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Abstract. We consider a network providing Differentiated Services (Diffserv)
which allow Internet service providers (ISP) to offer different levels of Quality of
Service (QoS) to different traffic streams. We study FIFO buffering algorithms,
where packets must be transmitted in the order they arrive. The buffer space is
limited, and packets are lost if the buffer is full. Each packet has an intrinsic
value, and the goal is to maximize the total value of transmitted packets. Our
main contribution is an algorithm for arbitrary packet values that for the first time
achieves a competitive ratio better than 2, namely 2 — e for a constant € > 0.

1 Introduction

Today’s prevalent Internet service model is the best-effort model (also known as the
“send and pray" model). This model does not permit users to obtain better service,
no matter how critical their requirements are, and no matter how much they may be
willing to pay for better service. With the increased use of the Internet for commercial
purposes, such a model is not satisfactory any more. However, providing any form of
stream differentiation is infeasible in the core of the Internet.

Differentiated Services were proposed as a compromise solution for the Internet
Quality of Service (QoS) problem. In this approach each packet is assigned a prede-
termined QoS, thus aggregating traffic to a small number of classes [3]]. Each class is
forwarded using the same per-hop behavior at the routers, thereby simplifying the pro-
cessing and storage requirements. Over the past few years Differentiated Services has
attracted a great deal of research interest in the networking community [18l6IT6J13]12,
S]. We abstract the DiffServ model as follows: packets of different QoS priority have
distinct values and the system obtains the value of a packet that reaches its destination.

To improve the network utilization, most Internet Service Providers (ISP) allow some
under-provisioning of the network bandwidth employing the policy known as statistical
multiplexing. While statistical multiplexing tends to be very cost-effective, it requires
satisfactory solutions to the unavoidable events of overload. In this paper we study such
scenarios in the context of buffering. More specifically, we consider an output port of
a network switch with the following activities. At each time step, an arbitrary set of
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packets arrives, but only one packet can be transmitted. A buffer management algorithm
has to serve each packet online, i.e. without knowledge of future arrivals. The algorithm
performs two functions: selectively rejects and preempts packets, subject to the buffer
capacity constraint, and decides which packet to send. The goal is to maximize the total
value of packets transmitted.

In the classical First-In-First-Out (FIFO) model packets can not be sent out of order.
Formally, for any two packets p, p’ sent at times ¢, t’, respectively, we have that if t' > ¢,
then packet p has not arrived after packet p’. If packets arrive at the same time, we refer
to the order in which they are processed by the buffer management algorithm, which
receives them one by one. Most of today’s Internet routers deploy the FIFO buffering
policy. Since the buffer size is fixed, when too many packets arrive, buffer overflow
occurs and some packets must be discarded.

Giving a realistic model for Internet traffic is a major problem in itself. Network
arrivals have often been modeled as a Poisson process both for ease of simulation and
analytic simplicity and initial works on DiffServ have focused on such simple proba-
bilistic traffic models [[11/15]. However, recent examinations of Internet traffic [[14/19]]
have challenged the validity of the Poisson model. Moreover, measurements of real traf-
fic suggest the existence of significant traffic variance (burstiness) over a wide range of
time scales.

We analyze the performance of a buffer management algorithm by means of compet-
itive analysis. Competitive analysis, introduced by Sleator and Tarjan [[L7] (see also [4]),
compares an on-line algorithm to an optimal offline algorithm opt, which knows the
entire sequence of packet arrivals in advance. Denote the value earned by an algorithm
ALG on an input sequence o by Varg(o).

Definition 1. An online algorithm ALG is c-competitive iff for every input sequence o,
Vorr(o) < ¢+ Varg(0).

An advantage of competitive analysis is that a uniform performance guarantee is
provided over all input instances, making it a natural choice for Internet traffic.

In [1]] different non-preemptive algorithms are studied for the two distinct values
model. Recently, this work has been generalized to multiple packet values [2]], where
they also present a lower bound of v/2 on the performance of any online algorithm in
the preemptive model. Analysis of preemptive queuing algorithms for arbitrary packet
values in the context of smoothing video streams appears in [10]. This paper establishes
an impossibility result, showing that no online algorithm can have a competitive ratio
better than 5/4, and demonstrates that the greedy algorithm is at least 4-competitive. In
[7] the greedy algorithm has been shown to achieve the competitive ratio of 2. The loss
of an algorithm is analyzed in [8]], where they present an algorithm with competitive
ratio better than 2 for the case of two and exponential packet values. In [9]] they study
the case of two packet values and present a 1.3-competitive algorithm. The problem of
whether the competitive ratio of 2 of the natural greedy algorithm can be improved has
been open for a long time. It this paper we solve it positively. Our model is identical to
that of [7]].

Our Results. The main contribution of this paper is an algorithm for the FIFO model
for arbitrary packet values that achieves a competitive ratio of 2 — € for a constant € > 0.
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In particular, this algorithm accomplishes a competitive ratio of 1.983 for a particular
setting of parameters. This is the first upper bound below the bound of 2 that was shown
in [[7]. We also show a lower bound of 1.419 on the performance of any online algorithm,
improving on [2], and a specific lower bound of ¢ ~ 1.618 on the performance of our
algorithm.

2 Model Description

We consider a QoS buffering system that is able to hold B packets. The buffer man-
agement algorithm has to decide at each step which of the packets to drop and which
to transmit, subject to the buffer capacity constraint. The value of packet p is denoted
by v(p). The system obtains the value of the packets it sends, and the aim of the buffer
management algorithm is to maximize the total value of the transmitted packets. Time
is slotted. At the beginning of a time step a set of packets (possibly empty) arrives and
at the end of time step a packet is scheduled if any. We denote by .A(¢) the set of packets
arriving at time step ¢, by Q(t) the set of packets in the buffer after the arrival phase
at time step ¢, and by ALG(t) the packet sent (or scheduled/served) at the end of time
step t if any by an algorithm ALG. At any time step ¢, |Q(¢)] < B and |aLG(¢)| < 1,
whereas | A(t)| can be arbitrarily large. We also denote by Q(t, > w) the subset of Q(t)
of packets with value at least w.

As mentioned in the introduction, we consider FIFO buffers in this paper. Therefore,
the packet transmitted at time ¢ is always the first (oldest) packet in the buffer among
the packets in Q(t).

3 Algorithm pG

The main idea of the algorithm PG is to make proactive preemptions of low value packets
when high value packets arrive. The algorithm is similar to the one presented in [§], except
that each high value packet can preempt at most one low value packet. Intuitively, we try
to decrease the delay that a high value packet suffers due to low value packets preceding
it in the FIFO order. A formal definition is given in Figure[Il

The parameter of PG is the preemption factor (3. For sufficiently large values of 3, PG
performs like the greedy algorithm and only drops packets in case of overflow. On the
other hand, too small values of 3 can cause excessive preemptions of packets and a large
loss of value. Thus, we need to optimize the value of 3 in order to achieve a balance
between maximizing current throughput and minimizing potential future loss.

The following lemma is key to showing a competitive ratio below 2. It shows that
if the buffer contains a large number of “valuable" packets then PG sends packets with
non-negligible value. This does not hold for the greedy algorithm [[7].

Lemma 1. If at time t, |Q(t,> w)| > B/2 and the earliest packet from Q(t, > w)
arrived before or at time t — B /2 then the packet scheduled at the next time step has
value at least w/ (.
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1. When a packet p of value v(p) arrives, drop the first packet p’ in the FIFO order such that
v(p") < wv(p)/B, if any (p’ is preempted).

2. Accept p if there is free space in the buffer.

3. Otherwise, drop (reject) the packet p’ that has minimal value among p and the packets in
the buffer. If p’ # p, accept p (p pushes out p').

Fig.1. Algorithm PG.

Proof. Let p be the first packet from Q(t, > w) in the FIFO order and let ¢’ < t — B/2
be the arrival time of p. Let X be the set of packets with value less than w /(3 that were
in the buffer before p at time ¢'. We show that no packet from X is present in the buffer
at time ¢ + 1. We have | X| < B. At least B/2 packets are served between ¢ and ¢. All
these packets preceded p since p is still in the buffer at time ¢. So at most B /2 packets in
X are not (yet) served at time t. However, at least B/2 packets with value greater than
or equal to w have arrived by time ¢ and each of them preempts from the buffer the first
packet in the FIFO order with value of at most w//3, if any. This shows that all packets
in X have been either served or dropped by time . a

In general, we want to assign the value of packets that opT serves and PG drops
to packets served by PG. Note that the schedule of PG contains a sequence of packet
rejections and preemptions. We will add structure to this sequence and give a general
assignment method based on overload intervals.

3.1 Overload Intervals

Before introducing a formal definition, we will give some intuition. Consider a time ¢ at
which a packet of value « is rejected and « is the largest value among the packets that
are rejected at this time. Note that all packets in the buffer at the end of time step ¢ have
value at least o. Such an event defines an a-overloaded interval 7 = [t4,t¢), which
starts at time t5 = t.

In principle, Z ends at the last time at which a packet in Q(t) is scheduled (i.e. at
time ¢t + B — 1 or earlier). However, in case at some time ¢' > ¢ a packet of value ~y
is rejected, +y is the largest value among the packets that are rejected at this time, and a
packet from Q(t) is still present in the buffer, we proceed as follows.

If v = «a, we extend Z to include ¢'. In case v > «, we start a new interval with
a higher overload value. Otherwise, if v < «, a new interval begins when the first
packet from Q(t) \ Q(t) is eventually scheduled if any. Otherwise, if all packets from
Q(t")\ Q(¢) are preempted, we create a zero length interval 7' = [t s, ¢ ;) whose overload
value is . Next we define the notion of overload interval more formally.

Definition 2. An a-overflow takes place when a packet of value « is rejected, where o
is said to be the overload value.

Definition 3. A packet p is said to be associated with interval [t,t') if p arrived later
than the packet scheduled at time t — 1 if any and earlier than the packet scheduled at
time t' if any.
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arrivals

PG | I
OPT [_3

overload intervals I L

Fig.2. An example of overload intervals. Light packets have value 1, dark packets value 3 — e,
medium packets value 2. The arrival graph should be interpreted as follows: B packets of value 1
arrive at time 1, 1 packet of value 5 — € arrives at times 2, ..., B — 1, etc. Note that I» does not
start until /7 is finished.

Intuitively, p is associated with the interval in which it is scheduled, or in which it
would have been scheduled if it had not been dropped.

Definition 4. An interval T = [t4,t f), withty > t,, is an a-overloaded interval if the
maximum value of a rejected packet associated with it is «, all packets served during
T were present in the buffer in time of an a-overflow, and I is a maximal such interval
that does not overlap overload intervals with higher overload values.

Thus, we construct overload intervals starting from the highest overload value and
ending with the lowest overload value. We note that only packets with value at least «
are served during an a-overloaded interval.

Definition 5. A packet p belongs to an a-overloaded interval T = [ts,ty) if p is associ-
ated with L and (i) p is served during I, or (ii) p is rejected no earlier than the first and
no later than the last a-overflow, or (iii) p is preempted and it arrived no earlier than
the first and no later than the last packet that belongs to I that is served or rejected.

Whenever an a-overloaded interval Z is immediately followed by a y-overloaded
interval Z' with v > «, we have that in the first time step of Z’ a packet of value + is
rejected. This does not hold if v < «. We give an example in Figure 21

The following observation states that overload intervals are well-defined.

Observation 1 A rejected packet belongs to exactly one overload interval and overload
intervals are disjoint.

Next we introduce some useful definitions related to an overload interval. A packet
p transitively preempts a packet p’ if p either preempts p’ or p preempts or pushes out
another packet p”, which transitively preempts p’. A packet p replaces a packet p’ if (1)
p transitively preempts p’ and (2) p is eventually scheduled. A packet p directly replaces
p’ if in the set of packets transitively preempted by p no packet except p’ is preempted
(e.g. p may push out p” that preempts p’).
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1. Assign the value of each packet from PG N OPT to itself.

2. Assign the value of each preempted packet from DROP to the packet replacing it.

3. Consider all overload sequences starting from the earliest one and up to the latest one.
Assign the value of each rejected packet from DROP that belongs to the sequence under
consideration using the assignment routine for the overload sequence.

Fig. 3. Main assignment routine.

Definition 6. Foran overload interval T let BELONG(Z) denote the set of packets that be-
long to I. This set consists of three distinct subsets: scheduled packets (pG(Z)), preempted
packets (PREEMPT(Z) ) and rejected packets (RETECT(Z) ). Finally, denote by REPLACE(Z)
the set of packets that replace packets from PREEMPT(Z). These packets are either in
PG(Z) or are served later.

We divide the schedule of PG into maximal sequences of consecutive overload inter-
vals of increasing and then decreasing overload value.

Definition 7. An overload sequence S is a maximal sequence containing intervals T, =
[t;,t})?Ig = [12,t3), ... T = [t’;t’;) with overload values wy, . .. ,wy such that
t =t for1 <i < k-1 w < w1 forl <i<m—1andw; > wiy for
m < i < k—1, where k is the number of intervals in S and w,,, is the maximal overload
value among the intervals within S.

Ties are broken by associating an overload interval with the latest overload sequence.
We will abbreviate BELONG(Z;), PG(Z;), . . . by BELONG;, PG;, . . . We make the following
observation, which follows from the definition of an overload interval.

Observation 2 For 1 < ¢ < k, all packets in REJECT; have value at most w; while all
packets in PG; have value at least w;.

3.2 Analysis of the pG Algorithm

In the sequel we fix an input sequence o. Let us denote by opT and PG the set of
packets scheduled by opT and PG, respectively. We also denote by DROP the set of packets
scheduled by opPT and dropped by PG, that is opT \ PG. In a nutshell, we will construct
a fractional assignment in which we will assign to packets in PG the value Vopr (o) so
that each packet is assigned at most a 2 — € fraction of its value. The general assignment
scheme is presented in Figure

Before we describe the overload sequence assignment routine we need some
definitions. Consider an overload sequence S. We introduce the following notation:
OPT; = OPT () BELONG;, REJOPT; = OPT N REJECT;, PRMOPT; = OPT () PREEMPT;. We
write PG(S) = U¥_, PG, and define analogously opt(S), REJOPT(S), and PRMOPT(S).

Definition 8. For 1 < ¢ < k, ouT; is the set of packets that have been replaced by
packets outside S.

Clearly, out; C PREEMPT;. Two intervals Z; and Z; are called adjacent if either t; =t
ortl = t}. The next observation will become important later.
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Observation 3 For an interval Z;, if |PG;| + |ouT;| < B then Z; is adjacent to another
interval IL; such that w; > w;.

Suppose that the arrival time of the earliest packet in BELONG(S) is ¢, and let

EARLY(S) = Uf:;j PG(t) be the set of packets sent between t,, and time ¢.. Intuitively,
packets from EARLY (.S) are packets outside S that interact with packets from S and may
be later assigned some value of packets from DROP(S).

Let PREVP(.S) be the subset of Q(¢,)\BELONG(S) containing packets preempted or
pushed out by packets from BELONG(.S). The next lemma bounds the difference between
the number of packets in opT(S) and PG(.5).

Lemma 2. For an overload sequence S the following holds: |opT(S)| — |PG(S)| <
B + |out(S)| — |PREVP(S)].

Proof. Let t’' be the last time during S at which a packet from BELONG(.S) has been
rejected. It must be the case that t’}' —t' > B — |ouT(S)] since at time ¢’ the buffer
was full of packets from BELONG(.S) and any packet outside BELONG(.S) can preempt at
most one packet from BELONG(S). We argue that oPT has scheduled at most ¢’ + 2B —
t! — |prEVP(S)| packets from BELONG(.S). That is due to the fact that the earliest packet
from BELONG(S) arrived at or after time ¢t} — B + |[PREVP(S)]|. On the other hand, PG
has scheduled at least ' + B — t! — |ouT(9)| packets from BELONG(SS), which yields
the lemma. ad

Definition 9. A packet is available after executing the first two steps of the main assign-
ment routine if it did not directly replace a packet that OPT serves.

An available packet might still have indirectly replaced a packet served by OPT.
However, the fact that it did not directly replace such a packet allows us to upper bound
the value assigned to it in the first two steps of the assignment routine. We will use this
fact later.

The sequence assignment routine presented in Figure@lassigns the value of all packets
from REJOPT(S). For the sake of analysis, we make some simplifying assumptions.

1. Forany 1 < i < k, |REJOPT;| > |PG; \ OPT;| + |OUT,]|.
2. No packet from EXTRA(.S) belongs to another overload sequence (the set EXTRA(.S)
will be defined later).

We show that the assignment routine is feasible under the assumptions (1) and (2).
Then we derive an upper bound on the value assigned to any packet in PG. Finally, we
demonstrate how to relax these assumptions.

First we will use Lemma [Tl to show that for each but the B/2 largest packets from
UNASG(.S), PG has scheduled some extra packet with value that constitutes at leasta 1/
fraction of its value. The following crucial lemma explicitly constructs the set EXTRA(S)
for the sequence assignment routine. Basically, this set will consist of packets that PG
served at times that OPT was serving other (presumably more valuable) packets.
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1. Forinterval Z; s.t. 1 <4 < k, assign the value of each of the |PG; \ OPT;| + |oUT;| most
valuable packets from REJOPT; to a packet in (PG; \ OPT;) U REPLACE;.

2. Let UNASG; be the subset of REJOPT; containing packets that remained unassigned,
UNASG(S) = U UNASG;, and sSMALL(S) be the subset of UNASG(S) containing the
max(|uNasG(S)| — B/2,0) packets with the lowest value. Find a set EXTRA(.S) of
packets from (PG(S) \ PGy, ) U EARLY(SS) s.t. [EXTRA(S)| = |SMALL(S)| and the value
of the [-th largest packet in EXTRA(S) is at least as large as that of the I-th largest packet
in SMALL(S) divided by (. For each unavailable packet in EXTRA(S), remove from it a
2 fraction of its value (this value will be reassigned at the next step).

3. Assign the value of each pair of packets from SMALL(.S) and UNASG(.S) \ SMALL(S) to a
pair of available packets from PG,, U REPLACE, and the packet from EXTRA(S). Assign
to these packets also the value removed from the packet in EXTRA(.S), if any. Do this in
such a way that each packet is assigned at most 1 — € times its value.

4. Assign a 1 — 1/ fraction of the value of each packet from UNASG(.S) that is not yet
assigned to an available packet in PG,,, UREPLACE,, that has not been assigned any value
at Step 3 or the current step of this assignment routine and a 1//3 fraction of its value to
some packet from PG,, U REPLACE,, that has not been assigned any value at Step 3 or
the current step of this assignment routine (note that this packet may have been assigned
some value by the main routine).

Fig.4. Overload sequence assignment routine.

Lemma 3. For an overload sequence S, we can find a set EXTRA(S) of packets from
(pG(S) \ PGy,) U EARLY(SS) such that |[EXTRA(S)| = |SMALL(S)| and the value of the

I-th largest packet in EXTRA(S) is at least as large as that of the l-th largest packet in
SMALL(.S) divided by 5.

Proof. By definition, |[SMALL(S)| = max(|uNasG(S)| — B/2,0). To avoid trivialities,
assume that [UNASG(S)| > B/2 and let x; = |UNASG;|. By assumption (1)

x; = [REJOPT;| — |PG; \ OPT;| — |oUT;| > 0.
Thus

|OPT; \ PRMOPT;| = |REJOPT;| + |OPT; N PG|
= x; + |PG; \ OPT;| + |OPT; N PG;| + |OUT;]|
=x; + |PGi| + |OUTi|.

Let PREDOPT; be the set of packets from OPT; \ PRMOPT; that have been scheduled
by opT before time ¢2. We must have [PREDOPT;| > z; since the buffer of pG is full of
packets from U;?:min( ;,m)BELONG; at time tJ. If it is not the case then we obtain that the
schedule of OPT is infeasible using an argument similar to that of Lemma 2]

We also claim that [PREDOPT,,| > Zf:m z; and PREDOPT,, contains at least
Zf:m 41 Zi packets with value greater than or equal to w,,. Otherwise the schedule of
OPT is either infeasible or can be improved by switching a packetp € UF_, ., (0PT; \PG;)
and a packet p’ € BELONGy,, \ OPT,, s.t. v(p) < Wy, and v(p') > wy,.

Let MAXUP; be the set of the z; most valuable packets from PREDOPT; for 1 < 7 < m.
It must be the case that the value of the [-th largest packet in MAXUP; is at least as large
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as that of the [-th largest packet in UNAsSG, for 1 <[ < |UNASG,|. That is due to the fact
that by Observation [2| the x; least valuable packets from REJOPT; are also the x; least
valuable packets from REJOPT; U PG;.

Now for j starting from £ and down to m — 1, let MAXDOWN;; be the set containing
x; arbitrary packets from PREDOPT,, \ (U} +1MAXDOWN;) with value at least w,,.
(Recall that PREDOPT,,, contains at least Zf:m 11T packets with value greater than or
equal to w,,.) Finally, let MAXUP,,, be the set of the x,, most valuable packets from
PREDOPT,, \ (UX_, . MAXDOWN;). Clearly, any packet in MAXDOWN;; has greater value
than any packet in REJECT; for m + 1 < j < k. Similarly to the case of j < m, we
obtain that the value of the [-th largest packet in MAXUP,,, is at least as large as that of
the [-th largest packet in UNASG,,, for 1 <1 < |UNASGy,|.
Let MaxP(S) = (U MaXUP;) U (U . MAXDOWN;) and let ¢; be the time at
which opT schedules the i-th packet from MAXP(.S). We also denote by MAxP(S, ¢;) the
set of packets from MAaXP(.S) that arrived by time ¢;. For B/2 4+ 1 < i < |[UNASG(S5)],
let LARGE(t;) be the set of B/2 largest packets in MAXP(.5, t;). We define
_ J|UNASG(s)|

EXTRA(S) =B /241

PG(t;).
That is, the set EXTRA(.S) consists of the packets served by PG while OPT was serving
packets from the PREDOPT sets.

We show that at time ¢;, PG schedules a packet with value of at least w’ /3, where
w’ is the minimal value among packets in LARGE(t; ). If all packets from LARGE(t;) are
present in the buffer at time ¢; then we are done by Lemmal[Il Note that the earliest packet
from LARGE(¢;) arrived before or at time t; — B/2 since oPT schedules all of them by
time ¢;. In case a packet p from LARGE(Z;) has been dropped, then by the definition of
PG and the construction of the intervals, PG schedules at this time a packet that has value
atleast v(p) > w'/p.

Observe that the last packet from EXTRA(S) is sent earlier than ¢7* and therefore
EXTRA(S) N PG, = (). It is easy to see that the set defined above satisfies the condition
of the lemma. a

Theorem 1. The mapping routine is feasible.

Proof. If all assignments are done at Step 1 or Step 2 of the main assignment routine
then we are done. Consider an overload sequence S that is processed by the sequence
assignment routine. By Lemma 2] we obtain that the number of unassigned packets is
bounded from above by:

[unasG(S)| = [ResoPT(S)| + [PG(S) NoPT(S)| — |PG(S)| — |oUT(S)|
= |opT(S)| — |[PRMOPT(S)| — |PG(S)| — |oUT(S)]
< B — |prMOPT(S)| — |[PREVP(S)]. (1)
Observe that each packet p that replaces a packet p’ with value w can be assigned a
value of w if p’ € opr. In addition, if p’ belongs to another overload sequence S’ then

p can be assigned an extra value of w at Step 3 or Step 4 of the sequence assignment
routine.



370 A. Kesselman, Y. Mansour, and R. van Stee

Let AsG; be the subset of PG,, U REPLACE,, containing the unavailable packets
after the first two steps of the main assignment routine. By definition, every such packet
directly replaced a packet from opT. We show that all packets directly replaced by packets
from AsG; belong to PRMOPT(S) U PREVP(S). Consider such a packet p. If p is directly
preempted by a packet from AsG; then we are done. Else, we have that p is preempted
by a packet p’, which is pushed out (directly or indirectly) by a packet from AsG;. In
this case, by the overload sequence construction, p’ must belong to S, and therefore p
belongs to PRMOPT(.S) U PREVP(.S). Thus, |AsG1| < [PRMOPT(S)| + |[PREVP(.S)].

We denote by AsG,, the subset of PG,,, UREPLACE,, containing packets that have been
assigned some value at Step 3 of the sequence assignment routine. We have |AsGa| =
2 max(|uNasG(S)| — B/2,0).

Finally, let ASG3 and ASG,4 be the subsets of PG,,, UREPLACE,,, containing packets that
have been assigned at Step 4 of the sequence assignment routinea 1 — 1/G anda 1/
fraction of the value of a packet from UNASG(.S), respectively. Then |ASG3| = |ASG4| =
|UNASG(S)| — 2 max(JuNasG(S)| — B/2,0).

Now we will show that the assignment is feasible. By (), we have that

|ASG1| + [ASGa| + |AsGs| < B
while Observation[3 implies that [PG,, U REPLACE,,| > B. Finally,
|asG4| < B — |ASGo| — |ASGs],

which follows by case analysis. This implies that during the sequence assignment routine
we can always find the packets that we need. O

Theorem 2. Any packet from PG is assigned at most a 2 — €(03) fraction of its value,
where €(3) > 0 is a constant depending on (.

For the proof, and the calculation of €(/3), we refer to the full paper. Optimizing the
value of (3, we get that for 3 = 15 the competitive ratio of PG is close to 1.983, that is
e(8) ~ 0.017.

Now let us go back to the assumption (1), that is z; = |REJOPT;| — (|PG; \ OPT;| +
|ouT;|) > 0. We argue that there exist two indices | < m and r > m s.t. ; > 0 for
l<i<randz; <0forl <i¢ <lorl < ¢ < k. Inthis case we can restrict our analysis
to the subsequence of .S containing the intervals Z;, ..., Z,.

For a contradiction, assume that there exist two indices ¢, j s.t. ¢ < j < m or
t>j 2> m,z; > 0and x; < 0. Then there are a packet p € oPT; and a packet
p’ € PG; \ OPT; s.t. v(p’) > v(p). We obtain that the schedule of oPT can be improved
by switching p and p’.

It remains to consider the assumption (2), that is no packet from EXTRA(S) belongs
to another overload sequence S’. In this case we improve the bound of Lemma[2] applied
to both sequences.

Lemma 4. For any two consecutive overload sequences S’ and S the following holds:
|oPT(S)|+|oPT(S")|—[PG(S)|—|PG(S")| < 2B+|ouT(S)|—|PREVP(S)|—|PREVP(S")|—
|[EXTRA(S) N BELONG(S")].
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Proof. According to the proof of Lemma2 ¢}' — ¢ > B — [out(S)| where ?; is
the last time during S at which a packet from BELONG(.S) has been rejected. Let z =
[EXTRA(S) N BELONG(S’)|. We argue that opT has scheduled at most ¢; + 2B — '} —
[PREVP(S”)| packets from BELONG(S) U BELONG(S’). That is due to the fact that the
earliest packet from BELONG(S") arrived at or after time ' — B + |PREVP(S")|. Observe
that between time ¢/} and time t’JE at most B — z — |PREVP(.S)| packets outside of
BELONG(S) UBELONG(S”) have been scheduled by pG. Hence, pG has scheduled at least
t; + z + |[PREVP(S)| — '} — JouT(S)| packets from BELONG(S) U BELONG(.S"), which
yields the lemma. d

Using Lemma @] we can extend our analysis to any number of consecutive overload
sequences without affecting the resulting ratio.

3.3 Lower Bounds
Theorem 3. The vG algorithm has a competitive ratio of at least ¢.

‘We omit the proof due to space constraints.
Define v* = /19 + 3v/33 and R = (19 — 3v/33)(v*)2/96 +v* /6 +2/3 ~ 1.419.

Theorem 4. Any online algorithm ALG has a competitive ratio of at least R.

Proof. Suppose that ALG maintains a competitive ratio less than R and let v = v*/3 +
4/(3v*) + 4/3 ~ 2.839. We define a sequence of packets as follows. At time ¢ = 1, B
packets with value 1 arrive. At each time 2, ..., [, a packet of value v arrives, where
t + [y is the time at which ALG serves the first packet of value v (i.e. the time at which
there remain no packets of value 1). Depending on 1, the sequence either stops at this
point or continues with a new phase.

Basically, at the start of phase i, B packets of value v*~! arrive. During the phase,
one packet of value v’ arrives at each time step until ALG serves one of them. This is the
end of the phase. If the sequence continues until phase n, then in phase n only B packets
of value v" ! arrive. Let us denote the length of phase i by [; fori = 1,...,n — 1 and
define s; = 3", (ljv'')/Bfori =1,...,n.

If the sequence stops during phase i < n, then ALG earns [y +lov+13v2+. . .4+Lvt 1+
l;v* = B-s;+1;v* while oPT can earn at least [y v+ lov? +. ..+ ([;_1 + 1)vi = + [0t =
B(v-s;+v*~1). The implied competitive ratio is (v- s; +v'~1)/(s; +1;v°/ B). We only
stop the sequence in this phase if this ratio is at least R, which depends on I;. We now
determine the value of /; for which the ratio is exactly R. Note that [;v* = (s; —s;_1)/v.
We find

ves; +oit vRs;—1 + vt vt — (%)’
= = 5= ————— ,50=0 = 5 =
s; + 1;v'/B Rw+1)—wv (R —1)v?

It can be seen that s; /v" — 1/(v*(R — 1)) for i — oo, since R/(R(v+ 1) —v) < 1
forR > 1.

Thus if under ALG the length of phase ¢ is less than ;, the sequence stops and the ratio is
proved. Otherwise, if ALG continues until phase n, itearns Iy +lov+Il3v2+. . . +1,0" 1+
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B-v"™ = B-(s, +v™) whereas OPT can earn at least [;v + lov? +. .. + [, 0" + B-v" =
B(v - 85, + v™). The implied ratio is

vs, +o" v +1 N - 1 v+ (R-1)

spt+om Szl +1 1+v2(R-1)

. =R.
on v2(R—1)
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