
A Generalized Gale-Shapley Algorithm for a
Discrete-Concave Stable-Marriage Model�

Akinobu Eguchi1, Satoru Fujishige2, and Akihisa Tamura2

1 Panasonic Mobile Communications Co., Ltd.
2 Research Institute for Mathematical Sciences, Kyoto University,

Kyoto 606-8502, Japan,
{fujishig,tamura}@kurims.kyoto-u.ac.jp

Abstract. The stable marriage model due to Gale and Shapley is one
of the most fundamental two-sided matching models. Recently, Fleiner
generalized the model in terms of matroids, and Eguchi and Fujishige
extended the matroidal model to the framework of discrete convex anal-
ysis. In this paper, we extend their model to a vector version in which
indifference on preferences is allowed, and show the existence of a stable
solution by a generalization of the Gale-Shapley algorithm.

1 Introduction

The stable marriage model due to Gale and Shapley [7] is one of the most
fundamental two-sided matching models. In the original stable marriage model,
there are two sets of n men and n women, and each person arbitrarily gives a
strict preference order on persons of the opposite gender. A matching is a set
of n disjoint pairs of men and women, and is called stable if there is no pair
whose members prefer each other to their partners in the matching. Gale and
Shapley [7] gave a constructive proof of existence of a stable matching in 1962.
Since the advent of their paper a lot of variations and extensions have been
proposed in the literature. Recently, a remarkable extension has been made by
Fleiner [3,5] (also see [4]). Fleiner [3] extended the stable marriage model to
the framework of matroids, showed existence of a stable solution, and examined
a lattice structure and a polyhedral characterization of stable solutions in his
matroidal model. Fleiner [4] also gave a strong framework to show existence
of a stable solution and a lattice structure of stable solutions by utilizing the
Knaster-Tarski fixed point theorem. While in the model of Fleiner [3] preference
of each person is described by a linear utility function on a matroidal domain,
Eguchi and Fujishige [2] extended the matroidal model [3] to the framework
of discrete convex analysis which was recently developed by Murota [8,9,10] as
a unified framework of discrete optimization. In their model, each agent can
express his/her preference by a discrete concave function, called an M�-concave
function.
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In this paper, we provide a general two-sided model including the Eguchi-
Fujishige model as a special case (see Section 3). Our model has the following
features (also see a model in Remark 1 in Section 2):

– the preference of agents on each side over the agents on the other side is
expressed by an M�-concave function, and indifference on preferences is al-
lowed,

– each pair is permitted to form multiple partnerships.

We propose a generalization of the Gale-Shapley algorithm to show our main
theorem claiming that there always exists a stable solution in our model.

This paper is organized as follows. Section 2 explains M�-concavity together
with its properties and describes our model based on discrete convex analysis.
Section 3 gives several existing models that are special cases of our model. In
Section 4 we propose an algorithm for finding a stable solution and prove its
correctness, which shows our main theorem on existence of a stable solution in
our general model. Section 5 gives remarks on time complexity.

2 A General Model

2.1 Preliminaries

We first introduce an M�-concave function. Let V be a nonempty finite set, and
Z and R be the sets of integers and reals, respectively. We define the positive
support and the negative support of x = (x(v) : v ∈ V ) ∈ ZV , respectively, by

supp+(x) = {v ∈ V | x(v) > 0}, supp−(x) = {v ∈ V | x(v) < 0}. (1)

For any x, y ∈ ZV , the vectors x ∧ y and x ∨ y in ZV are defined by

x ∧ y(v) = min{x(v), y(v)}, x ∨ y(v) = max{x(v), y(v)} (v ∈ V ). (2)

For each S ⊆ V , we denote by χS the characteristic vector of S defined by
χS(v) = 1 if v ∈ S; otherwise 0, and simply write χu instead of χ{u} for each
u ∈ V . For a function f : ZV → R ∪ {−∞}, we define the set of maximizers of
f on U ⊆ ZV by

arg max{f(y) | y ∈ U} = {x ∈ U | ∀y ∈ U : f(x) ≥ f(y)}, (3)

and the effective domain of f by

dom f = {x ∈ ZV | f(x) > −∞}. (4)

A function f : ZV → R ∪ {−∞} with dom f 
= ∅ is called M�-concave [11] if it
satisfies

(−M�-EXC) ∀x, y ∈ dom f, ∀u ∈ supp+(x− y), ∃v ∈ supp−(x− y) ∪ {0} :

f(x) + f(y) ≤ f(x− χu + χv) + f(y + χu − χv), (5)

where χ0 is a zero vector.
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A simple example of an M�-concave function is given as follows.

Example 1. Let I be the family of independent sets of a matroid on V and
w ∈ RV . Then, a function f : ZV → R ∪ {−∞} defined by

f(x) =
{∑

v∈I w(v) (if x = χI for I ∈ I)
−∞ (otherwise) (x ∈ ZV ) (6)

is M�-concave.

An M�-concave function has nice features as a utility function from the point
of view of mathematical economics. A utility function is usually assumed to
be concave in mathematical economics. For any M�-concave function f : ZV →
R∪{−∞}, there exists a concave function f̄ : RV → R∪{−∞} with f̄(x) = f(x)
for any x ∈ ZV [8], that is, any M�-concave function on ZV has a concave
extension on RV . A utility function usually has decreasing marginal returns,
which is equivalent to submodularity in the discrete case. This is also the case
for M�-concave functions [12], i.e., any M�-concave function f on ZV satisfies

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (x, y ∈ dom f). (7)

M�-concave functions enjoy some other combinatorially nice properties (see [6,
13]).

2.2 Model Description and the Main Theorem

Now we introduce our model. Let M and W denote two disjoint sets of agents
and V be a finite set. In our model, utilities of M and W over V are described by
M�-concave functions fM , fW : ZV → R∪{−∞}, respectively. In the exemplary
models described in Section 3, M and W denote disjoint sets of agents, and we
have V = M ×W , where fM and fW can be regarded as aggregations of utilities
of M -agents and W -agents in these models, respectively (see Remark 1 given
below). Furthermore, we assume that fM and fW satisfy the following condition:

(A) Effective domains dom fM and dom fW are bounded and hereditary, and
have a common minimum point 0,

where the heredity means that 0 ≤ x1 ≤ x2 ∈ dom fM (respectively dom fW )
implies x1 ∈ dom fM (respectively dom fW ).

We say that x ∈ dom fM ∩ dom fW is an fMfW -stable solution if there exist
disjoint subsets VM and VW of V and vectors zM ∈ ZVM and zW ∈ ZVW such
that

x ∈ arg max{fM (y) | y ∈ ZV , y|VM
≤ zM}, (8)

x ∈ arg max{fW (y) | y ∈ ZV , y|VW
≤ zW }, (9)

where y|VM
(resp. y|VW

) denotes the restriction of y on VM (resp. VW ). Since
dom fM and dom fW are bounded due to Assumption (A), there exists z ∈ ZV
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such that y ≤ z for all y ∈ dom fM ∩dom fW . We see that x ∈ dom fM ∩dom fW

is an fMfW -stable solution if and only if there exist zM , zW ∈ ZV satisfying the
following (10)∼(12):

z = zM ∨ zW , (10)
x ∈ arg max{fM (y) | y ∈ ZV , y ≤ zM}, (11)
x ∈ arg max{fW (y) | y ∈ ZV , y ≤ zW }. (12)

In the sequel we will use (10)∼(12) instead of (8) and (9).
Our main result claims nonemptiness of the set of fMfW -stable solutions of

our model.

Theorem 1 (Main Theorem). For any M�-concave functions fM , fW : ZV →
R ∪ {−∞} satisfying (A), there always exists an fMfW -stable solution.

A constructive proof of the main theorem will be given in Section 4 by using
a generalized Gale-Shapley algorithm.

Remark 1. In our model given above each of M and W is regarded as a single
aggregate agent but it can be interpreted as a set of agents as follows. Let
M = {1, · · · , m}, W = {1, · · · , w}, and V = M ×W . Also define Vi = {i} ×W
(i ∈M) and Vj = M ×{j} (j ∈W ). Suppose that each agent i ∈M has an M�-
concave utility function fi : ZVi → R∪ {−∞} on Vi and that each agent j ∈W
has an M�-concave utility function fj : ZVj → R ∪ {−∞} on Vj . Aggregations
fM (x) =

∑
i∈M fi(x|Vi

) and fW (x) =
∑

j∈W fj(x|Vj
) are also M�-concave. It

should be noted that this modified model is equivalent to our original model. �

3 Existing Special Models

In this section we explain some existing models that are special cases of our
model. In these models there are two disjoint sets of agents M = {1, · · · , m} and
W = {1, · · · , w}. The pairs of agents in M and W may be recognized as those of
men and women. We denote by V the set of all pairs of agents of M and W , i.e.,
V = M ×W . For each pair (i, j) ∈ V , a pair (aij , bij) is given, where aij and bij

can be interpreted as utilities (or profits) of i and j, respectively, provided that
they are paired. Here, we assume that either aij ≥ 0 or aij = −∞ and we say j
is acceptable to i if aij ≥ 0 and similarly, for bij .

Although there are several variations of the stable marriage model, we explain
one of comprehensive variations. In this model each agent ranks the agents on
the opposite side, where unacceptability and indifference are allowed. In our
context, agent i ∈M prefers j1 to j2 if aij1 > aij2 , and j1 and j2 are indifferent
for agent i if aij1 = aij2 (similarly, preferences of each j ∈ W are defined from
bij ’s). The model deals with the stability of matchings, where a matching is a
subset of V such that every agent appears at most once in the subset. Given a
matching X, i ∈ M (resp. j ∈ W ) is called unmatched in X if there exists no
j ∈ W (resp. i ∈ M) such that (i, j) ∈ X. A pair (i, j) 
∈ X is said to be a
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blocking pair for X if i and j prefer each other to their partners or being alone in
X. A matching X is called stable if each pair (i, j) in X is acceptable for i and j,
and if there is no blocking pair for X. It is well-known that any instance of the
above model has a stable matching, originally proved by Gale and Shapley [7].

Recently, Fleiner [3] has generalized the above model to matroids. A triple
M = (V, I, >) is called an ordered matroid, if (V, I) is a matroid on ground set
V with family I of independent sets and > is a linear order on V . A subset X of
V dominates element v ∈ V if v ∈ X or there exists an independent set Y ⊆ X
such that {v} ∪ Y 
∈ I and u > v for all u ∈ Y . The set of elements dominated
by X is denoted by DM(X). Given two ordered matroids MM = (V, IM , >M )
and MW = (V, IW , >W ) on the same ground set V , a subset X of V is called
anMMMW -kernel if X is a common independent set ofMM andMW , and if
any element v ∈ V is dominated by X in MM or MW , that is, if the following
condition holds:

X ∈ IM ∩ IW and DMM
(X) ∪DMW

(X) = V. (13)

For example, given a stable marriage instance (M, W, {aij}, {bij}) without indif-
ferent preferences, we can construct an equivalent instance in terms of matroids
as follows. Let V be the set of pairs (i, j) with aij , bij > −∞. Assume that
(V, IM ) is the partition matroid on V defined by disjoint sets Vi = {i} × W
(i ∈M) and that (V, IW ) is the partition matroid on V defined by disjoint sets
Vj = M × {j} (j ∈W ). Thus, X is a matching if and only if X ∈ IM ∩ IW . We
next define linear orders >M and >W on V so that (i, j1) >M (i, j2) whenever
aij1 > aij2 , and that (i1, j) >W (i2, j) whenever bi1j > bi2j . By the definitions of
the linear orders, a matching X is anMMMW -kernel if and only if for each pair
(i, j) 
∈ X there exists (i, j′) in X such that (i, j′) >M (i, j), or (i′, j) in X such
that (i′, j) >W (i, j). Thus, the set of MMMW -kernels coincides with the set
of stable matchings. The matroidal model also includes a many-to-many stable
matching model, called stable b-matching model. We remark that the matroidal
model can easily be modified so that indifference in preferences is admissible.
Fleiner [3] showed that any instance of the matroidal model has an MMMW -
kernel.

Quite recently, Eguchi and Fujishige [2] proposed a model in terms of M�-
concavity, which is a set version of our model in which dom fM , dom fW ⊆
{0, 1}V and for any distinct x, y ∈ dom fM (resp. x, y ∈ dom fW ) fM (x) 
= fM (y)
(resp. fW (x) 
= fW (y)). For convenience, we identify a subset of V with its
characteristic vector. The matroidal model described above can be recognized as
a special case of this model with linear utility functions. LetMM = (V, IM , >M )
andMW = (V, IW , >W ) be an instance of the matroidal model. We define linear
orders >M and >W by positive numbers {av} and {bv} as au > av ⇐⇒ u >M v
and bu > bv ⇐⇒ u >W v. Also define functions fM and fW by

fM (X) =
{∑

v∈X av (X ∈ IM )
−∞ (X 
∈ IM ), fW (X) =

{∑
v∈X bv (X ∈ IW )

−∞ (X 
∈ IW ). (14)

Then fM and fW are M�-concave because these are linear on independence
families of matroids. For an independent set X ofMM and Z ⊆ V with X ⊆ Z,
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we have that X ∈ arg max{fM (Y ) | Y ⊆ Z} if and only if Z ⊆ DMM
(X), by the

optimality criterion of maximum weight independent sets of a matroid (the same
statement for MW also holds). Thus, a subset X of V is an MMMW -kernel if
and only if it is fMfW -stable. Eguchi and Fujishige [2] showed that any instance
of their model has an fMfW -stable solution.

Therefore, our model includes all of the above models. Moreover, our model
admits multiplicity for each element of V . For example, our model naturally
deals with the following problem. The same numbers of men and women attend
a dance party at which each person dances a waltz k times and he/she can
dance with the same person of the opposite gender time after time. The problem
is to find an “agreeable” assignment of dance partners, in which each person is
assigned at most k persons of the opposite gender with possible repetition. If
preferences of assignments of dance partners for each person can be expressed
by an M�-concave function (see Remark 1 in Section 2), then our model gives a
solution.

4 A Generalized Gale-Shapley Algorithm

In this section we prove our main theorem, Theorem 1, by giving an algorithm for
finding x, zM , zW ∈ ZV satisfying (10)∼(12). This algorithm is a generalization
of the Gale-Shapley algorithm.

Before describing the algorithm, we show two fundamental properties of M�-
concave functions as Lemmas 1 and 2, which hold without Assumption (A).

Lemma 1. Let f : ZV → R∪{−∞} be an M�-concave function and z1, z2 ∈ ZV

be such that z1 ≥ z2, arg max{f(y) | y ≤ z1} 
= ∅, and arg max{f(y) | y ≤ z2} 
=
∅.
(a) For any x1 ∈ arg max{f(y) | y ≤ z1}, there exists x2 such that

x2 ∈ arg max{f(y) | y ≤ z2} and z2 ∧ x1 ≤ x2. (15)

(b) For any x2 ∈ arg max{f(y) | y ≤ z2}, there exists x1 such that

x1 ∈ arg max{f(y) | y ≤ z1} and z2 ∧ x1 ≤ x2. (16)

Proof. (a): Let x2 be an element in arg max{f(y) | y ≤ z2} that minimizes∑{x1(v)− x2(v) | v ∈ supp+((z2 ∧ x1)− x2)}. We show z2 ∧ x1 ≤ x2. Suppose,
to the contrary, that there exists u ∈ V with min{z2(u), x1(u)} > x2(u). Then
u ∈ supp+(x1−x2). By (−M�-EXC), there exists v ∈ supp−(x1−x2)∪{0} such
that

f(x1) + f(x2) ≤ f(x1 − χu + χv) + f(x2 + χu − χv). (17)

If v 
= 0, then x1(v) < x2(v) ≤ z2(v) ≤ z1(v). Hence we have x1 − χu + χv ≤ z1,
which implies f(x1) ≥ f(x1 − χu + χv). This together with (17) yields f(x2) ≤
f(x2 +χu−χv). Moreover, since z2(u) > x2(u), we have x′

2 = x2 +χu−χv ≤ z2.
It follows that x′

2 ∈ arg max{f(y) | y ≤ z2} and x′
2(v) ≥ min{z2(v), x1(v)} if

v 
= 0, which contradicts the minimality condition of x2.
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(b): Let x1 be an element in arg max{f(y) | y ≤ z1} that minimizes∑{x1(u) − x2(u) | u ∈ supp+((z2 ∧ x1) − x2)}. We show z2 ∧ x1 ≤ x2. Sup-
pose, to the contrary, that there exists u ∈ V with min{z2(u), x1(u)} > x2(u).
Then u ∈ supp+(x1−x2). By (−M�-EXC), there exists v ∈ supp−(x1−x2)∪{0}
such that

f(x1) + f(x2) ≤ f(x1 − χu + χv) + f(x2 + χu − χv). (18)

Since x2(u) < z2(u), we have x2 + χu − χv ≤ z2, which implies f(x2) ≥ f(x2 +
χu − χv). This together with (18) yields f(x1) ≤ f(x1 − χu + χv). Obviously
x′

1 = x1 − χu + χv ≤ z1. However, this contradicts the minimality condition of
x1 because x2(v) ≥ min{z2(v), x′

1(v)} if v 
= 0. ��

Lemma 2. For an M�-concave function f : ZV → R ∪ {−∞} and a vector
z1 ∈ ZV suppose that arg max{f(y) | y ≤ z1} 
= ∅. For any x ∈ arg max{f(y) |
y ≤ z1} and any z2 ∈ ZV such that (1) z2 ≥ z1 and (2) if x(v) = z1(v), then
z2(v) = z1(v), we have x ∈ arg max{f(y) | y ≤ z2}.

Proof. Assume to the contrary that the assertion is not satisfied. Let x′ be a
point such that x′ ≤ z2, f(x′) > f(x), and x′ minimizes

∑{x′(v) − z1(v) |
v ∈ supp+(x′ − z1)} among such points. By the assumption, there exists u ∈ V
with x′(u) > z1(u) > x(u). By (−M�-EXC) for x′, x, and u, there exists v ∈
supp−(x′ − x) ∪ {0} such that

f(x′) + f(x) ≤ f(x′ − χu + χv) + f(x + χu − χv). (19)

Since x + χu − χv ≤ z1, we have f(x) ≥ f(x + χu − χv), which implies f(x′) ≤
f(x′ − χu + χv). Obviously, x′ − χu + χv ≤ z2, However, this contradicts the
minimality condition of x′ because if v 
= 0, then z1(v) ≥ x(v) > x′(v). ��

It should be noted that Lemma 2 holds for any function f on ZV that has a
concave extension on RV .

To describe an algorithm for finding x, zM , zW ∈ ZV satisfying (10)∼(12), we
assume that we are initially given xM , xW , zM , zW ∈ ZV satisfying the following:

z = zM ∨ zW , (20)
xM ∈ arg max{fM (y) | y ≤ zM}, (21)
xW ∈ arg max{fW (y) | y ≤ zW ∨ xM}, (22)
xW ≤ xM . (23)

We can easily compute such vectors by setting zM = z, zW = 0, and by finding
xM and xW such that

xM ∈ arg max{fM (y) | y ≤ zM}, xW ∈ arg max{fW (y) | y ≤ xM}. (24)

The algorithm is given as follows.
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Algorithm GS(fM , fW , xM , xW , zM , zW )
Input: M�-concave functions fM , fW and

xM , xW , zM , zW satisfying (20), (21), (22), (23) ;
repeat {

let xM be any element in arg max{fM (y) | xW ≤ y ≤ zM} ;
let xW be any element in arg max{fW (y) | y ≤ xM} ;
for each v ∈ V with xM (v) > xW (v) {

zM (v)← xW (v) ;
zW (v)← z(v) ;

} ;
} until xM = xW ;
return (xM , zM , zW ∨ xM ).

It should be noted here that because of Assumption (A) xM and xW are well-
defined within the effective domains and that Algorithm GS terminates after at
most

∑
v∈V z(v) iterations, because

∑
v∈V zM (v) is strictly decreased at each

iteration. In order to show that the outputs of Algorithm GS satisfy (10)∼(12),
we will show two lemmas, Lemmas 3 and 4.

Let x
(i)
M , x

(i)
W , z

(i)
M , and z

(i)
W be xM , xW , zM , and zW obtained after the ith

iteration in Algorithm GS for i = 1, 2, · · · , t, where t is the last to get the outputs.
For convenience, let us assume that x

(0)
M , x

(0)
W , z

(0)
M , and z

(0)
W are the input vectors.

Lemma 3. For each i = 0, 1, · · · , t, we have

x
(i+1)
M ∈ arg max

{
fM (y)

∣∣∣ y ≤ z
(i)
M

}
. (25)

Proof. We prove (25) by induction on i. For i = 0, (25) holds from (21) and (23).
We assume that for some l with 0 ≤ l < t (25) holds for any i ≤ l, and we show
(25) for i = l + 1. Since x

(l+1)
M ∈ arg max{fM (y) | y ≤ z

(l)
M } and z

(l)
M ≥ z

(l+1)
M ,

Lemma 1 (a) guarantees the existence of an x ∈ arg max{fM (y) | y ≤ z
(l+1)
M }

with z
(l+1)
M ∧x

(l+1)
M ≤ x, which implies (25) for i = l+1 because z

(l+1)
M ∧x

(l+1)
M =

x
(l+1)
W by the modification of zM . ��

Lemma 4. For each i = 0, 1, · · · , t, we have

x
(i)
W ∈ arg max

{
fW (y)

∣∣∣ y ≤ z
(i)
W ∨ x

(i)
M

}
. (26)

Proof. We show (26) by induction on i. For i = 0, (26) holds by (22). We assume
that for some l with 0 ≤ l < t (26) holds for any i ≤ l, and we show (26) for
i = l + 1. By the definition of xM , we have

x
(l+1)
M ≥ x

(l)
W . (27)

By Lemma 1 (b) and the assumption, there exists x such that

x ∈ arg max
{

fW (y)
∣∣∣ y ≤ z

(l)
W ∨ x

(l)
M ∨ x

(l+1)
M

}
(28)

and
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(
z
(l)
W ∨ x

(l)
M

)
∧ x ≤ x

(l)
W . (29)

From (27), (28), and (29), we have x ≤ x
(l+1)
M and hence fW (x) = fW (x(l+1)

W ).
If z

(l+1)
W = z

(l)
W , then we immediately obtain (26) for i = l + 1. So, we assume

that z
(l+1)
W 
= z

(l)
W . By the modification of zW , we have x

(l+1)
W (v) < x

(l+1)
M (v) if

z
(l)
W (v) < z

(l+1)
W (v). Hence, by Lemma 2, (26) holds for i = l + 1. ��

The correctness of Algorithm GS follows from Lemmas 3 and 4.

Theorem 2. The outputs of Algorithm GS satisfy (10) ∼ (12).

Proof. From Lemmas 3 and 4 we have for i = t

xM ∈ arg max
{

fM (y)
∣∣∣ y ≤ z

(t)
M

}
, (30)

xW ∈ arg max
{

fW (y)
∣∣∣ y ≤ z

(t)
W ∨ x

(t)
M

}
, (31)

xM = xW . (32)

By the way of modifying zM , zW , and xM , we have

z
(t)
M ∨

(
z
(t)
W ∨ x

(t)
M

)
= z. (33)

This completes the proof of this theorem. ��
Our main result, Theorem 1, is a direct consequence of Theorem 2.

5 Remarks on Time Complexity

We finally discuss the oracle complexities of the problems of finding an fMfW -
stable solution and of checking whether a given point is fMfW -stable, provided
that the function value f(x) of a given M�-concave function f can be calculated
in constant time for each point x.

Algorithm GS solves the maximization problem of an M�-concave function in
each iteration. It is known that a maximizer of an M�-concave function f on V
can be found in polynomial time in n and log L, where n = |V | and L = max{||x−
y||∞ | x, y ∈ dom f}. For example, O(n3 log L)-time algorithms are proposed in
[14,15]. Since Algorithm GS terminates after at most

∑
v∈V z(v) iterations, the

oracle time complexity of Algorithm GS is O(poly(n) · L), where L = ||z||∞.
Unfortunately, there exist a series of examples in which Algorithm GS requires
numbers of iterations proportional to L. While it is known that an fMfW -stable
solution can be found in polynomial time in n for the special case where fM

and fW are linear on rectangular effective domains [1], it is open whether an
fMfW -stable solution for the general case can be found in polynomial time in n
and log L.

On the other hand, the problem of checking whether a given point x ∈
dom fM ∩ dom fW is fMfW -stable, can be solved in O(n2) time by using the
following local criterion of the fMfW -stability.
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Lemma 5. A point x ∈ dom fM ∩ dom fW is fMfW -stable if and only if it
satisfies the following conditions:

for each u ∈ V, fM (x) ≥ fM (x− χu) and fW (x) ≥ fW (x− χu), (34)
for each u ∈ V, fM (x) ≥ fM (x + χu − χv) (∀v ∈ V ∪ {0}) or

fW (x) ≥ fW (x + χu − χw) (∀w ∈ V ∪ {0}). (35)
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