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Abstract. We consider the non-preemptive job shop scheduling
problem with release dates and the average weighted completion time
objective. We propose here a polynomial-time approximation scheme
(PTAS) for the case when the number of machines is constant and
each job consists of at most a constant number of operations. This
substantially improves on previous results [4], adds to a number of
techniques [TIR2J6TO22], and gives some answers to the questions
mentioned in [20[23].
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1 Introduction

In this paper we consider the non-preemptive job shop scheduling problem with
release dates, a fixed number of machines, a fixed number of operations per job,
and the average weighted completion time objective, denoted as Jm |op < p, ;]
> w;C; [15/19]. Formally, we are given a set of m machines M = {1,2,... ,m}
and a set of n jobs J = {1,2,...,n}. Each job j (j = 1,2,...,n) consists of
{ > 2 operations oy, ... ,0,; that have to be processed in the given order, has
a weight w;, which defines its importance, and a release date r;, before which
it cannot be started. Each operation o;; (i = 1,2,...,u) requires a machine
Ti; € M and has a processing time p;;. Fach job can be processed only by one
machine at a time and each machine can process only one job at a time. Here we
assume that m and p are fixed and the goal is to find a non-preemptive feasible
schedule which minimizes average weighted completion time ) w;C;, where C;
denotes the completion time of job j.
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11, IST-1999-14084, IST-2001-32007, by SNSF project 21-55778.98, and grant HPRN-
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Previous Results. The first polynomial-time approximation scheme (PTAS)
for a strongly NP-hard scheduling problem minimizing the average weighted
completion time was given for scheduling jobs with no release dates on identi-
cal parallel machines P|| Y  w;C; [22]. Then recently it has been proved in [}
6] that there are PTASs for many different variants of classical scheduling prob-
lems with release dates and the average weighted completion time objective.
These include scheduling on identical parallel machines P|r;| Y w,;C;, on re-
lated machines Q|r;| > w;C;, and on a fixed number of unrelated machines
Rm|r;| >~ w;C; with and without preemptions.

The job shop scheduling problem is an important generalization of scheduling
on parallel machines. However, it seems to be harder for approximating even in
the case of unit weights and no release dates. Regarding the worst-case complex-
ity, problem J2jop < 2|>° C; with two machines and at most two operations
per job is already strongly NP-hard [I2]. This negative result was strength-
ened in [I7], where it was proven that the general job shop scheduling problem
J||>° C; with arbitrary (not fixed) number of machines m and number of op-
erations per job p is MAX-SNP-hard. Contrasting this with the fact that for
identical parallel machines only the general problem P|| )" C; is strongly NP-
hard, while Pm|| )" C; is just weakly NP-hard, indicates that computing optimal
or approximate schedules for the job shop version is likely to be much harder.

Indeed, for about 20 years only a simple O(m)-approximation algorithm for
J||>° C; [14] has been known. Then, in [4] it that shown that there is a (5.78+¢)-
approximation algorithm for problem Jm|op < p,r;| > w;C;. Later, a general
O((log(mpu)/ loglog(myu))?)- approximation algorithm for problem J|r;| > w;C;
was presented in [20].

New Results. Here we obtain a PTAS for Jm|op < p,r;| > w;C;. In order
to be able to cope with the problem we employ the well-known input trans-
formation technique [24] and refine some recent sophisticated approximation
techniques for the average completion time objective function. These partially
include the interval time-partitioning technique [416], the techniques of geo-
metric rounding, time stretching, and weight-shifting [1[3], our techniques of LP
relaxation and rounding [2[10], and our PTAS for the makespan version of the
problem [9TR]. Our main goal is to perform several transformations that sim-
plify the input without dramatically increasing the objective value such that
the final result is amenable to a fast dynamic programming solution. At the
beginning, we round all processing times and release dates to integer powers of
(14¢). This breaks the time line into contiguous geometrically increasing inter-
vals I, = (14 ¢€)%, (1 +¢)*"1], 2 € Z, where release dates only happen at the
beginning of intervals. Furthermore, we round weights such that all w;/p; are
distinct. Next, we define main and negligible operations of a job. Here, negligible
operations are very small and can be rounded to zero, whereas main operations
are very big and can rounded to some particular fractions of the total job length.
This makes the problem structure much simpler. We show that any job completes
within a constant number of intervals in a schedule, and partition all jobs into
a constant number of subsets sharing similar characteristics, called profile. Our
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next idea is to classify the jobs as huge and tiny. In particular, a job is huge with
respect to an interval if its length is at least £2/¢* times the size of the interval,
and tiny otherwise. For one interval I, all huge jobs of the same profile and
size (a power of 1+ ¢) can be prioritized by decreasing weights w;, whereas all
tiny jobs of the same profile can be prioritized by decreasing ratio w;/p;, called
a modified Smith’s rule [28]. In order to prove the latter statement we define
the value of parameter ¢*. We first use a subroutine for “assigning” tiny jobs to
intervals, and then as a subroutine for “packing” jobs in single intervals. For the
first step we use an LP formulation and a special rounding procedure from [18].
For the second step, we use an adopted PTAS for the makespan version of the
problem [9]. Finally, the weight-shifting technique is applied. If too many jobs
are released at interval I, some of them have to wait to be processed. Shifting
refers to the process of moving the excess jobs to the next interval I,,,. We en-
force special compact instances in which there is only a constant number of jobs
at any release date. Then, we apply dynamic programming which integrates all
previous components. The obtained PTAS is a sequence of the former instance
transformations coupled with the dynamic programming algorithm. By an ap-
propriate combination of these ideas and a careful analysis of the algorithm, we
prove the following result:

Theorem 1. There is a PTAS for Jmlop < p,r;|> w;C; that computes for
any fized m, p and € > 0 accuracy, (1 + ¢)-approximate solutions in O(nlogn)
time.

This substantially improves on previous results [4]. Furthermore, we show that a
right combination of all ideas — the input transformation technique, the idea of
intervals, the idea of huge-tiny jobs, the weight-shifting technique, an LP relax-
ation (formulation), rounding, a PTAS for the makespan version of the problem,
and dynamic programming — is quite a powerful method for the design of PTASs
for problems with the average weighted completion time objective function. In-
deed, these generalizations significantly add to a number of techniques [TI2/JGIT0]
22]. One of the most interesting aspects here is that we do not really use a PTAS
for the makespan version of the problem as a subroutine, that was previously
considered as an interesting question in [20], but rather as a part of our proof
technique. Furthermore, following the same line of ideas we can prove the exis-
tence of PTASs for many other scheduling models, e.g. open shop, flow shop, dag
shop, and their preemptive or multiprocessor versions. Accordingly, we can prove
that there are PTASs for the two-machine flow shop problem F2||3" C; and for
the two-machine open shop problem O2|| > C;, that was mentioned in [23] as a
result which can be the first step to understanding the approximability of shop
scheduling problems with the sum of completion time objective function.

The paper is organized as follows. In Section Bl we give some simple prelimi-
nary results, which can be also found in [TJ6JI0]. In Sections @ and Bl we define
negligible operations and perform the main structuring step of the algorithm. In
Section [Z.I]lwe define job profiles and give some related definitions. In Section
we formulate a modified Smith’s rule. In Section [ we complete the algorithm.
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2 Preliminaries

To simplify notation we will use throughout the paper that 1/e is integer (and
in particular e < 1/2™#), and use OPT to denote the objective value of the
optimal schedule. For an operation o;;, we use S;; and C;; to denote the start
and completion time of o0;;. For a job j we will use C; and S; to denote the
completion and start time of j, and use £; = >/ | p;; to denote the length of j.
For a job set X, we will use D(X) to denote the total length of the jobs in X,
that is 3. v €.

As a preliminary step of our algorithm, here we perform some basic trans-
formations that simplify the input problem. Many of our transformations are
thought modifications applied to the optimal schedule to argue that some sched-
ule nearly as good has very simple structure. In this case, Then, we say that with
1+¢ loss, we can assume some properties in any schedule. Others our transforma-
tions are actual simplifying modifications of the instance that run in polynomial
time and do not increase the objective value too much. Then, we say that with
1+ ¢ loss and in O(n) time, we can enforce some properties in an instance. For
a more clear understanding, see lemmas in the next two paragraphs.

Geometric Rounding. The first simplification creates a well-structured set of
lengths, release dates, and weights:

Lemma 1. With 1+ 3¢ loss and in O(n) time, we can enforce all £; and r; be
integer powers of 1+ ¢ and all w;/¢; be distinct.

Proof Sketch. Multiply all r; and ¢; by 1+4¢, and then decrease each date and
length to the next lower integer power of 1+¢. Since £;(1+¢) = Y b (1+¢€)pij,
we decrease all (1 4 €)p;; by the same factor as ¢;. The objective value of the
final schedule is at most (1 + ¢)OPT. Regarding weights, we multiply all w; by
1+¢, and then decrease some of them by small values until all w;/¢; differ. This
increases the objective function value by at most a factor of 1 + €. ad

This result guarantees that there are only a small number of distinct processing
times and release dates to worry about, and lets us break the time line into geo-
metrically increasing intervals, where release dates only happen at the beginning
of intervals, that is useful for later techniques and dynamic programming.

For an arbitrary integer x, define R, = (1 + ). We partition (0,00) into
disjoint intervals of the form I, := [R;, Ry+1). We will use |I|, to refer to the
size value (R;4+1 — R;) = €R,, which is ¢ times its start time. Now all release
dates are of the form R, = (1 +¢)* for some integer z.

Schedule-Stretching. We can enforce that no operation starts too early or
crosses too many intervals:
Lemma 2. With 1 + € loss, we can assume Si; > €p;; for all jobs j.

Proof Sketch. Multiply all C;; by 1 + ¢ and increase S;; to match (without
changing p;;). The objective value of the final schedule is at most (1 4+ ¢)OPT,
and all starting times (1 +¢)C;; — pi; > (1 +¢€)pi; — pi; are at least ep;;. |
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Lemma 3. With 1+ ¢ loss, we can assume that each operation crosses at most
s* = [logy, (1 + 1)] intervals.

Proof Sketch. By the above lemma, all C;; = S;j + pi; < Sij + Sij/e =
Sij (1 + é) If S;j € [Ry, Ryy1), s* intervals following I, cover [S;;, (1 + %) Sijl-
O

3 Main and Negligible Operations
Consider a job j. Let ¢; = >  p;; be its length. Let operations o;; (i =

1,...,u) be indexed by 4y, i, ... ,i, such that p; ; > pi,; > ... > p;,j. Then,
if there exist some k € {1,...,u} such that

n
e pig > D P (1)
s=k+1
then we select the smallest value of k and define operations o;,,,j,...,0;,; be
negligible, and operations o;,;,... ,0;,; be main.

Lemma 4. Fach main operation o;; has processing time p;; > 5K’ A
Proof Sketch. Omitted. O

4 Main Structuring Step

Here we perform several main transformations that structure the problem. By
combining several techniques we eliminate all negligible operations and round
all main operations:

Lemma 5. With 1+ 3¢ loss and in O(n) time, for all jobs j we can enforce all
operation processing times p;; = m;j - £;, where

1
» L But+2 _
mje{z € |,7:—0,1...,65N2+2 )

Proof Sketch. Omitted. a

Similarly, we can move release dates.
Lemma 6. With 1 + ¢ loss and in O(n) time, we can enforce r; be at least
g1’ -4; for all jobs j.

Proof Sketch. Omitted. O

Finally, we can prove that no job can cross too many intervals.

Lemma 7. With 1 + € loss, each job crosses at most a constant number of
intervals e*.

Proof Sketch. Omitted. O
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4.1 Profiles, Huge and Tiny Jobs, Local Profiles and Patterns

Here we introduce some important definitions. We first define job profiles. Infor-
mally, two jobs have the same profile if they have the same sequence of required
processors, and although they can differ in length, their operation processing
times correspond to the same sequence of length multiples. Next, we define huge
and tiny jobs. Here we introduce a special parameter ¢* which value is defined
later in Lemma [I2] respectively. Finally, we define local profiles and patterns for
tiny jobs. This allows us to formulate Smith’s rule for tiny jobs in Section

Profiles. Consider a job j. By Lemma [p] each operation o;; (i =1,...,u) has
processing time 7;;-¢; and requites machine 7;;. Then, p-tuples 7; = (m;;)%, and
7; = (755)i_ are called the execution and machine profile of job j, respectively.

We say that two jobs have the same profile ¢ = (7, 7), if they have the same
execution profile 7 and machine profile 7. Notice that two jobs of profile ¢ can
only differ in their length and release dates. Furthermore, as a consequence of
Lemma [ we can prove the following:

Lemma 8. The number of distinct profiles is bounded by a constant v*.

Huge and Tiny Jobs. We say that a job j is huge in an interval I if its length
l; > €?|I|,(;)/q*, and tiny otherwise. The value of parameter ¢* > 1 is defined
later in Lemmal[TZ], respectively. We will write H, and T, to denote sets of huge
and tiny jobs released at R, (H for huge and T for tiny). As in Lemma B we
use time-stretching to “clean up” a schedule:

Lemma 9. With 1 + € loss, we can assume that no tiny operation crosses an
interval in a schedule.

Furthermore, by using Lemmas [[land [6 we can prove the following:

Lemma 10. There is at most a constant number z* = O(q*) of distinct sizes
(¢; powers of 1 +¢) in H.

Local Profiles and Patterns. Take an optimal schedule. Consider a tiny job j.
Let (j) be the index for which R, ;) = r;. Let y(j) and z(j) be whose indices for
which S; € I;y and C; € I,;). Then, job j runs in intervals Iy, ... , L. By
Lemma [ no operation of job j crosses an interval. Hence, the set O; of all oper-

ations 01,...,0,; “splits” into a constant number of subsets, O;’(]), . ,O;T(j),

where each subset OF C O; consists of operations which “fall” into interval I,
for x = y(j),...,2(j).

Now assume that tiny job j has some profile ¢ = (7, 7), where two p-tuples
m = (m)i_, and 7 = (7;)}_,. Then, we have that m, = m;; and 7, = 7; for
all operations o;; € O;. Informally, we can say that the operations of set O;
“form” profile p = (m,7). If we restrict ourselves to the operations of set O7,
we can define a 2|0%|-tuple ¢* = (7%,7%) such that 7} = m;; and 7' = 7;; for
all operations 0;; € OF. In this case, we can also say that the operations of set
Of “form” local profile * in interval I, x = y(j),...,2(j). In other words,
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Fig.1. Local profiles ¢°, 3%, ..., @/ @l of job j

operations of tiny jobs “locally” form “profiles”. Notice that operations of two
tiny jobs with different profiles can “form” the same local profile in an interval.

We say that a tiny job j has pattern f(j) =< @°, @', ..., @/ > in a
schedule if starting in interval I,(;) it completes in interval I, ;1 r5) = Lz(j)>
and in each interval I,(;) 4, the operations of tiny job j “form” local profile ",
for k = 0,...,|f(j)|. For an illustration see Figure [[l Notice some local profiles
@" can be empty, but the combination of all local profiles gives the profile of
tiny job j. By Lemma [ any tiny job crosses at most a constant number e* of
intervals. By Lemma [8] there is at most a constant number v* of profiles. Hence,
we can prove the following:

Lemma 11. There is at most a constant number 0* of distinct local profiles,
and at most a constant number f* of distinct patterns.

4.2 Scheduling Tiny Jobs: Smith’s Rule

We first need to introduce some notations. Consider an optimal schedule. Then,
for a tiny job j we can define two indices x(j) < y(j) and pattern f(j) such that
job j is released at R,(j, starts at S; € I,,(;) having pattern f(j) and completes
at Cj € Ly()+15G)l-

Smith’s rule. Let k and j be two tiny jobs with z(k) < z(j) (here 7, < r;) and
%j < & (see Lemmal [ll). We say that tiny jobs obey Smith’s rule if y(k)+|f (k)| <
y(j) + |f(4)] (Cx < C;) for all such pairs of jobs j and k. In other words, if the
two jobs are available in an interval, then job k of greater value wy /¢, completes
not later than job j with respect to intervals I;(y), I, ;) and patterns f(k), f(j).

Here we are interested in the following result:

Lemma 12. The value of parameter ¢* = O(e,m,pu) can be defined such that
with 1+ Te loss, for each profile p we can assume that tiny jobs of profile ¢ obey
Smith’s rule in a schedule.

Proof Sketch. Omitted. O
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5 Weight-Shifting and Dynamic Programming

Weight-Shifting. Assume that at some release date R, we have a lot of huge
jobs (H;) and tiny jobs (T}). Which jobs can wait until the next interval? Take
one profile ¢. The jobs of H,(¢) having the same size must complete by decreas-
ing weights w;. By Lemmas [[0] and [2] there is at most a constant number of
such sizes. By Lemma [I2] the jobs of T, (¢) must complete by decreasing w; /¢;.
By Lemmal[7] all jobs that start in I, must complete within the next e* intervals.
We only select the jobs that can be potentially scheduled in I,:

Lemma 13. With 14+0(e) loss and in O(nlogn) time, we can enforce D(Ty) <
t* - |I|y and |Hy| < H* at each release date R, where t* and H* are some
constant.

At each release date R, we partition the ordered set of tiny jobs T,(w) into
subsets of roughly equal size ~ £2|I|,/2¢* (but less than £2|I|,/q*). Then, we
merge the jobs of each such subset into a new tiny job of profile ¢.

Lemma 14. With 1+0(e) loss and in O(nlogn) time, we can enforce |T,| < T*
and |H,| < H* at each release date R,., where T* and H* are some constant.

Finally, by the ideas of Lemmas [ [7] and the results of Lemma [[4 we can prove
the following:

Lemma 15. With 1 4 € loss, each job completes within d* intervals after its
release, where d* is some constant.

Dynamic Programming. We partition the time line into a sequence of blocks,
where each block 7 consists of d* consecutive intervals. The basic idea is to use
dynamic programming with blocks as units. The jobs of block ¢ run either in
block i or i+1. A pseudo-schedule S; describes a possible placement of the jobs of
blocks ¢. The dynamic programming entry F(i,.S;) stores the minimum weighted
completion time achievable by completing all jobs released before or in block
while leaving pseudo-schedule S; for block i 4+ 1. Given all table entries for block
1 — 1, the values for block ¢ can be computed as follows.

E(i, Sz) = ISIIIH{E(’L -1, Sifl) + W(Z, Si_1, SZ)},

where W (i,5;-1,5;) is the minimum weighted completion time achievable by
scheduling the jobs in intervals of block ¢ with respect to the incoming pseudo-
schedule S;_; and the outgoing pseudo-schedule S;, respectively. Both the fea-
sibility test and computation of W (i, .S;_1,S;) can be done in O(1) time. Since
there are at most O(n) blocks the entire table E(-) can be computed in O(n)
time. The combination of all above steps and the dynamic programming algo-
rithm gives a PTAS with O(nlogn) running time. This completes the proof of
Theorem [I1
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