
A Case-Based Approach to
Anomaly Intrusion Detection

Alessandro Micarelli and Giuseppe Sansonetti

Department of Computer Science and Automation
Artificial Intelligence Laboratory

Roma Tre University
Via della Vasca Navale, 79, 00146 Rome, Italy

{micarel,gsansone}@dia.uniroma3.it

Abstract. The architecture herein advanced finds its rationale in the
visual interpretation of data obtained from monitoring computers and
computer networks with the objective of detecting security violations.
This new outlook on the problem may offer new and unprecedented tech-
niques for intrusion detection which take advantage of algorithmic tools
drawn from the realm of image processing and computer vision. In the
system we propose, the normal interaction between users and network
configuration is represented in the form of snapshots that refer to a lim-
ited number of attack-free instances of different applications. Based on
the representations generated in this way, a library is built which is man-
aged according to a case-based approach. The comparison between the
query snapshot and those recorded in the system database is performed
by computing the Earth Mover’s Distance between the corresponding
feature distributions obtained through cluster analysis.

1 Introduction

Intrusion Detection Systems (IDSs) have the objective of detecting attacks la-
unched against computers or computer networks. Their classification is usually
based on the audit source location and on the general detection strategy. With
respect to the first criterion, IDSs are divided into host-based techniques if the
input information they analyze consists of audit trails and/or system logs and
network-based techniques if it consists of network packets. According to the sec-
ond criterion, IDSs are classified as misuse-based or anomaly-based techniques.
The former use attack descriptions (signatures) in order to analyze the sequence
of events obtained from monitoring a given network and single computers con-
nected to it. If a known attack pattern is detected, an alarm is triggered. These
systems are usually efficient and generate a limited number of false detections,
called false positives. The main drawback of these systems lies in their inability to
detect unknown attacks, i.e., attacks for which there exists no prior information
in the system database.

The anomaly-based IDSs follow an approach which is complementary to the
previous one. They are based on models of the normal behavior (profiles) of users

P. Perner (Ed.): MLDM 2007, LNAI 4571, pp. 434–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Case-Based Approach to Anomaly Intrusion Detection 435

and applications in order to detect anomalous activities which might provide
an indication of an internal intrusion, launched by users attempting to abuse of
their privileges, or of an external intrusion. The main advantage of this approach
is the fact that it is capable of identifying unknown attacks. This advantage is
however obtained at the price of a large number of false positives. Axelsson refers
to it as “the limiting factor for the performance of an anomaly-based IDS” [2]. In
addition to this, recent work [33,37] has shown that these systems are vulnerable
to mimicry attacks, i.e., attacks which aim at imitating normal activity, thereby
avoiding identification by the system.

Nonetheless, we believe that the benefits offered by anomaly-based systems are
such that a thorough critical analysis of the limits of the approaches advanced
so far is needed in order to come up with adequate solutions. In particular,
excluding some notable exceptions, most anomaly-based systems share these
common characteristics:

1. They are based on a single feature, i.e., they usually consider a single
characteristic, based on which they assess the normality of a generic user-
application interaction;

2. They have only one input since they examine only one data typology, relative
either to the network or to a generic host and they do not propose the analysis
of combined data;

3. The classification procedure, i.e., the procedure whereby a generic event is
considered part of an ongoing attack or not, once the relative anomaly score
is known is trivial.

Concerning the first characteristic, most techniques used to date do not make
appropriate tools available to take into account more than one element during the
evaluation phase. It is therefore worthwhile to explore new techniques, inspired
by different principles.

The rest of the paper is organized as follows. Section 2 outlines related work.
Section 3 presents our intrusion detection system, in particular the case repre-
sentation and the dissimilarity metric. Section 4 describes the experiments that
were performed to evaluate the accuracy of the case-based classifier. Section 5
contains the conclusions and Section 6 discusses future directions of our research.

2 Related Work

In the field of Intrusion Detection, in addition to the traditional techniques used
to date, various alternative solutions have recently been advanced which use,
among others, haptic technologies [13], capable of generating tactile sensations,
and sonification techniques [34], which make use of non-speech audio to convey
information. Visualization techniques have also been proposed which operate the
conversion from textual datasets to digital images [7,23,20]. There exist many
advantages associated with this conversion. In particular, it has been observed
that, from a physiological viewpoint, the interpretation of graphical images is
a parallel process and, as such, it is much more efficient than reading textual
information, which is an intrinsically serial process [22].

436 A. Micarelli and G. Sansonetti

Fig. 1. The anomaly-detection system

Another major advantage is that a single image can convey several pieces of in-
formation simultaneously in a more structured and compact form than text [10].
There have been several contributions in the field of network-based visualization
techniques, mainly aimed at representing relative performances and bandwidth
usage in a graphical form [5,21].

Less attention has instead been devoted to Intrusion Detection. Among the
early contributions, tools have been advanced to estimate the level of attack
which a system being monitored undergoes [31,19]. Despite their usefulness,
these tools only allow one to detect attacks which are already in progress, but
they do not provide any proactive measure.

More recently, visual user interfaces have been devised which assist in the
interpretation of data streams produced by IDSs [9,20,27,32]. If, on the one
hand, these systems provide an important contribution, on the other hand, they
can make the human interpretation of data easier but they do not replace it
altogether.

To the best of our knowledge, there has been so far no contribution in au-
tomatic intrusion detection based on Image Processing and Computer Vision
techniques. However, we believe that these fields have made an outstanding
progress in providing useful tools in non-traditional application areas for these
disciplines such as Intrusion Detection [12,30,17].

Much headway has been made since February 1992 when the National Science
Foundation organized a workshop on Visual Information Management Systems
in Redwood, California. The objective of this event was the identification of
topic areas where to focus research aimed at designing and testing effective vi-
sual information management systems [24]. Such an interest was captured by
the possibility to access large image databases where traditional query meth-
ods such as keywords and annotations cannot be used [6]. Content-Based Image
Retrieval (CBIR) systems are nowadays largely in use. They exploit color, tex-
ture, shape information and spatial relations to represent and retrieve informa-
tion [35]. Their large number and the excellent performances they can guarantee
have inspired us to explore the use of such techniques in the arena of Intrusion
Detection.

A Case-Based Approach to Anomaly Intrusion Detection 437

Concerning the use of Machine Learning techniques, several IDSs have re-
sorted to them to improve their performance [18,8,3]. These systems can be
grouped in two families: rule-based and model-based techniques. Even though
these systems have been proven to be useful, they however suffer from the typi-
cal drawbacks of this kind of expert systems, i.e., difficulties in the acquisition
and representation of new knowledge.

Instead, Case-Based Reasoning (CBR) is a problem-solving paradigm which,
rather than relying exclusively on general knowledge of the domain of interest or
building associations through generalized relationships among problem descrip-
tors and conclusions, it is capable of exploiting specific knowledge derived from
situations (cases) already experienced and solved in the past [1].

In [14,11] a case-based reasoner (AUTOGUARD) for intrusion detection is
presented. In AUTOGUARD, a translator model converts the low-level audit
trail into high-level class representation of events. This information is recorded
in the system as a collection of cases. In order to evaluate the similarity between
the new case and every old case archived in the system library, the authors
propose a fuzzy logic based approach. However, it is not clear if the design has
been implemented altogether.

3 System Design

A block diagram representation of the system we have designed and implemented
is shown in Figure 1. The input parameters are represented by the data obtained
from monitoring computers connected to the network whereas the output pa-
rameter is the relative anomaly score. This value is given by the smallest value
of dissimilarity obtained by comparing the input case with those stored in the
database. This database is managed, queried, and updated according to modal-
ities typical of the CBR approach.

It should be noted that the phase of relevance feedback is fundamental to keep
the case record updated. In order for an input representation to be useful and,
therefore, stored to optimize the system performance in case similar situations
are encountered again, two requirements are necessary:

1. The environment (a term which also refers to human supervision, e.g., the
system administrator) has to confirm the system indications;

2. The input representation has to convey meaningful information, i.e., in the
database, there is no case capable of representing effectively the class the
input snapshot belongs to.

Concerning the second objective, it is achieved using a second similarity thresh-
old: in addition to an upper threshold (called reliability threshold) beyond which
we can infer that the behavior being monitored is symptomatic of an attack un-
derway, we have considered a lower threshold (called identity threshold) below
which the input case is not kept. In other words, the input case is added to the
knowledge base of the system, thereby assuming the characteristic of a profile,

438 A. Micarelli and G. Sansonetti

when its dissimilarity value with respect to all other cases archived in the library
and relative to the same application is comprised between the two thresholds.
This ensures that the cases, which are progressively added to the library, effec-
tively reproduce a behavior not yet represented in the database. Therefore, they
have to be recorded with the goal of optimizing the system performance in case
a similar situation is encountered.

The need for carefully choosing the cases to keep stems from the need for
optimizing the system resources, i.e., memory support and processing time. Not
only do these problems affect the system architecture herein proposed, but they
also concern any case-based system. For this reason, they have been the object
of research in the Artificial Intelligence (AI) community. There are several con-
tributions suggesting memory models alternative to the simple flat memory. The
interested reader is referred, for instance, to [25,38].

It should be noted that the domain expert possibility to intervene in the
decision task is possible not only in the initial training phase of the system, but
also during the verification phase for the classification response. The system is
actually capable of acquiring knowledge also during its normal operation. The
ease and quickness of the learning phase represent in fact some of the strong
features of our case-based system.

In the following sections, we will analyze the key components of a typical case-
based expert system, i.e., the different case representations and the associated
(dis)similarity metric.

3.1 Case Representation

The fundamental assumption of the proposed architecture is the following: in
order for a program to effectively damage the system being monitored, it has to
interact with the operating system through system calls.

Various host-based approaches to anomaly detection have been proposed
which build profiles from the sequences of system calls [16,36]. Specifically, these
systems are based on models of the system call sequences generated by the appli-
cations during the normal operation of the system. In the detection phase, every
sequence being monitored which is not compliant with the profiles previously
recorded is deemed a part of an attack. Later work has, however, shown that it
is possible for the intruder to avoid this kind of detection [33,37].

An effective solution thus advocates the exploitation of additional information
drawn from the audit files. In [26], the authors observe that the output param-
eters and the arguments of the system calls can play an important role in the
intrusion detection process. Based on these considerations, we have decided to
consider this information in our representation. Concerning the output parame-
ters, namely the return value and the error status, their use is straightforward
since they are already available in a numeric format.

The issue is more complicated with the system call arguments. These argu-
ments can be divided into four categories: file name, execution parameter, user
ID, and flag [26]. The first two are of string type, the other of integer type.

A Case-Based Approach to Anomaly Intrusion Detection 439

Fig. 2. Application audit trail

In this preliminary version of our system, we have considered only the string
type, for which it is possible to consider three models, namely, the length, the
character distribution and the grammar inference. The length and character
distribution models can be applied straightforwardly, since, with reference to
the second, we are only interested in the profile generated by the frequency of
occurrence of the characters independent of their type.

Concerning the grammar inference, i.e., the inference of the argument gram-
mar, two processing steps are necessary. In the first, each character is replaced
by the token corresponding to its class; in the second, the possible repetitions of
elements belonging to the same class are merged [26].

Regarding the classes, we have considered three main groups of characters,
namely lowercase letters, uppercase letters, and digits. Characters which do
not belong to any of these classes are considered to belong to new classes. A
different numeric identifier is associated with each class. For instance, assuming
the following class-identifier association:

N1 : lowercase letter
N2 : uppercase letter
N3 : digit

N4 : slash

. . . : . . .

the string /etc/usr/bin is represented in terms of the these ten features:

N4, N1, N4, N1, N4, N1, 0, 0, 0, 0.

The input to the detection process is an ordered stream X = {x1, x2, · · ·} of
system call invocations representing the generic instance of an application. In

440 A. Micarelli and G. Sansonetti

5 10 15 20

1

2

3

4

5

6

7

8

9

10

Fig. 3. Application snapshot

our system, based on the previous considerations, every system call invocation
x ∈ X is represented by means of the following features

< fx
1 , fx

2 , fx
3 , fx

4 , fx
5 , · · · , fx

14, f
x
15, · · · , fx

24 >

where

fx
1 : system call class

fx
2 : return value

fx
3 : error status

fx
4 : argument length

fx
5 , · · · , fx

14 : argument character distribution
fx
15, · · · , fx

24 : argument grammar inference

In particular, we have monitored the following six system calls: execve(),
chmod(), chown(), exit(), open(), setuid(), since these are the only ones
deemed potentially dangerous. In [4], Axelsson points out that “this logging
method consumes as little system resources as comparable methods, while still
being more effective.”

In order to spot the sequence of system calls within an audit trail of a generic
application, it is sufficient to find the audit record representing the execve()
system call in which the path name of the application of interest appears and
to record the process ID assigned to the process by the operating system. The
system calls to represent are all those which appear one after the other up to
the record relative to the exit() command terminating the process having the
ID under consideration. From the whole sequence of system calls we have repre-
sented only the six described above. For these audit events we have converted in

A Case-Based Approach to Anomaly Intrusion Detection 441

numeric features only the pieces of information relative to the output parameters
(second and third columns) and to the arguments (remaining columns).

Based on these considerations, for instance, the instance of the ps application
comprised of the 43 system calls shown in Fig. 2, is associated with an m ×
n matrix of features where m is the number of system calls of the following
types execve(), chmod(), chown(), exit(), open(), setuid() among the
overall 43, 10 in this case, whereas n is fixed and equal to 24, i.e., to the number
of attributes which we have decided to consider and whose corresponding values
constitute the matrix entries.

Fig. 3 shows the representation obtained with Matlab by interpreting each
matrix entry as an index in the RGB color space. We have thus obtained a
snapshot representing the temporal behavior of the ps application to monitor;
this can then be compared against the profiles relative to the ps application
stored in the system.

Cluster Analysis. In order to compare system call sequences which may be
rather different in terms of their structure and of their number, a cluster analysis
is needed. In particular, we have used Hierarchical Clustering with the Jaccard
Distance in order to calculate the distance between every pair of objects. This
distance is defined as one minus the Jaccard coefficient, that is the percentage of
nonzero coordinates that differ from each other. Given an m × n feature matrix
X representing the generic instance of an application and made up of m 1 × n
row vectors x1, x2, ..., xm, representing the relative system calls, the Jaccard
distance between the row vectors xr e xs has the following expression:

drs =
[(xrj �= xsj) ∧ ((xrj �= 0) ∨ (xsj �= 0))]

[(xrj �= 0) ∨ (xsj �= 0)]
(1)

where # is the cardinality.
Then we have set an inconsistency coefficient threshold to divide the objects

in the hierarchical tree into clusters. This coefficient compares the height of a
link in a cluster hierarchy with the average height of neighboring links. It is
thus possible to identify the natural divisions in the dataset, but this involves a
variable number of clusters for every instance of an application. Every instance of
an application is represented by a set of a different number of clusters where each
cluster is represented by the coordinates of its centroid and by a weight that, in
the preliminary version of our system, is equal to the fraction of the distribution
that belongs to that cluster (the procedure for assigning appropriate weights to
the clusters will be one of the objectives of our future work). The information
obtained in this way represents a case which is structured as a record comprising
the following three fields:

– The first field is of string type and contains the name of the application to
which it refers; it is obtained from the path of the relative execve system
call;

442 A. Micarelli and G. Sansonetti

– The second field is represented by an array of N records (where N is the
number of clusters, a function of the threshold value for the inconsistency
coefficient) having 24 fields of type double, which contain the values of the
attributes represented and constitute the coordinates of the relative centroid;

– The third field is represented by an array of N values of type double, each
expressing the weight of the corresponding cluster.

3.2 Dissimilarity Metric

Once the representation of an application instance has been generated according
to the modalities discussed above, an appropriate dissimilarity metric has to be
determined to compare the input case with those contained in the database.

Recently, the Earth Mover’s Distance (EMD) [28] has been proposed to eval-
uate distribution dissimilarities. The EMD is based on the minimum cost asso-
ciated with the transformation of one distribution into the other. In the case
of Content-Based Image Retrieval, it has been proven to be more robust than
the histogram-based techniques, since it is able to handle also representations
with variable length. When used to compare distributions with the same overall
mass, it can be readily shown that it is a real metric [29], which allows the use
of more efficient data structures and query algorithms.

The EMD enables us to evaluate the dissimilarity between two multi-dimen-
sional distributions. In our architecture, the two distributions are represented by
two sets of weighted clusters that capture them. The clusters of any distribution
can be in any number and the sum of their weights can be different than the
sum of weights of the other distribution. This is the reason why a smaller sum
appears at the denominator of the expression of the EMD. In order to calculate
the EMD in some feature space, a distance measure (called ground distance)
between single features must be defined.

The computation of the EMD value can be performed by solving the following
linear programming problem: let X denote the distribution of the input instance
of an application with m clusters,

X = {(x1, wx1) , (x2, wx2) , · · · , (xm, wxm)} (2)

where xi represents the generic cluster and wxi the relative weight, and let Y
denote the distribution of the generic instance of the same application in the
archive of cases with n clusters

Y = {(y1, wy1) , (y2, wy2) , · · · , (yn, wyn)} (3)

Let D = [dij] denote the ground distance matrix, dij being the ground distance
between clusters xi and yj . The objective is to calculate the value of the flow
F = [fij] that minimizes the overall cost

WORK (X, Y, F) =
m∑

i=1

n∑

j=1

fijdij (4)

A Case-Based Approach to Anomaly Intrusion Detection 443

subject to the following constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n (5)

n∑

j=1

fij ≤ wxi 1 ≤ i ≤ m (6)

m∑

i=1

fij ≤ wyj 1 ≤ j ≤ n (7)

m∑

i=1

n∑

j=1

fij = min

⎛

⎝
m∑

i=1

wxi ,
n∑

j=1

wyj

⎞

⎠ (8)

Once we have calculated the value of the flow that solves the above equations,
the EMD has the following expression

EMD(X, Y) =

∑m
i=1

∑n
j=1 fijdij∑m

i=1
∑n

j=1 fij
(9)

4 Empirical Evaluation

In order to evaluate the accuracy of our case-based IDS, we performed experi-
mental runs divided in a first training phase and in a second testing phase. During
the training phase, a database of instances of every application was built, which
represented normal behavior. The testing phase then ensued.

For the experiments we used the 1999 MIT Lincoln Lab Intrusion Detection
Evaluation Data [15]. In particular, we employed data of two attack-free weeks
(First Week and Third Week) to train the system and data of two other weeks
(Fourth Week and Fifth Week) to test the ability of the proposed architecture to
correctly classify applications with attacks and applications associated with the
users’ normal behavior. For some of the attacks in the evaluation data there is no
evidence in the Solaris Basic Security Module (BSM) log, so we were not inter-
ested in them. Among the visible attacks in the BSM audit trail some are policy
violations, in which the intruder tried to exploit possible system configuration
made by the administrator. We did not try to detect this class of attacks with
our system but we plan on performing this test in the future work. In particular,
we were interested in detecting attacks based on buffer overflow vulnerabilities.

In our simulations, a value of 0.9 was chosen for the threshold of the inconsis-
tency coefficient. As a distance for clustering, we have used the Jaccard distance
whereas for the computation of the EMD we have chosen the Euclidean distance
as the ground distance.

In particular, we have carried out two different experimental runs. In the
first experiment we stored in the library case all the 117 instances of eject,
fdformat, ffbconfig and ps applications encountered in the training phase.

444 A. Micarelli and G. Sansonetti

Table 1. Experimental Results

Total With attack Identified False Alarms
eject 9 3 3 0
fdformat 9 6 6 0
ffbconfig 2 2 2 0
ps 315 14 14 0

335 25 25 0

We have considered these four applications since these are the only ones subject
to attack in the Lincoln Laboratory database. We have then tested the system
by using a value of 5 for the reliabilty threshold: the input application has been
compared with all the instances archived in the library and relative to the same
application. If the minimum value obtained was lower than the threshold, the
application was labeled attack-free, otherwise it was classified as containing an
attack.

In the second experiment we started with an initially empty database. Ev-
ery training input application was analyzed through hierarchical clustering and
compared to all existing entries in the case memory. If a distribution was found
in the database that was similar enough, i.e., below the identity threshold set to
0.5, according the EMD similarity metric, this new case was discarded, because it
was already adequately represented in the database. Otherwise, the distribution
(clusters with their weights) that corresponded to the new input was included
into the database. After the training phase, the library contained only 19 cases.
A testing phase was then carried out by choosing the same parameters as those
of the previous session.

The results obtained after the two experimental sessions are collected in
Table 1. The fact that we have obtained the same values after the two test-
ing runs confirms that recording only one case for each typology of situation
encountered in the training phase, with the objective of improving the computa-
tional efficiency of the system, does not have any effect altogether on the system
performance in terms of classification.

Concerning the experimental results, we did not obtain any false positives by
testing the system with 335 instances of input applications and all 25 applications
containing attacks have been correctly identified.

5 Conclusions

In this contribution, we have presented a case-based anomaly detection system
which was inspired by the interpretation in the form of snapshots of system call
sequences obtained from the log of the C2 BSM of a Solaris workstation and
relative to different instances of applications. This allowed us to resort to Im-
age Processing and Computer Vision techniques, in particular to methodologies
drawn from Content-Based Image Retrieval for the implementation of our sys-
tem. These techniques, together with a CBR approach in the management of the

A Case-Based Approach to Anomaly Intrusion Detection 445

knowledge base and with a representation of the cases based on the information
relative to output parameters and arguments of the system calls, enabled us to
obtain no false positives, even with a limited number of cases in the library. In
particular, it was possible to distinguish the 25 instances of applications affected
by attacks from the 310 relative to the normal behavior of the system with very
high accuracy. This was confirmed by the appreciable differences among the
EMD values relative to the corresponding feature distributions.

Obtaining a null number of false positives represents a very important result,
in consideration of the fact that achieving a small number of false positives
constitutes one of the most difficult objectives of any anomaly detection system.

Furthermore, the possibility to intervene on different parameters of the classi-
fication procedure (inconsistency coefficient threshold, reliability threshold, iden-
tity threshold, etc.) allows one to conveniently change the sensitivity of the system,
thereby increasing the probability to identify also the so-called mimicry attacks.

The procedure we have advanced has therefore allowed us to fully exploit the
salient features of the user-network configuration interaction, enabling the accu-
rate distinction between attacks and events associated with the normal behavior
of the system.

6 Future Work

There are several research thrusts that we intend to pursue in the near future.
First of all, we will focus our efforts on the clustering procedure, particularly on
the weight assignment procedure. Even though the experimental results we have
obtained are satisfactory, we intend to take into account other factors, such as
the semantic difference between the various features and the presence of outliers
obtained from monitoring the host.

We will continue our experimental evaluation of the system performance, using
new benchmarks, in order to check its capability of recognizing also new classes
of attacks in addition to buffer overflows already identified. In particular, we will
tackle the so-called policy violations, which to not allow the intruders to directly
upgrade their privileges, but have the objective of gaining classified information
in order to exploit possible erroneous configurations of the system administrator.
This class of attacks thus contain intrusions which do not exploit actual system
flaws and turn out to be not easily detectable, since the intruders have access
to classified information through the normal, although unintentional, behavior
of the system. In order to achieve this goal, besides working on clustering, it
is necessary to further develop the modalities for representing the cases, taking
into account new models based on the information contained in the audit trails,
such as, for instance, execution parameter, user ID and flag.

Another objective of our future research will be the integration of profiles
with signatures relative to known attacks. Last but not least, we will work on
the realization of a network-based version of our intrusion detection system, in
order to realize a combined analysis of the data obtained from monitoring the
whole network configuration.

446 A. Micarelli and G. Sansonetti

Acknowledgements

We would like to thank Dick Kemmerer, Giovanni Vigna, and Luca Lucchese
for the opportunity to work at the Reliable Software Laboratory, Computer
Science Department, University of California, Santa Barbara (CA), USA, and at
the Projects Laboratory, School of Electrical and Computer Science, Corvallis
(OR), USA.

References

1. Aamodt, A., Plaza, E.: Case-based Reasoning: Foundational Issues, Methodolog-
ical Variations and System Approaches. AICOM 7(1), 39–59 (1994)

2. Axelsson, S.: Intrusion Detection Systems: A Survey and Taxonomy. In: Proceed-
ings of the 6th ACM Conference on Computer and Communications Security,
Singapore, November 1999, pp. 1–7. ACM Press, New York (1999)

3. Axelsson, S.: Intrusion Detection Systems: A Survey and Taxonomy. Technical
Report 99-15, Department of Computer Engineering, Chalmers University (March
2000)

4. Axelsson, S., Lindqvist, U., Gustafson, U., Jonsson, E.: An Approach to UNIX
Security Logging. In: Proceedings of the 21st NIST-NCSC National Information
Systems Security Conference, Crystal City, VA, October 1998, pp. 62–75 (1998)

5. Becker, R., Eick, S.G., Wilks, A.: Visualizing Network Data. IEEE Transactions
on Visualization and Computer Graphics 1(1), 16–28 (1995)

6. Del Bimbo, A.: Visual Information Retrieval. Morgan Kaufmann Publishers, Inc.
San Francisco, CA (1999)

7. Couch, A.: Visualizing Huge Tracefiles with Xscal. In: 10th Systems Administra-
tion Conference (LISA ’96), Chicago, IL, October 1996, pp. 51–58 (1996)

8. Debar, H., Dacier, M., Wespi, A.: Towards a Taxonomy of Intrusion Detection
Systems. Computer Networks 31(8), 805–822 (1999)

9. Erbacher, R.: Visual Traffic Monitoring and Evaluation. In: Proceedings of the
Second Conference on Internet Performance and Control of Network Systems,
Denver, CO, August 2001, pp. 153–160 (2001)

10. Erbacher, R., Frincke, D.: Visualization in Detection of Intrusions and Misuse in
Large Scale Networks. In: Proceedings of the International Conference on Infor-
mation Visualization ’00, London, UK, July 2000, pp. 294–299 (2000)

11. Esmaili, M., Safavi-Naini, R., Balachandran, B.M.: AUTOGUARD: A Continuous
Case-Based Intrusion Detection System. In: Proceedings of the 20th Australasian
Computer Science Conference (1997)

12. Smeulders, A.W., et al.: Content-Based Image Retrieval at the End of the Early
Years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12),
1349–1380 (2000)

13. Nyarko, K., et al.: Network Intrusion Visualization with NIVA, an Intrusion De-
tection Visual Analyzer with Haptic Integration. In: Proceedings of the 10th Sym-
posium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
Orlando, FL (2002)

14. Esmaili, M., et al.: Case-Based Reasoning for Intrusion Detection. In: Proceedings
of the 12th Annual Computer Security Applications Conference, San Diego, CA
(1996)

A Case-Based Approach to Anomaly Intrusion Detection 447

15. Lippmann, R.P., et al.: Analysis and Results of the 1999 DARPA Off-Line In-
trusion Detection Evaluation. In: Proceedings of Recent Advances in Intrusion
Detection, Toulouse, France, pp. 162–182 (2000)

16. Forrest, S.: A Sense of Self for UNIX Processes. In: Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA, pp. 120–198. IEEE Computer
Society Press, Los Alamitos (1996)

17. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Inc.,
Upper Saddle River, NJ (2003)

18. Frank, J.: Artificial Intelligence and Intrusion Detection: Current and Future Di-
rections. In: Proceedings of the 17th National Computer Security Conference,
Washington, D.C., pp. 22–33 (1994)

19. Frincke, D., Tobin, D., McConnell, J., Marconi, J., Polla, D.: A Framework for
Cooperative Intrusion Detection. In: Proceedings of the 21th National Information
Systems Security Conference, Crystal City, VA, October 1998, pp. 361–373 (1998)

20. Girardin, L., Brodbeck, D.: A Visual Approach for Monitoring Logs. In: Proceed-
ings of the Second Systems Administration Conference (LISA XII), Boston, MA,
October 1998, pp. 299–308 (1998)

21. He, T., Eick, S.G.: Constructing Interactive Visual Network Interfaces. Bells Labs
Technical Journal 3(2), 47–57 (1998)

22. Hendee, W., Wells, P.: The Perception of Visual Information. Springer, Heidelberg
(1994)

23. Hughes, D.: Using Visualization in System and Network Administration. In: Pro-
ceedings of the 10th Systems Administration Conference (LISA ’96), Chicago, IL,
October 1996, pp. 59–66 (1996)

24. Jain, R.: Proceedings of US NSF Workshop Visual Information Management Sys-
tems (1992)

25. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers, Inc., San
Mateo, CA (1993)

26. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous
System Call Arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 326–343. Springer, Heidelberg (2003)

27. Mizoguchi, F.: Anomaly Detection Using Visualization and Machine Learning.
In: Proceedings of the 9th International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE’00), Gaithersburg, MD,
March 2000, pp. 165–170 (2000)

28. Rubner, Y., Tomasi, C., Guibas, L.J.: A Metric for Distributions with Applica-
tions to Image Databases. In: Proceedings of the IEEE International Conference
on Computer Vision, Bombay, India, January 1998, pp. 59–66. IEEE Computer
Society Press, Los Alamitos (1998)

29. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for
Image Retrieval. International Journal of Computer Vision 28(40), 99–121 (2000)

30. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Inc., Upper Sad-
dle River, NJ (2001)

31. Snapp, S.: DIDS (Distributed Intrusion Detection System): Motivation, Architec-
ture and An Early Prototype. In: Proceedings of the National Information Systems
Security Conference, Washington, D.C., October 1991, pp. 167–176 (1991)

32. Takada, T., Koike, H.: Tudumi: Information Visualization System for Monitoring
and Auditing Computer Logs. In: Proceedings of the 6th International Conference
on Information Visualization (IV’02), London, England, July 2002, pp. 570–576
(2002)

448 A. Micarelli and G. Sansonetti

33. Tan, K., Killourhy, K., Maxion, R.: Undermining an Anomaly-Based Intrusion
Detection System Using Common Exploits. In: Wespi, A., Vigna, G., Deri, L.
(eds.) RAID 2002. LNCS, vol. 2516, Springer, Heidelberg (2002)

34. Varner, P.E., Knight, J.C.: Security Monitoring, Visualization, and System Sur-
vivability. In: 4th Information Survivability Workshop (ISW-2001/2002) Vancou-
ver, Canada (March 2002) (2002)

35. Veltkamp, R.C., Tanase, M.: Content-Based Image Retrieval Systems: A Survey.
Technical Report 2000-34, UU-CS, Utrecht, Holland (October 2000)

36. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: Proceedings of
the IEEE Symposium on Security and Privacy, Oakland, CA, pp. 40–47. IEEE
Computer Society Press, Los Alamitos (2001)

37. Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Sys-
tems. In: Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, Washington, D.C., pp. 255–264. ACM Press, New York (2002)

38. Watson, I.: Case-Based Reasoning: Techniques for Enterprise Systems. Morgan
Kaufmann Publishers, Inc., San Francisco (1997)

	A Case-Based Approach to Anomaly Intrusion Detection
	Introduction
	Related Work
	System Design
	Case Representation
	Dissimilarity Metric

	Empirical Evaluation
	Conclusions
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

