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Abstract. Our goal is to match contour lines between images and to re-
cover structure and motion from those. The main difficulty is that pairs
of lines from two images do not induce direct geometric constraint on
camera motion. Previous work uses geometric attributes — orientation,
length, etc. — for single or groups of lines. Our approach is based on
using Pencil-of-Points (points on line) or pops for short. There are many
advantages to using pops for structure-from-motion. The most impor-
tant one is that, contrarily to pairs of lines, pairs of pops may constrain
camera motion. We give a complete theoretical and practical framework
for automatic structure-from-motion using pops — detection, matching,
robust motion estimation, triangulation and bundle adjustment. For wide
baseline matching, it has been shown that cross-correlation scores com-
puted on neighbouring patches to the lines gives reliable results, given
2D homographic transformations to compensate for the pose of the pat-
ches. When cameras are known, this transformation has a 1-dimensional
ambiguity. We show that when cameras are unknown, using pops lead
to a 3-dimensional ambiguity, from which it is still possible to reliably
compute cross-correlation. We propose linear and non-linear algorithms
for estimating the fundamental matrix and for the multiple-view trian-
gulation of pops. Experimental results are provided for simulated and
real data.

1 Introduction

Recovering structure and motion from images is one of the key goals in computer
vision. A common approach is to detect and match image features while reco-
vering camera motion. The goal of this paper is the automatic matching of lines
and recovery of structure and motion. This problem is difficult for the reason
that a pair of corresponding lines does not give direct geometric constraint on
the camera motion. Hence, one has to work on a three-view basis or assume that
camera motion is known a priori, e.g. [10].

In this paper, we attack directly the two view case by introducing a type of
image primitive that we call Pencil-of-Points or pop for short. A pop is made
of a supporting line and a set of supporting points lying on the supporting line.
Physically, a pop corresponds to a set of interest points on a contour line. pops
can be built on the top of most contour lines. Contrarily to pairs of corresponding
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lines, pairs of corresponding pops may give geometric constraints on camera
motion, provided that what we call the local geometry, relating corresponding
points along the supporting lines, has been computed. We exploit these geometric
constraints for matching pops and recovering structure and motion. Once camera
motion has been recovered using pops, it can be employed for a reliable guided-
matching and reconstruction of other types of features.

The closest work to ours is [10]. The main difference is that the authors con-
sider that the cameras are known and propose a wide-baseline guided-matching
algorithm for lines. They show that reliable results are obtained based on cross-
correlation scores, computed by warping the neighbouring textures of the lines
using the 2D homography H(µ) ∼ [l′]×F+µe′lT, where l ↔ l′ are corresponding
lines, F is the fundamental matrix and e′ the second epipole. The projective
parameter µ is computed by minimizing the cross-correlation score.

Before going into further details about our approach, we underline some of
the advantages of using pops for automatic structure and motion recovery. First,
a pop has fewer degrees of freedom than the supporting line and the individual
supporting points which implies that (i) its localization is often more accurate
that those of the individual features, (ii) finding pops in a set of interest points
and contour lines increase their individual repeatability rate and (iii) structure
and motion parameters estimated from pops are more accurate than that re-
covered from points and/or lines. Second, matching or tracking pops through
images is more reliable than individual contour lines or interest points, since a
pair of corresponding pops defines a local geometry, used to score matching hypo-
theses based on geometric or photometric criteria. Third, the robust estimation
of camera motion based on random sampling from putative correspondences, i.e.
in a ransac-like manner [3], is more efficient using pops than other standard
features, since only three pairs of pops define a fundamental matrix, versus seven
pairs of points.

Contributions and paper organization. Using pops for structure-from-motion is a
new concept. We propose a comprehensive framework for multiple-view matching
and recovery of structure and motion. Our framework is based on the following
traditional steps, which also give the organization of this paper.

First, §2, we investigate the detection of pops in images and their matching.
We define and study the local geometry of a pair of pops. We propose methods
for its estimation, which allow to obtain putative pop correspondences, from
which the epipolar geometry can be robustly estimated.

Second, §3, we propose techniques for estimating the epipolar geometry from
pop correspondences. Minimal and redundent cases are studied.

Third, §4, we tackle the problem of triangulating pops from multiple ima-
ges. We derive and approximate the optimal (in the Maximum Likelihood sens)
solution by an algorithm based on the triangulation of the supporting line, then
the supporting points.

Finally, bundle adjustment is described in §5. We provide experimental re-
sults on simulated data and give our conclusions and further work in §§6 and
7 respectively. Experimental results on real data are provided throughout the
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paper. The following two paragraphs give our notation, some preliminaries and
definitions.

Notation and preliminaries. We make no formal distinction between coordinate
vectors and physical entities. Equality up to a non-null scale factor is denoted by
∼. Vectors are typeset using bold font (q, Q), matrices using sans-serif fonts (F,
H) and scalars in italic (α). Transposition and transposed inverse are denoted
by T and −T. The (3 × 3) skew-symmetric cross-product matrix is written as
in [q]×x = q × x. Indices are used to indicate the size of a matrix or vector
(F(3×3), q(3×1)), to index a set of entities (qi) or to select coefficients of matrices
or vectors (q1, qi,1). Index i is used for the n images, j for the m features and
k for the p supporting points of a pop1. The supporting lines are written lij
(the supporting line of the j-th pop in image i) and supporting points as qijk

(the k-th supporting point of the j-th pop in image i). Indices are sometimes
dropped for clarity. The identity matrix is written I and the null-vector as 0. We
use the Euclidean distance between points, denoted de and an algebraic distance
defined by:

d2
a(q,u) = ‖S[q]×u‖2 with S = ( 1 0 0

0 1 0 ) . (1)

Definitions. A pencil of points is a set of p supporting points lying on a sup-
porting line. If p ≥ 3, the pop is said to be complete, otherwise, it is said to be
incomplete. A complete correspondence is a correspondence of complete pops.
As shown in the next section, only complete correspondences may define a local
geometry.

We distinguish two kinds of correspondences of pops: line-level and point-level
correspondences. A line-level correspondence means that only the supporting
lines are known to match. A point-level correspondence is stronger and means
that a point-to-point mapping along the supporting lines has been established.

2 Detecting and Matching Pencil-of-Points

2.1 Detecting

Detecting pops in images is the first step of the structure-from-motion process.
One of the most important properties of a detector is its ability to achieve
repeatability rates2 as high as possible, which reflects the fact that it can detect
the same features in different images. In order to ensure high repeatability rates,
we formulate our pop detector based on interest points and contour lines, for
which there exist detectors achieving high repeatability rates, see [9] for interest
points and [2] for contour lines.

In order to detect salient pops, we merge nearby contour lines. Algorithms
based on the Hough transform or ransac [3] can be used to detect pops within
1 To simplify the notation, we assume without loss of generality that all pops have

the same number of supporting points.
2 The repeatability rate between two images is the number of corresponding features

over the mean number of detected points [9].
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a set of points and/or lines. We propose the following simple solution. First, an
empty pop is instanciated for each line (which gives the supporting line). Second,
each point is attached to the pops whose supporting line is at a distance lower
than a threshold, that we typically choose as a few pixels. Finally, incomplete
pops, i.e. those for which the number of supporting points is less than three, are
eliminated. Note that we use a loose threshold for interest point and contour line
detection, to get as many as possible pops. The less significant interest points
and contour lines are generally pruned as they are respectively not attached to
any pop or form incomplete pops. An example of pop detection is shown on
figures 1 (a) & (b). It is observed that the repeatability rate of pops is higher
than each of the repeatability rates of points and lines.

Fig. 1. (a) & (b) Show the detected pops. The repeatability rate is 51% while for
points and lines it is lower, respectively 41% and 37%. (c) & (d) show the 9 putative
matches obtained with our algorithm. On this example, all of them are correct, which
shows the robustness of our local geometry based cross-correlation measure.

2.2 Matching

Traditional structure-from-motion algorithms using interest points usually rely
on an initial matching, followed by the robust estimation of camera geometry and
a guided-matching step, see e.g. [6]. The initial matching step is often based on
similarity measures between points such as correlation or grey-value invariants.
Guided-matching uses the estimated camera geometry to constrain the search-
area. In the case of pops, the initial matching step is based on the local geometry
defined by a pair of pops. This step is described below followed by the robust
estimation of the epipolar geometry.

Matching Based on Local Geometry. As mentioned above, the idea is to use
the local geometry defined by a pair of pops. We show that this local geometry
is modeled by a 1D homography and allows to establish dense correspondences
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between the two supporting lines. Given a hypothesized line-level pop corre-
spondence, we upgrade it to point-level by computing its local geometry. Given
a point-level correspondence, a similarity score can be computed using cross-
correlation, in a manner similar to [10]. For each pop in one image, the score
is computed for all pops in the other image and a ‘winner takes all’ scheme is
employed to extract a set of putative pop matches. Putative matches obtained
by our algorithm are shown on figures 1 (c) & (d).

Defining and computing the local geometry. We study the local geometry induced
by a point-level correspondence, and propose an estimation method.

Proposition 1. Corresponding supporting points are linked by a 1D homogra-
phy, related to the epipolar transformation, relating corresponding epipolar lines.

Proof: Corresponding supporting points lie on corresponding epipolar lines: there
is a trivial one-to-one correspondence between supporting points and epipolar
lines (provided the supporting lines do not contain the epipoles). The proof
follows from the fact that the epipolar pencils are related by a 1D homography
[12]. �

First, we shall define a local P
1 parameterization of the supporting points,

using two Euclidean transformation matrices A and A′ acting such that the
supporting lines are rotated to be vertical and aligned with the y-axes of the
images. The transformed supporting points are xk ∼ Aqk ∼ (0 yk 1)T and
x′

k ∼ A′q′
k ∼ (0 y′

k 1)T. Second, we introduce a 1D homography g as:
(

y′
k

1

)
∼ g

(
yk

1

)
with g ∼

(
g1 g2
g3 1

)
, (2)

which is equivalent to x′ ∼ G(µ)x with G(µ) ∼
( µ1 0 0

µ2 g1 g2
µ3 g3 1

)
, where the 3-vector

µT ∼ (µ1 µ2 µ3) represents projective parameters which are significant only
when G(µ) is applied to points off the supporting line. The 2D homography
mapping corresponding points along the supporting lines is H(µ) ∼ A′−1G(µ)A.

The 1D homography g can be estimated from p ≥ 3 pairs of supporting
points using equation (2). This is the reason why complete pops are defined as
those which have at least 3 supporting points. Given g, H(µ) can be formed.

Computing H(µ). The above-described algorithm can not be applied directly
since at this stage, we only have line-level pop correspondence hypotheses. We
have to upgrade them to point-level to estimate H(µ) with the previously-given
algorithm and score them by computing cross-correlation. We propose the follo-
wing algorithm:

– for all valid pairs of triplets of supporting points3:
• compute the local geometry represented by H(µ).
• compute the cross-correlation score based on H(µ), see below.

– return the H(µ) corresponding to the highest cross-correlation score.

3 Valid triplets satisfy an ordering constraint, namely middle points have to match.
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Computing cross-correlation. For a pair of pops, the matching score is obtained
by evaluating the cross-correlation using H(µ) to associate corresponding points.
The cross-correlation is evaluated within rectangular strips centered onto the
supporting lines. The length of the strips are given by the overlap of the suppor-
ting lines in each image. The width of the strips must be sufficiently large for
cross-correlation to be discriminative. During our experiments, we found that
a width of 3 to 7 pixels was appropriate. For pixels off the supporting lines,
the µ parameters are significant. The following solutions are possible: compute
these parameters by minimizing the cross-correlation score, as in [10], or use the
median luminance and chrominance of the regions adjacent to the supporting
lines [1]. The first solution is computationally too expensive to be used in our
inner loop, since 3 parameters have to be estimated, while the second solution
is not discriminative enough. We propose to map pixels along lines perpendicu-
lar to the supporting lines. Hence, the method uses neighbouring texture while
being independent of µ. In order to take into account a possible non-planarity
surrounding the supporting lines, we weight the contribution of each pixel to
cross-correlation proportionally to the inverse of its distance to the supporting
line.

Robustly Computing the Epipolar Geometry. At this stage, we are given
a set of putative pop correspondences. We employ a robust estimator, allowing
to estimate the epipolar geometry and to discriminate between inliers and ou-
tliers. We use a scheme based on ransac [3], which maximizes the number of
inliers. In order to use ransac, one must provide a minimal estimator, i.e. an
estimator which computes the epipolar geometry from the minimum number of
correspondences, and a function to discriminate between inliers and outliers, gi-
ven an hypothesized epipolar geometry. The number of trials required to ensure
a good probability of success, say 0.99, depends on the minimal number of cor-
respondences needed to compute the epipolar geometry. Our minimal estimator
described in §3 needs 3 pairs of pops. Applying a ransac procedure is therefore
much more efficient with pops than with points: with 50% of outliers, 35 trials
are sufficient with pops, while 588 trials are required for points (values taken
from [6]).

Our inlier/outlier discriminating function is based on computing the cross-
correlation score using [10]. Inliers are selected by thresholding this score. We use
a threshold of few percents (2% — 5%) of the maximal grey value. Figures 2 (a-d)
show an example of epipolar geometry computation, and the set of corresponding
pops obtained after guided-matching based on the method of [10].

3 Computing the Epipolar Geometry

Proposition 2. The minimal number of pairs of pops in general position4 nee-
ded to define a unique fundamental matrix is 3.

Proof: Due to lack of space, this proof is left for an extended version of the paper.
4 General position means that the supporting lines are not coplanar and do not lie on

an epipolar plane, i.e. the image lines do not contain the epipoles.
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Fig. 2. (a) & (b) Show a representative set of corresponding epipolar lines while (c) &
(d) show the 11 matched lines obtained after guided-matching using the algorithm of
[10].

3.1 The ‘Eight Corrected Point’ Algorithm

This linear estimator is based on the constraints induced by the supporting
points. Pairs of supporting points qjk ↔ q′

jk are obtained based on the pre-
viously estimated local geometries H(µ). The first idea that comes to mind is
to use the supporting points as input to the eight point algorithm [7]. This al-
gorithm minimizes an algebraic distance between predicted epipolar lines and
observed points. The eight corrected point algorithm consists in correcting the
position of the supporting points, i.e. to make them colinear, prior to applying
the eight point algorithm. Using this procedure reduces the noise on the points
positions, as we shall verify experimentally.

3.2 The ‘Three Pop’ Algorithm

This linear algorithm compares observed points and predicted points. This al-
gorithm is more statistically meaningful than the eight point algorithm, in the
case of pops, in that observed and predicted features are directly compared.

We wish to predict the supporting point positions. We intersect the predic-
ted epipolar lines, i.e. Fqjk in the second image, with the supporting lines l′j :
the predicted point is given by [l′j ]×Fqjk. Our cost function is given by sum-
ming the squared algebraic distances between observed and predicted points:∑

j d2
a(q′

jk, [l′j ]×Fqjk). In order to obtain a symmetric criterion, we consider pre-
dicted and observed points in the first image also, which yields:

Ca =
∑

j

∑
k

(
d2

a(qjk, [lj ]×FTq′
jk) + d2

a(q′
jk, [l′j ]×Fqjk)

)
. (3)

After introducing explicitly da from equation (1) and minor algebraic mani-
pulations, we obtain the matrix form Ca =

∑
j

∑
k(‖Bjkf‖2 + ‖B′

jkf‖2) where
f = vect(F) is the row-wise vectorization of F and:
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Bjk = S[qjk]×[lj ]×
(
q′

jk,1I q′
jk,2I q′

jk,3I
)
, B′

jk = S[q′
jk]×[l′j ]×diag(qT

jk qT
jk qT

jk) .

The cost function becomes Ca = ‖Bf‖2 with BT ∼
(
BT

11 B′
11

T
. . . BT

mp B′
mp

T
)
.

The singular vector associated to the smallest singular value of B gives the f that
minimizes Ca. Similarly to the eight point algorithm, the obtained fundamental
matrix does not satisfy the rank-deficiency constraint in general, and has to be
corrected by nullifying its smallest singular value, see e.g. [6].

3.3 Non-linear ‘Reduced’ Estimation

The previously-described three pop estimator is statistically sound in the sense
that observed and predicted points are compared in the linear cost function (3).
However, the comparison is done using the algebraic distance da. This is the
price to pay to get a linear estimator. In this section, we consider a cost function
with a similar form, but using the Euclidean distance de to compare observed
and predicted points:

Ce =
∑

j

∑
k

(
d2

e(qjk, [lj ]×FTq′
jk) + d2

e(q
′
jk, [l′j ]×Fqjk)

)
. (4)

We use the Levenberg-Marquart algorithm, see e.g. [6], with a suitable parame-
terization of the fundamental matrix [12] to minimize this cost function, based
on the initial solution provided by the three pop algorithm.

4 Multiple-View Triangulation

We deal with the triangulation of pop seen in multiple views. Note that since
the triangulation of a line is independent from the others, we drop the index j
in this section.

4.1 Optimal Triangulation

The optimal 3D pop is the one which better explains the data, i.e. which mi-
nimizes the sum of squared Euclidean distances between predicted and obser-
ved supporting points. Assuming that 3D pops are represented by two points
M and N for the supporting line and p scalars αk for the supporting points
Qk ∼ αkM + (1 − αk)N, the following non-linear problem is obtained:

min
M,N,...,αk,...

Cpop with Cpop =
n∑

i=1

p∑
k=1

d2
e(Pi(αkM + (1 − αk)N),qik). (5)

We use the Levenberg-Marquart algorithm, e.g. [6]. We examine the difficult
problem of finding a reliable initial solution in the next section.
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4.2 Initialization

Finding an initial solution which is close to the optimal one is of primary im-
portance. The initialization method must minimize a cost function as close as
possible to (5). We propose a two-step initialization algorithm consisting in tri-
angulating the supporting line, then each supporting point. Our motivations for
these steps are explained while reviewing line triangulation below.

Line Triangulation. Line triangulation from multiple views is a standard
structure-from-motion problem and has been widely studied, see e.g. [5]. The
optimal line < M,N > is given by minimizing the sum of squared Euclidean
distances between the predicted lines (PiM)×(PiN) and the observed points qik

as minM,N
∑n

i=1
∑p

k=1 d2
e((PiM) × (PiN),qik). To make the relationship with

the cost function (5) appear, we introduce a set of points Qik on the 3D line.
Using the fact that the Euclidean distance between a point and a line is equal
to the Euclidean distance between the point and the projection of this point on
the line, we rewrite the line triangulation problem as:

min
M,N,...,αik,...

Cline with Cline =
n∑

i=1

p∑
k=1

d2
e(Pi(αikM + (1 − αik)N),qik). (6)

Compare this cost function (5): the difference is that for line triangulation, the
points are not supposed to match between the different views. Hence, a 3D point
on the line is reconstructed for each image point, while in the pop triangulation
problem, a 3D point on the line is reconstructed for each image point correspon-
dence. Now, the interesting point is to determine if, in practice, cost functions
(5) and (6) yield close solutions for the reconstructed 3D line. Obviously, an ex-
perimental study is necessary, and we refer to §6. However, we intuitively expect
that the results are close.

Point-on-Line Triangulation. We study the problem of point-on-line optimal
triangulation: given a 3D line, represented by two 3D points M and N, a set of
corresponding image points . . . ,qik, . . . , find a 3D point Qk ∼ αkM+(1−αk)N
on the given 3D line, such that the squared Euclidean distances between the
predicted and the observed points is minimized.

For point-on-line triangulation, we formalise the problem as
minαk

∑n
i=1 d2

e(Pi(αkM + (1 − αk)N),qik) and by introducing bi = Pi(M − N)
and di = PiN, we obtain:

min
αk

Cpol with Cpol =
n∑

i=1

d2
e(αkbi + di,qik). (7)

Sub-optimal linear algorithm. We give a linear algorithm, based on approxima-
ting the optimal cost function (7) by replacing the Euclidean distance de by the
algebraic distance da. The algebraic cost function is

∑n
i=1 d2

a(αkbi + di,qik) =∑n
i=1 ‖αkS[qik]×bi + S[qi]×di‖2. A closed-form solution giving the best αk in

the least-squares sens is αk = −
∑n

i=1 bi
T[qik]× Ĩ[qik]×di

∑n
i=1 bi

T[qik]× Ĩ[qik]×bi
with Ĩ ∼ STS ∼

(
1

1
0

)
.
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Optimal polynomial algorithm. This algorithm consists in finding the roots of a
degree-(3n − 2) polynomial in the parameter αk, whose coefficients depend on
the bi, the di and the qik. Due to lack of space, details are left to an extended
version of the paper.

5 Bundle Adjustment

Bundle adjustment consists in minimizing the reprojection error over structure
and motion parameters:

min
P1,...,Pn,M1,N1,...,Mm,Nm,...,αjk,...

n∑
i=1

m∑
j=1

p∑
k=1

d2
e(Pi(αjkMj + (1 − αjk)Nj),qijk),

where we consider without loss of generality that all points are visible in all
views. We use the Levenberg-Marquardt algorithm to minimize this cost func-
tion, starting from an initial solution obtained by matching pairs of images and
computing pair-wise fundamental matrices using the algorithms of §§2 and 3,
from which the multiple-view geometry is extracted as in [11]. Multiple-view
matches are formed, and the pops are triangulated using the optimal method
described in §4.

6 Experimental Results

We simulate a set of 3D pops observed by two cameras, with focal length 1000
pixels. To simulate a realistic scenario, each pop is made of 5 supporting points.
The supporting points are projected onto the images, and a Gaussian centered
noise is added. The images of the supporting lines are determined as the best
fit to the noisy supporting points. These data are used to compare quasi-metric
reconstructions of the scene, obtained using different algorithms. We mesure
the reprojection error and a 3D error, obtained as the minimum residual of
minHu

∑
j d2(Q

j
,HuQj), where Q

j
are the groung truth 3D points, Qj the re-

construction points and Hu an aligning 3D homography.

Comparing triangulation algorithms. The two first methods are based on tri-
angulating the supporting line, then each supporting point using the linear so-
lution (method ‘Line Triangulation + Lin’) or using the optimal polynomial
solution (method ‘Line Triangulation + Poly’). The third method is Levenberg-
Marquardt minimization of the reprojection error, for pops (method ‘ML Pops’)
or points (method ‘ML Points’). We observe on figure 3 (a) that triangulating
the supporting line followed by the supporting points on this line (methods ‘Line
Triangulation + *’) produce results close to the non-linear minimization of the
reprojection error of the reprojection error of the pop (method ‘ML Pops’). Mi-
nimizing the reprojection error individually for each point (method ‘ML Points’)
produce lower reprojection errors.

Concerning the 3D error, shown on figure 3 (b), we also observe that methods
‘Line Triangulation + *’ produce results close to method ‘ML Pop’. However,
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Fig. 3. Reprojection and 3D error when varying the added image noise variance to
compare structure and motion recovery methods.

we observe that method ‘ML Points’ gives results worse than all other methods.
This is due to the fact that this method does not benefit from the structural
constraints defining pops.

Comparing bundle adjustment algorithms. The two first methods are based on
computing the epipolar geometry using the eight point algorithm (method ‘Eight
Point Alg.’) or the three pop algorithm (method ‘Three Pop Alg.’), then triangu-
lating the pops using the optimal triangulation method. The two other methods
are bundle adjustment of pops and points respectively. We observe on figure 4
(a) that the eight point algorithm yields the worse reprojection error, followed
by the three pop algorithm and the eight corrected point algorithm. Bundle
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Fig. 4. Reprojection and 3D error when varying the added image noise variance to
compare triangulation methods.
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adjustement of pops gives reprojection error slightly higher than with points.
However, figure 4 (b) shows that bundle adjustment of pops gives a better 3D
structure than point, due to the structural constraints. It also shows that the
eight corrected point algorithm yields good results.

7 Conclusions and Further Work

We addressed the problem of automatic structure and motion recovery from
images containing lines. We introduced a feature that we call pop, for Pencil-of-
Points. We demonstrated our matching algorithm on real images. This confirms
that the repeatability rate of pops is higher than the repeatability rates of the
points and lines from which they are detected. This also shows that using pops,
wide baseline matching and the epipolar geometry can be successfully computed
in an automatic manner, using simple cross-correlation. Experimental results on
simulated data show that due to the strong structural constraints, pops yield
structure and motion estimates more accurate than with points.

Advantages for using pops are numerous. Briefly, localization, repeatability
rate and structure and motion estimate are better with pops than with points,
and robust estimation is very efficient since only three pairs of pops define an
epipolar geometry. For this reason, we believe that this new feature could be-
come standard for automatic structure-and-motion in man-made environment,
i.e. based on lines.

Further work will consist in investigating the determination of parameters µ
needed to compute undistorted cross-correlation, since we believe that it could
strongly improve the initial matching step, and studying methods for estimating
the trifocal tensor from triplets of pops.
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