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Abstract. We examine hypotheses coming from the physical world and
address new mathematical issues on tiling. We hope to bring to the at-
tention of mathematicians the way that chemists use tiling in nanotech-
nology, where the aim is to propose building blocks and experimental
protocols suitable for the construction of 1D, 2D and 3D macromolecu-
lar assembly. We shall especially concentrate on DNA nanotechnology,
which has been demonstrated in recent years to be the most effective
programmable self-assembly system. Here, the controlled construction
of supramolecular assemblies containing components of fixed sizes and
shapes is the principal objective. We shall spell out the algorithmic prop-
erties and combinatorial constraints of “physical protocols”, to bring the
working hypotheses of chemists closer to a mathematical formulation.

1 Introduction to Molecular Self-assembly

Molecular self-assembly is the spontaneous organisation of molecules under ther-
modynamic equilibrium conditions into a structurally well-defined and rather
stable arrangement through a number of non-covalent interactions [5,26,52]. It
should not be forgotten that periodic self-assemblies of molecules lead to crystals
in one, two or three dimensions; we often do not understand the interactions
between the constituents of a crystal, but their presence in our world was an
existence-proof for 3D self-assembly long before the notion was voiced. By a
non-covalent interaction, we mean the formation of several non-covalent weak
chemical bonds between molecules, including hydrogen bonds, ionic bonds and
van der Waals interactions. These interactions (of the order of 1-5 kcal/mol)
can be considered reversible at normal temperatures, while covalent interactions
(typically > 50 kcal/mol) are regarded as irreversible.

The self-association process leads the molecules to form stable hierarchical
macroscopic structures. Even if the bonds themselves are rather weak, their
collective interaction often results in very stable assemblies; think, for example,
of an ice cube, held together by hydrogen bonds. Two important elements of
molecular self-assembly are complementarity and self-stability, where both the
size and the correct orientation of the molecules are crucial in order to have a
complementary and compatible fitting.
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The key engineering principle for molecular self-assembly is to design molec-
ular building blocks that are able to undergo spontaneous stepwise interactions
so that they self-assemble via weak bonding. This design is a type of “chemical
programming”, where the instructions are incorporated into the covalent struc-
tural framework of each molecular component, and where the running of the
algorithm is based on the specific interaction patterns taking place among the
molecules, their environment, and the intermediate stages of the assembly. The
aim of the game is to induce and direct a controlled process.

Molecular self-assembly design is an art and to select from the vast virtual
combinatorial library of alternatives is far from being an automatic task [19].
There are principles though, that could be mathematically analyzed and one
of the purposes of this paper is to lead the reader towards such possibilities.
We shall talk mainly about self-assembly from branched DNA-molecules, which
in the last few years have produced considerable advances in the suggestion
of potential biological materials for a wide range of applications [39]. Other
directions using peptides and phospholipids have been also pursued successfully
[57,35,4].

We shall start with an abstract overview of some of the principles governing
self-assembly which have been investigated by chemists (for an introduction see
also [27]), with a special emphasis on DNA self-assembly. With the desire to for-
malise in an appropriate mathematical language such principles and develop a
combinatorial theory of self-assembly, we try to suggest mathematical structures
that arise naturally from physical examples. All through the paper, we support
our formalistic choices with experimental observations. A number of combinato-
rial and algorithmic problems are proposed. The word “tile” is used throughout
the paper in a broad sense, as a synonym of “molecule” or of “combinatorial
building block” leading to some assembly.

2 Examples of Molecular Self-assembly and Scales

Self-assembled entities may be either discrete constructions, or extended assem-
blies, potentially infinite, and in practice may reach very large sizes. These assem-
blies include such species as 1-dimensional polymolecular chains and fibers, or
2-dimensional layers and membranes, or 3-dimensional solids. Due to the excep-
tionally complicated cellular environment, the interplay of the different ligand
affinities and the inherent complexity of the building blocks, it is not easy to
predict, control and re-program cellular components. Proteins can in principle
be engineered but to predict protein conformation is far from our grasp nowa-
days. At the other extreme lie chemical assemblies, such as organic or inorganic
crystals, which are constituted by much simpler structural components that are
not easily programmed. Within this spectrum of assembly possibilities, DNA
self-assembly has revealed itself as the most tractable example of programmable
molecular assembly, due to the high specificity of intermolecular Watson-Crick
base-pairing, combined with the known structure formed by the components
when they associate [31]. This has been demonstrated in recent years both the-
oretically and experimentally as we shall discuss later.
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3 Molecular Self-assembly Processes

There are three basic steps that define a process of molecular self-assembly:

1. molecular recognition: elementary molecules selectively bind to others;
2. growth: elementary molecules or intermediate assemblies are the building

blocks that bind to each other following a sequential or hierarchical assembly;
cooperativity and non-linear behavior often characterize this process;

3. termination: a built-in halting feature is required to specify the completion
of the assembly. Without it, assemblies can potentially grow infinitely; in
practice, their growth is interrupted by physical and/or environmental con-
straints.

Molecular self-assembly is a time-dependent process and because of this, tem-
poral information and kinetic control may play a role in the process, before
thermodynamic stability is reached. For example, in a recent algorithmic self-
assembly simulating a circuit constituted by a sequence of XOR gates [30], a
template describing the input for the circuit, assembled first from DNA tiles
as the temperature was lowered, because these tiles were programmed to have
stronger interactions; the individual tiles that performed the gating functions,
i.e. the actual computation of each XOR gate, assembled on the template later
(at a lower temperature), because they interacted more weakly. If, as in this
example, the kinetic product is an intermediate located on the pathway towards
the final product, such a process is sequential. If not, then the process is said to
bifurcate.

Molecular self-assembly is also a highly parallel process, where many copies
of different molecules bind simultaneously to form intermediate complexes. One
might be seeking to construct many copies of the same complex at the same time,
as in the assembly of periodic 1D or 2D arrays; alternatively, one might wish to
assemble in parallel different molecules, as in DNA-based computation, where
different assemblies are sought to test out the combinatorics of the problem
[1,22]. A sequential (or deterministic) process is defined as a sequence of highly
parallel instruction steps.

Programming a system that induces strictly sequential assembly might be
achieved, depending on the sensitivity of the program to perturbations. In a ro-
bust system, the instructions (that is the coding of the molecular interactions)
are strong enough to ensure the stability of the process against interfering inter-
actions or against the modification of parameters. Sensitivity to perturbations
limits the operational range, but on the other hand, it ensures control on the
assembly.

An example of strong instructions is the “perfect” pairing of strands of dif-
ferent length in the assembly of DNA-tiles due to Watson-Crick interacting se-
quences. The drawback in sequential assembly of DNA-tiles is due to the complex
combinatorics of sequences which are needed to construct objects with discrete
asymmetric shapes, or aperiodic assemblies. The search for multiple sequences
which pair in a controlled way and avoid unwanted interactions is far from being
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an obvious task. Alternative approaches concern besides tile design, self-assembly
algorithms and protocols (Section 7).

A sequential process might either be commutative, if the order of the assem-
bly steps can be interchanged along the pathway leading to the final assembly,
or it might be non-commutative, if the intermediates need to interact in a fixed
consecutive manner. DNA-based computations, such as the assembly of graphs
[34] are commutative: a series of branched junctions can come together in any
order to yield the final product (as discussed in Section 6 for 3-color graphs). An
example of a non-commutative process is the construction of DNA tiles along the
assembly of a periodic 2D array: single stranded DNA sequences are put in a pot
at once, and since the tiles melt at a temperature higher than the intermolecu-
lar interactions, tiles are “prepared” first, before the 2D assembly takes place.
Even if indirectly, these physical conditions imply non-commutativity. Later on,
the 2D lattice can assemble with gaps that can later be filled in from the 3rd
direction. Commutativity, in this latter step, may create irregularities when 3D
arrays are considered instead, since gaps might get sealed in as a defect. Any hi-
erarchical construction, such as solid-support-based DNA object synthesis [58] is
non-commutative. Another example of a non-commutative assembly is a frame-
based construction [32], wherein an assembly is templated by a “frame” that
surrounds it: tiles assemble within the boundaries of the frame and they are
guided by the code of the tiles forming the frame. It is non-commutative, in that
the frame has to be available first.

Fig. 1. Protocol for the Synthesis of a Quadrilateral. The intermolecular addi-
tions of corners is repetitive, but a different route leads to intramolecular closure.

Another characteristic of a molecular self-assembly is that the hierarchical
build-up of complex assemblies, allows one to intervene at each step, either to
suppress the following one, or to orient the system towards a different pathway.
For example, the construction of a square from identical units using the solid-
support method entailed the same procedures to produce an object with 2, 3, or
4 corners. Once the fourth corner was in place, a different pathway was taken
to close the square [58], as shown in Figure 1. A pentagon, hexagon or higher
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Fig. 2. Triplet junctions GPV , JRV , JGS and PSR can combine in different
configurations. The two smallest ones are a tetrahedron and a cube.

polygon could have been made by the same procedure, just by choosing to close
it after adding more units.

Instructions might be strong but still allow for different objects to appear.
The same set of tiles might assemble into objects with different geometrical
shapes and different sizes, that satisfy the same designed combinatorial coding.
For instance, consider chemical “three-arm junction nodes” (name them GPV ,
JRV , JGS, PSR) accepting 6 kinds of “rods”, called G, P , V , J , S and R. Sev-
eral geometrical shapes can be generated from these junctions and rods, in such
a way that all junctions in a node are occupied by some rod. Two such shapes
are illustrated in Figure 2. In general, there is no way to prevent a given set of
strands from forming dimers, trimers, etc. Dimers are bigger than monomers,
trimers bigger than dimers, and so on, and size is an easy property for which to
screen. However, as a practical matter, entropy will favor the species with the
smallest number of components, such as the tetrahedral graph in Figure 2; it can
be selected by decreasing the concentration of the solution. If, under convenient
conditions, a variety of products results from a non-covalent self-assembly, it is
possible to obtain only one of them by converting the non-covalent self-assembly
to a covalent process (e.g., [16]). Selecting for specific shapes having the same
number of monomers though, might be difficult. It is a combinatorial question
to design a coding for a set of tiles of fixed shape, that gives rise to an easily
screenable solution set.

4 Molecular Tiling: A Mathematical Formulation

Attempts to describe molecular assembly, and in particular DNA self-assembly,
in mathematical terms have been made in [2,6]. Here, we discuss some algo-
rithmic and combinatorial aspects of self-assembly keeping in mind the physics
behind the process.

Tiles and self-assembly. Consider a connected subset T (tile) in R
3, for example

a convex polyhedron, with a distinguishable subset of mutually complementary
(possibly overlapping) non-empty domains on the boundary, denoted Db, D

′
b ⊂

∂T , where b runs over a (possibly infinite) set B. We are interested in assemblies
generated by T , that are subsets A in the Euclidean space, decomposed into a
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Fig. 3. A Variety of Complements to a Single Strand. Panel (a) illustrates a
conventional Watson-Crick duplex, where strand 2 complements strand 1. Panels
(b-e) illustrates a variety of complements to strand 1.

union of congruent copies of T , where two copies may intersect only at their
boundaries and have a “tendency” to meet across complementary domains on
the boundary. It is important to recognize that in the case of DNA, there are
many forms of complementarity, as a function of motif structure [41]. Figure 3
illustrates a DNA strand (named 1) complementary to a variety of other DNA
strands; more complex types of complementarity exist, such as complementarity
in the PX sense [60,46] or in the anti-junction sense [12,60].

We want to consider a biological macromolecule T (e.g., a protein or a nucleic
acid motif), with complementary binding sites Db, D

′
b such that different copies

of T bind along complementary domains and self-assemble into complexes. In
the geometric context we specify the binding properties by introducing (binding)
isometries b : R

3 → R
3 to each b ∈ B such that T and b(T ) intersect only at

the boundary, and b(Db) = D′
b. From now on B is understood as a subset in the

Euclidean isometry group Iso(R3).
Accordingly, we define an assembly A associated with (T, B) by the following

data:

1. a connected graph G = GA with the vertex set 1 . . .N ,
2. subsets Ti in R

3, where i = 1 . . .N , which may mutually intersect only at
their boundaries,

3. an isometry bk,l : R
3 → R

3 moving Tk onto Tl, for each edge (k, l) in G, such
that there exists an isometry ak,l which moves Tk to T and conjugates bk,l

to some binding isometry b in B. Notice that this b is uniquely determined
by bk,l up to conjugation.

Given a graph GA and a tile T , the assemblies described by GA and T
might not be unique. The assembly is unambiguously described by the isometries
associated to the edges of GA (i.e. condition (3) above). See Figure 4 for an
example.
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Fig. 4. Four copies of the same tile are arranged in two different assemblies that
correspond to the same graph GA. The labels a, ā, b, b̄ correspond to codes for
edges.

Several tiles. If we start with several different tiles T 1, . . . , T n rather than with
a single T , we consider the sets of pairs of binding isometries Bi,j ⊂ Iso(R3) ×
Iso(R3) such that bi,j

1 (T i) and bi,j
2 (T j) intersect only at their boundaries and

their intersection is non-empty. The definition of an assembly associated to
({T i}, {Bi,j}) goes as above with the following modifications: the graph G has
vertices colored by the index set 1 . . . n, the corresponding subsets in R

3 are de-
noted T i

k where i = 1 . . . n and k = 1 . . .Ni, and finally, we forfeit the isometries
bk,l and for each edge (ki, lj) we emphasize an isometry of R

3 which moves T i
k

to bi,j
1 (T i) and T j

l to bi,j
2 (T j).

In what follows, we refer to the union of tiles defined above, as an assembly.

Qualities of an assembly. The tightness of the tiling is one quality that chemists
appreciate. This can be measured by the number of cycles in the graph G, or
equivalently by the negative Euler characteristic of the graph.

The imperfection of a tiling is measured by the “unused” areas of the bound-
aries of the tiles. First define the active domain ∂act(T ) ⊂ ∂T as the union of
the intersections of ∂T with b(T ) for all b ∈ B. Then define the “unused bound-
ary” ∂un(A = ∪Ti) as the union ∪N

i=1∂act(Ti) minus the union of the pairwise
intersections ∪(k,l)∈GTk ∩ Tl. An assembly is called perfect if the area of the
imperfection equals zero. We say that an assembly contained in a given subset
X ⊂ R

3 is perfect with respect to ∂X , if ∂un(A) ⊂ ∂X .
The uniqueness refers to the uniqueness of an assembly subject to some

additional constraints. For example, given an X ⊂ R
3, one asks first if X can

be tiled by (T, B) and then asks for the uniqueness of such a tiling. We say that
(T, B) generates an unconditionally unique assembly if every imperfect assembly
uniquely extends to a perfect assembly.

The essential problem of tiling engineering is designing a relatively simple tile
or a few such tiles which assemble with high quality into large and complicated
subsets in R

3. Here is a specific example for the unit sphere S2 rather than S3,
where one uses the obvious extension of the notion of tilings to homogeneous
spaces. Given ε, δ > 0, consider triangulations of the sphere into triangles ∆ with
Diam(∆) ≤ ε and area(∆) ≥ δDiam2(∆). It is easy to see that the number of
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mutually non-congruent triangles in such a triangulation, call it n(ε, δ), goes to
∞ for ε → 0 and every fixed δ > 0. The problem is to evaluate the asymptotic
behavior of n(ε, δ) for ε → 0 and for either a fixed δ or δ → 0.

Complementarity of the domains. Two tiles T1 and T2 have complementary sites,
D1

b , D2
b , when they can bind along their boundaries to each other forming a con-

nected subset of R
3. In physical terms, the two overlapping parts D1

b , D2
b can have

complementary geometrical shape (e.g. think of the concave surface of a protein
and of the convex surface of a ligand binding to it, much as a classical ’lock
and key’), but might also correspond to Watson-Crick complementary sequences
(e.g. 5′ −ATTCGA− 3′ and 3′ − TAAGCT − 5′, where A is complementary to
T and C to G as discussed before; see Figure 3).

Fig. 5. Left: Rodlike tiles differing in length form an assembly that grows until
the ends exactly match. Right: polymeric structure growing until the energy
required to fit new subunits becomes too large.

assembly

template

 binding sites

Fig. 6. A tile is stable in the assembly only if it binds at two adjacent binding
sites. The stability of the whole assembly is insured by the enforced stability of
the template. The formal description of this example is not completely captured
by our model.

Real life examples. It remains unclear, in general, how cells control the size of
(imperfect, with some unused boundary) assemblies, but certain mechanisms
are understood. For example, out of two rod-like molecules of length three and
five, one gets a double rod of length 15 as illustrated in Figure 5 (left). Another
strategy is starting an assembly from a given template (see Figure 6 for a specific
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new binding site

Fig. 7. Tiles which differ in shape and binding sites. Their binding generates a
new contiguous binding site.

design). Sometimes, tiling is non-isometric: tiles distort slightly in order to fit,
and the assembly terminates when the bending energy becomes too costly or
when the accumulated distortion deforms and deactivates the binding sites (see
Figure 5 (right)). Also, the binding of a ligand to an active site might change
the shape of the molecule and thus influence the binding activity of other sites.
Another possibility is the creation of a new binding site distributed over two or
more tiles bound together at an earlier stage of the assembly (see Figure 7). These
mechanisms may produce a non-trivial dynamics in the space of assemblies in
the presence of free-energy. In particular, one may try to design a system which
induces a periodic motion of a tile over a template, something in the spirit of
RNA-polymerase cycling around a circle of DNA [11].

Fig. 8. Key Motifs in Structural DNA Nanotechnology. On the left is a Holliday
junction (HJ), a 4-arm junction that results from a single reciprocal exchange
between double helices. To its right is a double crossover (DX) molecule, re-
sulting from a double exchange. To the right of the DX is a triple crossover
(TX) molecule, that results from two successive double reciprocal exchanges.
The HJ , the DX and the TX molecules all contain exchanges between strands
of opposite polarity. To the right of the TX molecule are a pair of DNA paral-
lelograms, DNA-P -N [29], constructed from normal DNA, and DNA-P -B [43],
constructed from Bowtie junctions, containing 5’, 5’ and 3’, 3’ linkages in their
crossover strands.

DNA tiles and tensegrity. Molecules of some nanometer size, made out of DNA
strands, have been proposed in a variety of different shapes. See Figure 8 for
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a representative collection of shapes. Algorithms have been developed success-
fully to produce that self-assemble into these and other motifs [36]. Branched
molecules are tiles constituted by several single strands which self-assemble along
their coding sequences in a “star-like” configuration, where a tip of the star is a
branch [36,51,38] (Figure 3a,c,e illustrate 2, 3 and 4-arm branched molecules).
Theoretically, one might think to construct k-armed branched molecules, for
any k > 2, where each strand is paired with two other strands to form a pair of
double-helical arms; in practice, molecules with 6 arms have been reported, but
larger ones are under construction. The angles between the arms are known to be
flexible in most cases. If one adds sticky ends to a branched molecule, i.e. single
stranded extensions of a double helix, a cluster is created that contains specif-
ically addressable ends [36]. This idea is illustrated in Figure 9, where a 4-arm
branched junction with two complementary pairs of sticky ends self-assembles
to produce a quadrilateral.

Fig. 9. Formation of a 2-dimensional lattice (right) from a 4-arm branched junc-
tion (left). X is a sticky end and X ′ is its complement. The same relationship
holds for Y and Y ′. X and Y are different from each other.

The search for motifs based on DNA branched junctions that behave as
though they are “rigid” while in the test tube, led to the design of several DNA-
molecules, and some are illustrated in Figure 8. Rigid shapes impose strong
limitations on the design of suitable molecular tiles; roughly speaking, a rigid,
or tense, object is a 3-dimensional solid that does not undergo deformations: we
ask that if its 1-dimensional faces do not undergo deformation, then no deforma-
tion exists. For a tetrahedron or any convex deltahedron, it is easy to see that
no change of the angles between edges (edges are 1-dimensional faces for the
tetrahedron) can take place without the edges be deformed. On the other hand,
a cube is an example of a non-tense object since we can fix the edges (1-faces) of
the cube not to undergo any deformation and still be able to deform the angles
between them.

Geometry of the boundaries: smooth deformations of tiles. It might be appropri-
ate to consider assemblies which are affected by an ε-deformation in the shape
of the tiles after binding. More precisely, a tile T ⊆ R

3 is mapped in R
3 by some

ε-deformation as follows: there is an embedding ε : T ⊆ R
3 
→ T ′ ⊆ R

3 such
that for all points x ∈ T there is a point y ∈ T ′ such that the Euclidean distance
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d(x, y) < ε. The definitions of isometry and binding site given at the beginning
of Section 4 need to be adjusted accordingly into new notions of ε-isometry and
ε-binding site, which intuitively correspond to the original notions up to some
ε-variation. One needs to establish whether an ε-deformation affects a binding
site or not, and give thresholds on the amount of deformation which is accepted
to affect non-empty domains of the boundary.

The growth of the assembly affected by ε-deformation asks for the estimation
of bounds in the size of the construction. The instability of the system comes from
a narrow range of conditions on which the assembly takes place. The formation of
singularities and of bifurcation points between different assemblies, might lead to
the disruption of the assembly, but might also lead to variety in the complexity.
Physical considerations on the shape of tiles. In addition to the need to observe
appropriate solution conditions that encourage self-assembly, it is important to
realize that there are physical constraints on the assembly of real tiles that do
not affect virtual tiles. For example, the helicity of random-sequence DNA is
≈ 10.5 nucleotide pairs per turn in solution. This value makes it easy to make
TX molecules (Figure 8) whose three helix axes form an angle of 120◦, but 90◦ is
much harder, unless one is able (perhaps through sequence variation) to change
the repeat to 10.4 nucleotide pairs per turn [45].

In a similar vein, a likely form of shaped 3D arrays will entail polyhedra whose
edges contain DX molecules (Figure 8) [40]. It might appear that a tetrahedron
would be a good polyhedron to use as the basis of such a 3D tile. However,
although the edges of a tetrahedron obviously span 3-space, there is no group of
three edges to which one can attach a single extra helix (i.e. to make those edges
DX molecules instead of single DNA helices, with the extra helices outside the
helices defining the tetrahedron) to produce the needed vectors: their diameters
would cause them to clash stereochemically when extended beyond the bound-
aries of the tetrahedron. Notice that extra-hedral domains on adjacent edges
inherently clash, and there is no group of three edges in a tetrahedron that does
not include an adjacent pair.

5 An Abstract Model to Describe the Dynamics of
Self-assembly

A formal description of the dynamics of a self-assembly on a space S, where S can
be either R, R

2, R
3 or any discrete approximation of those, can be formulated by

a simple iterative process as follows. Consider n tiles T1, . . . , Tn, and take a finite
number of copies of each Ti, for all i = 1 . . . n. At stage 1, randomly assign to
each physical tile a specific position in S in such a way that no two tiles overlap
and that only tiles lying side-by-side and having complementary boundary stuck
together. The set of complexes containing more than one tile with their position
in S, define a configuration on S; single tiles are removed from S and used to re-
iterate the random assignment on the next stage: the configuration of tiles lying
in S which one reaches at stage i, is filled up further by new non-overlapping
complementary adjacent tiles at stage i + 1. The process is repeated until all



72 Alessandra Carbone and Nadrian C. Seeman

tiles are used or when a sufficiently large connected area in S is filled (e.g. area
> N , for some large N).

Different outputs might result from this random process: they go from very
tight assemblies, to assemblies with several unfilled regions, to disconnected sur-
faces, and so on. The resulting configurations and the time for reaching a con-
figuration strongly depend on the coding hypothesis, e.g. whether new binding
sites can appear or not by the combination of several tiles, whether “holes” can
be filled or not, how many different competing boundary sites are in the sys-
tem, how many tiles are in the system, whether connected regions can undergo
translations in S while the process takes place, whether connected tiles might
become disconnected, etc.

The process could start from a specific configuration of S instead of using the
first iteration step to set a random configuration. Such an initial configuration,
if connected, would play the role of a template for the random process described
by the iteration steps. Figure 6 illustrates an example of templating, where a
1-dimensional array of n molecules disposed in a row is expected to play the
role of a template and interact with single molecules following a schema coded
by the boundary of the tiles. Another example is the “nano-frame” proposed in
[32], a border template constraining the region of the tiling assemblies.

6 Closed Assemblies and Covering Graphs

Closed tiling systems are assemblies whose binding sites have been all used. More
formally, this amounts to saying that the graph GA underlying the assembly A
is such that all tiles Ti corresponding to its vertices, where i = 1 . . .N , intersect
on all their boundary sites Ti. This means also that the degree of connection
of each node i of GA corresponds to the number of available interaction sites
of Ti, and that each edge (i, l) departing from i corresponds to an isometry bi,l

moving Ti onto Tl which fixes some binding site. Many graphs might be locally
embeddable in GA, and we call them covering graphs of GA: a graph G is a
covering graph of GA if there is a map p : G → GA such that

1. p is surjective, i.e. for all nodes y ∈ GA there is a node x ∈ G such that
p(x) = y,

2. if x → y in G then p(x) → p(y) in GA,
3. degree(x) = degree(p(x)), for all nodes x in G,
4. bx,y = bp(x),p(y), for each edge x → y ∈ G,
5. {bx,y : x → y ∈ G} = {bp(x),z : p(x) → z ∈ GA}, for each node x ∈ G.

Condition (4), saying that the binding site between Tx and Ty is the same
as the binding site between Tp(x) and Tp(y), and condition (5), saying that the
binding sites of Tx are the same as the binding sites of Tp(x), ensure that G
and GA underly tiling systems for the same set of tiles. The graph on the left
hand side of Figure 10 does not satisfy (5) and provides a counterexample. If GA

represents a closed tiling system for a set of tiles S, then each covering graph of
GA represents a closed tiling system for S also.
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Fig. 10. Given a set of six distinct tiles whose binding sites are specific to each
pair of tile interaction described by edges in the graph GA (left), notice that G
(right) is not a covering graph for GA since it satisfies conditions (1)− (3) but it
does not satisfy (5) (see text). To see this, consider the mapping p between nodes
of G and GA which is suggested by the labels of the nodes. We want to think of
f in GA as representing a tile Tf with two distinct binding sites, one interacting
with Tc and the other with Td. Node f1 is linked to two copies of c and node f2

is linked to two copies of d; this means that Tf1 (Tf2), having the same binding
sites as Tf , should bind to Tc1 , Tc2 (Td1 , Td2). But this is impossible because the
binding would require the existence of two identical sites in Tf1 (Tf2).

Given a set of tiles one would like to characterize the family of closed assem-
blies, or equivalently, of covering graphs, if any. An important application is in
the solution of combinatorial problems.

Example 1. [22]. A graph G = (V, E) is said to be 3-colorable if there is a sur-
jective function f : V → {a, b, c} such that if v → w ∈ E, then f(v) �= f(w).
Imagine constructing the graph G with two kinds of molecules, one coding for
the nodes and one for the edges. Node-molecules are branched molecules, where
the number of branches is the degree of the node, and edge-molecules are two-
branched molecules. Each branch of a node-molecule has a sticky end whose
code contains information on the node of the graph that connects to it and on
a color for the node. The n branches of a same node-molecule are assumed to
have the same code. Edge-molecules have two sticky ends and their code con-
tains information on the origin and target nodes as well as on the colors of such
nodes. The two colors are supposed to be different.

To consider three colors in the physical realization of the graph G, one con-
structs a node-molecule for each one of the three colors, together with all possible
combinations of pairs of different colors for edge-molecules.

By combining several identical copies of these molecules and ligating them,
open and possibly closed assemblies will form. Open assemblies are discharged
(this can be done with the help of exonuclease enzymes that digest molecules with
free ends) and closed assemblies, if any, ensure that the graph is 3-colorable. The
only closed assemblies that can be formed in the test tube are covering graphs.
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7 A Random Model for Sequential Assembly

The random model introduced in Section 5 needs to be adjusted slightly to
simulate sequential assembly. Sequentiality presupposes the formation of specific
intermediates, i.e. complexes, at specific moments along the assembly process.
This means that one can start from a random configuration in S, let the input
tiles form complexes at random, remove from S isolated tiles and use them as
input tiles to re-iterate the process until a sufficiently large number of specific
intermediates is formed. This will provide one step of the sequential assembly,
and in the simplest case, this step will be re-iterated to model the next steps of
the sequential process, until all steps are realized. Different types of tiles might
be used as input tiles to perform different steps of the sequential process.

In more complicated cases, the above model, might need to integrate new
kinds of steps. It might be that some of the steps of the sequential process
require the intervention of specific enzymes, cleaving or ligating DNA tiles. Such
operations are random and their effect on tiles and complexes can be described
rigorously. Also, one might need to consider that tiles forming a complex at step
i, disassemble in step i + 1 because of the interaction with new molecular tiles.
This process is also random and can be formally described.

As mentioned in Section 3, the difficulty in inducing a sequential assembly
comes from the complex combinatorics needed to realize objects of irregular but
well-defined shape or aperiodic assemblies. A number of solutions have been
proposed to overcome these combinatorial difficulties; they concern tile design
(1)-(2), the algorithm for self-assembly (3)-(4) and the engineering protocol (5):

1. a variety of different forms of cohesion have been proposed, such as sticky
ended cohesion, where single-stranded overhangs cohere between molecules
[10]; PX cohesion, where topologically closed molecules cohere in a double-
stranded interaction [60]; edge-sharing, where the interactions are charac-
terized by lateral interactions [46]; tecto-RNA, where RNA domains pair
laterally through loop osculations [21];

2. one can allow different forms of coding within the same molecule, which can
involve the Watson-Crick sequences as well as the geometry of the molecule
[9];

3. one can use “instructed gluing” elements together with DNA-tiles [7]; the
idea is to add structural sub-units, as gluing elements between tiles, along
the self-assembly process; in many cases, the use of such sub-units decreases
the complexity of the protocol: the number of elementary molecules becomes
smaller and the assembly algorithms becomes more specific;

4. the use of protecting groups, through which some of the potential interaction
sites of the molecules are momentarily inhibited, is inherently a sequential
protocol, applicable both to DNA objects [58] and to fractal assemblies [9];

5. the solid-support methodology in DNA nanotechnology [58] is an example of
sequential assembly; it was used to construct the most complex DNA object
to date, a truncated octahedron [59]; the step-wise synthesis of a square is
illustrated in Figure 1 – here, enzymes intervene in some of the sequential
steps.
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8 Hierarchical Tiling

A set of tiles {T1, . . . , Tn} is self-consistent if for each Ti with binding site Di

there is a tile Tj with binding site Dj such that b(Di) = Dj , for some isometry
b. Notice that i need not be different from j. In particular, a single tile T is self-
consistent with itself if it has at least two binding sites which are complementary
to each other.

Let {T1, . . . , Tn} be basic elementary tiles which assemble in a variety of tile
complexes S1, . . . , Sl, i.e. finite assemblies Si with unused binding sites. A set
of tile complexes is self-consistent if for each Si with binding site Di there is a
tile complex Sj with binding site Dj such that b(Di) = Dj, for some isometry b
defined on tile complexes. New binding sites Di generated from the assembly of
a tile complex (as in Figure 7) are allowed.

A hierarchical tiling is an assembly X of tiles {T1, . . . , Tn} that is obtained
by successive steps of assembly generating intermediary sets of tile complexes
F0, . . . ,Fm such that:

1. F0 = {T1, . . . , Tn};
2. Fi = {Si,1, ..., Si,li}, for i = 1 . . .m, where each Si,j is a tile complex in Fi−1;

3. Fi is a self-consistent set of tile complexes;
4. X is an assembly of Sm,1, . . . , Sm,lm .

The value of m is called order of the hierarchical tiling. A hierarchical tiling
is non-trivial if for each family Fi there is at least one tile complex Si,j which is
not in Fi−1 already. Notice that not all assemblies can be defined as hierarchical
assemblies of order m, for m > 1.

A dynamical model of hierarchical tiling. It can be defined by a repeated iter-
ation of the random model for self-assembly presented in Section 5, where the
tile complexes used as input tiles at step i + 1 are the complexes formed in S at
the end of step i. In general, a hierarchical assembly is not a sequential assem-
bly. It might happen though, that certain assembly processes are defined by a
combination of sequential steps during the hierarchical self-assembly.

Some concrete examples of hierarchical assembly. Suitable selection of structural
units allows the design of molecular entities undergoing self-organisation into
well-defined architectures, which subsequently may self-assemble into supramolec-
ular fibrils and networks. The assembly of “infinite” tubes and spheres has been
realized many times and in many laboratories with different kinds of molecules.
A basic approach is to design a rod-like molecule with an hydrophobic end and
a hydrophilic one. Then, one puts the molecules in different media and observes
the formation of spheres, where the hydrophilic side of the molecules lies either
inside or outside the sphere, depending on the properties of the medium. Alter-
natively, one might observe the formation of a long tube where, again, on the
surface one finds sides with identical hydrophilic/hydrophobic properties. The
formation of spheres and tubes leads us to ask how these shapes might assemble
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among themselves into supramolecular periodic or aperiodic structures. What
other shapes do allow for the assembly of 1D, 2D and 3D arrays of such tile
complexes?

Besides spheres, tubes and networks, chemists work on the design of synthetic
molecules which lead to helical architectures of both molecular and supramolec-
ular nature by hierarchical self-organization, or again to the formation of mush-
room-like shapes and to a consequent assembly of such complexes into 3D arrays
[18] (these arrangements are not regular, in the sense that they are not crys-
tals). Mimicking nucleic-acid sequences, specific sequences of hydrogen bonding
residues are led to act as structure-inducing codons, and such structural coding
allows for the spontaneous but controlled generation of organized materials, e.g.
[18].

Fig. 11. A variety of two-dimensional arrays that have been formed from DNA
tiles. Panels (a) and (b) illustrate 2D arrays composed of DX and DX + J
molecules. Panel (c) illustrates patterns obtained from TX molecules. Panel (d)
illustrates an array made of DNA parallelograms.

At a different scale, for nanoscale molecules, like DNA, a broader range of
possibilities can be explored since all of the contacts can be forced to be of a
Watson-Crick form, although many other types of interaction are possible (e.g.,
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[60]). The ifferent shapes of tiles introduced at the end of Section 4, enabled the
assembly of several different kinds of periodic 1D and 2D arrays (see Figure 11).
These hierarchical assemblies have order 2: single strands make the starting set
of tiles, which assemble into specific intermediary molecular tiles (described in
Section 4), and finally these molecular tiles self-assemble into a 2D array.

Periodic assemblies in 3 dimensions are still an open problem. Protocols for
the assembly have been proposed, but highly ordered programmed 3D arrange-
ments have not yet been realized to resolutions below 1 nm in the laboratory
for DNA tiles. Aperiodic arrangements, typically harder to assemble and ana-
lyze than periodic assemblies, present an even greater challenge, because their
characterization cannot rely on diffraction analysis in a simple fashion.

Example 2. Fractal assemblies. [8,9] Fractal constructions are a special case of
aperiodic assemblies. The algorithm here is simple: from a starting molecular
shape, which can look like a square or a triangle, and is designed to interact
with copies of itself, one constructs a molecule with the same shape but a larger
size, and re-iterates the process to get larger and larger assemblies of the given
shape. The difficulty lies in the design of a set of basic shapes which can self-
assemble into new self-similar shapes of larger sizes, and whose binding sites
are coded by self-similar coding. An appropriate coding is important to ensure
that tile complexes will self-assemble and that undesired binding is avoided. The
order of this hierarchical tiling, corresponding to the number of iterations of the
algorithm, is m, for potentially any value of m. In practice, a chemist would be
happy with m = 4, 5.

These examples lead to some questions: within the set of feasible shapes and
interactions, can we classify potential complexes? Once a complex is formed, can
it be used as a building block to construct larger 1D, 2D or 3D arrays?

9 Size of the Assembly

How can the size of an assembly be controlled?
Rough termination is easy to induce. An obvious way is to limit the number

of molecules in the solution. Another way is to use protecting groups, i.e. DNA
molecules, which might be single strands for instance, whose binding sites are
complementary to the binding sites of the tiles used in the assembly. The idea
being that protecting groups might be added to the solution during the process
of self-assembly to prevent new tiles from binding to available sites.

Exact termination is a consequence of the coding for the termination. If a
synthesis or an assembly is templated, it is always possible to limit growth, by
leaving out the constituent that is coded at the terminal position, for instance.
The algorithmic synthesis of triangular circuits illustrated in Figure 6, provides
another example where this is done [7]. In general, exact size control of a DNA
self-assembly is hard to achieve. A few protocols have been presented so far.

In theory, DNA tiles can be used to “count” by creating boundaries with
programmable sizes for 1D, 2D and possibly 3D periodic assemblies. The idea
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is to build periodic arrays of size n × m by generating repeatedly the Boolean
truth table for n entries until m rows of the table have been filled [54,56]. If
this schema can be physically implemented, then self-assembly of precisely-sized
nanoscale arrays will be possible.

Fractal assemblies [8,9] can be thought of as a way to generate fixed geomet-
rical shapes of controlled size. Besides the rectangular shapes of n × m arrays,
one would like to have a way to grow assemblies with other shapes such as trian-
gles, hexagons, etc. Fractal assembly allows us to do so by constructing objects
with fixed sizes that are powers of some value: for instance, for the Sierpinski
fractal, the size of the squares is 3k, where k is the dimension.

10 Algorithmic Assembly

The combination of different instructions in a “molecular program” has been
used to design self-assembly systems which follow specific assembly pathways.
This idea has its mathematical analogue in the work of Wang [48,49,50], who
proposed a finite set of tiles mimicking the behavior of any Turing Machine.

Wang tiles are squared tiles in R
2 whose binding sites are the four sides of

the square, and whose interaction is possible on binding sites labelled by the
same color. If T1, T2, . . . , Tn are Wang tiles, then one asks that {T1, T2, . . . , Tn}
be a self-consistent set. Once a set of Wang tiles is given, one asks whether the
plane can be tiled with it, and what are the properties of the tiling, namely if
the set generates periodic tiling only, or both periodic and non-periodic tiling,
or aperiodic tiling only.

The molecular realization of Wang tiles (where a square becomes a 4-arm
branched molecule with Watson-Crick complementary sticky ends as binding
sites) can, theoretically, be used to make computations [54]. This notion has
not yet been realized experimentally in more than one dimension [30]. A three-
dimensional framework for computing 2D circuits and constructing DNA-objects
with given shapes, has been suggested [7], where again, DNA tiles mimic Wang
tiles. It is important to stress that molecular tiles are not conceived to generate
only uniform tiling of the plane, but on the contrary, they can be used to induce
the assembly of objects of arbitrary shapes.
Combinatorial optimisation problems: fixing a single shape. Two combinatorial
problems have been stated in [3]. The first concerns minimum tile sets, i.e. given
a shape, find the tile system with the minimum number of tile types that can
uniquely self-assemble into this shape. The second concerns tile concentration,
i.e. given a shape and a tile system that uniquely produces the given shape,
assign concentrations to each tile-type so that the expected assembly time for
the shape is minimized. The first combinatorial problem is NP-complete and the
second is conjectured to be #P [3]. These problems have been formulated for
any given shape even though only square tiles, i.e. Wang tiles, have been studied
until now.
Templates and fixed shapes. Can one find a small set of relatively simple tiles
such that, starting from a template supporting a linear code (that may be a DNA
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or RNA molecule incorporated into a macromolecular complex), the assembly
process will create a given three dimensional shape in the space? We think here of
interacting tiles performing a transformation from labeled templates into three
dimensional structures and we ask what kind of transformations can be realized
in this way [7]. Also, one wants to understand how much the complexity of the
construction depends on the complexity of the tiles, where the latter can be
measured by the number of the binding sites of the tiles, the size of the sets Bi,j ,
etc.
Combinatorial optimisation problems: fixing a “family” of shapes. Fractal as-
sembly provides an example of an iterative algorithm for self-assembly which
generates fractals of arbitrary dimension and not just a single shape with a
given size. For each dimension, the building blocks necessary to build the corre-
sponding fractal shape need to satisfy the same self-similar properties, and the
design of a tile set which satisfies these properties is not obvious. For instance,
given a Sierpinski square fractal and an iterative algorithm that produces arbi-
trarily large instances of this shape, is there a set of Wang tiles that can uniquely
assemble into any fractal size? It is not at all clear that a set of Wang tiles with
self-similar coding exists. In [9] a set of tiles, whose boundaries are characterized
by both a coding sequence and a geometrical shape, is proposed. Does geometry
have to be included in the coding of the tile boundaries to impose extra control
on the assembly? What is the minimum number of tiles necessary to generate a
family of shapes?

In general, let an algorithm for self-assembly be fixed. What are the properties
of the tiles which are necessary to realize the algorithm?
Dynamic tiling. A molecular feature that has been used in algorithmic self-
assembly is the possibility to program and change the status of a molecule.
This means that the molecule passes in time through several possible physical
conformations, i.e. geometrical shapes. In DNA nanotechnology, this has been
done by using “template” molecules (programmable tiles) that interact with
DNA single strands [47,46]: the pairing of the single stranded DNA present in
the solution to a single strand subsequence of the tile induces this latter to
change its conformation. Because of these conformational changes, tiles get a
different status during the assembly, with the effect that one is able to control
the dynamics of the algorithm and the direction of the assembly. As a result,
one can generate different architectures out of the same set of tiles by varying
their conformations.

Example 3. One can imagine a basic molecular system that is fundamentally a
layer of programmable tiles which can guide the assembly of multiple layers of tiles
above it [7]. In the 2-dimensional case this device can compute tree-like boolean
circuits, and in 3D, it can induce finite regular and less regular shapes. Multiple
regular layers are obtained by completely filling up the template board: a new
layer of tiles will cover-up the old one and will play the role of a new board in
allowing the creation of a third layer, and so on. “Walls” with specified “height”,
or discrete irregular shapes are obtained by partially filling-up the board, and
this can be achieved by inserting appropriate coding in the programmable tiles
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that form the template board. The coding will discriminate what are the tiles
that will interact with new ones and what are those that will avoid interaction.

In the example, a change in the programming of the board induces the for-
mation of different shapes out of the same input set. This suggests that a formal
notion of complexity describing self-assembly of molecular systems cannot be
based merely on the variety of shapes that potentially can be assembled, but
rather on the much larger variety of algorithms that allow their assembly.
DNA computing. Last, we want to mention the effort in designing algorithms for
DNA-computation. The landmark step is in [1], where DNA is used to solve an
instance of the Hamiltonian Path problem, asking to establish whether there is
a path between two cities, given an incomplete set of available roads. A set of
strands of DNA is used to represent cities and roads (similar to the description
of the 3-coloring problem in Section 6), and the coding is such that a strand
representing a road would connect (according to the rules of base-pairing) to any
two strands representing a city. By mixing together strands, joining the cities
connected by roads, and weeding out any wrong answers, it has been shown that
the strands could self-assemble to solve the problem.

The first link between DNA-nanotechnology and DNA-computation was es-
tablished in [54] with the suggestion that short branched DNA-molecules could
be “programmed” to undergo algorithmic self-assembly and thus serve as the
basis of computation. Other work has followed as [30,34,25].

11 Discussion

Most examples in this paper were based on Watson-Crick interactions of DNA
molecules. Other kinds of interaction, usually referred to as tertiary interactions,
can be used to lead a controlled behavior in the assembly of DNA molecules,
for example, DNA triplexes [15], tecto-RNA [21] and G-quartet formation [42].
In the combinatorial DNA constructions that we presented, tertiary interactions
were carefully avoided with the goal of maximizing control on the dynamics of
the assembly. Tertiary interactions are not as readily controlled as Watson-Crick
interactions. The next generation of structural DNA nanotechnologists will be
likely to exploit this wider range of structural possibilities and it appears possible
that new combinatorics might arise from these options.
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