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Abstract. We consider a network merging streams of packets with different qual-
ity of service (QoS) levels, where packets are transported from input links to output
links via multiple merge stages. Each merge node is equipped with a finite buffer,
and since the bandwidth of a link outgoing from a merge node is in general smaller
than the sum of incoming bandwidths, overflows may occur. QoS is modeled by
assigning a positive value to each packet, and the goal of the system is to maximize
the total value of packets transmitted on the output links. We assume that each
buffer runs an independent local scheduling policy, and analyze FIFO policies that
must deliver packets in the order they were received. We show that a simple local
on-line algorithm called Greedy does essentially as well as the combination of
locally optimal (off-line) schedules. We introduce a concept we call the weakness
of a link, defined as the ratio between the longest time a packet spends in the
system before transmitted over the link, and the longest time a packet spends in
that link’s buffer. We prove that for any tree, the competitive factor of Greedy is
at most the maximal link weakness.

1 Introduction

Consider an Internet service provider (ISP), or a corporate intranet, that connects a large
number of users with the Internet backbone using an “uplink.” Within such a system,
consider the traffic oriented towards the uplink, namely the streams whose start points
are the local users and whose destinations are outside the local domain. Then streams
are merged by a network that consists of merge nodes, typically arranged in a tree
topology whose root is directly connected to the uplink. Without loss of generality, we
may assume that the bandwidth of the link emanating from a merge node is less than the
sum of bandwidths of incoming links (otherwise, we can assume that the incoming links
are connected directly to the next node up). Hence, when all users inject data at maximum
local speed, packets will eventually be discarded. A very effective way to mitigate some
of the losses due to temporary overloads is to equip the merge nodes with buffers, that
can absorb transient bursts by storing incoming packets while the outgoing link is busy.
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The merge nodes are controlled by local on-line buffer management algorithms whose
job is to decide which packets to forward and which to drop so as to minimize the damage
in case of an overflow.

In this paper we study the performance of various buffer management algorithms
in the context of a system of merging streams, under the assumption that the system is
required to support different quality of service (QoS) levels. The different QoS levels
are modeled by assuming that each packet has a positive value, and that the goal of the
system is to maximize the total value of packets delivered.

Evaluating the performance of the system cannot be done in absolute terms, since the
total value delivered depends on the actual streams that arrive. Instead, we measure the
competitive ratio of the algorithm [18] by bounding, over all possible input sequences,
the ratio between the value gained by the algorithm in question, and the best possible
value that can be gained by any schedule.
Our model. To allow us to describe our results, let us give here a brief informal overview
of the model (more details are provided in Section 2). Our model is essentially the
model used byAdversarial Queuing Theory [5], with the following important differences:
packet injection is unrestricted, buffers are finite, and each packet has a value. More
specifically, the system is described by a communication graph, where each link e has a
buffer Qe in its ingress and a prescribed bandwidth W (e). An execution of the system
proceeds in synchronous steps. In each step, new packets may enter the system, where
each packet has a value (in R

+), and a completely specified route. Also in each step,
packets may progress along edges, some packets may be dropped from the system,
and some packets may be absorbed by their destinations. The basic limitation on these
actions is that for each edge e, at most W (e) packets may cross it in each step, and at
most size(Qe) packets may be retained in the buffer from step to step. The task of the
buffer management algorithm is to decide which packets to forward and which packets
to drop subject to these restrictions. Given a system and an input sequence, the total value
of a schedule for that input is the total value of the packets that reach their destinations.

In this paper, we consider a few special cases of the general model above, justified
by practical engineering considerations. The possible restrictions are on the network
topology, scheduling algorithms, and packet values. The variants are as follows. Tree
topology assumes that the union of the paths of all packets is a directed tree, where all
paths start from a leaf and end at the root of the tree. Regarding schedules, our results
are for the class of work-conserving schedules, i.e., schedules that always forward a
packet when the buffer is non-empty [9].1 We consider the class of FIFO algorithms,
i.e., algorithms that may not send a packet that arrives late before a packet that arrives
early. This condition is natural for many network protocols (e.g., TCP).
Our results. We study the effect of different packet values, different buffer sizes and
link bandwidths on the competitiveness of various local algorithms. We study very
simple Greedy algorithm that drops the least valuable packets available when there is
an overflow. We also consider the Locally Optimal schedule, which is the best possible
schedule with respect to a single buffer. Roughly speaking, it turns out that in many

1 Work conserving schedules are sometimes called “greedy” [16,5]. In line with the networking
community, we use the term “work conserving” here; we reserve the term “greedy” for a specific
algorithm we specify later.
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cases, the Greedy algorithm has performance which is asymptotically equivalent to the
performance of a system defined by a composition of locally optimal schedules, and in
some cases, its performance is proportional to the global optimum. More specifically,
we obtain the following results.

First, we present simple scenarios that show that local algorithms cannot be too
good: specifically, even allowing each node to run the locally optimal (offline) schedule
may result in competitive ratio of Ω(h) on height-h trees with uniform buffer sizes and
uniform link bandwidths. For bounded degree trees of height h, the competitive factor
drops to Ω(h/ log h), and for trees of height h and O(h) nodes, the lower bound drops
further to Ω(

√
h).

Next, we analyze the Greedy algorithm. By extending the analysis of the single
buffer case, we show that for arbitrary topologies, the maximal ratio between the per-
formance of Greedy and the performance of any work-conserving (off-line) schedule
is O(DR/Bmin), where D is the length of the longest packet route (measured in time
units), R is the maximal rate in which packets may reach their destinations, and Bmin
is the size of the smallest buffer in the system.

We then focus on tree topologies, where we present our most interesting result. We
introduce the concept of link weakness, defined as follows. For any given link e, define
the delay of e to be the longest time a packet can spend in the buffer of e (for work-
conserving schedules, it’s exactly the buffer size divided by the link bandwidth). Define
further the height of e to be the maximal length of a path from an input leaf to the egress
of e, where the length of a link is its delay. Finally, the weakness of e, denoted λ(e), is
the ratio between its height and its delay (we have that λ(e) ≥ 1). Our main result is
that the competitive factor of Greedy is proportional to the maximal link weakness in
the system. Our proof is for the case where each packet has one of two possible values.
Related work. There is a myriad of research papers about packet drop policies in com-
munication networks—see, e.g., the survey of [13] and references therein. Some of the
drop mechanisms (most notably RED [7]) are designed to signal congestion to the send-
ing end. The approach abstracted in our model is implicit in the recent DiffServ model
[4,6] and ATM [19].

There has been work on analyzing various aspects of this model using classical
queuing theory, and assuming Poisson arrivals [17]. The Poisson arrival model has been
seriously undermined by recent discoveries regarding the nature of traffic in computer
networks (see, e.g., [14,20]).

In this work we use competitive analysis, which studies the worst-case performance
guarantees of an on-line algorithm relative to an off-line solution. This approach is
used in Adversarial Queuing Theory [5], where packet injections are restricted, and
the main measure of performance is the size of the buffers required to never drop any
packet. In a recent paper, Aiello et al. [1] propose to study the throughput of a network
with bounded buffers and packet drops. Their model is similar to ours, so let us point
out the differences. The model of [1] assumes uniform buffer sizes, link bandwidths,
and packet values, whereas we consider individual sizes, bandwidths and values. As
we show in this paper, these factors have a decisive effect on the competitiveness of
the system even in very simple cases. Another difference is that [1] compares on-line
algorithms to any off-line schedule, including ones that are not work-conserving. Due
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to this approach, the performance guarantees they can prove are rather weak, and thus
they are mainly interested in whether the competitive factor of a scheduling policy is
finite or not. By contrast, we consider work-conserving off-line schedules, which allow
us to derive quantitative results and gain more insights from the practical point of view.

Additional relevant references study the performance guarantees of a single buffer,
where packets have different values. The works of [2,12] study the case where one cannot
preempt a packet already in the buffer. In [10], an upper bound of 2 is proven for the
competitive factor of the greedy algorithm. The two-value single buffer case is further
studied in [11,15]. Overflows in a shared-memory switch are considered in [8].

A recent result of Azar and Richter [3] analyzes a scenario of stream merging in
input-queued switches. Briefly, finite buffers are located at input ports; the output port
has no buffer: it selects, at each step, one of the input buffers and transmits the packet
in the head of that buffer. Their main result is a centralized algorithm that reduces this
scenario of a single merge to the problem of managing a single buffer, while incurring
only a constant blowup in the competitive factor.
Paper organization. Section 2 contains the model description. Lower and upper bounds
for local schedules are considered in Section 3 and Section 4, respectively.

2 Model and Notation

We start with a description of the general model.
The system is defined by a directed graph G = (V, E), where each link e ∈ E has

bandwidth (or speed) W (e) ∈ N, and a buffer Qe with storage capacity size(Qe) ∈
N ∪ {0}. (The buffer resides at the link’s ingress—see below.)

The input to the system is a sequence of packet injections, one for each time step.
A packet injection is a set of packets, where each packet p is characterized by its route,
denoted route(p), and its value, denoted ω(p).2 The first node on the route is called the
packet’s source, and the last node is called the packet’s destination. To avoid trivialities,
we assume that each packet route is a simple path that contains at least one link.

The execution (or schedule) of the system proceeds in synchronous steps as follows.
The state of the system is defined by the current contents of each link’s buffer Qe, and
by each link’s transit contents, denoted transite for a link e. Initially, all buffers and
transit contents are empty sets. Each step consists of the following substeps.
(1) Packet injection: For each link e, an arbitrary set of new packets whose first link is

e is added to Qe.
(2) Packet delivery: For all links e1 = (u, v) and e2 = (v, w), all packets currently

in transite1 whose next route edge is e2 are moved from transite1 into Qe2 . All
packets whose destination is v are absorbed. After this substep, transite = ∅ for all
e ∈ E.

(3) Packet drop: A subset of the packets currently stored in Qe is removed from Qe, for
each e ∈ E.

(4) Packet send: For each link e, a subset of the packets currently stored in Qe is moved
from Qe to transite.

2 There may be many packets with the same route and value, so technically each packet injection
is a multiset; we abuse notation slightly, and always refer to multisets when we say “sets.”
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We stress that packet injection rate is unrestricted (as opposed, e.g., to Adversarial
Queuing Theory). Note also that we assume that all link latencies are one unit.

A scheduling algorithm determines which packets to drop (Substep 3) and which
packets to send (Substep 4), so as to satisfy the following conditions after each step is
completely done:

• For each link e, the number of packets stored in Qe is at most size(Qe).3

• For each link e, the total number of packets stored in the transit contents of e is at
most W (e).
Given an input sequence I and an algorithm A for a system, the value obtained

by A for I, denoted ωA(I), is the sum of values of all packets that have reached their
destination.
Tree Topology. A system is said to have tree topology if the union of all packet routes
used in the system is a tree, where packet sources are leaves and all packets are destined
at the single root. In this case each node except the root has a single storage buffer
(associated with its unique outgoing edge), sometimes referred to as the node’s buffer. It
is convenient also to assume in the tree case that the leaves and root are links: this way,
we have streams entering the system and a stream leaving the system. We say that a node
v is upstream from u (or, equivalently, u is downstream from v), if there is a directed
path from v to u.
FIFO Schedules. We consider FIFO schedules, which adhere to the rule that packets
are sent over a link in the same order they enter the buffer at the tail of the link (packets
may be arbitrarily dropped by the algorithm, but the packets that do get sent preserve
their relative order). More precisely, for all packets p, q and every link e: If p is sent on
e at time t and q is sent on e at time t′ > t, then q did not enter Qe before p.
Work-Conserving Schedules. A given schedule is called work conserving if for every
step t and every link e we have that the number of packets sent over e at step t is the
minimum between W (e) and the number of packets in Qe (at step t just before Substep
4). Intuitively, a work conserving schedule always forwards the maximal number of
packets allowed by the local bandwidth restriction. (Note that packets may be dropped
in a work-conserving schedule even if the buffer is not full.)
Algorithms and Their Evaluation. An algorithm is called local on-line if its action at
time t at node v depends only on the sequence of packets arriving at v up to time t.
An algorithm is called local off-line if its action at time t at node v depends only on
the sequence of packets arriving at v, including packets that arrive at v after t. Given
a sequence of packet arrivals and injections at node v, the local-offline schedule with
the maximum output value of v for the given sequence is the Local Optimal schedule,
denoted OptLv . When the set of routes is acyclic, we define the schedule OptL to be the
composition of Local Optimal schedules, constructed by applying OptLv in topological
order. A global off-line schedule has the whole input (at all nodes, at all times) available
ahead of any decision. We denote by Opt the global off-line work-conserving schedule
with the maximum value.

Given a system and an algorithm A for that system, the competitive ratio (or com-
petitive factor) of A is the worst-case ratio, over all input sequences, between the value

3 Note that the restriction applies only between steps: in our model, after Substeps 1,2 and before
Substeps 3,4, more than size(Qe) packets may be stored in Qe.
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h

h

Fig. 1. Topology used in the proof of Theorem 1, with parameter h. Diagonal arrows represent
input links, and the rightmost arrow represents the output link.

of Opt and the value of A. Formally:

cr(A) = sup
{

ωOpt(I)
ωA(I)

: I is an input sequence

}
.

Since we deal with a maximization problem this ratio will always be at least 1.

3 Lower Bounds for Local Schedules

In this section we consider simple scenarios that establish lower bounds on local algo-
rithms. We show that even if each node runs OptL – a locally optimal schedule (that may
be computed off-line) – the performance cannot be very close to the globally optimal
schedule.

As we are dealing with lower bounds, we will be interested in very simple settings.
In the scenarios below, all buffers have the same size B and all links have bandwidth 1.
Furthermore, we use only two packet values: low value of 1, and high value of α > 1.
(The bounds of Theorems 2 and 3 are tight for the two-value case; we omit details here.)

As an immediate corollary of Theorem 4, we have that the the lower bound of
Theorem 1 is tight, as argued below.

Theorem 1. The competitive ratio of OptL for a tree-topology system is Ω(min(h, α)),
where h is the depth of the tree.

Proof: Consider a system with h2 + 1 nodes, where h2 “path nodes” have input links,
and are arranged in h paths of length h each, and one “output node” has input from the
h last path nodes, and has one output link (see Figure 1). Let B denote the size a buffer.
The input sequence is as follows. The input for all nodes in the beginning of a path is B
packets of value α followed by B packets of value 1 (at steps 0, . . . , 2B − 1). The input
for the i-th node on each path for i > 1 is B packets of value 1 at time B(i− 2)+ i− 1.

Consider the schedule of OptL first. There are no overflows on the buffers of the
path nodes, and hence it is easy to verify by induction that the output from the i-th node
on any path contains B · i packets of value 1, followed by B packets of value α. Thus,
the output node gets h packets of value 1 in each time step t for t = h, . . . , h · B, and h
packets of value α in each time step t for t = h · B + 1, . . . , (h + 1) · B + 1. Clearly,
the value of OptL in this case consists of (h−1)B low value packets and 2B high value
packets.
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h

Fig. 2. A line of depth h. Diagonal arrows represent input links, and the rightmost arrow represents
the output link.

On the other hand, the globally optimal schedule Opt is as follows. On the j-th path,
the first B(j − 1) low value packets are dropped. Thus, the stream outcoming from the
j-th path consists of B(h−(j−1)) low value packets followed by B high value packets,
so that in each time step t = h, . . . , hB exactly one high value packet and h−1 low value
packets enter the output node, and Opt obtains the total value of hBα+B. It follows that

the competitive ratio of OptL in this case is hα+1
(h−1)+2α = Ω

(
hα

h+α

)
= Ω(min(h, α)).

If we insist on bounded-degree trees, the above lower bound changes slightly, as
stated below. The proof is omitted from this extended abstract.

Theorem 2. The competitive ratio of OptL for a binary tree with depth h is
Θ(min(α, h

log h )).

Further restricting attention to a line topology (see Figure 2), the lower bound for α � h
decreases more significantly, as the following result shows. Proof is omitted.

Theorem 3. The competitive ratio of OptL for a line of length h is Θ(min(α,
√

h)).

4 Upper Bounds for Local Schedules

In this section we study the competitive factor of local schedules. We first prove a simple
upper bound for arbitrary topology, and then give our main result which is an upper
bound for the tree topology.

4.1 An Upper Bound on Greedy Schedules for General Topology

We now turn to positive results, namely upper bounds on the competitive ratio of a
natural on-line local algorithm [10].

Algorithm 1 Greedy: Never discard packets if there is free storage space. When an
overflow occurs, drop the packets of the least value.

We now prove an upper bound on the competitiveness of Greedy in general topologies.
We remark that all lower bounds proved in Section 3 for OptL hold also for Greedy as
well (details omitted).

We start with the following basic definition.

Definition 1. For a given link e in a given system, we define the delay of e, denoted
d(e), to be the ratio �size(Qe)/W (e)�. The delay of a given path is the sum of the edge
delays on that path. The maximal delay in a system, denoted D , is the maximal delay
over all simple paths in the systems.
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Note that the delay of a buffer is the maximal number of time units a packet can be stored
in it under any work-conserving schedule.

We also use the concept of drain rate, which is the maximal possible rate of packet
absorption. Formally, it is defined as follows.

Definition 2. Let Z be the set of all links leading to an output node in a given system.
The drain rate of the system, denote R, is the sum

∑
e∈Z W (e).

With these notions, we can now state and prove the following general result. Note that
the result is independent of node degrees.

Theorem 4. For any system with maximal delay at most D , drain rate at most R, and
buffers with size at least Bmin, the competitive ratio of Greedy is O(DR/Bmin).

We remark that the proof given below holds also for OptL.
Proof: Fix an input sequence I. Divide the schedule into time intervals Ij = [jD , (j +
1)D − 1] D time steps each. Consider a time interval Ij . Define Sj to be the set of 2DR
most valuable packets that are injected into the system during Ij . Observe that in a work
conserving schedule, any packet is either absorbed or dropped in D time units. It follows
that among all packets that arrive in Ij , at most 2DR will be eventually absorbed by
their destinations: DR may be absorbed during Ij , and DR during the next interval of
D time units (i.e. Ij+1). Since this property holds for any work-conserving algorithm,
summing over all intervals we obtain that for the given input sequence

ωOpt(I) ≤
∑

j

ω(Sj) . (1)

Consider now the schedule of Greedy. Let S′
j denote the set of Bmin most valuable

packets absorbed during Ij , let S′′
j denote the Bmin most valuable packets stored in one

of the buffers in the system when the next interval Ij+1 starts, and let S∗
j denote the

Bmin most valuable packets from S′
j ∪ S′′

j . Note that S∗
j is exactly the set of Bmin most

valuable packets that were in the system during Ij and were not dropped. We claim that

ω(S∗
j ) ≥ Bmin

2DR
ω(Sj) . (2)

To see that, note that a packet p ∈ Sj is dropped from a buffer Qe only if Qe contains
at least size(Qe) ≥ Bmin packets with value greater than ω(p). To complete the proof
of the theorem, observe that for all j we have that ω(S′

j) ≥ ω(S′′
j−1), i.e., the value

absorbed in an interval is at least the total value of the Bmin most valuable packets
stored when the interval starts. Hence, using Eqs. (1,2), and since S∗

j ⊆ S′
j ∪S′′

j , we get

ωOpt(I) ≤
∑

j

ω(Sj) ≤ 2DR
Bmin

∑
j

ω(S∗
j )

≤ 2DR
Bmin


∑

j

ω(S′
j) +

∑
j

ω(S′′
j )




≤ 4
DR
Bmin

∑
j

ω(S′
j) =

4DR
Bmin

· ωGreedy(I) .
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One immediate corollary of Theorem 4 is that the lower bound of Theorem 1 is tight, as
implied by the result below.

Corollary 1. In a tree-topology system where all nodes have identical buffer size and
all links have the same bandwidth, the competitive factor of Greedy is O(min(h, α)),
where h is the depth of the tree and α is the ratio between the most and the least valuable
packets in the input.

Proof: For the given system, we have that D = hBmin/R since all buffers have size
Bmin and all links have bandwidth R. Therefore, by Theorem 4, the competitive factor
is at most O(h). To see that the competitive factor is at most O(α), observe that Greedy
outputs the maximal possible number of packets.

4.2 An Upper Bound for Greedy Schedules on Trees

We now prove our main result, which is an upper bound on the competitive ratio of
Greedy for tree topologies with arbitrary buffer sizes and link bandwidths. The result
holds under the assumption that all packet values are either 1 or α > 1.

We introduce the following key concept. Recall that the delay of a link e, denoted
d(e), is the size of its buffer divided by its bandwidth, and the delay of a path is the sum
of its links’ delays.

Definition 3. Let e = (v, u) be any link in a given tree topology, and suppose that v
has children v1, . . . , vk. The height of e, denoted h(e), is the maximum path delay, over
all paths starting at a leaf and ending at u. The weakness of e, denoted λ(e), is defined
to be λ(e) = h(e)

d(e) .

Intuitively, h(e) is just an upper bound on the number of time units that a packet can
spend in the system before being sent over e. The significance of the notion of weakness
of a link is made explicit in the following theorem.

Theorem 5. The competitive ratio of Greedy for any given tree topology G = (V, E)
and two packet values is O(max {λ(e) : e ∈ E}).

Proof: Fix the input sequence. Consider the schedule produced by Greedy. We construct
a set of time intervals called overload intervals, where each interval is associated with
a link. The construction proceeds from the root link inductively as follows. Consider
a link e, and suppose that all overload intervals were already defined for all links e′

downstream from e. The set of overload intervals at e is defined as follows. For each
time point t∗ in which a high-value packet is dropped from Qe, we define an overload
interval I = [ts, tf ] such that
(1) t∗ ∈ I .
(2) In each time step t ∈ I , W (e) high value packets are sent over e.
(3) For any overload interval I ′ = [t′s, t

′
f ] of a downstream link e′, we have that either

ts > t′f or tf < t′s − d(e, e′), where d(e, e′) is the sum of link delays on the path
that starts at the endpoint of e and ends at the endpoint of e′.

(4) I is maximal.
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Note that if a high value packet is dropped from a buffer Qe by Greedy at time t, then Qe

is full of high value packets at time t, and hence W (e) high value packets will be sent
over e in each time step t, t+1, . . . , t+d(e). However, the overload interval containing
t may be shorter (possibly empty), due to condition (3).

We now define a couple of notions regarding overload intervals. The dominance
relation between overload intervals is defined as follows. If for an overload interval
I = [ts, tf ] that occurs at link e there exists an overload interval I ′ = [t′s, t

′
f ] that occurs

at a downstream link e′ such that t′s = tf + d(e, e′) + 1, we say that I is dominated by
I ′. We also define the notion of full intervals: an overload interval I that occurs at link e
is said to be full if |I| ≥ d(e). Note that some non-full intervals may be not dominated.

We now proceed with the proof. For the sake of simplicity, we do not attempt to get
the tightest possible constant factors. We partition the set of overload intervals so that in
each part there is exactly one full interval, by mapping each overload interval I to a full
interval denoted P (I). Given an overload interval I , the mapping is done inductively, by
constructing a sequence I0, . . . , I� of overload intervals such that I = I0, P (I) = I�,
and only interval I� is full. Let I be any overload interval, and suppose it occurs at link e.
We set I0 = I , and let e0 = e. Suppose that we have defined Ij already. If Ij is full, the
sequence is complete. Otherwise, by definition of overload intervals, there must exist
another interval Ij+1 at a link ej+1 downstream from ej that dominates Ij . If there is
more than one interval dominating Ij , let Ij+1 be the one that occurs at the lowest level.
Note that the sequence must terminate since for all j, ej+1 is strictly downstream from
ej .

Let F denote the set of all full intervals. Let I be a full interval that occurs at link
e. Define the set P(I) = {I ′ : P (I ′) = I}. This set consists of overload intervals that
occur at links in the subtree rooted by e. Define the coverage of I , denoted C(I), to be
the following time window:

C(I) =
[

min
{
t : t ∈ I ′ for I ′ ∈ P(I)

} − h(e) , max
{
t : t ∈ I ′ for I ′ ∈ P(I)

}
+ h(e)

]

In words, C(I) starts h(e) time units before the first interval starts in P(I), and ends
h(e) time units after the last interval ends in P(I). The key arguments of the proof are
stated in the following lemmas.

Lemma 1. For any full interval I that occurs at any link e, |C(I)| < |I| + 4h(e).

Proof: Let I0 be the interval that starts first in P(I), and let I1, . . . , I� be the sequence
of intervals in P(I) such that Ij+1 dominates Ij for all 0 ≤ j < �, and such that I� = I .
For each j, let Ij = [tj , t′j ], and suppose that Ij occurs at ej . Note that I� is also the
interval that ends last in P(I). Since for all j < � we have that Ij is not full, and using
the definition of the dominance relation, we have that

|C(I)| − 2h(e) = t′� − t0 =
�∑

j=0

(t′j − tj) +
�∑

j=1

(tj − t′j−1)

< |I| +
�−1∑
j=0

d(ej) +
�∑

j=1

d(ej−1, ej) ≤ |I| + 2h(e) .
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Lemma 2. For each full interval I that occurs at a link e, the total number of high value
packets that are ever sent by Opt from e and were dropped by Greedy during C(I) is at
most W (e) · (|I| + 6h(e)).

Proof: As mentioned above, a packet that is dropped from any buffer upstream from e
at time t can never be sent by any schedule outside the time window [t−h(e), t+h(e)].
The result therefore follows from Lemma 1.

Lemma 3. For each high-value packet p dropped by Greedy from a link e′ at time t,
there exists a full overload interval I that occurs in a link downstream from e′ (possibly
e′ itself) such that t ∈ C(I).

Proof: We proceed by the case analysis.

If t ∈ I ′ for some full overload interval I ′ of e′, we are done since t ∈ C(I ′).
If t ∈ I ′ for some non-full overload interval of e′ dominated by another overload

interval I , we have that t ∈ C(P (I)).
If t ∈ I ′ for some non-full overload interval I ′ = [t′s, t

′
f ] of e′ that is not dominated by

any other overload interval then there exists an overload interval I ′′ that occurs in a
link e′′ downstream from e′ such that t′s = t′′f + 1 and hence t ∈ C(P (I ′′)) because
t′′f + d(e′) ≥ t′f .

If t is not in any overload interval of e′ then by the construction for an overload interval
I ′′ that occurs in a link e′′ downstream from e′ we have that t′′s −d(e′, e′′) ≤ t ≤ t′′f ,
which implies that t ∈ C(P (I ′′)).

Lemma 4. For each overload interval I , Greedy sends at least |I| · W (e) high value
packets from e, and these packets are never dropped.

Proof: The number of packets sent follows from the fact that when a high-value packet
is dropped by Greedy from Qe, the buffer is full of high value packets. The definition of
overload intervals ensures that no high value packet during an overload interval is ever
dropped, since if a packet that is sent over e at time t is dropped from a downstream
buffer e′ at time t′, then t′ ≤ t + d(e, e′).

We now conclude the proof of Theorem 5. Consider the set of all packets sent by
Opt. Since the total number of packets sent by Greedy in a tree topology is maximal,
it is sufficient to consider only the high-value packets. By Lemma 3, it is sufficient to
consider only the time intervals {C(I) : I ∈ F} since outside these intervals Greedy
does as well as Opt. For each I ∈ F that occurs at a link e, we have by Lemma 4 that
Greedy sends at least |I| · W (e) high value packets, whereas by Lemma 2 Opt sends at
most W (e) · (|I| + 6h(e)) high value packets. The theorem follows.
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