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Abstract. Dimensionality reduction is an essential aspect of visual pro-
cessing. Traditionally, linear dimensionality reduction techniques such as
principle components analysis have been used to find low dimensional
linear subspaces in visual data. However, sub-manifolds in natural data
are rarely linear, and consequently many recent techniques have been de-
veloped for discovering non-linear manifolds. Prominent among these are
Local Linear Embedding and Isomap. Unfortunately, such techniques cur-
rently use a naive appearance model that judges image similarity based
solely on Euclidean distance. In visual data, Euclidean distances rarely
correspond to a meaningful perceptual difference between nearby images.
In this paper, we attempt to improve the quality of manifold inference
techniques for visual data by modeling local neighborhoods in terms of
natural transformations between images—for example, by allowing im-
age operations that extend simple differences and linear combinations.
We introduce the idea of modeling local tangent spaces of the manifold
in terms of these richer transformations. Given a local tangent space
representation, we then embed data in a lower dimensional coordinate
system while preserving reconstruction weights. This leads to improved
manifold discovery in natural image sets.

1 Introduction

Recently there has been renewed interest in manifold recovery techniques moti-
vated by the development of efficient algorithms for finding non-linear manifolds
in high dimensional data. Isomap [I] and Local Linear Embedding (LLE) [2] are
two approaches that have been particularly influential. Historically, two main
ideas for discovering low dimensional manifolds in high dimensional data have
been to find a mapping from the original space to a lower dimensional space
that: (1) preserves pairwise distances (i.e. multidimensional scaling [3]); or (2)
preserves mutual linear reconstruction ability (i.e. principle components analysis
[]). In each case, globally optimal solutions are linear manifolds. Interestingly,
the more recent methods for manifold discovery, Isomap and LLE, are based on
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exactly these same two principles, with the generalization that the new meth-
ods only seek manifold descriptions that locally preserve distances and linear
reconstructions. In this way, they avoid recovering linear global solutions [1/2].

There have been many new variants of these ideas [Bl6I7)8]. Although these
techniques all produce non-linear manifolds in different ways, they are gener-
ally based on the core assumption that, in natural data, (1) Euclidean distances
locally preserve geodesic distances on the manifold [1], or (2) data objects can
be linearly reconstructed from other data points nearby in Euclidean distance
[2]. However, these core notions are not universally applicable nor always effec-
tive. Particularly in image data it is easy to appreciate the shortcoming of these
ideas: For images, weighted linear combinations amount to an awkward trans-
formation whereby source images have their brightness levels adjusted and then
are summed directly on top of one another. This is often an unnatural way to
capture the image transformations that manifolds are intended to characterize.
Figure [Mlshows that centered, cropped and normalized target images can be rea-
sonably well reconstructed from likewise aligned source images, but that even a
minor shift, rotation or rescaling will quickly limit the ability of this approach
to reconstruct a target image. Similarly, measuring Euclidean distances between
images can sometimes be a dubious practice, since these distances do not always
correspond to meaningful perceptual differences.
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Fig. 1. Least squares reconstructions of a target image (far right) from three nearby
images (far left). The intermediate (fourth) image shows the best linear reconstruction
of the rightmost image from the three leftmost images. First row: original reconstruc-
tion. Second row: reconstruction of same image after translations have been applied.
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We propose to model manifolds locally by characterizing the local trans-
formations that preserve the invariants they encode. That is, we attempt to
characterize those transformations that cause points on the manifold to stay on
the manifold. Our approach will be to first characterize the local tangent space
around a data object by considering transformations of that object that cause
it to stay on (or near) the manifold.

Other work on incorporating natural image transformations to better model
visual data has been proposed by [O[T0/T1I12]. However, this previous work pri-
marily concerns learning mixture models over images rather than sub-manifolds,
and most significantly, requires that the image transformations be manually spec-
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ified ahead of time, rather than inferred from the data itself. In this paper, we
infer local transformations directly from the image data.

Eigentracking [13], also considers affine transformations of a set of precon-
structed basis images for an object based on preliminary views. Here we consider
a potentially richer set of transformations and simultaneously learn the basis in
addition to the transformations and embedding.

2 Local Image Transformations

For images, it is easy to propose simple local transformations that capture natu-
ral invariants in image data better than simply averaging nearby images together.
Consider a very simple class of transformations based on receptive fields of pixel
neighborhoods: Given an n; X ny image x, imagine transforming it into a nearby
image & = T(x,0), where for each pixel &; € & we determine its value from
corresponding nearby pixels in z. Specifically, we determine Z; according to

T; = GTxN(Z-) (1)

where N (i) denotes the set of neighboring pixels of pixel x;. Thus T'(-, ) defines
a simple local filter passed over the image, parameterized by a single weight
vector 6, as shown in Figure 2
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Fig. 2. Illustration of local pixel transformation from the left image to the right

Although this defines a limited class of image transformations, it obviously
enhances the image modeling capabilities of weighted image combinations (which
are only based on adjusting the brightness level of source images). Many useful
types of transformation such as translation, rotation and blurring can be ap-
proximated using this simple local transformation. Figure B] shows that similar
images can be much better reconstructed by simple filter transformations rather
than merely adjusting brightness levels prior to summing. Here minor trans-
lations and appearance changes can be adequately modeled in circumstances
where brightness changes fail.

3 Local Tangent Space Modeling

The key to our proposal is to model the local tangent space around high-
dimensional data points by a small number of transformations that locally pre-
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Fig. 3. Least squares reconstructions of a target image (far right) from three nearby
images (left). The intermediate (fourth) image shows the best least squares recon-
struction of the rightmost image from the three leftmost images. First row: standard
reconstruction. Second row: reconstruction after local transformations.

serve membership in the manifold. Thus, in our approach, a manifold is locally
characterized by the invariants it preserves.

We model transformations over the data space by using an operator T'(x, )
which combines a data object x and a parameter vector # to produce a trans-
formed object & = T'(z,0). In general, we will need to assume very little about
this operator, but, by making some very simple (and fairly weak) assumptions
about the nature of T, we will be able to formulate natural geometric properties
that one can preserve in a dimensionality reducing embedding.

First, we assume that T is a bilinear operator. That is, T" becomes a linear
operator on each argument when the other argument is held fixed. Specifically,

T(azy + bxs,0) = aT(x1,0) + bT (a2, 0)
T(:c, a01 + beg) = CL’ZW(ZL'7 91) + bT(l, 92) (2)

Second, we require the operator to have a local origin w in the second argument
that gives an identity map:

T(x,w) = z for all x (3)

With these properties, we can then naturally equate parameterized transforma-
tions with tangent vectors as follows. First note that T'(z,0) = = + T'(x,d) for
6 = 0 — w, since by bilinearity we have

T(x,0)=T(z,w+0) =T (x,w) + T(x,0)

and also
T(z,w)=2x

Thus, we can interpret every transformation of an object x as a vector sum.
That is, if £ = T'(x,0) then the difference & — z is just T'(x, 9).

Now imagine transforming a source object x; to approximate a nearby target
object x;, where both reside on the manifold. The best approximation of z; by
x; is given by

Zij = T(2i,0;)
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where

Gy = axgmin |2 — T(x:,0)|

If the approximation error is small, we can claim that the difference vector
Tij —x; = T(&j)7 for Sij = éij — w, is approximately tangent to the manifold at
x;. One thing we would like to preserve is the transformation distance between
nearby points. Consider the norm of the difference vector:

s = &3 = NT(, 0l = 1031 1T (. 735)]

where 7j;; = 0;/10i5]|. Here T(x,7i;) gives the direction of the approximate
tangent vector at x;, and ||d;;| gives the coefficient in direction 7;;. This says
that ;; is the projection of z; onto the tangent plane centered at x;, since
Zij = x; + ||0i5]|T(2,7;;) is the best approximation of z; in the local tangent
space of x;.

Intuitively, when we embed x; and Z;; in a lower dimensional space, say by
a mapping x; — ¥y; and Z;; — ¥;;, we would like to preserve the coefficient:

lyi — Gsjll =~ ldisl

That is, in the lower-dimensional space, the vector y; —;; encodes the embedded
direction of the transformation, T'(z;,7;;), and the length ||y; — 7;;|| encodes the
coefficient of the transformation, ||J;;]|.

4 Transformation-Invariant Embedding Algorithm

Consider a set of t vectors, x;, of dimension n sampled from an underlying man-
ifold. If the manifold is smooth and locally invariant to natural transformations,
we should be able to transform nearby points on the manifold to approximate
each other. Therefore, in the low dimensional embedding we would like to pre-
serve the ability to reconstruct points from their transformed neighbors. First, to
identify the local neighborhood of each data point x;, we compute the best point-
to-point approximations using the local transformation operator described above
(as opposed to just using Euclidean distances as proposed in LLE and Isomap).
That is, given a target image x; and a source image x;, the best approximation
of x; from source x; is given by

Ty = T(x;,0;5)

where

eij = arg Irbin ||££] — T(xia 0)”

Given these quantities, the neighborhood of an image x; can then be approxi-
mated by selecting the K nearest neighbors x; according to the K best approx-
imations among the transformed reconstructions Z;;.

Second, to characterize the structure of the local neighborhood, we re-express
each data point z; in terms of its K nearest reconstructions &;;. Consider a
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particular image x; with K nearest neighbors ;; and reconstruction weights
w;;. The reconstruction error can be written as:

‘ 2

K
gj(w;) = ij =) wia
=1

where w; is the vector of reconstruction weights for an image x; in terms of its
neighbors. Note that each data point x; is reconstructed independently. That
is, we can recover each set of weights separately by solving a system of n linear
equations in K unknowns. This can be expressed in a standard matrix form

gj(wy) = |w; — Nyw;||* = |Gt — Njyw; ||* = wl Gy

where x; is the matrix of columns z; repeated K times, N; is the matrix of
columns of K nearest reconstructions Z;; of z;, and G; = (x; — N;)T(x; — N;).
Note that, as with LLE, we wish to preserve scale and translation invariance
in the local manifold characterization, and therefore we impose the additional
constraint that the reconstruction weights w; of each point x; from its trans-
formed neighbors #;; sums to one. That is, ), w;; = 1 for all j. The rationale for
this constraint is that we would like the reconstruction weights to be invariant
under the mapping from the neighborhood to the global manifold coordinates,
which can be shown to hold if and only if all rows of the weight matrix sum to
one [2]. Therefore, imposing the extra constraint ensures that the reconstruction
holds equally well in both high dimensional and low dimensional spaces. To show
that the resulting constrained least squares problem can still be solved in closed
form, introduce a Lagrange multiplier A and let e be a column vector of ones,
obtaining
L(w,\) = w'Guw + \w”e — )
4z =2Gw+Ae=0
dw
Gw = Ce

In practice, we can solve this with C set arbitrarily to 1 and then rescale so w
sums to 1.

Finally, we need to embed the orginal points z; in the lower dimensional
coordinate system by assigning them coordinates y;. Here we follow the same
approach as LLE and choose the d dimensional vectors y; to minimize the em-
bedding cost function

2

t t
o) =3 us = D wiu
j=1 i=1

This ensures that we maintain the reconstruction ability in the coordinate system
of the lower dimensional manifold. To solve for these coordinates, re-express the
cost function in a standard matrix form

t
o(Y) =D ||[VL; - Yy |*
j=1
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where I; is the j column of the identity matrix, and wj is the 4t column of
W. Then we obtain

t
min z; 1YL = Yy ||” = min trace(vy MYT)
]:

where M = (I — W)T(I — W). As observed in [2] the solution for Y can have
an arbitrary origin and orientation, and thus to make the problem well-posed,
these two degrees of freedom must be removed. Requiring the coordinates to be
centered on the origin (> Y= 0), and constraining the embedding vectors to
have unit covariance (Y'Y = I), removes the first and second degrees of free-
dom respectively. So the cost function must be optimized subject to additional
constraints. Considering only the second constraint for the time being, we find
that
LY,\) =YMYT + \YYT — (N - 1))
dL

— =2MYT+2Y =0
dy +

MYT =\Y7T

Thus L is minimized when the columns of Y7 (rows of Y) are the eigenvectors as-
sociated with the lowest eigenvalues of M. Discarding the eigenvector associated
with eigenvalue 0 satisfies the first constraint.

5 Experimental Results

We present experimental results on face image data. The first two experiments
attempt to illustrate the general advantages of the proposed technique, Transfor-
mation Invariant Embedding (TIE), for discovering smooth manifolds, at least
in simple image analysis problems. A subsequent experiment attempts to show
some of the advantages for TIE in a face recognition setting. In all experiments
we use the transformation operator on images () that was described in Section 2l

Our first experiment is on translated versions of a single face image, as shown
in Figure[ Although the data set is high dimensional (the images are comprised
of many pixels), there is clearly a one dimensional manifold that characterizes
the image set. Figure Blshows the result of running LLE and TIE on the original
data set shown at the top. The results show that the 1-dimensional manifold
discovered by LLE is inferior to that discovered by TIE, which had no problem
tracking the vertical shift in the image set.

We then conducted an experiment on a database of rotating face images. Fig-
ure Bl shows the two-dimensional manifold discovered by LLE, whereas Figure Bl
shows the two-dimensional manifold recovered by TIE. In both cases, the first
dimension (top) captured the rotation angle of the images, although once again
LLE’s result is not as good as TIE’s. Interestingly, TIE (and to a lesser extent
LLE) learned to distinguish frontal from profile views in its second dimension.
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Fig.4. Top: Original data. Middle: 1-dimensional manifold discovered by LLE.
Bottom: 1-dimensional manifold discovered by TIE. (Images are sorted by the 1-
dimensional y-coordinate values assigned by LLE and TIE respectively.)
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Fig. 5. Two-dimensional manifold discovered by LLE. Top two rows show first dimen-
sion, bottom two rows show second dimension.
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CECCECECLECECEEEECEEEE
CECCCECECCCCCEEmEne
Fig. 6. Two-dimensional manifold discovered by TIE. Top two rows show first dimen-

sion, bottom two rows show second dimension. Note: first dimension captures rotation,
whereas second captures frontal views versus side views.
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Fig. 7. 105 rotated face images of 7 subjects

Finally, we conducted an experiment on a database of face images that con-
tains 105 face images of 7 subjects which includes variations in both pose, and
lighting (see Figure[d). The original data space was embedded into three dimen-
sional subspaces. Figures [§ and [I1] show the first dimension discovered by LLE
and TIE respectively. Similarly, Figures[d and [[2 show the second dimension for
LLE and TIE; and Figures [10] and [l show the third dimension.

Note that for TIE the first (Figure [0} and second (Figure [2) dimensions
corespond to rotation and frontal and profile views, whereas TIE essentially
learned to distinguish faces in its third dimension (Figure Bl). Here, two indi-
viduals were confused by TIE, whereas the other subjects were separated very
well.

The corresponding results for LLE are clearly inferior in each case. Figures[8]
and [I0] illustrates that LLE failed to discover smooth rotations, frontal versus
side views, and identity.

6 Conclusion

In many image analysis problems, we know in advance that the data will incor-
porate different types of transformations. We introduce a way to make standard
manifold learning methods such as LLE invariant to transformations in the input.
This is achieved by modeling the local tangent space around high-dimensional
data points by a small number of transformations that locally preserve member-
ship in the manifold. Thus, in our approach, a manifold is locally characterized
by the invariants it preserves.
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Fig. 8. First dimension of the three-dimensional manifold discovered by LLE
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Fig. 9. Second dimension of the three-dimensional manifold discovered by LLE
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Fig. 10. Third dimension of the three-dimensional manifold discovered by LLE
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Fig. 11. First dimension of the three-dimensional manifold discovered by TIE
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Fig. 12. Second dimension of the three-dimensional manifold discovered by TIE
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Fig. 13. Third dimension of the three-dimensional manifold discovered by TIE



530 A. Ghodsi, J. Huang, and D. Schuurmans

We model transformations over the data space by using a bilinear opera-
tor which produce a transformed object, and show that by making this fairly
weak assumption about the nature of operator, we will be able to formulate
natural geometric properties that one can preserve in a dimensionality reducing
embedding.

Although our basic approach is general, we focused on the special case of
modeling manifolds in natural image data with emphasis on face recognition
data. Here the proposed a simple local transformations capture natural invariants
in the image data better than simply averaging nearby images together. Although
we have focused solely on facial rotation and translation as the basic invariants
we have been attempting to capture, clearly other types of transformations, such
as warping, and out of plane rotation, are further phenonenon one may with to
capture with these techniques.
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