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Abstract. Automatic classification of neurological tissues is a first step
to many structural analysis pipelines. Most computational approaches
are designed to extract the best possible classification results out of MR
data acquired with standard clinical protocols. We observe that the char-
acteristics of the latter owe more to the historical circumstances under
which they were developed and the visual appreciation of the radiogra-
pher who acquires the images than to the optimality with which they
can be classified with an automatic algorithm.

We submit that better performances could be obtained by considering
the acquisition and analysis processes conjointly rather than optimising
them independently. Here, we propose such a joint approach to MR tis-
sue classification in the form of a fast MR sequence, which nulls the
magnitude and changes the sign of the phase at the boundary between
tissue types. A simple phase-based thresholding algorithm then suffices
to segment the tissues. Preliminary results show promises to simplify and
shorten the overall classification process.

1 Introduction

The explosive growth in medical imaging technologies such as Magnetic Reso-
nance Imaging MRI), computer assisted tomography (CT) or positron emission
tomography (PET) has fuelled an unprecedented drive to explore the structural
and functional organization of the human body. Arguably one of the most com-
plex organs, the human brain has been the primary beneficiary of these fast
paced developments. A major objective of neuroscience is to understand both
the anatomical characteristics of the various structures of the brain and their
inter-relationships. From the structural standpoint (our main focus here), this
ambitious goal is often translated into statistical analysis of anatomical variabil-
ity, within groups, through development, or between normal and diseased popu-
lations [1]. A pivotal first step to most MR based structural studies, automatic
tissue classification forms the basis for a variety of neuro-informatics applica-
tions: quantitative measurement of tissue loss or gain in healthy and diseases
populations [2], analysis of cortical thickness and folding [3], automated diagno-
sis of diseases [4], or morphological analysis such as voxel based morphometry
[5] amongst others.
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Formally, tissue classification consists in partitioning the input brain MR vol-
ume into disjoint regions corresponding to the three main tissue types: white
matter (WM), gray matter (GM) and cerebro-spinal fluid (CSF). Non brain tis-
sues such as bone, skin, dura or the meninges are often collected into a fourth
category (“other”).

A whole menagerie of image analysis techniques are available to classify brain
tissues from either monospectral (often T1-weighted MRI) or multisprectral MR
images. They rely on a no less varied selection of parametric and non-parametric
statistical classifiers, from k-nearest neighbours [6] to neural networks [7]. The
necessity to deal with intensity inhomogeneities (bias field) and partial volume
effect voxels (those voxels that contain a mixture of several tissue types) called
for techniques capable of estimating the relative fraction of each tissue class in
each voxel. EM-type algorithms and Hidden Markov Random Field approaches
[8,9,10] in particular have proved very popular (see [11] for a thorough review of
classification approaches).

1.1 Sub-optimality of Independent Acquisition and Analysis

For a variety of logistics and historical reasons, developments in computational
tissue classification have been mostly limited to the processing of clinical MR
sequences (i.e. sequences developed specifically for clinical applications) inde-
pendently of their optimality in distinguishing between tissue types.

As an illustration, the now standard T1/T2/PD multispectral acquisition pro-
tocol comes from an era when most brain sequences were based on Spin Echo
imaging. Though time consuming, Spin Echo produced good tissue contrast and
allowed for the simultaneous acquisition of T2-weighted and proton density (PD)
images. The latter provided useful additional information for pathologies. With
the development of faster Turbo/Fast Spin Echo sequences, this speed-up trick
was not available any longer. However PD had already become part of the stan-
dard protocol, causing an effective doubling of the (admittedly now shorter)
examination time. Meanwhile, most modern T1 sequences now rely on the even
faster 3D Gradient Echo imaging, which also allows for much higher resolution
than 2D slice based approaches like Fast Spin Echo.

Incidentally, while the T1/T2/PD combination of contrasts often yields good
classification results, other spectral combinations offer markedly better classi-
fication performances over acquisition time ratios. For example, the joint use
of standard anatomical protocols and contrast-enhanced sequences has proved
particularly efficient in cancer and multiple sclerosis research [12].

Regrettably, we note that all too often, analysis only follows acquisition, in
that the parameters of the MR sequences are optimized before the analysis, fol-
lowing criteria best suited for human operators, not algorithms. For instance, a
radiographer or physicist in charge of an MR scanner will often strive to achieve
the best visual compromise between contrast and noise whereas, from a compu-
tational standpoint, within-class noise matters less than interclass separability.
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1.2 A Joint Approach to Classification

We submit that better overall results could be obtained by considering the ac-
quisition and analysis processes conjointly rather than optimising them inde-
pendently. Here we propose such an approach developed specifically for tissue
classification in cerebral MR imaging. It consists of a novel MR sequence, which
we dubbed Null Point Imaging (NPI), and a very simple phase-based classifica-
tion algorithm. By imaging half way between the GM and WM null points (see
below for detail), the proposed MR sequence introduces at the acquisition stage
a nulled boundary layer between GM and WM tissues. This layer coincides with
the partial volume effects (PVE) voxels resulting from the mix of GM and WM
along the gray/white surface. Remarkably, because we image between the two
null points, the phase image acquired with this protocol is positive for predomi-
nantly gray voxels and negative for predominantly white voxels, which makes it
trivial to segment once unwrapped. Using the same principle we also introduce
a boundary layer between GM and CSF and segment them in phase space.

We first describe our joint acquisition/analysis approach in Section 2 before pre-
senting the first classification results and some elements of validation in Section 3.

2 Method

2.1 Imaging Brain Tissues with MR

When placed in the strong magnetic field of the scanner (B0), hydrogen nuclei
(protons) align so as to create a net equilibrium magnetization (M0), parallel to
the applied magnetic field, the longitudinal direction. Excitation of the protons
by a radio frequency pulse will tip this net magnetization away from the lon-
gitudinal direction, and the time taken for the magnetization to recover to its
equilibrium value M0 is characterized by the longitudinal recovery time T1 . In
standard T1-weighted imaging, tissue contrast is created by the differences in
T1 between different tissues. Figure 1(a) plots the recovery of the longitudinal
magnetization for GM, WM and CSF as a function of time, after an RF pulse
that had inverted the longitudinal magnetization at t = 0s.

In most clinical sequences, imaging is performed at the point in time where
the difference between the longitudinal magnetization of WM, GM and CSF is
greatest (960ms in Figure 1(a)).

A common technique to increase contrast, inversion recovery uses a prepara-
tory RF pulse to rotate the net magnetization 180o down the B0 axis. Before the
magnetization reaches its equilibrium, another RF pulse is applied at time TI
seconds. The preparatory pulse greatly lengthens the duration of the recovery
process and consequently increases the contrast between tissues. Remarkably,
while the direction of the net magnetization changes sign with this technique,
its modulus seems to drop to a null point before recovering. This effect has been
exploited in sequence development as a means to selectively remove signal from
particular tissue types. In a classical MPRAGE sequence for instance (a fast
high-resolution T1-weighted 3D sequence [13]) , TI is chosen to coincide with
the time at which contrast is maximum after the initial inversion pulse (960ms).
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Fig. 1. Imaging characteristics of a standard MPRAGE sequence for various values
of TI: (a) longitudinal magnetization (mean and standard deviation) of GM,WM and
CSF as a function of the TI parameter; (b) sagittal sections of rigidly registered scans
of the same volunteer’s brain for different TIs

2.2 Imaging Tissue Boundaries with NPI

Here, we propose to use this nulling effect as a means to classify brain tissues.
Our Null Point Imaging sequence is an MPRAGE sequence whose TI value is the
barycentre of the GM and WM null points. Since the net magnetization vectors
of GM and WM have the same modulus and different signs at that point, the
MR signal of those partial volume effect voxels which contain a equal mixture
of both GM and WM is nulled. This creates a black line between GM and WM
voxels in the modulus image (see middle column of Figure 2). It also makes for a
particularly ”classification friendly” phase image where GM voxels have negative
values and WM voxels positive ones, once the phase has been unwrapped [14].
We then segment the input volume by thresholding the unwrapped phase image
at zero. Note that even though tissue contrast between GM and WM is almost
null, this does not impact the performance of our classifier since thresholding is
done in phase space. Alternatively, by selecting a TI value half way between the
GM and CSF null points, our NPI technique outlines in black the pial surface
(GM/CSF boundary) and a similar phase-based thresholding approach enables
the segmentation of GM and CSF.
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Determining the optimal TI value for the NPI sequence is a simple three-
stepped approach. First, we acquire a series of structural images of a volunteer’s
brain by varying the TI parameter of a conventional T1-weighted sequence. All
acquisitions were performed on a Philips Achieva, 1.5T with an 8-channel SENSE
head coil. Note that we chose MPRAGE as our base sequence even though any
inversion recovery sequence could have been employed. We then classify the
volume corresponding to the standard clinical choice of TI (TI = 960ms for
maximal contrast between WM,GM and CSF) using a standard off-the-shelf
tissue classification technique (in our case, the MNI neural network classifier
[7]). From these GM, WM and CSF maps, we compute the average intensity
value per tissue for each value of TI (see Figure 1(a)). Finally, we determine
the optimal value for TI by estimating the zero crossing point for the GM, WM
and CSF curves and computing their barycentres. Note that although there is
some inter- and intra- individual variation in T1 times for these tissue types
it has been shown to be fairly uniform in the absence of pathology. Therefore,
this optimization process only needs to be done once per scanner, on a limited
number of brains.

From Figure 1(a), we get: TI = 500ms for GM/WM segmentation and TI =
800ms for GM/CSF segmentation. This can be visually confirmed on Figure
1(b) where a black line indeed separates GM from WM at 500ms and GM from
CSF at 800ms.

Note that as opposed to susceptibility weighted imaging [15] which uses natu-
rally occurring phase variation to enhance the quality of the acquired magnitude
images, our approach imposes a specific phase contrast.

3 Results

Figure 2 illustrates on a volunteer’s brain the ability of our NPI approach to
distinguish between WM, GM and CSF voxels. We show on the left column a
selection of sagittal, coronal and axial slices cut through a standard T1-weighed
volume, the corresponding section (after rigid registration) through the NPI
magnitude at TI = 500ms (black line between GM and WM) in the middle and
the classification maps on the right column (CSF is black, GM is gray and WM
is white). Note that we skull-stripped the classification maps in the interest of
visual clarity.

3.1 Elements of Validation

Since our joint acquisition/analysis approach is based on a custom MR sequence,
we did not have the possibility of using brain simulators (e.g. BrainWeb [16]) to es-
timate its performances. In the absence of a gold standard, we used as a straw-man
standard the classification maps obtained with a standard classification package
(the MNI neural network classifier [7]) on the average of 5 rigidly registered stan-
dard T1 + T2/PD scans of the same volunteer’s brain. The increased signal to
noise ratio of the average image yielded an adequate classification against which
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Fig. 2. A selection of corresponding slices cut through the same volunteer’s brain:
standard T1-weighted sequence (left column); NPI sequence with TI = 500ms, a black
line follows the GM/WM boundary (center column); binary classification map (right
column)

we compared the maps obtained with our approach on two NPI scans of the same
volunteer (NPI with TI = 500ms and with TI = 800ms).

Following Van Leemput et al. [9], we used the Dice metric [17]. Let Mapmni
T

denote the classification map for tissue T obtained with the selected standard
package, and let Mapnpi

T be the NPI classification map. The Dice metric is given
by: DT = 2|Mapmni

T ∩ Mapnpi
T |/(|Mapmni

T | + |Mapnpi
T |) where |.| is the set size

operator.
Overall, our fast, phase-based thresholding approach gave, with only 2 images,

results remarkably close to those obtained with the sophisticated MNI classifier
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on the average images (DWM = 84%, DGM = 82% and DCSF = 72%). Visual
inspection confirmed this finding and showed that discrepancies where for the
most part due to isolated voxels (these could be corrected with a morphological
filter), overestimation of CSF in the temporal lobes (due to issues with phase
unwrapping in the presence of scanner inhomogeneities), and differences in areas
where the MNI approach was arguably wrong (in particular around some of the
deep gray nuclei -thalamus- for GM).

4 Conclusion

We have presented a joint acquisition/analysis approach to MR tissue classi-
fication where information obtained in a preliminary analysis stage (graph of
longitudinal magnetization as a function of TI parameter) helped optimize the
acquisition sequence. In turn, the acquired images proved much easier to classify
than standard T1-weighted or T2/PD multispectral sequences. Indeed, the phase
image changed sign at the transition between predominantly gray and predom-
inantly white PVE voxels, which yielded a very simple thresholding algorithm.

Our NPI classification technique is particularly efficient with respect to stan-
dard approaches. Typically, on a Philips 1.5T scanner, one or two 15mn long
scans (1mm3 isotropic T1-weighted sequence for monospectral and/or a 1 × 1 ×
2mm T2/PD sequence for multispectral) followed by sophisticated image pro-
cessing could be replaced by two fast 6mn sequences with a trivial classification
algorithm. Note that in a standard computational pipeline, T1-weighted images
are often used for other purposes than just classification: for instance they serve
to extract the brain from the skull, or to correct for intensity inhomogeneities.
Incidentally, even though our approach is not intended for use as a diagnos-
tic tool, its behaviour in the presence of pathological defects such as lesions or
tumours would be worth evaluating.

Preliminary results are very encouraging and show performances on par with
a standard package even without any pre- or post-processing (inhomogeneity
correction or morphological filtering for instance). We are currently working on
a thorough validation where comparison against a variety of publicly available
classifiers will be performed within the STAPLE framework [18].

Finally, we are also exploring the possibility of using the phase value in each
voxel to roughly estimate the mixture of tissues within that voxel, rather than
simply thresholding the phase image at zero to obtain a ternary classification
map.
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