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Abstract. We investigate algorithmic questions and structural prob-
lems concerning graph families defined by ‘edge-counts’. Motivated by
recent developments in the unique realization problem of graphs, we
give an efficient algorithm to compute the rigid, redundantly rigid, M-
connected, and globally rigid components of a graph. Our algorithm is
based on (and also extends and simplifies) the idea of Hendrickson and
Jacobs, as it uses orientations as the main algorithmic tool.

We also consider families of bipartite graphs which occur in parallel draw-
ings and scene analysis. We verify a conjecture of Whiteley by showing
that 2d-connected bipartite graphs are d-tight. We give a new algorithm
for finding a maximal d-sharp subgraph. We also answer a question of
Imai and show that finding a maximum size d-sharp subgraph is NP-
hard.

1 Introduction

A d-dimensional framework is a straight line embedding of a graph G = (V, E)
in the d-dimensional Fuclidean space. We may think of the edges as rigid bars
and vertices as rotatable joints, and say that the framework is ‘rigid’ if it has no
non-trivial deformations (for precise definitions, in terms of the ‘rigidity matrix’
of the framework, see [I8]). If the coordinates are ‘generic’ then rigidity depends
only on the graph. Characterising rigidity of frameworks (and graphs) is an old
problem in statics (and graph theory). In two dimensions there is a combinatorial
characterisation, see Theorem

Rigidity of graphs plays an interesting role in unique graph realizations. Two
frameworks of the same graph G are equivalent if corresponding edges of the two
frameworks have the same length, and they are congruent if the distance between
all corresponding pairs of vertices is the same. We say that a framework is a
unique realization of G in R? if every equivalent framework of G is also congruent.
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Hendrickson [6] proved that if G has a unique generic realization then G is (d+1)-
connected and redundantly rigid (that is, G — e is rigid for all ¢ € E(G)). See
also [2]. It was proved in [10] that for d = 2 these conditions are sufficient to
guarantee that every generic framework of G is a unique realization, in which case
the graph is called globally rigid. Thus unique realizability is a generic property in
two dimensions. This recent result motivated us to give an algorithm for finding
the finer structure of rigid, redundantly rigid, and M-connected components of
a graph in two dimensions (see Section Blfor the definitions), and for identifying
the maximal globally rigid subgraphs of G.

The basic algorithmic questions concerning rigidity were answered many
years ago. There exist polynomial algorithms for testing rigidity as well as for
computing the ‘degree of freedom’ in O(n?) time, where n is the number of ver-
tices of G. The algorithms of Sugihara [14] and Hendrickson [6] used techniques
from matching theory, while Imai [9] used network flows. Gabow and Wester-
mann [4] used matroid sums and showed that the M-connected components can
also be found in O(n?) time.

Our algorithm also runs in O(n?) time and in some sense it is similar to
the previous algorithms. However, it requires no auxiliary graphs or digraphs, or
matroids, to work on. Thus it is perhaps simpler and easier to visualize. It works
with orientations of G and only performs reachability searches (and reorients
directed paths). The idea of such an algorithm is due to Hendrickson and Jacobs
7], who gave a basic version of this algorithm as a so-called “pebble game”
(see also [11]) for finding the rigid components in O(n?) time. We simplify the
terminology of [7] and make it more suitable for finding other substructures as
well as for extensions to other families of graphs defined by edge counts.

A different area of discrete applied geometry, where such families occur, is
parallel drawings. A polyhedral incidence structure is a bipartite graph S =
(V, F;I) where the colour classes V and F represent the vertices and faces,
respectively, and the edge set I represents the vertex-face incidences. A d-scene
of S assigns points of R? to the vertices and hyperplanes to the faces such that
all the incidence constraints are satisfied. For a set of generic normals for the
faces, one may ask whether there is a d-scene of S with the given normals. The
existence of a such a (non-trivial) d-scene depends only on S. Whiteley [16]17]
characterised the bipartite graphs whose edge set is a base in the corresponding
matroid (called minimally d-tight graphs) as well as the graphs for which such a
d-scene exists with distinct points assigned to distinct vertices (called d-sharp).
A minimally d-tight graph satisfies the count |I| = d|V| + |F| — d and |I'| <
diV(I)| + |F(I")] —d, for all § # I' C I, where V(I') and F(I') denotes the
number of vertices induced by I’ in V and F, respectively. A d-sharp graph
has |I'| < dIV(I')| + |F(I')| — d, for all I’ C I with |V(I')| > 2. Whiteley
conjectured that every 2d-connected incidence graph has a minimally d-tight
spanning subgraph [I8] p.211]. We prove this conjecture.

We also investigate d-sharp graphs, but in a different context. The basic prob-
lem of scene analysis of polyhedral pictures is how to reconstruct a 3-dimensional
polyhedron from a given planar projection, a so-called line drawing, by setting
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The polyhedron The linedrawing of The incidence structure
the polyhedron 3|F| 4+ |V| — 3 =15 edges

Fig. 1. A line drawing with a minimally 3-tight incidence graph.

the third coordinates of the vertices so that vertices that belong to the same
face in the line drawing are coplanar (and such that each pair of faces shar-
ing a vertex have distinct planes). Assuming generic points for the line drawing
Sugihara [15] and Whiteley [17] characterised the reconstructible line drawings
in terms of their bipartite incidence graph P = (V, F;I), which encodes the
vertex-face incindences. This characterisation turns out to be ‘polar’ to paral-
lel drawings: there is a proper ‘lifting’ for P if and only if the bipartite graph
obtained from P by interchanging the role of V' and F' is 3-sharp. Due to numer-
ical errors, line drawings produced by computers are ‘generic’, and may produce
non-reconstructible pictures. To cope with this problem Sugihara [15] developed
an algorithm which attempts to reconstruct the polyhedron from a maximal
3-sharp subgraph of the incidence graph of the line drawing, see also Imai [9].
To illustrate the applicability of the orientation based approach to other edge
counts, we give a different algorithm for finding a maximal d-sharp subgraph.
Furthermore, answering an open question posed by Imai [9], we show that finding
a maximum size d-sharp subgraph is NP-hard for d > 2.

2 Orientations with Upper Bounds on the In-Degrees

Let G = (V, E) be a graph. An orientation D = (V, A) of G is a directed graph
obtained from G by replacing each edge uv by a directed edge (directed from u
to v or from v to u). For a subset X C V let G[X] denote the subgraph of G
induced by X, and let ig(X) (or simply i(X)) denote the number of edges in
G[X]. If D = (V, A) is a directed graph and X C V then pp(X) denotes the
number of directed edges entering X. This is the in-degree of X. The in-degree
of a vertex v is denoted by pp(v). Let g : V. — Z assign non-negative integers
to the vertices of G. For X C V we use the notation g(X) := 3 _y g(v). We
say that an orientation D of G is a g-orientation if pp(v) < g(v) holds for all
veV.

The next result, due to Frank and Gyarfas, characterises when G has an ori-
entation satisfying given upper bounds on the in-degrees. We present its simple
proof, since it illustrates the basic steps of our algorithm: searching for reachable
vertices and reorienting directed paths.



Algorithms for Graph Rigidity and Scene Analysis 81

Theorem 1. [3] Let G = (V, E) be a graph and g : V — Z,. Then G has a
g-orientation if and only if

i(X) <g(X) forall X CV. (1)

Proof. To see necessity suppose that D is a g-orientation of G and let X C V.
Then i(X) = 3, x pp(v) — pp(X) < g(X).

To prove sufficiency suppose that () holds and choose an orientation D’
of G for which h(D') := > o/ (p(v) — g(v))T is as small as possible, where
zt := max{z,0} for some integer z. If h(D') = 0 then D’ is a g-orientation.
Otherwise there is a vertex s with pp/(s) > g(s). Let S denote the set of vertices
from which there is a directed path to s in D’. Clearly, pp/(S) = 0. If there is a
vertex t € S with pp/(t) < g(t) then by reorienting the edges of a directed path
from t to s we obtain an orientation D" with h(D") = h(D’)—1, contradicting the
choice of D’. Thus we have pp/(v) > g(v) for each vertex v € S, and hence, since
pr(5) > g(s), we obtain i(S) = 3 ,es P00 (1) — por(S) > X,es 9(v) = 9(S),
contradicting (). This proves the theorem. ad

This proof leads to an algorithm for finding a g-orientation, if exists. It shows
that if (@) holds then any orientation D’ of G can be turned into a g-orientation
by finding and reorienting directed paths h(D’) times. Such an elementary step
(which decreases h by one) can be done in linear time.

3 Rigid Graphs and the Rigidity Matroid

The following combinatorial characterization of two-dimensional rigidity is due
to Laman. A graph G is said to be minimally rigid if G is rigid, and G — e is not
rigid for all e € E. A graph is rigid if it has a minimally rigid spanning subgraph.

Theorem 2. [12] G = (V, E) is minimally rigid if and only if |E| = 2|V| —3
and
i(X) <2|X| =3 for all X CV with | X| > 2. (2)

In fact, Theorem [ characterises the bases of the rigidity matroid of the
complete graph on vertex set V. In this matroid a set of edges S is independent
if the subgraph induced by S satisfies (). The rigidity matroid of G, denoted by
M(G) = (E,Z), is the restriction of the rigidity matroid of the complete graph
to E. Thus G is rigid if and only if E has rank 2|V| — 3 in M(G). If G is rigid
and H = (V, E’) is a spanning subgraph of G, then H is minimally rigid if and
only if F’ is a base in M(G).

3.1 A Base, the Rigid Components, and the Rank

To test whether G is rigid (or more generally, to compute the rank of M(G))
we need to find a base of M(G). This can be done greedily, by building up a
maximal independent set by adding (or rejecting) edges one by one. The key of
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this procedure is the independence test: given an independent set I and an edge
e, check whether I + e is independent. With Theorem [1] we can do this in linear
time as follows (see also [7]).

Let go : V — Z, be defined by go(v) = 2 for all v € V. For two vertices
u,v € Vet gy¥ : V — Z, be defined by ¢¥”(u) = ¢5”(v) = 0, and g§"(w) = 2
for all w € V — {u,v}.

Lemma 1. Let I C E be independent and let e = uv be an edge, e € B — 1.
Then I + e is independent if and only if (V,I) has a g4¥-orientation.

Proof. Let H = (V,I) and H' = (V,I + ¢e). First suppose that I + e is not
independent. Then there is a set X C V with ig/(X) > 2|X| — 2. Since [ is
independent, we must have u,v € X and ig(X) = 2|X| — 3. Hence ig(X) =
2|X| — 3> g4 (X) = 2|X| — 4, showing that H has no g¥”-orientation.
Conversely, suppose that I + e is independent, but H has no g§”-orientation.
By Theorem [ this implies that there is a set X C V with ig(X) > ¢4*(X).
Since iy (X) < 2|X| -3 and ¢4 (X) = 2|X| —2|X N{u, v}|, this implies u,v € X
and ig(X) = 2|X|—3. Then ig/ (X) = 2|X| —2, contradicting the fact that 7+e
is independent. 0

A weak g4 -orientation D of G satisfies pp(w) < 2 for all w € V — {u, v} and
has pp(u) + pp(v) < 1. It follows from the proof that a weak g¥¥-orientation of
(V,I) always exists.

If we start with a go-orientation of H = (V,I) then the existence of a g&*-
orientation of H can be checked by at most four elementary steps (reachability
search and reorientation) in linear time. Note also that H has O(n) edges, since
I is independent.

This gives rise to a simple algorithm for computing the rank of E in M(G).
By maintaining a go-orientation of the subgraph of the current independent set
I, testing an edge needs only O(n) time, and hence the total running time is
O(nm), where m = | E|. We shall improve this to O(n?) by identifying large rigid
subgraphs.

We say that a maximal rigid subgraph of G is a rigid component of GG. Clearly,
every edge belongs to some rigid component, and rigid components are induced
subgraphs. Since the union of two rigid subgraphs sharing an edge is also rigid,
the edge sets of the rigid components partition E.

We can maintain the rigid components of the set of edges considered so far
as follows. Let I be an independent set, let e = uv be an edge with e € F — I,
and suppose that I + e is independent. Let D be a g4”-orientation of (V,I). Let
X CV be the maximal set with u,v € X, pp(X) = 0, and such that pp(x) = 2
for all z € X — {u,v}. Clearly, such a set exists, and it is unique. It can be found
by identifying the set Vi = {x € V — {u,v} : pp(z) < 1}, finding the set V; of
vertices reachable from V; in D, and then taking X =V — V. The next lemma
shows how to update the set of rigid components when a new edge e is added to
1.

Lemma 2. Let H = (V,I +e). Then H'[X] is a rigid component of H'.
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Thus, when we add e to I, the set of rigid components is updated by adding
H'[X] and deleting each component whose edge set is contained by the edge set
of H'[X]. Maintaing this list can be done in linear time. Furthermore, we can
reduce the total running time to O(n?) by performing the independence test for
I + e only if e is not spanned by any of the rigid components on the current list
(and otherwise rejecting e, since I + e is clearly dependent).

3.2 The M-Circuits and the Redundantly Rigid Components

Given a graph G = (V, E), a subgraph H = (W, C) is said to be an M -circuit in
G if C is a circuit (i.e. a minimal dependent set) in M(G). G is an M -circuit if
E is a circuit in M(G). By using () one can deduce the following properties.

Lemma 3. Let G = (V, E) be a graph without isolated vertices. Then G is an
M -circuit if and only if |E| = 2|V|—2 and G — e is minimally rigid for alle € E.

A subgraph H = (W, F) is redundantly rigid if H is rigid and H — e is rigid
for all e € F. M-circuits are redundantly rigid by Lemma [3(b). A redundantly
rigid component is either a maximal redundantly rigid subgraph of G (in which
case the component is non-trivial) or a subgraph consisting of a single edge e,
when e is contained in no redundantly rigid subgraph of G (in which case it is
trivial). The redundantly rigid components are induced subgraphs and their edge
sets partition the edge set of G. See Figure[2 for an example. An edge ¢ € E is a
bridge if e belongs to all bases of M(G). It is easy to see that each bridge e is a
trivial redundantly rigid component. Let B C E denote the set of bridges in G.
The key to finding the redundantly rigid components efficiently is the following
lemma.

Lemma 4. The set of non-trivial redundantly rigid components of G is equal to
the set of rigid components of G' = (V, E — B).

Thus we can identify the redundantly rigid components of G by finding the
bridges of G and then finding the rigid components of the graph G — B.

3.3 The M-Connected Components and Maximal Globally Rigid
Subgraphs

Given a matroid M = (E,Z), one can define a relation on E by saying that
e, f € E are related if e = f or there is a circuit C' in M with e, f € C. It is
well-known that this is an equivalence relation. The equivalence classes are called
the components of M. If M has at least two elements and only one component
then M is said to be connected. Note that the trivial components (containing
only one element) of M are exactly the bridges of G.

We say that a graph G = (V, E) is M -connected if M(G) is connected. The
M -connected components of G are the subgraphs of G induced by the compo-
nents of M(G). The M-connected components are also edge-disjoint induced
subgraphs. They are redundantly rigid.
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@.’@% <>

The graph The globally rigid subgraphs
on at least four vertices

3 e @%@

The rigid components The non-trivial redundantly The non-trivial
rigid components M-connected components

Fig. 2. Decompositions of a graph.

To find the bridges and M-connected components we need the following
observations. Suppose that I is independent but I 4 e is dependent. The funda-
mental circuit of e with respect to I is the (unique) circuit contained in I + e.
Our algorithm will also identify a set of fundamental circuits with respect to
the base I that it outputs. To find the fundamental circuit of e = uv with re-
spect to I we proceed as follows. Let D be a weak g¥V-orientation of (V,I) (with
pp(v) =1, say). As we noted earlier, such an orientation exists. Let Y C V be
the (unique) minimal set with u,v € Y, pp(Y) = 0, and such that pp(z) = 2 for
all x € Y — {u,v}. This set exists, since I + ¢ is dependent. Y is easy to find: it
is the set of vertices that can reach v in D.

Lemma 5. The edge set induced by Y in (V,I + e) is the fundamental circuit
of e with respect to I.

Thus if I + e is dependent, we can find the fundamental circuit of e in lin-
ear time. Our algorithm will maintain a list of M-connected components and
compute the fundamental circuit of e = uv only if v and v are not in the same
M-connected component. Otherwise e is classified as a non-bridge edge. When
a new fundamental circuit is found, its subgraph will be merged into one new
M-connected component with all the current M-connected components whose
edge set intersects it. It can be seen that the final list of M-connected compo-
nents will be equal to the set of M-connected components of GG, and the edges
not induced by any of these components will form the set of bridges of G. It
can also be shown that the algorithm computes O(n) fundamental circuits, so
the total running time is still O(n?). The algorithm can also determine an ear-
decomposition of M(G) (see [10]), for an M-connected graph G, within the same
time bound.

Thus to identify the maximal globally rigid subgraphs on at least four vertices
we need to search for the maximal 3-connected subgraphs of the M-connected
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components of G. This can be done in linear time by using the algorithm of
Hopcroft and Tarjan [8] which decomposes the graph into its 3-connected blocks.

4 Tight and Sharp Bipartite Graphs

Let G = (A, B; E) be a bipartite graph. For subsets W C AU B and F C E let
W (F) denote the set of those vertices of W which are incident to edges of F'.
We say that G is minimally d-tight if |E| = d|A|+|B|—d and for all ) # E' C E
we have

|E'| < d|A(E")| + |B(E")| — d. 3)

G is called d-tight if it has a minimally d-tight spanning subgraph. It is not
difficult to show that the subsets FF C F for which every ) # E’ C F satisfies
B) form the independent sets of a matroid on groundset E. By calculating the
rank function of this matroid we obtain the following characterization.

Theorem 3. [17] G = (A, B; E) is d-tight if and only if

> (- |A(E)| + |B(E;)| — d) > d|A] + |B| —d (4)

i=1

for all partitions € = {E1, Ea, ..., Bt} of E.

4.1 Highly Connected Graphs Are d-Tight

Lovész and Yemini [I3] proved that 6-connected graphs are rigid. A similar
result, stating that 2d-connected bipartite graphs are d-tight, was conjectured
by Whiteley [1618]. We prove this conjecture by using an approach similar to
that of [T3]. We say that a graph G = (V, E) is k-connected in W, where W C V|
if there exist k openly disjoint paths in G between each pair of vertices of W.

Theorem 4. Let G = (A, B; E) be 2d-connected in A, for some d > 2, and
suppose that there is no isolated vertex in B. Then G is d-tight.

Proof. For a contradiction suppose that G is not d-tight. By Theorem [ this
implies that there is a partition & = {E1, Ea, ..., B¢} of E with Y_._, (d-|A(E;)|+
|B(E;)|—d) < d|A|+|B|—d. Since G is 2d-connected in A and there is no isolated
vertex in B, we have d|A(E)| + |B(E)| —d = d|A| 4+ |B| — d. Thus t > 2 must
hold.

Claim. Suppose that A(E;)NA(E;) # 0 for some 1 <14 < j < t. Then d|A(E;)|+
|B(E)| — d+d|A(E;)| + |B(Ej)| — d > d|A(E; U Ej)| + | B(E; U Ej)| — d

The claim follows from the inequality: d|A(E;)| + |B(E;)| — d + d|A(E;)| +
(BB —d = d|A(E) U A(E)| +d|A(E,) N A(E,)| + | B(E) O B(E,)| + |B(Ex)
B(Ej)|—2d > d|A(E;UE;)|+|B(E;UE;)|—d, where we used d|A(E. ) A(E;)| >d
(since A(E;) NA(E;) #0), and |B(E;) N B(E;)| > 0.
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By the Claim we can assume that A(E;) NA(E;) =0 forall1 <i<j <t.
Let B’ C B be the set of those vertices of B which are incident to edges from at
least two classes of partition £. Since A(E;) NA(E;) =0 forall 1 <i < j <t,
and t > 2, the vertex set B'(E;) separates A(E;) from U,; A(E;) for all E; € €.
Hence, since G is 2d-connected in A, we must have

|B'(E;)| > 2d for all 1 <14 < t. (5)
To finish the proof we count as follows. Since A( ;) NA(E;) = 0 for all

1 <i<j <t wehave .0 |A(E;)| = |A]. Hence Y.}(|B(Ei)| —d) < |B| —d

follows, which gives
t

Y (B(E)l—d) < |B|—d. (6)

1

Furthermore, it follows from (H) and the definition of B’ that for every vertex
b € B’ we have

d d
> (1—W)22(1—2—d):1.

E;:beB(E;)
Thus
t t
Bl1<d. > U-mg )p > IB(E)|(1- |B, =SB
beB’ E;:beB(E;) 1 1
which contradicts (@). This proves the theorem. O

4.2 Testing Sharpness and Finding Large Sharp Subgraphs

By modifying the count in (B) slightly, we obtain a family of bipartite graphs
which plays a central role in scene analysis (for parameter d = 3). We say that
a bipartite graph G = (A, B; E) is d-sharp, for some integer d > 1, if

|E'| < d|A(E")| + |B(E')| = (d+1) (7)

holds for all E' C E with |A(E")| > 2. A set F' C E is d-sharp if it induces a
d-sharp subgraph.

As it was pointed out by Imai [9], the count in () does not always define a
matroid on the edge set of G. Hence to test d-sharpness one cannot directly apply
the general framework which works well for rigidity and d-tightness. Sugihara [T5]
developed an algorithm for testing 3-sharpness and, more generally, for finding
a maximal 3-sharp subset of E. Imai [J] improved the running time to O(n?).
Their algorithms are based on network flow methods.

An alternative approach is as follows. Let us call a maximal d-tight subgraph
of G a d-tight component. As in the case of rigid components, one can show that
the d-tight components are pairwise edge-disjoint and their edge sets partition E.
Moreover, by using the appropriate version of our orientation based algorithm,
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they can be identified in O(n?) time. The following lemma shows how to use
these components to test d-sharpness (and to find a maximal d-sharp edge set)
in O(n?) time.

Lemma 6. Let G = (A, B; E) be a bipartite graph and d > 1 be an integer. Then
G is d-sharp if and only if each d-tight component H satisfies |V (H) N A| = 1.

Proof. Necessity is clear from the definition of d-tight and d-sharp graphs. To
see sufficiency suppose that each d-tight component H satisfies |[V(H)NA| = 1,
but G is not d-sharp. Then there exists a set I C E with (i) |A(])| > 2 and
(i) |I] > d|A(I)| + |B(I)| — d. Let I be a minimal set satisfying (i) and (ii).
Suppose that I satisfies (ii) with strict inequality and let e € I be an edge. By
the minimality of I the set I — e must violate (i). Thus |A(I — e)| = 1. By (i),
and since d > 2, this implies |I| =[] —e|+1=|B(I—¢€)|+1 < |B(I)|+1<
d|A(I)| + |B(I)| — d, a contradiction. Thus |I| = d|A(I)| + |B(I)] — d. The
minimality of I (and the fact that each set I’ with |A(I")| = 1 trivially satisfies
|I'| = d|A(I")|+|B(I")|—d) implies that (B]) holds for each non-empty subset of I.
Thus I induces a d-tight subgraph H’, which is included by a d-tight component
H with |[V(H)NA| > |A(I)] > 2, contradicting our assumption. O

Imai [9] asked whether a maximum size 3-sharp edge set of G can be found
in polynomial time. We answer this question by showing that the problem is
NP-hard.

Theorem 5. Let G = (A, B; E) be a bipartite graph, and let d > 2, N > 1 be
integers. Deciding whether G has a d-sharp edge set F C E with |F| > N is
NP-complete.

Proof. We shall prove that the NP-complete VERTEX COVER problem can be
reduced to our decision problem. Consider an instance of VERTEX COVER,
which consists of a graph D = (V,J) and an integer M (and the question is
whether D has a vertex cover of size at most M). Our reduction is as follows.
First we construct a bipartite graph Hy = (Ay, Bo; Eo), where Ag = {c¢}, By =V
corresponds to the vertex set of D, and Eg = {cu : u € By}. We call ¢ the center
of Hy. Thus Hj is a star which spans the vertices of D from a new vertex c at the
center. The bipartite graph H = (A, B; E) that we construct next is obtained
by adding a clause to H for each edge of D. The clause for an edge e = uv € J
is the following (see Figure ). f1, fo,..., fa—2 are the new vertices of B and
x is the new vertex of A in the clause (these vertices do not belong to other
clauses). The edges of the clause are uz,vz and f;x, fic for i € {1,2,...,d — 2}
(so if d = 2 the only new edges are ux and vz). Let C. denote these edges
of the clause. So C. N C} = () for each pair of distinct edges e, f € J. Let
Cyv == C!, + cu + cv. Note that C. is not d-sharp, since |A(C.)| = 2 and
2d = |Ce| > d|A(Ce)| + |B(Ce)| — (d+ 1) = 2d — 1. However, it is easy to check
that removing any edge makes C, d-sharp. We set N = |E| — M.

Lemma 7. Let Y C E. Then E —Y is d-sharp if and only if CoNY # 0 for
every e € J.
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Fig. 3. Two examples of the reduction for d = 4. Empty circles are the vertices of B,
filled circles are the vertices of A of H. The dotted lines are the edges of C,,. The thick
lines are the edges of Hyp.

Proof. The only if direction follows from the fact that C. is not d-sharp for
e € J. To see the other direction suppose, for a contradiction, that Z C F — Y
is a set with |A(Z)| > 2 and |Z] > d|A(Z)| + |B(Z)| — (d + 1). We may assume
that, subject to these properties, A(Z)U B(Z) is minimal.

Minimality implies that if |A(Z)| > 3 then each vertex w € A(Z) is incident
to at least d+ 1 edges of Z. Thus, since every vertex of A — ¢ has degree d in H,
we must have |A(Z)| = 2. Minimality also implies that each vertex f € B(Z) is
incident to at least two edges of Z. If ¢ € A(Z) then Z C C., for some e € J,
since each vertex f € B(Z) has at least two edges from Z. But then Y NC. # ()
implies that Z is d-sharp. On the other hand if ¢ ¢ A(Z) and |A(Z)| = 2 then
|Z] < 2, and hence Z is d-sharp. This contradicts the choice of Z. Thus E — Y
is d-sharp. O

Lemma 8. Let Y C E and suppose that E —Y is d-sharp. Then there is a set
Y' C E with |Y'| <|Y] for which E —Y' is d-sharp and Y' C {cu : u € B}.

Proof. Since E —Y is d-sharp and C is not d-sharp we must have C. NY # ()
for each e € J. We obtain Y’ by modifying Y with the following operations.
If |Cupy NY| > 2 for some uv € J then we replace Cy,, NY by {cu,cv}. If
CuwwNY ={f} and f & {cu, cv} for some uv € J then we replace f by cu in Y.
The new set Y’ satisfies |Y'| < |V, and, by Lemmal[f] F—Y" is also d-sharp. O

We claim that H has a d-sharp edge set F' with |F| > N if and only if D has
a vertex cover of size at most M. First suppose F' C F is d-sharp with |F'| > N.
Now E —Y is d-sharp for Y := E — F, and hence, by Lemma [§], there is a set
Y’ C Ewith |Y'| <|Y| < M for which E—Y" is d-sharp and Y’ C {cu : u € B}.
Since F — Y’ is d-sharp, Lemma [7] implies that X = {u € V : cu € Y'} is a
vertex cover of D of size at most M.

Conversely, suppose that X is a vertex cover of D of size at most M. Let
Y = {cu:u € X}. Since X intersects every edge of D, we have Y N Cy, # 0 for
every e € J. Thus, by Lemmal[l, F' := E—Y is d-sharp, and |F| > |E|-M = N.
Since our reduction is polynomial, this equivalence completes the proof of the
theorem. a
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Note that finding a maximum size d-sharp edge set is easy for d = 1, since

an edge set F is 1-sharp if and only if each vertex of B is incident to at most
one edge of F.
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