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Abstract. A hierarchical key assignment scheme is a method to assign
some private information and encryption keys to a set of classes in a
partially ordered hierarchy, in such a way that the private information
of a higher class can be used to derive the keys of all classes lower down
in the hierarchy.

In this paper we design and analyze hierarchical key assignment
schemes which are provably-secure and support dynamic updates to the
hierarchy with local changes to the public information and without re-
quiring any private information to be re-distributed.
– We first show an encryption based construction which is provably

secure with respect to key indistinguishability, requires a single com-
putational assumption and improves on previous proposals.

– Then, we show how to reduce key derivation time at the expense of
an increment of the amount of public information, by improving a
previous result.

– Finally, we show a construction using as a building block a public-key
broadcast encryption scheme. In particular, one of our constructions
provides constant private information and public information linear
in the number of classes in the hierarchy.

1 Introduction

The hierarchical access control problem is defined in a scenario where the users
of a computer system are organized in a hierarchy formed by a certain number
of disjoint security classes. Hierarchical structures arise from the fact that some
users have more access rights than others, and are widely employed in many
different application areas, including database management systems, computer
networks, operating systems, military, and government communications.

In 1983, Akl and Taylor [1] suggested the use of cryptographic techniques to
enforce access control in hierarchical structures. In particular, they designed a
hierarchical key assignment scheme where each class is assigned an encryption
key that can be used, along with some public parameters, to compute the key
assigned to all classes lower down in the hierarchy. This assignment is carried
out by a Trusted Authority (TA), which is active only at the distribution phase.
A recent work by Crampton et al. [10] provides a detailed classification of many
schemes proposed in the last twenty years and evaluates their merits. Atallah
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et al. [3,4] first addressed the problem of formalizing security requirements for
hierarchical key assignment schemes. They proposed a first construction based
on pseudorandom functions and a second one requiring the use of a symmetric
encryption scheme secure against chosen-ciphertext attacks.

In this paper we design and analyze hierarchical key assignment schemes
which are provably-secure and efficient. We consider security with respect to
key indistinguishability, which corresponds to the requirement that an adversary
is not able to learn any information about a key that it should not have ac-
cess to. We propose two constructions for hierarchical key assignment schemes.
Both constructions support updates to the access hierarchy with local changes
to the public information and without requiring any private information to be
re-distributed. The first construction, which is based on symmetric encryption
schemes, is simpler than the one proposed by Atallah et al. [4], requires a single
computational assumption, and offers more efficient procedures for key deriva-
tion and key updates. We also focus on improving efficiency of key derivation in
hierarchical key assignment schemes. Such a problem has been recently consid-
ered by Atallah et al. [4,5], who proposed two different techniques requiring an
increment of public information. We show how to further reduce key derivation
time by improving one of their techniques. Finally, we show how to construct
a hierarchical key assignment scheme by using only a public-key broadcast en-
cryption scheme. In particular, by plugging in the scheme proposed by Boneh et
al. [8] we obtain a hierarchical key assignment scheme offering constant private
information and public information linear in the number of classes.

The full version of this paper, including a complete analysis and proofs, can
be found in [11].

2 Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security
classes. A binary relation � that partially orders the set of classes V is defined
in accordance with authority, position, or power of each class in V . The poset
(V, �) is called a partially ordered hierarchy. For any two classes u and v, the
notation u � v is used to indicate that the users in v can access u’s data. Clearly,
since v can access its own data, it holds that v � v, for any v ∈ V . We denote
by Av the set {u ∈ V : u � v}, for any v ∈ V . The partially ordered hierarchy
(V, �) can be represented by the directed graph G∗ = (V, E∗), where each class
corresponds to a vertex in the graph and there is an edge from class v to class
u if and only if u � v. We denote by G = (V, E) the minimal representation of
the graph G∗, that is, the directed acyclic graph corresponding to the transitive
and reflexive reduction of the graph G∗ = (V, E∗). Such a graph G has the same
transitive and reflexive closure of G∗, i.e., there is a path (of length greater than
or equal to zero) from v to u in G if and only if there is the edge (v, u) in E∗.

A hierarchical key assignment scheme for a family Γ of graphs, corresponding
to partially ordered hierarchies, is defined as follows.
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Definition 1. A hierarchical key assignment scheme for Γ is a pair (Gen, Der)
of algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.
It takes as inputs the security parameter 1τ and a graph G = (V, E) in Γ ,
and produces as outputs
(a) a private information su, for any class u ∈ V ;
(b) a key ku, for any class u ∈ V ;
(c) a public information pub.
We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and
G, where s and k denote the sequences of private information and of keys,
respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes
as inputs the security parameter 1τ , a graph G = (V, E) in Γ , two classes
u ∈ V and v ∈ Au, the private information su assigned to class u and the
public information pub, and produces as output the key kv assigned to class v.

We require that for each class u ∈ V , each class v ∈ Au, each private infor-
mation su, each key kv, each public information pub which can be computed
by Gen on inputs 1τ and G, it holds that Der(1τ , G, u, v, su, pub) = kv.

A hierarchical key assignment scheme is evaluated according to several param-
eters, such as the amount of private information held by each user, the amount
of public data, the complexity of key derivation, and the resistance to collusive
attacks. In order to evaluate the security of the scheme, we consider a static ad-
versary which wants to attack a class u ∈ V and which is able to corrupt all users
not allowed to compute the key ku. We define an algorithm Corruptu which, on
input the private information s generated by the algorithm Gen, extracts the
secret values sv associated to all classes in the set Fu = {v ∈ V : u �∈ Av}.
We denote by corr the sequence output by Corruptu(s). Two experiments are
considered. In the first one, the adversary is given the key ku, whereas, in the
second one, it is given a random string ρ having the same length as ku. It is the
adversary’s job to determine whether the received challenge corresponds to ku or
to a random string. We require that the adversary will succeed with probability
only negligibly different from 1/2.

If A(·, ·, . . .) is any probabilistic algorithm then a ← A(x, y, . . .) denotes the
experiment of running A on inputs x, y, . . . and letting a be the outcome, the
probability being over the coins of A. Similarly, if X is a set then x ← X denotes
the experiment of selecting an element uniformly from X and assigning x this
value. If w is neither an algorithm nor a set then x ← w is a simple assignment
statement. A function ε : N → R is negligible if for every constant c > 0 there
exists an integer nc such that ε(n) < n−c for all n ≥ nc.

Definition 2. [IND-ST] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V, E) be a graph in Γ , let (Gen, Der) be a hierar-
chical key assignment scheme for Γ and let STATu be a static adversary which
attacks a class u. Consider the following two experiments:
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Experiment ExpIND−1
STATu

(1τ , G) Experiment ExpIND−0
STATu

(1τ , G)
(s, k, pub) ← Gen(1τ , G) (s, k, pub) ← Gen(1τ , G)
corr ← Corruptu(s) corr ← Corruptu(s)
d ← STATu(1τ , G, pub, corr, ku) ρ ← {0, 1}length(ku)

return d d ← STATu(1τ , G, pub, corr, ρ)
return d

The advantage of STATu is defined as

AdvIND
STATu

(1τ , G) = |Pr[ExpIND−1
STATu

(1τ , G) = 1] − Pr[ExpIND−0
STATu

(1τ , G) = 1]|.

The scheme is said to be secure in the sense of IND-ST if, for each graph G =
(V, E) in Γ and each u ∈ V , the function AdvIND

STATu
(1τ , G) is negligible, for each

static adversary STATu whose time complexity is polynomial in τ .

In Definition 2 we have considered a static adversary attacking a class. A different
kind of adversary, the adaptive one, could also be considered. In [6] it has been
proven that security against adaptive adversaries is (polynomially) equivalent
to security against static adversaries. Hence, in this paper we will only consider
static adversaries.

3 An Encryption Based Construction

In this section we consider the problem of constructing a hierarchical key as-
signment scheme by using as a building block a symmetric encryption scheme.
A simple way to realize an encryption based scheme would be to assign a key
ku to each class u ∈ V and a public information p(u,v), for each edge (u, v) ∈ E,
corresponding to the encryption of kv with the key ku. This would allow any
user in a class u to compute the key kv held by any class v lower down in the
hierarchy, by performing distG(u, v) decryptions, where distG(u, v) denotes the
length of the shortest path from u to v in G.

Unfortunately, the simple solution described above is not secure with respect
to key indistinguishability. Indeed, consider an adversary attacking a class u and
corrupting a class v such that (u, v) ∈ E. The adversary, on input a challenge
ρ, corresponding either to the key ku or to a random value, is able to tell if ρ
corresponds to the encryption key ku simply by checking whether the decryption
of the public value p(u,v) with key ρ corresponds to the key kv held by class v.
In order to avoid the above attack, we propose a new construction, described in
Figure 1 and referred to as the Encryption Based Construction (EBC), where the
key assigned to a class is never used to encrypt the keys assigned to other classes.
In particular, in the EBC each class u ∈ V is assigned a private information su, an
encryption key ku, and a public information π(u,u), which is the encryption of the
key ku with the private information su; moreover, for each edge (u, v) ∈ E, there
is a public value p(u,v), which allows class u to compute the private information sv

held by class v. Indeed, p(u,v) consists of the encryption of the private information
sv with the private information su. This allows any user in a class u to compute
the key kv held by any class v lower down in the hierarchy, by performing
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Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G =
(V, E) ∈ Γ and let Π = (K, E ,D) be a symmetric encryption scheme.

Algorithm Gen(1τ , G)
1. For any class u ∈ V , let su ← K(1τ ) and ku ← {0, 1}τ ;
2. Let s and k be the sequences of private information and keys, respectively, com-

puted in the previous step;
3. For any two classes u, v ∈ V such that (u, v) ∈ E, compute the public information

p(u,v) = Esu(sv);
4. For any class u in V , compute the public information π(u,u) = Esu(ku);
5. Let pub be the sequence of public information computed in the previous two steps;
6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)
1. Consider a path (w0, w1), . . . , (wm−1, wm) ∈ E, from u = w0 to v = wm. For

any i = 1, . . . , m, extract the public value p(wi−1,wi) from pub and compute the
private information swi = Dswi−1

(p(wi−1,wi));
2. Extract the public value π(v,v) from pub and output the key kv = Dsv (π(v,v)).

Fig. 1. The Encryption Based Construction (EBC)

distG(u, v) + 1 decryptions. We will show that an adversary attacking a class u
is not able to distinguish the key ku from a random string of the same length
unless it is able to break the underlying encryption scheme. We first recall the
definition of a symmetric encryption scheme.

Definition 3. A symmetric encryption scheme is a triple Π = (K, E , D) of
algorithms satisfying the following conditions:

1. The key-generation algorithm K is probabilistic polynomial-time. It takes as
input the security parameter 1τ and produces as output a string key.

2. The encryption algorithm E is probabilistic polynomial-time. It takes as in-
puts 1τ , a string key produced by K(1τ ), and a message m ∈ {0, 1}∗, and
produces as output the ciphertext y.

3. The decryption algorithm D is deterministic polynomial-time. It takes as
inputs 1τ , a string key produced by K(1τ ), and a ciphertext y, and produces
as output a message m. We require that for any string key which can be
output by K(1τ ), for any message m ∈ {0, 1}∗, and for all y that can be
output by E(1τ , key, m), we have that D(1τ , key, y) = m.

Before analyzing the security of the EBC we first need to define what we mean by a
secure symmetric encryption scheme. We formalize security with respect to plain-
text indistinguishability, which is an adaption of the notion of polynomial security
as given in [13]. We consider an adversary A = (A1, A2) running in two stages.
In advance of the adversary’s execution, a random key key is chosen and kept hid-
den from the adversary. During the first stage, the adversary A1 outputs a triple
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(x0, x1, state), where x0 and x1 are two messages of the same length, and state is
some state information which could be useful later. One message between x0 and
x1 is chosen at random and encrypted to give the challenge ciphertext y. In the sec-
ond stage, the adversary A2 is given y and state and has to determine whether y
is the encryption of x0 or x1. Informally, the encryption scheme is said to be se-
cure with respect to a non-adaptive chosen plaintext attack (IND-P1-C0), if every
polynomial-timeadversaryA,whichhas access to the encryptionoracle onlyduring
thefirst stage of the attackandhasnever access to thedecryptionoracle, succeeds in
determining whether y is the encryption of x0 orx1 with probability only negligibly
different from 1/2. The proof of the next theorem can be found in [11].

Theorem 1. If the encryption scheme Π = (K, D, E) is secure in the sense of
IND-P1-C0, then the EBC is secure in the sense of IND-ST.

The EBC requires |E| + |V | public values; on the other hand, each class has to
store a single secret value, corresponding to its private information. As for key
derivation, a class u ∈ V which wants to compute the key held by a class v ∈ Au

is required to perform distG(u, v) +1 decryption operations. The EBC supports
insertions, but not deletions, of classes and edges in the hierarchy without re-
distributing private information to the classes affected by such changes. However,
in the full version of this paper [11] a simple modification of the scheme, which
avoids such a re-distribution, has been proposed. The modified scheme, referred
to as the Dynamic Encryption Based Construction (DEBC), requires |E| + 2|V |
public values, whereas, each class has to store a single secret value. Moreover,
the number of decryptions needed by class u to compute the key of class v ∈ Au

is distG(u, v) + 2.

4 Improving Key Derivation Time

In the EBC, as well as in the schemes proposed by Atallah et al. [3,4], the number
of steps that a class u has to perform, in order to compute the key of another
class v lower down in the hierarchy, is proportional to the length of the shortest
path from u to v. Atallah et al. [3,4,5] analyzed the problem of reducing key
derivation time by modifying the graph representing the hierarchy, in order to
reduce its diameter, where the diameter of a directed graph is defined as the
maximum distance between a pair of vertices in the graph connected by a path.
To this aim, they proposed some constructions to add additional edges, called
shortcut edges, as well as dummy vertices, to the hierarchy.

4.1 The Shortcutting Technique

The shortcutting of a directed graph G = (V, E) consists into inserting shortcut
edges in E, without changing the transitive closure of G. The goal is to obtain an-
other directed graph, called a shortcut graph, having a smaller diameter than G.

The shortcutting technique is quite old, indeed it has been first considered in
1982 by Yao [17]. In particular, Yao considered the problem in a quite different



Efficient Provably-Secure Hierarchical Key Assignment Schemes 377

context, where the n elements of V belong to a given semigroup (S, ◦) and one
is interested in answering queries of the form “what is the value of vi ◦vi+1 ◦ · · ·◦
vj−1 ◦ vj?” for any 1 ≤ i ≤ j ≤ n. In the following we translate to our scenario
the main existing results concerning the shortcutting technique when applied to
particular kinds of graphs. We start discussing chains, then we analyze trees and
finally general graphs.

Chains. By using the techniques proposed by Yao [17] we can add shortcut
edges to a chain (v1, . . . , vn) of n vertices. The techniques proposed by Alon and
Schieber [2] in 1987 and Bodlaender et al. [7] in 1994 are essentially the same
as the ones proposed by Yao, but their description is easier to illustrate. The
details of the constructions, translated to our scenario, can be found in [11]. The
parameters of such constructions are summarized in Figure 2, where log∗ n, is
the iterated logarithmic function.

Trees. In 1987 Chazelle [9], as well as Alon and Schieber [2], considered the
problem of reducing the diameter of free trees, i.e., indirected connected acyclic
graphs, by adding shortcut edges. Their results, which are summarized in
Figure 2, were also shown to hold for directed trees [16].

Diameter Minimal number
� of shortcut edges
1 Θ(n2)
2 Θ(n · log n)
3 Θ(n · log log n)
4 Θ(n · log∗ n)

O(log∗ n) Θ(n)

Fig. 2. Minimal number of shortcut edges to be added to chains and trees with n
vertices in order to obtain a shortcut graph with diameter �

General Graphs. Thorup [15] conjectured that for any directed graph G =
(V, E) one can obtain a shortcut graph with diameter polylogarithmic in |V |,
i.e., (log |V |)O(1), by adding at most |E| shortcut edges. He also showed his
conjecture to be true for planar directed graphs [16]. However, Hesse [14] gave
a counterexample to Thorup’s conjecture. He showed how to construct a direct
graph requiring the addition of Ω(|E| · |V |1/17) shortcut edges to reduce its
diameter below Θ(|V |1/17). By extending his construction to higher dimensions,
it is possible to obtain graphs with |V |1+ε edges that require the addition of
Ω(|V |2−ε) shortcut edges to reduce their diameter.

All constructions described in this section can be used to reduce key derivation
time in hierarchical key assignment schemes. However, the result by Hesse [14]
implies that key derivation time cannot be reduced essentially below Ω(|V |2) for
some kinds of graphs by adding only shortcut edges.
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4.2 The Shortcutting and Point-Inserting Technique

Atallah et al. [5] also proposed a different technique to reduce the diameter of an
access hierarchy. Such a technique consists of the addition of dummy vertices, as
well as new edges, to the hierarchy. The idea is to obtain a new hierarchy such that
there exists a path between two classes u and v in the old hierarchy if and only if
there exists a path between u and v in the new one. The addition of dummy vertices
results in a smaller number of new edges to be added to the hierarchy.

The technique makes use of the concept of dimension of a poset, originally de-
fined by Dushnik and Miller [12]. The dimension of a poset (V, �) is the minimum
number of total orders on V whose intersection is (V, �). It can also be seen as the
smallest nonnegative integer d for which each u ∈ V can be represented by a d-
vector (xu,1, . . . , xu,d) of integers such that u � v if and only if xu,i ≤ xv,i, for
any i = 1, . . . , d, and any u, v ∈ V . There are efficient algorithms to test if a poset
has dimension 1 or 2, but the problem of determining if a poset has dimension 3 is
NP-complete. A poset has dimension one if and only if it is a total order.

When applied to a hierarchy with n classes and dimension d, the technique
allows to reduce key derivation time to 2d + 1, by adding O(n · d · (log n)d−1 ·
log log n) dummy classes and new edges. In the following we show how to further
reduce key derivation time. Our technique performs a further shortcutting of the
graph obtained by Atallah et al.’s technique and allows key derivation time to
be independent on d.

4.3 The Improved Shortcutting and Point-Inserting Technique

In this section we consider the problem of reducing the diameter of the graph
obtained by the shortcutting and point-inserting technique, on input a poset
(V, �) with dimension d. Our construction, which we refer in the following as
the Improved Shortcutting and Point-Inserting Technique (ISPIT) is recursive,
and for the base case d = 1 reduces to the construction proposed by Yao [17].
The construction for the case d ≥ 2 is described in Figure 3. The input is a set
of n d-dimensional points corresponding to the vertices in V ; for each vertex
v ∈ V , let P

(d)
v be the corresponding point and let V (d) = {P

(d)
v : v ∈ V }.

The number DP (n, d) of dummy points added by the ISPIT is DP (n, d) =
2 · DP (
n/2�, d) + DP (n, d − 1) + Θ(n), where DP (n, 1) = 0 and DP (1, d) = 0.
Indeed, in order to construct G(d), the algorithm adds n dummy points, corre-
sponding to the projections of the points in V (d) on the (d − 1)-dimensional hy-
perplane M , plus DP (n, d−1) dummy points for the construction of G(d−1), and
then is recursively called on the two sets V

(d)
1 and V

(d)
2 . The solution of the above

recurrence is DP (n) = Θ(n ·d · (log n)d−1). On the other hand, the number T (n)
of new edges added by the ISPIT is T (n, d) ≤ 2·T (
n/2�, d)+3·T (n, d−1)+Θ(n),
where T (n, 1) denotes the number of shortcut edges added by Yao’s construction
[17] for the case d = 1 in order to obtain a shortcut graph having a certain diam-
eter, whereas, T (1, d) = 0. Indeed, at most 3 · |E(d−1)|+n new edges are added in
steps 7. and 8. and then the algorithm is recursively called on the two sets V

(d)
1

and V
(d)
2 . Clearly, the solution of T (n, d), as well as the diameter of the graph



Efficient Provably-Secure Hierarchical Key Assignment Schemes 379

Let (V, �) be a poset with dimension d ≥ 2, let V (d) be the set of points in the
vectorial representation of the Hasse diagram associated to (V, �) and based on its d
total orders, and let � ≥ 1.

1. If |V (d)| = 1, then output V (d).
2. If |V (d)| ≥ 2, compute a (d − 1)-dimensional hyperplane M perpendicular to the

d-th dimension that partitions the set of points in V (d) into two sets V
(d)
1 and V

(d)
2

of �n/2� and �n/2	 points, respectively, where V
(d)
1 is the set on the smaller side

of the hyperplane (according to the d-th coordinate). Such points are projected
on M . Denote by P

(d−1)
v the projection of P

(d)
v on M . Let V

(d−1)
1 and V

(d−1)
2 be

the projections of V
(d)
1 and V

(d)
2 .

3. If d = 2, use Yao’s construction on the chain whose vertices are the points in the
set V (1), in order to obtain a shortcut graph G(1) = (V (1), E(1)), having diameter
at most �. The set of dummy points added by the algorithm is D(1) = ∅ (no
dummy points are added).

4. If d ≥ 3, recursively call the algorithm on the set of points in V (d−1) = V
(d−1)
1 ∪

V
(d−1)
2 , corresponding to a (d−1)-dimensional hyperplane; let G(d−1) = (V (d−1)∪

D(d−1), E(d−1)) be the corresponding output.
5. Let D(d) = V (d−1) ∪ D(d−1).
6. Let E(d) = E(d−1).
7. Add edges between points in V (d) and corresponding projections:

(a) For each point P
(d)
v ∈ V

(d)
1 , add an edge (P (d−1)

v , P
(d)
v ) to E(d).

(b) For each point P
(d)
v ∈ V

(d)
2 , add an edge (P (d)

v , P
(d−1)
v ) to E(d).

8. Add shortcut edges between points in V (d) and dummy points:
(a) For each edge (P (d−1)

u , P
(j)
v ) ∈ E(d−1), add an edge (P (d)

u , P
(j)
v ) to E(d).

(b) For each edge (P (j)
u , P

(d−1)
v ) ∈ E(d−1), add an edge (P (j)

u , P
(d)
v ) to E(d).

9. Recursively call the algorithm on the two sets of points in V
(d)
1 and V

(d)
2 .

10. Output the graph G(d) = (V (d) ∪ D(d), E(d)).

Fig. 3. The Improved Shortcutting and Point-Inserting Technique (ISPIT)

G(d), depends on the the number T (n, 1) of shortcut edges added by Yao’s con-
struction. If T (n, 1) = Θ(n), then T (n, d) = O(n · d · (3 log n)d−1). On the other
hand, if T (n, 1) = Θ(n · log log n), then T (n, d) = O(n · d · (3 log n)d−1 · log log n)
and the diameter of the graph G(d) is three, i.e., it is independent on d. It is easy
to see that, for any two vertices u, v ∈ V such that u � v, there exists a path
from P

(d)
v to P

(d)
u in G(d) which has length at most the diameter of the graph

G(1) obtained by solving the 1-dimensional problem on V (1).
Compared to the technique in [5], the ISPIT allows a further reduction of the

diameter, but in each recursive call, it adds at most three times the number of
new edges added by that algorithm. In the following we show a trade-off between
the number of edges added by the ISPIT and the diameter of the resulting graph.
The idea behind the construction is the following: Assume the 1-dimensional
problem is solved by adding Θ(n log log n) shortcut edges. For each j = 2, . . . , d,
the j-dimensional problem could be solved either with the technique in [5] or with
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ours. Let 1 ≤ t ≤ d and assume, for example, that for j = 2, . . . , t, the technique
in [5] is used to solve the j-dimensional problem, whereas, our technique is used to
solve the problems with dimensions from t+1 to d. It is easy to see that the graph
resulting by the above construction has diameter 2t+1. Moreover, the number of
new edges added by the modified algorithm is O(3d−t ·n · t · (log n)d−1 · log log n).

5 A Broadcast Encryption Based Construction

In this sectionwe showhow to construct a hierarchical keyassignment schemeusing
as a building block a broadcast encryption scheme. A broadcast encryption scheme
allows a sender tobroadcast an encryptedmessage toa set ofusers in suchaway that
only legitimate users can decrypt it. Broadcast encryption schemes can be either
public key or symmetric key based. In the symmetric key setting, only a trusted
authority canbroadcast data to the receivers. In contrast, in the public key setting a
public key publishedby a trusted authority allows anybody to broadcast amessage.
We first recall the definition of a public-key broadcast encryption scheme [8].

Definition 4. A public-key broadcast encryption scheme for a set U of users
is a triple of algorithms (Set, Enc, Dec) satisfying the following conditions:

1. The setup algorithm Set is probabilistic polynomial-time. It takes as input
a security parameter 1τ and the set of users U and produces as output a
private key sku, for each user u ∈ U , and a public key pk.

2. The encryption algorithm Enc is probabilistic polynomial-time. It takes as
inputs 1τ , a subset X ⊆ U , and the public key pk, and produces as output a
pair (Hdr, k), where Hdr is called the broadcast header and k is a encryption
key. Let m be a message to be broadcast in such a way that only users in X are
allowed to obtain m and let y be the encryption of m under the symmetric key
k. The broadcast message consists of (X, Hdr, y), where the pair (X, Hdr)
is called the full broadcast header and y is called the broadcast body.

3. The decryption algorithm Dec is deterministic polynomial-time. It takes as
inputs 1τ , a subset X ⊆ U , a user u ∈ X and its private key sku, a broadcast
header Hdr, and the public key pk, and produces as output the key k. Such
a key can be used to decrypt the broadcast body y in order to obtain m.

We require that for all subsets X ⊆ U , all users u ∈ X, all public keys and
private keys which can be output by Set(1τ , U), all pairs (Hdr, k), which can be
output by Enc(1τ , X, pk), we have that Dec(1τ , X, u, sku, Hdr, pk) = k.

The idea behind our construction, referred in the following as the Broadcast
Encryption Based Construction (BEBC), is to compute the private and public
information by using the broadcast encryption scheme; more precisely, the pub-
lic information will contain a broadcast header Hdru, which corresponds to an
encryption of the key ku, for each class u ∈ V . Such a broadcast header can be de-
crypted by all classes in the set Iu = {v ∈ V : there is a path from v to u in G},
allowing them to compute the key ku. The Broadcast Encryption Based Con-
struction is described in Figure 4.
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Let Γ be a family of graphs corresponding to partially ordered hierarchies. Let G =
(V, E) ∈ Γ and let (Set,Enc, Dec) be a public-key broadcast encryption scheme for
users in V .

Algorithm Gen(1τ , G, )
1. Run Set(1τ , V ) to generate a public key pk and a secret key sku for any u ∈ V ;
2. For each class u ∈ V , let su = sku;
3. For each class u ∈ V , run Enc(1τ , Iu, pk) to obtain the pair (Hdru, ku);
4. Let s and k be the sequences of private information and keys computed in the

previous two steps;
5. Let pub be the sequence constituted by the public key pk along with the header

Hdru, for any u ∈ V ;
6. Output (s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)
1. Extract the public key pk and the header Hdrv from pub.
2. Output kv = Dec(1τ , Iv, u, su, Hdrv, pk).

Fig. 4. The Broadcast Encryption Based Construction

Before analyzing the security of the BEBC we first need to define what we
mean by a secure public-key broadcast encryption scheme. The security of a
public-key broadcast encryption scheme is defined through a game between an
adversary A and a challenger. According to the capabilities of the adversary
and the security goal, several types of security notions for public-key broad-
cast can be defined. We consider the definition of semantic security given by
Boneh et al. [8], where the adversary is not allowed to issue decryption queries
to the challenger. We consider the following game: First, algorithm A outputs a
set X ⊆ U of receivers that it wants to attack. Then, the challenger first runs
Set(1τ , U) to obtain a private key sku for each user u ∈ U and a public key
pk. Afterwards, it gives the public key pk and all private keys skv for which
v �∈ X to A. The challenger runs Enc(1τ , X, pk) to obtain (Hdr, k). Then, it
picks a random bit b ∈ {0, 1}, sets kb = k and chooses kb as a random key. The
challenge (Hdr, k0, k1) is given to A. Algorithm A outputs its guess b′ ∈ {0, 1}
for b and wins the game if b = b′. The advantage of the adversary A is defined as
AdvA,U(1τ ) = |Pr[b′ = b] − 1/2|. The scheme is said to be semantically secure
if the function AdvA,U (1τ ) is negligible, for any adversary A whose time com-
plexity is polynomial in τ . The proof of the next theorem can be found in [11].

Theorem 2. If the public-key broadcast encryption scheme (Set, Enc, Dec) is
semantically secure, then the BEBC is secure in the sense of IND-ST.

Boneh et al. [8] showed how to construct a semantically secure public-key broad-
cast encryption scheme for a set of n users, assuming the intractability of the
n-Bilinear Decisional Diffie-Hellman Exponent (n-BDDHE). The use of such a
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broadcast encryption scheme allows us to obtain a hierarchical key assignment
scheme where the public information consists of 4|V |+1 group elements, whereas,
the private information has constant size. Moreover, key derivation requires a
single (complex) decryption operation, which involves at most |V |− 2 group op-
erations. The above scheme supports dynamic changes to the hierarchy without
requiring re-distribution of private information to the classes affected by such
changes. Details of the construction can be found in [11].
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