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Abstract. In this paper we use the novel concept of minimal cube
transversals on the cube lattice of a categorical database relation for
mining the borders of the difference of two datacubes. The problem of
finding cube transversals is a sub-problem of hypergraph transversal dis-
covery since there exists an order-embedding from the cube lattice to the
power set lattice of binary attributes. Based on this result, we propose a
levelwise algorithm and an optimization which uses the frequency of the
disjunction for mining minimal cube transversals. Using cube transver-
sals, we introduce a new OLAP functionality: discovering the difference
of two uni-compatible datacubes or the most frequent elements in the
difference. Finally we propose a merging algorithm for mining the bound-
ary sets of the difference without computing the two related datacubes.
Provided with such a difference of two datacubes capturing similar in-
formations but computed at different dates, a user can focus on what is
new or more generally on how evolve the previously observed trends.

1 Introduction and Motivation

Hypergraph transversals [8, 10] have various applications in binary data mining
and various kinds of knowledge can be discovered: minimal keys and minimal
functional dependencies [13], connection between positive and negative borders
of theories [14]. When mining minimal transversals, we show in [4] that the
power set lattice is not really suitable when addressing multidimensional data
mining problems, and suggest, as an alternative, an algebraic structure which
is called cube lattice of a categorical database relation. Cube lattice is a set
of tuples representing multidimensional patterns, provided with a generalization
order between tuples. A similar lattice has been independently proposed by Lak-
shmanan et al. [12]. Based on this structure, the authors define the quotient cube
lattice, a succinct summary of the datacube, preserving the Rollup/Drilldown
semantics of cube.

Cube lattice provides a sound basis and a graded search space for extracting
semantics from the datacube such as Roll-Up dependencies [3], multidimensional
associations [5], iceberg cubes [2, 11], concise representation of hight frequency
multidimensional patterns [6] and reduced cubes [12, 5]. In this paper, following
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from this semantics trend, we use the concept of cube transversals [5] in order
to compute the borders of the difference of two uni-compatible datacubes. More
precisely, we make the following contributions.

– We propose an optimization for mining minimal cube transversals based
on the Bonferroni inequalities and a levelwise algorithm which enforces the
optimization.

– We formally define borders of the difference. Computing the difference of
two uni-compatible datacubes is closely related to the discovery of emerging
patterns originally proposed by [7] in the power set lattice framework. Our
characterization and algorithm differ from the approach of emerging patterns
since they are based on minimal cube transversals and fit in the cube lattice
framework.

Because data warehouses are regularly refreshed, it is specially interesting to
observe how evolves the mined knowledge: are great trends (for instance in con-
sumer behavior) still increased or are they decreasing? Provided with two ver-
sions of a datacube computed at different dates, a user can answer these question
very easily.

The remainder of the paper is organized as follows. Cube lattice framework
[4] is described in section 2 as a graded search space for multidimensional data
mining. In section 3, we recall the concept of cube transversal and a merging
algorithm for mining minimal relation transversals from categorical database re-
lations. In section 4, we propose an application using the minimal cube transver-
sals: the “difference of two uni-compatible datacubes” and characterize its bor-
ders.

2 Background: The Cube Lattice Framework [4]

Throughout the paper, we make the following assumptions and use the intro-
duced notations. Let r be a relation over the schema R. Attributes of R are
divided in two sets (i) D the set of dimensions, also called categorical or nomi-
nal attributes, which correspond to analysis criteria for OLAP, classification or
concept learning and (ii) M the set of measures (for OLAP) or class attributes.
Moreover, the set of attributes called D is totally ordered (the underlying order is
denoted by <D) and for each attribut A ∈ D, Dim(A) stands for the projection
of r over A.

The multidimensional space of the categorical database relation r groups all
the valid combinations built up by considering the value sets of attributes in D,
which are enriched with the symbolic value ALL. The latter, introduced in [9]
when defining the Cube-By operator, is a generalization of all the possible values
of any dimension (∀A ∈ D, ∀a ∈ Dim(A), {a} ⊂ ALL).

The multidimensional space of r is noted and defined as follows: Space(r)
= {×A ∈ D(Dim(A) ∪ ALL)} ∪ {<∅, . . . , ∅>} where × symbolizes the Carte-
sian product, and <∅, . . . , ∅> stands for the combination of empty values. Any
combination belonging to the multidimensional space is a tuple and represents
a multidimensional pattern.
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Example 1. - Table 1 presents the categorical database relation used all along
the paper to illustrate the introduced concepts. In this relation, Sky, AirTemp
and Humidity are dimensions and EnjoySport is a class. The following tuples
t1 = <S, W, ALL>, t2 = <S, W, N>, t3 = <S, C, N>, t4 = <S, ALL, N>, t5 =
<S, ALL, ALL>, t6 = <ALL, W, ALL> and t7 = <ALL, W, H> are elements of
Space(r).

Table 1. Relation example r

Sky AirTemp Humidity EnjoySport

S W N Yes
S W H Yes
R C H No

The multidimensional space of r is structured by the generalization order be-
tween tuples which is denoted by ≥g. If u ≥g v, we say that u is more general
than v in Space(r). In the multidimensional space of our relation example, we
have: t5 ≥g t2, i.e. t5 is more general than t2 and t2 is more specific than t5.
Moreover any tuple generalizes the tuple <∅, ∅, ∅> and specializes the tuple
<ALL, ALL, ALL>. When applied to a set of tuples, the operators min and
max yield the tuples which are the most general ones in the set or the most
specific ones respectively.

The two basic operators provided for tuple construction are: Sum (denoted by
+) and Product (noted •). The Semi-Product operator (noted �) is a constrained
product used for the candidate generation in levelwise algorithms.

– The Sum of two tuples yields the most specific tuple which generalizes the
two operands. If t = u + v, then we say that t is the Sum of the tuples u
and v. In our example of Space(r), we have t2 + t3 = t4. This means that t4
is built up from (or aggregates data of) the tuples t2 and t3.

– The Product of two tuples yields the most general tuple which specializes
the two operands. If it exists, for these two tuples, a dimension A having
distinct and real world values (i.e. existing in the original relation), then
the only tuple specializing them is the tuple <∅, . . . , ∅> (apart from it, the
tuple sets which can be used to construct them are disjoined). If t = u • v,
then we say that t is the Product of the tuples u and v. In our example of
Space(r), we have t1 • t4 = t2. This means that t1 and t4 generalize t2 and
t2 participates to the construction of t1 and t4 (directly or not). The tuples
t1 and t3 have no common point apart from the tuple of empty values.

In some cases, it is interesting to know the attributes for which the values as-
sociated with a tuple t are different from the value ALL. This is why the func-
tion Attribute is introduced. In our example, we have Attribute(t1) = {Sky,
AirTemp}.

The Semi-Product operator is a constrained product operator useful for can-
didate generation in a levelwise approach [14]. Provided with multidimensional
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patterns at the level i, we only generate candidates of level i+1, if they exist (else
the constrained product yields <∅, . . . , ∅>). Moreover, each tuple is generated
only once. In our example, we have t5 � t6 = t1 and t5 � t7 = <∅, . . . , ∅>.

By providing the multidimensional space of r with the generalization order
between tuples and using the above-defined operators Sum and Product, we de-
fine an algebraic structure which is called cube lattice. Such a structure provides
a sound foundation for multidimensional data mining issues.

Theorem 1. [4] - Let r be a categorical database relation over D ∪ M. The
ordered set CL(r) = 〈Space(r),≥g〉 is a complete, graded, atomistic and coato-
mistic lattice, called cube lattice in which Meet (

∧
) and Join (

∨
) operators are

given by:

1. ∀ T ⊆ CL(r),
∧

T = +t∈T t
2. ∀ T ⊆ CL(r),

∨
T = •t∈T t

Through the following proposition, we characterize the order-embedding from
the cube lattice to the powerset lattice of the whole set of attribute values. For
avoiding ambiguities, we choose to prefix each value by the name of the concerned
attribute.

Proposition 1 - Let L(r) be the powerset lattice of the attribute value set, i.e.
the lattice 〈P(

⋃

A∈D
A.a,∀a ∈ Dim(A)),⊆〉 1. Then it exists an order-embedding:

Φ : CL(r) → L(r)

t �→
{ ⋃

A∈D
A.a,∀a ∈ Dim(A) if t = <∅, . . . , ∅>

{A.t[A] | ∀A ∈ Attribute(t)} elsewhere.

Consequently, we can associate to each categorical relation r a binary relation
Φ(r) = {Φ(t), ∀ t ∈ r}. The latter can be used to apply binary data mining
technics. Let us underline that Φ is not the single order-embedding Φ. We can
construct other order-embedding by associating to each value ai in the dimension
of the attribute A a single binary attribute in the power set lattice of the attribute
value set.

Finally, we have to highlight two important elements in the cube lattice: its
atoms and coatoms. An atom of the cube lattice is a concept similar to the
one-itemsets in the power set lattice (one-itemset are the atoms of the power set
lattice). We denote by At(CL(r)) the atoms of the cube lattice (i.e. {t ∈ CL(r) :
|Φ(t)| = 1}). The atoms of a tuple t, denoted by At(t), constitute the set of the
atoms of the cube lattice which are more general than t (i.e. {t′ ∈ At(CL(r)) :
t′ ≥g t}). The coatoms of the cube lattice, denoted by CAt(CL(r)), represent the
concept dual to the one of atoms of the cube lattice (i.e. {t ∈ CL(r) : |Φ(t)| =
|D|}).
1 P(X) is the powerset of X.



Mining Borders of the Difference of Two Datacubes 395

3 Cube Transversals

When considering the power set lattice L(r) as the search space, a binary pat-
tern X is a transversal of Φ(r) if and only if each transaction t of Φ(r) contains
at least one value of X (X is a transversal of Φ(r) if X is not a subset of any
transactions t of Φ(r) respectively). For example, using our relation example and
the order-embedding Φ, the binary pattern {Sky.S, AirT emp.W} is a transver-
sal of Φ(r). Moreover, this pattern is a minimal transversal of Φ(r) because none
of its subsets is transversal of Φ(r). Unfortunately, in the binary framework, in-
valid multidimensional patterns are computed. For example, the binary pattern
{Sky.S, Sky.R} is a minimal transversal of Φ(r) but it is not a valid multidi-
mensional pattern because each value of this pattern belongs to the very same
attribute Sky. And we know that a multidimensional pattern can only encom-
passes a single value for any given attribute. This is why we have introduced [5]
the concept of minimal cube transversal:

Definition 1. (Cube Transversal) - We define the relation r as the difference
of the coatoms of the cube lattice and the relation r (r = CAt(CL(r))\r). Let
t ∈ CL(r) be a tuple, t is a cube transversal of r over CL(r) iff ∀t′ ∈ r, t + t′ 
=
<ALL, . . . ,ALL>. t is a cube transversal of r iff ∀t′ ∈ r, t �g t′.

Lemma 1. Since the contraint “t is a cube transversal of r (or r)” is a mono-
tone constraint on the cube lattice, the set of cube transversals is a convex space
and thus it can be represented by its minimal border [4]. The set of minimal cube
transversals of r and of r are denoted by cT r(r) and cT r(r) respectively and
defined as follows:

– cT r(r) = min≥g ({t ∈ CL(r) | ∀t′ ∈ r, t + t′ 
= <ALL, . . . ,ALL>})
– cT r(r) = min≥g ({t ∈ CL(r) | ∀t′ ∈ r, t �g t′})

Due to the convex space property, an unseen tuple t is a transversal of r (or r
respectively) if it exists at least a tuple t′ in cT r(r) (cT r(r) resp.) which gen-
eralizes t. Let A be an anti-chain of CL(r) (all tuples of A are not comparable
using ≥g). We can constrain the set of minimal cube transversals of r using A
by enforcing each minimal cube transversal t to be more general than at least
one tuple u of the anti-chain A. The new related definitions are the following:

– cT r(r, A) = {t ∈ cT r(r) | ∃u ∈ A : t ≥g u}
– cT r(r, A) = {t ∈ cT r(r) | ∃u ∈ A : t ≥g u}

Example 2. By considering the multidimensional space of the relation example,
the set of minimal cube transversals of r is {<S, C, ALL>, <S, ALL, H>, < R,
W, ALL >, <ALL, W, H>} and the set of minimal cube transversals of r is
{<S, C, ALL>, <R, W, ALL>, <R, ALL, N>, <ALL, C, N>}. If we constrain
the set cT r(r) with the anti-chain composed by the single tuple <S, C, H>,
we obtain cT r(r, <S, C, H>) = {<S, C, ALL>, <S, ALL, H>}.
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3.1 Optimizing the Discovery of Minimal Cube Transversals

Assessing if a tuple t is whether a cube transversal of r or r can require |r|
evaluations. Minimizing the number of evaluations improves, in practice, the
performance of the algorithm CTR. We introduce a new optimization based on
the Bonferroni inequalities which are applied within the cube lattice framework.
When the sum of the frequency of atoms of t is lower than 1, no condition is
evaluated because t cannot be a cube transversal of r. A dual property is given
for testing if t is a minimal cube transversal of r.

Definition 2. (Frequency) - Let t ∈ CL(r) be a tuple, the frequency of t
(denoted by Freq(t, r)) is the ratio between the number of tuples of r which
are more specific than t and the number of tuples of r. Thus we have:

Freq(t, r) =
|{t′ ∈ r | t ≥g t′}|

|r|

Proposition 2 Let t ∈ CL(r) be a tuple, if t is a cube transversal of r then∑

t′∈At(t)

Freq(t′, r) ≥ 1 and if t is a cube transversal of r then
∑

t′∈At(t)

(1 −
Freq(t′, r)) ≥ 1.

3.2 Finding Minimal Cube Transversals

In [10], it is shown that levelwise mining of minimal hypergraph transversals
improves complexity results proposed by [8]. Using the cube lattice framework,
we propose a levelwise algorithm called CTR (Cube TRansversal) algorithm
which computes minimal cube transversals. The candidate generation step does
not need any backtrack because we update the set cT r at each level and we
use it for the pruning step. We improve our algorithm by a frequency-based
optimization. A levelwise approach works very well when the underlying search
space is a graded lattice, which is case of the cube lattice.

For mining minimal cube transversals of r, we must replace conditions at
lines 9 and 13 by

∑

t′∈At(t)

(1 − Freq(t′, r)) ≥ 1 and l ≥g t respectively.

Complexity of CTR: The complexity of a levelwise algorithm for finding min-
imal transversals of an hypergraph H on a set E is O(2k|E||Tr(H)|) where
k = max({|X | : X ∈ H}) [10]. Using the cube lattice as the search space, this
complexity is preserved with E =

⋃

A∈D
A.a,∀aDim(A), k = |D| and |cT r(r)| <

|Tr(H)| since Φ is an order-embedding but not an order isomorphism.

4 Diff Cube Operator

In ROLAP databases, the relational operator difference is fundamental for an-
alyzing changes betwwen two uni-compatible datacubes (computed at different
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Algorithm 1 CTR Algorithm
Input: Categorical database relation r over D [and an anti-chain A]
Output: cT r(r[,A])
1: i := 1; cT r := {∅}
2: C1 := {t ∈ At(CL(r))}
3: L1 := {t ∈ C1 | t is a cube transversal }
4: C1 := C1\L1

5: while Ci �= ∅ do
6: cT r := cT r ∪ Li

7: Ci+1 := {v = t � t′ | t, t′ ∈ Ci, v �= <∅, . . . , ∅>, �u ∈ cT r : u ≥g v [ and
∃u ∈ A : v ≥g u] }

8: for all t ∈ Ci+1 do
9: if

∑

t′∈At(t)

Freq(t′, r) < 1 then C∗
i+1 := C∗

i+1 ∪ t; Ci+1 := Ci+1\t
10: end for
11: for all t ∈ r do
12: for all unmarked l ∈ Ci+1 do
13: if l + t = <ALL, . . . , ALL> then mark l
14: end for
15: end for
16: Li+1 := {l ∈ Ci+1 | l is unmarked }; Ci+1 := (Ci+1\Li+1) ∪ C∗

i+1

17: i := i + 1
18: end while
19: return cT r

instants by using the function COUNT) of two categorical database relations
(denoted by r+ and r− for uniformity). However, the difference of the two dat-
acubes is not the datacube of the difference of the two relations (datacube(r+)\
datacube(r−) 
= datacube(r+\r−)). We propose a merging algorithm which com-
putes the boundary sets of tuples which are in the difference. Such tuples provide
a condensed representation of (i) the difference of the two related datacubes or
(ii) the most frequent elements in the difference.

4.1 Emerging Tuples

Let minfreq ∈ ]0, 1] a threshold given by the user, a tuple t is emerging if and
only if it satisfies the two following constraints (C1 and C2):

– (C1) Freq(t, r−) = 0 and
– (C2) Freq(t, r+) ≥ minfreq

The set Diff Cube(r+, r−) encompasses all the emerging tuples of r = r+ ∪ r−;
i.e. Diff Cube(r+, r−) = {t ∈ CL(r) | t is emerging}. Thus Diff Cube(r+,
r−) is exactly the difference of the two datacubes of the relations r+ and r−.

In RDBMSs provided with OLAP functionalities, such as IBM DB2 or Mi-
crosoft SQL Server, Diff Cube(r+, r−) can be computed by using the Group
By Cube operator [9] as follows:
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SELECT A1, ..., An

FROM r+

GROUP BY CUBE (A1, ..., An)
HAVING count(*) ≥ minfreq ∗ |r+|

MINUS
SELECT A1, ..., An

FROM r−

GROUP BY CUBE A1, ..., An;

We assume that |r+| and minfreq are thresholds given by the user. Due to the
underlying Cube-By operations, it is obvious that this query is specially time
and space consuming, thus avoiding to evaluated it and instead computing the
borders of its result can be of great interest.

4.2 Finding Borders

The constraint C1 (C2 resp.) is monotone (antimonotone resp.) w.r.t. ≥g, con-
sequently Diff Cube(r+, r−) is a convex space of CL(r) [4] and thus it can
be represented by the sets (borders) S = max≥g (Diff Cube(r+, r−)) and G =
min≥g(Diff Cube(r+, r−)).

The following proposition characterizes the borders of the Diff Cube set:

Proposition 3 Let Diff Cube(r+, r−) be the set of emerging tuples of a cate-
gorical database relation r = r+∪r− and M = max≥g ({t ∈ CL(r+) | Freq(t, r+)
≥ minfreq} then:

1. G = {t ∈ cT r(r−) on CL(r+) | Freq(t, r+) ≥ minfreq}
2. S = {t ∈ M | ∃t′ ∈ G : t′ ≥g t}

With the following propositions, the borders S and G of Diff Cube(r+, r−)
can be computed in an efficient way and a merging algorithm can be designed
to enforce such a computation.

Proposition 4 Let Diff Cube(r+, r−) be the difference of the datacube of r+

and the one of r− and M = max≥g ({t ∈ CL(r+) | Freq(t, r+) ≥ minfreq}
thus: ∀t ∈ cT r(r+), t ∈ G ⇒ �u ∈ M\S : t ≥g u.

Proposition 5 Let r = r1 ∪ r2 be a categorical database relation, cT r(r1) and
cT r(r2) the minimal cube transversals of r1 and r2 respectively. If cT r(r1) is
empty, we consider that cT r(r1) = {<∅, . . . , ∅>} (idem for cT r(r2)), thus we
have: cT r(r) = min≥g({t • t′ 
= <∅, . . . , ∅> | t ∈ cT r(r1) and t′ ∈ cT r(r2)}).
For finding S and G in our new context, we propose the merging algorithm
Diff Cube. Our algorithm includes the function Max Set Algorithm which dis-
covers maximal frequent multidimensional patterns. It could be enforced by mod-
ifying algorithms such as Max-Miner [1]. The correctness of Diff Cube algorithm
is given by propositions 3, 4 and 5. Its complexity is similar to the complexity
of the CTR algorithm.
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Algorithm 2 Algorithm Diff Cube
Input: r+, r− = r−1 , ..., r−p �= {∅}
Output: S, G
1: M := Max Set Algorithm(r+, minfreq)
2: S = {t ∈ M | t is a cube transversal of r− on CL(r+)}
3: G := {<∅, . . . , ∅>}
4: for i := 1 to p do

5: G′ := {t ∈ cT r(r−i , S) on CL(r+)} \\ use CTR algorithm
6: G′ := G′\{t ∈ G′ | ∃u ∈ M\S : u ≥g t}
7: if G′ �= {∅} then
8: for all t ∈ M do
9: for all tuple t′ ∈ G′ unmarked do

10: if t′ ≥g t then mark t′

11: end for
12: end for
13: G′ := {t ∈ G′ | t is marked }
14: G := min≥g ({v = t • t′ | v �= <∅, . . . , ∅>, t ∈ G and t′ ∈ G′})
15: end if
16: end for
17: return S, G

Example 3. - Let us consider r+ = {t ∈ r | t[EnjoySport] = ‘Y es′}, the relation
r− = {t ∈ r | t[EnjoySport] = ‘No′} and minfreq = 1/2. Then, we have:

– M = {<S, W, N>, <S, W, H>}
– G = {<S, ALL, ALL>, <ALL, W, ALL>, <ALL, ALL, N>}
– S = {<S, W, N>, <S, W, H>}

5 Conclusion

The presented work results from a cross-fertilization between the research fields
of discrete mathematics, database and machine learning. We introduce the con-
cept of the cube transversals of a categorical database relation. This concept
is used to the problem of computing the difference of two uni-compatible dat-
acubes, a new OLAP functionality which can provides users with a focus on new
trends emerging from data sets collected at different points along the time. To
the best of the author knowledge it is the first time that the problem of the dif-
ference of two uni-compatible datacubes (without computing the two cubes) is
studied. Set operations on convex spaces of cube lattices are an interesting future
work. They allow a merging approach for mining boundary sets of constrained
multidimensional patterns (with arbitrary monotone and/or antimonotone con-
straints).
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