to use a discrete model with very small
time periods to approximate a continuous model. The Black–Scholes model is based
on the lognormal model that we mentioned in §1.2. With this in mind, we choose our
approximation to have constant growth rate and constant ‘noise’.
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Model with
constant
stock growth
and noise

The model is parametrised by the time period, δt , and three fixed constant parame-
ters, ν, σ and the riskless rate r .
• The cash bond has the form Bt = ert , which does not depend on the interval

size.
• The stock price process follows the nodes of a binomial tree. If the current value

of the stock is s, then over the next time period it moves to the new value{
s exp

(
νδt + σ

√
δt

)
if up,

s exp
(
νδt − σ

√
δt

)
if down.

Suppose our belief is that the jumps are equally likely to be up or down. So under
the market measure, P

[
up jump

] = 1/2 = P
[
down jump

]
at each time step.

For a fixed time t , set N to be the number of time periods until time t , that is
N = t/δt . Then

St = S0 exp

(
νt + σ

√
t

(
2X N − N√

N

))
,

where X N is the total number of the N separate jumps which were up jumps. To see
what happens as δt → 0 (or equivalently N → ∞) we call on the Central Limit
Theorem.

Theorem 2.6.1 (Central Limit Theorem) Let ξ1, ξ2, . . . be a sequence of indepen-
dent identically distributed random variables under the probability measure P with
finite mean µ and finite non-zero variance σ 2 and let Sn = ξ1 + . . .+ ξn . Then

Sn − nµ√
nσ 2

converges in distribution to an N (0, 1) random variable as n →∞.

Now X N is the sum of N independent random variables {ξi }1≤i≤N taking the value
+1 with probability 1

2 and 0 otherwise. This means E [ξi ] = 1
2 and var [ξi ] = 1

4 so
that by the Central Limit Theorem, the distribution of the random variable (2X N −
N )/

√
N converges to that of a normal random variable with mean zero and variance

one. In other words, as δt gets smaller (and so N gets larger), the distribution of St

converges to that of a lognormal distribution. More precisely, in the limit, log St is
normally distributed with mean log S0 + νt and variance σ 2t .

Under the
martingale
measure

This is what happens under the original measure P. What happens under the
martingale measure, Q, that we use for pricing?

By Lemma 1.3.2, under the martingale measure, the probability of an up jump is

p = exp(rδt)− exp(νδt − σ
√
δt)

exp(νδt + σ
√
δt)− exp(νδt − σ

√
δt)

,

which is approximately

1

2

(
1−

√
δt

(
ν + 1

2σ
2 − r

σ

))
.



47 exercises

So under the martingale measure, Q, X N is still binomially distributed, but now has
mean N p and variance N p(1− p).

Thus, under Q, (2X N − N )/
√

N has mean that tends to −√t
(
ν + 1

2σ
2 − r

)
/σ

and variance that approaches one as δt tends to zero. Again using the Central Limit
Theorem the random variable (2X N − N )/

√
N converges to a normally distributed

random variable, with mean −√t
(
ν + 1

2σ
2 − r

)
/σ and variance one. Under Q

then, St is lognormally distributed with mean log S0 + (r − 1
2σ

2)t and variance σ 2t .
This can be written

St = exp

(
σ
√

t Z +
(

r − 1

2
σ 2

)
t

)
,

where, under Q, the random variable Z is normally distributed with mean zero and
variance one.

Pricing a call
option

If our discrete theory carries over to the continuous limit, then in our continuous
model the price at time zero of a European call option with strike price K at time
T will be the discounted expected value of the claim under the martingale measure,
that is

EQ
[
e−rT (ST − K )+

]
,

where r is the riskless rate. Substituting, we obtain

EQ

[(
S0 exp

(
σ
√

T Z − 1

2
σ 2T

)
− K exp (−rT )

)
+

]
. (2.11)

We’ll derive this pricing formula rigorously in Chapter 5 where we’ll also show that
equation (2.11) can be evaluated as

S0�


 log S0

K +
(

r + 1
2σ

2
)

T

σ
√

T


− K e−rT�


 log S0

K +
(

r − 1
2σ

2
)

T

σ
√

T


 ,

where � is the standard normal distribution function,

�(z) = Q [Z ≤ z] =
∫ z

−∞
1√
2π

e−x2/2dx .

Exercises

1 Notice that, like the single period ternary model of Chapter 1, the two-step binomial
model allows the stock to take on three distinct values at time 2. Show, however, that
every claim can be exactly replicated by a self-financing portfolio, that is, the market
is complete.
More generally, show that if the market evolves according to a k-step binomial model
then it is complete.
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2 Show that the price of a claim obtained by backwards induction on the binomial tree
is precisely the value obtained by calculating the discounted expected value of the
claim with respect to the path probabilities introduced in §2.1.

3 Consider two dates T0, T1 with T0 < T1. A forward start option is a contract in
which the holder receives at time T0, at no extra cost, an option with expiry date T1

and strike price equal to ST0 (the asset price at time T0). Assume that the stock price
evolves according to a two-period binary model, in which the asset price at time T0

is either S0u or S0d , and at time T1 is one of S0u2, S0ud and S0d2 with

d < min
{

erT0 , er(T1−T0)
}
≤ max

{
erT0 , er(T1−T0)

}
< u,

where r denotes the risk-free interest rate. Find the fair price of such an option at
time zero.

4 A digital option is one in which the payoff depends in a discontinuous way on the
asset price. The simplest example is the cash-or-nothing option, in which the payoff
to the holder at maturity T is X1{ST>K } where X is some prespecified cash sum.
Suppose that an asset price evolves according to the binomial model in which, at
each step, the asset price moves from its current value Sn to one of Snu and Snd. As
usual, if �T denotes the length of each time step, d < er�T < u.
Find the time zero price of the above option. You may leave your answer as a sum.

5 Let Ct denote the value at time t of an American call option on non-dividend-paying
stock with strike price K and maturity T . If the risk-free interest rate is r > 0, prove
that

Ct ≥ St − K e−r(T−t) > St − K ,

and deduce that it is never optimal to exercise this option prior to the maturity time,
T .

6 Let Ct be as in Exercise 5 and let Pt be the value of an American put option on the
same stock with the same strike price and maturity. By comparing the values of two
suitable portfolios, show that

Ct + K ≥ Pt + St .

Using put–call parity for European options and the result of Exercise 5, show that

Pt ≥ Ct + K e−r(T−t) − St .

Combine these results to see that, if r > 0 and t < T ,

St − K ≤ Ct − Pt < St − K e−r(T−t)

and deduce that if interest rates are zero, there is no advantage to early exercise of
the put.
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7 If a stock price is S just before a dividend D is paid, what is its value imme-
diately after the payment? Suppose that a stock pays dividends at discrete times,
T0, T1, . . . , Tn . Show that it can be optimal to exercise an American call on such a
stock prior to expiry.

8 Suppose that the stock in Figure 2.3 will pay a dividend of 5% of its value at time
2. As before, interest rates are zero and between times 2 and 3 the value of the stock
will either increase or decrease by 20. Find the time zero price of an American call
option on this stock with strike 100 and maturity 3. Is it ever optimal to exercise
early?

9 Consider the American put option of Example 2.2.3, but now suppose that interest
rates are such that a $1 cash bond at time iδt is worth $1.1 at time (i +1)δt . Find the
value of the put. At what time will it be exercised?

10 Suppose that an asset price evolves according to the binomial model. For simplicity
suppose that the risk-free interest rate is zero and �T is 1. Suppose that under the
probability P, at each time step, stock prices go up with probability p and down with
probability 1− p.
The conditional expectation

Mn � E[SN |Fn], 1 ≤ n ≤ N ,

is a stochastic process. Check that it is a P-martingale and find the distribution of the
random variable Mn .

11 (a) Find a Markov process that is not a martingale.
(b) Find a martingale that is not a Markov process.

12 Show that a previsible martingale is constant.

13 Let {Sn}n≥0 be simple random walk under the measure P. Calculate E [Sn] and
var [Sn].

14 Let {Sn}n≥0 be a symmetric simple random walk under the measure P, that is, in the
notation of Example 2.3.7, p = 1/2. Show that {S2

n}n≥0 is a P-submartingale and
that {S2

n − n}n≥0 is a P-martingale.
Let T = inf{n : Sn /∈ (−a, a)}, where a ∈ N. Use the Optional Stopping Theorem
(applied to a suitable sequence of bounded stopping times) to show that E [T ] = a2.

15 As in Exercise 14, let {Sn}n≥0 be a symmetric simple random walk under P and write
Xn = Sn + 1. (Note that {Xn}n≥0 is a simple random walk started from 1 at time
zero.)
Let T = inf{n : Xn = 0}. Show that T is a stopping time and that if Yn = XT∧n , then
{Yn}n≥0 is a non-negative martingale and therefore, by Theorem 2.4.5, converges to
a limit, Y∞ as n →∞.
Show that E [Yn] = 1 for all n, but that Y∞ = 0. Why does this not contradict the
conclusion of the Optional Stopping Theorem?
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16 Recall Jensen’s inequality: if g is a convex function and X a real-valued random
variable then

E [g(X)] ≥ g (E [X ]) .

Combine this with the characterisation (Example 2.4.7) of the discounted price
of an American call option on non-dividend-paying stock as the smallest Q-
supermartingale that dominates {e−rnδt (Sn − K )+}n≥0 to prove that the price of an
American call on non-dividend-paying stock is the same as that of a European call
with the same strike and maturity.



3 Brownian motion

Summary

Our discrete models are only a crude approximation to the way in which stock
markets actually move. A better model would be one in which stock prices can
change at any instant. As early as 1900 Bachelier, in his thesis ‘La théorie de la
spéculation’, proposed Brownian motion as a model of the fluctuations of stock
prices. Even today it is the building block from which we construct the basic
reference model for a continuous time market. Before we can proceed further we
must leave finance to define and construct Brownian motion.

Our first approach will be to continue the heuristic of §2.6 by considering
Brownian motion as an ‘infinitesimal’ random walk in which smaller and smaller
steps are taken at ever more frequent time intervals. This will lead us to a natural
definition of the process. A formal construction, due to Lévy, will be given in §3.2,
but this can safely be omitted. Next, §3.3 establishes some facts about the process
that we shall require in later chapters. This material too can be skipped over and
referred back to when it is used.

Just as discrete parameter martingales play a key rôle in the study of random
walks, so for Brownian motion we shall use continuous time martingale theory to
simplify a number of calculations; §3.4 extends our definitions and basic results on
discrete parameter martingales to the continuous time setting.

3.1 Definition of the process

The easiest way to think about Brownian motion is as an ‘infinitesimal random walk’
and that is often how it arises in applications, so to motivate the formal definition we
first study simple random walks.

A characteri-
sation of
simple ran-
dom walks

We declared in Example 2.3.7 that the stochastic process {Sn}n≥0 is a simple random
walk under the measure P if Sn =

∑n
i=1 ξi where the ξi can take only the values

{−1,+1} and are independent and identically distributed under P. We concentrate

51
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on the symmetric case when

P [ξi = −1] = 1

2
= P [ξi = +1] .

This process is often motivated as a model of the gains from repeated plays of a
fair game. For example, suppose I play a game with a friend in which each play is
equivalent to flipping a fair coin. If it comes up heads I pay her a dollar, otherwise
she pays me a dollar. For each n, Sn models my net gain after n plays.

Recall from Exercise 13 of Chapter 2 that E[Sn] = 0 and var(Sn) = n.

Lemma 3.1.1 {Sn}n≥0 is a P-martingale (with respect to the natural filtration)
and

cov(Sn, Sm) = n ∧ m.

Proof: We checked in Example 2.3.7 that {Sn}n≥0 is a P-martingale. It remains to
calculate the covariance.

cov(Sn, Sm) = E[Sn Sm]− E[Sn]E[Sm]

= E [E[Sn Sm |Fm∧n]] (tower property)

= E [Sm∧nE [Sm∨n|Fm∧n]]

= E[S2
m∧n] (martingale property)

= var(Sm∧n) = m ∧ n.
✷

As a result of the independence of the random variables {ξi }i≥1, if 0 ≤ i ≤ j ≤ k ≤
l, then S j − Si is independent of Sl − Sk . More generally, if 0 ≤ i1 ≤ i2 ≤ · · · ≤ in ,
then {Sir − Sir−1 : 1 ≤ r ≤ n} are independent. Moreover, if j − i = l − k = m, say,
then S j − Si and Sl − Sk both have the same distribution as Sm .

Notation: For two random variables X and Y we write

X
D= Y

to mean that X and Y have the same distribution.
We also write X ∼ N (µ, σ 2) to mean that X is normally distributed with
mean µ and variance σ 2.

Combining the observations above we have

Lemma 3.1.2 Under the measure P the process {Sn}n≥0 has stationary, indepen-
dent increments.
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Lemmas 3.1.1 and 3.1.2 are actually enough to characterise symmetric simple
random walks.

Rescaling
random
walks

Recall that we want to think of Brownian motion as an infinitesimal random walk.
In terms of our gambling game, the time interval between plays is δt and the stake
is δx say, and we are thinking of both of these as ‘tending to zero’. In order to
obtain a non-trivial limit, there has to be a relationship between δt and δx . To see
what this must be, we use the Central Limit Theorem (stated in §2.6). In our setting,
µ = E[ξi ] = 0 and σ 2 = var(ξi ) = 1. Thus, taking δt = 1/n and δx = 1/

√
n,

P

[
Sn√

n
≤ x

]
→

∫ x

−∞
1√
2π

e−y2/2dy as n →∞.

More generally,

P

[
S[nt]√

n
≤ x

]
→

∫ x

−∞
1√
2π t

e−y2/2t dy as n →∞,

where [nt] denotes the integer part of nt (Exercise 1). For the limiting process, at
time t our net gain since time zero will be normally distributed with mean zero and
variance t .

Definition of
Brownian
motion

Just as in our definition of a discrete time stochastic process, to define a continuous
time stochastic process {Xt }t≥0 (formally) requires a probability triple (�,F,P)
such that Xt is F-measurable for all t . However, as in the discrete case, we shall
rarely specify � explicitly.

Heuristically, passage to the limit in the random walk suggests that the following
is a reasonable definition of Brownian motion.

Definition 3.1.3 (Brownian motion) A real-valued stochastic process {Wt }t≥0 is
a P-Brownian motion (or a P-Wiener process) if for some real constant σ , under P,

1 for each s ≥ 0 and t > 0 the random variable Wt+s−Ws has the normal distribution
with mean zero and variance σ 2t ,

2 for each n ≥ 1 and any times 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the random variables
{Wtr −Wtr−1} are independent,

3 W0 = 0,
4 Wt is continuous in t ≥ 0.

Remarks: Conditions 1 and 2 ensure that, like its discrete counterpart, Brownian
motion has stationary independent increments.

Condition 3 is a convention. Brownian motion started from x can be obtained as
{x +Wt }t≥0.

In a certain sense condition 4 is a consequence of the first three, but we should
like to insist once and for all that all paths that our Brownian motion can follow are
continuous. ✷
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The parameter σ 2 is known as the variance parameter. By scaling of the normal
distribution it is immediate that {Wt/σ }t≥0 is a Brownian motion with variance
parameter one.

Definition 3.1.4 The process with σ 2 = 1 is called standard Brownian motion.

Assumption: Unless otherwise stated we shall always assume that σ 2 = 1.

Combining conditions 1 and 2 of Definition 3.1.3, we can write down the transition
probabilities of standard Brownian motion.

P
[
Wtn ≤ xn|Wti = xi , 0 ≤ i ≤ n − 1

] = P
[
Wtn −Wtn−1 ≤ xn − xn−1

]
=

∫ xn−xn−1

−∞
1√

2π(tn − tn−1)
exp

(
− u2

2(tn − tn−1)

)
du.

Notation: We write p(t, x, y) for the transition density

p(t, x, y) = 1√
2π t

exp

(
− (x − y)2

2t

)
.

This is the probability density function of the random variable Wt+s conditional on
Ws = x .

For 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn , writing x0 = 0, the joint probability density
function of Wt1 , . . . ,Wtn can also be written down explicitly as

f (x1, . . . , xn) =
n∏
1

p(t j − t j−1, x j−1, x j ).

The joint distributions of Wt1 , . . . ,Wtn for each n ≥ 1 and all t1, . . . , tn are called
the finite dimensional distributions of the process.

The following analogue of Lemma 3.1.1 is immediate.

Lemma 3.1.5 For any s, t > 0,

1 E
[

Wt+s −Ws | {Wr }0≤r≤s
] = 0,

2 cov(Ws,Wt ) = s ∧ t .

In fact since the multivariate normal distribution is determined by its means and
covariances and normally distributed random variables are independent if and only
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Figure 3.1 Zooming in on Brownian motion.

if their covariances are zero, this, combined with continuity of paths, characterises
standard Brownian motion.

Behaviour of
Brownian
motion

Just because the sample paths of Brownian motion are continuous, it does not mean
that they are nice in any other sense. In fact the behaviour of Brownian motion is
distinctly odd. Here are just a few of its strange behavioural traits.

1 Although {Wt }t≥0 is continuous everywhere, it is (with probability one) differen-
tiable nowhere.

2 Brownian motion will eventually hit any and every real value no matter how large,
or how negative. No matter how far above the axis, it will (with probability one) be
back down to zero at some later time.

3 Once Brownian motion hits a value, it immediately hits it again infinitely often (and
will continue to return after arbitrarily large times).

4 It doesn’t matter what scale you examine Brownian motion on, it looks just the same.
Brownian motion is a fractal.

Exercise 9 shows that the process cannot be differentiable at t = 0. We shall discuss
some properties related to the hitting probabilities in §3.3 and in Exercise 8. The
scaling alluded to in our last comment is formally proved in Proposition 3.3.7. It
is really a consequence of the construction of the process. Figure 3.1 illustrates the
result for a particular realisation of a Brownian path.

That such a bizarre process actually exists is far from obvious and so it is to this
that we turn our attention in the next section.
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3.2 Lévy’s construction of Brownian motion

We have hinted that Brownian motion can be obtained as a limit of random walks.
However, rather than chasing the technical details of the random walk construction,
in this section we present an alternative construction due to Lévy. This can be omitted
by readers willing to take existence of the process on trust.

A polygonal
approxima-
tion

The idea is that we can simply produce a path of Brownian motion by direct
polygonal interpolation. We require just one calculation.

Lemma 3.2.1 Suppose that {Wt }t≥0 is standard Brownian motion. Conditional
on Wt1 = x1, the probability density function of Wt1/2 is

pt1/2(x) �
√

2

π t1
exp

(
−1

2

((
x − 1

2 x1
)2

t1/4

))
.

In other words, the conditional distribution is a normally distributed random variable
with mean x1/2 and variance t1/4. The proof is Exercise 11.

Theconstruction: Without loss of generality we take the range of t to be [0, 1]. Lévy’s
construction builds (inductively) a polygonal approximation to the Brownian motion
from a countable collection of independent normally distributed random variables
with mean zero and variance one. We index them by the dyadic points of [0, 1], a
generic variable being denoted by ξ

(
k2−n

)
where n ∈ N and k ∈ {0, 1, . . . , 2n}.

The induction begins with
X1(t) = tξ(1).

Thus X1 is a linear function on [0, 1].
The nth process, Xn , is linear in each interval [(k − 1)2−n, k2−n], is continuous

in t and satisfies Xn(0) = 0. It is thus determined by the values {Xn(k2−n), k =
1, . . . , 2n}.

The inductive step: We take

Xn+1

(
2k2−(n+1)

)
= Xn

(
2k2−(n+1)

)
= Xn

(
k2−n) .

We now determine the appropriate value for Xn+1
(
(2k − 1)2−(n+1)

)
. Conditional

on Xn+1
(
2k2−(n+1)

)− Xn+1
(
2(k − 1)2−(n+1)

)
, Lemma 3.2.1 tells us that

Xn+1

(
(2k − 1)2−(n+1)

)
− Xn+1

(
2(k − 1)2−(n+1)

)
should be normally distributed with mean

1

2

(
Xn+1

(
2k2−(n+1)

)
− Xn+1

(
2(k − 1)2−(n+1)

))
and variance 2−(n+2).
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1

X3
2X

X

3/41/40 1/2 1

Figure 3.2 Lévy’s sequence of polygonal approximations to Brownian motion.

Now if X ∼ N (0, 1), then aX + b ∼ N (b, a2) and so we take

Xn+1

(
(2k − 1)2−(n+1)

)
− Xn+1

(
2(k − 1)2−(n+1)

)
= 2−(n/2+1)ξ

(
(2k − 1)2−(n+1)

)
+ 1

2

(
Xn+1

(
2k2−(n+1)

)
− Xn+1

(
2(k − 1)2−(n+1)

))
.

In other words

Xn+1

(
(2k − 1)2−(n+1)

)
= 1

2
Xn

(
(k − 1)2−n)

+ 1

2
Xn

(
k2−n)+ 2−(n/2+1)ξ

(
(2k − 1)2−(n+1)

)
= Xn

(
(2k − 1)2−(n+1)

)
+ 2−(n/2+1)ξ

(
(2k − 1)2−(n+1)

)
, (3.1)

where the last equality follows by linearity of Xn on [(k − 1)2−n, k2−n].
The construction is illustrated in Figure 3.2.

Convergence
to Brownian
motion

Brownian motion will be the process constructed by letting n increase to infinity. To
check that it exists we need some technical lemmas. The proofs are adapted from
Knight (1981).

Lemma 3.2.2

P

[
lim

n→∞ Xn(t) exists for 0 ≤ t ≤ 1 uniformly in t
]
= 1.

Proof: Notice that maxt |Xn+1(t)− Xn(t)| will be attained at a vertex, that is for
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t ∈ {(2k − 1)2−(n+1): k = 1, 2, . . . , 2n} and using (3.1)

P

[
max

t
|Xn+1(t)− Xn(t)| ≥ 2−n/4

]
= P

[
max

1≤k≤2n
ξ
(
(2k − 1)2−(n+1)) ≥ 2n/4+1

]
≤ 2nP

[
ξ(1) ≥ 2n/4+1].

Now using the result of Exercise 7 (with t = 1), for x > 0

P [ξ(1) ≥ x] ≤ 1

x
√

2π
e−x2/2,

and combining this with the fact that

exp
(
−2(n/2+1)

)
< 2−2n+2,

we obtain that for n ≥ 4

2nP

[
ξ(1) ≥ 2n/4+1

]
≤ 2n

2n/4+1

1√
2π

exp
(
−2(n/2+1)

)
≤ 2n

2n/4+1
2−2n+2 < 2−n .

Consider now for k > n ≥ 4

P

[
max

t
|Xk(t)− Xn(t)| ≥ 2−n/4+3

]
= 1− P

[
max

t
|Xk(t)− Xn(t)| ≤ 2−n/4+3

]
and

P

[
max

t
|Xk(t)− Xn(t)| ≤ 2−n/4+3

]

≥ P

[
k−1∑
j=n

max
t

∣∣X j+1(t)− X j (t)
∣∣ ≤ 2−n/4+3

]

≥ P

[
max

t

∣∣X j+1(t)− X j (t)
∣∣ ≤ 2− j/4, j = n, . . . , k − 1

]

≥ 1−
k−1∑
j=n

2− j ≥ 1− 2−n+1.

Finally we have that

P

[
max

t
|Xk(t)− Xn(t)| ≥ 2−n/4+3

]
≤ 2−n+1,

for all k ≥ n. The events on the left are increasing (since the maximum can only
increase by the addition of a new vertex) so

P

[
max

t
|Xk(t)− Xn(t)| ≥ 2−n/4+3 for some k > n

]
≤ 2−n+1.

In particular, for ε > 0,

lim
n→∞P [For some k > n and t ≤ 1, |Xk(t)− Xn(t)| ≥ ε] = 0,

which proves the lemma. ✷
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To complete the proof of existence of the Brownian motion, we must check the
following.

Lemma 3.2.3 Let X (t) = limn→∞ Xn(t) if the limit exists uniformly and 0
otherwise. Then X (t) satisfies the conditions of Definition 3.1.3 (for t restricted to
[0, 1]).

Proof: By construction, the properties 1–3 of Definition 3.1.3 hold for the approx-
imation Xn(t) restricted to Tn = {k2−n : k = 0, 1, . . . , 2n}. Since we don’t change
Xk on Tn for k > n, the same must be true for X on

⋃∞
n=1 Tn . A uniform limit of

continuous functions is continuous, so condition 4 holds and now by approximation
of any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ 1 from within the dense set

⋃∞
n=1 Tn we see that in

fact all four properties hold without restriction for t ∈ [0, 1]. ✷

3.3 The reflection principle and scaling

Having proved that Brownian motion actually exists, we now turn to some calcula-
tions. These will amount to no more than a small bag of tricks for us to call upon in
later chapters. There are many texts devoted exclusively to Brownian motion where
the reader can gain a more extensive repertoire.

Stopping
times

By its very construction, Brownian motion has no memory. That is, if {Wt }t≥0 is
a Brownian motion and s ≥ 0 is any fixed time, then {Wt+s − Ws}t≥0 is also a
Brownian motion, independent of {Wr }0≤r≤s . What is also true is that for certain
random times, T , the process {WT+t −WT }t≥0 is again a standard Brownian motion
and is independent of {Ws : 0 ≤ s ≤ T }. We have already encountered such random
times in the context of discrete parameter martingales.

Definition 3.3.1 A stopping time T for the process {Wt }t≥0 is a random time such
that for each t, the event {T ≤ t} depends only on the history of the process up to
and including time t.

In other words, by observing the Brownian motion up until time t , we can determine
whether or not T ≤ t .

We shall encounter stopping times only in the context of hitting times. For fixed
a, the hitting time of level a is defined by

Ta = inf{t ≥ 0 : Wt = a}.
We take Ta = ∞ if a is never reached. It is easy to see that Ta is a stopping time
since, by continuity of the paths,

{Ta ≤ t} = {Ws = a for some s, 0 ≤ s ≤ t},
which depends only on {Ws, 0 ≤ s ≤ t}. Notice that, again by continuity, if Ta <∞,
then WTa = a.



60 brownian motion

Just as for random walks, an example of a random time that is not a stopping time
is the last time that the process hits some level.

The
reflection
principle

Not surprisingly, there is often much to be gained from exploiting the symmetry
inherent in Brownian motion. As a warm-up we calculate the distribution of Ta .

Lemma 3.3.2 Let {Wt }t≥0 be a P-Brownian motion started from W0 = 0 and let
a > 0; then

P [Ta < t] = 2P [Wt > a] .

Proof: If Wt > a, then by continuity of the Brownian path, Ta < t . Moreover, since
Ta is a stopping time,

{
Wt+Ta −WTa

}
t≥0 is a Brownian motion, so, by symmetry,

P[Wt −WTa > 0|Ta < t] = 1/2. Thus

P[Wt > a] = P[Ta < t,Wt −WTa > 0]

= P[Ta < t]P[Wt −WTa > 0|Ta < t]

= 1

2
P[Ta < t].

✷

A more refined version of this idea is the following.

Lemma 3.3.3 (The reflection principle) Let {Wt }t≥0 be a standard Brownian mo-
tion and let T be a stopping time. Define

W̃t =
{

Wt , t ≤ T,
2WT −Wt , t > T ;

then {W̃t }t≥0 is also a standard Brownian motion.

Notice that if T = Ta , then the operation Wt �→ W̃t amounts to reflecting the portion
of the path after the first hitting time on a in the line x = a (see Figure 3.3). We don’t
prove the general form of the reflection principle here. Instead we put it into action.
The following result will be the key to pricing certain barrier options in Chapter 6.

Lemma 3.3.4 (Joint distribution of Brownian motion and its maximum) Let Mt =
max0≤s≤t Ws, the maximum level reached by Brownian motion in the time interval
[0, t]. Then for a > 0, a ≥ x and all t ≥ 0,

P[Mt ≥ a,Wt ≤ x] = 1−�

(
2a − x√

t

)
,

where

�(x) =
∫ x

−∞
1√
2π

e−u2/2du

is the standard normal distribution function.
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a

0

t

Wt

Wt

~

Figure 3.3 The reflection principle when T = Ta .

Proof: Notice that Mt ≥ 0 and is non-decreasing in t and if, for a > 0, Ta is defined
to be the first hitting time of level a, then {Mt ≥ a} = {Ta ≤ t}. Taking T = Ta in
the reflection principle, for a ≥ 0, a ≥ x and t ≥ 0,

P[Mt ≥ a,Wt ≤ x] = P[Ta ≤ t,Wt ≤ x]

= P[Ta ≤ t, 2a − x ≤ W̃t ]

= P[2a − x ≤ W̃t ]

= 1−�

(
2a − x√

t

)
.

In the third equality we have used the fact that if W̃t ≥ 2a − x then necessarily
{W̃s}s≥0, and consequently {Ws}s≥0, has hit level a before time t . ✷

Hitting a
sloping line

For pricing a perpetual American put option in Chapter 6 we shall use the following
result.

Proposition 3.3.5 Set Ta,b = inf{t ≥ 0 : Wt = a + bt}, where Ta,b is taken to
be infinite if no such time exists. Then for θ > 0, a > 0 and b ≥ 0

E
[
exp

(−θTa,b
)] = exp

(
−a

(
b +

√
b2 + 2θ

))
.

Proof: We defer the proof of the special case b = 0 until Proposition 3.4.9 when we
shall have powerful martingale machinery to call upon. Here, assuming that result,
we deduce the general result.

Fix θ > 0, and for a > 0, b ≥ 0, set

ψ(a, b) = E

[
e−θTa,b

]
.
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Figure 3.4 In the notation of Proposition 3.3.5, Ta1+a2,b = Ta1,b + T̃a2,b where T̃a2,b has the same
distribution as Ta2,b.

Now take any two values for a, a1 and a2 say, and notice (see Figure 3.4) that

Ta1+a2,b = Ta1,b +
(
Ta1+a2,b − Ta1,b

) D= Ta1,b + T̃a2,b,

where T̃a2,b is independent of Ta1,b and has the same distribution as Ta2,b. In other
words,

ψ(a1 + a2, b) = ψ(a1, b)ψ(a2, b),

and this implies that
ψ(a, b) = e−k(b)a,

for some function k(b).
Since b ≥ 0, the process must hit level a before it can hit the line a + bt . We

use this to break Ta,b into two parts; see Figure 3.5. Writing fTa for the probability
density function of the random variable Ta and conditioning on Ta , we obtain

ψ(a, b) =
∫ ∞

0
fTa (t)E

[
e−θTa,b

∣∣∣ Ta = t
]

dt

=
∫ ∞

0
fTa (t)e

−θ tE

[
e−θTbt,b

]
dt

=
∫ ∞

0
fTa (t)e

−θ t e−k(b)bt dt

= E

[
e−(θ+k(b)b)Ta

]
= exp

(
−a

√
2(θ + k(b)b)

)
.

We now have two expressions for ψ(a, b). Equating them gives

k2(b) = 2θ + 2k(b)b.

Since for θ > 0 we must have ψ(a, b) ≤ 1, we choose

k(b) = b +
√

b2 + 2θ,

which completes the proof. ✷
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0

t

a

abT

Figure 3.5 In the notation of Proposition 3.3.5, Ta,b = Ta + T̃bTa ,b where T̃bTa ,b has the same
distribution as TbTa ,b.

Definition 3.3.6 For a real constant µ, we refer to the process Wµ
t = Wt +µt as

a Brownian motion with drift µ.

In the notation above, Ta,b is the first hitting time of the level a by a Brownian motion
with drift −b.

Transformation
and scaling
of Brownian
motion

We conclude this section with the following useful result.

Proposition 3.3.7
If {Wt }t≥0 is a standard Brownian motion, then so are

1 {cWt/c2}t≥0 for any real c,
2 {tW1/t }t≥0 where tW1/t is taken to be zero when t = 0,
3 {Ws −Ws−t }0≤t≤s for any fixed s ≥ 0.

Proof: The proofs of 1–3 are similar. For example in the case of 2, it is clear that
tW1/t has continuous sample paths (at least for t > 0) and that for any t1, . . . , tn ,
the random variables {t1W1/t1 , . . . , tnW1/tn } have a multivariate normal distribution.
We must just check that the covariance takes the right form, but

E
[
sW1/s tW1/t

] = stE
[
W1/s W1/t

] = st

(
1

s
∧ 1

t

)
= s ∧ t,

and the proof is complete. ✷

3.4 Martingales in continuous time

Just as in discrete time, the notion of a martingale plays a key rôle in our continuous
time models.
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Recall that in discrete time, a sequence X0, X1, . . . , Xn for which E[|Xr |] <∞
for each r is a martingale with respect to the filtration {Fn}n≥0 and a probability
measure P if

E
[
Xr |Fr−1

] = Xr−1 for all r ≥ 1.

We can make entirely analogous definitions in continuous time.

Filtrations Definition 3.4.1 Let F be a σ -field. We call {Ft }t≥0 a filtration if

1 Ft is a sub-σ -field of F for all t , and
2 Fs ⊆ Ft for s < t .

As in the discrete setting we are primarily concerned with the natural filtration,
{F X

t }t≥0, associated with a stochastic process {Xt }t≥0. As before, F X
t encodes the

information generated by the stochastic process X on the interval [0, t]. That is
A ∈ F X

t if, based upon observations of the trajectory {Xs}0≤s≤t , it is possible to
decide whether or not A has occurred.

Notation: If the value of a stochastic variable Z can be completely deter-
mined given observations of the trajectory {Xs}0≤s≤t then we write

Z ∈ F X
t .

More than one process can be measurable with respect to the same filtration.

Definition 3.4.2 If {Yt }t≥0 is a stochastic process such that we have Yt ∈ F X
t for

all t ≥ 0, then we say that {Yt }t≥0 is adapted to the filtration {F X
t }t≥0.

Example 3.4.3

1 The stochastic process

Zt =
∫ t

0
Xsds

is adapted to {F X
t }t≥0.

2 The process Mt = max0≤s≤t Ws is adapted to the filtration {FW
t }t≥0.

3 The stochastic process Zt � W 2
t+1−W 2

t is not adapted to the filtration generated by
{Wt }t≥0.

Notice that just as in the discrete world we have divorced the rôles of the stochastic
process and the probability measure. Thus a process may be a Brownian motion
under the probability measure P, but the same process not be a Brownian motion
under a different measure Q.

Martingales Definition 3.4.4 Let (�,F,P) be a probability space with filtration {Ft }t≥0. A
family {Mt }t≥0 of random variables on this space with E[|Mt |] <∞ for all t ≥ 0 is
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a (P, {Ft }t≥0)-martingale if it is adapted to {Ft }t≥0 and for any s ≤ t ,

EP [ Mt |Fs] = Ms .

By restricting the conditions to t ∈ [0, T ], we define martingales parametrised by
[0, T ].

Generally we shall be sloppy about specifying the filtration. In all of our examples
there will be a Brownian motion around and it will be implicit that the filtration is
that generated by the Brownian motion.

A more general notion is that of local martingale.

Definition 3.4.5 A process {Xt }t≥0 is a local
(
P, {Ft }t≥0

)
-martingale if there is a

sequence of {Ft }t≥0-stopping times {Tn}n≥1 such that {Xt∧Tn }t≥0 is a
(
P, {Ft }t≥0

)
-

martingale for each n and

P

[
lim

n→∞ Tn = ∞
]
= 1.

All martingales are local martingales but the converse is false. It is because of
this distinction that we impose boundedness conditions in many of our results of
Chapter 4.

Lemma 3.4.6 Let {Wt }t≥0 generate the filtration {Ft }t≥0. If {Wt }t≥0 is a stan-
dard Brownian motion under the probability measure P, then

1 Wt is a (P, {Ft }t≥0)-martingale,
2 W 2

t − t is a (P, {Ft }t≥0)-martingale,
3

exp

(
σWt − σ 2

2
t

)

is a (P, {Ft }t≥0)-martingale, called an exponential martingale.

Proof: The proofs are all rather similar. For example, consider Mt = W 2
t − t .

Evidently E[|Mt |] <∞. Now

E

[
W 2

t −W 2
s

∣∣∣Fs

]
= E

[
(Wt −Ws)

2 + 2Ws (Wt −Ws)

∣∣∣Fs

]
= E

[
(Wt −Ws)

2
∣∣∣Fs

]
+ 2WsE [ (Wt −Ws)|Fs]

= t − s.

Thus

E

[
W 2

t − t
∣∣∣Fs

]
= E

[
W 2

t −W 2
s +W 2

s − (t − s)− s
∣∣∣Fs

]
= (t − s)+W 2

s − (t − s)− s = W 2
s − s.

✷
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Optional
stopping

What we should really like is the continuous time analogue of the Optional Stopping
Theorem. In general, we have to be a little careful (see Exercise 17 for what can
go wrong). Problems arise if the sample paths of our martingale are not sufficiently
‘nice’. In all our examples the stochastic process will have càdlàg sample paths.

Definition 3.4.7 The function f : R → R is càdlàg if it is right continuous with
left limits.

In particular, continuous functions are automatically càdlàg (continues à droite,
limites à gauche).

Theorem 3.4.8 (Optional Stopping Theorem) If {Mt }t≥0 is a càdlàg martingale
with respect to the probability measure P and the filtration {Ft }t≥0 and if τ1 and τ2

are two stopping times such that τ1 ≤ τ2 ≤ K where K is a finite real number, then

E
[∣∣Mτ2

∣∣] <∞
and

E
[

Mτ2

∣∣Fτ1

] = Mτ1 , P-a.s.

Remarks:

1 The term ‘a.s.’ (almost surely) means with (P-) probability one.
2 Notice in particular that if τ is a bounded stopping time then E[Mτ ] = E[M0].

✷

Brownian
hitting time
distribution

Just as in the discrete case the Optional Stopping Theorem will be a powerful
tool. We illustrate by calculating the moment generating function for the hitting
time Ta of level a by Brownian motion. (This result was essential to our proof of
Proposition 3.3.5.)

Proposition 3.4.9 Let {Wt }t≥0 be a Brownian motion and let Ta = inf{s ≥ 0 :
Ws = a} (or infinity if that set is empty). Then for θ > 0,

E

[
e−θTa

]
= e−

√
2θ |a|.

Proof: We assume that a ≥ 0. (The case a < 0 follows by symmetry.) We should
like to apply the Optional Stopping Theorem to the martingale

Mt = exp

(
σWt − 1

2
σ 2t

)

and the random time Ta , but we encounter a familiar obstacle. We cannot apply
the Theorem directly to Ta as it may not be bounded. Instead we take τ1 = 0 and
τ2 = Ta ∧ n. This gives us that

E
[
MTa∧n

] = 1.
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So

1 = E
[
MTa∧n

] = E
[

MTa∧n
∣∣ Ta < n

]
P [Ta < n]

+ E
[

MTa∧n
∣∣ Ta > n

]
P [Ta > n] . (3.2)

Now, by Lemma 3.3.2 and the result of Exercise 7,

P [Ta < n] → 1 as n →∞.

Also, if Ta <∞, limn→∞ MTa∧n = MTa , whereas if Ta = ∞, Wt ≤ a for all t and
so limn→∞ MTa∧n = 0. Letting n →∞ in equation (3.2) then yields

E
[
MTa

] = 1.

Taking σ 2 = 2θ completes the proof. ✷

Dominated
Convergence
Theorem

Arguments of this type are often simplified by an application of the Dominated
Convergence Theorem.

Theorem 3.4.10 (Dominated Convergence Theorem) Let {Zn}n≥1 be a sequence
of random variables with limn→∞ Zn = Z. If there is a random variable Y with
|Zn| < Y for all n and E[Y ] <∞, then

E[Z ] = lim
n→∞E[Zn].

In the proof of Proposition 3.4.9, since

0 ≤ MTa∧n = exp

(
σWTa∧n − 1

2
σ 2 (Ta ∧ n)

)
≤ exp (σa) ,

we could take the constant eσa as the dominating random variable Y .

Exercises

1 Suppose that {Sn}n≥0 is a symmetric simple random walk under P. Show that

P

[
S[nt]√

n
≤ x

]
→

∫ x

−∞
1√
2π t

exp

(
− y2

2t

)
dy

as n →∞ where [nt] is the integer part of nt .

2 Let Z be normally distributed with mean zero and variance one under the measure
P. What is the distribution of

√
t Z? Is the process Xt =

√
t Z a Brownian motion?

3 Suppose that Wt and W̃t are independent Brownian motions under the measure P and
let ρ ∈ [−1, 1] be a constant. Is the process Xt = ρWt +

√
1− ρ2W̃t a Brownian

motion?
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4 Let {Wt }t≥0 be standard Brownian motion under the measure P. Which of the
following are P-Brownian motions?

(a) {−Wt }t≥0,

(b) {cWt/c2}t≥0, where c is a constant,
(c) {√tW1}t≥0,
(d) {W2t −Wt }t≥0.

Justify your answers.

5 Suppose that X is normally distributed with mean µ and variance σ 2. Calculate

E

[
eθX

]
and hence evaluate E

[
X4

]
.

6 Prove Lemma 3.4.6.3.

7 Prove that if {Wt }t≥0 is standard Brownian motion under P then, for x > 0,

P [Wt ≥ x] ≡
∫ ∞

x

1√
2π t

e−y2/2t dy ≤
√

t

x
√

2π
e−x2/2t .

[Hint: Integrate by parts.]

8 Let {Wt }t≥0 be standard Brownian motion under P. Let Z = supt Wt . Evidently, for
any c > 0, cZ has the same distribution as Z . Deduce that, with probability one,
Z ∈ {0,∞}. Let p = P [Z = 0]. By conditioning on the event {W1 ≤ 0}, prove that

P [Z = 0] ≤ P [W1 ≤ 0] P [Z = 0] ,

and hence p = 0. Deduce that

P

[
sup

t
Wt = +∞, inf

t
Wt = −∞

]
= 1.

9 Deduce from the result of Exercise 8 and the result of Proposition 3.3.7.2 that

P [For each ε > 0, ∃s, t ≤ ε such that Ws < 0 < Wt ] = 1.

Deduce that if {Wt }t≥0 is differentiable at zero, then the derivative must be zero and
hence |Wt | ≤ t for all sufficiently small t . By considering W̃s � sW1/s , arrive at a
contradiction and deduce that Brownian motion is not differentiable at zero.

10 Brownian motion is not going to be adequate as a stock market model. First, it
has constant mean, whereas the stock of a company usually grows at some rate,
if only due to inflation. Moreover, it may be too ‘noisy’ (that is the variance of the
increments may be bigger than those observed for the stock) or not noisy enough.
We can scale to change the ‘noisiness’ and we can artificially introduce a drift, but
this still won’t be a good model. Here is one reason why. Suppose that {Wt }t≥0 is
standard Brownian motion under P. Define a new process {St }t≥0 by St = µt+σWt

where σ > 0 and µ ∈ R are constants. Show that for all values of σ > 0, µ ∈ R and
T > 0 there is a positive probability that ST is negative.
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11 Suppose that {Wt }t≥0 is standard Brownian motion. Prove that conditional on Wt1 =
x1, the probability density function of Wt1/2 is√

2

π t1
exp

(
−1

2

((
x − 1

2 x1
)2

t1/4

))
.

12 Let {Wt }t≥0 be standard Brownian motion under P. Let Ta be the ‘hitting time of
level a’, that is

Ta = inf{t ≥ 0 : Wt = a}.
Then we proved in Proposition 3.4.9 that

E
[
exp (−θTa)

] = exp
(
−a
√

2θ
)
.

Use this result to calculate

(a) E[Ta],
(b) P[Ta <∞].

13 Let {Wt }t≥0 denote standard Brownian motion under P and define {Mt }t≥0 by

Mt = max
0≤s≤t

Ws .

Suppose that x ≥ a. Calculate

(a) P [Mt ≥ a,Wt ≥ x],
(b) P [Mt ≥ a,Wt ≤ x].

14 Let {Wt }t≥0 be standard Brownian motion under P. Let Ta,b denote the hitting time
of the sloping line a + bt . That is,

Ta,b = inf{t ≥ 0 : Wt = a + bt}.

We proved in Proposition 3.3.5 that for θ > 0, a > 0 and b ≥ 0

E
[
exp

(−θTa,b
)] = exp

(
−a

(
b +

√
b2 + 2θ

))
.

The aim of this question is to calculate the distribution of Ta,b, without inverting the
Laplace transform. In what follows, φ(x) = �′(x) and

�(x) =
∫ x

−∞
1√
2π

exp

(
− y2

2

)
dy.

(a) Find P[Ta,b <∞].
(b) Using the fact that sW1/s has the same distribution as Ws , show that

P
[
Ta,b ≤ t

] = P [Ws ≥ as + b for some s with 1/t ≤ s <∞] .
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(c) By conditioning on the value of W1/t , use the previous part to show that

P
[
Ta,b ≤ t

] = ∫ b+a/t

−∞
P
[
Tb−x+a/t,a <∞

]
φ
(√

t x
)

dx + 1−�

(
a + bt√

t

)
.

(d) Substitute for the probability in the integral and deduce that

P
[
Ta,b ≤ t

] = e−2ab�

(
bt − a√

t

)
+ 1−�

(
a + bt√

t

)
.

15 Let {Wt }t≥0 be standard Brownian motion under the measure P and let {Ft }t≥0

denote its natural filtration. Which of the following are (P, {Ft }t≥0)-martingales?

(a) exp (σWt ),
(b) cWt/c2 , where c is a constant,
(c) tWt −

∫ t
0 Wsds.

16 Let {Ft }0≤t≤T denote the natural filtration associated to a standard P-Brownian
motion, {Wt }0≤t≤T . The result of Lemma 3.4.6.3 can be rewritten as

E

[
exp

(
σWt − 1

2
σ 2t

)
; A

]
= exp

(
σWs − 1

2
σ 2s

)
1A, for all A ∈ Fs .

Use differentiation under the integral sign to provide another proof that {W 2
t − t}t≥0

is a (P, {Ft }t≥0)-martingale and show that the following are also (P, {Ft }t≥0)-
martingales:

(a) W 3
t − 3tWt ,

(b) W 4
t − 6tW 2

t + 3t2.

17 Let (�,F,P) be a probability space. Suppose that the real random variable T : �→
R is uniformly distributed on [0, 1] under the measure P. Define {Xt }t≥0 by

Xt (ω) =
{

1, T (ω) = t,
0, T (ω) �= t.

Check that {Xt }t≥0 is a P-martingale with respect to its own filtration. [Hint:
Conditional expectation is only unique to within a random variable that is almost
surely zero.]
Show that T is a stopping time for which the Optional Stopping Theorem fails.

18 As before, let Ta , Tb denote the first hitting times of levels a and b respectively of
a P-Brownian motion, {Wt }t≥0, but now W0 is not necessarily zero (see the remarks
after Definition 3.1.3). Prove that if a < x < b then

P [ Ta < Tb|W0 = x] = (b − x)

(b − a)
.

[Hint: Mimic the proof of the corresponding result for random walk, cf. Proposi-
tion 2.4.4.]

19 Using the notation of Exercise 18, let T = Ta ∧ Tb. Prove that if a < 0 < b then

E [ T |W0 = 0] = −ab.
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Summary

Brownian motion is clearly inadequate as a market model, not least because it would
predict negative stock prices. However, by considering functions of Brownian motion
we can produce a wide class of potential models. The basic model underlying the
Black–Scholes pricing theory, geometric Brownian motion, arises precisely in this
way. It will inherit from the Brownian motion very irregular paths. In §4.1 we
shall see why a stock price model with rough paths is forced upon us by arbitrage
arguments. This is not in itself sufficient to justify the geometric Brownian motion
model. However in §4.7 we provide a further argument that suggests that it is at
least a sensible starting point. A more detailed discussion of the shortcomings of the
geometric Brownian motion model is deferred until Chapter 7.

In order to study models built in this way, we need to develop a calculus based
on Brownian motion. The Itô stochastic calculus is the main topic of this chapter. In
§4.2 we define the Itô stochastic integral and then in §4.3 we derive the corresponding
chain rule of stochastic calculus and learn how to integrate by parts.

Just as in the discrete world, there will be two key ingredients to pricing and
hedging in the Black–Scholes framework. First we need to be able to change the
probability measure so that discounted asset prices are martingales. The tool for
doing this is the Girsanov Theorem of §4.5. The construction of the hedging portfolio
depends on the continuous analogue of the Binomial Representation Theorem, the
Martingale Representation Theorem of §4.6.

Again as in the discrete world, the pricing formula will be in the form of the
discounted expected value of a claim. Black and Scholes obtained this result via a
completely different argument (see Exercise 5 of Chapter 5) in which the price is
obtained as the solution of a partial differential equation. The connection with the
probabilistic approach is via the Feynman–Kac stochastic representation formula of
§4.8 which exposes the intricate connection between stochastic differential equations
and certain second order parabolic (deterministic) partial differential equations.

Once again our coverage of this material is necessarily rather sketchy. Even
so readers eager to get back to some finance may wish to skip the proofs in this

71
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Figure 4.1 Two graphs of non-dividend-paying stock over long period (6 1
3 years) and short period

(1 year).

chapter. There is no shortage of excellent stochastic calculus texts to refer to. Some
suggestions are included in the bibliography.

4.1 Stock prices are not differentiable

Figure 4.1 shows the Microsoft share price over 6 1
3 year and 1 year periods. It

certainly doesn’t look like a particularly nice function of time. Even over short
time scales, the path followed by the price looks rough. There are many statistical
studies that investigate the irregularity of paths of stock prices. In this section we
explore through a purely mathematical argument of Lyons (1995) just how rough
paths of our stock price model should be, at least under the assumption that we can
trade continuously without incurring transaction costs and, as usual, that there are no
arbitrage opportunities. We continue to suppose that our market contains a riskless
cash bond.
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Quantifying
roughness

First we need a means of quantifying ‘roughness’. For a function f : [0, T ] → R,
its variation is defined in terms of partitions.

Definition 4.1.1 Let π be a partition of [0, T ], N (π) the number of intervals that
make up π and δ(π) be the mesh of π (that is the length of the largest interval in the
partition). Write 0 = t0 < t1 < · · · < tN (π) = T for the endpoints of the intervals of
the partition. Then the variation of f is

lim
δ→0

{
sup

π :δ(π)=δ

N (π)∑
j=1

∣∣ f (t j )− f (t j−1)
∣∣} .

If the function is ‘nice’, for example differentiable, then it has bounded variation. Our
‘rough’ paths will have unbounded variation. To quantify roughness we can extend
the idea of variation to that of p-variation.

Definition 4.1.2 In the notation of Definition 4.1.1, the p-variation of a function
f : [0, T ] → R is defined as

lim
δ→0

{
sup

π :δ(π)=δ

N (π)∑
j=1

∣∣ f (t j )− f (t j−1)
∣∣p

}
.

Notice that if p > 1 the p-variation will be finite for functions that are much rougher
than those for which the variation is bounded. For example, roughly speaking, finite
2-variation will follow if the fluctuation of the function over an interval of order δ is
order

√
δ.

Bounded
variation and
arbitrage

We now argue that if stock prices had bounded variation, then either they would be
constant multiples of the riskless cash bond or (provided we can trade continuously
and there are no transaction costs) there would be unbounded arbitrage opportunities.

In the discrete time world of Chapter 2 we showed (equation (2.5)) that if a
portfolio consisting of φi+1 units of stock and ψi+1 cash bonds over the time interval
[iδt, (i + 1)δt) is self-financing, then its discounted value at time Nδt = T is

ṼN = V0 +
N−1∑
j=0

φ j+1

(
S̃ j+1 − S̃ j

)
. (4.1)

Here φ j+1 is known at time jδt , but is typically a function of S̃ j . In our continuous
world, we can let the trading interval δt tend to zero and, if the discounted stock price
process has bounded variation, as δt ↓ 0 the Riemann sum in (4.1) will converge to
the Riemann integral ∫ T

0
φt
(
S̃t
)

d S̃t

where φt denotes our stock holding at time t . This says that for any choice of
{φt (·)}0≤t≤T , we can construct a self-financing portfolio whose discounted value at
time T is

V0 +
∫ T

0
φt (S̃t )d S̃t .
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Now choose a differentiable function F(x) that is small near x = S0 and very large
everywhere else. Then by investing F(S0) at time zero and holding a self-financing
portfolio with φ(S̃t ) units of stock at time t , where φ(x) = F ′(x), we generate a
portfolio at time T whose discounted value is

F(S0)+
∫ T

0
F ′(S̃t )d S̃t ,

which, by the Fundamental Theorem of Calculus, is F(S̃T ).
We only have to wait for the discounted stock price to move away from S0 to

generate a lot of wealth. For example, the strategy that holds
(

S̃t − S̃0

)
units of

stock at time t generates

erT
∫ T

0

(
S̃t − S̃0

)
d S̃t = erT (S̃T − S̃0

)2

units of wealth at time T (where we have multiplied by erT to ‘undo’ the discount-
ing).

In the absence of arbitrage then we do not expect the paths of our stock price to
have bounded variation. In fact, as Lyons points out, arguments of L C Young extend
this. Again assuming continuous trading and no transaction costs, if the paths of the
stock price have finite p-variation for some p < 2, then there are arbitrarily large
profits to be made.

4.2 Stochastic integration

The work of §4.1 suggests that we should be looking for models in which the
stock price has infinite p-variation for p < 2. A large class of such models can be
constructed using Brownian motion as a building block, but this will require a new
calculus. The paths of Brownian motion are too rough for the familiar Newtonian
calculus to help us and, indeed, if it did the Fundamental Theorem of Calculus would
once again lead us to discard Brownian motion as a basis for our models.

A differential
equation for
the stock
price

The processes used to model stock prices are usually functions of one or more
Brownian motions. Here, for simplicity, we restrict ourselves to functions of just
one Brownian motion. The first thing that we should like to do is to write down a
differential equation for the way in which the stock price evolves.

Suppose that the stock price is of the form St = f (t,Wt ). Using Taylor’s Theorem
(and assuming that f at least is ‘nice’),

f (t + δt,Wt+δt )− f (t,Wt ) = δt ḟ (t,Wt )+ O(δt2)+ (Wt+δt −Wt ) f ′ (t,Wt )

+ 1

2!
(Wt+δt −Wt )

2 f ′′ (t,Wt )+ · · ·

where we have used the notation

ḟ (t, x) = ∂ f

∂t
(t, x), f ′(t, x) = ∂ f

∂x
(t, x) and f ′′(t, x) = ∂2 f

∂x2
(t, x).
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Now in our usual derivation of the chain rule, when {Wt }t≥0 is replaced by a bounded
variation function, the last term on the right hand side is order O(δt2). However, for
Brownian motion, we know that E[(Wt+δt − Wt )

2] is δt . Consequently we cannot
ignore the term involving the second derivative. Of course, now we have a problem,
because we must interpret the term involving the first derivative. If (Wt+δt − Wt )

2

is O(δt), then (Wt+δt − Wt ) should be O(
√
δt), which could lead to unbounded

changes in {St }t≥0 over a bounded time interval. However, things are not hopeless.
The expected value of Wt+δt − Wt is zero, and the fluctuations around zero are on
the order of

√
δt . By comparison with the Central Limit Theorem, it is plausible that

St − S0 is a well-defined random variable. Assuming that we can make this rigorous,
the differential equation governing St = f (t,Wt ) will take the form

d St = ḟ (t,Wt )dt + f ′(Wt )dWt + 1

2
f ′′(Wt )dt.

It is convenient to write this in integrated form,

St = S0 +
∫ t

0
ḟ (s,Ws)ds +

∫ t

0
f ′(Ws)dWs +

∫ t

0

1

2
f ′′(Ws)ds. (4.2)

Quadratic
variation

In order to make sense of a calculus based on Brownian motion, we must find
a rigorous mathematical interpretation of the stochastic integral (that is, the first
integral) on the right hand side of equation (4.2). The key is to study the quadratic
variation of Brownian motion.

For a typical Brownian path, the 2-variation will be infinite. However, a slightly
weaker analogue of 2-variation does exist.

Theorem 4.2.1 Let Wt denote Brownian motion under P and for a partition π of
[0, T ] define

S(π) =
N (π)∑
j=1

∣∣Wt j −Wt j−1

∣∣2.
Let πn be a sequence of partitions with δ(πn)→ 0. Then

E

[
|S(πn)− T |2

]
→ 0 as n →∞. (4.3)

We say that the quadratic variation process of Brownian motion, denoted by
{[W ]t }t≥0, is [W ]t = t . More generally, we can define the quadratic variation process
associated with any bounded continuous martingale.

Definition 4.2.2 Suppose that {Mt }t≥0 is a bounded continuous P-martingale.
The quadratic variation process associated with {M}t≥0 is the process {[M]t }t≥0

such that for any sequence of partitions πn of [0, T ] with δ(πn)→ 0,

E

[∣∣∣∣
N (π)∑
j=1

∣∣Mt j − Mt j−1

∣∣2 − [M]T

∣∣∣∣
2
]
→ 0 as n →∞. (4.4)

Remark: We don’t prove it here, but the limit in (4.4) will be independent of the
sequence of partitions. ✷
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Proof of Theorem 4.2.1: We expand the expression inside the expectation in (4.3) and
make use of our knowledge of the normal distribution. Let {tn, j }N (πn)

j=0 denote the
endpoints of the intervals that make up the partition πn . First observe that

|S(πn)− T |2 =
∣∣∣∣∣
N (πn)∑

j=1

{∣∣Wtn, j −Wtn, j−1

∣∣2 − (
tn, j − tn, j−1

)}∣∣∣∣∣
2

.

It is convenient to write δn, j for
∣∣Wtn, j −Wtn, j−1

∣∣2 − (tn, j − tn, j−1). Then

|S (πn)− T |2 =
N (πn)∑

j=1

δ2
n, j + 2

∑
j<k

δn, jδn,k .

Note that since Brownian motion has independent increments,

E
[
δn, jδn,k

] = E
[
δn, j

]
E
[
δn,k

] = 0 if j �= k.

Also

E
[
δ2

n, j

] = E
[|Wtn, j −Wtn, j−1 |4
− 2|Wtn, j −Wtn, j−1 |2(tn, j − tn, j−1)+ (tn, j − tn, j−1)

2].
For a normally distributed random variable, X , with mean zero and variance λ, from
Exercise 5 of Chapter 3, E[|X |4] = 3λ2, so we have

E
[
δ2

n, j

] = 3
(
tn, j − tn, j−1

)2 − 2
(
tn, j − tn, j−1

)2 + (
tn, j − tn, j−1

)2

= 2
(
tn, j − tn, j−1

)2

≤ 2δ(πn)
(
tn, j − tn, j−1

)
.

Summing over j

E

[∣∣S(πn)− T
∣∣2] ≤ 2

N (πn)∑
j=1

δ(πn)
(
tn, j − tn, j−1

)
= 2δ(πn)T

→ 0 as n →∞.

✷

Integrating
Brownian
motion
against itself

This result is not enough to define the integral
∫ T

0 f (s,Ws)dWs in the classical way,
but it is enough to allow us to essentially mimic the construction of the (Lebesgue)
integral, as limits of integrals of simple functions, at least for functions for which∫ T

0 E[ f 2(s,Ws)]ds < ∞, provided we only require that the limit exist in an L2

sense. That is, if { f (n)}n≥1 is a sequence of step functions converging to f , then∫ t
0 f (s,Ws)dWs will be a random variable for which

E

[∣∣∣∣
∫ t

0
f (s,Ws)dWs −

∫ t

0
f (n)(s,Ws)dWs

∣∣∣∣
2
]
→ 0 as n →∞.
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This corresponds to replacing the notion of 2-variance by that of quadratic variation
in Definition 4.2.2.

Although the construction of the integral may look familiar, its behaviour is far
from familiar. We first illustrate this by defining

∫ T
0 WsdWs .

From classical integration theory we are used to the idea that

∫ T

0
f (s, xs)dxs = lim

δ(π)→0

N (π)−1∑
j=0

f (t j , xt j )
(
xt j+1 − xt j

)
. (4.5)

Let us define the stochastic integral in the same way, that is

∫ T

0
WsdWs � lim

δ(π)→0

N (π)−1∑
j=0

Wt j

(
Wt j+1 −Wt j

)
,

but now with the caveat that the limit may only exist in the L2 sense.
Consider again the quantity S(π) of Theorem 4.2.1.

S(π) =
N (π)∑
j=1

(
Wt j −Wt j−1

)2

=
N (π)∑
j=1

{(
W 2

t j
−W 2

t j−1

)
− 2Wt j−1

(
Wt j −Wt j−1

)}

= W 2
T −W 2

0 − 2
N (π)−1∑

j=0

Wt j

(
Wt j+1 −Wt j

)
.

The left hand side converges to T as δ(π) → 0 (by Theorem 4.2.1) and so letting
δ(π)→ 0 and rearranging we obtain

∫ T

0
WsdWs = 1

2

(
W 2

T −W 2
0 − T

)
.

Remark: Notice that this is not what one would have predicted from classical
integration theory. The extra term in the stochastic integral arises from
limδ(π)→0 S(π). ✷

Defining the
integral

In equation (4.5), we use f (t j , xt j ) to approximate the value of f on the interval
(t j , t j+1], but in the classical theory we could equally have taken any point inside
the interval in place of t j and, in the limit, the result would have been the same.
In the stochastic theory this is no longer the case. In Exercise 3 you are asked to
calculate two further limits:

(a)

lim
δ(π)→0

N (π)−1∑
j=0

Wt j+1

(
Wt j+1 −Wt j

)
,
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(b)

lim
δ(π)→0

N (π)−1∑
j=0

(
Wt j +Wt j+1

2

) (
Wt j+1 −Wt j

)
.

By choosing different points within each subinterval of the partition with which to
approximate f over the subinterval we obtain different integrals. The Itô integral of
a function f (s,Ws) with respect to Ws is defined (up to a set of P-probability zero)
as

∫ T

0
f (s,Ws)dWs = lim

δ(π)→0

N (π)−1∑
j=0

f (t j ,Wt j )
(
Wt j+1 −Wt j

)
. (4.6)

The Stratonovich integral is defined as

∫ T

0
f (s,Ws) ◦ dWs = lim

δ(π)→0

N (π)∑
j=1

(
f (t j ,Wt j )+ f (t j+1,Wt j+1)

2

) (
Wt j+1 −Wt j

)
.

Both limits are to be understood in the L2 sense. The Stratonovich integral has the
advantage from the calculational point of view that the rules of Newtonian calculus
hold good; cf. Exercise 8. From a modelling point of view, at least for our purposes,
it is the wrong choice. To see why, think of what is happening over an infinitesimal
time interval. We might be modelling, for example, the value of a portfolio. We
readjust our portfolio at the beginning of the time interval and its change in value
over the infinitesimal tick of the clock is beyond our control. A Stratonovich model
would allow us to change our portfolio now on the basis of the average of two values
depending respectively on the current stock price and prices after the next tick of the
clock. We don’t have that information when we make our investment decisions.

We are simply reiterating what was said in the discrete world. The composition of
our portfolio was previsible. We make an analogous definition in continuous time.

Definition 4.2.3 Given a filtration {Ft }t≥0, the stochastic process {Xt }t≥0 is
{Ft }t≥0-previsible or {Ft }t≥0-predictable if Xt is Ft−-measurable for all t where

Ft− =
⋃
s<t

Fs .

Remark: If {Xt }t≥0 is {Ft }t≥0-adapted and left continuous (so, in particular, if it is
continuous) then it is automatically predictable. ✷

In our Itô stochastic integrals the integrand will always be predictable.

Integrating
simple
functions

We have evaluated the Itô integral in just one special case, when the integrand is itself
Brownian motion. We now extend our repertoire in the same way as in the classical
setting by first considering the integral of simple functions. Throughout we assume
that {Wt }t≥0 is a P-Brownian motion generating the filtration {Ft }t≥0.
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Definition 4.2.4 A simple function is one of the form

f (s, ω) =
n∑

i=1

ai (ω)1Ii (s),

where

Ii = (si , si+1],
n⋃

i=1

Ii = (0, T ], Ii ∩ I j = {∅} if i �= j

and, for each i = 1, . . . , n, ai : �→ R is an Fsi -measurable random variable with
E[ai (ω)

2] <∞.

Remark: We have temporarily abandoned our convention of not mentioning �.
However, this notation has the advantage of capturing both of the key examples that
we have in mind, namely ai a function of Wsi and ai a function of {Wr }0≤r≤si . We
continue to suppress dependence of {Ws}0≤s≤T on ω in our notation. ✷

Warning: We have defined simple functions to be {Ft }t≥0-predictable. Some
texts would call such functions simple predictable functions.

If f is a simple function, then so is f (s, ω)1[0,t](s). We define∫ t

0
f (s, ω)dWs =

∫
f (s, ω)1[0,t](s)dWs .

Following (4.6),∫ t

0
f (s, ω)dWs �

n∑
i=1

ai (ω)1[0,t](si )
(
Wsi+1∧t −Wsi

)
.

Now, just as for classical integration theory, for a more general (predictable) function,
f , we find a sequence of simple functions { f (n)}n≥1 such that f (n) → f as n →∞
and define the integral of f with respect to {Ws}0≤s≤t to be limn→∞

∫
f (n)(s, ω)dWs

if this limit exists. This won’t work for arbitrary f . The next lemma helps identify a
space of functions for which we can reasonably expect a nice limit.

Lemma 4.2.5 Suppose that f is a simple function; then

1 the process ∫ t

0
f (s, ω)dWs

is a continuous
(
P, {Ft }t≥0

)
-martingale,

2

E

[(∫ t

0
f (s, ω)dWs

)2
]
=

∫ t

0
E
[

f (s, ω)2
]
ds,
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3

E

[
sup
t≤T

(∫ t

0
f (s, ω)dWs

)2
]
≤ 4

∫ T

0
E
[

f (s, ω)2
]
ds.

Remark: The second assertion is the famous Itô isometry. It suggests that we should
be able to extend our definition of the integral over [0, t] to predictable functions such
that

∫ t
0 E[ f (s, ω)2]ds <∞. Moreover, for such functions, all three assertions should

remain true. In fact, one can extend the definition a little further, but the integral may
then fail to be a martingale and this property will be important to us. ✷

Before proving Lemma 4.2.5 we quote a famous result of Doob.

Theorem 4.2.6 (Doob’s inequality) If {Mt }0≤t≤T is a continuous martingale, then

E

[
sup

0≤t≤T
M2

t

]
≤ 4E

[
M2

T

]
.

The proof of this remarkable theorem can be found, for example, in Chung &
Williams (1990).

Proof of Proof of Lemma 4.2.5.: The proof of the first assertion is Exercise 5 and the
third follows from the second by an application of Doob’s inequality, so we confine
ourselves to proving the second statement.

We simplify notation by supposing that, in the notation of Definition 4.2.4,

f (s, ω)1[0,t](s) =
n∑

i=1

ai (ω)1Ii (s)

where the intervals Ii are disjoint and
⋃n

i=1 Ii = (0, t]. By our definition we have

∫ t

0
f (s, ω)dWs =

n∑
i=1

ai (ω)
(
Wsi+1 −Ws

)

and so

E

[(∫ t

0
f (s, ω)dWs

)2
]
= E


(

n∑
i=1

ai (ω)
(
Wsi+1 −Wsi

))2



= E

[
n∑

i=1

a2
i (ω)

(
Wsi+1 −Wsi

)2

]

+ 2E

[∑
i< j

ai (ω)a j (ω)
(
Wsi+1 −Wsi

) (
Ws j+1 −Ws j

)]
.

Suppose that j > i ; then by the tower property of conditional expectations
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E
[
ai (ω)a j (ω)

(
Wsi+1 −Wsi

) (
Ws j+1 −Ws j

)]
= E

[
ai (ω)a j (ω)

(
Wsi+1 −Wsi

)
E
[ (

Ws j+1 −Ws j

)∣∣Fs j

]] = 0.

Moreover,

E

[
a2

i (ω)
(
Wsi+1 −Wsi

)2
]
= E

[
a2

i (ω)E
[(

Wsi+1 −Wsi

)2
∣∣∣Fsi

]]
= E

[
a2

i (ω)
]
(si+1 − si ) .

Substituting we obtain

E

[(∫ t

0
f (s, ω)dWs

)2
]

=
n∑

i=1

E

[
a2

i (ω)
]
(si+1 − si )

=
∫ t

0
E

[
f (s, ω)2

]
ds

as required. ✷

Notation: We write HT for the set of functions f : R+ ×�→ R for which
f (t, ω) is {Ft }t≥0-predictable for 0 ≤ t ≤ T and∫ T

0
E

[
f (s, ω)2

]
ds <∞.

Construction
of the Itô
integral

This will be our class of integrable functions. We proceed as advertised: approximate
a general f ∈ HT by a sequence of simple functions, { f (n)}n≥1, and define∫ t

0
f (s, ω)ds � lim

n→∞

∫ t

0
f (n)(s, ω)dWs .

The following theorem confirms that this really works.

Theorem 4.2.7 Suppose that {Wt }t≥0 is a P-Brownian motion and let {Ft }t≥0

denote its natural filtration. There exists a linear mapping, J , from HT to the space
of continuous

(
P, {Ft }t≥0

)
-martingales defined on [0, T ] such that

1 if f is simple and t ≤ T ,

J ( f )t =
∫ t

0
f (s, ω)dWs,

2 if t ≤ T ,

E
[
J ( f )2t

] = ∫ t

0
E
[

f (s, ω)2
]

ds,
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3

E

[
sup

0≤t≤T
J ( f )2t

]
≤ 4

∫ T

0
E
[

f (s, ω)2
]

ds.

Proof: By Doob’s inequality, the last part follows from the second once we know
that {J ( f )t }0≤t≤T is a P-martingale. To define J and prove the first two assertions,
we follow the approximation procedure outlined above.

Let { f (n)}n≥1 be a sequence of simple functions such that

E

[∫ t

0

∣∣∣ f (s, ω)− f (n)(s, ω)
∣∣∣2 ds

]
→ 0 as n →∞.

Since the difference of two simple functions is simple, by Lemma 4.2.5

E

[
sup

0≤t≤T

(
J ( f (n))t − J ( f (m))t

)2
]

≤ 4
∫ T

0
E

[∣∣∣ f (n)(s, ω)− f (m)(s, ω)
∣∣∣2] ds

→ 0 as n,m →∞. (4.7)

We now define J ( f )t to be limn→∞ J ( f (n))t . From (4.7) the limit exists uniformly
for 0 ≤ t ≤ T , except possibly on a set of P-probability zero, where we set J ( f )t to
be identically equal to zero. Moreover,

E
[
J ( f )2t

] = lim
n→∞E

[
J ( f (n))2t

] = lim
n→∞

∫ t

0
E
[

f (n)(s, ω)2
]
ds =

∫ t

0
E
[

f (s, ω)2
]

ds.

It remains to check the martingale property.
Now by Jensen’s inequality (stated in Exercise 16 of Chapter 2), which works

equally well for conditional expectations,

E

[∣∣∣E [
J ( f (n))t

∣∣Fs

]
− E

[
J ( f )t

∣∣Fs
]∣∣∣2] = E

[
E

[
J ( f (n))t − J ( f )t

∣∣∣Fs

]2
]

≤ E

[
E

[∣∣∣J ( f (n))t − J ( f )t
∣∣∣2∣∣∣∣Fs

]]

= E

[∣∣∣J ( f (n))t − J ( f )t
∣∣∣2]

→ 0 as n →∞.

So using
J ( f (n))s = E

[
J ( f (n))t

∣∣∣Fs

]
and taking limits

E

[(
J ( f )s − E [ J ( f )t |Fs]

)2
]
= 0.

This implies

J ( f )s = E [ J ( f )t |Fs] with P-probability one.

This is almost the martingale property but we want to remove the ‘almost surely’
qualification. To do this choose a version of J ( f ) such that the martingale property
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holds for all s, t ∈ Q (we can do this by redefining J ( f ) on a set of P-measure
zero). Since J ( f ) is a uniform limit of continuous functions (or identically zero) it
is continuous and so with this definition the martingale property holds for all s, t as
required. ✷

Definition 4.2.8 For f ∈ HT , we write

J ( f )t =
∫ t

0
f (s, ω)dWs

and call this quantity the Itô stochastic integral of f with respect to {Wt }t≥0.

Notice that J ( f ) really does agree with the prescription (4.6) except possibly on a
set of P-probability zero.

Other
integrators

We have defined the stochastic integral with respect to Brownian motion. An easy
extension is to any process {Xt }t≥0 that can be written as Xt = Wt + At where
{Wt }t≥0 is Brownian motion and {At }t≥0 is a continuous process of bounded
variation. In that case we can define the integral with respect to {Xt }t≥0 as the sum
of two parts: the integral with respect to the Brownian motion plus that with respect
to {At }t≥0. The latter exists in the classical sense. We can also replace Brownian
motion by other martingales and that is our next goal.

Suppose that {Mt }t≥0 is a continuous (P, {Ft }t≥0)-martingale with E
[
M2

t

]
<∞

for each t > 0. By analogy with the Itô integral with respect to Brownian motion,
for a simple function

f (s, ω) =
n∑

i=1

ai (ω)1Ii (s),

we define ∫
f (s, ω)d Ms �

n∑
i=1

ai (ω)
(
Msi+1 − Msi

)
.

Passing to limits we can then define

J M ( f )t =
∫ t

0
f (s, ω)d Ms

for all f ∈ HM
T where HM

T is the set of predictable functions f : R+ ×R → R such
that ∫ T

0
E
[

f (s, ω)2
]

d[M]s <∞.

By redefining J M ( f ) to be zero on a set of P-measure zero if necessary, we obtain
the following analogue of Theorem 4.2.7.

Theorem 4.2.9 Assume that {Mt }t≥0 is a bounded continuous (P, {Ft }t≥0)-
martingale with E

[
M2

t

]
< ∞ for each t > 0. Then there exists a linear mapping

J M from HM
T to the space of continuous (P, {Ft }t≥0)-martingales defined on [0, T ]

such that
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1 if f is simple, then

J M ( f )t =
∫ t

0
f (s, ω)d Ms =

∫
f (s, ω)1[0,t](s)d Ms,

as defined above,
2 if t ≤ T

E

[
J M ( f )2t

]
= E

[∫ t

0
f (s, ω)2d[M]s

]
,

where {[M]t }t≥0 is the quadratic variation process associated with {Mt }t≥0, and
3

E

[
sup

0≤t≤T
J M ( f )2t

]
≤ 4E

[∫ T

0
f (s, ω)2d[M]s

]
.

Except possibly on a set of P-probability zero,

∫ t

0
f (s, ω)d Ms = lim

δ(π)→0

N (π)−1∑
i=0

f (si , ω)
(
Msi+1 − Msi

)
.

We can now extend the definition still further to define the integral with respect to
any process {Xt }t≥0 that can be written as Xt = Mt+ At for a continuous martingale
{Mt }t≥0 (with E

[
M2

t

]
<∞) and a process {At }t≥0 of bounded variation.

We’ll exploit this greater generality in proving Lemma 4.2.11, a useful result that
tells us that martingales of bounded variation are constant.

Definition 4.2.10 Suppose that {Mt }t≥0 is a continuous martingale and {At }t≥0

is a process of bounded variation; then the process {Xt }t≥0 defined by Xt = Mt+ At

is said to be a semimartingale.

A continuous semimartingale is any process that can be decomposed in this way. If
we insist that A0 = 0 then the decomposition is unique.

Warning: Strictly we should replace ‘martingale’ by ‘local martingale’ in
Definition 4.2.10. See, for example, Ikeda & Watanabe (1989) or Chung &
Williams (1990) for a more general treatment.

Lemma 4.2.11 Let {At }0≤t≤T be a continuous (P, {Ft }0≤t≤T )-martingale with
E
[
A2

t

]
<∞ for each 0 ≤ t ≤ T . If {At }0≤t≤T has bounded variation on [0, T ] then

P [At = A0,∀t ∈ [0, T ]] = 1.

Proof: Let Ât = At − A0. Since { Ât }0≤t≤T is a continuous process of bounded
variation we can define the integral

∫ t
0 Âsd Âs in the classical way, and by the



85 4.3 itô’s formula

Fundamental Theorem of Calculus,

Â2
t − Â2

0 = Â2
t = 2

∫ t

0
Âsd Âs .

The integral will be the same whether viewed as a classical or as a stochastic integral
and so Theorem 4.2.9 tells us that it is a martingale and hence

E

[
2
∫ t

0
Âsd Âs

]
= 0.

Thus E
[
Â2

t

] = 0 for all t and so by continuity of { Ât }0≤t≤T , P
[
Ât = 0,∀t ∈

[0, T ]
] = 1 as required. ✷

4.3 Itô’s formula

Having made some sense of the stochastic integral, we are now in a position to
establish some of the rules of Itô stochastic calculus. We begin with the chain rule
and some of its ramifications.

The stochastic
chain rule

Theorem 4.3.1 (Itô’s formula) For f such that the partial derivatives ∂ f
∂t , ∂ f

∂x and
∂2 f
∂x2 exist and are continuous and ∂ f

∂x ∈ H, almost surely for each t we have

f (t,Wt )− f (0,W0) =
∫ t

0

∂ f

∂x
(s,Ws)dWs +

∫ t

0

∂ f

∂s
(s,Ws)ds

+ 1

2

∫ t

0

∂2 f

∂x2
(s,Ws)ds.

Notation: Often one writes Itô’s formula in differential notation as

d f (t,Wt ) = f ′(t,Wt )dWt + ḟ (t,Wt )dt + 1

2
f ′′(t,Wt )dt.

Outlineofproof: To avoid too many cumbersome formulae, suppose that ḟt ≡ 0. (The
proof extends without difficulty to the general case.) The formula then becomes

f (Wt )− f (W0) =
∫ t

0

∂ f

∂x
(Ws)dWs + 1

2

∫ t

0

∂2 f

∂x2
(Ws)ds. (4.8)

Let π be a partition of [0, t] and as usual write ti , ti+1 for the endpoints of a generic
interval. Then

f (Wt )− f (W0) =
N (π)−1∑

j=0

(
f (Wt j+1)− f (Wt j )

)
.
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We apply Taylor’s Theorem on each interval of the partition.

f (Wt )− f (W0) =
N (π)−1∑

j=0

f ′(Wt j )
(
Wt j+1 −Wt j

)+ 1

2

N (π)−1∑
j=0

f ′′(ξ j )
(
Wt j+1 −Wt j

)2
,

for some points ξ j ∈
[
Wt j ∧Wt j+1 ,Wt j ∨Wt j+1

]
. By continuity of the Brownian

path, we can write this as

f (Wt )− f (W0) =
N (π)−1∑

j=0

f ′(Wt j )(Wt j+1 −Wt j )+
1

2

N (π)−1∑
j=0

f ′′(Wη j )(Wt j+1 −Wt j )
2,

where η j ∈ [t j , t j+1]. We rewrite the second term as

1

2

N (π)−1∑
j=0

(
f ′′(Wt j )+ ε j

) (
Wt j+1 −Wt j

)2
,

where ε j = f ′′(Wη j )− f ′′(Wt j ).

A special case: Suppose that ∂2 f
∂x2 is bounded. Then, for each fixed T , since r �→

∂2 f
∂x2 (Wr ) is uniformly continuous on [0, T ], sup j ε j → 0 as the mesh of the partition
tends to zero. Now we mimic our proof of Theorem 4.2.1.

E



∣∣∣∣∣
N (π)−1∑

j=0

f ′′(Wt j )
((

Wt j+1 −Wt j

)2 − (
t j+1 − t j

))∣∣∣∣∣
2



= E

[
N (π)−1∑

j=0

( f ′′(Wt j ))
2
((

Wt j+1 −Wt j

)2 − (
t j+1 − t j

))2
]

+ 2E

[ ∑
0≤i< j≤N (π)−1

f ′′(Wti ) f ′′(Wt j )
((

Wti+1 −Wti

)2 − (ti+1 − ti )
)

×
((

Wt j+1 −Wt j

)2 − (
t j+1 − t j

)) ]
. (4.9)

Exactly as before, conditioning on Ft j and using the tower property of conditional

expectations, coupled now with boundedness of ∂2 f
∂x2 , shows that the right hand side

of (4.9) tends to zero as the mesh of the partition tends to zero.
Finally, using that

N (π)−1∑
j=0

∂ f

∂x
(Wt j )

(
Wt j+1 −Wt j

)→ ∫ t

0

∂ f

∂x
(Ws)dWs,

and exploiting continuity, we see that if ∂2 f
∂x2 is bounded, the formula (4.8) holds

except possibly on a set of P-measure zero.
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The general case: In order to drop the assumption that ∂2 f
∂x2 is bounded, we can use

what is called a ‘localising sequence’. Let

τn = inf {t ≥ 0 : |Wt | > n} .

Then replacing {Ws}s≥0 by {Ws∧τn }s≥0, since ∂2 f
∂x2 is continuous,

{
∂2 f
∂x2 (Ws∧τn )

}
s≥0

is uniformly bounded. Our proof goes through with {Ws}s≥0 replaced by {Ws∧τn }s≥0

throughout. (Note that we need the fact that τn is a stopping time to make this work.)
The full result then follows by letting n →∞. ✷

For full details of the proof of Itô’s formula, see, for example, Ikeda & Watan-
abe (1989) or Chung & Williams (1990).

Example 4.3.2 Use Itô’s formula to compute E[W 6
t ].

Solution: Let us define {Zt }t≥0 by Zt = W 6
t . Then by Itô’s formula

d Zt = 6W 5
t dWt + 15W 4

t dt,

and, of course, Z0 = 0. In integrated form,

Zt − Z0 =
∫ t

0
6W 5

s dWs +
∫ t

0
15W 4

s ds.

The expectation of the stochastic integral vanishes (by the martingale property) and
so

E[Zt ] =
∫ t

0
15E

[
W 4

s

]
ds.

Now from Exercise 5 of Chapter 3 (or Exercise 9 of this chapter), E
[
W 4

s

] = 3s2,
and so substituting

E
[
W 6

t

] = E [Zt ] = 15
∫ t

0
3s2ds = 15t3.

✷

Geometric
Brownian
motion

The basic reference model for stock prices in continuous time is geometric Brownian
motion, defined by

St = S0 exp (νt + σWt ) , (4.10)

where, as usual, {Wt }t≥0 is a standard P-Brownian motion. Applying Itô’s formula,

d St = σ St dWt +
(
ν + 1

2
σ 2

)
St dt.

This expression is called the stochastic differential equation for St . It is common
to write such symbolic equations even though it is the integral equation that makes
sense.
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Lemma 4.3.3 Writing µ = ν + σ 2/2, the geometric Brownian motion process
defined above is a

(
P, {Ft }t≥0

)
-martingale if and only if µ = 0. Moreover

E [St ] = S0 exp (µt) .

Proof: Writing the stochastic differential equation for geometric Brownian motion
in integrated form,

St = S0 +
∫ t

0

(
ν + 1

2
σ 2

)
Ssds +

∫ t

0
σ SsdWs . (4.11)

Notice that {St }t≥0 is a
(
P, {Ft }t≥0

)
-semimartingale. Proving that it is a martingale

if and only if µ = 0 amounts to proving uniqueness of the decomposition of a
semimartingale into a martingale and a bounded variation process in this special
case.

Suppose µ = 0: The classical integral in (4.11) then vanishes. Since {St }t≥0 inherits
continuity from the Brownian motion and by (4.10) it is adapted, by the remark after
Definition 4.2.3 it is predictable and so by Theorem 4.2.7 the stochastic integral
in (4.11) is a martingale.

Suppose that {St }t≥0 is a (P, {Ft }t≥0)-martingale: Since the difference of two martin-
gales (with respect to the same filtration) is again a martingale, we see that {At }t≥0

defined by

At = St − S0 −
∫ t

0
σ SsdWs =

∫ t

0
µSsds

is a martingale. This classical integral has bounded variation and so by Lemma 4.2.11
with probability one it is equal to A0 = 0. Since Ss > 0 for all s, it follows that
µ = 0.

The expectation: To verify the second claim, we take expectations in (4.11) and use
once again that the stochastic integral term is a mean zero martingale to obtain

E [St ]− S0 = E

[∫ t

0
µSsds

]
=

∫ t

0
µE [Ss] ds.

(The interchange of time integral and expectation is justified by classical integration
theory.) Solving this integral equation gives

E [St ] = S0 exp (µt)

as required. ✷Itô’s formula
for
geometric
Brownian
motion

It is convenient to have a version of Itô’s formula that allows us to work directly with
{St }t≥0 (so that we can write down a stochastic differential equation for f (t, St )).
We now know how to make our original heuristic calculations rigorous, so with a
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clear conscience we proceed as follows:

f (t + δt, St+δt )− f (t, St ) ≈ ḟ (t, St )δt + f ′(t, St ) (St+δt − St )

+ 1

2
f ′′(t, St ) (St+δt − St )

2

≈ ḟ (t, St )dt + f ′(t, St )d St

+ 1

2
f ′′(t, St )

{
σ 2S2

t dW 2
t +µ2S2

t dt2+ 2σµS2
t dWt dt

}
.

That is

d f (t, St ) = ḟ (t, St )dt + f ′(t, St )d St + 1

2
f ′′(t, St )σ

2S2
t dt,

where we have used the multiplication table

× dWt dt

dWt dt 0
dt 0 0

Writing this version of Itô’s formula in integrated form gives then

f (t, St )− f (0, S0) =
∫ t

0

∂ f

∂u
(u, Su)du +

∫ t

0

∂ f

∂x
(u, Su)d Su

+ 1

2

∫ t

0

∂2 f

∂x2
(u, Su)σ

2S2
u du

=
∫ t

0

∂ f

∂u
(u, Su)du +

∫ t

0

∂ f

∂x
(u, Su)σ SudWu

+
∫ t

0

∂ f

∂x
(u, Su)µSudu + 1

2

∫ t

0

∂2 f

∂x2
(u, Su)σ

2S2
u du.

Warning: Be aware that the stochastic integral with respect to {St }t≥0 will
not be a martingale with respect to the probability P under which {Wt }t≥0 is
a martingale except in the special case when {St }t≥0 is a P-martingale, that is
when µ = 0. To actually calculate it is often wise to separate the martingale
part by expanding the ‘stochastic’ integral as in the last line.

Example 4.3.4 Suppose that {St }t≥0 is a geometric Brownian motion satisfying

d St = µSt dt + σ St dWt , (4.12)

where {Wt }t≥0 is standard Brownian motion under P. Calculate E
[
Sn

t

]
for n ∈ N.

Solution: From our calculations above,

St = exp (νt + σWt )
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where ν = µ − σ 2/2. Thus {Sn
t }t≥0 is also a geometric Brownian motion with

parameters ν(n) = nν and σ (n) = nσ . By Lemma 4.3.3 we then have

E
[
Sn

t

] = Sn
0 exp

((
nν + 1

2
n2σ 2

)
t

)
= Sn

0 exp

((
nµ+ 1

2
n(n − 1)σ 2

)
t

)
.

(4.13)

To gain some more practice with stochastic calculus, suppose that we did not know
how to express the solution to the stochastic differential equation (4.12) explicitly as
a function of {Wt }t≥0. An alternative approach to calculating E

[
Sn

t

]
, which we now

sketch, is to apply Itô’s lemma.

d
(
Sn

t

) = nSn−1
t d St + 1

2
n(n − 1)Sn−2

t σ 2S2
t dt

= Sn
t

(
nµ+ 1

2
n(n − 1)σ 2

)
dt + nσ Sn

t dWt .

Writing this equation in integrated form and taking expectations yields

E
[
Sn

t

]− E
[
Sn

0

] = ∫ t

0

(
nµ+ 1

2
n(n − 1)σ 2

)
E
[
Sn

s

]
ds.

This leads us once again to the expression (4.13). ✷

Lévy’s char-
acterisation
of Brownian
motion

The Itô formula provides a quick route to a useful characterisation of Brownian
motion due to Lévy. We have seen that Brownian motion is a martingale. It is useful
to be able to identify when a martingale is in fact Brownian motion.

Theorem 4.3.5 Let {Wt }0≤t≤T be a continuous (P, {Ft }0≤t≤T )-martingale such
that W0 = 0 and [W ]t = t for 0 ≤ t ≤ T . Then {Wt }0≤t≤T is a (P, {Ft }0≤t≤T )-
Brownian motion.

Proof: We must check that for any 0 ≤ s < t ≤ T , Wt −Ws is normally distributed
with mean zero and variance t − s and is independent of Fs .

Let

Mθ
t � exp

(
θWt − θ2

2
t

)
.

Applying Itô’s formula we see that {Mt }0≤t≤T is a
(
P, {Ft }0≤t≤T

)
-martingale and

so for 0 ≤ s ≤ t ≤ T ,

E

[
Mt

Ms

∣∣∣∣Fs

]
= 1.

Substituting and rearranging gives

E
[

exp (θ (Wt −Ws))|Fs
] = exp

(
1

2
(t − s)θ2

)
.

Since the normal distribution is characterised by its moment generating function, the
result follows. ✷
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Stochastic
differential
equations

Let us return to processes of the form Zt = f (t,Wt ). Using Itô’s formula

d Zt =
(

ḟ (t,Wt )+ 1

2
f ′′(t,Wt )

)
dt + f ′(t,Wt )dWt .

Suppose that f is invertible; then we may write this as

d Zt = µ(t, Zt )dt + σ(t, Zt )dWt . (4.14)

Definition 4.3.6 An equation of the form (4.14) for some deterministic functions
µ(t, x) and σ(t, x) on R+×R is called a stochastic differential equation for {Zt }t≥0.

It is often easier to write down a stochastic differential equation for {Zt }t≥0 than to
produce the function f (t, x) explicitly.

Warning: Just as for (Newtonian) ordinary differential equations, in general
a stochastic differential equation may not have a solution and, even if it does,
the solution may not be unique.

If the functions µ(t, x) and σ(t, x) are, for example, bounded and uniformly
Lipschitz-continuous in x then a unique solution does exist, but these conditions
are certainly not necessary (see, for example, Chung & Williams (1990) and Ikeda
& Watanabe (1989) for more details).

Of course, we should really understand equation (4.14) in integrated form:

Zt − Z0 =
∫ t

0
µ(s, Zs)ds +

∫ t

0
σ(s, Zs)dWs .

It is left to the reader to justify the following version of the Itô formula.

Theorem 4.3.7 If Zt = f (t,Wt ) satisfies

d Zt = σ(t, Zt )dWt + µ(t, Zt )dt,

and

Yt = g(t, Zt ),

for some twice differentiable functions f and g, then

dYt = ġ(t, Zt )dt + g′(t, Zt )d Zt + 1

2
g′′(t, Zt )σ

2(t, Zt )dt. (4.15)

Remark: Notice that

Mt = Zt − Z0 −
∫ t

0
µ(s, Zs)ds
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is a martingale with mean zero. From the Itô isometry, we know that its variance is

E[M2
t ] = E

[∫ t

0
σ(s, Zs)

2ds

]
.

The expression σ 2(t, Zt )dt appearing in (4.15) is just d[M]t where {[M]t }t≥0 is the
quadratic variation associated with {Mt }t≥0.

If {Zt }t≥0 is defined by Zt = Mt + At where {Mt }t≥0 is a continuous martingale
with E

[
M2

t

]
<∞ and {At }t≥0 has bounded variation, then setting Yt = g(t, Zt ) we

have

dYt = ġ(t, Zt )dt + g′(t, Zt )d Zt + 1

2
g′′(t, Zt )d[M]t .

In particular, by applying this to Yt = M2
t , one shows (Exercise 15) that M2

t − [M]t

is a martingale. ✷

Solving
stochastic
differential
equations

Even when a stochastic differential equation has a unique solution it is rare to be able
to express it in closed form as a function of Brownian motion. However, if this can
be done, then Itô’s formula provides a route to finding the solution.

Example 4.3.8 Solve

d Xt = X3
t dt − X2

t dWt , X0 = 1. (4.16)

Solution: If Xt = f (t,Wt ), then

d Xt = ḟ (t,Wt )dt + f ′(t,Wt )dWt + 1

2
f ′′(t,Wt )dt,

and, substituting in (4.16),

d Xt = f (t,Wt )
3dt − f (t,Wt )

2dWt .

Equating coefficients we obtain

− f (t,Wt )
2 = f ′(t,Wt )

and

ḟ (t,Wt )+ 1

2
f ′′(t,Wt ) = f (t,Wt )

3,

which yields

f (t, x) = 1

x + c

where c is a constant. Using the initial condition, we find

Xt = 1

Wt + 1
.

Notice that this solution blows up in finite time. ✷
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4.4 Integration by parts and a stochastic Fubini Theorem

We shall need two more rules for manipulating stochastic integrals: the integration
by parts formula and a ‘stochastic Fubini Theorem’. The first is the product rule
of stochastic differentiation, the second is used to justify interchange of order of
stochastic and classical integrals.

Suppose that we have two stochastic differential equations:

dYt = µ(t, Yt )dt + σ(t, Yt )dWt ,

d Zt = µ̃(t, Zt )dt + σ̃ (t, Zt )dWt .

We assume for now that these equations are driven by the same Brownian motion
{Wt }t≥0.

Consider the (P, {Ft }t≥0)-martingales defined by

MY
t =

∫ t

0
σ(s, Ys)dWs and M Z

t =
∫ t

0
σ̃ (s, Zs)dWs,

with associated quadratic variation processes

[MY ]t =
∫ t

0
σ 2(s, Ys)ds and [M Z ]t =

∫ t

0
σ̃ 2(s, Zs)ds.

Covariation Clearly {MY
t }t≥0 and {M Z

t }t≥0 are not independent. One way of quantifying the
dependence between them is through their covariance. Evidently {(MY

t + M Z
t )}t≥0

and {(MY
t − M Z

t )}t≥0 are also (P, {Ft }t≥0)-martingales with quadratic variation

[MY ± M Z ]t =
∫ t

0
(σ (s, Ys)± σ̃ (s, Zs))

2 ds.

We’re interested in the process {MY
t M Z

t }t≥0. We attack it via polarisation:

MY
t M Z

t =
1

4

((
MY

t + M Z
t

)2 −
(

MY
t − M Z

t

)2
)
.

Taking expectations,

E
[
MY

t M Z
t

] = 1

4
E

[∫ t

0
(σ (s, Ys)+ σ̃ (s, Zs))

2 ds −
∫ t

0
(σ (s, Ys)− σ̃ (s, Zs))

2 ds

]

= E

[∫ t

0
σ(s, Ys)σ̃ (s, Zs)ds

]
.

We write [
MY , M Z ]

t =
∫ t

0
σ(s, Ys)σ̃ (s, Zs)ds.

Since for a (P, {Ft }t≥0)-martingale {M2
t − [M]t }t≥0 is a (P, {Ft }t≥0)-martingale

(Exercise 15), again exploiting polarisation we see that {MY
t M Z

t − [MY , M Z ]t }t≥0

is a (P, {Ft }t≥0)-martingale.
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More generally, we could consider stochastic differential equations driven by
different (but not necessarily independent) Brownian motions. For example, suppose
that

dYt = µ(t, Yt )dt + σ(t, Yt )dWt ,

d Zt = µ̃(t, Zt )dt + σ̃ (t, Zt )dW̃t ,

where E
[
(Wt −Ws)(W̃t − W̃s)

] = ρ(t− s) for some 0 < ρ < 1. This means that the
Brownian motions driving the two equations are positively correlated, an increase in
one tends to be associated with an increase in the other, but they are not identical.
We define MY

t and M Z
t exactly as before and again study MY

t M Z
t via polarisation.

Writing [
MY

t M Z
t

] = 1

4

([
MY + M Z ]

t −
[
MY − M Z ]

t

)
,

and using the definition of quadratic variation,

[
MY , M Z ]

t = lim
δ(π)→0

N (π)−1∑
j=0

(
MY

t j+1
− MY

t j

) (
M Z

t j+1
− M Z

t j

)
.

In our example, provided σ and σ̃ are continuous say, we have

[
MY , M Z ]

t = lim
δ(π)→0

N (π)−1∑
j=0

σ(t j , Yt j )σ̃ (t j , Zt j )
(
Wt j+1 −Wt j

) (
W̃t j+1 − W̃t j

)
,

and by mimicking the argument of the proof of Theorem 4.2.1 we obtain

[
MY , M Z ]

t =
∫ t

0
σ(s, Ys)σ̃ (s, Zs)ρds.

Definition 4.4.1 For continuous (P, {Ft }t≥0)-martingales {Mt }t≥0 and {Nt }t≥0

[M, N ]t � 1

4

(
[M + N ]t − [M − N ]t

)
is called the mutual variation or covariation process of M and N.

Of course {[M, M]t }t≥0 is just the quadratic variation process associated with
{Mt }t≥0. In the notation of Definition 4.4.1, if we write δ(π) for a generic partition
of [0, t] then

[M, N ]t = lim
δ(π)→0

N (π)−1∑
j=0

(
Mt j+1 − Mt j

) (
Nt j+1 − Nt j

)
.

We now have the technology required for manipulating products of semimartingales.

Theorem 4.4.2 (Integration by parts) If Yt = MY
t + AY

t and Zt = M Z
t + AZ

t ,
where {MY

t }t≥0 and {M Z
t }t≥0 are continuous (P, {Ft }t≥0)-martingales and {AY

t }t≥0

and {AZ
t }t≥0 are continuous processes of bounded variation, then

d(Yt Zt ) = Yt d Zt + Zt dYt + d
[

MY , M Z
]

t
.
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Proof: We apply the Itô formula to (Yt + Zt )
2, Y 2

t and Z2
t , and subtract the second

two from the first to obtain the result. ✷

Example 4.4.3 Suppose that the Sterling price of an asset follows the stochastic
differential equation

d St = µ1St dt + σ1St dWt

and the dollar cost of £1 at time t is Et where

d Et = µ2 Et dt + σ2 Et dW̃t .

Here {Wt }t≥0 and {W̃t }t≥0 are P-Brownian motions with

E

[(
Wt −Ws

)(
W̃t − W̃s

)] = ρ(t − s)

for some constant ρ > 0.
If the riskless interest rate is r in the UK and s in the U S A, find the stochastic

differential equation for the discounted asset price in the Sterling and dollar markets
respectively. For what values of the parameters are the discounted asset prices
martingales in each market?

Solution: In the Sterling market, write {S̃}t≥0 for the discounted stock price. That is
S̃t = e−r t St . Since the function e−r t has bounded variation, our integration by parts
formula gives

d S̃t = −re−r t St dt + e−r t d St

= (µ1 − r) S̃t dt + σ1 S̃t dWt .

In Sterling markets, this is the stochastic differential equation governing the dis-
counted asset price. The solution is a martingale if and only if µ1 = r .

Let us write {Xt }t≥0 for the dollar price of the asset. Then Xt = Et St and, again
by integration by parts,

d Xt = Et d St + St d Et + σ1σ2 Et Stρdt

= (µ1 + µ2 + ρσ1σ2) Xt dt + σ1 Xt dWt + σ2 Xt dW̃t .

The discounted asset price in the dollar market, denoted by {X̃t }t≥0, then follows

d X̃t = (µ1 + µ2 + ρσ1σ2 − s) X̃t dt + σ1 X̃t dWt + σ2 X̃t dW̃t .

The discounted price in the dollar market is a martingale if and only if

µ1 + µ2 + ρσ1σ2 − s = 0.

Notice that it is perfectly possible for the discounted asset price to be a martingale
in one market but not the other. It is important to keep this in mind when valuing
options in the foreign exchange market (see §5.3) or when valuing quantos (see
§7.2). ✷
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A stochastic
Fubini
Theorem

We finish this section with one more useful result. This is a ‘stochastic Fubini
Theorem’ that will allow us to interchange the order of a stochastic and a classical
integral. We shall need this result in valuation of certain path-dependent exotic
options in Exercise 23 of Chapter 6.

We state the theorem in a very special form that will be sufficient for our needs.
For a more general version see, for example, Ikeda & Watanabe (1989).

Theorem 4.4.4 Let
(
�,F, {Ft }t≥0,P

)
be a filtered probability space and let

{Mt }t≥0 be a continuous
(
P, {Ft }t≥0

)
-martingale with M0 = 0. Suppose that

�(t, r, ω) : R+ ×R+ ×�→ R is a bounded {Ft }t≥0-predictable random variable.
Then for each fixed T > 0,∫ t

0

∫
R

�(s, r, ω) 1[0,T ](r)drd Ms =
∫

R

∫ t

0
�(s, r, ω) 1[0,T ](r)d Msdr.

Example 4.4.5 Suppose that {Wt }t≥0 is a
(
P, {Ft }t≥0

)
-Brownian motion. Evalu-

ate the mean and variance of

Yt �
∫ t

0
Wr dr.

Solution: The classical Fubini Theorem tells us that

E [Yt ] = E

[∫ t

0
Wr dr

]
=

∫ t

0
E [Wr ] dr = 0.

The difficulty is to calculate E
[
Y 2

t

]
and this is where we exploit our stochastic Fubini

Theorem with �(s, r, ω) = 1[0,r ](s).

Yt =
∫ t

0
Wr dr =

∫ t

0

∫ r

0
1dWsdr

=
∫ t

0

∫ t

s
1drdWs (Fubini’s Theorem)

=
∫ t

0
(t − s)dWs .

Now using the Itô isometry we can calculate E
[
Y 2

t

]
to be

E

[
Y 2

t

]
= E

[(∫ t

0
(t − s)dWs

)2
]
=

∫ t

0
(t − s)2ds = 1

3
t3.

✷

4.5 The Girsanov Theorem

In order to price and hedge in the Black–Scholes framework we shall need two
fundamental results. The first will allow us to change probability measure so that the
discounted asset prices are martingales. Recall that in our discrete time world, once
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we had such a martingale measure, the pricing of options was reduced to calculating
expectations under that measure. In the continuous world it will no longer be possible
to find the martingale measure by linear algebra. Nonetheless, before stating the
continuous time result, we revert to our binomial trees for guidance.

Changing
probability
on a
binomial
tree

We use the notation of Chapter 2. Suppose that, under the probability measure P, if
the value of an asset at time iδt is known to be Si then its value at time (i + 1)δt is
Si u with probability p and it is Si d with probability 1− p.

As we saw in Chapter 2, if we let Q be the probability measure under which the
probability of an up jump is q = (1−d)/(u−d) and of a down jump is (u−1)/(u−d),
then the process {Si }0≤i≤N is a Q-martingale.

We can regard the measure Q as a reweighting of the measure P. For exam-
ple, consider a path S0, S1, . . . , Si through the tree. Its probability under P is
pN (i) (1− p)i−N (i), where N (i) is the number of up jumps that the path makes.
Under Q its probability is Li pN (i) (1− p)i−N (i) where

Li =
(

q

p

)N (i) ( 1− q

1− p

)i−N (i)

.

Evidently Li depends on the path that the stochastic process takes through the
tree and can itself be thought of as a stochastic process adapted to the filtration
{Fi }1≤i≤N . Moreover, Li/Li−1 is q/p if Si/Si−1 = u and is (1 − q)/(1 − p) if
Si/Si−1 = d , so that

EP
[

Li |Fi−1
] = Li−1

(
p

q

p
+ (1− p)

1− q

1− p

)
= Li−1.

In other words, {Li }0≤i≤N is a
(
P, {Fi }1≤i≤N

)
-martingale with E [Li ] = L0 = 1.

If we wish to calculate the expected value of a claim in the Q-measure, it is given
by

EQ [C] = EP [L N C] .

Notation: We have obtained the Radon–Nikodym derivative of Q with respect
to P. It is customary to write

Li = dQ

dP

∣∣∣∣
Fi

.

Change of
measure in
the
continuous
world

We have shown that the process of changing to the martingale measure can be viewed
as a reweighting of the probabilities of paths under our original measure P according
to a positive, mean one, P-martingale. This procedure of reweighting according to
a positive martingale can be extended to the continuous setting. Our aim now is to
investigate the effect of such a reweighting on the distribution of the P-Brownian
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motion. Later this will enable us to choose the right reweighting so that under the
new measure obtained in this way the discounted stock price is a martingale.

Theorem 4.5.1 (Girsanov’s Theorem) Suppose that {Wt }t≥0 is a P-Brownian
motion with the natural filtration {Ft }t≥0 and that {θt }t≥0 is an {Ft }t≥0-adapted
process such that

E

[
exp

(
1

2

∫ T

0
θ2

t dt

)]
<∞.

Define

Lt = exp

(
−

∫ t

0
θsdWs − 1

2

∫ t

0
θ2

s ds

)
and let P(L) be the probability measure defined by

P(L)[A] =
∫

A
Lt (ω)P(dω).

Then under the probability measure P(L), the process {W (L)
t }0≤t≤T , defined by

W (L)
t = Wt +

∫ t

0
θsds,

is a standard Brownian motion.

Notation: We write
dP(L)

dP

∣∣∣∣∣
Ft

= Lt .

(Lt is the Radon–Nikodym derivative of P(L) with respect to P.)

Remarks:

1 The condition

E

[
exp

(
1

2

∫ T

0
θ2

t dt

)]
<∞,

known as Novikov’s condition, is enough to guarantee that {Lt }t≥0 is a (P, {Ft }t≥0)-
martingale. Since Lt is clearly positive and has expectation one, P(L) really does
define a probability measure.

2 Just as in the discrete world, two probability measures are equivalent if they have the
same sets of probability zero. Evidently P and P(L) are equivalent.

3 If we wish to calculate an expectation with respect to P(L) we have

EP(L) [φt ] = E [φt Lt ] .

More generally,

EP(L) [φt |Fs] = EP

[
φt

Lt

Ls

∣∣∣∣Fs

]
.

This will be fundamental in option pricing. ✷
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Outline of proof of theorem: We have already said that {Lt }t≥0 is a (P, {Ft }t≥0)-
martingale. We don’t prove this in full, but we find supporting evidence by finding
the stochastic differential equation satisfied by Lt . We do this in two stages. First,
define

Zt = −
∫ t

0
θsdWs − 1

2

∫ t

0
θ2

s ds.

Then

d Zt = −θt dWt − 1

2
θ2

t dt.

Now we apply Itô’s formula to Lt = exp(Zt ).

d Lt = exp(Zt )d Zt + 1

2
exp(Zt )θ

2
t dt

= −θt exp(Zt )dWt = −θt Lt dWt .

Now we use our integration by parts formula of Theorem 4.4.2 to find the stochastic
differential equation satisfied by W (L)

t Lt . Since

dW (L)
t = dWt + θt dt,

d(W (L)
t Lt ) = W (L)

t d Lt + Lt dW (L)
t + d[MW (L)

, M L ]t

= W (L)
t d Lt + Lt dWt + Ltθt dt − θt Lt dt

=
(

Lt − θt Lt W
(L)
t

)
dWt .

Granted enough boundedness (which is guaranteed by our assumptions),
{W (L)

t Lt }t≥0 is then a P-martingale and has expectation zero. Thus, under the
measure P(L), {W (L)

t }t≥0 is a martingale.
We proved in Theorem 4.2.1 that with P-probability one, the quadratic variation

of {Wt }t≥0 is given by [W ]t = t . The probability measures P and P(L) are equivalent
and so have the same sets of probability one. Therefore {W (L)

t }t≥0 also has quadratic
variation given by [W (L)]t = t with P(L)-probability one. Finally, by Lévy’s
characterisation of Brownian motion (Theorem 4.3.5) we have that {W (L)

t }t≥0 is a
P(L)-Brownian motion as required. ✷

We now try this in practice.

Example 4.5.2 Let {Xt }t≥0 be the drifting Brownian motion process

Xt = σWt + µt,

where {Wt }t≥0 is a P-Brownian motion and σ and µ are constants. Find a measure
under which {Xt }t≥0 is a martingale.

Solution: Taking θ = µ/σ , under P(L) of Theorem 4.5.1 we have that W (L)
t =

Wt + µt/σ is a Brownian motion, and Xt = σW (L)
t is then a scaled Brownian

motion.
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Notice that, for example,

EP
[
X2

t

] = EP
[
σ 2W 2

t + 2σµtWt + µ2t2
]
= σ 2t + µ2t2,

whereas
EP(L)

[
X2

t

] = EP(L)
[
σ 2(W (L)

t )2
]
= σ 2t.

✷

4.6 The Brownian Martingale Representation Theorem

Let
(
�,F, {Ft }t≥0,P

)
be a filtered probability space and let {Wt }t≥0 be a

(P, {Ft }t≥0)-Brownian motion. We have seen that if f (t, ω) is an {Ft }t≥0-
predictable random variable and E

[
f 2(t, ω)

]
<∞ for each t ≥ 0, then

Mt �
∫ t

0
f (s, ω)dWs

is a
(
P, {Ft }t≥0

)
-martingale. It is natural to ask if there are any others.

Just as in the discrete world the binomial representation theorem allowed us to
represent martingales as ‘discrete stochastic integrals’ so here the Brownian mar-
tingale representation theorem tells us that all (nice)

(
P, {Ft }t≥0

)
-martingales can

be represented as Itô integrals. This result is also sometimes called the predictable
representation property. It will be the key to hedging in our continuous world.

Definition 4.6.1 A
(
P, {Ft }t≥0

)
-martingale {Mt }t≥0 is said to be square-

integrable if
E

[
|Mt |2

]
<∞ for each t > 0.

Theorem 4.6.2 (Brownian Martingale Representation Theorem) Let {Ft }t≥0 de-
note the natural filtration of the P-Brownian motion {Wt }t≥0. Let {Mt }t≥0 be a
square-integrable

(
P, {Ft }t≥0

)
-martingale. Then there exists an {Ft }t≥0-predictable

process {θt }t≥0 such that with P-probability one,

Mt = M0 +
∫ t

0
θsdWs .

Outline of proof: We restrict our attention to t ∈ [0, T ] for some fixed T . The first
step is to show that any F ∈ FT for which E

[
F2

]
<∞ can be represented as

F = E [F]+
∫ T

0
θsdWs (4.17)

for some predictable process {θs}0≤s≤T . Write G for the linear space of such F that
can be represented in this way. For any F ∈ G,

E
[
F2] = E [F]2 + E

[∫ T

0
θ2

s ds

]
. (4.18)
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This guarantees that if we take a sequence of random variables {Fn}n≥1 in G for
which

E

[
(Fn − Fm)

2
]
→ 0 as n,m →∞,

then they converge to a limit that also lies in G. Now by Itô’s formula, for any simple
function

f (s) =
n∑

i=1

ai (ω)1(ti−1,ti ](s),

if we define

E f
t � exp

(∫ t

0
f (s)dWs − 1

2

∫ t

0
f (s)2ds

)
,

then

E f
t = 1+

∫ t

0
f (s)E f

s dWs .

In other words E f
T ∈ G. We now approximate any F ∈ FT for which E

[
F2

]
<∞ by

linear combinations of the E f
T to see that all such F are in G and so can be represented

as in (4.17). The identity (4.18) guarantees that if the representation holds with two
different predictable processes, {θs}0≤s≤T and {ψs}0≤s≤T say, then

E

[∫ T

0
(θs − ψs)

2 ds

]
= 0.

Now we replace F ∈ FT by the martingale {Mt }0≤t≤T to complete the proof. This
step is elementary. Since Mt = E [ MT |Ft ], applying the representation to MT and
then taking (conditional) expectations of both sides we obtain

Mt = E [ MT |Ft ] = E [MT ]+ E

[∫ T

0
θsdWs

∣∣∣∣Ft

]

= E [MT ]+
∫ t

0
θsdWs .

✷

For full details of this proof see Revuz & Yor (1998).

Remarks:

1 The Martingale Representation Theorem tells us that such an {Ft }t≥0-predictable
process {θt }t≥0 exists. Unfortunately, unlike the Binomial Representation Theorem,
the proof is not constructive. When we call upon it in hedging options in Chapter 5,
we are going to have to work harder to actually produce an explicit expression for
the predictable process.

2 Notice that the quadratic variation of the martingale {Mt }t≥0 satisfies d[M]t = θ2
t dt .

If we have two Brownian martingales, {M (1)
t }t≥0 and {M (2)

t }t≥0, then provided
d[M (i)]t/dt is non-vanishing for i = 1, 2, the Martingale Representation Theorem
tells us that each is a locally scaled version of the other. ✷
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4.7 Why geometric Brownian motion?

We now have the main results in place that will allow us to price and hedge in stock
market models based on Brownian motion. Other than suggesting that the paths of
stock prices in an arbitrage-free world should be rough, we have thus far provided
no justification for such models. In this short section we use Lévy’s characterisation
of Brownian motion to motivate the basic reference model in mathematical finance:
geometric Brownian motion.

We begin by sketching Bachelier’s argument for the Brownian motion model.
Bachelier argued that stock markets cannot have any consistent bias in favour of
either buyers or sellers:

‘L’espérance mathématique du spéculateur est nulle’.

This is almost the martingale property. Assuming the stock price process to have the
Markov property, he introduced the transition density

P
[
St ∈ [y, y + dy]

∣∣Ss = x
]

� p (s, t; x, y) dy.

If the dynamics are homogeneous in space and time, then p(s, t; x, y) = q(t−s, y−
x) for some function q . Bachelier then ‘derived’ what is now known as the Chapman–
Kolmogorov equation for q and showed that this is solved by the probability density
function of Brownian motion.

Bachelier’s argument is not rigorous, but from Lévy’s characterisation of Brow-
nian motion we know that if the stock price process is a martingale under P whose
increments have stationary conditional variance then the stock price process must
be Brownian motion under P. It is remarkable that Bachelier’s argument pre-dates
Einstein’s famous work on Brownian motion and, of course, Wiener’s rigorous
construction of the process.

Although we would not take issue with the mathematical conclusions of Bache-
lier’s analysis, we have already discarded Brownian motion as a model. A mod-
ern approach makes different assumptions, but we need not completely abandon
Bachelier’s argument. His key assumption was that the increments of the stock price
process were stationary. Suppose that instead we assume that the relative increments,
(St − Ss)/Ss , measuring the returns are stationary. Taking logarithms, the process
{log St }t≥0 should have stationary increments. We don’t know that {log St }t≥0 is a
martingale, so this time we can only deduce that this is Brownian motion plus a
constant drift. This gives

d St = µSt dt + σ St dWt ,

where {Wt }t≥0 is a P-Brownian motion and µ and σ are constants. This is the
geometric Brownian motion model, originally championed by Samuelson (1965).

4.8 The Feynman–Kac representation

Our probabilistic approach to pricing options will result in a price expressed as the
discounted expected value of a claim with respect to a probability measure under
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which the discounted stock price is a martingale. In the simple case of European calls
and puts we’ll be able to find an explicit expression for the price. However, for more
complicated claims numerical methods have to be brought to bear. One approach is
to revert to our binomial tree model. Another is to express the price as the solution to
a partial differential equation and employ, for example, finite difference methods. In
fact for European options the binomial method amounts to a finite difference method
for solving the Black–Scholes partial differential equation. We refer to Wilmott,
Howison & Dewynne (1995) for an account of the numerical methods. Here we
simply make the connection between the partial differential equation approach and
the probabilistic approach to pricing derivatives.

Solving
pde’s proba-
bilistically

The fact that the price can be expressed as the solution to a partial differential
equation is a consequence of the deep connection between stochastic differential
equations and certain parabolic partial differential equations.

Theorem 4.8.1 (Feynman–Kac stochastic representation) Assume that the function
F solves the boundary value problem

∂F

∂t
(t, x)+ µ(t, x)

∂F

∂x
(t, x)+ 1

2
σ 2(t, x)

∂2 F

∂x2
(t, x) = 0, 0 ≤ t ≤ T,

F(T, x) = �(x).
(4.19)

Define {Xt }0≤t≤T to be the solution of the stochastic differential equation

d Xt = µ(t, Xt )dt + σ(t, Xt )dWt , 0 ≤ t ≤ T,

where {Wt }t≥0 is standard Brownian motion under the measure P. If

∫ T

0
E

[(
σ(t, Xt )

∂F

∂x
(t, Xt )

)2
]

ds <∞, (4.20)

then

F(t, x) = EP [�(XT )| Xt = x] .

Proof: We apply Itô’s formula to {F(s, Xs)}t≤s≤T .

F(T, XT ) = F(t, Xt )

+
∫ T

t

{
∂F

∂s
(s, Xs)+ µ(s, Xs)

∂F

∂x
(s, Xs)+ 1

2
σ 2(s, Xs)

∂2 F

∂x2
(s, Xs)

}
ds

+
∫ T

t
σ(s, Xs)

∂F

∂x
(s, Xs)dWs . (4.21)

Now using assumption (4.20) and Theorem 4.2.7

E

[∫ T

t
σ(s, Xs)

∂F

∂x
(s, Xs)dWs

∣∣∣∣ Xt = x

]
= 0.
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Moreover, since F satisfies (4.19), the deterministic integral on the right hand side
of (4.21) vanishes, so, taking expectations,

E [ F(T, XT )| Xt = x] = F(t, x),

and substituting F(T, XT ) = �(XT ) gives the required result. ✷

Example 4.8.2 Solve

∂F

∂t
+ 1

2

∂2 F

∂x2
= 0,

F(T, x) = �(x).
(4.22)

Solution: The corresponding stochastic differential equation is

d Xt = dWt

so, by the Feynman–Kac representation,

F(t, x) = E [�(WT )|Wt = x] .

In fact we knew this already. In §3.1 we wrote down the transition density of
Brownian motion as

p(t, x, y) = 1√
2π t

exp

(
− (x − y)2

2t

)
. (4.23)

This gives

E [�(WT )|Wt = x] =
∫

p (T − t, x, y)�(y)dy.

To check that this really is the solution, differentiate and use the fact that p(t, x, y)
given by (4.23) is the fundamental solution to the equation

∂u

∂t
= 1

2

∂2u

∂x2
,

to obtain (4.22). ✷

Kolmogorov
equations

We can use the Feynman–Kac representation to find the partial differential equation
solved by the transition densities of solutions to other stochastic differential equa-
tions.

Suppose that

d Xt = µ(t, Xt )dt + σ(t, Xt )dWt . (4.24)

For any set B let

pB(t, x; T, y) � P [ XT ∈ B| Xt = x] = E [1B(XT )| Xt = x] .
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By the Feynman–Kac representation (subject to the integrability condition (4.20))
this solves

∂pB

∂t
(t, x; T, y)+ ApB(t, x; T, y) = 0, (4.25)

pB(T, x) = 1B(x),

where

A f (t, x) = µ(t, x)
∂ f

∂x
(t, x)+ 1

2
σ 2(t, x)

∂2 f

∂x2
(t, x).

Writing |B| for the Lebesgue measure of the set B, the transition density of the
process {Xs}s≥0 is given by

p(t, x; T, y) � lim
|B|→0

1

|B|P [ XT ∈ B| Xt = x] .

Since the equation (4.25) is linear, we have proved the following lemma.

Lemma 4.8.3 Subject to satisfying (4.20), the transition density of the solution
{Xs}s≥0 to the stochastic differential equation (4.24) solves

∂p

∂t
(t, x; T, y)+ Ap(t, x; T, y) = 0, (4.26)

p(t, x; T, y) → δy(x) as t → T .

Equation (4.26) is known as the Kolmogorov backward equation (it operates on
the ‘backward in time’ variables (t, x)). The operator A is called the infinitesimal
generator of the process {Xs}s≥0.

We can also obtain an equation acting on the forward variables (T, y).

Lemma 4.8.4 In the above notation,

∂p

∂T
(t, x; T, y) = A∗ p(t, x; T, y) (4.27)

where

A∗ f (T, y) = − ∂

∂y
(µ(T, y) f (T, y))+ 1

2

∂2

∂y2

(
σ 2(t, Y ) f (T, y)

)
.

Heuristic explanation: We don’t prove this, but we provide some justification. By the
Markov property of the process {Xt }t≥0, for any T > r > t

p(t, x; T, y) =
∫

p(t, x; r, z)p(r, z; T, y)dz.

Differentiating with respect to r and using (4.26),∫ ∞

−∞

{
∂

∂r
p(t, x; r, z)p(r, z; T, y)+ p(t, x; r, z)Ap(r, z; T, y)

}
dz = 0.
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Now integrate the second term by parts to obtain

∫ ∞

−∞

{
∂

∂r
p(t, x; r, z)− A∗ p(t, x; r, z)

}
p(r, z; T, y)dz = 0.

This holds for all T > r , which, if p(r, z; T, y) provides a sufficiently rich class of
functions as we vary T , implies the result. ✷

Equation (4.27) is the Kolmogorov forward equation of the process {Xs}s≥0.

Example 4.8.5 Find the forward and backward Kolmogorov equations for geo-
metric Brownian motion.

Solution: The stochastic differential equation is

d St = µSt dt + σ St dWt .

Substituting in our formula for the forward equation we obtain

∂p

∂T
(t, x; T, y) = 1

2
σ 2 ∂

2

∂y2

(
y2 p(t, x; T, y)

)
− µ

∂

∂y
(yp(t, x; T, y)) ,

and the backward equation is

∂p

∂t
(t, x; T, y) = −1

2
σ 2x2 ∂

2 p

∂x2
(t, x; T, y)− µx

∂p

∂x
(t, x; T, y).

The transition density for the process is the lognormal density given by

p(t, x; T, y) = 1

σ y
√

2π(T − t)
exp


−

(
log(y/x)− (

µ− 1
2σ

2
)
(T − t)

)2

2σ 2(T − t)


 .

✷

Example 4.8.6 Suppose that {Xt }t≥0 solves

d Xt = µ(t, Xt )dt + σ(t, Xt )dWt ,

where {Wt }t≥0 is a P-Brownian motion. For k : R+×R → R and � : R → R given
deterministic functions, find the partial differential equation satisfied by the function

F(t, x) � E

[
exp

(
−

∫ T

t
k(s, Xs)ds

)
�(XT )

∣∣∣∣ Xt = x

]
,

for 0 ≤ t ≤ T .
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Solution: Evidently F(T, x) = �(x). By analogy with the proof of the Feynman–
Kac representation, it is tempting to examine the dynamics of

Zs = exp

(
−

∫ s

t
k(u, Xu)du

)
F(s, Xs).

Notice that for this choice of {Zs}t≤s≤T we have that if Xt = x

Zt = F(t, x) = E [ ZT | Xt = x] .

Thus the partial differential equation satisfied by F(t, x) is that for which {Zt }0≤t≤T

is a martingale.
Our strategy now is to find the stochastic differential equation satisfied by

{Zs}t≤s≤T . We proceed in two stages. Remember that t is now fixed and we vary
s. First notice that

d

(
exp

(
−

∫ s

t
k(u, Xu)du

))
= −k(s, Xs) exp

(
−

∫ s

t
k(u, Xu)du

)
ds

and by Itô’s formula

d F(s, Xs) = ∂F

∂s
(s, Xs)ds + ∂F

∂x
(s, Xs)d Xs + 1

2

∂2 F

∂x2
(s, Xs)σ

2(s, Xs)ds

=
{
∂F

∂s
(s, Xs)+ µ(s, Xs)

∂F

∂x
(s, Xs)+ 1

2
σ 2(s, Xs)

∂2 F

∂x2
(s, Xs)

}
ds

+ σ(s, Xs)
∂F

∂x
(s, Xs)dWs .

Now using our integration by parts formula we have that

d Zs = exp

(
−

∫ s

t
k(u, Xu)du

)

×
{{
−k(s, Xs)F(s, Xs)+ ∂F

∂s
(s, Xs)+ µ(s, Xs)

∂F

∂x
(s, Xs)+ 1

2
σ 2(s, X S)

∂2 F

∂x2

}
ds

+ σ(s, Xs)
∂F

∂x
(s, Xs)dWs

}
.

We can now read off the solution: in order for {Zs}t≤s≤T to be a martingale, F must
satisfy

∂F

∂s
(s, x)+ µ(s, x)

∂F

∂x
(s, x)+ 1

2
σ 2(s, x)

∂2 F

∂x2
(s, x)− k(s, x)F(s, x) = 0.

✷

Exercises

1 Let {Ft }t≥0 denote the natural filtration associated to a standard P-Brownian motion
{Wt }t≥0. Define the process {St }t≥0 by St = f (t,Wt ). What equation must f satisfy
if St is to be a (P, {Ft }t≥0)-martingale? Use your answer to check that

St = exp (νt + σWt )
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is a martingale if ν + 1
2σ

2 = 0 (cf. Lemma 4.3.3).

2 A function, f , is said to be Lipschitz-continuous on [0, T ] if there exists a constant
C > 0 such that for any t, t ′ ∈ [0, T ]

| f (t)− f (t ′)| < C |t − t ′|.

Show that a Lipschitz-continuous function has bounded variation and zero 2-
variation over [0, T ].

3 Let {Wt }t≥0 denote a standard Brownian motion under P. For a partition π of [0, T ],
write δ(π) for the mesh of the partition and 0 = t0 < t1 < t2 < · · · < tN (π) = T for
the endpoints of the intervals of the partition. Calculate

(a)

lim
δ(π)→0

N (π)−1∑
0

Wt j+1

(
Wt j+1 −Wt j

)
,

(b) ∫ T

0
Ws ◦ dWs � lim

δ(π)→0

N (π)−1∑
0

1

2

(
Wt j+1 +Wt j

) (
Wt j+1 −Wt j

)
.

This is the Stratonovich integral of {Ws}s≥0 with respect to itself over [0, T ].

4 Suppose that the martingale {Mt }0≤t≤T has bounded quadratic variation and
{At }0≤t≤T is Lipschitz-continuous. Let St = Mt + At . By analogy with Defi-
nition 4.2.2, we define the quadratic variation of {St }0≤t≤T over [0, T ] to be the
random variable [S]T such that for any sequence of partitions {πn}n≥1 of [0, T ] with
δ(πn)→ 0 as n →∞,

E



∣∣∣∣∣
N (π)∑
j=1

|St j − St j−1 |2 − [S]T

∣∣∣∣∣
2

→ 0 as n →∞.

Show that [S]T = [M]T .
5 If f is a simple function and {Wt }t≥0 is a P-Brownian motion, prove that the process
{Mt }t≥0 given by the Itô integral

Mt =
∫ t

0
f (s,Ws)dWs

is a (P, {FW
t }t≥0)-martingale.

6 Verify that if {Wt }t≥0 is a P-Brownian motion

E

[(∫ t

0
WsdWs

)2
]
=

∫ t

0
E

[
W 2

s

]
ds.

(If you need the moment-generating function of Wt , you may assume the result of
Exercise 10.)
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7 As usual, {Wt }t≥0 denotes standard Brownian motion under P. Use Itô’s formula to
write down stochastic differential equations for the following quantities.

(a) Yt = W 3
t ,

(b) Yt = exp
(
σWt − 1

2σ
2t
)

,
(c) Yt = tWt .

Which are (P, {FW
t }t≥0)-martingales?

8 Use a heuristic argument based on a Taylor expansion to check that for Stratonovich
stochastic calculus the chain rule takes the form of the classical (Newtonian) one.

9 Mimic the calculation of Example 4.3.2 to show that if {Wt }t≥0 is standard Brownian
motion under the measure P, then E

[
W 4

t

] = 3t2.

10 Let {Wt }t≥0 denote Brownian motion under P and define Zt = exp(αWt ). Use
Itô’s formula to write down a stochastic differential equation for Zt . Hence find an
ordinary (deterministic) differential equation for m(t) � E[Zt ], and solve to show
that

E
[
exp (αWt )

] = exp

(
α2

2
t

)
.

11 The Ornstein–Uhlenbeck process Let {Wt }t≥0 denote standard Brownian motion
under P. The Ornstein–Uhlenbeck process, {Xt }t≥0, is the unique solution to
Langevin’s equation,

d Xt = −αXt dt + dWt , X0 = x .

This equation was originally introduced as a simple idealised model for the velocity
of a particle suspended in a liquid. In finance it is a special case of the Vasicek model
of interest rates (see Exercise 19). Verify that

Xt = e−αt x + e−αt
∫ t

0
eαsdWs,

and use this expression to calculate the mean and variance of Xt .

12 The Cox–Ingersoll–Ross model of interest rates assumes that the interest rate, r , is
not deterministic, but satisfies the stochastic differential equation

drt = (α − βrt )dt + σ
√

rt dWt ,

where {Wt }t≥0 is standard P-Brownian motion. This process is known as a squared
Bessel process. Find the stochastic differential equation followed by {√rt }t≥0 in the
case α = 0.
Suppose that {u(t)}t≥0 satisfies the ordinary differential equation

du

dt
(t) = −βu(t)− σ 2

2
u(t)2, u(0) = θ,
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for some constant θ > 0. Fix T > 0. Assuming still that α = 0, for 0 ≤ t ≤ T find
the differential equation satisfied by

E
[
exp (−u(T − t)rt )

]
.

Hence calculate the mean and variance of rT and P[rT = 0].

13 The Black–Karasinski model of interest rates is

drt = σt rt dWt +
(
θt + 1

2
σ 2

t − αt log rt

)
rt dt,

where {Wt }t≥0 is a standard P-Brownian motion and σt , θt and αt are deterministic
functions of time. In the special case where σ , θ and α are constants, find rt as a
function of

∫ t
0 eαsdWs .

14 Suppose that, under the measure P,

d St = σ St dWt ,

where {Wt }t≥0 is a P-Brownian motion. Find the mean and variance of

Yt �
∫ t

0
Sudu.

15 Suppose that {Mt }t≥0 is a continuous (P, {Ft }t≥0)-martingale with E
[
M2

t

]
finite for

all t ≥ 0. Writing {[M]t }t≥0 for the associated quadratic variation process, show that
M2

t − [M]t is a (P, {Ft }t≥0)-martingale.

16 Suppose that under the probability measure P, {Xt }t≥0 is a Brownian motion with
constant drift µ. Find a measure P∗, equivalent to P, under which {Xt }t≥0 is a
Brownian motion with drift ν.

17 Let {Ft }t≥0 be the natural filtration associated with a P-Brownian motion, {Wt }t≥0.
Show that if X is an FT -measurable random variable with E[|X |] < ∞ and P∗ is a
probability measure equivalent to P, then the process

Mt � EP∗ [X |Ft ]

is a (P∗, {Ft }0≤t≤T )-martingale.

18 Use the Feynman–Kac stochastic representation formula to solve

∂F

∂t
(t, x)+ 1

2
σ 2 ∂

2 F

∂x2
(t, x) = 0,

subject to the terminal value condition

F(T, x) = x4.
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19 Suppose that the interest rate, r , is not deterministic, but is itself a random process,
{rt }t≥0. In the Vasicek model, {rt }t≥0 is assumed to be a solution of the stochastic
differential equation

drt = (b − art )dt + σdWt ,

where, as usual, {Wt }t≥0 is standard P-Brownian motion.
Find the Kolmogorov backward and forward differential equations satisfied by the
probability density function of the process. What is the distribution of rt as t →∞?

20 Suppose that v(t, x) solves

∂v

∂t
(t, x)+ 1

2
σ 2x2 ∂

2v

∂x2
(t, x)− rv(t, x) = 0, 0 ≤ t ≤ T .

Show that for any constant θ ,

vθ (t, x) � x

θ
v

(
t,
θ2

x

)

is another solution. Use the Feynman–Kac stochastic representation to find a proba-
bilistic interpretation of this result.

21 Suppose that for 0 ≤ s ≤ T ,

d Xs = µ(s, Xs)ds + σ(s, Xs)dWs, Xt = x,

where {Ws}t≤s≤T is a P-Brownian motion, and let k,� : R → R be given
deterministic functions. Find the partial differential equation satisfied by

F(t, x) = E [�(XT )| Xt = x]+
∫ T

t
E [k(Xs)| Xt = x] ds.



5 The Black–Scholes model

Summary

We now, finally, have all the tools that we need for pricing and hedging in the
continuous time world of Black and Scholes. We shall begin with the most basic
setting, in which our market has just two securities: a cash bond and a risky asset
whose price is modelled by a geometric Brownian motion.

In §5.1 we prove the Fundamental Theorem of Asset Pricing in this framework. In
line with our analysis in the discrete world, this provides an explicit formula for the
price of a derivative as the discounted expected payoff under the martingale measure.
Just as in the discrete setting, we shall see that there are three steps to replication.
In §5.2 we put this into action for European options. For simple calls and puts, the
expectation that gives the price of the claim can be evaluated. We also obtain an
explicit expression for the stock and bond holding in the replicating portfolio, via an
application of the Feynman–Kac representation.

The rest of the book consists of increasing the complexity of the derivative
contracts and of the market models. Before embarking on this programme, we
relax the financial assumptions that we have made within the basic Black–Scholes
framework. The risky asset that we have specified has a very simplistic financial
side. We have assumed that it can be held without additional cost or benefit and
that it can be freely traded at the quoted price. Even leaving aside the issues of
transaction costs and illiquidity, not much of the financial market is like that. Foreign
exchange involves two assets that pay interest, equities pay dividends and bonds pay
coupons. In §5.3–§5.5 we see how to apply the Black–Scholes technology in these
more sophisticated financial settings. Finally, in §5.6, we characterise tradable assets
within a given market and we define the market price of risk.

5.1 The basic Black–Scholes model

In this section we provide a rigorous derivation of the Black–Scholes pricing formula
obtained in §2.6. As in Chapter 2, our market consists of just two securities. The first
is our old friend the cash bond, {Bt }t≥0. We retain (for now) our assumption that

112
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the risk-free interest rate is constant, so that if B0 = 1 then Bt = ert . The second
security in our market is a risky asset whose price at time t we denote by St . In this,
our basic reference model, we suppose that {St }t≥0 is a geometric Brownian motion,
that is it solves

d St = µSt dt + σ St dWt ,

for some constants µ and σ , where {Wt }t≥0 is a P-Brownian motion. Notice that
this corresponds to taking ν = µ − 1

2σ
2 in our calculations of §2.6. We call P the

market measure. Exactly as in the discrete world, the market measure tells us which
market events have positive probability, but we shall reweight the probabilities for
the purposes of pricing and hedging.

Self-
financing
strategies

As in the discrete world, our starting point is that the market does not admit any
arbitrage opportunities. Our strategy also parallels the work of Chapter 2: to obtain
the time zero price of a claim, CT , against us at time T , we seek a self-financing
portfolio whose value at time T is exactly CT . In the absence of arbitrage, the value
of the claim must be the same as the cost of constructing the replicating portfolio.
Of course for this argument to work, the trading strategy for this portfolio must
be previsible. Moreover, because we are now allowed to rebalance the portfolio as
often as we like, rather than just at the ‘ticks’ of a clock, to avoid obvious arbitrage
opportunities we must introduce a further restriction on admissible trading strategies
for our portfolio. We illustrate with an example.

Example 5.1.1 (The doubling strategy) Consider the following strategy for betting
on successive (independent) flips of a coin that comes up heads with probability
p > 0. We bet $K that the first flip comes up heads. If it does come up heads then we
stop, having won $K . If it does not come up heads, then we bet $2K that the second
flip comes up heads. If it does, then our net gain is $K and we stop. Otherwise we
have lost $3K and we bet $4K that the next flip is a head. And so on. If the first n−1
flips all come up tails, then we have lost $

∑n−1
j=0 2 j K = $(2n−1)K and we bet $2n K

on the nth flip. Since with probability one the coin will eventually come up heads, we
are guaranteed to win $K . Of course, this relies on our having infinite credit. If we
only have limited funds, then the apparent arbitrage opportunity disappears.

With this example in mind, we make the following definition.

Definition 5.1.2 A self-financing strategy is defined by a pair of predictable
processes {ψt }0≤t≤T , {φt }0≤t≤T , denoting the quantities of riskless and risky asset
respectively held in the portfolio at time t, satisfying

1 ∫ T

0
|ψt | dt +

∫ T

0
|φt |2 dt <∞

(with probability one), and
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2

ψt Bt + φt St = ψ0 B0 + φ0S0 +
∫ t

0
ψud Bu +

∫ t

0
φud Su

(with probability one) for all t ∈ [0, T ].

Remarks: Condition 1 ensures that the integrals in condition 2 make sense. More-
over,

∫ t
0 φudWu will be a P-martingale.

In differential form, condition 2 says that the value, Vt (ψ, φ) = ψt Bt + φt St , of
the portfolio at time t satisfies

dVt (ψ, φ) = ψt d Bt + φt d St ,

that is, changes of value of the portfolio over an infinitesimal time interval are due
entirely to changes in value of the assets and not to injection (or removal) of wealth
from outside. ✷

As in the discrete setting, the key will be to work with a probability measure, Q,
equivalent to the ‘market measure’ P and under which the discounted stock price,
{S̃t }t≥0, is a Q-martingale. This means that it is convenient to think of the discounted
asset price process as the object of central interest. With this in mind we prove the
following continuous analogue of equation (2.5).

Lemma 5.1.3 Let {ψt }0≤t≤T and {φt }t≥0 be predictable processes satisfying∫ T

0
|ψt | dt +

∫ T

0
|φt |2 dt <∞

(with probability one). Set

Vt (ψ, φ) = ψt Bt + φt St , Ṽt (ψ, φ) = e−r t Vt (ψ, φ).

Then {ψt , φt }0≤t≤T defines a self-financing strategy if and only if

Ṽt (ψ, φ) = Ṽ0(ψ, φ)+
∫ t

0
φud S̃u

with probability one for all t ∈ [0, T ].

Proof: Suppose first that the portfolio {ψt , φt }0≤t≤T is self-financing. Then

dṼt (ψ, φ) = −re−r t Vt (ψ, φ)dt + e−r t dVt (ψ, φ)

= −re−r t (ψt e
rt + φt St

)
dt + e−r tψt d(e

rt )+ e−r tφt d St

= φt
(−re−r t St dt + e−r t d St

)
= φt d S̃t

as required.
The other direction is similar and is left as an exercise. ✷
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A strategy for
pricing

Before going further, we outline our strategy. We write CT for the claim at time T that
we are trying to replicate. It may depend on {St }0≤t≤T in more complex ways than
just through ST . Suppose that somehow we can find a predictable process {φt }0≤t≤T

such that the claim CT , discounted, satisfies

C̃T � e−rT CT = φ0 +
∫ T

0
φud S̃u .

Then we can replicate the claim by a portfolio in which we hold φt units of stock and
ψt units of cash bond at time t , where ψt is chosen so that

Ṽt (ψ, φ) = φt S̃t + ψt e
−r t = φ0 +

∫ t

0
φud S̃u .

By Lemma 5.1.3, the portfolio is then self-financing, and, moreover, VT = CT . The
fair price of the claim at time zero is then V0 = φ0.

This is fine if we know φ0, but there is a quick and easy way to find the right price
without explicitly finding the strategy {ψt , φt }t≥0. Suppose instead that we can find
a probability measure, Q, under which the discounted stock price is a martingale.
Then, at least provided

∫ T
0 φ2

udu <∞,∫ t

0
φud S̃u

will be a mean zero Q-martingale and so

EQ
[
ṼT (ψ, φ)

] = φ0 + EQ

[∫ t

0
φud S̃u

]
= φ0.

So φ0 = EQ
[
C̃T

]
is the fair price.

This then is entirely analogous to the pricing formula of Theorem 2.3.13. If there
is a probability measure, Q, equivalent to P and under which the discounted stock
price is a martingale, then, provided a replicating portfolio exists, the fair time zero
price of the claim is EQ[C̃T ], the discounted expected value of the claim under this
measure.

We have assumed that the process {φt }t≥0 exists. We prove this (for this basic
Black–Scholes market model) in Theorem 5.1.5 via an application of the Martingale
Representation Theorem. First, if our pricing formula is to be of any use, we should
find the equivalent martingale measure Q.

An
equivalent
martingale
measure

Lemma 5.1.4 (A probability measure under which {S̃t }t≥0 is a martingale) There is
a probability measure Q, equivalent to P, under which the discounted stock price
{S̃t }t≥0 is a martingale. Moreover, the Radon–Nikodym derivative of Q with respect
to P is given by

L(θ)t � dQ

dP

∣∣∣∣
Ft

= exp

(
−θWt − 1

2
θ2t

)
,

where θ = (µ− r)/σ .
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Proof: Recall that
d St = µSt dt + σ St d Bt ,

so
d S̃t = S̃t (−rdt + µdt + σdWt ) .

Consequently, if we set Xt = Wt + (µ− r)t/σ ,

d S̃t = S̃tσd Xt .

Now from Theorem 4.5.1, {Xt }t≥0 is a Q-Brownian motion and so {S̃t }t≥0 is a Q-
martingale. Moreover,

S̃t = S̃0 exp
(
σ Xt − σ 2t/2

)
.

✷

The Funda-
mental
Theorem of
Asset Pricing

We can now prove the Fundamental Theorem of Asset Pricing in the Black–Scholes
framework.

Theorem 5.1.5 Let Q be the measure given by Lemma 5.1.4. Suppose that a claim
at time T is given by the non-negative random variable CT ∈ FT . If

EQ
[
C2

T

]
<∞,

then the claim is replicable and the value at time t of any replicating portfolio is
given by

Vt = EQ
[

e−r(T−t)CT

∣∣∣Ft

]
.

In particular, the fair price at time zero for the option is

V0 = EQ
[
e−rT CT

] = EQ
[
C̃T

]
.

Proof: In the argument that followed Lemma 5.1.3 we showed that if we could find
a process {φt }0≤t≤T such that

C̃T = φ0 +
∫ T

0
φud S̃u,

then we could construct a replicating portfolio whose value at time t satisfies

Ṽt (ψ, φ) = φ0 +
∫ t

0
φud S̃u, (5.1)

which, by the martingale property of the stochastic integral is precisely

Ṽt (ψ, φ) = EQ

[
φ0 +

∫ T

0
φud S̃u

∣∣∣∣Ft

]
= EQ

[
C̃T

∣∣∣Ft

]
= EQ

[
e−rT CT

∣∣∣Ft

]
.
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Undoing the discounting on [0, t] gives

Vt (ψ, φ) = EQ
[

e−r(T−t)CT

∣∣∣Ft

]
.

Let’s just reassure ourselves that such a price is unique. Evidently any other
replicating portfolio, {ψ̂t , φ̂t }0≤t≤T , has VT (ψ̂, φ̂) = CT and if it is self-financing
(by Lemma 5.1.3) it satisfies an equation of the form (5.1). Repeating the argument
above we see that we obtain the same value for any self-financing replicating
portfolio.

The proof of the theorem will be complete if we can show that there is a
predictable process {φt }0≤t≤T such that

C̃T = φ0 +
∫ T

0
φud S̃u .

Now, by Exercise 2,

Mt � EQ
[

e−rT CT

∣∣∣Ft

]
is a square-integrable Q-martingale. The natural filtration of our original Brownian
motion is the same as that for the process {Xt }t≥0 defined in Lemma 5.1.4. That
is, {Mt }t≥0 is a square-integrable ‘Brownian martingale’ and by the Brownian
Martingale Representation Theorem 4.6.2 there exists an {Ft }0≤t≤T -predictable
process {θt }0≤t≤T such that

Mt = M0 +
∫ t

0
θsd Xs .

Since d S̃s = σ S̃sd Xs , we set

φt = θt

σ S̃t
and ψt = Mt − φt S̃t .

Condition 1 of Definition 5.1.2 is easily seen to be satisfied and so the strategy
corresponding to {ψt , φt }0≤t≤T defines a self-financing replicating portfolio as
required. ✷

Remark: The theorem that we have just proved is very general. Subject to our mild
boundedness condition, the claim CT could be almost arbitrarily complex provided
it depends only on the path of the stock price up to time T . The price of the claim
at time zero is EQ

[
e−rT CT

]
and this can be evaluated, at least numerically, even for

complex claims CT .
We have proved that not only does there exist a fair price, but moreover, we can

hedge the claim. Its shortcoming is that although we have asserted the existence of
a hedging strategy, we have not obtained an explicit expression for it. We shall find
such an expression for European options, that is claims that depend only on the stock
price at maturity, in the next section. ✷
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Just as in the discrete world, we have identified a procedure for valuing and
replicating a claim.

Three steps to replication:
1 Find a measure Q under which the discounted asset price {S̃t }t≥0 is a

martingale.
2 Form the process Mt = EQ

[
e−rT CT

∣∣Ft
]
.

3 Find a predictable process {φt }t≥0 such that d Mt = φt d S̃t .

5.2 Black–Scholes price and hedge for European options

In the case of European options, that is options whose payoff depends only on the
price of the underlying at the time of maturity, both the price of the option and the
hedging portfolio can be obtained explicitly.

First we evaluate the price of the claim. Our assumptions are exactly those of §5.1.

Proposition 5.2.1 The value at time t of a European option whose payoff at
maturity is CT = f (ST ) is Vt = F(t, St ), where

F(t, x) = e−r(T−t)
∫ ∞

−∞
f
(

x exp
(
(r − σ 2/2)(T − t)+ σ y

√
T − t

))

×exp(−y2/2)√
2π

dy.

Proof: From Theorem 5.1.5 we know that the value at time t is

EQ
[

e−r(T−t) f (ST )

∣∣∣Ft

]
, (5.2)

where Q is the martingale measure obtained in Lemma 5.1.4. Under this measure
Xt = Wt + (µ− r)t/σ is a Brownian motion and

d S̃t = σ S̃t d Xt .

Solving this equation,

S̃T = S̃t exp

(
σ(XT − Xt )− 1

2
σ 2(T − t)

)
.

We can now substitute into (5.2) to obtain

Vt = EQ

[
e−r(T−t) f

(
St e

r(T−t) exp

(
σ(XT − Xt )− 1

2
σ 2(T − t)

))∣∣∣∣Ft

]
.

Since under Q, conditional on Ft , XT −Xt is a normally distributed random variable
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with mean zero and variance (T − t), we can evaluate this as

Vt = F(t, St )

=
∫ ∞

−∞
e−r(T−t) f

(
St e

r(T−t) exp

(
σ z − 1

2
σ 2(T − t)

))

× 1√
2π(T − t)

exp

(
− z2

2(T − t)

)
dz

= e−r(T−t)
∫ ∞

−∞
f

(
St exp

((
r − 1

2
σ 2

)
(T − t)+ σ y

√
T − t

))

× 1√
2π

exp

(
− y2

2

)
dy,

as required. ✷

Pricing calls
and puts

For European calls and puts, the function F of Proposition 5.2.1 can be calculated
explicitly.

Example 5.2.2 (European call) In the notation of Proposition 5.2.1, suppose that
f (ST ) = (ST − K )+. Then, writing θ = (T − t),

F(t, x) = x�(d1)− K e−rθ�(d2), (5.3)

where �(·) is the standard normal distribution function, given by

�(y) =
∫ y

−∞
1√
2π

e−y2/2dy,

d1 =
log

( x
K

)+ (
r + σ 2

2

)
θ

σ
√
θ

and d2 = d1 − σ
√
θ .

Proof: Substituting for f and x in the last line of the proof of Proposition 5.2.1 we
have that

F(t, x) = E

[(
xeσ

√
θ Z−σ 2θ/2 − K e−rθ

)
+

]
, (5.4)

where Z ∼ N (0, 1). First we establish for what range of values of Z the integrand is
non-zero. Rearranging,

xeσ
√
θ Z−σ 2θ/2 > K e−rθ

is equivalent to

Z >
log

( K
x

)+ σ 2

2 θ − rθ

σ
√
θ

.
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Thus the integrand in (5.4) is non-zero if Z + d2 ≥ 0. Using this notation

F(t, x) = E

[(
xeσ

√
θ Z−σ 2θ/2 − K e−rθ

)
1Z+d2≥0

]

=
∫ ∞

−d2

(
xeσ

√
θ y−σ 2θ/2 − K e−rθ

) e−y2/2

√
2π

dy

=
∫ d2

−∞

(
xe−σ

√
θ y−σ 2θ/2 − K e−rθ

) e−y2/2

√
2π

dy

= x
∫ d2

−∞
e−σ

√
θ y−σ 2θ/2 e−y2/2

√
2π

dy − K e−rθ�(d2).

Substituting z = y + σ
√
θ in the first integral in the last line we finally obtain

F(t, x) = x�(d1)− K e−rθ�(d2).

✷

Equation (5.3) is known as the Black–Scholes pricing formula for a European call
option. The corresponding formula for a European put option can be found in
Exercise 3.

Remarks:

1 Bachelier actually obtained a formula that looks very like this for the price of a
European call option, except that the geometric Brownian motion is replaced by
Brownian motion. This, however, was a fluke. Bachelier was using expectation
pricing and did not have the notion of dynamic hedging.

2 Notice that the pricing formula depends on just one unknown parameter, σ , called
the volatility by practitioners. The same will be true of our hedging portfolio. The
problem that then arises is how to estimate σ from market data. The commonest
approach is to use the implied volatility. Some options are quoted on organised
markets. The price of European call and put options is an increasing function
of volatility and so we can invert the Black–Scholes formula and associate an
implied volatility with each option. Unfortunately, the estimate of σ obtained in this
way usually depends on strike price and time to maturity. We briefly discuss the
implications of this in §7.4. ✷

Hedging
calls and
puts

We now turn to the problem of hedging European options. That is, how should we
construct a portfolio that replicates the claim against us?

The Martingale Representation Theorem tells us that since the discounted option
price and the discounted stock price are martingales under the same measure, one is
locally just a scaled version of the other. It is this local scaling that we should like
an expression for. In our discrete world of §2.5 we found φi+1 as the ratio of the
change in value of the option to that of the stock over the (i + 1)st tick of the clock.
It is reasonable to guess then that in the continuous world φt should be the partial
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derivative of the option value with respect to the stock price and this is what we now
prove.

Proposition 5.2.3 In the notation of Proposition 5.2.1, the process {φt }0≤t≤T

that determines the stock holding in the replicating portfolio of Theorem 5.1.5 is
given by

φt = ∂F

∂x
(t, x)

∣∣∣∣
x=St

.

Proof: In this notation, the result of Theorem 5.1.5 becomes

F(t, x) = EQ
[

e−r(T−t) f (ST )

∣∣∣ St = x
]

where, under Q,
d S̃t = σ S̃t d Xt

and {Xt }0≤t≤T is a Brownian motion. Evidently

d St = r St dt + σ St d Xt .

Combining the Feynman–Kac representation and the usual product rule of differen-
tiation, F(t, x) satisfies

∂F

∂t
(t, x)+ 1

2
σ 2x2 ∂

2 F

∂x2
(t, x)− r F(t, x)+ r x

∂F

∂x
(t, x) = 0, 0 ≤ t ≤ T .

This is the Black–Scholes equation. You are asked to verify that F(t, x) satisfies this
equation via a different route in Exercise 4.

Define the function F̃(t, x) = e−r t F(t, xert ), then Ṽt = F̃(t, S̃t ). Observing that

∂ F̃

∂t
(t, x) = −1

2
σ 2x2 ∂

2 F̃

∂x2
(t, x)

and applying Itô’s formula to F̃(u, S̃u) for 0 ≤ u ≤ T ,

F̃(T, S̃T ) = F(0, S0)+
∫ T

0
σ S̃s

∂ F̃

∂x
(s, S̃s)d Xs

= F(0, S0)+
∫ T

0

∂ F̃

∂x
(s, S̃s)d S̃s .

This gives

φt = ∂ F̃

∂x
(t, S̃t ) = ∂F

∂x
(t, St )

as required. ✷

Example 5.2.4 (Hedging a European call) Using the notation of Example 5.2.2,
for a European call option we obtain

∂F

∂x
(t, x) = �(d1).
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Proof: Using the same notation as in Example 5.2.2 we have

F(t, x) = E

[(
x exp

(
σ
√
θ Z − σ 2θ/2

)
− K

)
+

]
,

where Z ∼ N (0, 1) and θ = (T − t). Differentiating the integrand with respect to
x gives exp

(
σ
√
θ Z − σ 2/2

)
if the integrand is strictly positive and zero otherwise.

Then, again using the notation of Example 5.2.2,

∂F

∂x
(t, x) = E

[
exp

(
σ
√
θ Z − σ 2θ/2

)
1Z+d2≥0

]
=

∫ ∞

−d2

exp
(
σ
√
θ y − σ 2θ/2− y2/2

) 1√
2π

dy.

Substituting first u = −y and then z = u+ σ√θ as before this reduces to �(d1). So

∂F

∂x
(t, x) = �(d1).

For the European put one calculates

∂F

∂x
(t, x) = −�(−d1).

✷

Remark: (The Greeks) The quantity ∂F/∂x is often called the delta of the option by
practitioners. For a portfolio π of assets and derivatives, the sensitivities of the price
to the parameters of the market are determined by the Greeks. If we write π(t, x) for
the value of the portfolio if the asset price at time t is x , then in addition to the delta,
given by ∂π

∂x , we have the gamma, the theta and the vega:

 = ∂2π

∂x2
, ! = ∂π

∂t
, V = ∂π

∂σ
.

✷

5.3 Foreign exchange

In this section we begin our programme of increasing the financial sophistication
in our models by looking at the foreign exchange market. Holding currency is a
risky business, and with this risk comes a demand for derivatives. To operate in this
market we should like to be able to value claims based on the future value of one unit
of currency in terms of another.

The pricing problem for an exchange rate forward was solved in Exercise 13 of
Chapter 1. In contrast to the pricing problem for a forward contract based on an
underlying stock that pays no dividends, which we solved in §1.2, for an exchange
rate forward we needed to take into account interest rates in both currencies.
Similarly, in valuing a European call option based on the exchange rate between
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Sterling and US dollars in Example 1.6.6 we needed a model for both the Sterling
and the US dollar cash bond. Our Black–Scholes model for foreign exchange markets
too must incorporate cash bonds in both currencies. For definiteness, we suppose that
the two currencies are US dollars and pounds Sterling.

Black–Scholes currency model: We write {Bt }t≥0 for the dollar cash bond and
{Dt }t≥0 for its Sterling counterpart. Writing Et for the dollar worth of one
pound at time t , our model is

Dollar bond Bt = ert ,

Sterling bond Dt = eut ,

Exchange rate Et = E0 exp (νt + σWt ) ,

where {Wt }t≥0 is a P-Brownian motion and r , u, ν and σ are constants.

We now encounter exactly the problem that we had to overcome in the discrete world:
the exchange rate is not tradable. We must confine ourselves to operating within a
single market. Let us work first from the point of view of the dollar investor. In
the dollar markets, neither the Sterling cash bond nor the exchange rate is tradable.
However, the product of the two, St = Et Dt , can be thought of as a dollar tradable.
The dollar investor can hold Sterling cash bonds and their dollar value is precisely
St at time t . Moreover, any claim based on ET can be thought of as a claim based on
ST .

We now have a set-up that precisely mirrors the basic Black–Scholes model of
§5.1. From the point of view of the dollar trader there are really two processes, the
dollar cash bond, {Bt }t≥0, and the dollar value of the Sterling cash bond, {St }t≥0.
We can now apply the Black–Scholes methodology in this setting. Let CT denote the
claim value (in dollars) at time T .

Three steps to replication (foreign exchange):
1 Find a measure Q under which the (dollar bond) discounted process {S̃t =

B−1
t St }t≥0 is a martingale.

2 Form the process Mt = EQ
[

e−rT CT
∣∣Ft

]
.

3 Find an adapted process {φt }0≤t≤T such that d Mt = φt d S̃t .

Since St = Et Dt = exp ((ν + u) t + σWt ) , the process {St }t≥0 is just a geometric
Brownian motion and so our work of §5.1 ensures that we can indeed follow these
steps.

First we apply Itô’s formula to obtain the stochastic differential equation satisfied
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by {St }t≥0:

d St =
(
ν + u + 1

2
σ 2

)
St dt + σ St dWt .

Now applying Lemma 5.1.4, we find that the Radon–Nikodym derivative with
respect to P of the measure Q under which the dollar-discounted process {S̃t }t≥0

is a martingale is

dQ

dP

∣∣∣∣
Ft

= L(θ)t � exp

(
−θWt − 1

2
θ2t

)
,

where θ =
(
ν + u + 1

2σ
2 − r

)
/σ . Moreover,

Xt � Wt +
(
ν + u + 1

2σ
2 − r

)
σ

t

is a Q-Brownian motion.
We follow the rest of the procedure in a special case (see also Exercise 11).

Example 5.3.1 (Forward contract) At what price should we agree to trade Sterling
at a future date T ?

Solution: Of course we already solved this problem in Exercise 13 of Chapter 1,
but now rather than guessing the hedging portfolio, we follow our three steps to
replication.

We have already found the measure Q. Now if we agree to buy a unit of Sterling
for K dollars at time T , then the payoff of the contract will be

CT = ET − K .

The value of the contract at time t is then

Vt = EQ
[

e−r(T−t)CT

∣∣∣Ft

]
= EQ

[
e−r(T−t) (ET − K )

∣∣∣Ft

]
.

A forward contract costs nothing at time zero and so we must choose K so that
V0 = 0. In other words, K = EQ [ET ]. Expressing ET as a function of XT gives

ET = E0 exp

(
σ XT − 1

2
σ 2T + (r − u)T

)
,

and so using that {Xt }t≥0 is a Q-Brownian motion gives the fair value of K as

K = EQ [ET ] = e(r−u)T E0.

Finally we find the hedging portfolio. With this choice of strike price, the value
of the contract at time t is

Vt = E

[
e−r(T−t)

(
ET − E0e(r−u)T

)∣∣∣Ft

]
.
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Since ET = D−1
T BT S̃T , under Q we have

E [ ET |Ft ] = e(r−u)(T−t)D−1
t BtE

[
S̃T

∣∣Ft
] = e(r−u)(T−t)D−1

t Bt S̃t = e(r−u)(T−t)Et ,

so, substituting,

Vt = e−u(T−t)Et − ert−uT E0 = e−uT (
eut Et − ert E0

)
.

The dollar-discounted portfolio value is

Mt = e−r t Vt = e−uT e−(r−u)t Et − e−uT E0 = e−uT S̃t − e−uT E0.

The required hedging portfolio is constant, consisting of φt = e−uT Sterling bonds
and ψt = −e−uT E0 (dollar) cash bonds. ✷

The Sterling
investor

We now turn to the Sterling investor. From her point of view, tradables are quoted
in pounds Sterling. Once again, in effect there are two Sterling tradables. The first is
the Sterling cash bond. The second is the Sterling value of the dollar bond given by
Zt = E−1

t Bt .
Once again we can follow our three-step replication programme. The Sterling-

discounted value of the dollar bond is

Z̃t = D−1
t E−1

t Bt = E−1
0 exp (−σWt − (ν + u − r) t) .

We use Lemma 5.1.4 to see that under the measure Q£ given by

dQ£

dP

∣∣∣∣
Ft

= L(λ)t � exp

(
−λWt − 1

2
λ2t

)
,

with λ = (
ν + u − r − σ 2/2

)
/σ , {Z̃t }t≥0 is a martingale and

X ′t = Wt +
(
ν + u − r − σ 2/2

)
σ

t

is a Q£-Brownian motion. For the Sterling investor then the option price is

Ut = DtE
Q£

[
D−1

T E−1
T CT

∣∣∣Ft

]
.

Change of
numeraire

We now have the same worry that we encountered in Exercise 15 of Chapter 1. The
risk-neutral measures Q and Q£ can be thought of as defining a probability measure
on the paths followed by {Et }t≥0 – the only truly random part of our model – and the
two measures are different. So do they give the same price?

To put our minds at rest we find the dollar worth of the Sterling investor’s
valuation, that is

EtUt = Et DtE
Q£

[
D−1

T E−1
T CT

∣∣∣Ft

]
.

To compare this with our expression for Vt we express the expectation as a
Q-expectation, again using Girsanov’s Theorem. Now

X ′t = Wt +
(
ν + u − r − 1

2σ
2
)

σ
t = Xt − σ t
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and so

ζt � dQ£

dQ

∣∣∣∣
Ft

= exp

(
σ Xt − 1

2
σ 2t

)
.

Now

Et = E0 exp

(
σ Xt − 1

2
σ 2t + (r − u)t

)
,

so we can write ζt = B−1
t Dt Et . Substituting gives

EtUt = Et DtE
Q£

[
D−1

T E−1
T CT

∣∣∣Ft

]
= Et Dtζ

−1
t EQ

[
D−1

T E−1
T ζT CT

∣∣∣Ft

]
= BtE

Q
[

B−1
T CT

∣∣∣Ft

]
.

In other words the dollar value obtained by the Sterling investor is precisely Vt . The
difference in the measures is merely an artefact of the different choice of ‘reference
asset’ or numeraire.

5.4 Dividends

Our assumption so far has been that there is no value in simply holding a stock. We
should now like to relax that assumption to allow the pricing and hedging of options
based on equities – stocks that make periodic cash payments.

Continuous
payments

It is simplest to begin with a dividend that is paid continuously. Assume as before
that the stock price follows a geometric Brownian motion given by

St = S0 exp (νt + σWt ) ,

but now in the infinitesimal time interval [t, t + dt) the holder of the stock receives
a dividend payment of δSt dt where δ is a constant. As always, we also assume that
the market contains a riskless cash bond, {Bt }t≥0, and we denote the continuously
compounded interest rate by r .

The difficulty that we now face is that {St }t≥0 does not represent the true worth
of the asset: if we buy stock for price S0 at time zero, when we sell it at time t , the
value of having held it is not just St − S0 but also the total accumulated dividends. In
this model these depend on all the values that are taken by the asset price in the time
interval [0, t]. In this sense, {St }t≥0 is not tradable.

Our solution, just as for foreign exchange, is to translate the process into some-
thing that is tradable. The simplest solution is as follows. Suppose that whenever a
cash dividend is paid, we immediately reinvest it in stock. The infinitesimal payout
δSt dt will buy δdt units of stock. At time t , rather than holding one unit of stock, we
hold eδt units with total worth

Zt = S0 exp ((ν + δ)t + σWt ) .
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We regard the simple portfolio obtained by holding stock and continuously reinvest-
ing the dividends in this way as a single asset with value Zt at time t . There is no
cost in holding this asset and it makes no dividend payments. We are back in familiar
Black–Scholes country.

Remark: Because the dividend payments were a constant proportion of the stock
price, it was natural to reinvest them in stock. Had payments been fixed amounts of
cash, it would have been more natural to construct our ‘tradable’ asset as a portfolio
in which dividends were immediately reinvested in bonds. This will be the situation
of §5.5. ✷

Any portfolio consisting of φt eδt units of our original dividend-paying stock and ψt

cash bonds at time t can be thought of as a portfolio of φt units of our new tradable
asset and ψt units of cash bond.

We can now follow our familiar procedure.

Three steps to replication (continuous dividends): Let Z̃t = B−1
t Zt = e−r t Zt .

1 Find a probability measure Q under which {Z̃t }t≥0 (with its natural filtra-
tion) is a martingale.

2 Form the discounted value process,

Ṽt = EQ
[
e−rT CT

∣∣∣Ft

]
.

3 Find a predictable process {φt }0≤t≤T such that

dṼt = φt d Z̃t .

Notice that a portfolio consisting of φt units of our tradable asset and ψt units of
cash bond at each time t ∈ [0, t] is self-financing if the value, {Vt }t≥0, satisfies

dVt = φt d Zt + ψt d Bt = φt d St + φtδSt dt + ψt d Bt .

The change in value over [t, t + dt) is due not only to profits and losses of trading
but also to dividend payments.

Example 5.4.1 (Call option) Suppose that a call option with strike price K and
maturity T is written on the dividend-paying stock described above. What is the value
of the option at time zero and what is the replicating portfolio?

Solution: We follow our three steps to replication. First we must find the martingale
measure Q. The stochastic differential equation satisfied by {Z̃t }t≥0 is

d Z̃t =
(
ν + δ + 1

2
σ 2 − r

)
Z̃t dt + σ Z̃t dWt .
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As usual we apply the Girsanov Theorem. Under the measure Q defined by

dQ

dP

∣∣∣∣
Ft

= exp

(
−λWt − 1

2
λ2t

)

with λ =
(
ν + δ + 1

2σ
2 − r

)
/σ

Xt = Wt +
(
ν + δ + 1

2σ
2 − r

)
σ

t

is a Brownian motion and hence {Z̃t }t≥0 is a martingale. We can now just read
off the price and the hedge from the corresponding formulae in Example 5.2.2 and
Example 5.2.4. The value of the portfolio at time t is

Vt = e−r(T−t)EQ
[
(ST − K )+

∣∣Ft
]

= e−r(T−t)EQ

[(
e−δT ZT − K

)
+

∣∣∣∣Ft

]

= e−r(T−t)e−δT EQ

[(
ZT − K eδT

)
+

∣∣∣∣Ft

]
.

That is the value is that of e−δT copies of a call option on {Zt }t≥0 with maturity T
and strike K eδt . We write Ft = e(r−δ)(T−t)St for the forward price of our underlying
stock at time t (see Exercise 14). Substituting from Example 5.2.2 we obtain

Vt = e−δT


Zt�


 log

(
Zt

K eδT

)
+

(
r + σ 2

2

)
(T − t)

σ
√

T − t




− K eδT e−r(T−t)�


 log

(
Zt

K eδT

)
+

(
r − σ 2

2

)
(T − t)

σ
√

T − t






= e−r(T−t)


Ft�


 log

(
Ft
K

)
+ 1

2σ
2(T − t)

σ
√

T − t




− K�


 log

(
Ft
K

)
− 1

2σ
2(T − t)

σ
√

T − t




 .

Now using Example 5.2.4 we see that the replicating portfolio should consist of
e−δTφt units of our tradable asset Zt at time t where

φt = �


 log

(
Ft
K

)
+ 1

2σ
2(T − t)

σ
√

T − t


 ,

corresponding to

e−δ(T−t)�


 log

(
Ft
K

)
+ 1

2σ
2(T − t)

σ
√

T − t



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units of the dividend-paying asset. The bond holding in the portfolio will be

ψt = −K e−rT�


 log

(
Ft
K

)
− 1

2σ
2(T − t)

σ
√

T − t


 .

✷

Example 5.4.2 (Guaranteed equity profits) Let {St }t≥0 denote the value of the UK
FTSE stock index. Suppose that we buy a five-year contract that pays out Z defined
to be 90% of the ratio of the terminal and initial values of the FTSE if this value is
in the interval [1.3, 1.8], 1.3 if Z < 1.3 and 1.8 if Z > 1.8. What is the value of this
contract at time zero?

Solution: The claim CT is

CT = min

{
max

{
1.3, 0.9

ST

S0

}
, 1.8

}
,

where T is five years. Since the claim is based on a ratio, without loss of generality
we set S0 = 1. As FTSE is composed of one hundred different stocks, their separate
dividend payments will approximate a continuously paying stream. We assume the
following data:

FTSE drift µ = 7%,
FTSE volatility σ = 15%,

FTSE dividend yield δ = 4%,
UK interest rate r = 6.5%.

We can rewrite the claim as the sum of some cash plus the difference in the payout
of two FTSE calls,

CT = 1.3+ 0.9
{
(ST − 1.444)+ − (ST − 2)+

}
.

Now the forward price for St is

Ft = e(r−δ)(T−t)S0 = 1.133,

and so using the call price formula for continuous dividend-paying stocks of
Example 5.4.1 we can value these calls at 0.0422 and 0.0067 (per unit) at time zero.
The value of our contract at time zero is then

1.3e−rT + 0.9 (0.0422− 0.0067) = 0.9712.

✷

Periodic
dividends

In practice, an individual stock does not pay dividends continuously, but rather at
regular intervals. Suppose that the times of the payments are known in advance to be
T1, T2, . . . and that at each time Ti the current holder of the equity receives a payment
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of δSTi . As shown in Exercise 7 of Chapter 2, in the absence of arbitrage, the stock
price must instantaneously decrease by the same amount. So at any of the times Ti ,
the dividend payout is exactly equal to the instantaneous decrease in the stock price.
Between payouts we assume our usual geometric Brownian motion model.

Equity model with periodic dividends: At deterministic times T1, T2, . . . the
equity pays a dividend of a fraction δ of the stock price which was current just
before the dividend is paid. The stock price itself is modelled as

St = S0 (1− δ)n[t] exp (νt + σWt ) ,

where n[t] = max{i : Ti ≤ t} is the number of dividend payments made by
time t . There is also a riskless cash bond Bt = exp (r t).

At first sight it looks as though we have two problems. First, although between the
times Ti our stock price follows the usual geometric Brownian motion model, at
those times it has discontinuous jumps. This doesn’t fit our framework. Secondly,
as for continuous dividends, the stock price process {St }t≥0 does not reflect the true
value of the stock. However, by adapting our strategy for the continuous dividends
case and reinvesting all dividend payments in stock, we’ll overcome both of these
obstacles.

We define {Zt }t≥0 to be the value of the portfolio that starts with one unit of
stock at time zero and every time the stockholding pays a dividend it is reinvested
by buying more stock. The first dividend payment is δST1−, δ times the stock
price immediately prior to the payment. Immediately after the payment of the first
dividend, the stock price jumps to ST1+ = (1 − δ)ST1−, so our dividend payment
will buy us an additional δ/(1− δ) units of stock, thereby increasing our total stock
holding by a factor of 1/(1 − δ). At time t the portfolio will therefore consist of
1/(1− δ)n[t] units of stock. Thus

Zt = (1− δ)−n[t]St = S0 exp (νt + σWt ) .

As before we think of our portfolio {Zt }t≥0 as a non-dividend-paying asset and so
our market consists of two tradable assets, the portfolio {Zt }t≥0 and a riskless cash
bond {Bt }t≥0, and we are back in familiar territory.

We mimic exactly what we did for continuous dividend payments. A portfolio
consisting of φt units of Zt and ψt in cash bonds at time t is equivalent to (1 −
δ)−n[t]φt units of the dividend-paying underlying stock, St , and ψt units of cash
bond.

The measure Q that makes the discounted process {Z̃t }t≥0 a martingale satisfies

dQ

dP

∣∣∣∣
Ft

= exp

(
−λWt − 1

2
λ2t

)
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with λ = (
ν + 1

2σ
2 − r

)
/σ . Rewriting the claim as a function of ZT we can use the

classical Black–Scholes analysis to price and hedge the option.

Example 5.4.3 (Forward price) Find the fair price to be written into a forward
contract on a stock that pays periodic dividends.

Solution: The value of the contract at time T is CT = ST −K . We seek K so that the
time zero value of the contract is zero. As usual, the value at time t is the discounted
expected value of the claim under the martingale measure Q. That is

Vt = EQ
[

e−r(T−t) (ST − K )
∣∣∣Ft

]
= EQ

[
e−r(T−t)

(
(1− δ)n[T ] ZT − K

)∣∣∣Ft

]
= (1− δ)n[T ] Zt − K e−r(T−t)

= (1− δ)n[T ]−n[t]St − K e−r(T−t).

The K for which this is zero at time zero is

K = erT (1− δ)n[T ]S0. (5.5)

✷

5.5 Bonds

A pure discount bond is a security that pays off one unit at some future time T . Most
market bonds also pay off a series of smaller amounts, c, at predetermined times
T1, T2, . . . , Tn . Such coupon payments resemble dividend payments except that the
amount of the coupon is known in advance.

So far we have considered only a riskless cash bond in which the interest rate
too is known in advance. In real markets, uncertainty in interest rates causes the
price of bonds to move randomly as well. In order to keep the book to a reasonable
length we do not intend to enter into a full account of bond market models. An
excellent introduction can be found in Baxter & Rennie (1996). So for the purposes
of this section, we are going to take a schizophrenic attitude to interest rates. We’ll
assume that we have a riskless cash bond following Bt = ert , but also a stochastically
varying coupon bond whose price between coupon payments evolves as a geometric
Brownian motion. Clearly there are links between the short term interest rate and
bond prices, but over short time horizons, many practitioners ignore them. In effect
we are thinking of a coupon bond as an asset paying predetermined cash dividends
at times T1, T2, . . . , Tn where we assume Tn < T . Writing I (t) = min{i : t < Ti },
the bond price satisfies

St =
n∑

i=I (t)

ce−r(Ti−t) + A exp (νt + σWt ) ,

for some constants A, ν and σ .
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As for dividend-paying stock, the price process {St }t≥0 is discontinuous at the
coupon payment times. Once again however we can manufacture a continuous
non-dividend-paying asset from {St }t≥0. Whereas when our dividend payment was
a fraction of the stock price it was natural to reinvest it in stock, now, since our
coupons are fixed cash payments, we invest them in the riskless cash bond. With
this investment strategy the coupon paid at time Ti then has value ce−r(Ti−t) for all
t ∈ [0, T ] and so the portfolio constructed in this way has value

Zt =
n∑

i=1

ce−r(Ti−t) + A exp (νt + σWt ) .

Exactly as before we think of our market as consisting of the riskless cash bond
{Bt }t≥0 and the tradable asset {Zt }t≥0.

As usual we want to find Q under which the discounted asset price {Z̃t }t≥0 is
a martingale. But Z̃t is just the constant cash sum

∑n
i=1 ce−rTi plus the geometric

Brownian motion A exp ((ν − r)t + σWt ). This will be a Q-martingale if

dQ

dP

∣∣∣∣
Ft

= exp

(
−λWt − 1

2
λ2t

)

where λ =
(
ν + 1

2σ
2 − r

)
/σ . Under Q,

Xt = Wt +
(
ν + 1

2σ
2 − r

)
σ

t

is a Brownian motion. The value at time t of an option with payoff CT is now

EQ
[

e−r(T−t)CT

∣∣∣Ft

]
.

Under Q, the price of the bond at time T is just

ST = A exp

((
r − 1

2
σ 2

)
T + σ XT

)
.

The forward price for ST at time zero is F = AerT and the value of a call on ST with
strike price K at maturity T is

e−rT

{
F�

(
log

( F
K

)+ 1
2σ

2T

σ
√

T

)
− K�

(
log

( F
K

)− 1
2σ

2T

σ
√

T

)}
;

see Exercise 20.

5.6 Market price of risk

A definite pattern has emerged. Given a non-tradable stock, we have tied it to
a portfolio that can be thought of as a tradable, found the martingale measure
corresponding to that tradable process and used that measure to price the option. In
deciding what is tradable and what is not we have used only common sense. Indeed it
is not something that can be reduced purely to mathematics, but if we decide that an
asset with price {St }t≥0 is truly tradable and we have a riskless cash bond, {Bt }t≥0,
we should like to determine the class of tradables within the market that they create.
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Martingales
and
tradables

Suppose that S̃t = B−1
t St is the discounted price of our tradable asset at time t . Let Q

be a measure under which {S̃t }t≥0 is a martingale. If we take another process, {Vt }t≥0

for which the discounted process {Ṽt }t≥0 given by Ṽt = B−1
t Vt is a

(
Q, {F S̃

t }t≥0

)
-

martingale, then is {Vt }t≥0 tradable?
Our strategy is to construct a self-financing portfolio consisting of our tradable

asset and the tradable discounting process whose value at time t is always exactly Vt .
As usual, the first step is an application of the Martingale Representation Theorem.
Provided that B−1

t St has non-zero volatility, we can find an {F S̃
t }t≥0-previsible

process {φt }t≥0 such that

dṼt = φt d S̃t . (5.6)

Taking our cue from the construction of the portfolio replicating an option in §5.1,
we create a portfolio that at time t consists of φt units of the tradable St and ψt =
Ṽt − φt S̃t units of (the tradable) Bt . The value of this portfolio at time t is exactly
Vt . We must check that it is self-financing. Now

dVt = Bt dṼt + Ṽt d Bt (integration by parts)

= Btφt d S̃t + Ṽt d Bt (equation (5.6))

= Btφt d S̃t +
(
ψt + φt S̃t

)
d Bt

= φt

(
Bt d S̃t + S̃t d Bt

)
+ ψt d Bt

= φt d St + ψt d Bt (integration by parts)

and so the change in value of the portfolio over any infinitesimal time interval is due
to changes in asset prices. That is we have the self-financing property and {Vt }t≥0 is
indeed tradable.

What about the other way round? Suppose that {B−1
t Vt }t≥0 were not a(

Q, {F S̃
t }t≥0

)
-martingale. Then there would have to be times s < T such that with

positive probability
B−1

s Vs �= EQ
[

B−1
T VT

∣∣∣F S̃
s

]
.

Suppose that {Vt }t≥0 were tradable. We can construct a process {Ut }t≥0 by setting

Ut = BtE
Q
[

B−1
T VT

∣∣∣F S̃
t

]
.

Since {B−1
t Ut }t≥0 is a

(
Q, {F S

t }t≥0
)
-martingale, we know that {Ut }t≥0 is tradable.

That is we have two tradables that take the same value at time T , but with positive
probability take different values at an earlier time s. Exercise 21 shows that in the
absence of arbitrage this is a contradiction. So if {B−1

t Vt }t≥0 is not a martingale,
then {Vt }t≥0 is not a tradable.

Of course, since interest rates are deterministic, F S̃
t = F S

t and so we have proved
the following lemma.

Lemma 5.6.1 Given a riskless cash bond {Bt }t≥0 and a tradable asset {St }t≥0,
a process {Vt }t≥0 represents a tradable asset if and only if the discounted value
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{B−1
t Vt }t≥0 is a

(
Q, {F S

t }t≥0
)
-martingale where Q is the measure under which the

discounted asset price {B−1
t St }t≥0 is a martingale.

Tradables
and the
market price
of risk

Suppose that we have two tradable risky securities {S1
t }t≥0 and {S2

t }t≥0 in a single
Black–Scholes market – that is they are both functions of the same Brownian motion.
We define them both via their stochastic differential equations,

d Si
t = µi Si

t dt + σi Si
t dWt .

In order for both to be tradable, Lemma 5.6.1 tells us that they must both be
martingales with respect to the same measure Q. Assuming that Bt = ert we must
have that

Xt = Wt +
(
µi − r

σi

)
t

is a Q-Brownian motion for i = 1, 2. This can only be the case if

µ1 − r

σ1
= µ2 − r

σ2
.

Economists attach a meaning to this quantity. If we think of µ as the rate of growth
of the tradable, r as the rate of growth of the riskless bond and σ as a measure of the
risk of the asset, then

γ = µ− r

σ

is the excess rate of return (above the risk-free rate) per unit of risk. As such, it is
often called the market price of risk. It is also known as the Sharpe ratio. In such
a simple market, every tradable asset should have the same market price of risk,
otherwise there would be arbitrage opportunities.

Of course, γ is precisely the change of drift in the underlying Brownian motion
when we change measure from P (the market measure) to Q (the martingale
measure). However, this appealing economic interpretation of γ does not provide
a new argument for using Q. It is replication that makes the Black–Scholes analysis
work. Without a replicating portfolio our arbitrage arguments collapse.

Exercises

1 Suppose that an asset price St is such that d St = µSt dt + σ St dWt , where {Wt }t≥0

is, as usual, standard P-Brownian motion. Let r denote the risk-free interest rate. The
price of a riskless asset then follows d Bt = r Bt dt . We write {ψt , φt } for the portfolio
consisting of ψt units of the riskless asset Bt and φt units of St at time t . For each
of the following choices of φt , find ψt so that the portfolio {ψt , φt } is self-financing.
(Recall that the value of the portfolio at time t is Vt = ψt Bt + φt St and that the
portfolio is self-financing if dVt = ψt d Bt + φt d St .)

(a) φt = 1,
(b) φt =

∫ t
0 Sudu,

(c) φt = St .



135 exercises

2 Let {Ft }t≥0 be the natural filtration associated with a P-Brownian motion {Wt }t≥0.
Show that if Q is a probability measure equivalent to P and HT is an FT -measurable
random variable with EQ

[
H2

T

]
<∞ then

Mt � EQ [HT |Ft ]

defines a square-integrable Q-martingale.

3 Show that, in the notation of Example 5.2.2, the Black–Scholes price at time t of a
European put option with strike K and maturity T is F(t, St ) where

F(t, x) = K e−rθ�(−d2)− x�(−d1).

4 Suppose that the value of a European call option can be expressed as Vt = F(t, St )

(as we prove in Proposition 5.2.3). Then Ṽt = e−r t Vt , and we may define F̃ by

Ṽt = F̃(t, S̃t ).

Under the risk-neutral measure, the discounted asset price follows d S̃t = σ S̃t d Xt ,
where (under this probability measure) {Xt }t≥0 is a standard Brownian motion.

(a) Find the stochastic differential equation satisfied by F̃(t, S̃t ).
(b) Using the fact that Ṽt is a martingale under the risk-neutral measure, find the

partial differential equation satisfied by F̃(t, x), and hence show that

∂F

∂t
+ 1

2
σ 2x2 ∂

2 F

∂x2
+ r x

∂F

∂x
− r F = 0.

This is the Black–Scholes equation.

5 Delta hedging The following derivation of the Black–Scholes equation is very
popular in the finance literature. We will suppose, as usual, that an asset price follows
a geometric Brownian motion. That is, there are parameters µ, σ , such that

d St = µSt dt + σ St dWt .

Suppose that we are trying to value a European option based on this asset. Let
us denote the value of the option at time t by V (t, St ). We know that at time T ,
V (T, ST ) = f (ST ), for some function f .

(a) Using Itô’s formula express V as the solution to a stochastic differential equation.
(b) Suppose that a portfolio, whose value we denote by π , consists of one option

and a (negative) quantity −δ of the asset. Assuming that the portfolio is self-
financing, find the stochastic differential equation satisfied by π .

(c) Find the value of δ for which the portfolio you have constructed is ‘instanta-
neously riskless’, that is for which the stochastic term vanishes.

(d) An instantaneously riskless portfolio must have the same rate of return as
the risk-free interest rate. Use this observation to find a (deterministic) partial
differential equation for the V (t, x). Notice that this is the Black–Scholes
equation obtained in Exercise 4.
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Of course δ is precisely the stock holding in our replicating portfolio. In fact
this derivation is not entirely satisfactory as it can be checked that the portfolio
that we have constructed is not self-financing, violating our assumption in (b).
A rigorous approach requires a portfolio consisting of one option, −δ assets and
e−r t (V (t, St )− δSt ) cash bonds at time t .

6 Calculate the values of the Greeks for a European call option with strike price K at
maturity time T .

7 An alternative approach to solving the Black–Scholes equation is to transform it via a
change of variables into the heat equation. Suppose that F(t, x) : [0, T ]× [0,∞)→
R satisfies

∂F

∂t
(t, x)+ 1

2
σ 2x2 ∂

2 F

∂x2
(t, x)+ r x

∂F

∂x
(t, x)− r F(t, x) = 0,

subject to the boundary conditions

F(t, 0) = 0,
F(t, x)

x
→ 1 as x →∞, F(T, x) = (x − K )+.

That is F solves the Black–Scholes equation with the boundary conditions appropri-
ate for pricing a European call option with strike price K at time T .

(a) Show that the change of variables

x = K ey, t = T − 2τ

σ 2
, F = Kv(τ, y)

results in the equation

∂v

∂τ
(τ, y) = ∂2v

∂y2
(τ, y)+ (k−1)

∂v

∂y
(τ, y)−kv(τ, y), y ∈ R, τ ∈

[
0,

1

2
σ 2T

]
,

where k = 2r/σ 2 and v(0, y) = (ey − 1)+.
(b) Now set v(τ, y) = eαy+βτu(τ, y). Find α and β such that

∂u

∂τ
(τ, y) = ∂2u

∂y2
(τ, y), y ∈ R,

and find the corresponding initial condition for u.
(c) Solve for u and retrace your steps to obtain the Black–Scholes pricing formula

for a European call option.

8 Show that, for each constant A, V (t, x) = Ax and V (t, x) = Aert are both exact
solutions of the Black–Scholes differential equation. What do they represent and
what is the hedging portfolio in each case?

9 Find the most general solution of the Black–Scholes equation that has the special
form

(a) V (t, x) = V (x),
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(b) V (t, x) = f (t)g(x).

These are examples of similarity solutions. The solutions in (a) give prices of
perpetual options.

10 Let C(t, St ) and P(t, St ) denote the values of a European call and put option with the
same exercise price, K , and expiry time, T . Show that C(t, x)−P(t, x) also satisfies
the Black–Scholes equation with the final data C(T, x)− P(T, x) = x − K . Deduce
that x − K e−r(T−t) is also a solution of the Black–Scholes equation. Interpret these
results financially.

11 Assuming the model of §5.3, find the Black–Scholes price for a Sterling call option
that gives us the right to buy a pound Sterling at time T for K dollars. What is the
corresponding hedging portfolio?

12 Check that the Sterling and dollar investors of §5.3 use exactly the same replicating
strategy.

13 Suppose that the US dollar/Japanese Yen exchange rate follows the stochastic
differential equation

d St = µSt dt + σ St dWt

for some constants µ and σ . You are told that the expected $/�and �/$ exchange
rates in one years time are both 2S0. Is this possible?

14 In our usual notation suppose that an asset price follows geometric Brownian motion
with St = S0 exp (νt + σWt ) at time t . If in each infinitesimal time interval the
asset pays to its holder a dividend of δSt dt , find an expression for the fair price in a
forward contract based on the stock with maturity time T . What is the corresponding
hedging portfolio?

15 What is the ‘put–call parity’ relation for the market in Exercise 14?

16 Suppose that in valuing the contract in Example 5.4.2 we had failed to take account
of the dividend stream from the constituent stocks of the FTSE. Find a financial
argument to indicate whether the price obtained for the contract will be too high or
too low. Find the exact value that we would have obtained for the contract.

17 Suppose that Vt is the value of a self-financing portfolio consisting of φt units of
stock that pays periodic dividends, as in §5.4, and ψt units of cash bond. Find
the differential equation that characterises the self-financing property of Vt in this
setting.

18 Find a portfolio that replicates the forward of Example 5.4.3.

19 Value and hedge a European call option with maturity T and strike K based on the
periodic dividend-paying stock of §5.4. Express your answer in terms of the usual
Black–Scholes formula evaluated on the forward price of equation (5.5).

20 Check the forward price and the value of a call option claimed in §5.5 and find the
corresponding self-financing replicating portfolios.
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21 Show that if two tradable assets have the same value at time T , but with positive
probability take different values at time s < T , then there are arbitrage opportunities
in the market.



6 Different payoffs

Summary

Most of the concrete examples of options considered so far have been the standard
examples of calls and puts. Such options have liquid markets, their prices are fairly
well determined and margins are competitive. Any option that is not one of these
vanilla calls or puts is called an exotic option. Such options are introduced to extend
a bank’s product range or to meet hedging and speculative needs of clients. There
are usually no markets in these options and they are bought and sold purely ‘over the
counter’. Although the principles of pricing and hedging exotics are exactly the same
as for vanillas, risk management requires care. Not only are these exotic products
much less liquid than standard options, but they often have discontinuous payoffs
and so can have huge ‘deltas’ close to the expiry time making them difficult to hedge.

This chapter is devoted to examples of exotic options. The simplest exotics to
price and hedge are packages, that is, options for which the payoff is a combination
of our standard ‘vanilla’ options and the underlying asset. We already encountered
such options in §1.1. We relegate their valuation to the exercises. The next simplest
examples are European options, meaning options whose payoff is a function of the
stock price at the maturity time. The payoffs considered in §6.1 are discontinuous
and we discover potential hedging problems. In §6.2 we turn our attention to
multistage options. Such options allow decisions to be made or stipulate conditions
at intermediate dates during their lifetime. The rest of the chapter is devoted to
path-dependent options. In §6.3 we use our work of §3.3 to price lookback and
barrier options. Asian options, whose payoff depends on the average of the stock
price over the lifetime of the option, are discussed briefly in §6.4 and finally §6.5 is
a very swift introduction to pricing American options in continuous time.

6.1 European options with discontinuous payoffs

We work in the basic Black–Scholes framework. That is, our market consists of a
riskless cash bond whose value at time t is Bt = ert and a single risky asset whose
price, {St }t≥0, follows a geometric Brownian motion.

In §5.2 we established explicit formulae for both the price and the hedging
portfolio for European options within this framework. Specifically, if the payoff of

139
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the option at the maturity time T is CT = f (ST ) then for 0 ≤ t ≤ T the value of the
option at time t is

Vt = F(t, St ) = EQ
[

e−r(T−t) f (ST )

∣∣∣Ft

]

= e−r(T−t)
∫ ∞

−∞
f

(
St exp

((
r − σ 2

2

)
(T − t)+ σ y

√
T − t

))

× 1√
2π

exp

(
− y2

2

)
dy, (6.1)

where Q is the martingale measure, and the claim f (ST ) can be replicated by a
portfolio consisting at time t of φt units of stock and ψt = e−r t (Vt − φt St ) cash
bonds where

φt = ∂F

∂x
(t, x)

∣∣∣∣
x=St

. (6.2)

Mathematically, other than the issue of actually evaluating the integrals, that would
appear to be the end of the story. However, as we shall see, rather more careful
consideration of our assumptions might lead us to doubt the usefulness of these
formulae when the payoff is a discontinuous function of ST .

Digitals and
pin risk

Example 6.1.1 (Digital options) The payoff of a digital option, also sometimes
called a binary option or a cash-or-nothing option, is given by a Heaviside function.
For example, a digital call option with strike price K at time T has payoff

CT =
{

1 if ST ≥ K ,
0 if ST < K

at maturity. Find the price and the hedge for such an option.

Solution: In order to implement the formula (6.1) we must establish the range of y
for which

St exp

((
r − σ 2

2

)
(T − t)+ σ y

√
T − t

)
> K .

Rearranging we see that this holds for y > d where

d = 1

σ
√

T − t

(
log

(
K

St

)
−

(
r − σ 2

2

)
(T − t)

)
.

Writing � for the normal distribution function and substituting in equation (6.1) we
obtain

Vt = e−r(T−t)
∫ ∞

d

1√
2π

e−y2/2dy = e−r(T−t)
∫ −d

−∞
1√
2π

e−y2/2dy

= e−r(T−t)�(−d) = e−r(T−t)�(d2),
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where

d2 = 1

σ
√

T − t

(
log

(
St

K

)
+

(
r − σ 2

2

)
(T − t)

)
,

as in Example 5.2.2.
Now we turn to the hedge. By (6.2), the stock holding in our replicating portfolio

at time t is

φt = e−r(T−t) 1

St

1√
2π(T − t)σ

× exp

(
− 1

2(T − t)σ 2

(
log

(
St

K

)
+

(
r − σ 2

2

)
(T − t)

)2
)
.

Now as t ↑ T , this converges to 1/K times the delta function concentrated on ST =
K . Consider what this means for the replicating portfolio as t ↑ T . Away from St =
K , φt is close to zero, but if St is close to K the stock holding in the portfolio will be
very large. Now if near expiry the asset price is close to K , there is a high probability
that its value will cross the value St = K many times before expiry. But if the asset
price oscillates around the strike price close to expiry our prescription for the hedging
portfolio will tell us to rapidly buy and sell large numbers of the underlying asset.
Since markets are not the perfect objects envisaged in our Black–Scholes model and
we cannot instantaneously buy and sell, risk from small asset price changes (not to
mention transaction costs) can easily outweigh the maximum liability that we are
exposed to by having sold the digital. This is known as the pin risk associated with
the option. ✷

If we can overcome our misgivings about the validity of the Black–Scholes price
for digitals, then we can use them as building blocks for other exotics. Indeed, since
the option with payoff 1[K1,K2](ST ) at time T can be replicated by buying a digital
with strike K2 and maturity T and selling a digital with strike K1 and maturity T ,
in theory we could price any European option by replicating it by (possibly infinite)
linear combinations of digitals.

6.2 Multistage options

Some options either allow decisions to be made or stipulate conditions at intermedi-
ate dates during their lifetime. An example is the forward start option of Exercise 3
of Chapter 2. To illustrate the procedure for valuation of multistage options, we find
the Black–Scholes price of a forward start.

Example 6.2.1 (Forward start option) Recall that a forward start option is a con-
tract in which the holder receives, at time T0, at no extra cost, an option with
expiry date T1 > T0 and strike price equal to ST0 . If the risk-free rate is r find
the Black–Scholes price, Vt , of such an option at times t < T1.
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Solution: First suppose that t ∈ [T0, T1]. Then by time t we know ST0 and so the
value of the option is just that of a European call option with strike ST0 and maturity
T1, namely

Vt = e−r(T1−t)EQ
[(

ST1 − ST0

)
+
∣∣∣Ft

]
,

where Q is a probability measure under which the discounted price of the underlying
is a martingale. In particular, at time T0, using Example 5.2.2,

VT0 = ST0�(d1)− ST0e−r(T1−T0)�(d2)

where

d1 =
(

r + σ 2

2

)
(T1 − T0)

σ
√

T1 − T0
and d2 =

(
r − σ 2

2

)
(T1 − T0)

σ
√

T1 − T0
.

In other words

VT0 = ST0

{
�

((
r + σ 2

2

)√
T1 − T0

σ

)
− e−r(T1−T0)�

((
r − σ 2

2

)√
T1 − T0

σ

)}

= cST0

where c = c(r, σ, T0, T1) is independent of the asset price.
To find the price at time t < T0, observe that the portfolio consisting of c units of

the underlying over the time interval 0 ≤ t ≤ T0 exactly replicates the option at time
T0. Thus for t < T0, the price is given by cSt . In particular, the time zero price of the
option is

V0 = S0

{
�

((
r + σ 2

2

) √
T1 − T0

σ

)
− e−r(T1−T0)�

((
r − σ 2

2

) √
T1 − T0

σ

)}
.

✷

General
strategy

Notice that, in order to price the forward start option, we worked our way back from
time T1. This reflects a general strategy. For a multistage option with maturity T1 and
conditions stipulated at an intermediate time T0, we invoke the following procedure.

Valuing multistage options:
1 Find the payoff at time T1.
2 Use Black–Scholes to value the option for t ∈ [T0, T1].
3 Apply the contract conditions at time T0.
4 Use Black–Scholes to value the option for t ∈ [0, T0].

We put this into action for two more examples.

Example 6.2.2 (Ratio derivative) A ratio derivative can be described as follows.
Two times 0 < T0 < T1 are fixed. The derivative matures at time T1 when its payoff
is ST1/ST0 . Find the value of the option at times t < T1.
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Solution: First suppose that t ∈ [T0, T1]. At such times ST0 is known and so

Vt = 1

ST0

EQ
[

e−r(T1−t)ST1

∣∣∣Ft

]

where, under Q, the discounted asset price is a martingale. Hence Vt = St/ST0 .
In particular, VT0 = 1. Evidently the value of the option for t < T0 is therefore
e−r(T0−t). ✷

Both forward start options and ratio derivatives, in which the strike price is set to be
a function of the stock price at some intermediate time T0, are examples of cliquets.

Compound
options

A rather more complex class of examples is provided by the compound options.
These are ‘options on options’, that is options in which the rôle of the underlying is
itself played by an option. There are four basic types of compound option: call-on-
call, call-on-put, put-on-call and put-on-put.

Example 6.2.3 (Call-on-call option) To describe the call-on-call option we must
specify two exercise prices, K0 and K1, and two maturity times T0 < T1. The
‘underlying’ option is a European call with strike price K1 and maturity T1. The
call-on-call contract gives the holder the right to buy the underlying option for price
K0 at time T0. Find the value of such an option for t < T0.

Solution: We know how to price the underlying call. Its value at time T0 is given by
the Black–Scholes formula as

C
(
ST0 , T0; K1, T1

) = ST0�
(
d1

(
ST0 , T1 − T0, K1

))
− K0e−r(T1−T0)�

(
d2

(
ST0 , T1 − T0, K1

))
where

d1
(
St0 , T1 − T0, K1

) = log
(

ST0
K1

)
+

(
r + σ 2

2

)
(T1 − T0)

σ
√

T1 − T0

and d2
(
St0 , T1 − T0, K1

) = d1
(
St0 , T1 − T0, K1

) − σ
√

T1 − T0. The value of the
compound option at time T0 is then

V
(
T0, ST0

) = (
C
(
ST0 , T0; K1, T1

)− K0
)
+ .

Now we apply Black–Scholes again. The value of the option at times t < T0 is

V (t, St ) = e−r(T0−t)EQ
[(

C(ST0 , T0, K1, T1)− K0
)
+
∣∣∣F S

t

]
(6.3)

where the discounted asset price is a martingale under Q. Using that

ST0 = St exp

(
σ Z

√
T0 − t +

(
r − 1

2
σ 2

)
(T0 − t)

)
,
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where, under Q, Z ∼ N (0, 1), equation (6.3) now gives an analytic expression for the
value in terms of the cumulative distribution function of a bivariate normal random
variable. We write

f (y) = S0 exp

(
σ y

√
T0 − t +

(
r − 1

2
σ 2

)
(T0 − t)

)

and define x0 implicitly by

x0 = inf {y ∈ R : C( f (y), T0; K1, T1) ≥ K0} .
Now

log

(
f (y)

K1

)
= log

(
S0

K1

)
+ σ y

√
T0 − t +

(
r − 1

2
σ 2

)
(T0 − t)

and so writing

d̂1(y) =
log(S0/K1)+ σ y

√
T0 − t + rT1 − σ 2T0 + 1

2σ
2T1

σ
√

T1 − T0

and

d̂2(y) =
log(S0/K1)+ σ y

√
T0 − t + rT1 − 1

2σ
2T1

σ
√

T1 − T0

we obtain

V (t, St ) = e−r(T0−t)
∫ ∞

x0

(
f (y)�(d̂1(y))− K0e−r(T1−T0)�(d̂2(y))− K0

)

× 1√
2π

e−y2/2dy.

✷

6.3 Lookbacks and barriers

We now turn to our first example of path-dependent options, that is options for which
the history of the asset price over the duration of the contract determines the payout
at expiry.

As usual we use {St }0≤t≤T to denote the price of the underlying asset over the
duration of the contract. In this section we shall consider options whose payoff at
maturity depends on ST and one or both of the maximum and minimum values taken
by the asset price over [0, T ].

Notation: We write

S∗(t) = min {Su : 0 ≤ u ≤ t} ,

S∗(t) = max {Su : 0 ≤ u ≤ t} .
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Definition 6.3.1 (Lookback call) A lookback call gives the holder the right to buy
a unit of stock at time T for a price equal to the minimum achieved by the stock up
to time T . That is the payoff is

CT = ST − S∗(T ).

Definition 6.3.2 (Barrier options) A barrier option is one that is activated or
deactivated if the asset price crosses a preset barrier. There are two basic types:

1 knock-ins

(a) the barrier is up-and-in if the option is only active if the barrier is hit from below,
(b) the barrier is down-and-in if the option is only active if the barrier is hit from

above;

2 knock-outs

(a) the barrier is up-and-out if the option is worthless if the barrier is hit from below,
(b) the barrier is down-and-out if the option is worthless if the barrier is hit from

above.

Example 6.3.3 A down-and-in call option pays out (ST − K )+ only if the stock
price fell below some preagreed level c some time before T , otherwise it is worthless.
That is, the payoff is

CT = 1{S∗(T )≤c}(ST − K )+.

As always we can express the value of such an option as a discounted expected value
under the martingale measure Q. Thus the value at time zero can be written as

V (0, S0) = e−rT EQ [CT ] (6.4)

where r is the riskless borrowing rate and the discounted stock price is a Q-
martingale. However, in order to actually evaluate the expectation in (6.4) for barrier
options we need to know the joint distribution of (ST , S∗(T )) and (ST , S∗(T )) under
the martingale measure Q. Fortunately we did most of the work in Chapter 3.

Joint
distribution
of the stock
price and its
minimum

In Lemma 3.3.4 we found the joint distribution of Brownian motion and its
maximum. Specifically, if {Wt }t≥0 is a standard P-Brownian motion, writing Mt =
max0≤s≤t Ws , for a > 0 and x ≤ a

P [Mt ≥ a,Wt ≤ x] = 1−�

(
2a − x√

t

)
.

By symmetry, writing mt = min0≤s≤t Ws , for a < 0 and x ≥ a,

P [mt ≤ a,Wt ≥ x] = 1−�

(−2a + x√
t

)
,

or, differentiating, if a < 0 and x ≥ a

P [mT ≤ a,WT ∈ dx] = pT (0,−2a + x)dx = pT (2a, x)dx
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where
pt (x, y) = 1√

2π t
exp

(
−|x − y|2/2t

)
.

Combining these results with (two applications of) the Girsanov Theorem will allow
us to calculate the joint distribution of (ST , S∗(T )) and of (ST , S∗(T )) under the
martingale measure Q.

As usual, under the market measure P,

St = S0 exp (νt + σWt )

where {Wt }t≥0 is a P-Brownian motion. Let us suppose, temporarily, that ν = 0
so that St = S0 exp(σWt ) and moreover S∗(t) = S0 exp(σmt ) and S∗(t) =
S0 exp(σMt ). In this special case then the joint distribution of the stock price and its
minimum (resp. maximum) can be deduced from that of (Wt ,mt ) (resp. (Wt , Mt )).
Of course, in general, ν will not be zero either under the market measure P or under
the martingale measure Q. Our strategy will be to use the Girsanov Theorem not only
to switch to the martingale measure but also to switch, temporarily, to an equivalent
measure under which St = S0 exp(σWt ).

Lemma 6.3.4 Let {Yt }t≥0 be given by Yt = bt + Xt where b is a constant and
{Xt }t≥0 is a Q-Brownian motion. Writing Y∗(t) = min{Yu : 0 ≤ u ≤ t},

Q [Y∗(T ) ≤ a, YT ∈ dx] =
{

pT (bT, x)dx if x < a,

e2ab pT (2a + bT, x)dx if x ≥ a,

where, as above, pt (x, y) is the Brownian transition density function.

Proof: By the Girsanov Theorem, there is a measure P, equivalent to Q, under which
{Yt }t≥0 is a P-Brownian motion and

dP

dQ

∣∣∣∣
Fr

= exp

(
−bXT − 1

2
b2T

)
.

Notice that this depends on {Xt }0≤t≤T only through XT . The Q-probability of the
event {Y∗(T ) ≤ a, YT ∈ dx} will be the P-probability of that event multiplied by
dQ
dP

∣∣
Fr

evaluated at YT = x . Now

dQ

dP
= exp

(
bXT + 1

2
b2T

)
= exp

(
bYT − 1

2
b2T

)

and so for a < 0 and x ≥ a

Q [Y∗(T ) ≤ a, YT ∈ dx] = P [Y∗(T ) ≤ a, YT ∈ dx] exp

(
bx − 1

2
b2T

)

= pT (2a, x) exp

(
bx − 1

2
b2T

)
dx

= e2ab pT (2a + bT, x)dx . (6.5)
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Evidently for x ≤ a, {Y∗(T ) ≤ a, YT ∈ dx} = {YT ∈ dx} and so for x ≤ a

Q [Y∗(T ) ≤ a, YT ∈ dx] = Q [YT ∈ dx]

= Q [bT + XT ∈ dx]

= pT (bT, x)dx

and the proof is complete. ✷

Differentiating (6.5) with respect to a, we see that, in terms of joint densities, for
a < 0

Q [Y∗(T ) ∈ da, YT ∈ dx] = 2e2ab

T
|x − 2a|pT (2a + bT, x)dx da for x ≥ a.

The joint density evidently vanishes if x < a or a > 0. In Exercise 13 you are asked
to find the joint distribution of YT and Y ∗(T ) under Q.

An
expression
for the price

From Chapter 5, under the martingale measure Q, St = S0 exp (σYt ) where

Yt =
(r − 1

2σ
2)

σ
t + Xt

and {Xt }t≥0 is a Q-Brownian motion. So by applying these results with b = (r −
1
2σ

2)/σ we can now evaluate the price of any option maturing at time T whose
payoff depends just on the stock price at time T and its minimum (or maximum)
value over the lifetime of the contract. If the payoff is CT = g(S∗(T ), ST ) and r is
the riskless borrowing rate then the value of the option at time zero is

V (0, S0) = e−rT EQ [g (S∗(T ), ST )]

= e−rT
∫ 0

a=−∞

∫ ∞

x=a
g
(
S0eσ x , S0eσa)Q [Y∗(T ) ∈ da, YT ∈ dx] .

Example 6.3.5 (Down-and-in call option) Find the time zero price of a down-and-
in call option whose payoff at time T is

CT = 1{S∗(T )≤c} (ST − K )+

where c is a (positive) preagreed constant less than K .

Solution: Using St = S0 exp(σYt ) we rewrite the payoff as

CT = 1{Y∗(T )≤ 1
σ

log(c/S0)}
(

S0eσYT − K
)
+
.

Writing b = (r − 1
2σ

2)/σ , a = 1
σ

log(c/S0) and x0 = 1
σ

log(K/S0) we obtain

V (0, S0) = e−rT
∫ ∞

x0

(
S0eσ x − K

)
Q (Y∗(T ) ≤ a, YT ∈ dx) .
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Using the expression for the joint distribution of (Y∗(T ), YT ) obtained above yields

V (0, S0) = e−rT
∫ ∞

x0

(
S0eσ x − K

)
e2ab pT (2a + bT, x)dx .

We have used the fact that, since c < K , x0 ≥ a. First observe that

e−rT
∫ ∞

x0

K e2ab pT (2a + bT, x)dx = K e−rT e2ab
∫ ∞

(x0−2a−bT )/
√

T

1√
2π

e−y2/2dy

= K e−rT e2ab
∫ (2a+bT−x0)/

√
T

−∞
1√
2π

e−y2/2dy

= K e−rT
(

c

S0

) 2r
σ2−1

�

(
2a + bT − x0√

T

)

= K e−rT
(

c

S0

) 2r
σ2−1

�

(
log(F/K )− 1

2σ
2T

σ
√

T

)

where F = erT c2/S0.
Similarly,

e−rT
∫ ∞

x0

S0eσ x e2ab pT (2a + bT, x)dx

= S0e−rT e2ab
∫ ∞

x0

1√
2πT

exp

(
− (x − (2a + bT ))2 − 2σ xT

2T

)
dx

= S0e−rT e2ab
∫
(x0−(2a+bT )−σT )/

√
T

1√
2π

e−y2/2dy

× exp

(
1

2
σ 2T + 2aσ + bσT

)

= e−rT
(

c

S0

) 2r
σ2−1

F�

(
log(F/K )+ 1

2σ
2T

σ
√

T

)
.

Comparing this with Example 5.2.2

V (0, S0) =
(

c

S0

) 2r
σ2−1

C

(
c2

S0
, 0; K , T

)
,

where C(x, t; K , T ) is the price at time t of a European call option with strike K
and maturity T if the stock price at time t is x . ✷

The price of a barrier option can also be expressed as the solution of a partial
differential equation.

Example 6.3.6 (Down-and-out call) A down-and-out call has the same payoff as
a European call option, (ST − K )+, unless during the lifetime of the contract the
price of the underlying asset has fallen below some preagreed barrier, c, in which
case the option is ‘knocked out’ worthless.
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Writing V (t, x) for the value of such an option at time t if St = x and assuming
that K > c, V (t, x) solves the Black–Scholes equation for (t, x) ∈ [0, T ] × [c,∞)

subject to the boundary conditions

V (T, ST ) = (ST − K )+,
V (t, c) = 0, t ∈ [0, T ],

V (t, x)

x
→ 1, as x →∞.

The last boundary condition follows since as St → ∞, the probability of the asset
price hitting level c before time T tends to zero.

Exercise 16 provides a method for solving the Black–Scholes partial differential
equation with these boundary conditions.

Of course more and more complicated barrier options can be dreamt up. For ex-
ample, a double knock-out option is worthless if the stock price leaves some interval
[c1, c2] during the lifetime of the contract. The probabilistic pricing formula for such
a contract then requires the joint distribution of the triple (ST , S∗(T ), S∗(T )). As in
the case of a single barrier, the trick is to use Girsanov’s Theorem to deduce the joint
distribution from that of (WT ,mT , MT ) where {Wt }t≥0 is a P-Brownian motion and
{mt }t≥0, {Mt }t≥0 are its running minimum and maximum respectively. This in turn
is given by

P [WT ∈ dy, a < mT , MT < b] =
∑
n∈Z

{
pT (2n(a−b), y)−p(2n(b−a), y−2a)

}
dy;

see Freedman (1971) for a proof. An explicit pricing formula will then be in the form
of an infinite sum. In Exercise 20 you obtain the pricing formula by directly solving
the Black–Scholes differential equation.

Probability
or pde?

As we have seen in Exercise 7 of Chapter 5 and we see again in the exercises at
the end of this chapter, the Black–Scholes partial differential equation can be solved
by first transforming it to the heat equation (with appropriate boundary conditions).
This is entirely parallel to our probabilistic technique of transforming the expectation
price to an expectation of a function of Brownian motion.

6.4 Asian options

The payoff of an Asian option is a function of the average of the asset price over the
lifetime of the contract. For example, the payoff of an Asian call with strike price K
and maturity time T is

CT =
(

1

T

∫ T

0
St dt − K

)
+
.

Evidently CT ∈ FT and so our Black–Scholes analysis of Chapter 5 gives the value
of such an option at time zero as

V0 = EQ

[
e−rT

(
1

T

∫ T

0
St dt − K

)
+

]
. (6.6)
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However, evaluation of this integral is a highly non-trivial matter and we do not
obtain the nice explicit formulae of the previous sections.

There are many variants on this theme. For example, we might want to value a
claim with payoff

CT = f

(
ST ,

1

T

∫ T

0
St dt

)
.

In §7.2 we shall develop the technology to express the price of such claims (and
indeed slightly more complex claims) as solutions to a multidimensional version of
the Black–Scholes equation. Moreover (see Exercise 12 of Chapter 7) one can also
find an explicit expression for the hedging portfolio in terms of the solution to this
equation. However, multidimensional versions of the Black–Scholes equation are
much harder to solve than their one-dimensional counterpart and generally one must
resort to numerical techniques.

The main difficulty with evaluating (6.6) directly is that, although there are
explicit formulae for all the moments of the average process 1

T

∫ T
0 St dt , in contrast

to the lognormal distribution of ST , we do not have an expression for the distribution
function. A number of approaches have been suggested to overcome this, including
simply approximating the distribution of the average process by a lognormal distri-
bution with suitably chosen parameters.

A very natural approach is to replace the continuous average by a discrete
analogue obtained by sampling the price of the process at agreed times t1, . . . , tn
and averaging the result. This also makes sense from a practical point of view as
calculating the continuous average for a real asset can be a difficult process. Many
contracts actually specify that the average be calculated from such a discrete sample
– for example from daily closing prices. Mathematically, the continuous average
1
T

∫ T
0 St dt is replaced by 1

n

∑n
i=1 Sti . Options based on a discrete sample can be

treated in the same way as multistage options, although evaluation of the price rapidly
becomes impractical (see Exercise 21).

A further approximation is to replace the arithmetic average by a geometric
average. That is, in place of 1

n

∑n
i=1 Sti we consider

(∏n
i=1 Sti

)1/n . This quantity
has a lognormal distribution (Exercise 22) and so the corresponding approximate
pricing formula for the Asian option can be evaluated exactly. (You are asked to find
the pricing formula for an Asian call option based on a continuous version of the
geometric average in Exercise 23.) Of course the arithmetic mean of a collection of
positive numbers always dominates their geometric mean and so it is no surprise that
this approximation consistently under-prices the Asian call option.

6.5 American options

A full treatment of American options is beyond our scope here. Explicit formulae
for the prices of American options only exist in a few special cases and so one must
employ numerical techniques. One approach is to use our discrete (binomial tree)
models of Chapter 2. An alternative is to reformulate the price as a solution to a
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partial differential equation. We do not give a rigorous derivation of this equation,
but instead we use the results of Chapter 2 to give a heuristic explanation of its form.

The discrete
case

As we saw in Chapter 2, the price of an American call option on non-dividend-paying
stock is the same as that of a European call and so we concentrate on the American
put. This option gives the holder the right to buy one unit of stock for price K at any
time before the maturity time T .

As we illustrated in §2.2, in our discrete time model, if V (n, Sn) is the value of
the option at time nδt given that the asset price at time nδt is Sn then

V (n, Sn) = max
{
(K − Sn)+,EQ

[
e−rδt V (n + 1, Sn+1)

∣∣Fn
]}
,

where Q is the martingale measure. In particular, V (n, Sn) ≥ (K−Sn)+ everywhere.
We saw that for each fixed n the possible values of Sn are separated into two ranges
by a boundary value that we shall denote by S f (n): if Sn > S f (n) then it is
optimal to hold the option whereas if Sn ≤ S f (n) it is optimal to exercise. We call
{S f (n)}0≤n≤N the exercise boundary.

In Example 2.4.7 we found a characterisation of the exercise boundary. We
showed that the discounted option price can be written as Ṽn = M̃n − Ãn where
{M̃n}0≤n≤N is a Q-martingale and { Ãn}0≤n≤N is a non-decreasing predictable
process. The option is exercised at the first time nδt when Ãn+1 �= 0. In summary,
within the exercise region Ãn+1 �= 0 and Vn = (K − Sn)+, whereas away from the
exercise region, that is when Sn > S f (n), V (n, Sn) = Mn .

The strategy of exercising the option at the first time when Ãn+1 �= 0 is optimal in
the sense that if we write TN for the set of all possible stopping times taking values
in {0, 1, . . . , N } then

V (0, S0) = sup
τ∈TN

EQ
[

e−rτ (K − Sτ )+
∣∣F0

]
.

Since the exercise time of any permissible strategy must be a stopping time, this
says that as holder of the option one can’t do better by choosing any other exercise
strategy. That this optimality characterises the fair price follows from a now familiar
arbitrage argument that you are asked to provide in Exercise 24.

Continuous
time

Now suppose that we formally pass to the continuous limit as in §2.6. We expect
that in the limit too V (t, St ) ≥ (K − St )+ everywhere and that for each t we can
define S f (t) so that if St > S f (t) it is optimal to hold on to the option, whereas if
St ≤ S f (t) it is optimal to exercise. In the exercise region V (t, St ) = (K − St )+
whereas away from the exercise region V (t, St ) = Mt where the discounted process
{M̃t }0≤t≤T is a Q-martingale and Q is the measure, equivalent to P, under which
the discounted stock price is a martingale. Since {M̃t }0≤t≤T can be thought of as
the discounted value of a European option, this tells us that away from the exercise
region, V (t, x) must satisfy the Black–Scholes differential equation.

We guess then that for {(t, x) : x > S f (t)} the price V (t, x) must satisfy the
Black–Scholes equation whereas outside this region V (t, x) = (K − x)+. This
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can be extended to a characterisation of V (t, x) if we specify appropriate boundary
conditions on S f . This is complicated by the fact that S f (t) is a free boundary – we
don’t know its location a priori.

An arbitrage argument (Exercise 25) says that the price of an American put option
should be continuous. We have checked already that V (t, S f (t)) = (K − S f (t))+.
Since it is clearly not optimal to exercise at a time t < T if the value of the option is
zero, in fact we have V (t, S f (t)) = K − S f (t). Let us suppose now that V (t, x) is
continuously differentiable with respect to x as we cross the exercise boundary (we
shall omit the proof of this). Then, since

V (t, x) = (K − x) for x ≤ S f and
V (t, x) ≥ (K − x) for x > S f ,

we must have that at the exercise boundary ∂V
∂x ≥ −1. Suppose that ∂V

∂x > −1 at
some point of the exercise boundary. Then by reducing the value of the stock price at
which we choose to exercise from S f to S∗f we can actually increase the value of the
option at (t, S f (t)). This contradicts the optimality of our exercise strategy. It must
be that ∂V

∂x = −1 at the exercise boundary.
We can now fully characterise V (t, x) as a solution to a free boundary value

problem:

Proposition 6.5.1 (The value of an American put) We write V (t, x) for the value of
an American put option with strike price K and maturity time T and r for the riskless
borrowing rate. V (t, x) can be characterised as follows. For each time t ∈ [0, T ]
there is a number S f (t) ∈ (0,∞) such that for 0 ≤ x ≤ S f (t) and 0 ≤ t ≤ T ,

V (t, x) = K − x and
∂V

∂t
+ 1

2
σ 2x2 ∂

2V

∂x2
+ r x

∂V

∂x
− r V < 0.

For t ∈ [0, T ] and S f (t) < x <∞

V (t, x) > (K − x)+ and
∂V

∂t
+ 1

2
σ 2x2 ∂

2V

∂x2
+ r x

∂V

∂x
− r V = 0.

The boundary conditions at x = S f (t) are that the option price process is
continuously differentiable with respect to x, is continuous in time and

V (t, S f (t)) = (K − S f (t))+,
∂V

∂x
(t, S f (t)) = −1.

In addition, V satisfies the terminal condition

V (T, ST ) = (K − ST )+.

The free boundary problem of Proposition 6.5.1 is easier to analyse as a linear
complementarity problem. If we use the notation

LBS f = ∂ f

∂t
+ 1

2
σ 2x2 ∂

2 f

∂x2
+ r x

∂ f

∂x
− r f,
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then the free boundary value problem can be restated as

LBS V (t, x) (V (t, x)− (K − x)+) = 0,

subject to LBS V (t, x) ≤ 0, V (t, x)−(K−x)+ ≥ 0, V (T, x) = (K−x)+, V (t, x)→
∞ as x →∞ and V (t, x), ∂V

∂x (t, x) are continuous.
Notice that this reformulation has removed explicit dependence on the free

boundary. Variational techniques can be applied to solve the problem and then
the boundary is recovered from that solution. This is beyond our scope here. See
Wilmott, Howison & Dewynne (1995) for more detail.

An explicit
solution

We finish this chapter with one of the rare examples of an American option for which
the price can be obtained explicitly.

Example 6.5.2 (Perpetual American put) Find the value of a perpetual American
put option on non-dividend-paying stock, that is a contract that the holder can choose
to exercise at any time t in which case the payoff is (K − St )+.

Solution(s): We sketch two possible solutions to this problem, first via the free
boundary problem of Proposition 6.5.1 and second via the expectation price.

Since the time to expiry of the contract is always infinite, V (t, x) is a function of
x alone and the exercise boundary must be of the form S f (t) = α for all t > 0 and
some constant α. The option will be exercised as soon as St ≤ α. The Black–Scholes
equation reduces to an ordinary differential equation:

1

2
σ 2x2 d2V

dx2
+ r x

dV

dx
− r V = 0, for all x ∈ (α,∞). (6.7)

The general solution to equation (6.7) is of the form v(x) = c1xd1 + c2xd2 for some
constants c1, c2, d1 and d2. Fitting the boundary conditions

V (α) = K − α, lim
x↓α

dV

dx
= −1 and lim

x→∞ V (x) = 0

gives

V (x) =
{
(K − α)

(
α
x

)2rσ−2
, x ∈ (α,∞),

(K − x), x ∈ [0, α],

where

α = 2rσ−2 K

2rσ−2 + 1
.

An alternative approach to this problem would be to apply the results of §3.3. As we
argued above, the option will be exercised when the stock price first hits level α for
some α > 0. This means that the value will be of the form

V (0, S0) = EQ
[
e−rτα (K − α)+

]
,
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where τα = inf{t > 0 : St ≤ α}. We rewrite this stopping time in terms of the time
that it takes a Q-Brownian motion to hit a sloping line. Since

St = S0 exp

((
r − 1

2
σ 2

)
t + σ Xt

)

where {Xt }t≥0 is a standard Brownian motion under the martingale measure Q, the
event {St ≤ α} is the same as the event{

−σ Xt −
(

r − 1

2
σ 2

)
t ≥ log

(
S0

α

)}
.

The process {−Xt }t≥0 is also a standard Q-Brownian motion and so, in the notation
of §3.3, the time τα is given by Ta,b with

a = 1

σ
log

(
S0

α

)
, b = r − 1

2σ
2

σ
.

We can then read off EQ
[
e−rτα

]
from Proposition 3.3.5 and maximise over α to

yield the result. ✷

Exercises

1 Let K1 and K2 be fixed real numbers with 0 < K1 < K2. A collar option has payoff

CT = min{max{ST , K1}, K2}.

Find the Black–Scholes price for such an option.

2 What is the maximum potential loss associated with taking the long position in a
forward contract? And with taking the short position?
Consider the derivative whose payoff at expiry to the holder of the long position is

CT = min{ST , F} − K ,

where F is the standard forward price for the underlying stock and K is a constant.
Such a contract is constructed so as to have zero value at the time at which it is struck.
Find an expression for the value of K that should be written into such a contract.
What is the maximum potential loss for the holder of the long or short position now?

3 The digital put option with strike K at time T has payoff

CT =
{

0, ST ≥ K ,
1, ST < K .

Find the Black–Scholes price for a digital put. What is the put–call parity for digital
options?
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4 Digital call option In Example 6.1.1 we calculated the price of a digital call. Here is
an alternative approach:

(a) Use the Feynman–Kac stochastic representation to find the partial differential
equation satisfied by the value of a digital call with strike K and maturity T .

(b) Show that the delta of a standard European call option solves the partial
differential equation that you have found in (a).

(c) Hence or otherwise solve the equation in (a) to find the value of the digital.

5 An asset-or-nothing call option with strike K and maturity T has payoff

CT =
{

ST , ST ≥ K ,
0, ST < K .

Find the Black–Scholes price and hedge for such an option. What happens to the
stock holding in the replicating portfolio if the asset price is near K at times close to
T ? Comment.

6 Construct a portfolio consisting entirely of cash-or-nothing and asset-or-nothing
options whose value at time T is exactly that of a European call option with strike K
at maturity T .

7 In §6.1 we have seen that for certain options with discontinuous payoffs at maturity,
the stock holding in the replicating portfolio can oscillate wildly close to maturity.
Do you see this phenomenon if the payoff is continuous?

8 Pay-later option This option, also known as a contingent premium option, is a
standard European option except that the buyer pays the premium only at maturity of
the option and then only if the option is in the money. The premium is chosen so that
the value of the option at time zero is zero. This option is equivalent to a portfolio
consisting of one standard European call option with strike K and maturity T and
−V digital call options with maturity T where V is the premium for the option.

(a) What is the value of holding such a portfolio at time zero?
(b) Find an expression for V .
(c) If a speculator enters such a contract, what does this suggest about her market

view?

9 Ratchet option A two-leg ratchet call option can be described as follows. At time
zero an initial strike price K is set. At time T0 > 0 the strike is reset to ST0 , the value
of the underlying at time T0. At the maturity time T1 > T0 the holder receives the
payoff of the call with strike ST0 plus ST1 − ST0 if this is positive. That is, the payoff
is (ST1 − ST0)+ + (ST0 − K )+.
If (ST0 − K ) is positive, then the intermediate profit (ST0 − K )+ is said to be ‘locked
in’. Why? Value this option for 0 < t < T1.
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10 Chooser option A chooser option is specified by two strike prices, K0 and K1, and
two maturity dates, T0 < T1. At time T0 the holder has the right to buy, for price K0,
either a call or a put with strike K1 and maturity T1.

What is the value of the option at time T0? In the special case K0 = 0 use put–
call parity to express this as the sum of the value of a call and a put with suitably
chosen strike prices and maturity dates and hence find the value of the option at time
zero.

11 Options on futures In our simple model where the riskless rate of borrowing is
deterministic, forward and futures prices coincide. A European call option with strike
price K and maturity T0 written on an underlying futures contract with delivery date
T1 > T0 delivers to the holder, at time T0, a long position in the futures contract and
an amount of money (F(T0, T1)− K )+, where F(T0, T1) is the value of the futures
contract at time T0. Find the value of such an option at time zero.

12 Use the method of Example 6.2.3 to find the value of a put-on-put option.

By considering the portfolio obtained by buying one call-on-put and selling one
put-on-put (with the same strikes and maturities) obtain a put–call parity relation
for compound options. Hence write down prices for all four classes of compound
option.

13 Let {Yt }t≥0 be given by Yt = bt + Xt where b is a constant and {Xt }t≥0 is a Q-
Brownian motion. Writing Y ∗(t) = max{Yu : 0 ≤ u ≤ t}, find the joint distribution
of (YT , Y ∗(T )) under Q.

14 What is the value of a portfolio consisting of one down-and-in call and one down-
and-out call with the same strike price and maturity?

15 Find the value of a down-and-out call with barrier c and strike K at maturity T if
c > K .

16 One approach to finding the value of the down-and-out call of Example 6.3.6 is to
express it as an expectation under the martingale measure and exploit our knowledge
of the joint distribution of Brownian motion and its minimum. Alternatively one
can solve the partial differential equation directly and that is the purpose of this
exercise.

(a) Use the method of Exercise 7 of Chapter 5 to transform the equation for the price
into the heat equation. What are the boundary conditions for this heat equation?

(b) Solve the heat equation that you have obtained using, for example, the ‘method
of images’. (If you are unfamiliar with this technique, then try Wilmott, Howison
& Dewynne (1995).)

(c) Undo the transformation to obtain the solution to the partial differential equation.
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17 An American cash-or-nothing call option can be exercised at any time t ∈ [0, T ]. If
exercised at time t its payoff is

1 if St ≥ K ,
0 if St < K .

When will such an option be exercised? Find its value.

18 Suppose that the down-and-in call option of Example 6.3.5 is modified so that if the
option is never activated, that is the stock price never crosses the barrier, then the
holder receives a rebate of Z . Find the price of this modified option.

19 A perpetual option is one with no expiry time. For example, a perpetual American
cash-or-nothing call option can be exercised at any time. If exercised at time t , its
payoff is 1 if St ≥ K and 0 if St < K . What is the probability that such an option is
never exercised?

20 Formulate the price of a double knock-out call option as a solution to a partial dif-
ferential equation with suitably chosen boundary conditions. Mimic your approach
in Exercise 16 to see that this too leads to an expression for the price as an infinite
sum.

21 Calculate the value of an Asian call option, with strike price K , in which the average
of the stock price is calculated on the basis of just two sampling times, 0 and T ,
where T is the maturity time of the contract.
Find an expression for the value of the corresponding contract when there are three
sampling times, 0, T/2 and T .

22 Suppose that {St }t≥0 is a geometric Brownian motion under P. Let 0 ≤ t1 ≤ t2 ≤
· · · ≤ tn be fixed times and define

Gn =
(

n∏
i=1

Sti

)1/n

.

Show that Gn has a lognormal distribution under P.

23 An asset price {St }t≥0 is a geometric Brownian motion under the market measure P.
Define

YT = exp

(
1

T

∫ T

0
log St dt

)
.

Suppose that an Asian call option has payoff (YT − K )+ at time T . Find an explicit
formula for the price of such an option at time zero.

24 Use an arbitrage argument to show that if V (0, S0) is the fair price of an American
put option on non-dividend-paying stock with strike price K and maturity T , then
writing TT for the set of all possible stopping times taking values in [0, T ]

V (0, S0) = sup
τ∈TT

EQ
[

e−rτ (K − Sτ )+
∣∣F0

]
.
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25 Consider the value of an American put on non-dividend-paying stock. Show that
if there were a discontinuity in the option value (as a function of stock price) that
persisted for more than an infinitesimal time then a portfolio consisting entirely of
options would offer an arbitrage opportunity.
Remark: This does not mean that all option prices are continuous. If there is an
instantaneous change in the conditions of a contract (as in multistage options) then
discontinuities certainly can occur.

26 Find the value of a perpetual American call option on non-dividend-paying stock.
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Summary

Having applied our basic Black–Scholes model to the pricing of some exotic options,
we now turn to more general market models.

In §7.1 we replace the (constant) parameters that characterised our basic Black–
Scholes model by previsible processes. Under appropriate boundedness assumptions,
we then repeat our analysis of Chapter 5 to obtain the fair price of an option as the
discounted expected value of the claim under a martingale measure. In general this
expectation must be evaluated numerically. We also make the connection with a gen-
eralised Black–Scholes equation via the Feynman–Kac Stochastic Representation
Theorem.

Our models so far have assumed that the market consists of a single stock and
a riskless cash bond. More complex equity products can depend on the behaviour
of several separate securities and, in general, the prices of these securities will
not evolve independently. In §7.2 we extend some of the fundamental results of
Chapter 4 to allow us to manipulate systems of stochastic differential equations
driven by correlated Brownian motions. For markets consisting of many assets we
have much more freedom in our choice of ‘reference asset’ or numeraire and so
we revisit this issue before illustrating the application of the ‘multifactor’ theory by
pricing a ‘quanto’ product.

We still have no satisfactory justification for the geometric Brownian motion
model. Indeed, there is considerable evidence that it does not capture all features
of stock price evolution. A first objection is that stock prices occasionally ‘jump’
at unpredictable times. In §7.3 we introduce a Poisson process of jumps into
our Black–Scholes model and investigate the implications for option pricing. This
approach is popular in the analysis of credit risk. In §1.5 we saw that, if a model is
to be free from arbitrage and complete, there must be a balance between the number
of sources of randomness and the number of independent stocks. We reiterate this
here. We see more evidence that the Black–Scholes model does not reflect the true
behaviour of the market in §7.4. It seems a little late in the day to condemn the model
that has been the subject of all our efforts so far and so we ask how much it matters

159
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if we use the wrong model. We also very briefly discuss models with stochastic
volatility that have the potential to better reflect true market behaviour.

This chapter is intended to do no more than indicate some of the topics that might
be addressed in a second course in financial calculus. Much more detail can be found
in some of the suggestions for further reading in the bibliography.

7.1 General stock model

In our classical Black–Scholes framework we assume that the riskless borrowing rate
is constant and that the returns of the stock follow a Brownian motion with constant
drift. In this section we consider much more general models to which we can apply
the Black–Scholes analysis although, in practice, even for vanilla options the prices
that we obtain must now be evaluated numerically. The key assumption that we retain
is that there is only one source of randomness in the market, the Brownian motion
that drives the stock price (cf. §7.3).

The model Writing {Ft }t≥0 for the filtration generating the driving Brownian motion, we
replace the riskless borrowing rate, r , the drift µ and the volatility σ in our basic
Black–Scholes model by {Ft }t≥0-predictable processes {rt }t≥0, {µt }t≥0 and {σt }t≥0.
In particular, rt , µt and σt can depend on the whole history of the market before time
t . Our market model is then as follows.

General stock model: The market consists of a riskless cash bond, {Bt }t≥0,
and a single risky asset with price process {St }t≥0 governed by

d Bt = rt Bt dt, B0 = 1,

d St = µt St dt + σt St dWt ,

where {Wt }t≥0 is a P-Brownian motion generating the filtration {Ft }t≥0 and
{rt }t≥0, {µt }t≥0 and {σt }t≥0 are {Ft }t≥0-predictable processes.

Evidently a solution to these equations should take the form

Bt = exp

(∫ t

0
rsds

)
, (7.1)

St = S0 exp

(∫ t

0

(
µs − 1

2
σ 2

s

)
ds +

∫ t

0
σsdWs

)
, (7.2)

but we need to make some boundedness assumptions if these expressions are to make
sense. So to ensure the existence of the integrals in equations (7.1) and (7.2) we
assume that

∫ T
0 |rt |dt ,

∫ T
0 |µt |dt and

∫ T
0 σ 2

t dt are all finite with P-probability one.
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A word of warning is in order. In order to ‘calibrate’ such a model to the market we
must choose the parameters {rt }t≥0, {µ}t≥0 and {σt }t≥0 from an infinite-dimensional
space. Unless we restrict the possible forms of these processes, this presents a major
obstacle to implementation. In §7.4 we examine the effect of model misspecification
on pricing and hedging strategies. Now, however, we set this worry aside and repeat
the Black–Scholes analysis for our general class of market models.

A martingale
measure

We must mimic the three steps to replication that we followed in the classical setting.
The first of these is to find an equivalent probability measure, Q, under which the
discounted stock price, {S̃t }t≥0, is a martingale.

Exactly as before, we use the Girsanov Theorem to find a measure, Q, under
which the process {W̃t }t≥0 defined by

W̃t = Wt +
∫ t

0
γsds

is a standard Brownian motion. The discounted stock price, {S̃t }t≥0 defined as S̃t =
St/Bt , is governed by the stochastic differential equation

d S̃t = (µt − rt ) S̃t dt + σt S̃t dWt

= (µt − rt − σtγt ) S̃t dt + σt S̃t dW̃t ,

and so we choose γt = (µt − rt )/σt . To ensure that {S̃t }t≥0 really is a Q-martingale
we make two further boundedness assumptions. First, in order to apply the Girsanov
Theorem, we insist that

EP

[
exp

(∫ T

0

1

2
γ 2

t dt

)]
<∞.

Second we require that {S̃t }t≥0 is a Q-martingale (not just a local martingale) and so
we assume a second Novikov condition:

EQ

[
exp

(∫ T

0

1

2
σ 2

t dt

)]
<∞.

Under these extra boundedness assumptions {S̃t }t≥0 then is a martingale under the
measure Q defined by

dQ

dP

∣∣∣∣
Ft

= L(γ )t = exp

(
−

∫ t

0
γsdWs −

∫ t

0

1

2
γ 2

s ds

)
.

Second step
to
replication

That completes the first step in our replication strategy. The second is to form the
(Q, {Ft }t≥0)-martingale {Mt }t≥0 given by

Mt = EQ
[

B−1
T CT

∣∣∣Ft

]
.
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Replicating a
claim

The third step is to show that our market is complete, that is any claim CT can be
replicated. First we invoke the martingale representation theorem to write

Mt = M0 +
∫ t

0
θudW̃u

and consequently, provided that σt never vanishes,

Mt = M0 +
∫ t

0
φsd S̃s,

where {φt }t≥0 is {Ft }t≥0-predictable.
Guided by our previous work we guess that a replicating portfolio should consist

of φt units of stock and ψt = Mt − φt St units of cash bond at time t . In Exercise 1
it is checked that such a portfolio is self-financing. Its value at time t is

Vt = φt St + ψt Bt = Bt Mt .

In particular, at time T , VT = BT MT = CT , and so we have a self-financing,
replicating portfolio. The usual arbitrage argument tells us that the fair value of the
claim at time t is Vt , that is the arbitrage price of the option at time t is

Vt = BtE
Q
[

B−1
T CT

∣∣∣Ft

]
= EQ

[
e−

∫ T
t ruduCT

∣∣∣Ft

]
.

The
generalised
Black–
Scholes
equation

In general such an expectation must be evaluated numerically. If rt , µt and σt

depend only on (t, St ) then one approach to this is first to express the price as
the solution to a generalised Black–Scholes partial differential equation. This is
achieved with the Feynman–Kac Stochastic Representation Theorem. Specifically,
using Example 4.8.6, Vt = F(t, St ) where F(t, x) solves

∂F

∂t
(t, x)+ 1

2
σ 2(t, x)x2 ∂

2 F

∂x2
(t, x)+ r(t, x)x

∂F

∂x
(t, x)− r(t, x)F(t, x) = 0,

subject to the terminal condition corresponding to the claim CT , at least provided

∫ T

0
EQ

[(
σ(t, x)

∂F

∂x
(t, x)

)2
]

ds <∞.

For vanilla options, in the special case when r , µ and σ are functions of t alone, the
partial differential equation can be solved explicitly. As is shown in Exercise 3 the
procedure is exactly that used to solve the usual Black–Scholes equation. The price
can be found from the classical Black–Scholes price via the following simple rule:
for the value of the option at time t replace r and σ 2 by

1

T − t

∫ T

t
r(s)ds and

1

T − t

∫ T

t
σ 2(s)ds

respectively.
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7.2 Multiple stock models

So far we have assumed that the market consists of a riskless cash bond and a
single ‘risky’ asset. However, the need to model whole portfolios of options or
more complex equity products leads us to seek models describing several securities
simultaneously. Such models must encode the interdependence between different
security prices.

Correlated
security
prices

Suppose that we are modelling the evolution of n risky assets and, as ever, a single
risk-free cash bond. We assume that it is not possible to exactly replicate one of the
assets by a portfolio composed entirely of the others. In the most natural extension
of the classical Black–Scholes model, considered individually the price of each
risky asset follows a geometric Brownian motion, and interdependence of different
asset prices is achieved by taking the driving Brownian motions to be correlated.
Equivalently, we take a set of n independent Brownian motions and drive the asset
prices by linear combinations of these; see Exercise 2. This suggests the following
market model.

Multiple asset model: Our market consists of a cash bond {Bt }0≤t≤T and n
different securities with prices {S1

t , S2
t , . . . , Sn

t }0≤t≤T , governed by the system
of stochastic differential equations

d Bt = r Bt dt,

d Si
t = Si

t

(
n∑

j=1

σi j (t)dW j
t + µi (t)dt

)
, i = 1, 2, . . . , n, (7.3)

where {W j
t }t≥0, j = 1, . . . , n, are independent Brownian motions. We

assume that the matrix σ = (σi j ) is invertible.

Remarks:

1 This model is called an n-factor model as there are n sources of randomness. If there
are fewer sources of randomness than stocks then there is redundancy in the model
as we can replicate one of the stocks by a portfolio composed of the others. On the
other hand, if we are to be able to hedge any claim in the market, then, roughly
speaking, we need as many ‘independent’ stocks as sources of randomness. This
mirrors Proposition 1.6.5.

2 Notice that the volatility of each stock in this model is really a vector. Since the
Brownian motions {W j

t }t≥0, j = 1, . . . , n, are independent, the total volatility of

the process {Si
t }t≥0 is

{√∑n
j=1 σ

2
i j (t)

}
t≥0

. ✷
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Of course we haven’t checked that this model really makes sense. That is, we need
to know that the system of stochastic differential equations (7.3) has a solution.
In order to verify this and to analyse such multifactor market models we need
multidimensional analogues of the key results of Chapter 4.

Multifactor
Itô formula

The most basic tool will be an n-factor version of the Itô formula. In the same way as
we used the one-factor Itô formula to find a description (in the form of a stochastic
differential equation) of models constructed as functions of Brownian motion, here
we shall build new multifactor models from old. Our basic building blocks will be
solutions to systems of stochastic differential equations of the form

d Xi
t = µi (t)dt +

n∑
j=1

σi j (t)dW j
t , i = 1, . . . , n, (7.4)

where {W j
t }t≥0, j = 1, . . . , n, are independent Brownian motions. We write {Ft }t≥0

for the σ -algebra generated by {W j
t }t≥0, j = 1, . . . , n. Our work of Chapter 4 gives

a rigorous meaning to (the integrated version of) the system (7.4) provided {µi (t)}t≥0

and {σi j (t)}t≥0, 1 ≤ i ≤ n, 1 ≤ j ≤ n, are {Ft }t≥0-predictable processes with

E

[∫ t

0

(
n∑

j=1

(
σi j (s)

)2 + |µi (s)|
)

ds

]
<∞, t > 0, i = 1, . . . , n.

Let us write {Xt }t≥0 for the vector of processes {X1
t , X2

t , . . . , Xn
t }t≥0 and define a

new stochastic process by Zt = f (t, Xt ). Here we suppose that f (t, x) : R+×Rn →
R is sufficiently smooth that we can apply Taylor’s Theorem, just as in §4.3, to find
the stochastic differential equation governing {Zt }t≥0. Writing x = (x1, . . . , xn), we
obtain

d Zt = ∂ f

∂t
(t, Xt )dt +

n∑
i=1

∂ f

∂xi
(t, Xt )d Xi

t +
1

2

n∑
i, j=1

∂2 f

∂xi∂x j
(t, Xt )d Xi

t d X j
t + · · · .

(7.5)

Since the Brownian motions {W i
t }t≥0 are independent we have the multiplication

table

× dW i
t dW j

t dt

dW i
t dt 0 0

dW j
t 0 dt 0

dt 0 0 0

for i �= j (7.6)

and this gives d Xi
t d X j

t =
∑n

k=1 σikσ jkdt . The same multiplication table tells us
that d Xi

t d X j
t d Xk

t is o(dt) and so substituting into equation (7.5) we have provided
a heuristic justification of the following result.
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Theorem 7.2.1 (Multifactor Itô formula) Let {Xt }t≥0 = {X1
t , X2

t , . . . , Xn
t }t≥0

solve

d Xi
t = µi (t)dt +

n∑
j=1

σi j (t)dW j
t , i = 1, 2, . . . , n,

where {W i
t }t≥0, i = 1, . . . , n, are independent P-Brownian motions. Further sup-

pose that the real-valued function f (t, x) on R+ ×Rn is continuously differentiable
with respect to t and twice continuously differentiable in the x-variables. Then
defining Zt = f (t, Xt ) we have

d Zt = ∂ f

∂t
(t, Xt )dt +

n∑
i=1

∂ f

∂xi
(t, Xt )d Xi

t +
1

2

n∑
i, j=1

∂2 f

∂xi∂x j
(t, Xt )Ci j (t)dt

where Ci j (t) =
∑n

k=1 σik(t)σ jk(t).

Remark: Notice that if we write σ for the matrix (σi j ) then Ci j =
(
σσ t

)
i j where σ t

is the transpose of σ . ✷

We can now check that there is a solution to the system of equations (7.3).

Example 7.2.2 (Multiple asset model) Let {W i
t }t≥0, i = 1, . . . , n, be independent

Brownian motions. Define {S1
t , S2

t , . . . , Sn
t }t≥0 by

Si
t = Si

0 exp

(∫ t

0

(
µi (s)− 1

2

n∑
k=1

σ 2
ik(s)

)
ds +

∫ t

0

n∑
j=1

σi j (s)dW j
s

)
;

then {S1
t , S2

t , . . . , Sn
t }t≥0 solves the system (7.3).

Justification: Defining the processes {Xi
t }t≥0 for i = 1, 2, . . . , n by

d Xi
t =

(
µi (t)− 1

2

n∑
k=1

σ 2
ik(t)

)
dt +

n∑
j=1

σi j (t)dW j
t

we see that Si
t = f i (t, Xt ) where, writing x = (x1, . . . , xn), f i (t, x) � Si

0exi .
Applying Theorem 7.2.1 gives

d Si
t = Si

0 exp(Xi
t )d Xi

t +
1

2
Si

0 exp(Xi
t )Cii (t)dt

= Si
t

{(
µi (t)− 1

2

n∑
k=1

σ 2
ik(t)

)
dt +

n∑
j=1

σi j (t)dW j
t +

1

2

n∑
k=1

σik(t)σik(t)dt

}

= Si
t

{
µi (t)dt +

n∑
j=1

σi j (t)dW j
t

}

as required. ✷
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Remark: Exactly as in the single factor models, although we can write down
arbitrarily complicated systems of stochastic differential equations, existence and
uniqueness of solutions are far from guaranteed. If the coefficients are bounded and
uniformly Lipschitz then a unique solution does exist, but such results are beyond
our scope here. Instead, once again, we refer to Chung & Williams (1990) or Ikeda
& Watanabe (1989). ✷

Integration
by parts

We can also use the multiplication table (7.6) to write down an n-factor version of
the integration by parts formula.

Lemma 7.2.3 If

d Xt = µ(t, Xt )dt +
n∑

i=1

σi (t, Xt )dW i
t

and

dYt = ν(t, Yt )dt +
n∑

i=1

ρi (t, Yt )dW i
t

then

d(Xt Yt ) = Xt dYt + Yt d Xt +
n∑

i=1

σi (t, Xt )ρi (t, Yt )dt.

Change of
measure

Pricing and hedging in the multiple stock model will follow a familiar pattern. First
we find an equivalent probability measure under which all of the discounted stock
prices {S̃i

t }t≥0, i = 1, . . . , n, given by S̃i
t = e−r t Si

t , are martingales. We then
use a multifactor version of the Martingale Representation Theorem to construct a
replicating portfolio.

Construction of the martingale measure is, of course, via a multifactor version of
the Girsanov Theorem.

Theorem 7.2.4 (Multifactor Girsanov Theorem) Let {W i
t }t≥0, i = 1, . . . , n, be

independent Brownian motions under the measure P generating the filtration {Ft }t≥0

and let {θi (t)}t≥0, i = 1, . . . , n, be {Ft }t≥0-previsible processes such that

EP

[
exp

(
1

2

∫ T

0

n∑
i=1

θ2
i (s)ds

)]
ds <∞. (7.7)

Define

Lt = exp

(
−

n∑
i=1

(∫ T

0
θi (s)dW i

s +
1

2

∫ T

0
θ2

i (s)ds

))

and let P(L) be the probability measure defined by

dP(L)

dP

∣∣∣∣∣
Ft

= Lt .
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Then under P(L) the processes {Xi
t }t≥0, i = 1, . . . , n, defined by

Xi
t = W i

t +
∫ t

0
θi (s)ds

are all martingales.

Sketchofproof: The proof mimics that in the one-factor case. It is convenient to write
Lt =

∏n
i=1 Li

t where

Li
t = exp

(
−

∫ t

0
θi (s)dW i

s −
1

2

∫ t

0
θ2

i (s)ds

)
.

That {Lt }t≥0 defines a martingale follows from (7.7) and the independence of the
Brownian motions {W i

t }t≥0, i = 1, . . . , n.
To check that {Xi

t }t≥0 is a (local) P(L)-martingale we find the stochastic differen-
tial equation satisfied by {Xi

t Lt }t≥0. Since

d Li
t = −θi (t)L

i
t dW i

t ,

repeated application of our product rule gives

d Lt = −Lt

n∑
i=1

θi (t)dW i
t .

Moreover,
d Xi

t = dW i
t + θi (t)dt,

and so another application of our product rule gives

d(Xi
t Lt ) = Xi

t d Lt + Lt dW i
t + Ltθi (t)dt − Ltθi (t)dt

= −Xi
t Lt

n∑
i=1

θi (t)dW i
t + Lt dW i

t .

Combined with the boundedness condition (7.7), this proves that {Xi
t Lt }t≥0 is a

P-martingale and hence {Xi
t }t≥0 is a P(L)-martingale. P(L) is equivalent to P so

{Xi
t }t≥0 has quadratic variation [Xi ]t = t with P(L)-probability one and once

again Lévy’s characterisation of Brownian motion confirms that {Xi
t }t≥0 is a P(L)-

Brownian motion as required. ✷

A martingale
measure

As promised we now use this to find a measure Q, equivalent to P, under which
the discounted stock price processes {S̃i

t }t≥0, i = 1, . . . , n, are all martingales. The
measure Q will be one of the measures P(L) of Theorem 7.2.4. We just need to
identify the appropriate drifts {θi }t≥0.

The discounted stock price {S̃i
t }t≥0, defined by S̃i

t = B−1
t Si

t , is governed by the
stochastic differential equation

d S̃i
t = S̃i

t (µi (t)− r) dt + S̃i
t

n∑
j=1

σi j (t)dW j
t

= S̃i
t

(
µi (t)− r −

n∑
j=1

θ j (t)σi j (t)

)
dt + S̃i

t

n∑
j=1

σi j (t)d X j
t ,
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where as in Theorem 7.2.4

d X j
t = θ j (t)dt + dW j

t .

The discounted stock price processes will (simultaneously) be (local) martingales
under Q = P(L) if we can make all the drift terms vanish. That is, if we can find
{θ j (t)}t≥0, j = 1, . . . , n, such that

µi (t)− r −
n∑

j=1

θ j (t)σi j (t) = 0 for all i = 1, . . . , n.

Dropping the dependence on t in our notation and writing

µ = (µ1, . . . , µn) , θ = (θ1, . . . , θn) , 1 = (1, . . . , 1) and σ = (
σi j

)
,

this becomes

µ− r1 = θσ. (7.8)

A solution certainly exists if the matrix σ is invertible, an assumption that we made
in setting up our multiple asset model.

In order to guarantee that the discounted price processes are martingales, not just
local martingales, once again we impose a Novikov condition:

EQ

[
exp

(∫ t

0

1

2

n∑
j=1

σ 2
i j (t)dt

)]
<∞ for each i.

Replicating
the claim

At this point we guess, correctly, that the value of a claim CT ∈ FT at time t < T is
its discounted expected value under the measure Q. To prove this we show that there
is a self-financing replicating portfolio and this we infer from a multifactor version
of the Martingale Representation Theorem.

Theorem 7.2.5 (Multifactor Martingale Representation Theorem) Let

{W i
t }t≥0, i = 1, . . . , n,

be independent P-Brownian motions generating the filtration {Ft }t≥0. Let
{M1

t , . . . , Mn
t }t≥0 be given by

d Mi
t =

n∑
j=1

σi j (t)dW j
t ,

where

E

[
exp

(
1

2

∫ T

0

n∑
j=1

σi j (t)
2dt

)]
<∞.

Suppose further that the volatility matrix
(
σi j (t)

)
is non-singular (with probability

one). Then if {Nt }t≥0 is any one-dimensional
(
P, {Ft }t≥0

)
-martingale there exists an

n-dimensional {Ft }t≥0-previsible process {φt }t≥0 = {φ1
t , . . . , φ

n
t }t≥0 such that

Nt = N0 +
n∑

j=1

∫ t

0
φ

j
s d M j

s .
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A proof of this result is beyond our scope here. It can be found, for example, in
Protter (1990). Notice that the non-singularity of the matrix σ reflects our remark
about non-vanishing quadratic variation after the proof of Theorem 4.6.2.

We are now in a position to verify that our guess was correct: the value of a
claim in the multifactor world is its discounted expected value under the martingale
measure Q.

Let CT ∈ FT be a claim at time T and let Q be the martingale measure obtained
above. We write

Mt = EQ
[

B−1
T CT

∣∣∣Ft

]
.

Since, by assumption, the matrix σ = (
σi j

)
is invertible, the n-factor Martin-

gale Representation Theorem tells us that there is an {Ft }t≥0-previsible process
{φ1

t , . . . , φ
n
t }t≥0 such that

Mt = M0 +
n∑

j=1

∫ t

0
φ

j
s d S̃ j

s .

Our hedging strategy will be to hold φi
t units of the i th stock at time t for each

i = 1, . . . , n, and to hold ψt units of bond where

ψt = Mt −
n∑

j=1

φ
j
t S̃ j

t .

The value of the portfolio is then Vt = Bt Mt , which at time T is exactly the value of
the claim, and the portfolio is self-financing in that

dVt =
n∑

j=1

φ
j
t d S j

t + ψt d Bt .

In the absence of arbitrage the value of the derivative at time t is

Vt = BtE
Q
[

B−1
T CT

∣∣∣Ft

]
= e−r(T−t)EQ [CT |Ft ]

as predicted.

Remark: The multifactor market that we have constructed is complete and arbitrage-
free. We have simplified the exposition by insisting that the number of sources
of noise in our market is exactly matched by the number of risky tradable assets
that we are modelling. More generally, we could model k risky assets driven by d
sources of noise. Existence of a martingale measure corresponds to existence of a
solution to (7.8). It is uniqueness of the martingale measure that provides us with the
Martingale Representation Theorem and hence the ability to replicate any claim. For
a complete arbitrage-free market we then require that d ≤ k and that σ has full rank.
That is, the number of independent sources of randomness should exactly match the
number of ‘independent’ risky assets trading in our market. ✷
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The multi-
dimensional
Black–
Scholes
equation

In Exercise 7 you are asked to use a delta-hedging argument to obtain this price
as the solution to the multidimensional Black–Scholes equation. This partial dif-
ferential equation can also be obtained directly from the expectation price and a
multidimensional version of the Feynman–Kac stochastic representation. We quote
the appropriate version of this useful result here.

Theorem 7.2.6 (Multidimensional Feynman–Kac stochastic representation) Let
σ(t, x) = (σi j (t, x)) be a real symmetric n × n matrix, � : Rn → R and
µi : R+ ×Rn → R, i = 1, . . . , n, be real-valued functions and r be a constant. We
suppose that the function F(t, x), defined for (t, x) ∈ R+ ×Rn, solves the boundary
value problem

∂F

∂t
(t, x)+

n∑
i=1

µi (t, x)
∂F

∂xi
(t, x)+ 1

2

n∑
i, j=1

Ci j (t, x)
∂2 F

∂xi∂x j
(t, x)− r F(t, x) = 0,

F(T, x) = �(x),

where Ci j (t, x) =∑n
k=1 σik(t, x)σ jk(t, x).

Assume further that for each i = 1, . . . , n, the process {Xi
t }t≥0 solves the

stochastic differential equation

d Xi
t = µi (t, Xt )dt +

n∑
j=1

σi j (t, Xt )dW j
t

where Xt = {X1
t , . . . , Xn

t }. Finally, suppose that∫ T

0
E

[
n∑

j=1

(
σi j (s, Xs)

∂F

∂xi
(s, Xs)

)2
]

ds <∞, i = 1, . . . , n.

Then
F(t, x) = e−r(T−t)E [�(XT )| Xt = x] .

Corollary 7.2.7 Let St = {S1
t , . . . , Sn

t } be as above and CT = �(ST ) be a claim
at time T . Then the price of the claim at time t < T ,

Vt = e−r(T−t)EQ [�(ST )|Ft ] = e−r(T−t)EQ [�(ST )| St = x] � F(t, x)

satisfies

∂F

∂t
(t, x)+ 1

2

n∑
i, j=1

Ci j (t, x)xi x j
∂2 F

∂xi∂x j
(t, x)+ r

n∑
i=1

xi
∂F

∂xi
(t, x)− r F(t, x) = 0,

F(T, x) = �(x).

Proof: The process {St }t≥0 is governed by

d Si
t = r Si

t dt +
n∑

j=1

σi j (t, St )S
j
t d X j

t ,

where {X j
t }t≥0, j = 1, . . . , n, are Q-Brownian motions, so the result follows from

an application of Theorem 7.2.6. ✷
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Numeraires The more assets there are in our market, the more freedom we have in choosing our
‘numeraire’ or ‘reference asset’. Usually it is chosen to be a cash bond, but in fact
it could be any of the tradable assets available. In the context of foreign exchange
we checked that we could use as reference the riskless bond in either currency and
always obtain the same value for a claim. Here we consider two numeraires in the
same market, but they may have non-zero volatility.

Suppose that our market consists of n+ 2 tradable assets whose prices we denote
by {B1

t , B2
t , S1

t , . . . , Sn
t }t≥0. We compare the prices obtained for a derivative by

two traders, one of whom chooses {B1
t }t≥0 as numeraire and the other of whom

chooses {B2
t }t≥0. We always assume our multidimensional geometric Brownian

motion model for the evolution of prices, but now neither of the processes {Bi
t }t≥0

necessarily has finite variation.
If we choose {B1

t }t≥0 as numeraire then we first find an equivalent measure, Q1,
under which the asset prices discounted by {B1

t }t≥0, that is{
B2

t

B1
t
,

S1
t

B1
t
, . . . ,

Sn
t

B1
t

}
t≥0

,

are all Q1-martingales. The value that we obtain for a derivative with payoff CT at
time T is then

V 1
t = B1

t EQ1

[
CT

B1
T

∣∣∣∣∣Ft

]

(see Exercise 7).
If instead we had chosen {B2

t }t≥0 as our numeraire then the price would have been

V 2
t = B2

t EQ2

[
CT

B2
T

∣∣∣∣∣Ft

]

where Q2 is an equivalent probability measure under which{
B1

t

B2
t
,

S1
t

B2
t
, . . . ,

Sn
t

B2
t

}
t≥0

are all martingales. We have not proved that such a measure Q2 is unique, but if
a claim can be replicated we obtain the same price for any measure Q2 with this
property.

Suppose that we choose Q2 so that its Radon–Nikodym derivative with respect to
Q1 is given by

dQ2

dQ1

∣∣∣∣∣
Ft

= B2
t

B1
t
.

Notice that since Q1 is a martingale measure for an investor choosing {B1
t }t≥0 as

numeraire, we know that {B2
t /B1

t }t≥0 is a Q1-martingale. Recall that if

dQ

dP

∣∣∣∣
Ft

= ζt , for all t > 0,
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then, for 0 ≤ s ≤ t ,

EQ [ Xt |Fs] = EP

[
ζt

ζs
Xt

∣∣∣∣Fs

]
.

We first apply this to check that {Si
t /B2

t }t≥0 is a Q2-martingale for each i =
1, . . . , n.

EQ2
[

Si
t

B2
t

∣∣∣∣Fs

]
= EQ1

[
B2

t

B1
t

B1
s

B2
s

Si
t

B2
t

∣∣∣∣∣Fs

]

= EQ1

[
B1

s

B2
s

Si
t

B1
t

∣∣∣∣∣Fs

]

= B1
s

B2
s

Si
s

B1
s
= Si

s

B2
s
,

where the last line follows since B1
s and B2

s are Fs-measurable and {Si
t /B1

t }t≥0 is
a Q1-martingale. In other words, {Si

t /B2
t }t≥0 is a Q2-martingale as required. That

{B1
t /B2

t }t≥0 is a Q2-martingale follows in the same way.
The price for our derivative given that we chose {B2

t }t≥0 as numeraire is then

V 2
t = EQ2

[
B2

t

B2
T

CT

∣∣∣∣∣Ft

]

= EQ1

[
B2

T

B1
T

B1
t

B2
t

B2
t

B2
T

CT

∣∣∣∣∣Ft

]

= EQ1

[
B1

t

B1
T

CT

∣∣∣∣∣Ft

]
= V 1

t .

In other words, the choice of numeraire is unimportant – we always arrive at the
same price.

Quantos We now apply our multifactor technology in an example. We are going to price a
quanto forward contract.

Definition 7.2.8 A financial asset is called a quanto product if it is denominated
in a currency other than that in which it is traded.

A quanto forward contract is also known as a guaranteed exchange rate forward. It
is most easily explained through an example.

Example 7.2.9 BP, a UK company, has a Sterling denominated stock price that
we denote by {St }t≥0. For a dollar investor, a quanto forward contract on BP
stock with maturity T has payoff (ST − K ) converted into dollars according to
some prearranged exchange rate. That is the payout will be $E(ST − K ) for some
preagreed E, where ST is the Sterling asset price at time T .

As in our foreign exchange market of §5.3 we shall assume that there is a riskless
cash bond in each of the dollar and Sterling markets, but now we have two random
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processes to model, the stock price, {St }t≥0 and the exchange rate, that is the value of
one pound in dollars which we denote by {Et }t≥0. This will then require a two-factor
model.

Black–Scholes quanto model: We write {Bt }t≥0 for the dollar cash bond and
{Dt }t≥0 for its Sterling counterpart. Writing Et for the dollar worth of one
pound at time t and St for the Sterling asset price at time t , our model is

Dollar bond Bt = ert ,

Sterling bond Dt = eut ,

Sterling asset price St = S0 exp
(
νt + σ1W 1

t

)
,

Exchange rate Et = E0 exp
(
λt + ρσ2W 1

t +
√

1− ρ2σ2W 2
t

)
,

where {W 1
t }t≥0 and {W 2

t }t≥0 are independent P-Brownian motions and r , u,
ν, λ, σ1, σ2 and ρ are constants.

In this model the volatilities of {St }t≥0 and {Et }t≥0 are σ1 and σ2 respectively
and {W 1

t , ρW 1
t +

√
1− ρ2W 2

t }t≥0 is a pair of correlated Brownian motions with
correlation coefficient ρ. There is no extra generality in replacing the expressions for
St and Et by

St = S0 exp
(
νt + σ11W̃ 1

t + σ12W̃ 2
t

)
,

Et = E0 exp
(
λt + σ21W̃ 1

t + σ22W̃ 2
t

)
,

for independent Brownian motions {W̃ 1
t , W̃ 2

t }t≥0.

Pricing a
quanto
forward
contract

What is the value of K that makes the value at time zero of the quanto forward
contract zero?

As in our discussion of foreign exchange, the first step is to reformulate the
problem in terms of the dollar tradables. We now have three dollar tradables: the
dollar worth of the Sterling bond, Et Dt ; the dollar worth of the stock, Et St ; and
the dollar cash bond, Bt . Choosing the dollar cash bond as numeraire, we first find
the stochastic differential equations governing the discounted values of the other two
dollar tradables. We write Yt = B−1

t Et Dt and Zt = B−1
t Et St . Since

d Et =
(
λ+ 1

2
σ 2

2

)
Et dt + ρσ2 Et dW 1

t +
√

1− ρ2σ2 Et dW 2
t ,

application of our multifactor integration by parts formula gives

d(Et Dt ) = uEt Dt dt+
(
λ+ 1

2
σ 2

2

)
Et Dt dt+ρσ2 Et Dt dW 1

t +
√

1− ρ2 σ2 Et Dt dW 2
t

and

dYt =
(
λ+ 1

2
σ 2

2 + u − r

)
Yt dt + Yt

(
ρσ2dW 1

t +
√

1− ρ2σ2dW 2
t

)
.
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Similarly, since

d St =
(
ν + 1

2
σ 2

1

)
St dt + σ1St dW 1

t ,

d (Et St ) =
(
ν + 1

2
σ 2

1

)
Et St dt + σ1 Et St dW 1

t

+
(
λ+ 1

2
σ 2

2

)
St Et dt + ρσ2St Et dW 1

t

+
√

1− ρ2σ2St Et dW 2
t + ρσ1σ2St Et dt

and so

d Zt =
(
ν + 1

2
σ 2

1 + λ+ 1

2
σ 2

2 + ρσ1σ2 − r

)
Zt dt

+ (σ1 + ρσ2) Zt dW 1
t +

√
1− ρ2σ2 Zt dW 2

t .

Now we seek a change of measure to make these two processes martingales. Our
calculations after the proof of Theorem 7.2.4 reduce this to finding θ1, θ2 such that

λ+ 1

2
σ 2

2 + u − r − θ1ρσ2 − θ2

√
1− ρ2σ2 = 0

and

ν + 1

2
σ 2

1 + λ+ 1

2
σ 2

2 + ρσ1σ2 − r − θ1 (σ1 + ρσ2)− θ2

√
1− ρ2σ2 = 0.

Solving this pair of simultaneous equations gives

θ1 =
ν + 1

2σ
2
1 + ρσ1σ2 − u

σ1

and

θ2 =
λ+ 1

2σ
2
2 + u − r − ρσ2θ1√

1− ρ2σ2
.

Under the martingale measure, Q, {X1
t }t≥0 and {X2

t }t≥0 defined by X1
t = W 1

t + θ1t
and X2

t = W 2
t + θ2t are independent Brownian motions. We have

St = S0 exp

((
u − ρσ1σ2 − 1

2
σ 2

1

)
t + σ1 X1

t

)
.

In particular,

ST = exp (−ρσ1σ2T ) S0euT exp

(
σ1 X1

T −
1

2
σ 2

1 T

)

and we are finally in a position to price the forward. Since {X1
t }t≥0 is a Q-Brownian

motion,

EQ

[
exp

(
σ1 X1

T −
1

2
σ 2

1 T

)]
= 1,
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so

V0 = e−rT EEQ [(ST − K )]

= e−rT E
(

exp (−ρσ1σ2T ) S0euT − K
)
.

Writing F = S0euT for the forward price in the Sterling market and setting V0 = 0
we see that we should take

K = F exp (−ρσ1σ2T ) .

Remark: The exchange rate is given by

Et = E0 exp

((
r − u − 1

2
σ 2

2

)
t + ρσ2 X1

t +
√

1− ρ2σ2 X2
t

)
.

It is reassuring to observe that ρX1
t +

√
1− ρ2 X2

t is a Q-Brownian motion with
variance one so that this expression for {Et }t≥0 is precisely that obtained in §5.3.
Notice also that the discounted stock price process e−r t St is not a martingale; there
is an extra term, reflecting the fact that the Sterling price is not a dollar tradable. ✷

7.3 Asset prices with jumps

The Black–Scholes framework is highly flexible. The critical assumptions are
continuous time trading and that the dynamics of the asset price are continuous.
Indeed, provided this second condition is satisfied, the Black–Scholes price can be
justified as an asymptotic approximation to the arbitrage price under discrete trading,
as the trading interval goes to zero. But are asset prices continuous?

So far, we have always assumed that any contracts written will be honoured. In
particular, if a government or company issues a bond, we have ignored the possibility
that they might default on that contract at maturity. But defaults do happen. This has
been dramatically illustrated in recent years by credit crises in Asia, Latin America
and Russia. If a company A holds a substantial quantity of company B’s debt
securities, then a default by B might be expected to have the knock-on effect of
a sudden drop in company A’s share price. How can we incorporate these market
‘shocks’ into our model?

A Poisson
process of
jumps

By their very nature, defaults are unpredictable. If we assume that we have absolutely
no information to help us predict the default times or other market shocks, then we
should model them by a Poisson random variable. That is the time between shocks
is exponentially distributed and the number of shocks by time t , denoted by Nt , is
a Poisson random variable with parameter λt for some λ > 0. Between shocks we
assume that an asset price follows our familiar geometric Brownian motion model.

A typical model for the evolution of the price of a risky asset with jumps is

d St

St
= µdt + σdWt − δd Nt , (7.9)
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where {Wt }t≥0 and {Nt }t≥0 are independent. To make sense of equation (7.9) we
write it in integrated form, but then we must define the stochastic integral with respect
to {Nt }t≥0. Writing τi for the time of the i th jump of the Poisson process, we define

∫ t

0
f (u, Su)d Nu =

Nt∑
i=1

f
(
τ(i)−, Sτ(i)−

)
.

For the model (7.9), if there is a shock, then the asset price is decreased by a factor
of (1− δ). This observation tells us that the solution to (7.9) is

St = S0 exp

((
µ− 1

2
σ 2

)
t + σWt

)
(1− δ)Nt .

To deal with more general models we must extend our theory of stochastic calculus
to incorporate processes with jumps. As usual, the first step is to find an (extended)
Itô formula.

Assumption: We assume that asset price processes are càdlàg, that is they are
right continuous with left limits.

Theorem 7.3.1 (Itô’s formula with jumps) Suppose

dYt = µt dt + σt dWt + νt d Nt

where, under P, {Wt }t≥0 is a standard Brownian motion and {Nt }t≥0 is a Poisson
process with intensity λ. If f is a twice continuously differentiable function on R

then

f (Yt ) = f (Y0)+
∫ t

0
f ′(Ys−)dYs + 1

2

∫ t

0
f ′′(Ys−)σ 2

s ds

−
Nt∑

i=1

f ′(Tτi−)
(
Yτi − Yτi−

)+ Nt∑
i=1

(
f (Yτi )− f (Yτi−)

)
, (7.10)

where {τi } are the times of the jumps of the Poisson process.

We don’t prove this here, but heuristically it is not difficult to see that this should be
the correct result. The first three terms are exactly what we’d expect if the process
{Yt }t≥0 were continuous, but now, because of the discontinuities, we must distinguish
Ys− from Ys . In between jumps of {Nt }t≥0, precisely this equation should apply,
but we must compensate for changes at jump times. In the first three terms we
have included a term of the form

∑Nt
i=1 f ′(Yτi−)

(
Yτi − Yτi−

)
and the first sum in

equation (7.10) corrects for this. Since Nt is finite, we do not have to correct the term
involving f ′′. Now we add in the actual contribution from the jump times and this is
the second sum.
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Compensation As usual a key rôle will be played by martingales. Evidently a Poisson process,
{Nt }t≥0 with intensity λ under P is not a P-martingale – it is monotone increasing.
But we can write it as a martingale plus a drift. In Exercise 13 it is shown that the
process {Mt }t≥0 defined by Mt = Nt − λt is a P-martingale.

More generally we can consider time-inhomogeneous Poisson processes. For such
processes the intensity {λt }t≥0 is a function of time. The probability of a jump in
the time interval [t, t + δt) is λtδt + o(δt). Thus, for example, the probability that
there is no jump in the interval [s, t] is exp

(
− ∫ t

s λudu
)

. The corresponding Poisson

martingale is Mt = Nt −
∫ t

0 λsds. The process {$t }t≥0 given by $t =
∫ t

0 λsds is
the compensator of {Nt }t≥0.

In Exercise 14 it is shown that just as integration with respect to Brownian
martingales gives rise to (local) martingales, so integration with respect to Poisson
martingales gives rise to martingales.

Poisson
exponential
martingales

Example 7.3.2 Let {Nt }t≥0 be a Poisson process with intensity {λt }t≥0 under P

where for each t > 0,
∫ t

0 λsds < ∞. For a given bounded deterministic function
{αt }t≥0, let

Lt = exp

(∫ t

0
αsd Ms +

∫ t

0

(
1+ αs − eαs

)
λsds

)
(7.11)

where d Ms = d Ns − λsds. Find the stochastic differential equation satisfied by
{Lt }t≥0 and deduce that {Lt }t≥0 is a P-martingale.

Solution: First write

Zt =
∫ t

0
αsd Ms +

∫ t

0

(
1+ αs − eαs

)
λsds

so that Lt = eZt . Then

d Zt = αt d Nt − αtλt dt + (
1+ αt − eαt

)
λt dt

and by our generalised Itô formula

d Lt = Lt−d Zt +
(
−eZt−αt + eZt−+αt − eZt−

)
d Nt ,

where we have used the fact that if a jump in {Zt }t≥0 takes place at time t , then that
jump is of size αt−. Substituting and rearranging give

d Lt = Lt−αt d Mt + Lt−
(
1+ αt − eαt

)
λt dt − Lt−

(
1+ αt − eαt

)
d Nt

= Lt−
(
eαt − 1

)
d Mt .

By Exercise 14, {Lt }t≥0 is a P-martingale. ✷

Definition 7.3.3 Processes of the form of {Lt }t≥0 defined by (7.11) will be called
Poisson exponential martingales.

Our Poisson exponential martingales and Brownian exponential martingales are
examples of Doléans–Dade exponentials.
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Definition 7.3.4 For a semimartingale {Xt }t≥0 with X0 = 0, the Doléans–Dade
exponential of {Xt }t≥0 is the unique semimartingale solution {Zt }t≥0 to

Zt = 1+
∫ t

0
Zs−d Xs .

Change of
measure

In the same way as we used Brownian exponential martingales to change measure
and thus ‘transform drift’ in the continuous world, so we shall combine Brownian
and Poisson exponential martingales in our discontinuous asset pricing models. A
change of drift for a Poisson martingale will correspond to a change of intensity for
the Poisson process {Nt }t≥0. More precisely, we have the following version of the
Girsanov Theorem.

Theorem 7.3.5 (Girsanov Theorem for asset prices with jumps) Let {Wt }t≥0 be a
standard P-Brownian motion and {Nt }t≥0 a (possibly time-inhomogeneous) Poisson
process with intensity {λt }t≥0 under P. That is

Mt = Nt −
∫ t

0
λudu

is a P-martingale. We write Ft for the σ -field generated by FW
t ∪FN

t . Suppose that
{θt }t≥0 and {φt }t≥0 are {Ft }t≥0-previsible processes with φt positive for each t, such
that ∫ t

0
‖θs‖2ds <∞ and

∫ t

0
φsλsds <∞.

Then under the measure Q whose Radon–Nikodym derivative with respect to P is
given by

dQ

dP

∣∣∣∣
Ft

= Lt

where L0 = 1 and
d Lt

Lt−
= θt dWt − (1− φt ) d Mt ,

the process {Xt }t≥0 defined by Xt = Wt−
∫ t

0 θsds is a Brownian motion and {Nt }t≥0

has intensity {φtλt }t≥0.

In Exercise 16 it is shown that {Lt }t≥0 is actually the product of a Brownian
exponential martingale and a Poisson exponential martingale.

The proof of Theorem 7.3.5 is once again beyond our scope, but to check that the
processes {Xt }t≥0 and

{
Nt −

∫ t
0 φsλsds

}
t≥0 are both local martingales under Q is an

exercise based on the Itô formula.

Heuristics: An informal justification of the result is based on the extended multipli-
cation table:

× dWt d Nt dt

dWt dt 0 0
d Nt 0 d Nt 0
dt 0 0 0
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Thus, for example,

d

(
Lt

(
Nt −

∫ t

0
φsλsds

)) =
(

Nt −
∫ t

0
φsλsds

)
d Lt + Lt (d Nt − φtλt dt)

− Lt (1− φt )(d Nt )
2

=
(

Nt −
∫ t

0
φsλsds

)
d Lt + Lt (d Mt + λt dt)

− Ltφtλt dt − Lt (1− φt ) (d Mt + λt dt)

=
(

Nt −
∫ t

0
φsλsds

)
d Lt + Ltφt d Mt .

Since {Mt }t≥0 and {Lt }t≥0 are P-martingales, subject to appropriate boundedness

assumptions,
{

Lt

(
Nt −

∫ t
0 φsλsds

)}
t≥0

should be a P-martingale and consequently{(
Nt −

∫ t
0 φsλsds

)}
t≥0

should be a Q-martingale. ✷

Our instinct is to use the extended Girsanov Theorem to find an equivalent probabil-
ity measure under which the discounted asset price is a martingale.

Suppose then that
d St

St
= µdt + σdWt − δd Nt .

Evidently the discounted asset price satisfies

d S̃t

S̃t
= (µ− r) dt + σdWt − δd Nt .

But now we see that there are many choices of {θt }t≥0 and {φt }t≥0 in Theorem 7.3.5
that lead to a martingale measure. The difficulty of course is that our market is not
complete, so that although for any replicable claim we can use any of the martingale
measures and arrive at the same answer, there are claims that cannot be hedged.
There are two independent sources of risk, the Brownian motion and the Poisson
point process, and so if we are to be able to hedge arbitrary claims CT ∈ FT , we
need two tradable risky assets subject to the same two noises.

Market price
of risk

So if there are enough assets available to hedge claims, can we find a measure under
which once discounted they are all martingales? Remember that otherwise there will
be arbitrage opportunities in our market.

If the asset price has no jumps, we can write

d St

St
= µdt + σdWt

= (r + γ σ) dt + σdWt ,

where γ = (µ − r)/σ is the market price of risk. We saw in Chapter 5 that in
the absence of arbitrage (so when there is an equivalent martingale measure for our
market), γ will be the same for all assets driven by {Wt }t≥0.

If the asset price has jumps, then investors will expect to be compensated for the
additional risk associated with the possibility of downward jumps, even if we have
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‘compensated’ the jumps (replaced d Nt by d Mt ) so that their mean is zero. The price
of such an asset is governed by

d St

St
= µdt + σdWt + νd Mt

= (r + γ σ + ηλν) dt + σdWt + νd Mt

where ν measures the sensitivity of the asset price to the market shock and η is
the excess rate of return per unit of jump risk. Again if there is to be a martingale
measure under which all the discounted asset prices are martingales, then σ and η
should be the same for all assets whose prices are driven by {Wt }t≥0 and {Nt }t≥0.
The martingale measure, Q, will then be the measure Q of Theorem 7.3.5 under
which

Wt +
∫ t

0

µ− r

σ
ds and Mt −

∫ t

0
ηλds

are martingales. That is we take θ = γ and φ = −η.

Multiple
noises

The same ideas can be extended to assets driven by larger numbers of independent
noises. For example, we might have n assets with dynamics

d Si
t

Si
t
= µi dt +

n∑
α=1

σiαdWα
t +

m∑
β=1

νiβd Mβ
t

where, under P, {Wα
t }t≥0, α = 1, . . . , n, are independent Brownian motions and

{Mβ
t }t≥0, β = 1, . . . ,m, are independent Poisson martingales.
There will be an equivalent martingale measure under which all the discounted

asset prices are martingales if we can associate a unique market price of risk with
each source of noise. In this case we can write

µi = r +
n∑

α=1

γασiα +
m∑
β=1

ηβλβνiβ.

All discounted asset prices will be martingales under the measure Q for which

W̃α
t = Wα

t + γαt

is a martingale for each α and

M̃β
t = Mβ

t + ηβλβ t

is a martingale for each β.
As always it is replication that drives the theory. Note that in order to be able to

hedge arbitrary CT ∈ FT we’ll require n + m ‘independent’ tradable risky assets
driven by these sources of noise. With fewer assets at our disposal there will be
claims CT that we cannot hedge.

All this is little changed if we take the coefficients µ, σ , λ to be adapted to the
filtration generated by {W i

t }t≥0, i = 1, . . . , n; see Exercise 15. Since we are not
introducing any extra sources of noise, the same number of assets will be needed for
market completeness. These ideas form the basis of Jarrow–Madan theory.
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7.4 Model error

Even in the absence of jumps (or between jumps) we have given only a very vague
justification for the Samuelson model

d St = µSt dt + σ St dWt . (7.12)

Moreover, although we have shown that under this model the pricing and hedging of
derivatives are dictated by the single parameter σ , we have said nothing about how
actually to estimate this number from market data. So what is market practice?

Implied
volatility

Vanilla options are generally traded on exchanges, so if a trader wants to know the
price of, say, a European call option, then she can read it from her trading screen.
However, for an over-the-counter derivative, the price is not quoted on an exchange
and so one needs a pricing model. The normal practice is to build a Black–Scholes
model and then calibrate it to the market – that is estimate σ from the market. But it
is not usual to estimate σ directly from data for the stock price. Instead one uses the
quoted price for exchange-traded options written on the same stock. The procedure
is simple: for given strike price and maturity, we can think of the Black–Scholes
pricing formula for a European option as a mapping from volatility, σ , to price V.
In Exercise 17, it is shown that for vanilla options this mapping is strictly monotone
and so can be inverted to infer σ from the price. In other words, given the option
price one can recover the corresponding value of σ in the Black–Scholes formula.
This number is the so-called implied volatility.

If the markets really did follow our Black–Scholes model, then this procedure
would give the same value of σ , irrespective of the strike price and maturity of the
exchange-traded option chosen. Sadly, this is far from what we observe in reality:
not only is there dependence on the strike price for a fixed maturity, giving rise to
the famous volatility smile, but also implied volatility tends to increase with time
to maturity (Figure 7.1). Market practice is to choose as volatility parameter for
pricing an over-the-counter option the implied volatility obtained from ‘comparable’
exchange-traded options.

Hedging
error

This procedure can be expected to lead to a consistent price for exchange-traded and
over-the-counter options and model error is not a serious problem. The difficulties
arise in hedging. Even for exchange-traded options a model is required to determine
the replicating portfolio. We follow Davis (2001).

Suppose that the true stock price process follows

d St = αt St d St + βt St dWt

where {αt }t≥0 and {βt }t≥0 are {Ft }t≥0-adapted processes, but we price and hedge an
option with payoff �(ST ) at time T as though {St }t≥0 followed equation (7.12) for
some parameter σ .

Our estimate for the value of the option at time t < T will be V (t, St ) where
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Figure 7.1 Implied volatility as a function of strike price and maturity for European call options based on
the FTSE stock index.

V (t, x) satisfies the Black–Scholes partial differential equation

∂V

∂t
(t, x)+ r x

∂V

∂x
(t, x)+ 1

2
σ 2x2 ∂

2V

∂x2
(t, x)− r V (t, x) = 0,

V (T, x) = �(x).

Our hedging portfolio consists at time t of φt = ∂V
∂x (t, St ) units of stock and cash

bonds with total value ψt ert � V (t, St )− φt St .
Our first worry is that because of model misspecification, the portfolio is not

self-financing. So what is the cost of following such a strategy? Since the cost of
purchasing the ‘hedging’ portfolio at time t is V (t, St ), the incremental cost of the
strategy over an infinitesimal time interval [t, t + δt) is

∂V

∂x
(t, St )

(
St+δt − St

) + (
V (t, St )− ∂V

∂x
(t, St )St

)
(erδt − 1)

− V (t + δt, St+δt )+ V (t, St ).

In other words, writing Zt for our net position at time t , we have

d Zt = ∂V

∂x
(t, St )d St +

(
V (t, St )− ∂V

∂x
(t, St )St

)
rdt − dV (t, St ).

Since V (t, x) solves the Black–Scholes partial differential equation, applying Itô’s
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formula gives

d Zt = ∂V

∂x
(t, St )d St +

(
V (t, St )− ∂V

∂x
(t, St )St

)
rdt

− ∂V

∂t
(t, St )dt − ∂V

∂x
(t, St )d St − 1

2

∂2V

∂x2
(t, St )β

2
t S2

t dt

= 1

2
S2

t
∂2V

∂x2

(
σ 2 − β2

t

)
dt.

Irrespective of the model, V (T, ST ) = �(ST ) precisely matches the claim against
us at time T , so our net position at time T (having honoured the claim�(ST ) against
us) is

ZT =
∫ T

0

1

2
S2

t
∂2V

∂x2
(t, St )

(
σ 2 − β2

t

)
dt.

For European call and put options ∂2V
∂x2 > 0 (see Exercise 18) and so if σ 2 > β2

t
for all t ∈ [0, T ] our hedging strategy makes a profit. This means that regardless of
the price dynamics, we make a profit if the parameter σ in our Black–Scholes model
dominates the true diffusion coefficient β. This is key to successful hedging. Our
calculation won’t work if the price process has jumps, although by choosing σ large
enough one can still arrange for ZT to have positive expectation.

The choice of σ is still a tricky matter. If we are too cautious no one will buy
the option, too optimistic and we are exposed to the risk associated with changes
in volatility and we should try to hedge that risk. Such hedging is known as vega
hedging, the Greek vega of an option being the sensitivity of its Black–Scholes
price to changes in σ . The idea is the same as that of delta hedging (Exercise 5
of Chapter 5). For example, if we buy an over-the-counter option for which ∂V

∂σ
= v,

then we also sell a number v/v′ of a comparable exchange traded option whose value
is V ′ and for which ∂V ′

∂σ
= v′. The resulting portfolio is said to be vega-neutral.

Stochastic
volatility and
implied
volatility

Since we cannot observe the volatility directly, it is natural to try to model it as
a random process. A huge amount of effort has gone into developing so-called
stochastic volatility models. Fat-tailed returns distributions observed in data can
be modelled in this framework and sometimes ‘jumps’ in the asset price can be
best modelled by jumps in the volatility. For example if jumps occur according to
a Poisson process with constant rate and at the time, τ , of a jump, Sτ /Sτ− has
a lognormal distribution, then the distribution of St will be lognormal but with
variance parameter given by a multiple of a Poisson random variable (Exercise 19).
Stochastic volatility can also be used to model the ‘smile’ in the implied volatility
curve and we end this chapter by finding the correspondence between the choice of a
stochastic volatility model and of an implied volatility model. Once again we follow
Davis (2001). A typical stochastic volatility model takes the form

d St = µSt dt + σt St dW 1
t ,

dσt = a(St , σt )dt + b(St , σt )

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
,
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where {W 1
t }t≥0, {W 2

t }t≥0 are independent P-Brownian motions, ρ is a constant in
(0, 1) and the coefficients a(x, σ ) and b(x, σ ) define the volatility model.

As usual we’d like to find a martingale measure. If Q is equivalent to P, then its
Radon–Nikodym derivative with respect to P takes the form

dQ

dP

∣∣∣∣
Ft

= exp

(
−

∫ t

0
θ̂sdW 1

s −
1

2

∫ t

0
θ̂2

s ds −
∫ t

0
θsdW 2

s −
1

2

∫ t

0
θ2

s ds

)

for some integrands {θ̂t }t≥0 and {θt }t≥0. In order for the discounted asset price
{S̃t }t≥0 to be a Q-martingale, we choose

θ̂t = µ− r

σt
.

The choice of {θt }t≥0 however is arbitrary as {σt }t≥0 is not a tradable and so no
arbitrage argument can be brought to bear to dictate its drift. Under Q,

X1
t = W 1

t +
∫ t

0
θ̂sds

and

X2
t = W 2

t +
∫ t

0
θsds

are independent Brownian motions. The dynamics of {St }t≥0 and {σt }t≥0 are then
most conveniently written as

d St = r St dt + σt St d X1
t

and

dσt = ã(St , σt )dt + b(St , σt )

(
ρd X1

t +
√

1− ρ2d X2
t

)
where

ã(St , σt ) = a(St , σt )− b(St , σt )

(
ρθ̂t +

√
1− ρ2θt

)
.

We now introduce a second tradable asset. Suppose that we have an option written
on {St }t≥0 whose exercise value at time T is �(ST ). We define its value at times
t < T to be the discounted value of �(ST ) under the measure Q. That is

V (t, St , σt ) = EQ
[

e−r(T−t)�(ST )

∣∣∣Ft

]
.

Our multidimensional Feynman–Kac Stochastic Representation Theorem (combined
with the usual product rule) tells us that the function V (t, x, σ ) solves the partial
differential equation

∂V

∂t
(t, x, σ )+r x

∂V

∂x
(t, x, σ )+ã(t, x, σ )

∂V

∂σ
(t, x, σ )+1

2
σ 2x2 ∂

2V

∂x2
(t, x, σ )

+ 1

2
b(t, x, σ )2

∂2V

∂σ 2
(t, x, σ )+ρσ xb(t, x, σ )

∂2V

∂x∂σ
(t, x, σ )−r V (t, x, σ ) = 0.
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Writing Yt = V (t, St , σt ) and suppressing the dependence of V , ã and b on (t, St , σt )

in our notation, an application of Itô’s formula tells us that

dYt = ∂V

∂t
dt + ∂V

∂x
d St + ∂V

∂σ
dσt + 1

2

∂2V

∂x2
σ 2

t S2
t dt

+ ∂2V

∂x∂σ
ρbσt St dt + 1

2

∂2V

∂σ 2
b2dt

=
(

r V − r St
∂V

∂x
− ã

∂V

∂σ
− 1

2
σ 2

t S2
t
∂2V

∂x2
− 1

2
b2 ∂

2V

∂σ 2
− ρσt St b

∂2V

∂x∂σ

)
dt

+ r St
∂V

∂x
dt + σt St

∂V

∂x
d X1

t + ã
∂V

∂σ
dt + bρ

∂V

∂σ
d X1

t + b
√

1− ρ2 ∂V

∂σ
d X2

t

+ 1

2
σ 2

t S2
t
∂2V

∂x2
dt + ρbσt St

∂2V

∂x∂σ
dt + 1

2
b2 ∂

2V

∂σ 2
dt

= rYt dt + σt St
∂V

∂x
d X1

t + bρ
∂V

∂σ
d X1

t + b
√

1− ρ2 ∂V

∂σ
d X2

t .

If the mapping σ �→ y = V (t, x, σ ) is invertible so that σ = D(t, x, y) for some
nice function D, then

dYt = rYt dt + c(t, St , Yt )d X1
t + d(t, St , Yt )d X2

t

for some functions c and d .
We have now created a complete market model with tradables {St }t≥0 and {Yt }t≥0

for which Q is the unique martingale measure. Of course, we have actually created
one such market for each choice of {θt }t≥0 and it is the choice of {θt }t≥0 that specifies
the functions c and d and it is precisely these functions that tell us how to hedge.

So what model for implied volatility corresponds to this stochastic volatility
model? The implied volatility, σ̂ (t), will be such that Yt is the Black–Scholes price
evaluated at (t, St ) if the volatility in equation (7.12) is taken to be σ̂ (t). In this way
each choice of {θt }t≥0, or equivalently model for {Yt }t≥0, provides a model for the
implied volatility.

There is a huge literature on stochastic volatility. A good starting point is Fouque,
Papanicolau and Sircar (2000).

Exercises

1 Check that the replicating portfolio defined in §7.1 is self-financing.

2 Suppose that {W 1
t }t≥0 and {W 2

t }t≥0 are independent Brownian motions under P and
let ρ be a constant with 0 < ρ < 1. Find coefficients {αi j }i, j=1,2 such that

W̃ 1
t = α11W 1

t + α12W 2
t

and
W̃ 2

t = α21W 1
t + α22W 2

t

define two standard Brownian motions under P with E

[
W̃ 1

t W̃ 2
t

]
= ρt . Is your

solution unique?
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3 Suppose that F(t, x) solves the time-inhomogeneous Black–Scholes partial differ-
ential equation

∂F

∂t
(t, x)+ 1

2
σ 2(t)x2 ∂

2 F

∂x2
(t, x)+ r(t)x

∂F

∂x
(t, x)− r(t)F(t, x) = 0, (7.13)

subject to the boundary conditions appropriate to pricing a European call option.
Substitute

y = xeα(t), v = Feβ(t), τ = γ (t)

and choose α(t) and β(t) to eliminate the coefficients of v and ∂v
∂y in the resulting

equation and γ (t) to remove the remaining time dependence so that the equation
becomes

∂v

∂τ
(τ, y) = 1

2
y2 ∂

2v

∂y2
(τ, y).

Notice that the coefficients in this equation are independent of time and there is no
reference to r or σ . Deduce that the solution to equation (7.13) can be obtained by
making appropriate substitutions in the classical Black–Scholes formula.

4 Let {W i
t }t≥0, i = 1, . . . , n, be independent Brownian motions. Show that {Rt }t≥0

defined by

Rt =
√√√√ n∑

i=1

(W i
t )

2

satisfies a stochastic differential equation. The process {Rt }t≥0 is the radial part of
Brownian motion in Rn and is known as the n-dimensional Bessel process.

5 Recall that we define two-dimensional Brownian motion, {Xt }t≥0, by Xt =
(W 1

t ,W 2
t ), where {W 1

t }t≥0 and {W 2
t }t≥0 are independent (one-dimensional) standard

Brownian motions. Find the Kolmogorov backward equation for {Xt }t≥0.
Repeat your calculation if {W 1

t }t≥0 and {W 2
t }t≥0 are replaced by correlated Brown-

ian motions, {W̃ 1
t }t≥0 and {W̃ 1

t }t≥0 with E
[
dW̃ 1

t dW̃ 2
t

] = ρdt for some−1 < ρ < 1.

6 Use a delta-hedging argument to obtain the result of Corollary 7.2.7.

7 Repeat the Black–Scholes analysis of §7.2 in the case when the chosen numeraire,
{Bt }t≥0, has non-zero volatility and check that the fair price of a derivative with
payoff CT at time T is once again

Vt = BtE
Q

[
CT

BT

∣∣∣∣Ft

]

for a suitable choice of Q (which you should specify).

8 Two traders, operating in the same complete arbitrage-free Black–Scholes market of
§7.2, sell identical options, but make different choices of numeraire. How will their
hedging strategies differ?

9 Find a portfolio that replicates the quanto forward contract of Example 7.2.9.
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10 A quanto digital contract written on the BP stock of Example 7.2.9 pays $1 at time
T if the BP Sterling stock price, ST , is larger than K . Assuming the Black–Scholes
quanto model of §7.2, find the time zero price of such an option and the replicating
portfolio.

11 A quanto call option written on the BP stock of Example 7.2.9 is worth E(ST −K )+
dollars at time T , where ST is the Sterling stock price. Assuming the Black–Scholes
quanto model of §7.2, find the time zero price of the option and the replicating
portfolio.

12 Asian options Suppose that our market, consisting of a riskless cash bond, {Bt }t≥0,
and a single risky asset with price {St }t≥0, is governed by

d Bt = r Bt dt, B0 = 1

and
d St = µSt dt + σ St dWt ,

where {Wt }t≥0 is a P-Brownian motion.
An option is written with payoff CT = �(ST , ZT ) at time T where

Zt =
∫ t

0
g(u, Su)du

for some (deterministic) real-valued function g on R+ × R.
From our general theory we know that the value of such an option at time t satisfies

Vt = e−r(T−t)EQ [�(ST , ZT )|Ft ]

where Q is the measure under which {St/Bt }t≥0 is a martingale.
Show that Vt = F(t, St , Zt )where the real-valued function F(t, x, z) on R+×R×R

solves

∂F

∂t
+ r x

∂F

∂x
+ 1

2
σ 2x2 ∂

2 F

∂x2
+ g

∂F

∂z
− r F = 0,

F(T, x, z) = �(x, z).

Show further that the claim CT can be hedged by a self-financing portfolio consisting
at time t of

φt = ∂F

∂x
(t, St , Zt )

units of stock and

ψt = e−r t
(

F(t, St , Zt )− St
∂F

∂x
(t, St , Zt )

)
cash bonds.

13 Suppose that {Nt }t≥0 is a Poisson process whose intensity under P is {λt }t≥0. Show
that {Mt }t≥0 defined by

Mt = Nt −
∫ t

0
λsds

is a P-martingale with respect to the σ -field generated by {Nt }t≥0.
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14 Suppose that {Nt }t≥0 is a Poisson process under P with intensity {λt }t≥0 and {Mt }t≥0

is the corresponding Poisson martingale. Check that for an {FM
t }t≥0-predictable

process { ft }t≥0, ∫ t

0
fsd Ms

is a P-martingale.

15 Show that our analysis of §7.3 is still valid if we allow the coefficients in the stochas-
tic differential equations driving the asset prices to be {Ft }t≥0-adapted processes,
provided we make some boundedness assumptions that you should specify.

16 Show that the process {Lt }t≥0 in Theorem 7.3.5 is the product of a Poisson
exponential martingale and a Brownian exponential martingale and hence prove that
it is a martingale.

17 Show that in the classical Black–Scholes model the vega for a European call (or put)
option is strictly positive. Deduce that for vanilla options we can infer the volatility
parameter of the Black–Scholes model from the price.

18 Suppose that V (t, x) is the Black–Scholes price of a European call (or put) option at
time t given that the stock price at time t is x . Prove that ∂

2V
∂x2 ≥ 0.

19 Suppose that an asset price {St }t≥0 follows a geometric Brownian motion with jumps
occurring according to a Poisson process with constant intensity λ. At the time, τ , of
each jump, independently, Sτ /Sτ− has a lognormal distribution. Show that, for each
fixed t , St has a lognormal distribution with the variance parameter σ 2 given by a
multiple of a Poisson random variable.
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Notation

Financial instruments and the Black–Scholes model

T , maturity time.
CT , value of claim at time T .
{Sn}n≥0, {St }t≥0, value of the underlying stock.
K , the strike price in a vanilla option.
(ST − K )+ = max {(ST − K ), 0}.
r , continuously compounded interest rate.
σ , volatility.
P, a probability measure, usually the market measure.
Q, a martingale measure equivalent to the market measure.
EQ , the expectation under Q.
dQ
dP

the Radon–Nikodym derivative of Q with respect to P.

{S̃t }t≥0, the discounted value of the underlying stock. In general, for a process {Yt }t≥0, Ỹt =
Yt/Bt where {Bt }t≥0 is the value of the riskless cash bond at time t .

V (t, x), the value of a portfolio at time t if the stock price St = x . Also the Black–Scholes
price of an option.

General probability

(�,F ,P), probability triple.
P[A|B], conditional probability of A given B.
�, standard normal distribution function.
p(t, x, y), transition density of Brownian motion.

X
D= Y , the random variables X and Y have the same distribution.

Z ∼ N (0, 1), the random variable Z has a standard normal distribution.
E[X; A], see Definition 2.3.4.

Martingales and other stochastic processes

{Mt }t≥0, a martingale under some specified probability measure.
{[M]t }t≥0, the quadratic variation of {Mt }t≥0.
{Fn}n≥0, {Ft }t≥0, filtration.
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{F X
n }n≥0 (resp. {F X

t }t≥0), filtration generated by the process {Xn}n≥0 (resp. {Xt }t≥0).
E [ X |F ], E

[
Xn+1

∣∣ Xn
]
, conditional expectation; see pages 30ff.

{Wt }t≥0, Brownian motion under a specified measure, usually the market measure.
X∗(t), X∗(t), maximum and minimum processes corresponding to {Xt }t≥0.

Miscellaneous
�=, defined equal to.
δ(π), the mesh of the partition π .
f
∣∣
x , the function f evaluated at x .

θ t (for a vector or matrix θ ), the transpose of θ .
x > 0, x � 0 for a vector x ∈ Rn , see page 11.
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adapted, 29, 64
arbitrage, 5, 11
arbitrage price, 5
Arrow–Debreu securities, 11
at the money, 3
attainable claim, 14
axioms of probability, 29

Bachelier, 51, 102
Bessel process, 186

squared, 109
bid–offer spread, 21
binary model, 6
Binomial Representation Theorem, 44
binomial tree, 24
Black–Karasinski model, 110
Black–Scholes equation, 121, 135, 136

similarity solutions, 137
special solutions, 136
variable coefficients, 162, 186

Black–Scholes model
basic, 112
coupon bonds, 131
dividends

continuous payments, 126
periodic payments, 129

foreign exchange, 123
general stock model, 160
multiple assets, 163
quanto products, 173
with jumps, 175

Black–Scholes pricing formula, 45, 120, 135
bond, 4

coupon, 131
pure discount, 131

Brownian exponential martingale, 65
Brownian motion

definition, 53
finite dimensional distributions, 54

hitting a sloping line, 61, 69
hitting times, 59, 66, 69
Lévy’s characterisation, 90
Lévy’s construction, 56
maximum process, 60, 69
path properties, 55
quadratic variation, 75
reflection principle, 60
scaling, 63
standard, 54
transition density, 54
with drift, 63, 99, 110

càdlàg, 66
calibration, 181
cash bond, 5
Central Limit Theorem, 46
chain rule

Itô stochastic calculus, see Itô’s formula
Stratonovich stochastic calculus, 109

change of probability measure
continuous processes, see Girsanov’s Theorem
on binomial tree, 97

claim, 1
compensation

Poisson process, 177
sub/supermartingale, 41

complete market, 9, 16, 47
conditional expectation, 30
coupon, 131
covariation, 94
Cox–Ross–Rubinstein model, 24

delta, 122
delta hedging, 135
derivatives, 1
discounting, 14, 32
discrete stochastic integral, 36
distribution function, 29

standard normal, 47
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dividend-paying stock, 49, 126
continuous payments, 126
periodic dividends, 129
three steps to replication, 127

Doléans–Dade exponential, 177
Dominated Convergence Theorem, 67
Doob’s inequality, 80
doubling strategy, 113

equities, 126
periodic dividends, 129

equivalent martingale measure, 15, 33, 115
equivalent measure, 15, 37, 98
exercise boundary, 151
exercise date, 2
expectation pricing, 4, 14

Feynman–Kac Stochastic Representation
Theorem, 103

multifactor version, 170
filtered probability space, 29
filtration, 29, 64

natural, 29, 64
forward contract, 2

continuous dividends, 137
coupon bonds, 137
foreign exchange, 20, 124
periodic dividends, 131, 137
strike price, 5

forward price, 5
free boundary, 152
FTSE, 129
Fundamental Theorem of Asset Pricing, 12, 15,

38, 116
futures, 2

gamma, 122
geometric Brownian motion, 87

Itô’s formula for, 88
justification, 102
Kolmogorov equations, 106
minimum process, 145
transition density, 106

Girsanov’s Theorem, 98
multifactor, 166
with jumps, 178

Greeks, 122
for European call option, 136

guaranteed equity profits, 129

Harrison & Kreps, 12
hedging portfolio, see replicating portfolio
hitting times, 59; see also Brownian motion

implied volatility, see volatility
in the money, 3
incomplete market, 17, 19

infinitesimal generator, 105
interest rate

Black–Karasinski model, 110
continuously compounded, 5
Cox–Ingersoll–Ross model, 109
risk-free, 5
Vasicek model, 109, 110

intrinsic risk, 19
Itô integral, see stochastic integral
Itô isometry, 80
Itô’s formula

for Brownian motion, 85
for geometric Brownian motion, 88
for solution to stochastic differential equation,

91
multifactor, 165
with jumps, 176

Jensen’s inequality, 50
jumps, 175

Kolmogorov equations, 104, 110
backward, 105, 186
forward, 106

L2-limit, 76
Langevin’s equation, 109
Lévy’s construction, 56
Lipschitz-continuous, 108
local martingale, 65
localising sequence, 87
lognormal distribution, 4
long position, 2

market measure, 33, 113
market price of risk, 134, 179
market shocks, 175
Markov process, 34, 49
martingale, 33, 49, 64

bounded variation, 84
square-integrable, 100

martingale measure, 15
Martingale Representation Theorem, 100

multifactor, 168
maturity, 2
measurable, 29
mesh, 73
model error, 181

and hedging, 181
multifactor model, 163
multiple stock models, 10, 163
mutual variation, 94

Novikov’s condition, 98
numeraire, 126

change of, 20, 125, 171
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option, 2
American, 26, 42, 150

call on dividend-paying stock, 49
call on non-dividend-paying stock, 27, 50
cash-or-nothing, 157
exercise boundary, 151
free boundary value problem, 152
hedging, 43
linear complementarity problem, 152
perpetual, 157, 158
perpetual put, 153
put on non-dividend-paying stock, 27, 48,

157, 158
Asian, 149, 157, 187
asset-or-nothing, 155
barrier, 145, 148
binary, 140
call, 2, 127

coupon bonds, 137
dividend-paying stock, 127, 137
foreign exchange, 137

call-on-call, 143
cash-or-nothing, 48, 140
chooser, 156
cliquets, 143
collar, 154
compound, 143
contingent premium, 155
digital, 20, 48, 140, 154, 155
double knock-out, 149, 157
down-and-in, 145, 147, 157
down-and-out, 145, 148, 156
European, 2

hedging formula, 8, 25, 121
pricing formula, 8, 23, 45, 118

exotic, 139
foreign exchange, 17, 122
forward start, 48, 141
guaranteed exchange rate forward, 172
lookback call, 145
multistage, 142
on futures contract, 156
packages, 3, 18, 139
path-dependent, 144; see also (option)

American, Asian
pay-later, 155
perpetual, 137, 157
put, 2
put-on-put, 156
ratchet, 155
ratio, 142
up-and-in, 145
up-and-out, 145
vanilla, 3, 139
see also quanto

Optional Stopping Theorem, 39, 49, 66

optional time, see stopping time
Ornstein–Uhlenbeck process, 109
out of the money, 3

packages, 3, 18, 139
path probabilities, 26
payoff, 3
perfect hedge, 6
pin risk, 141
Poisson exponential martingale, 177
Poisson martingale, 177, 187
Poisson random variable, 175
positive riskless borrowing, 14
predictable, 36, 78
predictable representation, 100
previsible, see predictable
probability triple, 29
put–call parity, 19, 137

compound options, 156
digital options, 154

quadratic variation, 75, 108
quanto, 172

call option, 187
digital contract, 187
forward contract, 172, 186

Radon–Nikodym derivative, 97, 98
random variable, 29
recombinant tree, 24
reflection principle, 60
replicating portfolio, 6, 23, 44
return, 4
Riesz Representation Theorem, 12
risk-neutral pricing, 15
risk-neutral probability measure, 13, 15

sample space, 29
self-financing, 23, 26, 35, 113, 127, 137
semimartingale, 84
Separating Hyperplane Theorem, 12
Sharpe ratio, 134
short position, 2
short selling, 6
σ -field, 29
simple function, 79
simple random walk, 34, 39, 49, 51
Snell envelope, 43
squared Bessel process, 109
state price vector, 11

and probabilities, 14
stationary independent increments, 52
stochastic calculus

chain rule, see Itô’s formula
Fubini’s Theorem, 96
integration by parts (product rule), 94

multifactor, 166
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stochastic differential equation, 87, 91
stochastic integral, 75

discrete, 36
Itô, 78, 83

integrable functions, 81
Stratonovich, 78, 108
with jumps, 176
with respect to semimartingale, 83

stochastic process, 29
stopping time, 38, 59
straddle, 4
Stratonovich integral, 78, 108
strike price, 2
submartingale, 33

compensation, 41
supermartingale, 33

and American options, 42
compensation, 41
Convergence Theorem, 41

theta, 122
three steps to replication

basic Black–Scholes model, 118
continuous dividend-paying stock, 127

discrete market model, 45
foreign exchange, 123

time value of money, 4
tower property, 32
tradable assets, 123, 126, 130

and martingales, 133
transition density, 54, 104–106

underlying, 1

vanillas, 139
variance, 54
variation, 73

and arbitrage, 73
p-variation, 73

vega, 122
vega hedging, 183
volatility, 120

implied, 120, 181
smile, 181, 183
stochastic, 183

and implied, 183

Wiener process, see Brownian motion
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