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Abstract. We study two natural models of randomly generated con-
straint satisfaction problems. We determine how quickly the domain size
must grow with n to ensure that these models are robust in the sense
that they exhibit a non-trivial threshold of satisfiability, and we deter-
mine the asymptotic order of that threshold. We also provide resolution
complexity lower bounds for these models.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a fundamental problem in Ar-
tificial Intelligence, with applications ranging from scene labeling to scheduling
and knowledge representation. See for example Dechter [12], Mackworth [18] and
Waltz [26]. An instance of the CSP comprises a set of n variables, each taking
a value in some given domain, and a set of constraint relations, each of which
determines the permitted joint values of a given subset of the variables. The
problem is either to determine any set of values for the variables which respects
all the constraint relations, or determine that none exists. In recent years, there
has been a strong interest in studying the relationship between the input pa-
rameters that define an instance of CSP (e.g. number of variables, domain sizes,
tightness of constraints) and certain solution characteristics, such as the likeli-
hood that the instance has a solution or the difficulty with which a solution may
be discovered. An extensive account of relevant results, both experimental and
theoretical, can be found in Hogg, Hubermann and Williams [15].

One of the most commonly used practices for conducting experiments with
CSP is to generate a large set of random instances, all with the same defining
parameters, and then for each instance in the set to use heuristics for deciding if
a solution exists. Note that, in general CSP is NP-complete. The proportion of
random instances that have a solution is used as an indication of the likelihood
that an instance will be soluble, and the average time taken per instance (by
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some standard algorithm) gives some measure of the hardness of such instances.
A characteristic of many of these experiments is that the fraction of assignments
of values that are permissible for each constraint is kept constant as the number
of variables increases. The very active experimental study of random models
of CSP has necessitated a rigorous analysis of such models. Various models of
random CSP’s for which m, the domain-size, is constant have been studied in
several papers, for example [2,21,11,22,23]. One of the earliest such studies, [2]
discovered that the most natural models suffer a fatal flaw (described below).
The first study of the case where m grows with n was [13], where one of these
most natural models was studied. Implicit in that study was the fact that for
certain settings of the relevant parameters, the fatal flaw did not occur and we
had a rich random model to study. One the main contributions of this paper is
to determine which parameter settings avoid that fatal flaw, and thus provide
random models that are both natural and robust.

In this paper we consider only binary CSPs (BCSPs). These can be suc-
cinctly described in the following way: A graph G = (V, E) is given, where
V = {x1, x2, . . . , xn} denotes the set of variables of the problem, and E the set
of binary relations of the instance. We assume, without loss of generality, that
each variable can take values in the same set [m] = {1, 2, . . . , m}. For each edge
e = {xi, xj} ∈ E, the relation can then be represented by an m × m 0-1 matrix
Me, where 0 indicates that the pair of values is forbidden and 1 that it is allowed.
A solution to the associated BCSP is an assignment f : V → [m] of values to
the variables, such that Me(f(xi), f(xj)) = 1 for all e = {xi, xj} ∈ E.

The aim of this paper is to conduct a probabilistic analysis of some aspects
of the following simple random models of BCSP:

Model A: The underlying graph G is Gn,p1 for some p1 = p1(n) < 1 where
p1 �= o(1/n). (This means that, with V = {x1, x2, . . . , xn}, we let each of the

(
n
2

)

possible edges occur independently in E with probability p1.) We let d = np1.
For each edge e of G there is a random m × m constraint matrix Me where
Me(i, j) = 1 or 0 independently with probability p2 or q2 = 1 − p2 respectively,
for some constant 0 < p2 < 1. (In the final paper we will consider p2 → 0 and
p2 → 1 as well.)

For p1 = o(1/n), the graph Gn,p1 is very sparse, and consists of a collection
of small vertex-disjoint trees in which all but o(n) of the vertices have degree 0.
This is why we restrict our attention to p1 �= o(1/n).

Given m, p2 we wish to know: for what values of p1 is our random CSP almost
surely satisfiable? This question has been asked for many similar models of CSP,
SAT and other problems. Traditionally, one of the first steps is to determine
some values of p1 for which it is not satisfiable as follows:

Fact: For p1 ≥ 2 ln m
q2n , the random CSP is unsatisfiable whp.

The proof follows easily from the fact that the expected number of satisfying
solutions is mn (1 − p1q2)(

n
2).

Inspired by a familiar pattern of similar random models, it is tempting to
assume that lnm

n is the asymptotic order of a so-called ”satisfiability threshold”
and so hypothesize that:
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Hypothesis A: There is some constant c > 0 so that for p1 ≤ c ln m
n , the

random CSP is satisfiable whp.
See [16] for a lengthy list of papers in which the authors fell to the temptation

of assuming an equivalent hypothesis. In [2], it was observed that for most of
those papers, and in fact whenever m, p2 are both constants, the hypothesis is
wrong. In fact, if p1 ≥ ω(n)/n2 for any ω(n) that tends to infinity with n, then
almost surely the random CSP is trivially unsatisfiable in the sense that it has
an edge whose constraint forbids every pair of values; we call such an edge a
blocked edge

In this paper we asymptotically determine which values of m meet Hypothesis
A.

Theorem 1. (a) If m ≤ (1 − ε)
√

ln nd/ ln(1/q2) for some constant ε > 0, then
provided nd → ∞, the random CSP has a blocked edge whp

(b) If m ≥ (1 + ε)
√

ln nd/ ln(1/q2) then there is some constant c > 0 so that for
p1 ≤ c ln m

n , the random CSP is satisfiable whp. Furthermore, an assignment
can be found in O(mn) time whp.

For m, p2 as in case (b), Hypothesis A holds, and so ln m
n is, indeed, the order

of the satisfiability threshold. In case (a), whp the fact that the random CSP is
unsatisfiable can be demonstrated easily by examining a single edge. We show
that for m ≥ (ln n)1+ε for any ε > 0, this is far from the case. In particular, we
show that whp there is. no short resolution proof of unsatisfiability when p1 is
of the same asymptotic order as the threshold of satisfiability.

Theorem 2. If m ≥ (ln n)1+ε, d = c lnm, for any constants ε, c > 0, then whp
the resolution complexity of the random CSP is 2Ω(n/m).

The resolution complexity of various models of random boolean formula has
been well-studied, starting with [10], and continuing through [4],[5],[3] and other
papers. This line of inquiry was first extended to random models of CSP in
[20,19] and was then continued in [23]. In both of those studies, the domain-size
was constant. Our Theorem 2 is the first result on the resolution complexity for
a model of random CSP where the domain-size grows with n.

We now consider another model.
Model B: Here we generate a random m × m symmetric matrix M with

density p2 and put Me = M for every edge of G = Gn,p1 .

Theorem 3. Let ε be a small positive constant, and consider a random CSP
from Model B.

(a) If d ≤ (4− ε)(ln(1/q2))−1 ln m ln lnm then whp the CSP is satisfiable whp.
(b) If d ≤ (1 − ε)(ln(1/q2))−1 ln m ln lnm then an assignment can be found in

polynomial time whp.
(c) If 0 < q2 < 1 is constant and if d ≥ K ln m ln lnm for sufficiently large K

then whp the CSP is unsatisfiable.

We can prove high resolution complexity in a restricted range of d, m, p2.

Theorem 4. If m → ∞ and d = c lnm ln lnm for some constant c > 0, then
whp the resolution complexity of a random CSP from Model B is 2Ω(n/(d3m)).
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2 Model A: Unsatisfiable Region

2.1 Blocked Edges and Vertices

Let an edge e = (x, y) of G be blocked if Me = O (the matrix with all zero
entries). Of course, any CSP with a blocked edge is unsatisfiable, since there is
no possible consistent assignment to x, y. We start with a simple lemma:

Lemma 1. Let ε > 0 be a small positive constant and assume that nd → ∞ (so
that whp G has edges). Let m0 =

√
(ln n + ln d)/ ln(1/q2). Then

(a) m ≥ (1 + ε)m0 implies that there are no blocked edges, whp.
(b) m ≤ (1 − ε)m0 implies that there are blocked edges, whp.

Proof Let Z be the number of blocked edges in our instance. Given the
graph G, the distribution of Z is Bin(|E|, qm2

2 ).

E(Z) =
(

n

2

)
p1q

m2

2 (1)

If m ≥ (1 + ε)m0 then (1) implies that

E(Z) ≤ (nd)−ε → 0

and then Z = 0 whp and (a) follows.
If m ≤ (1 − ε)m0 then (1) implies that

E(Z) ≥ 1
3
(nd)ε → ∞.

Part (b) now follows from the Chernoff bounds.
This proves Theorem 1(a). �

We now consider another simple cause of unsatisfiability that [2] also discov-
ered to be prevalent amongst the models commonly used for experimentation.
We say that a vertex (variable) x is blocked if for every possible assignment
i ∈ [m] there is some neighbour y which blocks the assignment of i to x, because
the ith row of Me, e = (x, y) is all zero.

Lemma 2. Let ε be a small positive constant, and suppose that
m −

√
ln n/ ln(1/q2) → ∞. Then

(a) m ≥ (1 + ε)
√

(ln n + m ln d)/ ln(1/q2) implies that there are no blocked ver-
tices, whp.

(b) m ≤ (1−ε)
√

(ln n + m ln d)/ ln(1/q2) implies that there are blocked vertices,
whp.

Remark: Note that m =
√

(ln n + m ln d)/ ln(1/q2), for m slightly smaller
than m0 from Lemma 1.

Proof If the graph G is given and vertex v has degree dv then

Pr(v is blocked | G) = (1 − (1 − qm
2 )dv)m.



The Satisfiability Threshold 279

This is because for i ∈ [m], (1− qm
2 )dv is the probability that no neighbour w of

v is such that row i of M(v,w) is all zero.
Part (a) now follows from an easy first moment calculation, which we omit.

We turn our attention to proving part (b). Rearranging our assumption yields
ln d ≥ (1 − ε)−1(m ln(1/q2) − 1

m ln n). So we choose d such that ln d = (1 −
ε)−1(m ln(1/q2) − 1

m ln n), i.e. d = (q−m2

2 n)1/m(1−ε) as proving the result for
that value of d clearly implies that it holds for all larger values.

Our assumption implies that d → ∞ and so whp n − o(n) vertices v have
dv ∈ I = [(1 − ε)d, (1 + ε)d]. Thus if Z is the number of blocked vertices with
dv ∈ I then

E(Z) ≥ (n − o(n))(1 − (1 − qm
2 )d(1−ε))m ≥ (n − o(n))(d(1 − ε)qm

2 )m

≥ (1 − o(1))
(
q−m2

2 n
)ε/(1−ε)

(1 − ε)m

≥ (1 − o(1))nε/(1−ε)(1 − ε)m0 (see the Remark preceding this proof)

≥ nε/2 → ∞.

To show that Z �= 0 whp we use Talagrand’s inequality [25]. We condition on
G. Then we let each Ωe, e ∈ E be an independent copy of {0, 1}m2

(the set of
m×m 0-1 matrices). Now changing a single Me can change z by at most 2 and
so Assumption 1 holds with a = 2. Then to show that a vertex v is blocked we
only have to expose Me for e incident with v. Thus Assumption 2 holds with
c(ξ) = (1 + ε)dξ. Thus if M = Med(Z), the inequality gives

Pr(|Z − M | ≥ t(1 + ε)dM1/2) ≤ 2e−t2/16 (2)

for any t > 0.
Our assumptions imply that d2 = o(E(Z)) and so (2) implies the result. �

3 Model A: Satisfiable Region

We assume for this section that

m = (1 + ε)
(

ln n

ln q−1
2

)1/2

, d = c ln m and p2 is constant

where c, ε are small. (Note that this also implies the result for larger m).
Now let a vertex v be troublesome if it has degree ≥ D = 10d or there are

assignments to its neighbours which leave v without a consistent assignment. Let
T denote the set of troublesome vertices. A subset of T is called a troublesome
set.

Let A be the event that every set of k0 vertices contains at most k0 edges
where

k0 =
⌈

2 lnn

d

⌉
.



280 Alan Frieze and Michael Molloy

Then

Lemma 3.
Pr(A) = 1 − o(1).

Proof

Pr(A) ≤
(

n

k0

)( (
k0
2

)

k0 + 1

)(
d

n

)k0+1

≤
(

ne

k0

)k0

·
(

d

n

)k0+1

·
(

k0e

2

)k0+1

=
k0e

2k0+1dk0+1

2k0+1
· d

n
= o(1).

�

We show next that whp the sub-graph induced by T has no large trees.

Lemma 4. Whp there are no troublesome trees with ≥ k0 vertices.

Proof If T contains a tree of size greater than k0 then it contains one of
size k0. Let Z be the number of troublesome trees with k0 vertices. Let Ω be
the set of trees/unicyclic graphs spanning [k0]. Then for any subset J of [k0] we
may write

E(Z ·1A) ≤
(

n

k0

) ∑

T∈Ω

(
d

n

)k0−1∏

i∈J

Pr(xi ∈ T | GT , xj ∈ T , ∀j ∈ J, j < i). (3)

Here GT is the event that the sub-graph of G induced by[k0] is T .
Fix T ∈ Ω and let I1 be the set of vertices of T with degree at most 4 in

T . Then |I1| ≥ k0/2. Note next that I1 contains an independent set I of size at
least k0/10.

Now if i ∈ I then

Pr(xi ∈ T | GT , x1, x2, . . . , xi−1 ∈ T ) ≤
(

n

D − 4

)(
d

n

)D−4

+
D∑

t=0

mt(1 − pt
2)

m.

The first term bounds the probability that xi has at least D − 4 neighbours
outside the tree and assuming the degree of xi is at most D, the second term
bounds the probability that the ≤ D neighbours have an assignment which can
not be extended to xi. We use the fact that I is an independent set to gain the
stochastic independence we need.

Thus, applying (3) with J = I we obtain

E(Z · 1A)

≤
(

n

k0

)
kk0−2
0 k2

0

(
d

n

)k0−1
((

n

D − 4

)(
d

n

)D−4

+
D∑

t=0

mt(1 − pt
2)

m

)k0/10

(4)

≤ n(de)k0

((
de

D − 4

)D−4

+ DmDe−mpD
2

)k0/10

= o(1).

�

Now we deal with troublesome cycles in a similar manner.
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Lemma 5. Whp there are no troublesome cycles.

Proof It follows from Lemma 4 that we need only consider cycles of length
k0 or less. If Z now denotes the number of troublesome cycles of length k0 or
less then arguing as in (3), (4) we see that

E(Z) ≤
k0∑

k=3

(
n

k

)
(k − 1)!

2

(
d

n

)k
((

n

D − 2

)(
d

n

)D−2

+
D∑

t=0

mt(1 − pt
2)

m

)�k/2�

= o(1).

�

Let a tree be small if it contains at most k0 vertices.
We have therefore shown that whp the troublesome vertices T induce a

forest of small trees.
We show next that whp there at most n1+o(1) small trees.

Lemma 6. Whp there are at most n1+o(1) small trees.

Proof Let σT denote the number of small trees. Then

E(σT ) =
k0∑

k=1

(
n

k

)
kk−2

(
d

n

)k−1

≤
k0∑

k=1

n(de)k = n1+o(1).

The result now follows from the Markov inequality. �

Our method of finding an assignment to our CSP is to (i) make a consis-
tent assignment to the vertices of T first and then (ii) extend this assignment
“greedily” to the non-troublesome vertices.

It is clear from the definition of troublesome that it is possible to carry out
Step (ii). We wish to show that (i) can be carried out successfully whp. For this
purpose we show that whp G does not contain a small tree which cannot be
given a consistent assignment.

So we fix a small tree T and a vertex v ∈ T and root T at v. Then let
Xi, 0 ≤ i ≤ k0 denote the vertices at distance i from v in T . Then let d� be the
maximum number of descendants of a vertex in X� and let L denote the depth
of T .

For u ∈ X� let S�(u) be the the set of values δ such that there is a consistent
assignment to the sub-tree of T rooted at u in which u receives δ. We let t =
�10/ε	 and define the events

B�
u,i =

{
(i − 1)m

t
≤ |S�(u)| ≤ im

t

}
.

Then for 1 ≤ i ≤ t let

πi,� = max
u∈X�

Pr




i⋃

j=1

Bu,j



 .

Note that πt,� = 1.
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We claim that for � > 1,

πi,� ≤
∑

k1+···+kt=d�

t−i+1
t m∑

r= t−i
t m

(
m

r

) t∏

j=1

(1 − (1 − q
j−1

t
2 )kj )rπ

kj

j,�−1 (5)

≤
t∑

j=1

td�2m(1 − (1 − q
j−1

t m
2 )d�)

t−i
t mπj,�−1.

≤
t∑

j=1

td�2m(d�q
j−1

t m
2 )

t−i
t mπj,�−1. (6)

Explanation of (5): Suppose that there are kj descendants w of u for which
B�−1

w,j occurs. If u ∈ B�
u,i then r assignment values will be forbidden to it, t−i

t m ≤
r ≤ t−i+1

t m. The product bounds the probability that these values are forbidden
and that B�−1

w,j occurs for the corresponding descendants.
Now let us prove by induction on � that for η = ε/3 and for 1 ≤ j ≤ t we

have
πj,� ≤ t�n−(1+η) t−j

t . (7)

This is clearly true for � = 0 since πj,0 = 0 for j < t and πt,0 = 1. Then from (6)
we obtain

πi,� ≤ t�−1
t∑

j=1

td�2md
t−i

t m

� q
(j−1)(t−i)

t2
m2

2 n−(1+η) t−j
t

≤ t�−1
t∑

j=1

n− (j−1)(t−i)
t2

(1+ ε
2 )− t−j

t (1+η).

Notice that in going from the first to second inequality we use the fact that since
�, d� ≤ k0 we find that 2mtd�d

t−i
t m

� = no(1). This term is then absorbed by using
1 + ε/2 in place of 1 + ε.

Now consider the expression

∆ =
(j − 1)(t − i)

t2
(1 +

ε

2
) +

t − j

t
(1 + η) − t − i

t
(1 + η)

=
(j − 1)(t − i)

t2
(1 +

ε

2
) +

i − j

t
(1 + η).

To complete the inductive proof of (7) we have only to show that it is non-
negative.

Now ∆ is clearly non-negative if i ≥ j and so assume that j > i. Now for a
fixed j, ∆ can be thought of as a linear function of i and so we need only check
non-negativity for i = 1 or i = j − 1.

For i = 1 we need

(j − 1)(t − 1)(1 +
ε

2
) ≥ (j − 1)t(1 + η) (8)

and this holds for ε ≤ 1.
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For i = j − 1 we need

(j − 1)(t − j + 1)(1 +
ε

2
) ≥ t(1 + η).

But here j ≥ 2 and the LHS is at least (t− 1)(1 + ε
2 ) and the inequality reduces

to (8) (after dividing through by j − 1). This competes the proof of (7). In
particular

π1,k0 ≤ tk0n−(1+η)(t−1)/t.

Pr(∃a troublesome tree which cannot be consistently assigned)

≤ o(1) + n1+o(1)tk0n−(1+η)(t−1)/t = o(1)

which implies that Step (i) can be completed whp. This proves the satisfiability
claim in Theorem 1(b).

It only remains to discuss the time to find an assignment. Once we have
assigned values to T then we can fill in an assignment in O(mn) time. So let us
now fix a small tree T of troublesome vertices. Choose a root v ∈ T arbitrarily.
Starting at the lowest levels we compute the set of values S�(u) available to a
vertex u ∈ X�. For each descendant w of u we compute T�(w) = {a ∈ S�+1(w) :
M(u,w)(a) = 1} and then we have S�(u) =

⋂
w T�(w). At the leaves, SL = [m]

and so in this way we can assign a value to the root and then work back down
the tree to the leaves giving an assignment to the whole of T . Thus the whole
algorithm takes O(mn) time as claimed. �

4 Model A: Resolution Complexity

For a boolean CNF-formula F , a resolution refutation of F with length r is
a sequence of clauses C1, ..., Cr = ∅ such that each Ci is either a clause of
F , or is derived from two earlier clauses Cj , Cj′ for j, j′ < i by the following
rule: Cj = (A ∨ x), Cj′ = (B ∨ x) and Ci = (A ∨ B), for some variable x.
The resolution complexity of F , denoted RES(F ), is the length of the shortest
resolution refutation of F . (If F is satisfiable then RES(F ) = ∞.)

Mitchell[20] discusses two natural ways to extend the notion of resolution
complexity to the setting of a CSP. These two measures of resolution complexity
are denoted C − RES and NG− RES. Here, our focus will be on the C − RES
measure, as it was in [19] and in [23].

Given an instance I of a CSP in which every variable has domain {1, ..., m},
we construct a boolean CNF-formula CNF(I) as follows. For each variable x
of I, there are m variables in CNF(I), denoted x : 1, x : 2, ..., x : m, and
there is a domain clause (x : 1 ∨ ... ∨ x : m). For each pair of variables x, y
and each restriction (i, j) such that M(x,y)(i, j) = 0, CNF(I) has a conflict
clause (x : i ∨ y : j). We also add

(
m
2

)
2-clauses for each x which specify that

x : i can be true for at most one value of i. It is easy to see that CNF(I) has
a satisfying assignment iff I does. We define the resolution complexity of I,
denoted C− RES(I) to be equal to RES(CNF(I)).
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A variable x is free if any assignment which satisfies I − x can be extended
to a satisfying assignment of I. The boundary B(I) is the set of free variables.
We extend a key result from [20] to the case where m grows with n:

Lemma 7. Suppose that there exist s, ζ > 0 such that

(a) Every subproblem on at most s variables is satisfiable, and
(b) Every subproblem I ′ on v variables where 1

2s ≤ v ≤ s has |B(I ′)| ≥ ζn.

then C− RES(I) ≥ 2Ω(ζ2n/m).

The proof is a straightforward adaptation of the proof of the corresponding
work in [20] and so we omit it.

We assume now that ε is a small positive constant and

m ≥ (ln n)1+ε, d = c ln m and p2 is constant. (9)

Let γ be a sufficiently small constant. Let T1 denote the set of vertices v for
which there are γd neighbours W and a set of assignments of values to W for
which v has no consistent assignment.

Lemma 8.
Pr(T1 �= ∅) = o(1).

Proof

E(|T1|) ≤ n

n−1∑

t=γd

(
n

t

)(
d

n

)t(
t

γd

)
mγd(1 − pγd

2 )m

≤ n

n−1∑

t=γd

(
de

t

)t (
tem

γd

)γd

e−mpγd
2

≤ ne−m1−ε/2




10d∑

t=γd

(de)10d(10eγ−1m)γd +
n−1∑

10d

(mn)γd



 = o(1).

�

Now we show that whp every set of s ≤ s0 = αn vertices, α = γ/3 has less
than γds/2 edges. Let B denote this event.

Lemma 9.
Pr(B) = 1 − o(1).

Proof

Pr(B) ≤
αn∑

s=γd

(
n

s

)( (s0
2

)

γds/2

)(
d

n

)γds/2

≤
αn∑

s=γd

((
se

γn

)−1+γd/2

· e2

γ

)s

= o(1).

�
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Let us now check the conditions of Lemma 7. Condition (a) holds because
Lemma 9 implies that if s = |S| ≤ αn then we can order S as v1, v2, . . . , vs

so that vj has less than αd neighbours among v1, v2, . . . , vj−1 for 1 ≤ j ≤ s.
Because we can assume that T1 = ∅ (Lemma 8) we see that it will be possible
to sequentially assign values to v1, v2, . . . , vs in order. Lemma 9 implies that at
least 1

2 the vertices of S have degree ≤ αd in S and now T1 = ∅ implies that (b)
holds with ζ = 1/2.

We conclude that with the parameters as stated in (9), C− RES(I) is whp
as large as is claimed by Theorem 2.

5 Model B: Satisfiability

We have a blocked edge iff M = O and this happens with probability q
m(m−1)
2

and so there is not much more to say on this point.
Secondly, if M �= O then there are two values x, y which can be assigned to

adjacent vertices. This implies that for any bipartite subgraph H of G there is
a satisfying assignment for H just using x, y. So, in particular there will be no
blocked vertices.

Let us now consider Theorem 3. Let H be the graph defined by treating
M as its adjacency matrix. Thus H = Gm,p2 . As such it has a clique I of size
(2 − o(1)) ln m/(ln 1/q2).

If we can properly colour G with I (i.e. give adjacent vertices different values
in I) then we will have a satisfying assignment for our CSP. Now the chromatic
number of G is (1 + o(1))d/(2 ln d) whp. So the CSP is satisfiable whp if

(2 − o(1)) ln m/(ln 1/q2) ≥ (1 + o(1))d/(2 ln d)

and this holds under assumption (a).
For (b) we observe that we can find a clique of size (1−o(1)) lnm/(ln 1/q2) in

polynomial time and we can colour G with (1+o(1))d/ ln d colours in polynomial
time.

We now prove part (c) of Theorem 3. We first observe

Lemma 10. There exists a constant ε0 such that for ε ≤ ε0 there exist R0 =
R0(ε), Q0 = Q0(ε) such that if Q ≥ Q0, R ≥ R0 and s0 = R ln m then

(a) whp every pair of disjoint sets S1, S2 ⊆ [m], |S1| = s1 ≥ s0, |S2| = s2 ≥ s0

contains at most (1 − ε)s1s2 S1 : S2 edges of H;
(b) whp every S ⊆ [m], |S| = s ≥ s0 contains at most Q lnm members with

degree greater than (1 − ε)s in the subgraph of H induced by S.

Proof
(a) We can bound the probability that there are sets S1, S2 with more than the
stated number of S1 : S2 edges by
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m∑

s1=s0

m∑

s2=s0

(
m

s1

)(
m

s2

)(
s1s2

εs1s2

)
p
(1−ε)s1s2
2

≤
m∑

s1=s0

m∑

s2=s0

(
me

s1

)s1 (me

s2

)s2 ((e

ε

)ε

p1−ε
2

)s1s2

= o(1).

(b) We choose ε > 0 so that p2 < 1 − 3ε. Given S, we consider a set L ⊂ S
of size Q lnm. For R > Qε−1 we have |L| < ε|S| and so if each i ∈ L has at
least (1− ε)s neighbours in S then it has at least (1− 2ε)s neighbours in S −L.
By the Chernoff bound, this occurs with probability at most

(
e−ζs

)|L|
, for some

ζ > 0 and this is less than m−2s for Q sufficiently high. Therefore, the expected
number of S, L violating part (b) is at most

m∑

s=s0

(
m

s

)(
s

Q lnm

)
m−2s <

m∑

s=s0

(em

s

)s

2sm−2s <
∑

s≥s0

m−s = o(1).

�

Now consider an assignment σ for our CSP and let Ni be the set of variables
that are assigned the value i by σ. We observe that if σ is consistent then each
Ni is an independent set in G and so whp G is such that we must have

|Ni| ≤
3n lnd

d
<

4n

K ln m
for i = 1, 2, . . . , m. (10)

Thus, we will restrict our attention to assignments which satisfy (10). We will
prove that the expected number of such assignments that are consistent is o(1),
thus proving part (c) of Theorem 3.

We say that a pair of vertices is forbidden by σ if that pair cannot form
an edge of G without violating σ. Note that every pair in the same set Ni is
forbidden, and a pair in Ni × Nj is forbidden iff ij is not an edge of H . We will
show that the number of forbidden pairs is at least n2/ ln lnm. It follows that

Pr(σ is consistent) ≤ (1 − p1)n2/ ln ln m ≤ e−nd/ ln ln m = o(m−n),

assuming that d ≥ K ln m ln lnm for sufficiently large K. Since this probability
is o(m−n) we can multiply by mn, which is an overcount of the number of
assignments satisfying (10), and so obtain the desired first moment bound.

Let ni = |Ni| and let I = {i : ni ≥ n/(2m)}. Now
∑

i∈I

ni = n −
∑

i/∈I

ni ≥ n − m · n

2m
=

n

2
. (11)

For the following analysis we choose constants:

ε, Q = max{Q0, 100ε−1}, K1 = 100R0, K = 100K1Q

where ε ≤ ε0, Q0, R0 are from Lemma 10.
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We partition I into 3 parts:

– I1 = {i : n/(K1 ln m ln lnm) ≤ ni < 4n/K ln m}
– I2 = {i : n/(K1 ln m)2 ≤ ni < n/(K1 ln m ln lnm)}
– I3 = {i : n/(2m) ≤ ni < n/(K1 ln m)2}

Case 1:
∑

i∈I1
ni ≥ n

6 Let H1 be the subgraph of H induced by I1, and
for each i ∈ I1, we let d(i) be the degree of i in H1. Note that the total number
of forbidden pairs of vertices for G is at least

1
2

∑

i∈I1

d(i)ni ×
n

K1 ln m ln lnm
, (12)

since for all i′ ∈ I1, ni′ ≥ n/(K1 ln m ln lnm).
By (10), we have |I1| ≥ (K ln m)/24, so (K ln m)/Q < ε|I1|. Thus, by Lemma

10(b) then there are at most Q lnm members i ∈ I1 with d(i) < (K ln m)/Q.
Again using (10), these members contribute at most 4Qn/K < n/12 to

∑
i∈I1

ni.
Therefore, the sum in (12) is at least

1
2
× K ln m

Q
× n

12
× n

K1 ln m ln lnm
≥ n2

ln lnm
.

Case 2:
∑

i∈I2
ni ≥ n

6 We let I(j) = {i ∈ I2 : n/2j ≤ ni ≤ n/2j−1},
for
log2(K1 ln m ln lnm) ≤ j ≤ 2 log2(K1 ln m). We set tj =

∑
i∈I(j) ni and sj =

|I(j)| ≥ tj × (K1 ln m ln lnm/n). We set J = {j : tj ≥ n/(100 ln lnm)} and note
that sj ≥ s0 (from Lemma 10) for each j ∈ J . Note also that

∑

j∈J

tj ≥ n

6
− 2 log2(K1 ln m) × n

100 ln lnm
≥ n

8
.

Consider I(j) for any j ∈ J . By Lemma 10, there are at least ε
(
sj

2

)
pairs

i, i′ ∈ I(j) such that every pair of vertices in Ni × Ni′ is forbidden. Also, for
any i, every pair in Ni × Ni is forbidden. Since the sizes of the sets Ni, i ∈ I(j)
differ by at most a factor of 2, this implies that the number of forbidden pairs
in ∪i∈I(j)Ni is at least ε

8 t2j . Now consider any pair I(j), I(j′) with j, j′ ∈ J .
By Lemma 10(a), there are at least εsjsj′ pairs i ∈ I(j), i′ ∈ I(j′) such that
every pair of vertices in Ni ×Ni′ is forbidden, and this implies that the number
of forbidden pairs in ∪i∈I(j)Ni × ∪i∈I(j′)Ni is at least ε

4 tjtj′ . Thus, the total
number of forbidden pairs is at least

ε

8




∑

j∈J

t2j +
∑

j,j′∈J;j<j′
2tjtj′



 =
ε

8




∑

j∈J

tj





2

≥ εn2

83
>

n2

ln lnm
.

Case 3:
∑

i∈I3
ni ≥ n

6 . Here we follow essentially the same argument
as in Case 2. Again, let I(j) = {i ∈ I : n/2j ≤ ni ≤ n/2j−1}, but this time we
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consider 2 log2(K1 ln m) < j ≤ log2(2m). Again, tj =
∑

i∈I(j) ni and sj = |I(j)|,
but note that this time we have

sj ≥ tj
n/(K1 ln m)2

.

Here, we set J = {j : tj ≥ n/K1 ln m} and so again we have sj ≥ s0 for every
j ∈ J . ∑

j∈J

tj ≥ n

4
− log2(2m) × n

K1 ln m
≥ n

8
.

The same argument as in Case 2 now goes through to imply that the total
number of forbidden pairs is at least

ε

8




∑

j∈J

tj





2

>
n2

ln lnm
.

�

6 Model B: Resolution Complexity

First note that whp every set of 10 vertices in H has a common neighbour,
since the probability of at least one such set not having a common neighbour is
less than

(
m
10

)
qm−10
2 = o(1). Assuming that H has this property, every vertex of

degree at most 10 in G will be in the boundary.
A straightforward first moment argument shows that a.s. every subgraph

G′ of G with at most n/d3/2 vertices has at most 5|G′| edges. (We omit the
standard calculation.) Therefore, every such G′ has at least |G′|/11 vertices of
degree at most 10. This implies both conditions of Lemma 7 with s = n/d3/2

and ζ = 1/(22d3/2) and thus implies Theorem 4. �

We remark that the exponent “3” of d in the statement of Theorem 4 can be
replaced by values arbitrarily close to 2 by replacing “10” with a larger value in
this proof.
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