
Texture Boundary Detection for Real-Time Tracking

Ali Shahrokni1, Tom Drummond2, and Pascal Fua1�

1 Computer Vision Laboratory
EPFL

CH-1015 Lausanne, Switzerland
ali.shahrokni@epfl.ch
http://cvlab.epfl.ch

2 Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ

http://www-svr.eng.cam.ac.uk/˜twd20/

Abstract. We propose an approach to texture boundary detection that only requi-
res a line-search in the direction normal to the edge. It is therefore very fast and
can be incorporated into a real-time 3–D pose estimation algorithm that retains
the speed of those that rely solely on gradient properties along object contours but
does not fail in the presence of highly textured object and clutter.
This is achieved by correctly integrating probabilities over the space of statistical
texture models. We will show that this rigorous and formal statistical treatment
results in good performance under demanding circumstances

1 Introduction

Edge-based methods have proved very effective for fast 3–D model-driven pose estima-
tion. Unfortunately, such methods often fail in the presence of highly textured objects
and clutter, which produce too many irrelevant edges. In such situations, it would be ad-
vantageous to detect texture boundaries instead. However, because texture segmentation
techniques require computing statistics over image patches, they tend to be computatio-
nally intensive and have therefore not been felt to be suitable for such purposes.

To dispel this notion, we propose a texture-based approach to finding the projected
contours of 3–D objects while retaining the speed of standard edge-based techniques. We
demonstrate its effectiveness for real-time tracking while using only a small fraction of
the computational power a modern PC. Our technique is inspired by earlier work [1] on
edge-based tracking that starts from the estimated projection of a 3–D object model and
performs a line search in the direction perpendicular to the projected edges to find the
most probable boundary location. Here, we replace conventional gradient-based edge
detection by a method which can directly compute the most probable location for a texture
boundary on the search line. To be versatile, the algorithm is designed to work even when
neither of the textures on either side of the boundary are known a priori. Our technique
is inspired by the use of Markov processes for texture description and segmentation.
However, our requirements differ from those of classical texture segmentation methods

� This work was supported in part by the Swiss National Science Foundation.

T. Pajdla and J. Matas (Eds.): ECCV 2004, LNCS 3022, pp. 566–577, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Texture Boundary Detection for Real-Time Tracking 567

in the sense that we wish to find the optimal pose parameters rather than arbitrary region
boundaries.

This is challenging because speed requirements compel us to restrict ourselves to
computing statistics along a line, and therefore a fairly limited number of pixels. We
achieve this by correctly integrating probabilities over the space of statistical texture
models. We will show that this rigorous and formal statistical treatment has allowed us
to reach our goal under these demanding circumstances, which we regard as the main
contribution of this paper. It is also worth noting that our implementation results in a real-
time 3–D tracker that uses only a fraction of the computational resources of a modern PC,
thus opening the possibility to simultaneously track many objects on ordinary hardware.

In the remainder of this paper, we first discuss related works. We then introduce
our approach to detecting texture boundaries along a line. Finally, we integrate it into a
contour-based 3–D tracker and demonstrate its effectiveness on real video-sequences.

2 Related Work and Background

We first briefly review the state-of-the art in real-time pose estimation and then dis-
cuss existing techniques for texture segmentation and show why they are not directly
applicable to the kind of real-time processing we are contemplating in this paper.

2.1 Real-Time 3–D Tracking

Robust real-time tracking remains an open problem, even though offline camera regi-
stration from an image sequence [2,3,4] has progressed to the point where commercial
solutions have become available. By matching natural features such as interest points bet-
ween images these algorithms achieve high accuracy even without a priori knowledge.
For example, in [3], the authors consider the image sequence hierarchically to derive
robust correspondences and to distribute error over whole of it. Speed not being a critical
issue, these algorithms take advantage of time-consuming but effective techniques such
as bundle adjustment.

Model-based approaches, such as those proposed in [5,6], attempt to avoid drift by
looking for a 3–D pose that correctly re-projects the features of a given 3–D model
into the 2–D image. These features can be edges, line segments, or points. The best fit
is found through least-squares minimisation of an error function, which may lead to
spurious results when the procedure becomes trapped in erroneous local minima.

In earlier work [1], we developed such an approach that starts from the estimated
projection of a 3–D object model and performs a line search in the direction perpendicu-
lar to the projected edges to find the most probable boundary location. Pose parameters
are then taken to be those that minimise the distance of the model’s projection to those
estimated locations. This process is done in terms of the SE(3) group and its Lie algebra.
This formulation is a natural choice since it exactly represents the space of poses that
form the output of a rigid body tracking system. Thus it provides a canonical method for
linearizing the relationship between image motion and pose parameters. The correspon-
ding implementation works well and is very fast when the target object stands out clearly
against the background. However it tends to fail for textured objects whose boundaries

568 A. Shahrokni, T. Drummond, and P. Fua

are hard to detect unambiguously using conventional gradient-based techniques, as the
chair shown in Fig. 1. We will argue that the technique proposed here remedies this
failing using only a small fraction of the computational power of a modern PC. This is
in contrast to other recent model-based techniques [7] that can also deal with textured
objects but require the full power of the same PC to achieve real-time performance.

(0) (10) (20) (33) (40)

(0) (1) (2) (3) (10)

Fig. 1. Tracking a chair using a primitive model made of two perpendicular planes. Top row:
Using the texture-based method proposed in this paper, the chair is properly tracked throughout
the whole sequence. Bottom row: Using a gradient-based method to detect contours, the tracker
starts being imprecise after the 3rd frame and fails completely thereafter.

2.2 Texture-Based Segmentation

Many types of texture descriptors have been developed to characterize textures. Gabor
filters [8,9] have proved as an excellent descriptive tool for a wide range of textures [10]
but are computationally exhaustive for real time applications. Multi-resolution algo-
rithms offer some speed-up without loss of accuracy [11,12,10,13,14]. However, while
this approach is effective for global segmentation of images containing complex textu-
res, it is not the optimal solution for industrial applications in which the search space
is limited. In the context of object tracking, the structure of the object to be tracked is
already known, and there is a strong prior on its whereabouts. Hence, where real-time
performance is required, classical texture segmentation is not the best choice, but a fast
technique which localizes the target boundaries is desired.

However, the approach presented in this paper does borrow ideas from the texture
segmentation literature. Hidden Markov random fields appear naturally in problems such
as image segmentation, where an unknown class assignment has to be estimated from
the observations at each pixel. Statistical modeling using Hidden Markov Models are
very rich in mathematical structure and hence can form the theoretical basis for use
in a wide range of applications. A comprehensive discussion about Markov Random
Fields (MRF) and Hidden Markov Models (HMM) is given in [15,16]. [17] uses a Gibbs
Markov Random Field to model texture which is fused with a 2D Gaussian distribution
model for color segmentation for real time tracking. In contrast to HMM, MRF methods
are non causal and therefore not desirable for line search methods for which a statistical
model would be constructed during the search.

Texture Boundary Detection for Real-Time Tracking 569

d p

scan line

p

rendered model edge

Object Boundary

c

d p

c+1
P(S |T)n

2

1
P(S |T)c

1

scan line

p

Object Boundary

p
0

rendered model edge

Object

sample point used for initialization

c

Background

(a) (b)

Fig. 2. Contour-based 3-D tracking. (a) Search for a real contour in the direction normal to projected
edge.(b) Scanning a line through model sample point p for which a statistical model associated to
model point p0 is retrieved and used to find the texture crossing point c. Notice that the statistical
model of p0 is made offline and conforms with the real object statistics in the neighbourhood.

3 Locating Texture Boundaries Using 1–D Line Search

As discussed in Section 2.1, we use as the basis for this work a tracker we developed
in earlier work. Successive pose parameters are estimated by minimizing the observed
distances from the rendered model to the corresponding texture crossing point, that is
the point where the underlying statistics change, in the direction normal to the projected
edge. This search is illustrated by Fig. 2. In this section, we formalize the criteria we use
in this search and derive the algorithms we use to evaluate them.

A texture is modeled as a statistical process which generates a sequence of pixels.
The problem is then cast as follows:A sequence of n pixel intensities, Sn

1 = (s1, ...sn),
is assumed to have been generated by two distinct texture processes each operating on
either side of an unknown change point, as shown in Fig. 2(b). Thus the observed data
is considered to have been produced by the following process: First a changepoint c is
selected uniformly at random from the range [1-n]. Then the pixels to the left of the
changepoint (the sequence Sc

1) are produced by a texture process T1 and the pixels to
the right (Sn

c+1) are produced by process T2. The task is then to recover c from Sn
1 . If

both T1 and T2 are known then this corresponds to finding the c that maximises:

P (changepoint at c|Sn
1 , T1, T2) = KP (Sc

1|T1)P (Sn
c+1|T2) . (1)

where K is a normalisation constant. If one of the textures, for example, T1 is unknown,
then the term P (Sc

1|T1) must be replaced by the integral over all possible texture pro-
cesses:

P (Sc
1) =

∫
P (Sc

1|T)P (T) dT . (2)

While it may be tempting to approximate this by considering only the most probable
T to have generated Sc

1, this yields a poor approximation for small data sets, such as

570 A. Shahrokni, T. Drummond, and P. Fua

are exhibited in this problem. A key contribution of this paper is that we show how the
integral can be solved in closed form for reasonable choices of the prior P (T) (e.g.
uniform).

In this work we consider two kinds of texture processes: first, one in which the pixel
intensities are independently drawn from a probability distribution and second, one in
which they are generated by a 1st order Markov process, which means that the probability
of selecting a given pixel intensity depends (only) on the intensity of the preceding pixel.
We refer to these two processes as 0 and 1st order models.

3.1 Solving for the 0th Order Model

The 0th order model states that the pixel intensities are drawn independently from a
probability distribution over I intensities (T = {pi}; i = 1..I). If such a texture is
known a priori then P (Sc

1|T) =
∏

i psi . If the texture is unknown then:

P (Sc
1) =

∫
P (Sc

1|T)P (T) dT =
∫

P (sc|T)P (Sc−1
1 |T)P (T) dT (3)

= P (Sc−1
1)

∫
pscP (T |Sc−1

1) dT (4)

The integral in (4) is E(psc |Sc−1
1): i.e. the expected value of the probability psc in the

texture given the observed sequence Sc−1
1 . If we assume a uniform prior for T over the

I-1 simplex of probability distributions, then this integral becomes:

E(psc
|Sc−1

1) =

∫ 1
0

∫ 1−p1

0 · · · ∫ 1−∑I−2
i=1 pi

0 psc

∏I
j=1 p

oj

j dpI−1 · · · dp2dp1∫ 1
0

∫ 1−p1

0 · · · ∫ 1−∑I−2
i=1 pi

0

∏I
j=1 p

oj

j dpI−1 · · · dp2dp1

(5)

where there are oj occurrences of symbol j in the sequence Sc−1
1 . Note that both of these

integrals have the same form, since the additional psc in the numerator can be absorbed
into the product by adding one to osc

. Substituting pI = 1 − ∑I−1
i=1 pi and repeatedly

integrating by parts yields:

E(psc |Sc−1
1) =

osc + 1
c + I − 1

(6)

This result states that if an unknown probability distribution is selected uniformly at
random and a set of samples are drawn from this distribution, then the expected value
of the distribution is the distribution obtained by adding one to the number of instances
of each value observed in the sample set.

For example, if a coin is selected with a probability of flipping heads randomly drawn
from the uniform distribution over [0,1], and it is flipped 8 times, giving 3 heads and 5
tails, then the probability that the next flip will be heads is (3+1)/(8+2) = 0.4.

This result can be applied recursively to the whole sequence to give Algorithm 1.

Texture Boundary Detection for Real-Time Tracking 571

Algorithm 1 Rapid 0th order computation of
∫

P (Sc
1|T)P (T) dT

sequence probability (S[], c)
dim Observations[NUM CLASSES]
// seed Observations[] with 1 sample per bin
for i=1..NUM CLASSES do

Observations[i]=1
end for
Probability=1
for i=1..c do

Probability = Probability * Observations[S[i]] /
∑

Observations[]
Observations[S[i]] = Observations[S[i]]+1

end for
return Probability

3.2 Solving for the 1st Order Model

This idea can be immediately extended to a 1st order Markov process in which the
intensities are drawn from a distribution which depends on the intensity of the preceding
pixel (T = {pi|j}; i, j = 1..I , where pi|j is the probability of observing intensity i
given that the previous pixel had intensity j). These pi|j can be considered as a transition
matrix (row i, column j). Again, the probability of a sequence given a known texture is
easy to compute:

P (Sc
1|T) = P (s1|T)

c∏
i=2

psi|si−1 where P (s1|T) is using the 0th order model. (7)

For a first order Markov process, the 0th order statistics of the samples must be an
eigenvector of pi|j with eigenvalue 1. Unfortunately, this means that a uniform prior for T
over pi|j is inconsistent with the uniform prior used in the 0th order case. To re-establish
the consistency, it is necessary to choose a 1st order prior such that the expected value
of a column of the transition matrix pi|j is obtained by adding 1/I rather than 1 to the
number of observations in that column of the co-occurrence matrix before normalising
the column to sum to 1. This means that the transition matrix is

E(pi|j |Sc
1) =

Cij + 1/I

1 +
∑

i Cij
=

Cij + 1/I

1 + oj
, (8)

where Cij is the number of times that intensity i follows intensity j in the sequence

Sc
1. And hence the expected 0th order distribution (which is the vector (oj+1)

(c+I)) has the
desired properties since

∑
j

E(pi|j |Sc
1)

(oj + 1)
(c + I)

=

∑
j Cij + 1/I

c + I
=

oi + 1
c + I

. (9)

This modification is equivalent to imposing a prior over pi|j that favours structure in the

Markov process and is proportional to
∏

ij p
(1/I−1)
i|j). This gives Algorithm 2.

572 A. Shahrokni, T. Drummond, and P. Fua

Algorithm 2 Rapid 1st order computation of
∫

P (Sc
1|T)P (T) dT

sequence probability (S[], c)
dim CoOccurrence[NUM CLASSES][NUM CLASSES]
// seed CoOccurrence[][] with 1/NUM CLASSES samples per bin
for r=1..NUM CLASSES do

for c=1..NUM CLASSES do
CoOccurrence[r][c]=1/NUM CLASSES

end for
end for
Probability=1/NUM CLASSES // probability of the first symbol
for i=2..c do

Probability = Probability * CoOccurrence[S[i]][S[i-1]] /
∑

CoOccurrence[][S[i-1]]
CoOccurrence[S[i]][S[i-1]] = CoOccurrence[S[i]][S[i-1]]+1

end for
return Probability

3.3 Examples Applied to a Scanline through Brodatz Textures

We illustrate these ideas by considering the problem of locating the boundary between
two Brodatz textures.

(a) (b) (c)

−20 −15 −10 −5 0 5 10 15
0

200

400

600

800

1000

1200

−10 −8 −6 −4 −2 0 2 4 6
0

500

1000

1500

2000

2500

3000

(d) (e)

Fig. 3. Brodatz textures results. (a) texture patch used to learn the target texture model(the dark
stripe). This model is used to detect the boundary of the target texture with another texture. (b)
and (c) detected boundary using 0th and 1st order model respectively. White dots are the detected
change point and the black line is the fitted texture boundary. (d)distances from edge in 0th order
model (e)distances from edge in 1st order model

Fig. 3 shows detection results in a case where the texture is different at the top and
bottom of the image. In Fig. 3 (a) the region that is used to generate model statistics is

Texture Boundary Detection for Real-Time Tracking 573

Fig. 4. In this case, the 0th order model (left) yields a result that is less precise than the 1st order
one. As before, white dots are the detected change point and the black line is the fitted texture
boundary.

marked by a dark stripe. In (b) the boundary between the upper and lower textures is
correctly found using 0th order Markov model for both sides. (c) shows the boundary
found using 1st order Markov model for both sides. While the model for the lower
points is built in an autoregressive manner, the model of the upper points is the one
created during the initialization phase (a). White dots show the exact detected point on
the boundary along vertical scanlines, to which we robustly fit a line shown in black.
The distribution of the distances from white points to the black line are shown in (d) and
(e) for the 0th order and 1st order respectively. As can be noticed the distribution peak
is less sharp for the 0th order model than the 1st order. This can hamper the detection of
boundaries when the distributions are similar as shown in Fig. 4.

(a)

(b) (c)

Fig. 5. Segmentation of a polygonal patch. (a) Initialization: texture patch used to learn the target
texture model(the dark stripe). This model is used to detect the boundary of the target texture
with another texture. (b) and (c) detected boundary using 0 and 1st Markov model respectively.
0th order model is more sensitive to the initial conditions. As before, white dots are the detected
change point and the black line is the fitted texture boundary.

574 A. Shahrokni, T. Drummond, and P. Fua

Fig. 6. Texture boundary detection with no a priori model assumption. In the case of polygonal
texture, the white dots (detected changepoints are more scattered but robust fitting yields an
accurate result for the boundary (black lines).

An example of texture segmentation for a piece of texture for which we have a
geometric model is shown in Fig. 5. This is a especially difficult situation due to the
neighbouring texture mixture. Nevertheless, both 0th and 1st order models detect the
boundary of the target object (black lines) accurately by robust fitting of the polygonal
model to the detected changepoints (white dots). However it was observed that 0th
order model is more sensitive to initial conditions, which can be explained by the above
statement that the 0th order observations are less accurate.

Our final test on textures involves the case where there is no a priori model for the
texture on either side. Some results of application of our method are shown in Fig. 6. In
the Fig. 6(a) the boundary is accurately detected. On the other hand for more complicated
test of Fig. 6(b) the results are less accurate due to high outlier ratio.

4 Real-Time Texture Boundary Detection

We now turn to the actual real-time implementation of our texture-boundary detection
method using the 0th an 1st order algorithms of Section 3.

Assuming a 1st order Markov model for the texture on both sides of the points along
the search line, we wish to find the point for which the exterior and interior statistics
best match their estimated model. These model can be built online or learned a priori. In
the latter case, we build up and register a local 0th and 1st order probability distribution
(intensity histograms and pixel intensity co-occurrence matrices) for a set of model
sample points M0 during the initialization where the 0 subscript indicates time. Our
system uses graphical rendering techniques to dynamically determine the visible edges
and recognize the exterior ones. Our representation of the target model provides us with
inward pointing normal vectors for its exterior edges. These normal vectors are used to
read and store stripes of pixel values during initialization. The stripes need not be very
large. These stripes are used to calculate local intensity histograms and pixel intensity
co-occurrence matrices for each sample point in M0. Having local information allows
us to construct a more realistic model of texture in the cases where the target object
contains patches of different texture.

During tracking, at time i, for each sample point p in the set of sample Mi, we find
the closest point in initialization sample set, M0, and retrieve its associated histogram
and co-occurrence matrix. Then, as depicted by Fig. 2(b), for each pixel c along the

Texture Boundary Detection for Real-Time Tracking 575

−50
−40

−30
−20

−10
0

10
20

0

5

10

15

200

220

240

260

280

−50−40−30−20−1001020
0

5

10

15

200

210

220

230

240

250

260

270

0 5 10 15 20 25 30 35 40 45 50
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

(a) (b) (c)

Fig. 7. Plotting the motion of the center of gravity of the chair of Fig. 1. (a,b) Top and side view of
the plane fitted to the recovered positions of the center of gravity. (c) Deviations from the plane,
which are very small (all measurements are in mm).

scanline associated to rendered point p, two probabilities P (Sn
c+1|T2) and P (Sc

1|T1) are
calculated using algorithm 2 of Section 3, as the line is being scanned inwards in the
direction of the edge normal. P (Sn

c+1|T2) is the probability that the successive pixels
are part of the learned texture for the target object and P (Sc

1|T1) is the probability
that the preceding pixels on the scanline are described by the the autoregressive model
that is built as we move along the scan line and compute the integral of Eq. (2). This
process is depicted by Fig. 2(b). This autoregeressive model is initially uniform and
is updated for each new visited pixel and includes both the zeroth order distribution
and a co-occurrence probability distribution matrix. Having calculated P (Sn

c+1|T2) and
P (Sc

1|T1) for all points c on the scanline, the point c for which the total probability as
given by Eq. (1) is maximum, is said to be the texture boundary and the distance dp

between changepoint c and sample point p is passed to the minimiser to compute the
pose parameters which minimises the total sum of distances.

5 Experimental Results

In the case of the chair of Fig. 1, everything else being equal, detecting the boundaries
using the texture measure we propose appears to be much more effective that using
gradients. To quantify this, in Fig. 7, we plot the motion of the center of gravity of the
model recovered using the texture-based method. Since the chair remains on the ground,
its true motion is of course planar but our tracker does not know this and has six degrees
of freedom, three rotations and three translations. The fact that the recovered motion is
also almost planar is a good indication that the tracking is quite accurate.

Figs. 8, 9, and 10 show the stable result of tracking different textured objects and
an O2 computer against a cluttered background. Results of Fig. 9 are obtained without
using prior models for the texture on either side of the model. Note that the algorithm
works well on the O2 even though it is not particularly textured, showing its versatility.

Our current implementation can process up to 120 fps on a 2.6 GHz machine using
a dense set of samples on our CAD model set and a 1st order statistical model. This low
computational cost potentially allows the tracking of multiple textured and non-textured
objects in parallel using a single PC.

576 A. Shahrokni, T. Drummond, and P. Fua

(5) (36) (45) (101)

Fig. 8. Tracking a textured box against a cluttered background

(35) (110) (190) (260)

Fig. 9. Tracking a textured box against a cluttered background without recording prior models.
The model is materialised by black lines.

6 Conclusion

In this paper, we have shown that a well formalized algorithm based on a Markov model
lets us use a simple line search to detect the transition from one texture to another that
occurs at object boundaries. This results in a very fast technique that we have validated
by incorporating it into a 3–D model-based tracker, which unlike those that rely on
edge-gradients to detect contours, succeeds in the presence of texture and clutter.

We have demonstrated our technique’s effectiveness to track man-made objects.
However, all objects whose occluding contours can be estimated analytically are subject
to this treatment. For example, many body tracking algorithms model the human body

(1) (12)

(29) (110)

Fig. 10. Tracking of a much less textured O2 computer against a cluttered background

Texture Boundary Detection for Real-Time Tracking 577

as a set of cylinders or ellipsoids attached to an articulated skeleton. The silhouettes
of these primitives have analytical expressions as a function of the pose parameters. It
should therefore be possible to use the techniques proposed here to find the true outlines
and deform the body models accordingly. This will be the focus of our future work in
that area. Another issue for future work is the behaviour of this method when lighting
conditions change. This will be handled by replacing the current stationary statistical
models by dynamic ones that can evolve.

References

1. Drummond, T., Cipolla, R.: Real-time tracking of highly articulated structures in the presence
of noisy measurements. In: International Conference on ComputerVision,Vancouver, Canada
(2001)

2. Tomasi, C., Kanade, T.: Shape and Motion from Image Streams under Orthography: A
Factorization Method. International Journal of Computer Vision 9 (1992) 137–154

3. Fitzgibbon, A., Zisserman, A.: Automatic Camera Recovery for Closed or Open Image
Sequences. In: European Conference on Computer Vision, Freiburg, Germany (1998) 311–
326

4. Pollefeys, M., Koch, R., VanGool, L.: Self-Calibration and Metric Reconstruction In Spite of
Varying and Unknown Internal Camera Parameters. In: International Conference on Computer
Vision. (1998)

5. Marchand, E., Bouthemy, P., Chaumette, F., Moreau, V.: Robust real-time Visual Tracking
Using a 2D-3D Model-Based Approach. In: International Conference on Computer Vision,
Corfu, Greece (1999) 262–268

6. Lowe, D.G.: Robust model-based motion tracking through the integration of search and
estimation. International Journal of Computer Vision 8(2) (1992)

7. Vacchetti, L., Lepetit, V., Fua, P.: Fusing Online and Offline Information for Stable 3–
D Tracking in Real-Time. In: Conference on Computer Vision and Pattern Recognition,
Madison, WI (2003)

8. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern
Recognition 23(12) (December 1991) 1167–1186

9. Bovik, A., Clark, M., Geisler, W.: Multichannel Texture Analysis Using Localized Spatial
Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 55–73

10. Puzicha, J., Buhmann, J.M.: Multiscale annealing for grouping and unsupervised texture
segmentation. Computer Vision and Image Understanding: CVIU 76 (1999) 213–230

11. Bouman, C., Liu, B.: Multiple Resolution Segmentation of Textured Images. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 13(2) (1991) 99–113

12. Pietikinen, M., Rosenfeld, A.: Image Segmentation Using Pyramid Node Linking. IEEE
Transactions on Systems, Man and Cybernetics 12 (1981) 822–825

13. Schroeter, P., Bigün, J.: Hierarchical Image Segmentation by Multi-dimensional Clustering
and Orientation Adaptive Boundary Refinement. Pattern Recognition 28(5) (1995) 695–709

14. Rubio, T.J., Bandera, A., Urdiales, C., Sandoval, F.: A hierarchical context-based textured
image segmentation algorithm for aerial images. Texture2002 (http://www.cee.hw.ac.uk/ tex-
ture2002) (2002)

15. Li, S.Z.: Markov Random Field Modeling in Computer Vision. Springer-Verlag, Tokyo
(1995)

16. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. In: IEEE. Volume 77(2). (1989) 257 – 286

17. Ozyildiz, E.: Adaptive texture and color segmentation for tracking moving objects. Master’s
thesis, Pennsylvania State University (1999)

	Introduction
	Related Work and Background
	Real-Time 3--D Tracking
	Texture-Based Segmentation

	Locating Texture Boundaries Using 1--D Line Search
	Solving for the 0th Order Model
	Solving for the 1st Order Model
	Examples Applied to a Scanline through Brodatz Textures

	Real-Time Texture Boundary Detection
	Experimental Results
	Conclusion

