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Abstract. Given a network with capacities and transit times on the arcs, the
quickest flow problem asks for a ‘flow over time’ that satisfies given demands
within minimal time. In the setting of flows over time, flow on arcs may vary over
time and the transit time of an arc is the time it takes for flow to travel through
this arc. In most real-world applications (such as, e.g., road traffic, communica-
tion networks, production systems, etc.), transit times are not fixed but depend
on the current flow situation in the network. We consider the model where the
transit time of an arc is given as a nondecreasing function of the rate of inflow
into the arc. We prove that the quickest s-t-flow problem is NP-hard in this set-
ting and give various approximation results, including an FPTAS for the quickest
multicommodity flow problem with bounded cost.

1 Introduction

Flows over time have been introduced more than forty years ago by Ford and Fulker-
son [6,[7]. Given a directed graph with capacities and transit times on the arcs, a source
node s, a sink node ¢, and a time horizon 7', they consider the problem of sending the
maximum possible amount of flow from s to ¢ within 7" time units. A flow over time
specifies a flow rate for each arc at each point in time. The capacity of an arc is an upper
bound on this flow rate, i.e., on the amount of flow that can be sent into the arc during
each unit of time. Flow on an arc progresses at a constant speed which is determined by
its transit time.

Known results for flows over time with constant transit times. Ford and Fulkerson show
that the maximum s-t-flow over time problem can be solved by essentially one static
min-cost flow computation in the given network, where transit times are interpreted as
costs. An arbitrary path decomposition of such a static min-cost flow can be turned into
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a flow over time by sending flow at the given flow rate into each path as long as there
is enough time left for the flow on a path to arrive at the sink before time 7'. A flow
featuring this structure is called ‘temporally repeated’.

A problem closely related to the maximum s-¢-flow over time problem is the quick-
est s-t-flow problem. Here, the flow value (or ‘demand’) is fixed and the task is to find
a flow over time with minimal time horizon 7'. Clearly, this problem can be solved
in polynomial time by incorporating the algorithm of Ford and Fulkerson into a binary
search framework. Burkard, Dlaska, and Klinz [2] give a strongly polynomial algorithm
for the quickest s-t-flow problem which is based on the parametric search method of
Megiddo [15]. Hoppe and Tardos [10, [11] study the quickest transshipment problem
which, given supplies and demands at the nodes, asks for a flow over time that zeroes
all supplies and demands within minimal time. They give a polynomial time algorithm
which is, however, based on a submodular function minimization routine.

The latter fact already indicates that flow over time problems are, in general, con-
siderably harder than their static counterparts in classical network flow theory. The best
evidence for this allegation is maybe provided by a surprising result of Klinz and Woeg-
inger [[12]. They show that computing a quickest s-t-flow of minimum cost in a network
with cost coefficients on the arcs is already NP-hard in series-parallel networks. More-
over, it is even strongly NP-hard to find a quickest temporally repeated s-t-flow of
minimum cost. Only recently, Hall, Hippler, and Skutella [8] showed that computing
quickest multicommodity flows is NP-hard, even on series-parallel networks.

On the other hand, Ford and Fulkerson [6l [7] introduce the concept of time-expand-
ed networks which allows to solve many flow over time problems in pseudopolynomial
time. The node set of a time-expanded network consists of several copies of the node
set of the underlying graph building a ‘time layer’. The number of time layers is equal
to the integral time horizon 7" and thus pseudopolynomial in the input size. Copies of an
arc of the underlying graph join copies of its end-nodes in time layers whose distances
equal the transit time of that arc. Ford and Fulkerson observe that a flow over time in the
given graph corresponds to a static flow in the time-expanded network, and vice versa.
Thus, many flow over time problems can be solved by static flow computations in the
time-expanded network.

Fleischer and Skutella [4] come up with so-called ‘condensed’ time-expanded net-
works which are of polynomial size and can be used to compute provably good multi-
commodity flows over time with costs in polynomial time. In particular, they present a
fully polynomial time approximation scheme (FPTAS) for the quickest multicommod-
ity flow problem with bounded cost [4] 5]. Using completely different techniques, they
also show that 2-approximate temporally repeated flows can be obtained from a static,
length-bounded flow computation in the given graph [4]. The advantage of the latter
solutions is that they have a very simple structure and also do not use storage of flow at
intermediate nodes.

Flow-dependent transit times. So far we have considered the setting of flows over time
where transit times of arcs are fixed. In many practical applications, however, the latter
assumption is not realistic since transit times vary with the flow situation on an arc. We
refer to [11116,17]] for an overview and further references. Usually, the correlation of the
transit time and the flow situation on an arc is highly complex. It is a major challenge to
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come up with a mathematical model that, on the one hand, captures the real behavior as
realistically as possible and, on the other hand, can be solved efficiently even on large
networks.

Kohler and Skutella [14] consider a model where, at any moment in time, the actual
speed of flow on an arc depends on the current amount of flow on the arc. Under this
assumption, they give a 2-approximation algorithm for the quickest s-¢t-flow problem
and show that no polynomial time approximation scheme (PTAS) exists, unless P=NP.
A simpler model is studied by Carey and Subrahmanian [3]]. They assume that the transit
time on an arc only depends on the current rate of inflow into the arc and propose a time-
expanded network whose arcs somehow to reflect this behavior. Kéhler, Langkau, and
Skutella [[13]] give a 2-approximation algorithm for the quickest s-t-flow problem in the
setting of inflow-dependent transit times. The algorithm uses the algorithm of Ford and
Fulkerson [6] [7] on a so-called ‘bow graph’ with fixed transit times on the arcs. In the
bow graph, every arc of the original graph is replaced by a bunch of arcs corresponding
to different transit times. The quickest flow problem in the bow graph is a relaxation of
the quickest flow problem with inflow-dependent transit times.

Contribution of this paper. While, for the special case of constant transit times, quickest
s-t-flows can be computed in polynomial time [2, 6] [7], we show in Section [Al that the
problem becomes NP-hard if we allow inflow-dependent transit times. In Section[4] we
generalize the 2-approximation result given in [13]] to the setting with costs and multiple
commodities. Our approach is based on a new and stronger relaxation of the quickest
flow problem, which we introduce in Section Bl This relaxation is defined in a bow
graph similar to the one introduced in [13], but it uses additional ‘coupling constraints’
between flow values on different copies of one arc in the original graph. In particular,
this relaxation can no longer be solved by standard network flow algorithms but re-
quires general linear programming techniques. Nevertheless, as shown in Section ] the
approximation technique based on length-bounded static flows presented in [4] can be
generalized to yield provably good solutions to our bow graph relaxation. Moreover, we
prove that such a solution to the relaxation can be turned into a feasible multicommodity
flow over time with inflow-dependent transit times and bounded cost.

The main result of this paper is a fully polynomial time approximation scheme for
the quickest multicommodity flow problem with bounded cost and inflow-dependent
transit times (see Section[J). It again uses the new bow graph relaxation introduced in
Section 3] and generalizes the approach based on condensed time-expanded networks
from [5]]. Interestingly, the time-expanded version of our bow graph relaxation essen-
tially coincides with the modified time-expanded graph considered by Carey and Sub-
rahmanian [3].

Due to space limitations, we omit most proofs in this extended abstract.

2 Preliminaries

We are considering network flow problems in a directed graph G = (V, E) with n :=
|V| nodes and m := |E| arcs. Each arc e € F has associated with it a positive ca-
pacity u. and a nonnegative, nondecreasing transit time function 7, : [0, u.] — RT.
There is a set of commodities K = {1, ..., k}; every commodity ¢ € K is defined by
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a source-sink pailﬂ (sisti) € V x V. The objective is to send a prespecified amount
of flow d; > 0, called the demand, from s; to ¢;. Finally, each arc e has associated
cost coefficients c. ;, for i € K, where c. ; is interpreted as the cost (per flow unit) for
sending flow of commodity ¢ through the arc. For an arc ¢ = (v, w) € E, we use the
notation head(e) := w and tail(e) := v.

Flows over time with constant transit times. A (multicommodity) flow over time f in
G with time horizon 7' is given by Lebesgue-measurable functions f. ; : [0,7) — R*,
where f. ;(0) is the rate of flow (per time unit) of commodity ¢ entering arc e at time
6. In order to simplify notation, we sometimes use f. ;(#) for 6 ¢ [0,T"), implicitly
assuming that f. ;(6) = 0 in this case. The capacity u. is an upper bound on the rate of
flow entering arc e at any moment of time, i.e., f.(0) < u. foralld € [0,T) and e € E.
Here, fe(0) := > ,c i fe,i(0) is the total rate at which flow is entering arc e at time 6.
In the original setting of flows over time, the transit time function 7. of arc e is
assumed to be constant. Then, the flow f. ;(#) of commodity ¢ entering arc e at time 0
arrives at head(e) at time 6 +7. All arcs must be empty from time T on, i.e., fe ;(#) =0
for & > T — .. To generalize the notion of flow conservation, we define D, ,(€) :=

D oecs— ) ff fe,i(0—T.) db to be the total inflow of commodity ¢ € K into node v until

time £ € [0, 7. Similarly, DL({) = Y eest(v) f(f fe,i(0)d is the corresponding
outflow. We consider the model with storage of flow at intermediate nodes. That is,
flow entering a node can be held back for some time before it is sent onward. To rule
out deficit at any node, we require D, (&) — Dj’i(f) >0, forall £ € [0,7),: € K,
and v € V\{s;}. Moreover, flow must not remain in any node other than the sinks at
time T'. Therefore, we require that equality holds for every i € K, v € V\{s;,t;}, at
time §{ = T'. The flow over time f satisfies the multicommodity demands if D, ,(7") —

DZ (1) = d;, for any commodity i € K. The cost of a flow over time f is defined as
T
C(f) = ZeeE Zie[{ Ce,i fO fe,i(e)deo

Time-expanded graphs. Many flow over time problems can be solved by static flow
algorithms in time-expanded graphs [6, [7]. Given a graph G = (V, E) with integral
transit times on the arcs and an integral time horizon T, the T'-time-expanded graph of
G, denoted GT, is obtained by creating 1" copies of V, labeled Vj through Vr_;, with
the 0" copy of node v denoted v(6), § = 0,...,T — 1. Forevery arc e = (v,w) € E
and0 =0,...,T — 1 — 7, there is an arc e(f) from v(0) to w(# + 7.) with the same
capacity and costs as arc e. In addition, there is an infinite capacity holdover arc from
v(@) tov(@+ 1), forallv € Vand @ = 0,...,T — 2, which models the possibility to
hold flow at node v during the time interval [0, 6 + 1).

Any static flow in this time-expanded network corresponds to a flow over time of
equal cost: interpret the flow on arc e(6) as the flow through arc e = (v, w) that starts at
node v in the time interval [#, 8 + 1). Similarly, any flow over time completing by time
T corresponds to a static flow in G of the same value and cost obtained by mapping
the total flow starting on e in time interval [#, 6 4 1) to flow on arc e(6). Thus, we may

* To simplify notation, we restrict to the case of only one source and one sink for each commod-
ity. However, our results can be directly generalized to the case of several sources and sinks
with given supplies and demands for each commodity.
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solve a flow over time problem by solving the corresponding static flow problem in the
time-expanded network.

One drawback of this approach is that the size of G* depends linearly on 7', so that
if T is not bounded by a polynomial in the input size, this is not a polynomial-time
method. However, the following useful observation can be found in [4]: If all transit
times are multiples of some large number A > 0, then instead of using the 7T-time-
expanded graph, we may rescale time and use a A-condensed time-expanded graph
that contains only [7/A] copies of V. Since in this setting every arc corresponds to
a time interval of length A, capacities are multiplied by A. For more details we refer
to [4]].

Flows with inflow-dependent transit times. In the original setting of flows over time
discussed above, it is assumed that transit times are fixed throughout, so that flow on
arc e progresses at a uniform speed. In the following, we will consider the more general
model of inflow-dependent transit times. Here, the transit time of an arc may vary with
the current amount of flow using this arc. Each arc e has an associated non-negative
transit time function 7., which determines the time it takes for flow to traverse arc e.
Flow of commodity ¢ entering arc e at time 6 at rate f. ;(6) arrives at head(e) at time
0+ 7.(fe(9)). We will later need the following simple observation which follows from
the fact that flow can be stored at intermediate nodes.

Observation 1. For everyarce € E, let 7. : [0,ue] — Rt and 7. : [0,u.] — R be
transit time functions on arc e such that 7.(x) < 7.(x) for all x € [0, u.]. Then, a flow
over time with inflow-dependent transit times (7. )ec g and time horizon T also yields a
flow over time with inflow-dependent transit times (7.)ccp and time horizon T.

3 The Bow Graph

In this section, we will define a so-called bow graph that is very similar to the one de-
fined in [[L3]]. Let us for the moment assume that all transit time functions are piecewise
constant, non-decreasing, and left-continuous. This transit time function of arc e is de-
noted by 77. It is given by breakpoints 0 = zp < 1 < --- < xy and corresponding
transit times 73 < --- < 74. Flow entering arc e at rate © € (x;_1, ;] needs 7; time
to traverse arc e. Later we will use the fact that general transit time functions can be
approximated by such step functions within arbitrary precision.

The bow graph, denoted GZ = (VB EB), is defined on the same node set as G,
ie, VB := V, and is obtained by creating several copies of an arc, one for every
possible transit time on this arc. Thus, arc e is replaced by ¢ parallel bow arcs a1, . . . , ay.
The transit time of bow arc a; is 7; and its capacity is z;, ¢ = 1, ..., {. We will denote
the set of bow arcs corresponding to arc e € E by EP, and refer to EZ as the expansion
of arc e. The cost coefficients of every arc a € Ef are identical to those of ¢, 1.e., ¢, 1=
Ce,is Tori € K.

3.1 A Relaxation of Inflow-Dependent Transit Times

We will now discuss the relationship between flows over time with inflow-dependent
transit times in G and flows over time in the bow graph GZ. Any flow over time f in G
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with inflow-dependent transit times (7°).c g and time horizon 7" can be interpreted as
a flow over time f? in G (with constant transit times) with the same time horizon T":
If flow is entering arc e € E at time 6 with flow rate f.(6), then, in the bow graph, this
flow is sent onto the bow arc a € EZ representing the transit time 72 (f.(6)).

Unfortunately, an arbitrary flow over time fZ in G® does not correspond to a flow
over time f with inflow-dependent transit times (72).cr in G. In addition, we have
to require the following property: For every original arc e € F and at every point in
time @, the flow fZ sends flow into at most one bow arc a € EF. A flow over time
in G fulfilling this property is called inflow-preserving.

Observation 2. Every inflow-preserving flow over time f2 in GP with time horizon T
corresponds to a flow over time f in G with inflow-dependent transit times (75)cc g and
time horizon T, and vice versa.

Notice that the set of inflow-preserving flows over time is not convex. In particular,
it is difficult to compute inflow-preserving flows directly. Therefore, we also consider
a relaxed notion which can be interpreted as a convexification of inflow-preserving
flows: For any arc a € EB, let \,(0) := f2(0)/u, denote the per capacity inflow rate
into arc a at time . Then, a flow over time fZ in G? with time horizon 7T is called
weakly inflow-preserving if ZaeEf Aa(f) < 1foralle € E and 6 € [0,T). Since
every inflow-preserving flow over time is also weakly inflow-preserving, it follows from
Observations [[land 2] that weakly inflow-preserving flows over time in G constitute a
relaxation of flows over time with inflow-dependent transit times in G:

Observation 3. For every arc e € E, let 75 : [0,u.] — R and 7. : [0,ue] — R be
transit time functions on arc e such that 75 is a step function with 75(x) < 7.(x) for
all x € [0, u.]. Then, every flow over time with inflow-dependent transit times (7¢)ccE
and time horizon T in G yields a (weakly) inflow-preserving flow over time with time
horizon T in GB.

The basic idea of the approximation algorithms presented in this paper is to compute
weakly inflow-preserving flows over time in an appropriate bow graph and turn these
into flows over time in G with inflow-dependent transit times. The following lemma and
its corollary make this approach work. Consider the expansion of a single arc e € E to
bow arcs EP = {ay,...,as}.

Lemma 1. Let fB be a weakly inflow-preserving flow over time with time horizon T
in EB and § > 0. Then, B can be turned into an inflow-preserving flow over time fB
in EeB such that every (infinitesimal) unit of flow in fB reaches head(e) at most 0 time
units later than it does in fB.

Proof. For every bow arc a;, i = 1,..., ¢, we set up a buffer b; in tail(e) for temporary
storage of flow. The buffer b; is collecting all flow in fZ which is about to be shipped
through bow arc a;. It can output this flow in a first-in-first-out manner, i.e., flow units
must enter and leave the buffer in the same order. Buffer b; has only two output modes.
Either it is closed, then no flow is leaving the buffer, or it is open and flow is leaving the
buffer at constant rate u,,, immediately entering arc a;. In our modified solution f B
at every point in time at most one of the buffers b;, ¢ = 1,..., ¢, will be open. This
guaranties that fB is inflow-preserving.
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Yo Uq

0 6 26 36 0 0 6 26 36 0

Fig. 1. Original flow rate on bow arc a and modified flow rate produced by buffering in
tail(a).

As above, let A\, () := f2(6)/u, be the per capacity inflow rate of fZ on arc a €
EeB at time 6. We partition the time horizon into intervals of length 5, where § := § /2.
Let A\, ; be the average per capacity inflow rate on arc a € EP during time interval
[(j—1)8,50), j=1,...,[T/5]. We define the modified flow fB as follows: During
the first 6-round, all buffers are closed. During each following é-round, we open the
buffers in a ‘round robin’ fashion. More precisely, during time interval [j 8, (j + 1) ),
we first open buffer b; for A\, 36 time, then buffer by for A, J(S time, and so on. Since
fB is weakly inflow-preserving, Zle Aa;,; < 1 holds and the last buffer is closed
again before the end of this 4-round. Figure [l illustrates how the buffer changes the
original inflow rate of a single bow arc a.

We show that the buffers are never empty while they are open. Consider bow arc a;.
During the interval [(j — 1) §, 5 6), the flow f7 sends 64, juq, units of flow into bow
arc a;. This is exactly the amount of flow that the corresponding buffer b; is sending
out during the succeeding interval [j 4, (j + 1) 8). Hence buffer b; is never emptied
and, in particular, every unit of flow is delayed for at most 20 = 4 time. Note that
throughout these modifications no flow is rerouted. We only make use of storage in
nodes. Therefore, the cost of fZ remains unchanged. a

For § > 0, we call a flow over time fZ in G 6-resting if, for every node v €
V\{s1,..., 8k}, all flow arriving at v is stored there for at least § time units before
it moves on. A weakly inflow-preserving flow over time fZ in GZ which is d-resting
can easily be interpreted as an inflow-preserving flow over time f B: Consider a single
arc e € E and its expansion EZ. Applying Lemmal[] the flow over time f restricted
to EZ can be modified to an inflow-preserving flow over time such that every unit of
flow is delayed by at most §. The resting property of fZ makes up for this delay and
ensures that every such flow unit can continue its way on time. Applying Observation[2}
the flow fZ can then be interpreted as a flow over time f in G with inflow-dependent
transit times (77 )eck.

Corollary 1. Let fB be a weakly inflow-preserving flow over time in GP with time
horizon T which is 6-resting. Then, 2 can be turned into a flow over time f in G
with inflow-dependent transit times (78)c.cp and with the same time horizon and the
same cost as fB. Moreover, the flow over time f is given by piecewise constant func-
tions (fe)ee g such that the number of breakpoints of f. is bounded by 2 |EB| [T/§].
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4 A (2 + e)-Approximation Algorithm for Quickest Flows

In this section we present a fairly simple (2+ ¢)-approximation algorithm for the quick-
est multicommodity flow problem with inflow-dependent transit times. The algorithm
consists of the following three main steps. First, the original transit times (7. ).cp are
replaced by lower step functions (7%).c & and the corresponding bow graph G is con-
structed. Then, an appropriately modified version of the (2 + ¢)-approximation algo-
rithm presented in [4] is applied yielding a weakly inflow-preserving flow over time
in GP. Finally, the output is turned into a feasible solution to the original problem.
The bow graph G is defined in the first step according to step functions fulfilling
the requirements stated in the following observation. We will later specify the param-
eters 9,77 > 0 such that the size of the resulting bow graph is polynomial in the input
size and 1/e.

Observation 4. Let 6, > 0. For every non-negative, non-decreasing, and left-continu-
ous function 7 : [0, u] — R, there exists a step function 7° : [0,u] — R, with

() 7%(z) < 7(x) < (1+n)7(x) + 0 for every x € [0, u],
(ii) the number of breakpoints of T° is bounded by [log, y, (T(u)/d)] + 1.

4.1 (2 + ¢)-Approximate Quickest Weakly Inflow-Preserving Flows

Fleischer and Skutella [4] propose a (2 + ¢)-approximation algorithm for the quick-
est multicommodity flow problem with bounded cost and constant transit times. The
method is based on an approximate length-bounded static flow computation. The same
approach can be applied to the problem of finding a quickest weakly inflow-preserving
multicommodity flow over time with bounded cost in the bow graph.

Let 2 be an optimal solution to this problem with minimal time horizon 7. As
suggested in [4], we consider the static multicommodity flow =¥ in G® which results
from averaging the flow fZ on every arc a € E® over the time interval [0,7). As
proven in [4], this static flow (i) satisfies a fraction of 1/T of the demands covered by
the flow over time f2, (ii) has cost c(x®) = ¢(f?)/T, and (iii) is T-length-bounded.
The latter property means that the flow of every commodity ¢ € K can be decomposed
into a sum of flows on s;-t;-paths such that the length 7(P) := _ _p 7, of any such
path P is at most T". Since f? is weakly inflow-preserving, so is 22, i.e., its per capacity
flow values Ny == x8 [uq, a € EP, satisfy Y- pp Ao < 1forevery arce € E. We
refer to this property as property (iv). ‘

Any static flow « in G meeting requirements (i) — (iv) can be turned into a weakly
inflow-preserving flow over time g in G” meeting the same demands at the same
cost as fP within time 27": Send flow into every s;-t;-path P given by the length-
bounded path decomposition of x at the corresponding flow rate x p ; for exactly 7' time
units; wait for at most another 7' time units until all flow has arrived at its destination.
Since ¢, (0)/u, is always upper-bounded by x,,/u,, it follows from property (iv) that g
is weakly-inflow preserving. Thus, g is a 2-approximate solution to the problem under
consideration.

Unfortunately, computing the 7-length-bounded flow x is NP-hard, even for the
special case of a single commodity [9]. Yet, as discussed in [4], the T-length-bounded
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multicommodity flow problem can be approximated within arbitrary precision in poly-
nomial time by slightly relaxing the length bound T'. It is easy to generalize this obser-
vation to length-bounded, weakly inflow-preserving flows. This finally yields a (2+¢)-
approximate solution.

Lemma 2. Assume that there exists a weakly inflow-preserving multicommodity flow
over time with time horizon T' and cost at most C. Then, for every € > 0, a weakly
inflow-preserving multicommodity flow over time with time horizon at most (2 4+ €)T
and cost at most C' can be computed in time polynomial in the input size and 1/¢.

If all transit time functions 7. are constant, the (2 + ¢)-approximation algorithm in
Lemma[2] and the one presented in [4] basically coincide. In [4], an example is given
which shows that the performance guarantee of both algorithms is not better than 2.

4.2 (2 + £)-Approximate Quickest Flows with Inflow-Dependent Transit Times

So far, we have presented an algorithm to compute a (2 + ¢)-approximate solution
to the quickest multicommodity flow problem in the relaxed model of weakly inflow-
preserving flows over time. Such a solution has a simple structure, namely it is generated
from a path decomposition of a static flow in the bow graph. We will use this property
to turn such a flow into a solution to the original problem. Throughout this modification
we will make sure that the time horizon only increases by a small factor.

Let 2 be a weakly inflow-preserving multicommodity flow over time with time
horizon T'Z in G, which is generated from a static flow z” as described in the last
section. In particular, z” is weakly inflow-preserving and has a length-bounded path
decomposition. Let P; denote the set of s;-t;-paths from the length-bounded path de-
composition of z¥ and P := U¥_, P;.

Lemma 3. The flow over time fP can be turned into a flow over time f in G with
inflow-dependent transit times (7.)ecr and time horizon T, where T is bounded from
above by (1 +n)T® + 2nd.

We are now ready to state the main result of this section.

Theorem 1. For the quickest multicommodity flow problem with inflow-dependent tran-
sit times and bounded cost, there exists a polynomial time algorithm that, for any € > 0,
finds a solution of the same cost as optimal with time horizon at most 2 + € times the
optimal time horizon T™.

5 An FPTAS for Quickest Flows

In this section we present an FPTAS for the quickest multicommodity flow problem
with inflow-dependent transit times and bounded cost. We use ideas similar to the ones
employed in [5]] for the problem with fixed transit times. The FPTAS is based on a static
weakly inflow-preserving flow computation in a condensed time-expanded bow graph.

Theorem 2. There is an FPTAS for the quickest multicommodity flow problem with
inflow-dependent transit times and bounded cost.
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5.1 The Algorithm

To state our algorithm and prove its correctness we define the following two bow
graphs: Given G = (V, E)) with transit time functions (7¢).cr and a time horizon T,
let G denote the lower bow graph constructed from the lower step functions 7} (z) :=
|7e(z)/A] A, for e € E, x € [0,uc]. Here, A := 2T /n for a given small con-
stant ¢ > 0 (we assume that n/e? is integral such that 7" is a multiple of A). That
is, 7e(x) is rounded down to the nearest multiple of A. By choice of A, the size of Gl
is polynomially bounded since we can delete all arcs with transit times greater than 7.
The second graph is the 2A-lengthened bow graph, denoted by G'T, which is con-
structed from G'! by lengthening the transit time of each arc by 2A. The corresponding
transit time step functions are given by 71 (z) := 7} (z) + 24, fore € E, z € [0, u.].

Let the fan graph G¥' = (V¥ E¥) be the A-condensed time-expansion of G’
for time horizon T (see Section ). Each arc e € E is represented in the bow graph
G'T by its expansion E]T. Thus, the fan graph contains, for each time § € S :=
{0,4,...,T — A}, a ‘fan’ of arcs EF () := {a(0) : a € EI', 0 + 7, € S}, where
a(9) = (v(0),w(0+7,)). Forastatic flow x in G, we define Ay (0) := 2,(g)/Ua(o) t0
be the per capacity inflow value on arc a() € E*. With these definitions, the concept
of (weakly) inflow-preserving flows directly carries over to static flows in G*". More-
over, the problem of computing a weakly inflow-preserving static flow in G¥' can easily
be formulated as a linear program. Take a standard network flow formulation and add
an extra constraint for each fan in G¥'. In particular, such a flow can be computed in
polynomial time. Note that any (weakly) inflow-preserving static flow in GF directly
corresponds to a (weakly) inflow-preserving flow over time in G'7, as described in Sec-
tion 1]

Let T denote the time horizon of a quickest flow with inflow-dependent transit
times in G. We can now give an overview of our algorithm:

FPTAS FOR QUICKEST FLOWS WITH INFLOW-DEPENDENT TRANSIT TIMES

1. Guess T such that T* < T < (1 + O(g))T™. This is done via geometric mean
binary search, starting with good upper and lower bounds, obtained, e.g., with help
of the (2 + )-approximation in Section[4l

2. Construct the fan graph G for time horizon T and compute a weakly inflow-
preserving static multicommodity flow satisfying all demands at minimum cost.

3. Interpret this static flow as a weakly inflow-preserving flow over time in G1T. Mod-
ify this flow to make it inflow-preserving and, from this, derive a flow over time
in G with inflow-dependent transit times and time horizon at most 7'.

We now proceed as follows: First we discuss issues related to the running time of
the algorithm and detail how step 3 is implemented. Then, in the next section, we prove
that a static flow in GF' with the properties claimed in step 2 actually exists.

The upper and lower bounds obtained from the (2 + ¢)-approximation in step 1
are within a constant factor of each other. Thus, the estimate T' can be found within
O(log(1/e)) geometric mean binary search steps. The fan graph G constructed in
step 2 contains O(n?/e%) nodes and O(mn?/s*) arcs; note that each fan contains
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O(n/e?) arcs, potentially one for each layer of G¥'. Therefore, the static flow in G can
be computed in polynomial time. We now go into the details of step 3. As mentioned
before, interpreting the static flow in G¥" as a weakly inflow-preserving flow over time
in G is done in the canonical way, as described in Section [Tl If we now shorten all
arcs of G117 by A (we refer to the resulting bow graph as G), we obtain a weakly
inflow-preserving flow over time in G'which is A-resting. Applying Corollary[I, we
derive an inflow-preserving flow over time in G'. Finally, by Observation[Il we get a
flow over time in G with inflow-dependent transit times (7¢).c g with time horizon at
most T'. Clearly, step 3 can be done in polynomial time.

5.2 Transforming a Flow over Time in G to a Static Flow in G¥

In this section we prove that our algorithm actually is an FPTAS by showing that a
feasible flow as claimed in step 2 exists. To this end, we transform a quickest flow in G
with inflow-dependent transit times to a weakly inflow-preserving static flow in G¥" and
thereby lengthen the time horizon by at most a factor of 1 + O(¢). This transformation
is done in several steps which are illustrated in the following diagram:

infl.-dep. flow | @Y |infl-pres. flow | @ weakly infl.-pres. ® weakly infl.-pres.
over time in —3 | over time — flow over time — static flow in

G, time in GY, time in G'7, time GF, time
horizon T horizon T horizon < T horizon < T

With Observation3] step @ is easy to see. For step ®, flow in G'T is mapped to G*" as
described in Section [T} the total flow entering arc a € E'! in the interval [0, 0 + A) is
assigned to a(f) € ET, for § € S. Clearly, if the flow was (weakly) inflow-preserving
in G117, it will be weakly inflow-preserving in G, too. Step ® is the most interesting
but also the most intricate one. It is done similarly to [5] by carefully averaging flow
to derive an ‘almost feasible’ flow, then subsequently sending less to obtain a feasible
flow and finally increasing the time horizon to meet the demands (we refer to [5] for
details). We can adopt this method since the transit times in bow graphs G and G1
are constant. However, in contrast to [5], our flows must have the additional property of
being weakly inflow-preserving.

Lemma 4. A (weakly) inflow-preserving flow over time f in G with time horizon T*
can be transformed into a weakly inflow-preserving flow over time in G'1 with time
horizon at most T := (1 + O(g))T™* and the same cost as f.

This concludes the proof of Theorem[2l

6 Complexity

Theorem 3. The quickest s-t-flow problem with inflow-dependent transit times, with or
without storage of flow at intermediate nodes, is NP-hard in the strong sense.

The proof uses a reduction from the well-known NP-complete problem 3-PARTITION.
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