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Abstract. The stable marriage model due to Gale and Shapley is one
of the most fundamental two-sided matching models. Recently, Fleiner
generalized the model in terms of matroids, and Eguchi and Fujishige
extended the matroidal model to the framework of discrete convex anal-
ysis. In this paper, we extend their model to a vector version in which
indifference on preferences is allowed, and show the existence of a stable
solution by a generalization of the Gale-Shapley algorithm.

1 Introduction

The stable marriage model due to Gale and Shapley [7] is one of the most
fundamental two-sided matching models. In the original stable marriage model,
there are two sets of n men and n women, and each person arbitrarily gives a
strict preference order on persons of the opposite gender. A matching is a set
of n disjoint pairs of men and women, and is called stable if there is no pair
whose members prefer each other to their partners in the matching. Gale and
Shapley [7] gave a constructive proof of existence of a stable matching in 1962.
Since the advent of their paper a lot of variations and extensions have been
proposed in the literature. Recently, a remarkable extension has been made by
Fleiner [35] (also see [4]). Fleiner [3] extended the stable marriage model to
the framework of matroids, showed existence of a stable solution, and examined
a lattice structure and a polyhedral characterization of stable solutions in his
matroidal model. Fleiner [4] also gave a strong framework to show existence
of a stable solution and a lattice structure of stable solutions by utilizing the
Knaster-Tarski fixed point theorem. While in the model of Fleiner [3] preference
of each person is described by a linear utility function on a matroidal domain,
Eguchi and Fujishige [2] extended the matroidal model [3] to the framework
of discrete convex analysis which was recently developed by Murota [RI9IT0] as
a unified framework of discrete optimization. In their model, each agent can
express his/her preference by a discrete concave function, called an M?-concave
function.
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In this paper, we provide a general two-sided model including the Eguchi-
Fujishige model as a special case (see Section [3]). Our model has the following
features (also see a model in Remark [l in Section [2)):

— the preference of agents on each side over the agents on the other side is
expressed by an M?-concave function, and indifference on preferences is al-
lowed,

— each pair is permitted to form multiple partnerships.

We propose a generalization of the Gale-Shapley algorithm to show our main
theorem claiming that there always exists a stable solution in our model.

This paper is organized as follows. Section [ explains M*-concavity together
with its properties and describes our model based on discrete convex analysis.
Section [ gives several existing models that are special cases of our model. In
Section H] we propose an algorithm for finding a stable solution and prove its
correctness, which shows our main theorem on existence of a stable solution in
our general model. Section [f] gives remarks on time complexity.

2 A General Model

2.1 Preliminaries

We first introduce an Mf-concave function. Let V be a nonempty finite set, and
Z and R be the sets of integers and reals, respectively. We define the positive
support and the negative support of z = (z(v) : v € V) € ZY, respectively, by

suppt(z) ={v eV |z(v) >0}, supp (z)={veV|z(v) <0} (1)
For any z,y € ZV, the vectors x Ay and x V y in ZY are defined by
z Ay(v) =min{z(v),y(v)}, 2Vy@)=max{z(v) yv)} (WeV). (2)

For each S C V, we denote by xs the characteristic vector of S defined by
xs(v) = 1if v € S; otherwise 0, and simply write x,, instead of xy,; for each
u € V. For a function f: ZY — R U {—oc0}, we define the set of maximizers of
fonUCZY by

argmax{f(y) |y c Ut ={z €U |VyeU: f(z) > f(y)}, 3)
and the effective domain of f by
domf ={xecZ" | f(z) > —oo}. (4)

A function f : Z¥ — R U {—oo} with dom f # () is called M?-concave [11] if it
satisfies

(—=M?-EXC) Vz,y € dom f, Yu € supp™ (z — ), Jv € supp~ (z — y) U {0} :

f@)+ f(y) < flz—Xu+ Xx0) + FW+ Xu — X0)5 (5)

where X is a zero vector.
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A simple example of an Mf-concave function is given as follows.

Example 1. Let Z be the family of independent sets of a matroid on V and
w € RY. Then, a function f:ZY — R U {—oo} defined by

o= {Zer e (oD ey

is Mb-concave.

An MP-concave function has nice features as a utility function from the point
of view of mathematical economics. A utility function is usually assumed to
be concave in mathematical economics. For any Mf-concave function f : Z¥ —
RU{—00}, there exists a concave function f : RV — RU{—oc} with f(z) = f(x)
for any z € ZV [8], that is, any Mf-concave function on Z' has a concave
extension on RY. A utility function usually has decreasing marginal returns,
which is equivalent to submodularity in the discrete case. This is also the case
for Mf-concave functions [1Z], i.e., any Mf-concave function f on Z" satisfies

f@)+fly) > flzvy +flxAy)  (z,y € domf). (7)

M&-concave functions enjoy some other combinatorially nice properties (see [6]
13]).

2.2 Model Description and the Main Theorem

Now we introduce our model. Let M and W denote two disjoint sets of agents
and V be a finite set. In our model, utilities of M and W over V are described by
M?-concave functions fas, fir : Z¥ — RU{—o00}, respectively. In the exemplary
models described in Section Bl M and W denote disjoint sets of agents, and we
have V.= M x W, where fj; and fir can be regarded as aggregations of utilities
of M-agents and W-agents in these models, respectively (see Remark [Il given
below). Furthermore, we assume that fa; and fiyy satisfy the following condition:

(A) Effective domains dom fj; and dom fy are bounded and hereditary, and
have a common minimum point O,

where the heredity means that 0 < 7 < x5 € dom fj; (respectively dom fy)
implies 21 € dom fjs (respectively dom fyy).

We say that = € dom fyy Ndom fy is an fys fiy -stable solution if there exist
disjoint subsets V3, and Vi of V' and vectors zp; € ZV™ and zw € ZY" such
that

x € argmax{fu(y) |y € Z", ylv,, < 2m}, (8)
z € argmax{fw(y) |y € Z", ylv,, < 2w}, (9)

where y|v,, (resp. y|v;,) denotes the restriction of y on Vs (resp. V). Since
dom f); and dom fy are bounded due to Assumption (A), there exists z € ZY
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such that y < z for all y € dom f; Ndom fy. We see that = € dom fj; Ndom fy
is an fys fyy-stable solution if and only if there exist zys, zw € ZY satisfying the

following (IQ)~([T2):

z=2zm V2w, (10)
v € argmax{fu(y) |y € 2", y < zu}, (11)
r € argmax{fiw(y) |y € Z", y < zw}. (12)

In the sequel we will use ([0)~(I2)) instead of () and (@).
Our main result claims nonemptiness of the set of fj; fy-stable solutions of
our model.

Theorem 1 (Main Theorem). For any M?-concave functions fur, fw : Z¥ —
R U {—oo} satisfying (A), there always exists an far fw -stable solution.

A constructive proof of the main theorem will be given in Section [ by using
a generalized Gale-Shapley algorithm.

Remark 1. In our model given above each of M and W is regarded as a single
aggregate agent but it can be interpreted as a set of agents as follows. Let
M=A{1--- m}, W={1,---,w},and V=M x W. Also define V; = {i} x W
(i€ M)and V; = M x {j} (j € W). Suppose that each agent i € M has an M"-
concave utility function f; : Z¥* — RU{—oc} on V; and that each agent j € W
has an M?-concave utility function f; : Z'5 — R U {—occ} on V;. Aggregations
fu(x) = 32 cn filzly) and fw(z) = 32,0 fi(zly;) are also ME-concave. Tt
should be noted that this modified model is equivalent to our original model. O

3 Existing Special Models

In this section we explain some existing models that are special cases of our
model. In these models there are two disjoint sets of agents M = {1,---,m} and
W ={1,---,w}. The pairs of agents in M and W may be recognized as those of
men and women. We denote by V' the set of all pairs of agents of M and W, i.e.,
V =M x W. For each pair (i,j) € V, a pair (a;;, b;;) is given, where a,; and b;;
can be interpreted as utilities (or profits) of ¢ and j, respectively, provided that
they are paired. Here, we assume that either a;; > 0 or a;; = —oo and we say j
is acceptable to i if a;; > 0 and similarly, for b;;.

Although there are several variations of the stable marriage model, we explain
one of comprehensive variations. In this model each agent ranks the agents on
the opposite side, where unacceptability and indifference are allowed. In our
context, agent ¢ € M prefers ji to jo if a;5, > ai;,, and j1 and jo are indifferent
for agent i if a;;, = a;j, (similarly, preferences of each j € W are defined from
b;;’s). The model deals with the stability of matchings, where a matching is a
subset of V' such that every agent appears at most once in the subset. Given a
matching X, ¢ € M (resp. j € W) is called unmatched in X if there exists no
j € W (resp. i € M) such that (¢,5) € X. A pair (i,5) ¢ X is said to be a
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blocking pair for X if ¢ and j prefer each other to their partners or being alone in
X. A matching X is called stable if each pair (4,7) in X is acceptable for ¢ and j,
and if there is no blocking pair for X. It is well-known that any instance of the
above model has a stable matching, originally proved by Gale and Shapley [7].

Recently, Fleiner [3] has generalized the above model to matroids. A triple
M = (V,Z,>) is called an ordered matroid, if (V,Z) is a matroid on ground set
V with family Z of independent sets and > is a linear order on V. A subset X of
V' dominates element v € V if v € X or there exists an independent set Y C X
such that {v} UY ¢ Z and u > v for all u € Y. The set of elements dominated
by X is denoted by Da(X). Given two ordered matroids My = (V, Zyr, > 1)
and My = (V,Zw, >w) on the same ground set V, a subset X of V is called
an My My -kernel if X is a common independent set of My, and My, and if
any element v € V is dominated by X in Mj; or My, that is, if the following
condition holds:

X eIy Ny andDMM(X)UDMW(X):V. (13)

For example, given a stable marriage instance (M, W, {a;;}, {b;;}) without indif-
ferent preferences, we can construct an equivalent instance in terms of matroids
as follows. Let V be the set of pairs (4,7) with a;j,b;; > —oo. Assume that
(V,Zar) is the partition matroid on V defined by disjoint sets V; = {i} x W
(i € M) and that (V,Zy ) is the partition matroid on V defined by disjoint sets
Vi =M x {j} (j € W). Thus, X is a matching if and only if X € Z; NZy. We
next define linear orders >,; and >y on V so that (i,71) > (4, J2) whenever
a;j, > a;j,, and that (i1, j) >w (i2,j) whenever b;,; > b;,;. By the definitions of
the linear orders, a matching X is an M p; Myy-kernel if and only if for each pair
(i,7) & X there exists (¢,7") in X such that (4,5") > (4,7), or (¢, 7) in X such
that (¢/,7) >w (4,7). Thus, the set of My My -kernels coincides with the set
of stable matchings. The matroidal model also includes a many-to-many stable
matching model, called stable b-matching model. We remark that the matroidal
model can easily be modified so that indifference in preferences is admissible.
Fleiner [3] showed that any instance of the matroidal model has an My Myy-
kernel.

Quite recently, Eguchi and Fujishige [2] proposed a model in terms of M®-
concavity, which is a set version of our model in which dom f;,dom fyy C
{0,1}" and for any distinct x,y € dom fas (resp. z,y € dom fi) far(z) # far(y)
(resp. fw(z) # fw(y)). For convenience, we identify a subset of V with its
characteristic vector. The matroidal model described above can be recognized as
a special case of this model with linear utility functions. Let My, = (V, Zas, > 1)
and My = (V,Zw, >w ) be an instance of the matroidal model. We define linear
orders >, and >y by positive numbers {a,} and {b,} as a,, > a, < u >y v
and by, > b, <= u >w v. Also define functions fj; and fy by

Y vex @ (X € Iny) D ex by (X €Zw)
fM(X):{_OOeX (XQIZ% fW(X)—{_OOEX (X%IZ) (14)

Then fy; and fyr are Mi-concave because these are linear on independence
families of matroids. For an independent set X of M; and Z C V with X C Z,



500 A. Eguchi, S. Fujishige, and A. Tamura

we have that X € argmax{fy(Y) | Y C Z} if and only if Z C Dy, (X), by the
optimality criterion of maximum weight independent sets of a matroid (the same
statement for My also holds). Thus, a subset X of V' is an My My -kernel if
and only if it is fas fur-stable. Eguchi and Fujishige [2] showed that any instance
of their model has an fj; fy/-stable solution.

Therefore, our model includes all of the above models. Moreover, our model
admits multiplicity for each element of V. For example, our model naturally
deals with the following problem. The same numbers of men and women attend
a dance party at which each person dances a waltz k times and he/she can
dance with the same person of the opposite gender time after time. The problem
is to find an “agreeable” assignment of dance partners, in which each person is
assigned at most k persons of the opposite gender with possible repetition. If
preferences of assignments of dance partners for each person can be expressed
by an Mf-concave function (see Remark [Mlin Section ), then our model gives a
solution.

4 A Generalized Gale-Shapley Algorithm

In this section we prove our main theorem, Theorem[d], by giving an algorithm for
finding x, zar, 2w € ZV satisfying ([0)~(12). This algorithm is a generalization
of the Gale-Shapley algorithm.

Before describing the algorithm, we show two fundamental properties of ME-
concave functions as Lemmas [[l and 2] which hold without Assumption (A).

Lemma 1. Let f : ZV — RU{—o00} be an MP-concave function and 21, zo € ZV
be such that z; > z9, argmax{f(y) |y < 21} #0, and argmax{f(y) | y < 22} #
0.

(a) For any x1 € argmax{f(y) | y < z1}, there exists x2 such that

xo €argmax{f(y) |y < z2} and 22 Axy < Zo. (15)
(b) For any x5 € argmax{f(y) | y < 22}, there exists 1 such that

x1 €argmax{f(y) |y <z} and 22 Ax; <o (16)

Proof. (a): Let xz2 be an element in argmax{f(y) | y < 22} that minimizes
S{z1(v) —22(v) | v € supp™ ((22 A 1) — 22)}. We show 2o A 21 < 2. Suppose,
to the contrary, that there exists u € V' with min{zs(u), z1(u)} > zo(u). Then
u € supp™ (x1 — x2). By (~M!-EXC), there exists v € supp™ (z1 —x2) U {0} such
that

fl1) + f(z2) < f(z1 — Xu + Xo) + f(T2 + Xu — Xo)- (17)

If v # 0, then z1(v) < 22(v) < 22(v) < 21(v). Hence we have z1 — Xy + Xo < 21,
which implies f(x1) > f(x1 — Xu + Xo)- This together with (IT) yields f(xs) <
f(z2+ Xu — Xv)- Moreover, since zo(u) > x2(u), we have xh = To+ Xu — X0 < 22.
It follows that x5 € argmax{f(y) | y < 22} and z5(v) > min{zs(v), z1(v)} if
v # 0, which contradicts the minimality condition of xs.
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(b): Let z1 be an element in argmax{f(y) | y < 2z} that minimizes
SH{zi(u) — x2(u) | u € supp™((22 A x1) — x2)}. We show 25 A 21 < 5. Sup-
pose, to the contrary, that there exists w € V' with min{zs(u), z1(u)} > za(u).
Then u € supp™t (21 —22). By (~M!-EXC), there exists v € supp~ (21 —22)U{0}
such that

f(x1)+f(w2) Sf(xl_Xu+Xv)+f(x2+Xu_Xv)' (18)

Since zao(u) < z2(u), we have xa + Xy — Xo < 22, which implies f(x2) > f(z2 +
Xu — Xv)- This together with (I8) yields f(x1) < f(z1 — Xu + Xo)- Obviously
x) = x1 — Xu + Xo < z1. However, this contradicts the minimality condition of
x1 because z2(v) > min{ze(v), z (v)} if v # 0. O

Lemma 2. For an Mf-concave function f : ZV — R U {—oo} and a vector
21 € ZV suppose that argmax{f(y) | y < z1} # 0. For any x € argmax{f(y) |
y < z1} and any 29 € ZY such that (1) z2 > 21 and (2) if z(v) = 21(v), then
22(v) = z1(v), we have x € argmax{f(y) | y < z2}.

Proof. Assume to the contrary that the assertion is not satisfied. Let 2’ be a
point such that ' < z, f(2’) > f(z), and =’ minimizes Y {z'(v) — z1(v) |
v € suppt (2’ — 21)} among such points. By the assumption, there exists u € V'
with #/(u) > 21 (u) > x(u). By (~-M*%-EXC) for 2/, z, and u, there exists v €
supp ™ (' — z) U {0} such that

f@") + f(x) < fla' = xu+ x0) + F(@ + Xu = Xo)- (19)

Since = + xu — Xv < 21, we have f(x) > f(z + Xu — Xv), which implies f(z') <
f(@" — xu + Xv). Obviously, 2’ — xu + Xv < 22, However, this contradicts the
minimality condition of 2’ because if v # 0, then z1(v) > z(v) > 2/ (v). O

It should be noted that Lemma 2l holds for any function f on Z" that has a
concave extension on RV.

To describe an algorithm for finding x, zyr, 21 € Z" satisfying (I0)~(I2), we
assume that we are initially given xas, xw, 2ar, 2w € ZY satisfying the following:

z=zm Vaw, (20)
xpy € argmax{fa(y) |y < zm}, (21)
zw € argmax{fw(y) |y <zw Vaul, (22)
zw < xp. (23)

We can easily compute such vectors by setting z); = z, zy = 0, and by finding
xpr and zy such that

ey € argmax{fu(y) |y < zm}, aw €argmax{fw(y) [y <azm}.  (24)

The algorithm is given as follows.
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Algorithm _GS(fu, fw, Ty, Tw, 2, 2w)
Input: M?-concave functions fas, fir and
T, Tw, ZM, 2w satisfying 20), 1), 22), 23) ;
repeat {
let zps be any element in argmax{fa(y) | 2w <y < zm};
let zy be any element in argmax{fw(y) |y <z} ;
for each v € V with zps(v) > zw(v) {
z2p(v) — zw (v) ;
2w (v) = 2(v) ;
I
}until 25 = 2w
return (2,7, zp, 2w V Tar).

It should be noted here that because of Assumption (A) zps and zw are well-
defined within the effective domains and that Algorithm_GS terminates after at
most ) . 2(v) iterations, because ) .y zum(v) is strictly decreased at each
iteration. In order to show that the outputs of Algorithm_GS satisfy ([0)~(T2),
we will show two lemmas, Lemmas [3] and

Let 3:5\2), x%,), zg\fl), and z‘(,:,) be xps, Tw, 2y, and zy obtained after the ith
iteration in Algorithm_GS for i = 1,2, - -, ¢, where ¢ is the last to get the outputs.

For convenience, let us assume that 33581), xg[),% 21(\9[), and z‘(,g) are the input vectors.

Lemma 3. For eachi=0,1,---,t, we have

:cg\?_l) € arg max {fM(y) ‘ y < 21(\14)} . (25)
Proof. We prove (20) by induction on 4. For ¢ = 0, (23]) holds from 1) and [23]).
We assume that for some [ with 0 <! < ¢ ([25) holds for any ¢ < [, and we show
@8) for ¢ = 1 + 1. Since xg\lfl) € argmax{fy(y) | y < 25\?} and zx[) > zxfl),
Lemma [I] (a) guarantees the existence of an z € argmax{fy(y) | v < zj(vl;—l)}

with Zj(\l4+l) Axg\lfl) < x, which implies (23)) for i = I+ 1 because Z](\l4+l) Axﬁ\lfl) =

x%ﬂ) by the modification of zj,. O
Lemma 4. For eachi=0,1,---,t, we have
x%}V) Gargmax{fw(y) ’ygz‘(,? \/IE\Q} (26)

Proof. We show (Z6) by induction on i. For ¢ = 0, (26) holds by (22]). We assume
that for some [ with 0 < [ < ¢ (6) holds for any i < I, and we show (28] for
it =1+ 1. By the definition of x;, we have

xg\ljl) > a:%,lv) (27)
By Lemma/[l (b) and the assumption, there exists x such that
Z € arg max {fW(y) ‘ y < zg,) v ccg\l/[) Y xg\ljl)} (28)

and
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( 1)y x(l)> Ne < x%,l[) (29)

From (27), [Z8), and (Z9), we have z < x(l+1) and hence fy(z) = fw(z (H_l))

If 2 l+1) ‘(,V), then we immediately obtain (26) for ¢« = I 4+ 1. So, we assume

that z(lﬂ) (l) . By the modification of zy, we have x(l+1)( ) < x%frl)( ) if
(l)( ) < z‘(/i,ﬂ)( ). Hence, by Lemma 2] (26) holds for i = + 1. O
The correctness of Algorithm_GS follows from Lemmas [3] and [
Theorem 2. The outputs of Algorithm _GS satisfy (I0) ~ (I2).

Proof. From Lemmas B] and [4 we have for i = ¢

Ty € argmax{fM ‘ y < z(t)}, (30)
:cWEargmaX{fwy ‘yﬁzw\/l‘%f)}, (31)

By the way of modifying zs, zw, and x 7, we have

zg\fl) \Y (zl(/lt,) Y a:%?) =z (33)
This completes the proof of this theorem. a

Our main result, Theorem 1, is a direct consequence of Theorem

5 Remarks on Time Complexity

We finally discuss the oracle complexities of the problems of finding an fys fy-
stable solution and of checking whether a given point is fjs fy/-stable, provided
that the function value f(x) of a given Mf-concave function f can be calculated
in constant time for each point x.

Algorithm_GS solves the maximization problem of an Mf-concave function in
each iteration. It is known that a maximizer of an M%-concave function f on V
can be found in polynomial time in n and log L, where n = |V| and L = max{||z—
Y|loo | 7,y € dom f}. For example, O(n?log L)-time algorithms are proposed in
[T4[T5]. Since Algorithm_GS terminates after at most ) . z(v) iterations, the
oracle time complexity of Algorithm _GS is O(poly(n) - L), where L = ||z||co-
Unfortunately, there exist a series of examples in which Algorithm_GS requires
numbers of iterations proportional to L. While it is known that an fj; fy-stable
solution can be found in polynomial time in n for the special case where [y,
and fy are linear on rectangular effective domains [I], it is open whether an
far fiv-stable solution for the general case can be found in polynomial time in n
and log L.

On the other hand, the problem of checking whether a given point x €
dom fpr N dom fy is fas fr-stable, can be solved in O(n?) time by using the
following local criterion of the fy; fy-stability.
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Lemma 5. A point © € dom fa; N dom fy is far fw-stable if and only if it
satisfies the following conditions:

foreachu eV, fau(z) > fu(z —xu) and  fw(z) > fw(z—xu), (34)
foreachu eV, fyr(x) > fau(x+xu—xo) MoeVU{0}) or
fw (@) = fw (@ +xu —xw) (Yw eV U{0}). (35)
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