Dynamic Integration of Classifiers in the Space of
Principal Components

Alexey Tsymbal', Mykola Pechenizkiy®, Seppo Puuronen’, and
David W. Patterson’

"Dept. of Computer Science, Trinity College Dublin, Dublin, Ireland
alexey.tsymbal@cs.tcd.ie

’Dept. of Computer Science and Information Systems, University of Jyviskyla
Jyviskyld, Finland
{mpechen, sepil}@cs.jyu.fi
*Northern Ireland Knowledge Engineering Laboratory, University of Ulster, U.K.
wd.patterson@ulst.ac.uk

Abstract. Recent research has shown the integration of multiple classifiers to
be one of the most important directions in machine learning and data mining. It
was shown that, for an ensemble to be successful, it should consist of accurate
and diverse base classifiers. However, it is also important that the integration
procedure in the ensemble should properly utilize the ensemble diversity. In this
paper, we present an algorithm for the dynamic integration of classifiers in the
space of extracted features (FEDIC). It is based on the technique of dynamic
integration, in which local accuracy estimates are calculated for each base clas-
sifier of an ensemble, in the neighborhood of a new instance to be processed.
Generally, the whole space of original features is used to find the neighborhood
of a new instance for local accuracy estimates in dynamic integration. In this
paper, we propose to use feature extraction in order to cope with the curse of
dimensionality in the dynamic integration of classifiers. We consider classical
principal component analysis and two eigenvector-based supervised feature ex-
traction methods that take into account class information. Experimental results
show that, on some data sets, the use of FEDIC leads to significantly higher en-
semble accuracies than the use of plain dynamic integration in the space of
original features. As a rule, FEDIC outperforms plain dynamic integration on
data sets, on which both dynamic integration works (it outperforms static inte-
gration), and considered feature extraction techniques are able to successfully
extract relevant features.

1 Introduction

Knowledge discovery in databases (KDD) is a combination of data warehousing,
decision support, and data mining that indicates an innovative approach to informa-
tion management. KDD is an emerging area that considers the process of finding
previously unknown and potentially interesting patterns and relations in large data-
bases [7]. Current electronic data repositories are growing quickly and contain huge
amount of data from commercial, scientific, and other domain areas. The capabilities
for collecting and storing all kinds of data totally exceed the abilities to analyze,

L. Kalinichenko et al. (Eds.): ADBIS 2003, LNCS 2798, pp. 278-292, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Dynamic Integration of Classifiers in the Space of Principal Components 279

summarize, and extract knowledge from this data. Numerous data mining methods
have recently been developed to extract knowledge from these large databases. Selec-
tion of the most appropriate data-mining method or a group of the most appropriate
methods is usually not straightforward. Often the method selection is done statically
for all new instances of the domain area without analyzing each particular new in-
stance. Usually better data mining results can be achieved if the method selection is
done dynamically taking into account characteristics of each new instance.

Recent research has proved the benefits of the use of ensembles of base classifiers
for classification problems [6]. The challenge of integrating base classifiers is to de-
cide which of them to select or how to combine their classifications to the final classi-
fication.

In many real-world applications, numerous features are used in an attempt to en-
sure accurate classification. If all those features are used to build up classifiers, then
they operate in high dimensions, and the learning process becomes computationally
and analytically complicated. For instance, many classification techniques are based
on Bayes decision theory or on nearest neighbor search, which suffer from the so-
called “curse of dimensionality” [4] due to the drastic rise of computational complex-
ity and classification error in high dimensions [9]. Hence, there is a need to reduce the
dimensionality of the feature space before classification. According to the adopted
strategy dimensionality reduction techniques are divided into feature selection and
feature transformation (also called feature discovery). The variants of the last one are
feature extraction and feature construction. The key difference between feature selec-
tion and feature transformation is that during the first process only a subset of original
features is selected while the second approach is based on a generation of completely
new features; feature construction implies discovering missing information about the
relationships among features by inferring or creating additional features [14]. Feature
extraction is a dimensionality reduction technique that extracts a subset of new fea-
tures from the original set of features by means of some functional mapping keeping
as much information in the data as possible [8].

In this paper, we consider the use of feature extraction in order to cope with the
curse of dimensionality in the dynamic integration of classifiers. We propose the
FEDIC (Feature Extraction for Dynamic Integration of Classifiers) algorithm, which
combines the dynamic selection and dynamic voting integration techniques (DS and
DV) with the conventional Principal Component Analysis (PCA) and two supervised
eigenvector-based approaches (that use the within- and between-class covariance
matrices). The first eigenvector-based approach is parametric, and the other one is
nonparametric. Both these take class information into account when extracting fea-
tures in contrast to PCA [8, 10].

Our main hypothesis is that with data sets, where feature extraction improves clas-
sification accuracy when employing a single classifier (such as kNN or Naive Bayes),
it will also improve classification accuracy when a dynamic integration approach is
employed. Conversely, with data sets, where feature extraction decreases (or has no
effect) classification accuracy with the use of a single classifier, then feature extrac-
tion will also decrease (or will have no effect) classification accuracy when employ-
ing a dynamic integration approach.

In the next section the dynamic integration of classifiers is discussed. Section 3
briefly considers PCA-based feature extraction techniques with respect to classifica-
tion problems. In Section 4 we consider the FEDIC algorithm, which performs the

280 A. Tsymbal et al.

dynamic integration of classifiers in the transformed space. In Section 5 experiments
conducted on a number of data sets from the UCI machine learning repository are
described, and the results of the FEDIC algorithm are analyzed and compared to the
results of both the static and dynamic selection techniques shown in the nontrans-
formed space.

2 Dynamic Integration of Classifiers

Recently the integration of classifiers has been under active research in machine
learning, and different approaches have been considered [6]. The integration of an
ensemble of classifiers has been shown to yield higher accuracy than the most accu-
rate base classifier alone in different real-world problems. The two main approaches
to integration are: first, the combination approach, where base classifiers produce
their classifications and the final result is composed using those classifications, and
second, the selection approach, where one of the classifiers is selected and the final
result is the result produced by it.

The most popular and simplest method of combining classifiers is voting (also
called majority voting and Select All Majority, SAM) [3]. In this simple method, the
classification produced by a base classifier is considered as a vote for a particular
class value, and the class value with the most votes is selected as the final classifica-
tion. Weighted voting (WV) [3] and stacked generalization [25] are examples of more
sophisticated combining methods.

One very popular but simple selection approach is CVM (Cross-Validation Major-
ity) [12], which estimates the accuracy of each base classifier using cross-validation
and selects a classifier with the highest accuracy.

CVM is an example of a static selection method that selects one base classifier for
the whole data space. More sophisticated combining and selection methods use the
estimates of the local accuracy of the base classifiers or meta-level classifiers, which
predict the correctness of base classifiers for a new instance [15, 16]. These more
sophisticated selection methods are called dynamic selection methods.

In [20] a dynamic approach that estimates the local accuracy of each base classifier
by analyzing the accuracies of the base classifiers in near-by instances was elaborated.
Instead of training a meta-level classifier that will derive the final classification using
the classifications of the base classifiers as in stacked generalization, a meta-level
classifier that will estimate the local errors of the base classifiers for each new in-
stance and then use these errors to derive the final classification is trained. To predict
the errors of base classifiers, the weighted nearest neighbor classification (WNN) is
used [1].

The dynamic integration technique contains two main phases [19]. First, at the
learning phase, the training set is partitioned into folds. The cross-validation tech-
nique is used to estimate the errors of base classifiers on the training set and a meta-
level training set is formed. It contains all the attributes of the training instances and
the estimates of the errors of base classifiers on those instances. Second, at the appli-
cation phase, a combining classifier is used to predict the performance of each base
classifier for a new instance.

Dynamic Integration of Classifiers in the Space of Principal Components 281

Two different functions implementing the application phase were considered in
[19]: dynamic selection (DS) and dynamic voting (DV). At the application phase, DS
selects a classifier with the least predicted classification error using the WNN proce-
dure. DV uses the local errors as weights for the base classifiers. Then, weighted
voting is used to produce the final classification.

3 Feature Extraction for Classification

Feature extraction for classification is a search among all possible transformations for
the best one, which preserves class separability as much as possible in the space with
the lowest possible dimensionality [2, 8]. In other words, we are interested in finding
a projection w:
T
y=wXx, (1)

where y is a p'x1 transformed data point, w is a pX p' transformation matrix, and x is
a px1 original data point.

In [18] it was shown that the conventional PCA [10, 23] transforms the original set
of features into a smaller subset of linear combinations that account for most of the
variance of the original set. Although it is still probably the most popular feature ex-
traction technique, it has a serious drawback, giving high weights to features with
higher variabilities, irrespective of whether they are useful for classification or not.
This may give rise to the situation where the chosen principal component corresponds
to an attribute with the highest variability but has no discriminating power.

The usual approach to overcome this problem is to use some class separability cri-
terion, e.g. the criteria defined in Fisher linear discriminant analysis, and based on the
family of functions of scatter matrices:

T
Jowy =S5V @)

wTSWw

where Sj is the between-class covariance matrix that shows the scatter of the expected
vectors around the mixture mean, and Sy is the within-class covariance, that shows
the scatter of samples around their respective class expected vectors.

A number of other criteria were proposed in [8]. Both parametric and non-
parametric approaches optimize the criterion (2) by the use of the simultaneous di-
agonalization algorithm [8]:

1. Transformation of X to Y: Y=A"®"X, where A and @ are the eigen-
values and eigenvectors matrices of § .

Computation of S, in the obtained Y space.
3. Selection of m eigenvectors of S,, y,,...,y, , Which correspond to the m

largest eigenvalues.
4. Finally, new feature space Z:\[l,TnY, where ¥=[y,,.,y,]> can be ob-

tained.

282 A. Tsymbal et al.

It should be noticed that there is a fundamental problem with the parametric nature
of the covariance matrices. The rank of the Sy is at most the number of classes-1, and
hence no more than this number of new features can be obtained.

The nonparametric method overcomes this problem by trying to increase the num-
ber of degrees of freedom in the between-class covariance matrix, measuring the
between-class covariances on a local basis. The k-nearest neighbor (kNN) technique
is used for this purpose.

The algorithm for nonparametric feature extraction is the same as for the paramet-
ric extraction. Simultaneous diagonalization is used as well, and the only difference is
in calculating the between-class covariance matrix. In the nonparametric case the
between-class covariance matrix is calculated as the scatter of the samples around the
expected vectors of other classes’ instances in the neighborhood. Two parameters
(nNN and) are used to assign more weight to those elements of the matrix, which
involve instances lying near the class boundaries and thus being more important for
classification. In [8] the parameter & was set to 1 and nNN to 3, but without any strict
justification. In [20] it was shown that these parameters have different optimal values
for each data set.

4 Dynamic Integration of Classifiers with Instance Space
Transformation

In order to address the curse of dimensionality in the dynamic integration of classifi-
ers, we propose the FEDIC (Feature Extraction for Dynamic Integration of Classifi-
ers) algorithm that first performs feature extraction and then uses a dynamic scheme
to integrate classifiers.

4.1 Scheme of the FEDIC Algorithm

In Figure 1, a scheme that illustrates the components of the FEDIC approach is pre-
sented. The FEDIC learning model consists of five phases: the training of the base
classifiers phase, the feature extraction phase (FE), the dynamic integration phase
(DIC), the model validation phase, and the model testing phase. The model is built
using a wrapper approach [11] where the variable parameters in FE and DIC can be
adjusted to improve performance as measured at the model validation phase in an
iterative manner. These parameters include the threshold value that is related to the
amount of covered variance by the first principal components and thus defines the
number of output features in the transformed space (it is set up for each feature ex-
traction method); the optimal values of & and nNN parameters (as described in Sec-
tion 3) in the nonparametric feature extraction technique and the number of nearest
neighbors in DIC as described later.

In the next subsections we consider the training, feature extraction and dynamic
integration of classifiers phases of the FEDIC algorithm.

Dynamic Integration of Classifiers in the Space of Principal Components 283

Training the Base
Classiliers [NE)

4L T

Feature Exiraciion
{PCA, Par, NPar}

I Tr

DI
{DS, DV}

1L I
Validation set — Rodel Evaluation

4L
Test sat Ly Fimal Evaluation

Fig. 1. Scheme of the FEDIC approach

4.2 The Training of the Base Classifiers Phase

The training phase begins with preprocessing which includes categorical features’
binarization. Each categorical feature is replaced with a redundant set of binary fea-
tures, each corresponding to a value of the original feature. An ensemble of classifiers
is built from the pre-processed training data as shown in Figure 2. The training set T
is partitioned into v folds. Then, cross-validation is used to estimate the errors of the
base classifiers E, (x) on the training set and the meta-level training set T is formed.
It contains the attributes of the training instances X, and the estimates of the errors of
the base classifiers on those instances E].(x*). The learning phase continues with train-
ing the base classifiers C; on the whole training set.

T training set

T; 1i-th fold of the training set
T* meta-level training set

c(x) classification of instance x
c set of base classifiers

C; Jj-th base classifier

C;(x) prediction of C; on instance x

E;(x) estimation of error of C; on instance x
E error matrix

m number of base classifiers

procedure training phase(T,C)

284 A. Tsymbal et al.

begin {fill in the meta-level training set T"}
partition T into v folds
loop for T;cCT, i=1,...,v
loop for j from 1 to m
train (Cj, T_Ti)
loop for xeT;
loop for j from 1 to m
compare Cj(x) with c(x) and derive Ej;(x)
collect (E;(x),...,Ey(x)) into E
T*=T|E
loop for j from 1 to m
train(cCj,T)
end

Fig. 2. The training phase
4.3 The Feature Extraction Phase

During this phase, feature extraction techniques are applied to the meta-level training
set T" to produce transformed meta-data with a reduced number of features. The
pseudo-code of this process is shown in Figure 3. The formed meta-level data set is
the input for the FE module where one of the three functions used: (1) PCA_FE that
implements conventional PCA, (2) Par_FE that implements parametric feature ex-
traction, or (3) NPar_FE that implements nonparametric feature extraction. The func-
tion getYspace is used to calculate an intermediate transformed space needed for the
parametric and nonparametric approaches.

T, T meta-level and transformed meta-level data sets

S, Sy, S, total, between- and within-class covariance
matrices

m mean vector

Y intermediate transformed space

A, D eigenvalues and eigenvectors matrices

threshold the amount of variance in the selected PCs

function PCA_FE(T', threshold) returns T '
begin

S« > (x,—m)(x, —-m)”
i=1
A, D < eigs(S) {the eigensystem decomposition}
Ppcp ¢ formPpes (threshold, A, @)
{forms the transformation matrix}

"
return T « Pp,T|E
end

Dynamic Integration of Classifiers in the Space of Principal Components 285

function Par FE(T', threshold) returns T’
begin
Y« getYspace(T)
SBe—E:n(nﬂ”—nUOn””—nﬂT{CompUting of 8, in the Y
i=1
space}

A, @ —eigs(Sy)

P, < formPy,, (threshold, A, ®)

return T «P, Y |E
end

function NPar_FE(T ,threshold, kNN, alpha) returns T '
begin
Y < getYspace (T")

min {d” (x{,x 20}

() ()
zd (Xl n{VN

Ss eZnZw,kZ(x@ m{)(x{" —mg)"
i=1 k=1

j$1
A, @ —eigs(Sy)
PNPW & formPyp,, (threshold, A, ®)

Wy,

return T « P, Y |E

end
function getYspace(T') returns Y
begin
Sy « ZniZ(x(J.i) —m<i))(x<1.i) —m)7
=1 =l
A, D «—eigs(S,)
return Y « A "@'X
end

Fig. 3. The feature extraction phase

4.3 The Dynamic Integration Phase

The transformed meta-data T*’ is the input for the DIC module where the application
phase of the dynamic integration process is performed - the combining classifier is
used to predict the performance of each base classifier for a new instance. Either the
function DS_application_phase or the function DV_application_phase (Figure 4) is

286 A. Tsymbal et al.

used for this purpose. Both functions begin with finding in the training set T*’ a near-
est neighborhood NN of the test instance x transformed with the corresponding trans-
formation matrix calculated at the FE phase. The first function DS_application_phase
implements Dynamic Selection. In the DS application phase the classification error E; ’
is predicted for each base classifier C; using the WNN procedure and a classifier with
the lowest error (with the least global error in the case of ties) is selected to make the
final classification. The second function DV_application_phase implements Dynamic
Voting. In the DV application phase each base classifier C, receives a weight W, that
depends on the local classifier’s performance, and the final classification is conducted
by voting classifier predictions C(x) with their weights W.. For both functions the size
of the set NN is an adjustable parameter.

x’ an instance x transformed with Ppea, Pypar OF Pypar
W vector of weights for base classifiers

T" transformed meta-level training set

E'j(x) prediction of error of Cjon instance x

function DS application phase(T",C,x)returns class of x
begin
NN=FindNeighborhood (T"",x’,nn)
loop for j from 1 to m

1 . .
E &~ — ZWNN - Ej(xyy,) {WNN estimation}
nn i=1
1 ¢« argmin Ej {number of cl-er with min. E;}
)
{with the least global error in the case of ties}
return C;(x)
end

function DV application phase(T",C,x)returns class of x
begin
NN=FindNeighborhood (T"',x’,nn)
loop for j from 1 to m
1
Wy < 1-— qum-- Ej(xyy,) {WNN estimation}
nn j=1 *
return Weighted_Voting (W, C;(x), ..., Ch(x))
end

Fig. 4. The dynamic integration phase

We do not devote a separate subsection to the model validation and model evalua-
tion phases since they are performed in a straightforward manner. At the validation
phase, the performance of the given model with the given parameter settings on an
independent validation data set is tested. The given model, its parameter settings and
performance are recorded. And at the final evaluation phase, the best model from the
number of obtained models is selected. This model is the one with optimal parameters

Dynamic Integration of Classifiers in the Space of Principal Components 287

settings as based on the validation results. The selected model is then tested with a
test data set.

In the next section we consider our experiments where we analyzed and compared
the feature-extraction techniques described above.

5 Experimental Studies

We conducted the experiments on 20 data sets with different characteristics taken
from the UCI machine learning repository [5]. The main characteristics of the data
sets, which include the name of a data set, the number of instances included in a data
set, the number of different classes of instances, and the numbers of different types of
features (categorical and numerical) included in the instances were presented in [21].
In [22] results of experiments with feature subset selection techniques with the dy-
namic selection of classifiers using these data sets were presented.

For each data set 70 test runs were made. In each test run a data set was first split
into the training set, the validation set, and the test set by stratified random sampling.
Each time 60 percent of the instances were included in the training set. The other 40
percent were divided into two sets of approximately equal size (the validation and test
sets). The validation set was used in the iterative refinement of the ensemble. The test
set was used for the final estimation of the ensemble accuracy.

To construct ensembles of base classifiers we have used the EFS_SBC (Ensemble
Feature Selection for the Simple Bayesian Classification) algorithm, introduced in
[20]. Initial base classifiers were built using the Naive Bayes on the training set and
later refined using a hill-climbing cycle on the validation data set. The size of ensem-
ble was selected to be equal to 25. It was shown that the biggest gain is achieved
already with this number of base classifiers [2]. The diversity coefficient & was se-
lected as it was recommended in [20] for each data set.

At each run of the algorithm, we collected accuracies for the four types of integra-
tion of the base classifiers: Static Selection (SS), Weighted Voting (WV), Dynamic
Selection (DS), and Dynamic Voting (DV). In dynamic integration, the number of
nearest neighbors for the local accuracy estimates was pre-selected from the set of six

values: 1, 3, 7, 15, 31, 63 (2" -1, n=1,...,6), for each data set separately. Heterogene-
ous Euclidean-Overlap Metric (HEOM) [24] was used for calculation of the distances
in dynamic integration.

A multiplicative factor of 1 was used for the Laplace correction in simple Bayes.
Numeric features were discretized into ten equal-length intervals (or one per observed
value, whichever was less). Software for the experiments was implemented using the
MLC++ machine learning library [13].

In Section 6 the results of dynamic integration with feature extraction using FEDIC
are compared with the results when no feature extraction was used, and dynamic
integration was therefore carried out in the space of original features.

288 A. Tsymbal et al.

6 Results and Discussions

The basic results of the experiments are presented in Table 1. The average
classification accuracies of the 3-NN classifier (3-nearest neighbor search) are given
for the three feature extraction techniques, namely PCA, parametric (Par) and non-
parametric (NPar) approaches. Additionally, classification accuracy for the situation
without feature extraction (Plain) is also shown. Then, in the same order, accuracies
for the FEDIC approaches averaged over dynamic selection and dynamic voting
schemes are presented. The last column contains classification accuracies for the
static integration of classifiers (SIC) averaged over static selection and weighted vot-
ing. Each row of the table corresponds to a single data set. The last row includes the
results averaged over all the data sets.

From Table 1 one can see that the nonparametric approach has the best accuracy on
average both with the base classifier and with the dynamic integration scenarios. Al-
though the parametric approach has extracted the least number of features, and it has
been the least time-consuming approach, its performance has been unstable. The
parametric approach has rather weak results on the Glass, Monk-1, and Tic data sets
in comparison to the other feature extraction approaches. The scenario with paramet-
ric feature extraction has the worst average accuracy.

Table 1. Results of the experiments

3NN Classileer FEDAC SIC
PCA Pax MNPar Flam PCA Par Mpar Plain Plain

Balawe BT B93 863 EXM B06 A9T B0 g A4
Breast 121 &7 6% TH 747) YL 144 7

Car A4 BEE 864 E0G B2 4] Jgd 111 B63
Diabetes T30 725 722 T3) 62 T4l Tl Tal Tal
Gl A5 57T 598 664 ATH LU S | LT SB25
Heart JIT OBOE 706 THD B30 B35 B30 B39 B30
[onospher BT B43 B4 RdD F20 s 01T LUk A4
[ris H63 DED 980 D35 i3 S0 B35 A4 229
LED A B30 B35S AT TAE Ja4 0 T T44 a5l
LEL7 395 493 467 378 L0 1L 5[] gL A9
Liver Hed 512 604 616 B35 | MAX3 f25 A5
Lymph &13 B3 BT B4 bR b LR B30 524
Monk-1 76T 687 8532 T58 BIE 09 G2 R32 1
Monk-! TIT 654 562 il Hid 6712 D5 Ahd
Monk-3 S3% 590 990 B43 N5 L) Ari4 971
Thywaid %21 042 033 034 okt A5 D55 sl A53
Tie A71 677 484 684 Did 83 BB 134 T30
Vehicle 733 752 778 &M ST H5T T hid A3
¥oting 23 54% e 51 B53 A45 0 W0 A53 A5]
Lo S3T BES BEE 032 S e Lhgild S48
A B01 B3 B2 Teb S0 B0s g1 £15 796

Dials =i

Dynamic Integration of Classifiers in the Space of Principal Components 289

The nonparametric approach extracts more features due to its nonparametric na-
ture, and still it was less time-consuming than the PCA and Plain classification. We
should also point out that feature extraction speeds up dynamic integration in the
same way as feature extraction speeds up a single classifier. This is as one could ex-
pect, since nearest-neighbor search for the prediction of local accuracies is the most
time-consuming part of the application phase in dynamic integration, and it uses the
same feature space as a single nearest-neighbor classifier does. Moreover, the two
nearest-neighbor search processes (in dynamic integration and in a base classifier) are
completely identical, and differ only in the number of nearest neighbors used to de-
fine the neighborhood.

The results of Table 1 show that, in some cases, dynamic integration in the space of
extracted features results in significantly higher accuracies than dynamic integration
in the space of original features. This is the situation with the Car, Liver, Monk-1,
Monk-2, Tic-Tac-Toe and Vehicle data sets. For these data sets we have pairwise
compared each FEDIC technique with the others and with static integration using the
paired Student #-test with the 0.95 level of significance. Results of the comparison are
given in Table 2. Columns 2-6 of the table contain the results of comparing a tech-
nique corresponding to the row of a cell with a technique corresponding to the col-
umn, using the paired #-test. Each cell contains win/tie/loss information according to
the #-test. For example, PCA has 3 wins against the parametric extraction, 1 draw and
1 loss on 5 data sets.

Table 2. Results of the paired r-test (win/tie/loss information) for data sets, on which FEDIC
outperforms plain dynamic integration

PCA Parametric Nonparam. Plain SIC
PCA 311 2/0/3 4/1/0 4/1/0
Parametric 1/1/3 0/2/3 21211 311
Nonparam. 3/0/2 3240 4/1/0 5/0/0
Plain 0/1/4 1/2/2 0/1/4 1/31
SIC 0/1/4 1/1/3 0/0/5 1/3/1

There is an important trend in the results — the FEDIC algorithm outperforms dynamic
integration on plain features only on those data sets, on which feature extraction for
classification with a single classifier provides better results than the classification on
the plain features. If we analyze this correlation further, we will come to the conclu-
sion that feature extraction influences the accuracy of dynamic integration to a similar
extent as feature extraction influences the accuracy of base classifiers. This trend
supports our expectations about the behavior of the FEDIC algorithm.

The reason for that behavior is that both the meta-level learning process in dy-
namic integration, and the base learning process in base classifiers use the same fea-
ture space. Though, it is necessary to note, that the output values are still different in
those learning tasks (these are local classification errors and the classes themselves
correspondingly). Thus, the feature space is the same, and the output values to be
predicted are different. This justifies that the influence of feature extraction on the
accuracy of dynamic integration in comparison with the influence on the accuracy of
a single classifier is still different to a certain degree.

290 A. Tsymbal et al.

In Figure 5 we summarize the accuracy results obtained on those data sets where at
least some FEDIC-based technique (with PCA, parametric or nonparametric feature
extraction) significantly outperforms the dynamic integration of classifiers on plain
feature sets and the averaged results. It can be seen from the histogram that the non-
parametric FEDIC shows the best accuracy on average of all the techniques consid-
ered. FEDIC and plain dynamic integration on average show almost the same results
although we have to point out that this has happened due to the very unstable behavior
of the parametric approach. The dynamic approaches significantly outperform the
static ones.

7 Conclusion

Feature extraction as a dimensionality reduction technique helps to overcome the
problems related to the “curse of dimensionality* with respect to the dynamic inte-
gration of classifiers. The experiments showed that the DIC approaches based on the
plain feature sets had worse results in comparison to the results obtained using the
FEDIC algorithm. This supports the fact that dimensionality reduction can often en-
hance a classification model.

1.000 - gsic
0.950] EDIC_Plain
EFEDIC_PCA
0.900 -
BFEDIC_Par
0.850 - M FEDIC_NPar
0.800 -
0.750 -
0.700 -
0.650 -
0.600 -
0.550 -

Car Liver Monk-1 Monk-2 Tic Vehicle average

Fig. 5. Classification accuracy for data sets, on which the FEDIC algorithm outperforms plain
dynamic integration

Dynamic Integration of Classifiers in the Space of Principal Components 291

The results showed that the proposed FEDIC algorithm outperforms the dynamic
schemes on plain features only on those data sets, on which feature extraction for
classification with a single classifier provides better results than classification on plain
features. When we analyzed this dependency further, we came to a conclusion that
feature extraction influenced on the accuracy of dynamic integration in most cases in
the same manner as feature extraction influenced on the accuracy of base classifiers.

The nonparametric approach was the best on average; however, it is necessary to
note that each feature extraction technique was significantly better than all the other
techniques at least on one data set. Further research is needed to define the dependen-
cies between the characteristics of a data set and the type and parameters of the fea-
ture extraction approach that best suits it.

Some of the most important issues for future research to be raised by this work, in-
clude how the algorithm could automatically determine what transformation matrix
should be chosen (i.e. what is the optimal feature extraction method) from the char-
acteristics of the input data and what the optimal parameter settings for the selected
feature extraction method should be. Also of interest is, how the most appropriate
dynamic integration scheme could be automatically identified.

Acknowledgments. This research is partly supported by Science Foundation Ireland
and COMAS Graduate School of the University of Jyviskyld, Finland. We would like
to thank the UCI ML repository of databases, domain theories and data generators for
the data sets, and the MLC++ library for the source code used in this study.

References

1. Aivazyan, S.A. Applied statistics: classification and dimension reduction. Finance and
Statistics, Moscow (1989).

2. Aladjem, M. Parametric and nonparametric linear mappings of multidimensional data.
Pattern Recognition, Vol.24(6) (1991), pp. 543-553.

3. Bauer, E., Kohavi, R. An empirical comparison of voting classification algorithms: bag-
ging, boosting, and variants. Machine Learning, Vol. 36, Nos. 1,2 (1999) 105-139.

4. Bellman, R., Adaptive Control Processes: A Guided Tour, Princeton University Press
(1961).

5. Blake, C.L., Merz, C.J. UCI repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/ MLRepository.html]. Dept. of Information and Computer
Science, University of California, Irvine, CA (1998).

6. Dietterich, T.G. Machine learning research: four current directions. Al Magazine 18(4)
(1997) 97-136.

7. Fayyad U.M. Data Mining and Knowledge Discovery: Making Sense Out of Data, IEEE
Expert, Vol. 11, No. 5, Oct. (1996) pp. 20-25

8. Fukunaga, K. Introduction to statistical pattern recognition. Academic Press, London
(1999).

9. Hall, M.A. Correlation-based feature selection of discrete and numeric class machine
learning. In Proc. Int. Conf. On Machine Learning (ICML-2000), San Francisco, CA.
Morgan Kaufmann, San Francisco, CA (2000) 359-366.

10. Jolliffe, I.T. Principal Component Analysis. Springer, New York, NY. (1986).

292

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Tsymbal et al.

Kohavi, R. Wrappers for performance enhancement and oblivious decision graphs. Dept. of
Computer Science, Stanford University, Stanford, USA. PhD Thesis (1995).

Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In C.Mellish (ed.), Proc. 14" Int. Joint Conf. on Artificial Intelligence IJCAI-95.
Morgan Kaufmann, San Francisco, CA (1995) 1137-1145.

Kohavi, R., Sommerfield, D., Dougherty, J. Data mining using MLC++: a machine learning
library in C++. In M.G.Radle (ed.) Proc. 8" IEEE Conf. on Tools with Artificial Intelli-
gence. IEEE CS Press, Los Alamitos, CA (1996) 234-245.

Liu H. Feature Extraction, Construction and Selection: A Data Mining Perspective, ISBN
0-7923-8196-3, Kluwer Academic Publishers (1998).

Merz, CJ. Dynamical selection of learning algorithms. In D.Fisher, H.-J.Lenz (eds.),
Learning from data, artificial intelligence and statistics, Springer-Verlag, NY (1996).

Merz, C.J. Using correspondence analysis to combine classifiers. Machine Learning 36(1-
2) (1999) 33-58.

Opitz, D. & Maclin, D. Popular ensemble methods: an empirical study. Journal of Artificial
Intelligence Research 11 (1999), 169-198.

Oza, N.C., Tumer, K. Dimensionality reduction through classifier ensembles. Technical
report NASA-ARC-IC-1999-124, Computational Sciences Division, NASA Ames Research
Center, Moffett Field, CA (1999).

Puuronen, S., Terziyan, V., Tsymbal, A. A dynamic integration algorithm for an ensemble
of classifiers. In Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems:
ISMIS’99, Lecture Notes in Al, Vol. 1609, Springer-Verlag, Warsaw (1999) 592—600.
Tsymbal, A., Puuronen, S., Patterson, D. Ensemble feature selection with the simple Baye-
sian classification. Information Fusion, Special Issue “Fusion of Multiple Classifiers”, El-
sevier Science (2003) (to appear).

Tsymbal A., Puuronen S., Pechenizkiy M., Baumgarten M., Patterson D. Eigenvector-based
feature extraction for classification. In Proc. 15th Int. FLAIRS Conference on Artificial In-
telligence, Pensacola, FL, USA, AAAI Press (2002) 354-358.

Tsymbal A., Puuronen S., Skrypnyk I. Ensemble feature selection with dynamic integration
of classifiers. In Int. ICSC Congress on Computational Intelligence Methods and Applica-
tions CIMA’2001, Bangor, Wales, U.K (2001).

William D.R., Goldstein M. Multivariate Analysis. Methods and Applications. ISBN 0-
471-08317-8, John Wiley & Sons (1984), 587 p.

Wilson, D.R. & Martinez, T.R. Improved heterogeneous distance functions. Journal of
Artificial Intelligence Research 6(1) (1997), 1-34

Wolpert, D. Stacked Generalization. Neural Networks, Vol. 5 (1992) 241-259.

	1 Introduction
	2 Dynamic Integration of Classifiers
	3 Feature Extraction for Classification
	4 	Dynamic Integration of Classifiers with Instance Space Transformation
	4.1 Scheme of the FEDIC Algorithm
	4.2 The Training of the Base Classifiers Phase
	4.3 The Feature Extraction Phase

	5 Experimental Studies
	6 Results and Discussions
	7 Conclusion
	References

